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Abstract

This paper deals with the construction of numerical solutions of moving boundary random problems where the uncertainty
s limited to a finite degree of randomness in the mean square framework. Using a front fixing approach the problem is
rstly transformed into a fixed boundary one. Then a random finite difference scheme for both the partial differential equation
nd the Stefan condition, allows the discretization. Since statistical moments of the approximate stochastic process solution
re required, we combine the sample approach of the difference schemes together with Monte Carlo technique to perform
anageable approximations of the expectation and variance of both the approximating stochastic process solution and the

tochastic moving boundary solution. Qualitative and reliability properties such as positivity, monotonicity and stability in the
ean square sense are treated. Feasibility of the proposed method is checked with illustrative examples of a melting problem

nd a binary metallic alloys problems.
2022TheAuthor(s).PublishedbyElsevierB.V.onbehalfof InternationalAssociationforMathematicsandComputers inSimulation

IMACS). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Random Stefan problems; Mean square calculus; Front fixing; Finite difference; Finite degree of randomness

1. Introduction

Moving boundary partial differential diffusion problems are frequent modelling phase-change where a material
elts or solidifies and they occur in several sciences such as biophysics, chemistry, ecology [6] and industrial

rocesses applications related to melting, freezing [2–4] or metallic alloys processes [1,8,9,12,20].
Apart from the unknown variable of the partial differential equation (PDE), that can be concentration or

emperature, it is also important to determine the moving boundary describing the localization of the interface
xpressed by the Stefan condition.

Dealing with real problems one usually must consider not a deterministic framework but a random one. Such
roblems are described by random time-dependent PDE models concerning to a wide class of evolution equations,
ncluding for instance diffusion–advection–reaction problems. The uncertainty can affect the parameters, coefficients
nd initial/boundary conditions. There are several sources of uncertainty such as measurement errors, impurities of
aterials and the difficult to access to the measurement of the parameters. In the particular case of random Stefan
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roblems the uncertainty arises not only in the searched solution but also in the unknown moving boundary. These
ssues can be addressed by random or stochastic approaches, based on the mean square (m.s.) calculus [22] or the
tô calculus [15] respectively. Stochastic moving boundary problems have been recently treated in [10,13] using a
erturbation approach.

In this paper we address the numerical solution of random moving boundary problems in the m.s. sense. To our
nowledge this paper is the first time where random Stefan problems are treated in the m.s. sense. The difficulty to
btain exact solutions suggests the consideration of two problems of increasing complexity.

Since our purpose is numerical we assume a realistic random framework. In our models the involved 2-
tochastic processes (s.p.’s) g(x, t, ω) are defined in a complete probability space (Ω ,F ,P). For the sake of practical

application we assume that the uncertainty is limited to p degrees of randomness depend on a finite number p of
random variables (r.v.’s), see [22, p.37], i.e., they only depend on a finite number p of random variables (r.v.’s)

g(x, t, ω) = g
(
x, t, B1(ω), B2(ω), . . . , Bp(ω)

)
, (1)

here

Bi (ω) , 1 ≤ i ≤ p , are mutually independent r.v.’s,
g is a differential real function of the variables x, t.

}
(2)

his framework has been used recently for random partial differential equations (RPDE) models with fixed domains
n [5].

We start with a semi-infinite simple phase random melting problem for which the corresponding deterministic
roblem has an available exact solution [6, Chpts. 1& 3]:

∂T (x, t, ω)
∂t

= D(ω)
∂2T (x, t, ω)

∂x2 , D(ω) =
κ(ω)

cp(ω) ρ(ω)
, 0 < x = x(t, ω) < s(t, ω), ω ∈ Ω , (3)

ith the following random boundary and initial conditions

T (0, t, ω) = Tw(ω) , t > 0 , ω ∈ Ω (wall temperature), (4)

T (s(t, ω), t, ω) = Tm(ω) , t > 0 , ω ∈ Ω (melting front temperature), (5)

T (x, 0, ω) = Tm(ω), x > 0 , ω ∈ Ω (initial temperature), (6)

s(0, ω) = 0 , ω ∈ Ω (initial position of the interface), (7)

nd the velocity of the 2-stochastic process (2-s.p.) interface s(t, ω) is stated by a random Stefan condition:

ds(t, ω)
dt

= −Q(ω)
∂T (s(t, ω), t, ω)

∂x

⏐⏐⏐⏐
x → s(t,ω)−

, Q(ω) =
κ(ω)

L(ω) ρ(ω)
, ω ∈ Ω . (8)

Here the unknown 2-s.p. T (x, t, ω), ω ∈ Ω , 0 < x < s(t, ω), t > 0, represents the temperature of the material in
he liquid phase, D(ω) > 0 in (3) represents the diffusivity random variable (r.v.) involving the thermal conductivity
.v. κ(ω) > 0, the specific heat r.v. cp(ω) > 0 and the density r.v. of the material ρ(ω) > 0. The r.v. Q(ω) > 0
ppearing in the Stefan condition (8) involves the latent heat of fusion r.v. of the phase change material L(ω) > 0
nd the r.v.’s κ(ω) > 0 and ρ(ω) > 0.

The second problem treated is a diffusional solid-state phase in a binary metallic alloy system [9]

C(x, t, ω) = cpart , 0 < x < s(t, ω) , ω ∈ Ω , (9)
∂ C(x, t, ω)

∂t
= D(ω)

∂2 C(x, t, ω)
∂x2 , s(t, ω) < x < ℓ, ω ∈ Ω , (10)

ogether with the initial and boundary conditions

C(x, 0) =

⎧⎨⎩ cpart, 0 ≤ x < b0 ,

csol, x = b0 ,

c0, b0 < x ≤ ℓ ,

(11)

∂ C(x, t, ω)
= 0

⏐⏐⏐⏐ , ω ∈ Ω , (isolated domain) , (12)

∂x x→ℓ−
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nd the random Stefan condition

(cpart
− csol)

d s(t, ω)
dt

= D(ω)
∂ C(x, t, ω)

∂x

⏐⏐⏐⏐
x → s(t,ω)−

, ω ∈ Ω . (13)

where C(x, t, ω) is a 2-s.p. representing the concentration of the material in the diffusive phase (s(t, ω), ℓ). The r.v.
D(ω) > 0 denotes the diffusivity inside the diffusive phase. Here cpart denotes the concentration within the particle
hat is assumed to be constant in its domain and b0 is the initial position of the interface. csol denotes the constant

interface concentration depending on the solubility of the material and c0 is the initial constant concentration in the
diffusive phase. We take cpart > c0 > csol > 0.

As it has been mention above in (1)–(2) our models the involved 2-s.p.’s T (x, t, ω), C(x, t, ω) and s(t, ω) are
defined in a complete probability space (Ω ,F ,P) and have p degrees of randomness. For the sake of notational
simplification we only assume in the example that the involved s.p.’s only depend on one degree of randomness.
Additional hypotheses to the involved s.p.’s linked to the m.s. calculus will be imposed later.

Both problems (3)–(8) and (9)–(13) are firstly transformed into a fixed boundary value problem using a random
front fixing approach. Then a random finite difference scheme is used to compute both the unknown (temperature or
concentration) as well as the melting interface. In order to avoid storage information overload, in the computation
of the expectation and the variance of the approximate s.p., we use a combination of the sample m.s. approach
with Monte Carlo technique. This combined approach has been recently used in a fixed boundary random partial
differential problem where the unmanageable storage information linked to the iteration is overcome [5]. As nothing
is perfect, the use of the front-fixing approach so called boundary immobilization method involves a difficulty that
must be overcome. In fact, one introduces a singularity derived from the substitution immobilizing the boundary, see
later Section 2. See also [19]. Recognized methods as moving grids methods, see [9], can be considered to be applied
to the random problem. Recently the unified transform method has been used in the deterministic case leading
to integro-differential equations that have been solved numerically by fix-point iteration and spline interpolation,
see [7]. In [14] an efficient random walk method has been proposed for the deterministic case. These approaches
are worthy to be explored in the random scenario when the parameters are subject to uncertainty. We introduce the
front-fixing approach for the considered random Stefan problems inspired in the fact that it has been competitive
in the deterministic case [17] and it is used successfully in free boundary problems arising in other fields such as
financial mathematics [24] and population dynamics [16].

This paper is organized as follows. Section 2 is devoted to the numerical solution of the random single-phase
melting Stefan problem (3)–(8) where under hypotheses (1)–(2) the random exact solution is available. We use a
front fixing approach and a random difference scheme where both the melting interface and the temperature become
unknowns of the scheme. Numerical results are compared with the exact solution in order to check the reliability
of the approach. Numerical analysis is used although not developed to focus more in the innovation since the
development is also performed in Section 3. The problem (9)–(2) is treated in Section 3, including the numerical
analysis, positivity and qualitative properties of the numerical solution s.p. for both the concentration and the melting
interface. Since the exact solution is not available, the reliability of the numerical results are checked using a Cauchy
type condition when both the step-sizes and the number of sampled realizations change. A conclusion Section 4
ends the paper.

2. Random single-phase melting Stefan problem

In the random melting Stefan problem (3)–(8) the liquid phase is in contact with a solid phase separated by the
unknown melting front at this time, s(t, ω), ω ∈ Ω , where the temperature T (x, t, ω) is the melting temperature.
Initially in x = 0, t = 0, the wall temperature Tw(ω) is raised to Tw(ω) > Tm(ω), ω ∈ Ω , prompting the change

f phase to start melting the material. It is important to point out that the single-phase melting problem is an
dealization of the two phases problem because in the solid region the temperature is considered to be constantly
qual to the melting temperature Tm(ω). Thus the unknown temperature is only the temperature in the liquid phase,
ee Fig. 1.

We assume that both s.p.’s the temperature T (x, t, ω) and the melting interface s(t, ω) are s.p.’s m.s. differentiable
erifying conditions (1)–(2). We assume that the thermophysical properties of the phase change materials are

ndependent of s.p. of the temperature.
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Fig. 1. Schematic of the one-dimensional solid–liquid phase change heat transfer process studied.

In the deterministic case, the Stefan problem described in (3)–(8) in a semi-infinite medium has an analytical
olution [6, Chpts. 1 & 3]

T (x, t) = Tw −
Tw − Tm

erf(β)
erf

(
x

2
√

D t

)
, D =

κ

cp ρ
, t > 0 , 0 < x < s(t) , (14)

s(t) = 2β
√

D t , t ≥ 0 , (15)

here β is the solution of the non-linear equation

β eβ2
erf(β) =

Q (Tw − Tm)

D
√

π
. (16)

Note that in the random single-phase melting problem (3)–(8), the spatial variable as it is a proportion of the
elting interface s(t, ω) can be written

x(t, ω) = z s(t, ω) , ω ∈ Ω , (17)

here z is a real number in the interval [0, 1]. Hence one achieves Landau transformation [11].
Let us consider the following random front-fixing transformation in order to immobilize the unknown random

omain [0, s(t, ω)[

z =
x(t, ω)
s(t, ω)

, ω ∈ Ω , t > 0 , (18)

here z becomes the deterministic spatial variable of the immobilized random boundary problem. The new
ependent variable

u(z, t, ω) = T (x(t, ω), t, ω) , ω ∈ Ω , (19)

s the solution s.p. of the random transformed problem

∂u(z, t, ω)
∂t

= D(ω)
1

s2(t, ω)
∂2u(z, t, ω)

∂z2 + z
s ′(t, ω)
s(t, ω)

∂u(z, t, ω)
∂z

, 0 < z < 1, t > 0 , ω ∈ Ω , (20)

u(0, t, ω) = Tw(ω) , t > 0 , ω ∈ Ω , (21)
u(1, t, ω) = Tm(ω) , t > 0 , ω ∈ Ω , (22)

s(0, ω) = 0 , ω ∈ Ω , (23)

s ′(t, ω) = −
Q(ω)

s(t, ω)
∂u(z, t, ω)

∂z

⏐⏐⏐⏐
z → 1−

, t > 0, ω ∈ Ω , (24)

where s ′(t, ω) denotes the first mean square derivative ds(t,ω)
dt , ω ∈ Ω . Note that immobilization technique involves

as an additional variable the melting interface s(t, ·) in the transformed random problem (20)–(24).
881
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emark 1. In order to legitimate the mean square operational calculus developed in (20) and (24) it is important
o point out that

∂2u(z, t, ·)
∂z2 ,

∂u(z, t, ·)
∂z

,
s ′(t, ·)
s(t, ·)

,
1

s(t, ·)
,

1
s2(t, ·)

, (25)

ie in L4(Ω ), see [23, Sec. 3 ].

As we quoted above it appears the singularity s(0, ω) = 0 in (23). Following the idea developed by [19] to
circumvent the singularity we use the analytical solution (14)–(16) of the one phase semi-infinite random Stefan
Problem in a small initial time interval 0 < t < t0. Hence from (14)–(16) for the random scenario and the
substitution (18)–(19) one gets

u(z, t, ω) = Tw(ω) −
Tw(ω) − Tm(ω)

erf(β(ω))
erf (β(ω) z) , 0 < t ≤ t0 , 0 < z < 1 , ω ∈ Ω , (26)

s(t, ω) = 2β(ω)
√

D(ω) t , 0 < t ≤ t0 , ω ∈ Ω , (27)

ith the r.v. β(ω) the solution of the random non-linear equation

β(ω) eβ(ω)2
erf(β(ω)) =

Q(ω) (Tw(ω) − Tm(ω))
D(ω)

√
π

. (28)

et us consider the uniform partition of the spatial domain [0, 1] taking a step size h in order to obtain equally
paced points zi = ih, 0 ≤ i ≤ M , such that Mh = 1. For a fixed time τ and a small initial time t0 > 0, we take
step size k and N + 1 intermediate time levels are generated tn

= nk + t0, 0 ≤ n ≤ N , with τ = Nk + t0.
We denote the numerical approximation of the s.p.’s u(z(x, t, ω), t) and s(t, ω) as follows

un
i (ω) ≈ u(zi , tn, ω) , ω ∈ Ω , 0 ≤ i ≤ M, 0 ≤ n ≤ N ,

sn(ω) ≈ s(tn, ω) , ω ∈ Ω , 0 ≤ n ≤ N .
(29)

e proceed with the construction of the random difference scheme (RDS) throughout the approximation of the m.s.
erivatives by difference approximations. Concretely the time m.s. derivatives in (20) and (24) are approximated by
forward first-order approximation

∂u(z(x, t, ω), t)
∂t

≈
un+1

i (ω) − un
i (ω)

k
, ω ∈ Ω , (30)

s ′(t, ω) ≈
sn+1(ω) − sn(ω)

k
, ω ∈ Ω , (31)

nd by centred second-order approximation for the spatial m.s. partial derivatives in (20)

∂u(z(x, t, ω), t)
∂z

≈
un

i+1(ω) − un
i−1(ω)

2h
, ω ∈ Ω , (32)

∂2u(z(x, t, ω), t)
∂z2 ≈

un
i−1(ω) − 2un

i (ω) + un
i+1(ω)

h2 , ω ∈ Ω . (33)

Discretization of the Stefan condition (24) involves the approximation of the one size m.s. derivative

∂u(z, t, ω)
∂z

⏐⏐⏐⏐
z → 1−

≈
∆n(ω)

2h
, (34)

where

∆n(ω) = 3un
M (ω) − 4un

M−1(ω) + un
M−2(ω) , (35)

preserving the second order approximation as the approximation of the m.s. derivatives at the internal points. Using
that the melting interface follows the evolution of the transformed Stefan condition (24) and expressions (15),
(34)–(35) one gets

sn+1(ω) = sn(ω) −
k Q(ω) ∆n(ω)

sn(ω) 2h
, 0 ≤ n ≤ N − 1 ,

0
√

0 0

⎫⎪⎪⎬⎪⎪⎭ , ω ∈ Ω . (36)
s (ω) = 2 β(ω) D(ω) t , t > 0 ,
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y the approximations (30)–(35) the random problem (20)–(24) can be rewritten as the following random discretized
ront-fixing problem

un+1
i (ω) − un

i (ω)
k

=

D(ω)
un

i−1(ω) − 2un
i (ω) + un

i+1(ω)
(sn(ω))2 h2 −

Q(ω)∆n(ω)
4(sn(ω))2 h2

(
un

i+1(ω) − un
i−1(ω)

)
zi ,

1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1 ,

un
0(ω) = Tw(ω) , un

M (ω) = Tm(ω) , 0 ≤ n ≤ N ,

u0
i (ω) =

Tm(ω)−Tw(ω)
erf(β) erf(β zi ) + Tw(ω) , 0 ≤ i ≤ M .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(37)

Note that the initial condition of the RDS (37), {u0
i (ω) ; 0 ≤ i ≤ M, ω ∈ Ω}, is obtained from the evaluation (26)

at time t = t0.
The random explicit scheme constructed takes the form

un+1
i (ω) = an

i (ω) un
i−1(ω) + bn(ω) un

i (ω) + cn
i (ω) un

i+1 , ω ∈ Ω ,

1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1 ,

un
0(ω) = Tw(ω) , un

M (ω) = Tm(ω) , 0 ≤ n ≤ N ,

u0
i (ω) =

Tm(ω)−Tw(ω)
erf(β(ω)) erf(β(ω) zi ) + Tw(ω) , 0 ≤ i ≤ M .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(38)

with the random coefficients

an
i (ω) =

k
h2(sn(ω))2

(
D(ω) +

Q(ω)∆n(ω)
4

zi

)

bn(ω) = 1 −
2k D(ω)

h2 (sn(ω))2

cn
i (ω) =

k
h2(sn(ω))2

(
D(ω) −

Q(ω)∆n(ω)
4

zi

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1 , ω ∈ Ω , (39)

nd ∆n(ω) defined in (35).
In an analogous way to the further study of the m.s. stability developed in Section 3, and to avoid straightforward

omputations, it is easy to show that for small enough values of the step-size h together with the hypothesis
k
h2 < 2 t0 β2

min , (40)

here βmin = min{β(ω) : ω ∈ Ω}, one guarantees the positivity and stability of the solution s.p. of the RDS
35)–(36), (38)–(39) and the time increasing behaviour of the melting interface s.p. obtained from (36).

In the next example as the exact solution is available we compare this one with the random solution s.p. of the
DS as well as their statistical moments using Monte Carlo technique only at the fixed station time iteration to
void storage-accumulation troubles, see [5].

.1. Example: Simulation of the random ice melting in a single-phase

In order to illustrate and validate the random solid–liquid phase change simulation results obtained in our study,
e are going to consider a block of ice of negligible thickness. Table 1 collects the physical values for the parameters

nvolved in the problem according with the standard reference data in the literature, see for instance [18,21]. The
ata taken have been considered mutually independent. We denote N[a,b](µ, σ ) the normal distribution of mean µ

nd standard deviation σ truncated in the interval [a, b]. We have chosen truncated normal distributions for the
883
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Table 1
Thermophysical properties of water and other data of Example 2.1.

Parameter Physical value Unit

Tw 10 ◦C
Tm 0 ◦C
Thermal Conductivity (κ(ω)) κ(ω) ∼ N[0.5,0.7](0.60, 0.10) W/(m ◦C)
Density of the liquid (ρ) 1000 g/l
Specific heat (cp) 4.1868 J/(g ◦C)

D(ω) =
κ(ω)
cp ρ

D(ω) = 14.3308 κ(ω) mm2/min

Latent heat of fusion (L(ω)) L(ω) ∼ N[0.31,0.35](0.33, 0.02) KJ/g

Q(ω) =
κ(ω)

L(ω) ρ
Q(ω) = 6 × 10−2 κ(ω)

L(ω)
mm2/(◦C min)

random parameters inspired in the fact that this distribution is generally expected to describe errors of measurement
but any other truncated one can be used for our proposed random front-fixing numerical scheme. The values of the
means of the parameters have been taken as approximations of the standard physical reference data of κ(ω) and
L(ω) respectively. Although the choice of the distributions and their parameters modifies the numerical solutions
it is worth focusing on the fact that stability is guaranteed in all the cases if the condition between the step sizes
discretization (40) is assumed.

With respect to the computations of the mean and the standard deviation of the exact solution s.p. (14)–(16),
we need to overcome the trouble of solving for β(ω), ω ∈ Ω , the random non-linear equation (28). Taking a high
number of sampled realizations in (28) and solving the corresponding sampled equations, then each sampled solution
β(ωK ) is taking in the transformed problem (26)–(27) in order to compute the mean and the standard deviation of
the solution s.p. u(z, t, ω) of (26) and s(t, ω) of (27). The transformation (17)–(18) allows us to compute the mean
of the r.v. x(t, ·) at a fixed time t ,

µ[x(t, ω)] = z µ[s(t, ω)] , 0 ≤ z ≤ 1 . (41)

Finally the mean of the temperature above computed µ[u(z, t, ω)] is assigned to the mean of the space variable
µ[x(t, ω)] given by (41). As σ [x(t, ω)] = z σ [s(t, ω)] , the same spatial assignation is performed with respect to
the standard deviation. This procedure is valid for both the exact and the numerical solution s.p.’s. Algorithm 1
summarizes the sufficient conditions and steps to compute stable approximations for both statistical moments of the
solution s.p.’s temperature and interface generated by means of the random difference scheme (35)–(36), (38)–(39)
and the Monte Carlo method.

The comparison among theirs statistical moments is performed for the real spatial variable z at a fixed time τ ,
using (26)–(27) for the exact solution and (35)–(36), (38)–(39) for the numerical one from t0 up to τ . The study
of the numerical convergence of these approximations has been treated by means of the analysis of their absolute
errors in two stages at a fixed time τ . Firstly, we have fixed the step-sizes (h, k) verifying the sufficient stability
condition (40) and we have varied the number K of Monte Carlo realizations comparing their absolute differences
between two successive realizations {Kℓ, Kℓ+1} using the following expressions

AbsDiff
[
µ

(
uKℓKℓ+1 (zi , τ, ω)

)]
=

⏐⏐AbsErr
[
µ

(
uKℓ+1 (zi , τ, ω)

)]
− AbsErr

[
µ

(
uKℓ

(zi , τ, ω)
)]⏐⏐ ,

AbsDiff
[
σ

(
uKℓKℓ+1 (zi , τ, ω)

)]
=

⏐⏐AbsErr
[
σ

(
uKℓ+1 (zi , τ, ω)

)]
− AbsErr

[
σ

(
uKℓ

(zi , τ, ω)
)]⏐⏐ , (42)

AbsDiff
[
µ

(
sKℓKℓ+1 (tn, ω)

)]
=

⏐⏐AbsErr
[
µ

(
sKℓ+1 (tn, ω)

)]
− AbsErr

[
µ

(
sKℓ

(tn, ω)
)]⏐⏐ ,

AbsDiff
[
σ

(
sKℓKℓ+1 (tn, ω)

)]
=

⏐⏐AbsErr
[
σ

(
sKℓ+1 (tn, ω)

)]
− AbsErr

[
σ

(
sKℓ

(tn, ω)
)]⏐⏐ , (43)

here the absolute errors of the mean and the standard deviation between the exact values, u(zi , τ, ω) and s(tn, ω),
nd the approximate ones denoted by uK (zi , τ, ω) and sK (tn, ω), are computed in this way

AbsErr [µ (uK (zi , τ, ω))] = |µ (u(zi , τ, ω)) − µ (uK (zi , τ, ω))| ,

AbsErr [σ (uK (zi , τ, ω))] = |σ (u(zi , τ, ω)) − σ (uK (zi , τ, ω))| ,

AbsErr [µ (sK (tn, ω))] = |µ (s(tn, ω)) − µ (sK (tn, ω))| ,
n n n

(44)
AbsErr [σ (sK (t , ω))] = |σ (s(t , ω)) − σ (sK (t , ω))| .
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Algorithm 1 Procedure to compute the statistical moments of the numerical solutions s.p.’s un

i (ω) and sn(ω), ω ∈ Ω ,
or the random transformed problem (20)–(24) in Example 2.1. (Part 1)
1: Assume that both numerical solution s.p.’s un

i (ω) and sn(ω) are in L4(Ω ) space verifying conditions (1)–(2) and
(25).

2: Take random inputs κ(ω) and L(ω) as truncated r.v.’s.

3: Select a uniform spatial step-size h generating the nodes zi = i h, 0 ≤ i ≤ M , in [0, 1] such that Mh = 1.

4: Choose a fixed time τ and a small initial time t0 > 0.

5: Consider the maximum value of the latent heat of fusion r.v. L(ω) in order to obtain βmin, that is, the minimum
value of r.v. β(ω) in (28) for any event ω.

6: Select a temporal step-size k verifying condition (40).

7: Consider a partition of the temporal interval [t0, τ ] of the form tn
= n k + t0, 0 ≤ n ≤ N , where the integer

N =
τ−t0

k is the number of levels necessary to achieve the time τ , that is, τ = Nk + t0.

8: Take an integer number K of Monte Carlo realizations, ωℓ, 1 ≤ ℓ ≤ K , over the r.v.’s obtaining the real values
κ(ωℓ) and L(ωℓ), 1 ≤ ℓ ≤ K .

9: for each realization ωℓ, 1 ≤ ℓ ≤ K do
10: Compute the deterministic root β(ωℓ) of the non-linear deterministic equation associated to (28).
11: for n = 0 do
12: for i = 1 to M − 1 do
13: Compute the initial solution u0

i (ωℓ) at t0 > 0 using (38).
14: end for
15: end for

16: for n = 1 do
17: Compute ∆0(ωℓ) using (35).
18: Compute s0(ωℓ) using (36).
19: Compute b0(ωℓ) using (39)

20: for i = 1 to M − 1 do
21: Compute coefficients a0

i (ωℓ) and c0
i (ωℓ) using (39).

22: Compute u1
i (ωℓ) using (38).

23: end for
24: end for

25: for n = 2 to n = N do
26: Compute ∆n−1(ωℓ) using (35).
27: Compute sn−1(ωℓ) using (36).
28: Compute bn−1(ωℓ) using (39)
29: for i = 1 to M − 1 do
30: Compute coefficients an−1

i (ωℓ) and cn−1
i (ωℓ) using (39).

31: Compute un
i (ωℓ) using (38).

32: end for

33: end for

34: Compute ∆N (ωℓ) using (35).
35: Compute s N (ωℓ) using (36).

36: end for
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Algorithm 1 (Part 2)
1: for i = 1 to M − 1 do
2: Compute the mean of the numerical temperature solutions at time level N over the set of the K realizations:

µ[uN
i (ωℓ) , 1 ≤ ℓ ≤ K ].

3: Compute the standard deviation of the numerical temperature solutions at time level N over the set of the K
realizations: σ [uN

i (ωℓ) , 1 ≤ ℓ ≤ K ].
4: end for

5: for n = 1 to N do
6: Compute the mean of the numerical interface solutions over the set of the K realizations: µ[sn(ωℓ) , 1 ≤ ℓ ≤

K ].
7: Compute the standard deviation of the numerical interface solutions over the set of the K realizations:

σ [sn(ωℓ) , 1 ≤ ℓ ≤ K ].
8: end for

Fig. 2. Absolute differences after τ = 5.5 min for both statistical moments of the approximate temperature s.p., uKℓ,Kℓ+1 (z, τ, ω), computed
by (42) between two successive realizations {Kℓ, Kℓ+1}, Kℓ ∈ {10, 20, 40, 80, 160}. The step-sizes (h, k) = (0.1, 5e − 04) are considered
fixed, then the spatial points are zi = ih, 1 ≤ i ≤ M − 1 = 10 in the spatial domain [0, 1]. Plot (a): Successive absolute differences of
the mean of the approximate temperature s.p.: AbsDiff

[
µ

(
uKℓ Kℓ+1 (z, 5.5, ω)

)]
. Plot (b): Successive absolute differences for the standard

deviation of the approximate temperature s.p.: AbsDiff
[
σ

(
uKℓ Kℓ+1 (z, 5.5, ω)

)]
.

Figs. 2 and 3 show how the successive absolute differences (42)–(43) decrease as the number of Monte Carlo
realizations Kℓ ∈ {10, 20, 40, 80, 160} increases for the fixed step-sizes (h, k) = (0.1, 5e−04). Tables 2 and 3 collect
the maximum values of these absolute differences. Computations have been carried out by Matlab© software version
R2019b Update 3 for Windows 10Pro (64-bit) AMD Ryzen Threadripper 2990WX 32-Core Processor, 3.00 GHz.
The timings have been computed using cputime function of Matlab© (CPU time spent). Table 4 collects these CPUs
as well as the real time lapsed corresponding to these CPUs.

In the second stage about the study of the convergence of the approximations to the both statistical moments,
we have taken a fixed number of Monte Carlo realizations K , K = 500, and we have refined the step-sizes (h, k)
according to the stability condition (40). Figs. 4 and 5 illustrate the behaviour of the absolute errors as the step
sizes decrease up to the values (h, k) = (0.025, 3.5e−05). The absolute errors decrease in the case of the mean and
remain stable for the case of the standard deviation. Tables 5 and 6 collect the maximum value for these absolute
errors and Table 7 collects the CPUs and the real time lapsed in the computations of the mean and the standard
deviation.

Fig. 6 shows wrong numerical approximations obtained when the sufficient stability condition (40) is broken. In
0
fact, considering the spatial step-size h = 0.025, the initial time t = 0.5 minutes, the final time τ = 5.5 minutes,
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Fig. 3. Absolute differences over the τ = 5.5 min for both statistical moments of the approximate melting interface s.p. computed by (43)
between two successive realizations {Kℓ, Kℓ+1}, Kℓ ∈ {10, 20, 40, 80, 160}. The step-sizes (h, k) = (0.1, 5e − 04) are considered fixed, then
he temporal points are tn

= t0
+ nk, t0

= 0.5, 0 ≤ n ≤ N = 10000, in the temporal domain [0, τ = 5.5]. Plot (a): Successive absolute
ifferences for the mean of the approximate melting interface s.p.: AbsDiff

[
µ

(
sKℓ,Kℓ+1 (tn, ω)

)]
Plot (b): Successive absolute differences

or the standard deviation of the approximate melting interface s.p.: AbsDiff
[
σ

(
sKℓ,Kℓ+1 (tn, ω)

)]
.

Table 2
Maximum values of the absolute differences for both statistical moments (42) between two successive realizations
{Kℓ, Kℓ+1}, Kℓ ∈ {10, 20, 40, 80, 160}, of the approximate temperature s.p. after τ = 5.5 min. Both step-sizes
are considered fixed (h, k) = (0.1, 5e − 04). The spatial points generated are zi = ih, 1 ≤ i ≤ M − 1 = 10.

{Kℓ, Kℓ+1}
AbsDiff

[
µ

(
uKℓ Kℓ+1 (zi , τ, ω)

)]
∞

AbsDiff
[
σ

(
uKℓ Kℓ+1 (zi , τ, ω)

)]
∞

◦C ◦C

{10, 20} 6.0329e − 04 4.2305e − 04
{20, 40} 1.8666e − 04 4.4532e − 04
{40, 80} 8.4877e − 05 2.0694e − 04
{80, 160} 2.2298e − 05 1.0487e − 04

Table 3
Maximum values of the absolute differences for both statistical moments (43) between two successive realizations
{Kℓ, Kℓ+1}, Kℓ ∈ {10, 20, 40, 80, 160}, of the approximate melting interface from 0 up to τ = 5.5 min. Both
step-sizes are considered fixed (h, k) = (0.1, 5e − 04). The temporal points generated are tn

= t0
+ nk, t0

= 0.5,
0 ≤ n ≤ N = 10000.

{Kℓ, Kℓ+1}
AbsDiff

[
µ

(
sKℓ Kℓ+1 (tn, ω)

)]
∞

AbsDiff
[
σ

(
sKℓ Kℓ+1 (tn, ω)

)]
∞

mm mm

{10, 20} 7.8291e − 02 1.0924e − 02
{20, 40} 2.8463e − 02 2.5850e − 03
{40, 80} 2.0654e − 02 3.5081e − 03
{80, 160} 1.8702e − 02 1.3207e − 03

K = 80 Monte Carlo realizations and the data of this Section 2.1 the stability of the approximations is guaranteed
for a temporal step-size k < 2 β2

min t0 h2
= 2 (0.2399)2 0.5 (0.025)2

= 3.597e−05 but not for the value k = 6e−05,
or example, as Fig. 6 illustrates.

Once we have seen the reliability of the computed approximations for both statistical moments of the temperature
.p and the interface s.p. even for a few Monte Carlo realizations (for example K = 80 realizations, see Tables 2–3),
e illustrate in Fig. 7 the evolution of the approximations to the mean of the temperature s.p. for several temporal

nstants τ = {1.5, 2.5, 3.5, 4.5, 5.5} minutes. We observe that the mean of the temperature s.p. follows a decreasing
ehaviour in the spatial variable from the left hot end condition fixed at 10 ◦C to the interface value at 0 ◦C. The
ed large points in the abscissae represent where the mean of the melting interface is placed at each time τ . The
elting interface is moving towards the right because the ice block is melting along the time. In the bottom right
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Table 4
CPU time seconds and their corresponding real time in seconds spent to compute both statistical
moments at τ = 5.5 min with the fixed step-sizes (h, k) = (0.1, 5e − 04) while the number of
Monte Carlo realizations, K , varies.

K [µ/σ ] (uK (zi , τ, ω), sk (tn, ω)) [µ/σ ] (uK (zi , τ, ω), sk (tn, ω))
CPU, s real time (s)

10 0.8281 0.36
20 0.9688 0.27
40 1.5156 0.34
80 1.9688 0.60
160 1.8594 1.12

Table 5
Maximum values of the absolute errors for both statistical moments (44) of the approximate temperature s.p.
after τ = 1 min. The step-sizes (h, k) are refined while the number of the Monte Carlo realizations is the fixed
value K = 500. The values M and N are the spatial and temporal levels, respectively.

(h, k) (M, N ) ∥AbsErr [µ (uK (zi , τ, ω))]∥∞ ∥AbsErr [σ (uK (zi , τ, ω))]∥∞
◦C ◦C

(0.2, 2e − 03) (5, 250) 1.8868e − 04 5.5296e − 05
(0.1, 5e − 04) (10, 1000) 7.9923e − 05 6.1638e − 05
(0.05, 1e − 04) (20, 50000) 5.3438e − 05 6.3238e − 05
(0.025, 3.5e − 05) (40, 14286) 4.6993e − 05 6.3756e − 05

Table 6
Maximum values of the absolute errors for both statistical moments (44) of the approximate melting interface
from 0 up to τ = 1 min taking t0

= 0.5. The step-sizes (h, k) are refined while the number of the Monte Carlo
realizations is the fixed value K = 500. The values M and N are the spatial and temporal levels, respectively.

(h, k) (M, N ) ∥AbsErr [µ (sK (tn, ω))]∥∞ ∥AbsErr [σ (sK (tn, ω))]∥∞

mm mm

(0.2, 2e − 03) (5, 250) 6.2576e − 03 1.0473e − 03
(0.1, 5e − 04) (10, 1000) 5.6742e − 03 1.0784e − 03
(0.05, 1e − 04) (20, 50000) 5.5284e − 03 1.0861e − 03
(0.025, 3.5e − 05) (40, 14286) 5.4967e − 03 1.0878e − 03

Table 7
CPU time seconds and their corresponding real time in seconds spent to compute both statistical moments at
τ = 1 min with a fixed number of Monte Carlo realizations K = 500 while step-sizes (h, k) vary.

(h, k) [µ/σ ] (uK (zi , τ, ω), sK (tn, ω)) [µ/σ ] (uK (zi , τ, ω), sK (tn, ω))
CPU, s real time (s)

(0.2, 2e − 03) 0.9375 0.38
(0.1, 5e − 04) 2.2813 1.50
(0.05, 1e − 04) 9.4844 7.84
(0.025, 3.5e − 05) 37.2813 33.37

of Fig. 7 we show the complete evolution of the mean for the melting interface throughout the 5.5 min and in the
bottom left we plot its standard deviation. Fig. 8 shows the evolution of the approximations to the standard deviation
of the temperature s.p. for several temporal instants τ = {1.5, 2.5, 3.5, 4.5, 5.5} minutes.

. Random binary metallic alloys

We consider the finite domain D = [0, ℓ] that is, composed by a particle in the spatial domain [0, s(t, ω)) and
diffusive phase (s(t, ω), ℓ] being s(t, ω) the interface s.p. The concentration C(x, t, ω) of the material follows

he random Stefan model (9)–(13) under conditions (1)–(2). Firstly, we use a random front-fixing transformation of
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Fig. 4. Absolute errors after τ = 1 min for both statistical moments of the approximate temperature s.p., uK (z, τ, ω), computed by
(44) for K = 500 Monte Carlo simulations and considering several step-sizes (h, k) ∈ {(0.2, 2e − 03), (0.1, 5e − 04), (0.05,

e − 04), (0.025, 3.5e − 05)}. Plot (a): Absolute error of the mean of the approximate temperature s.p.: AbsErr [µ (uK (z, 1, ω))]. Plot
b): Absolute errors for the standard deviation of the approximate temperature s.p.: AbsErr [σ (uK (z, 1, ω))].

Fig. 5. Absolute errors over τ = 1 min for both statistical moments of the approximate melting interface s.p. computed by (44) for K = 500
Monte Carlo simulations and considering several step-sizes (h, k) ∈ {(0.2, 2e − 03), (0.1, 5e − 04), (0.05, 1e − 04), (0.025, 3.5e − 05)}. Plot
(a): Absolute error of the mean of the approximate interface s.p.: AbsErr [µ (sK (tn, ω))]. Plot (b): Absolute errors for the standard deviation
of the approximate interface s.p.: AbsErr [σ (sK (tn, ω))].

Landau type for immobilizating the diffusive phase domain (s(t, ω), ℓ]

z =
ℓ − x(t, ω)
ℓ − s(t, ω)

, ω ∈ Ω , t > 0 , (45)

where z is a real variable in the interval [0, 1]. Note that the point z = 0 corresponds to the right end of the domain
ℓ and z = 1 represents the left end of the diffusive phase domain s(t, ω). The transformed dependent variable

enoted by

v(z, t, ω) = C(x(t, ω), t, ω) , ω ∈ Ω , (46)

s the solution s.p. of the random transformed Stefan problem

∂v(z, t, ω)
=

D(ω)
2

∂2v(z, t, ω)
2 + z

s ′(t, ω) ∂v(z, t, ω)
, 0 < z < 1, t > 0 , ω ∈ Ω , (47)
∂t (ℓ − s(t, ω)) ∂z ℓ − s(t, ω) ∂z
889
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Fig. 6. Unstable approximations for both statistical moments of temperature s.p. after τ = 5.5 min considering the temporal step-size
= 6e − 05 breaking the stability condition (40) taking h = 0.025, t0

= 0.5 and K = 80 Monte Carlo realizations. Plot (a): Mean of the
pproximate temperature s.p. Plot (b): Standard deviation of the approximate temperature s.p.

ith the boundary conditions

∂v(z, t, ω)
∂z

⏐⏐⏐⏐
z → 0+

= 0 , t > 0 , ω ∈ Ω , (48)

v(1, t, ω) = csol , t > 0 , ω ∈ Ω , (49)

nd the transformed Stefan condition

(cpart
− csol) s ′(t, ω) = −

D(ω)
ℓ − s(t, ω)

∂v(z, t, ω)
∂z

⏐⏐⏐⏐
z → 1−

, t > 0, ω ∈ Ω , (50)

here s ′(t, ω) denotes the first mean square derivative ds(t,ω)
dt , ω ∈ Ω .

Remark 2. In order to legitimate the mean square operational calculus developed in (47) and (50) it is important
to point out that

∂2v(z, t, ·)
∂z2 ,

∂v(z, t, ·)
∂z

,
∂v(z, t, ·)

∂t
,

s ′(t, ·)
ℓ − s(t, ·)

,
1

ℓ − s(t, ·)
,

1
(ℓ − s(t, ·))2 (51)

ie in L4(Ω ), see [23, Sec. 3 ].

The random transformed initial condition is taken in a small t0 > 0 and not in t = 0, in order to preserve the
ehaviour of the exact solutions of the concentration and the interface in a semi-infinite domain for the deterministic
ase for 0 < t ≤ t0, see [9],

c(x, t) =

⎧⎪⎪⎨⎪⎪⎩
cpart , 0 ≤ x ≤ s(t) ,

c0
+

(
csol

−c0
)

erfc
( x−b0

2
√

D t

)
erfc

(
α√
D

) , x ≥ s(t) ,

(52)

√
t , (53)
s(t) = b0 + 2 α
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Fig. 7. Evolution of the approximations of the mean of the temperature s.p. µ [TK (µ[x], τ, ω)] at several temporal instants τ =

1.5, 2.5, 3.5, 4.5, 5.5} min for the step-sizes (h = 0.1, k = 5e − 04) and K = 80 Monte Carlo realizations. (Bottom left plot) Evolution
f the mean for the melting interface µ [sK (tn, ω)] up to 5.5 min. (Bottom right plot) Evolution of the standard deviation for the melting
nterface σ [sK (tn, ω)] up to 5.5 min.

here α is the root of the non-linear algebraic equation

α =
c0

− csol

cpart − csol

√
D
π

e
−α2

D

erfc
(

α
√

) . (54)
D
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Fig. 8. Evolution of the approximations of the standard deviation of the temperature s.p. σ [TK (µ[x], τ, ω)] at several temporal instants
= {1.5, 2.5, 3.5, 4.5, 5.5} min considering K = 80 Monte Carlo realizations and the step-sizes (h = 0.1, k = 5e − 04). The red large points

n the abscissae indicate where the mean of the interface s.p. σ [sK (tn, ω)] is placed which moves with the time tn , 0 ≤ tn
≤ 5.5 min.

Hence, the random transformed front-fixing problem (47)–(50) is considered for t > t0 instead of t > 0 with

he initial conditions given by

v(z, t0, ω) =

⎧⎪⎨⎪⎩ c0
+

csol
−c0

erfc
(

α(ω)
√

D(ω)

) erfc
(

ℓ−
(
ℓ−b0−2 α(ω)

√

t0
)

z−b0

2
√

D(ω) t0

)
, 0 ≤ z ≤ 1 ,

cpart , 1 < z < ℓ

ℓ−s(t0,ω)
,

(55)

s(t0, ω) = b0 + 2 α(ω)
√

t0 , (56)

here the r.v. α(ω) is the solution of the random non-linear equation

α(ω) =
c0

− csol

cpart − csol

√
D(ω)
π

e
−α(ω)2

D(ω)

erfc
(

α(ω)
√

D(ω)

) . (57)

Using the random difference method described in Section 2 and denoting the spatial mesh points zi = ih,

≤ i ≤ M , such that Mh = 1 and time levels tn
= nk + t0, 0 ≤ n ≤ N with τ = Nk + t0, we obtain the following
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andom explicit difference scheme for a small t0 > 0

vn+1
i (ω) = an

i (ω) vn
i−1(ω) + bn(ω) vn

i (ω) + cn
i (ω) vn

i+1 , ω ∈ Ω ,

1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1 ,

vn
0 (ω) =

4vn
1 − vn

2

3
, vn

M (ω) = csol , 0 ≤ n ≤ N ,

v0
i (ω) = c0

+
csol

−c0

erfc
(

α(ω)
√

D(ω)

) erfc
(

ℓ−
(
ℓ−b0−2 α(ω)

√

t0
)

zi −b0

2
√

D(ω) t0

)
, 0 ≤ i ≤ M .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(58)

ith the random coefficients

an
i (ω) =

k D(ω)
h2(ℓ − sn(ω))2

(
1 +

∆n(ω)
4(cpart − csol)

zi

)

bn(ω) = 1 −
2k D(ω)

h2 (ℓ − sn(ω))2

cn
i (ω) =

k D(ω)
h2(ℓ − sn(ω))2

(
1 −

∆n(ω)
4(cpart − csol)

zi

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1 , ω ∈ Ω , (59)

here the discretized approximations of the s.p.’s v(zi , tn, ω) and s(tn, ω) are denoted by vn
i (ω) and sn(ω)

respectively. In (59) ∆n(ω) is given by

∆n(ω) = 3vn
M (ω) − 4vn

M−1(ω) + vn
M−2(ω) ≈ 2h

(
∂v(z, tn, ω)

∂z

⏐⏐⏐⏐
z → 1−

)
. (60)

Next technical result shows the negativity of ∆n(ω), ω ∈ Ω , for every time level n.

Lemma 1. For each realization ωl ∈ Ω , the terms ∆n(ωl) defined by (60) are negative for 0 ≤ n ≤ N.

Proof. For n = 0, it is verified ∆0(ωl) ≈ 2h
(

∂v(z, t0, ωl)
∂z

⏐⏐⏐⏐
z → 1−

)
< 0 due to the fact that the sampling random

unction v(z, t0, ωl) given by (55) is decreasing differentiable function in z. For induction hypothesis, we assume

∆n(ωl) < 0, 0 ≤ n ≤ N − 1, ωl ∈ Ω . (61)

onsider the Taylor expansion of ∆n+1(ωl) at tn up to first order

∆n+1(ωl) = ∆n(ωl) + O(k) , 0 ≤ n ≤ N − 1 , ωl ∈ Ω .

hen for a small enough temporal step-size k one gets

∆n+1(ωl) < 0, 0 ≤ n ≤ N − 1 , ωl ∈ Ω .

The random difference scheme for the interface s.p. takes the form

sn+1(ω) = sn(ω) −
k D(ω) ∆n(ω)

(cpart − csol)(ℓ − sn(ω)) 2h
, 0 ≤ n ≤ N − 1 ,

s0(ω) = b0 + 2 α(ω)
√

t0 , t0 > 0 ,

⎫⎪⎪⎬⎪⎪⎭ , ω ∈ Ω . (62)

The numerical analysis of the random schemes (58)–(62) is treated in the next Section 3.1 paying special attention
to the positivity, monotonicity and stability in the mean square sense.

3.1. Qualitative properties of the numerical solution s.p.’s

Dealing with concentrations the positivity of the solution is a property that must be guaranteed. With respect to
the monotonicity of its random scheme let us introduce the following definition
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efinition 1. We say that the random numerical solution {vn
i (ω)}, ω ∈ Ω of a random finite difference scheme is

a decreasing monotone one in the spatial index i ∈ I , if it holds

vn
i (ωl) > vn

i+1(ωl) ,

for every realization ωl ∈ Ω with i , i + 1 ∈ I .

For the sake of clarity in the presentation let us recall the definition of ∥ · ∥p stability of a random finite scheme,
see [5].

Definition 2. A random numerical scheme is said to be ∥ · ∥p-stable in the fixed station sense in the domain
0, 1] × [t0, τ ], if for every partition with k = ∆ t , h = ∆ x such that t0

+ N k = τ and M h = 1,

∥vn
i ∥p ≤ R , 0 ≤ i ≤ M, 0 ≤ n ≤ N , (63)

here R is independent of the step-sizes h, k and the time level n.

Consider the deterministic sampling schemes corresponding to the random schemes (58)–(62) by fixing a
ealization ωl ∈ Ω . Starting with a positive initial condition in (55) note that the positivity of the sampling
oefficients an

i (ωl), bn(ωl) and cn
i (ωl) in (59) is a sufficient condition for the positivity of the numerical sample

olution vn
i (ωl). Note that ∆n(ωl) = O(h) from (60), then the coefficients an

i (ωl) and cn
i (ωl) are positive for a small

nough spatial step-size h. The study of the sign of coefficients bn(ωl) is based in the following remark.

emark 3. We can obtain an upper bound of the interface along the time by means a balance of mass. On the
ne hand, the total initial mass is cpartb0 + c0(ℓ − b0) from (11). On the other hand, in the final steady state the
osition of the interface, s∞, does not move and the concentration of all the diffusive part remains constant with
alue csol. Thus using the balance of mass argument and noting that b0 < ℓ one gets

s∞ =
(cpart

− c0)b0 + (c0
− csol)ℓ

cpart − csol ≤ δS < ℓ , (64)

here δs is an upper bound of the final steady position of the interface, s∞, being lower than ℓ. Attending the result
roved in Lemma 1 and using the sampling random scheme (62) for the interface s.p. it is guaranteed the increasing
ehaviour of the interface s.p. along the time for each realization ωl ∈ Ω

sn+1(ωl) > sn(ωl) , ωl ∈ Ω , 0 ≤ n ≤ N − 1 . (65)

Moreover, the interface at each time level n is bounded as

sn(ωl) < s∞ ≤ δS < ℓ, 0 ≤ n ≤ N , ωl ∈ Ω . (66)

Under the property (66) and from (59) it follows that

bn(ωl) = 1 −
2k D(ωl)

h2(ℓ − sn(ωl))2 > 1 −
2k D(ωl)

h2(ℓ − δs)2 , 0 ≤ n ≤ N − 1 .

Then under condition
k
h2 <

(ℓ − δs)2

2 max{D(ω) : ω ∈ Ω}
, (67)

he positivity of coefficient bn(ωl) is guaranteed.
Let us now check the decreasing monotonicity of the sampling numerical solution {vn

i (ωl)} in the spatial index
for every time level n. In fact, for n = 0 the sampling random function v(z, t0, ωl) given by (55) is decreasing
ifferentiable function in z. For induction hypothesis, we assume

vn
i (ωl) > vn

i+1(ωl), 0 ≤ i ≤ M − 1, ωl ∈ Ω . (68)

hen using (68) one gets

vn+1
i+1 (ωl) = an

i+1(ωl) vn
i (ωl) + bn(ωl) vn

i+1(ωl) + cn
i+1(ωl) vn

i+2(ωl)
n n n n n n
< ai+1(ωl) vi (ωl) + b (ωl) vi+1(ωl) + ci+1(ωl) vi+1(ωl) , 0 ≤ i ≤ M − 2 , (69)
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vn+1
i (ωl) = an

i (ωl) vn
i−1(ωl) + bn(ωl) vn

i (ωl) + cn
i (ωl) vn

i+1(ωl)

> an
i (ωl) vn

i (ωl) + bn(ωl) vn
i (ωl) + cn

i (ωl) vn
i+1(ωl) , 1 ≤ i ≤ M − 1 . (70)

ubtracting expressions (69)–(70) it follows that

vn+1
i+1 (ωl) − vn+1

i (ωl)
<

(
an

i+1(ωl) − an
i (ωl) − bn(ωl)

)
vn

i (ωl) +
(
bn(ωl) + cn

i+1(ωl) − cn
i (ωl)

)
vn

i+1(ωl)

=

(
k

h2(ℓ − sn(ωl))2

D(ωl)∆n(ωl)(zi+1 − zi )
4(cpart − csol)

− 1 +
2k D(ωl)

h2(ℓ − sn(ωl))2

)
vn

i (ωl) +(
1 −

2k D(ωl)
h2(ℓ − sn(ωl))2 −

k
h2(ℓ − sn(ωl))2

D(ωl)∆n(ωl)(zi+1 − zi )
4(cpart − csol)

)
vn

i+1(ωl)

=

(
1 −

2k D(ωl)
h2(ℓ − sn(ωl))2

(
1 +

h∆n(ωl)
8(cpart − csol)

)) (
vn

i+1(ωl) − vn
i (ωl)

)
, 1 ≤ i ≤ M − 2 . (71)

rom (71) using Lemma 1 and condition (67) one gets

vn+1
i (ωl) > vn+1

i+1 (ωl) , 0 ≤ i ≤ M − 1, ωl ∈ Ω .

Finally, it is necessary to prove that the sampling random solution {vn
i (ωl)} is decreasing in the endpoints. In fact,

ote that an
i (ωl) + bn(ωl) + cn

i (ωl) = 1, see (59), then taking the sampling numerical scheme (58) for j = M − 1
nd the induction hypothesis (68)

vn+1
M−1(ωl) >

(
an

M−1(ωl) + bn(ωl) + cn
M−1(ωl)

)
vn

M (ωl) = cpart
= un+1

M (ωl) .

n the other endpoint, using the boundary condition appearing in (58) and the decreasing behaviour in the internal
oints we also obtain the decreasing of sampling numerical solution

vn+1
0 (ωl) =

1
3

(
4vn+1

1 (ωl) − vn+1
2 (ωl)

)
=

1
3

(
3vn+1

1 (ωl) + vn+1
1 (ωl) − vn+1

2 (ωl)
)

> vn+1
1 (ωl) .

Dealing with the ∥·∥p-stability in the fixed station sense, see Definition 2, and taking into account the decreasing
onotonicity of {vn

i (ωl)}, it is relevant to study the boundedness of vn
0 (ωl), ωl ∈ Ω , 0 ≤ n ≤ N . In fact, v0

0(ωl) < c0

or (58). Furthermore, vn
0 (ωl) = vn

1 (ωl) + O(h) and using an induction hypothesis one gets

vn+1
1 (ωl) < (an

1 (ωl) + bn(ωl) + cn
1 (ωl))vn

0 (ωl) = vn
0 (ωl) < c0.

hen vn+1
0 (ωl) = vn+1

1 (ωl)+O(h) < c0 for small enough h. Using that the sequence {vn
i (ωl)} decreases in the spatial

ndex i we conclude

vn
i (ωl) < c0, 0 ≤ n ≤ N , 0 ≤ i ≤ M, ωl ∈ Ω . (72)

s a result the ∥ · ∥p of the random numerical solution {vn
i (ω)} satisfies

∥vn
i ∥p =

(
E

[⏐⏐vn
i

⏐⏐p])1/p
=

(∫
Ω

⏐⏐vn
i (ω)

⏐⏐p fvn
i
(ω) dω

)1/p

≤ c0
(∫

Ω

fvn
i
(ω) dω

)1/p

  
1

, (73)

here fvn
i

is the density function of the r.v. vn
i .

The next theorem summarizes the results proved above.

heorem 1. With the previous notation for small enough values of the discretization step-sizes h = ∆z and k = ∆t
erifying the condition (67) the random numerical finite difference solution {vn

i (ω)}, ω ∈ Ω given by (58)–(59) for
the concentration of the diffusive part satisfies

(i) {vn
i (ω)} is positive for 0 ≤ i ≤ M at each time-level 0 ≤ n ≤ N with τ = t0

+ Nk, t0 > 0.
(ii) {vn

i (ω)} is a monotonically decreasing sequence in the spatial index i for each time level n.
(iii) {vn

i (ω)} is ∥ · ∥p-stable in the fixed station sense.

oreover, the random numerical solution (62) sn(ω), 0 ≤ n ≤ N, ω ∈ Ω , of the interface s.p. increases along the

ime and its boundedness is given by (66).
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Table 8
Maximum values of the absolute deviations (74) varying the simulations K ∈ {25, 50, 100, 200, 400, 800} for both
statistical moments of the random numerical concentration, vKℓ

(zi , τ, ω), at the final time instant τ = 1 = t0
+Nk,

t0
= 0.01, k = 4e − 04 (N = 2475), in the spatial points zi = ih, 1 ≤ i ≤ M − 1 = 19, h = 0.05.

{Kℓ, Kℓ+1}
AbsDev

[
µ

(
vKℓ Kℓ+1 (zi , τ, ω)

)]
∞

AbsDev
[
σ

(
vKℓ Kℓ+1 (zi , τ, ω)

)]
∞

{25, 50} 1.0667e − 04 4.0336e − 05
{50, 100} 7.8659e − 05 1.8529e − 05
{100, 200} 3.6368e − 05 3.1843e − 05
{200, 400} 4.8083e − 05 8.3587e − 06
{400, 800} 7.9087e − 06 3.4383e − 06

3.2. Example

In this example we illustrate the results of this section considering some deterministic data used in [9, Sec. 4].
n particular, we take the initial condition of the concentration C(x, 0) in (11) with cpart

= 0.53, csol
= 0, c0

= 0.1
verifying the relationship (cpart > c0 > csol > 0), ℓ = 1 and b0 = 0.2. We choose the r.v. D(ω) following a normal

istribution of mean 1 and standard deviation 0.1 truncated in the interval [0.8, 1.2], that is, N[0.8,1.2](1, 0.1). In
rder to initialize the deterministic sampling schemes corresponding to the random schemes (58)–(60) by fixing a
ealization ωl ∈ Ω we take t0

= 0.01. For 0 < t ≤ t0, we use the exact solution given by (52)–(54). As the exact
olution is not available at t > t0 we study the numerical convergence using a Cauchy type condition varying the
umber K of realizations as well as the step-sizes of discretization (h, k). With the spatial step-size h chosen the
lection of the temporal step-size k can be done using the sufficient ∥ · ∥p-stability condition (67) taking δs = 0.36
omputed by (66) and max{D(ω) : ω ∈ Ω} = 1.2.

For the first study, we use the following notation related to the numerical means and standard deviations

AbsDev
[
µ

(
vKℓKℓ+1 (zi , τ, ω)

)]
=

⏐⏐µ (
vKℓ+1 (zi , τ, ω)

)
− µ

(
vKℓ

(zi , τ, ω)
)⏐⏐ , ω ∈ Ω ,

AbsDev
[
σ

(
vKℓKℓ+1 (zi , τ, ω)

)]
=

⏐⏐σ (
vKℓ+1 (zi , τ, ω)

)
− σ

(
vKℓ

(zi , τ, ω)
)⏐⏐ , ω ∈ Ω .

(74)

AbsDev
[
µ

(
sKℓKℓ+1 (tn, ω)

)]
=

⏐⏐µ (
sKℓ+1 (tn, ω)

)
− µ

(
sKℓ

(tn, ω)
)⏐⏐ , ω ∈ Ω ,

AbsDev
[
σ

(
sKℓKℓ+1 (tn, ω)

)]
=

⏐⏐σ (
sKℓ+1 (tn, ω)

)
− σ

(
sKℓ

(tn, ω)
)⏐⏐ , ω ∈ Ω .

(75)

here Kℓ and Kℓ+1 are two successive numbers of realizations, τ = t0
+ Nk and tn

= t0
+nk. Table 8 and Table 9

ollect the values of the infinite norm of the successive absolute deviations (74)–(75) of the numerical concentration
.p. and the interface s.p., respectively, as the number of realizations increases for both statistical moments. Fig. 9
nd Fig. 10 illustrate this decreasing behaviour for the successive absolute deviations (74)–(75).

For the second study we defined the following absolute deviations for a fixed number K of realizations whereas
wo successive step-sizes (hℓ, kℓ) and (hℓ+1 =

hℓ

2 , kℓ+1) vary verifying the stability condition (67)

AbsDev
[
µ

(
vK ,hℓ,hℓ+1 (zi , τ, ω)

)]
=

⏐⏐µ (
vK ,hℓ+1 (zi , τ, ω)

)
− µ

(
vK ,hℓ

(zi , τ, ω)
)⏐⏐ , ω ∈ Ω ,

AbsDev
[
σ

(
vK ,hℓ,hℓ+1 (zi , τ, ω)

)]
=

⏐⏐σ (
vK ,hℓ+1 (zi , τ, ω)

)
− σ

(
vK ,hℓ

(zi , τ, ω)
)⏐⏐ , ω ∈ Ω .

(76)

The values described in (76) are collected in Table 10 for the infinite norm of the absolute deviations (76), it is
observed that the proximity between successive approximations increases when the spatial step-sizes are refined
for K = 100 realizations. Fig. 11 illustrates this trend between the approximations of the absolute deviations
(76) over time τ = 1. About the numerical interface s.p., in order to check that its mean has an upper bound
s∞ = 0.3509 along the time we compare in Table 11 their consecutive differences of both statistical moments (that
is, µ-differences and σ -differences) as the time step-size k is refined in the last time instant t N

= t0
+ Nk = 1.

Fig. 12 shows the evolution of both statistical moments of the interface s.p. along the time τ = 1 for different values
of time step-size k observing for the mean of the interface s.p. its asymptotic trend to s∞ as the time step-size is
refined considering only K = 100 realizations.

Table 12 collects these CPUs as well as the real time lapsed corresponding to these CPUs for the approximations
of both statistical moments of the concentration s.p. and the interface s.p.

Due to the convergence of the approximations of both statistical moments of solutions s.p.’s is guaranteed, we
show in Fig. 13 the evolution that the exact mean and standard deviation of the concentration s.p. describe in
896
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Table 9
Maximum values of the absolute deviations (75) varying the simulations K ∈ {25, 50, 100, 200, 400, 800} for
both statistical moments of the random melting interface, sKℓ

(tn, ω), throughout the temporal levels tn
= nk + t0,

t0
= 0.01, 1 ≤ n ≤ N with k = 4e − 04 (N = 2475).

{Kℓ, Kℓ+1}
AbsDev

[
µ

(
sKℓ Kℓ+1 (tn, ω)

)]
∞

AbsDev
[
σ

(
sKℓ Kℓ+1 (tn, ω)

)]
∞

{25, 50} 1.0566e − 03 6.7920e − 04
{50, 100} 9.5535e − 04 1.1640e − 04
{100, 200} 2.9821e − 04 2.9568e − 04
{200, 400} 5.9425e − 04 1.7460e − 04
{400, 800} 9.2035e − 05 2.1755e − 05

Fig. 9. Absolute deviations over time τ = 1 for both statistical moments of the approximate concentration s.p. between two successive
ealizations {Kℓ, Kℓ+1}, Kℓ ∈ {25, 50, 100, 200, 400, 800}. The step-sizes (h, k) = (0.05, 4e − 04) are considered fixed and the spatial points

are zi = ih, 1 ≤ i ≤ M − 1 = 19 in the spatial domain [0, 1]. Plot (a): Successive absolute deviations (74) of the mean of the approximate
oncentration s.p.: AbsDev

[
µ

(
vKℓ Kℓ+1 (z, 1, ω)

)]
. Plot (b): Successive absolute deviations (74) for the standard deviation of the approximate

oncentration s.p.: AbsDev
[
σ

(
vKℓ Kℓ+1 (z, 1, ω)

)]
.

Table 10
Maximum values of the absolute deviations for both statistical moments (76) of the approximate
concentration s.p. over time τ = 1. The step-sizes (hℓ, kℓ) ∈ {(0.1, 1.5e − 03), (0.05, 4e − 04), (0.025, 1e −

04), (0.0125, 2.6e − 05), (0.00625, 6.6e − 06)} are refined whereas the number of the Monte Carlo realizations is
the fixed value K = 100. The values M and N are the spatial and temporal levels, respectively.

{hℓ, hℓ+1}
AbsDev

[
µ

(
vK ,hℓ,hℓ+1 (zi , τ, ω)

)]
∞

AbsDev
[
σ

(
vK ,hℓ,hℓ+1 (zi , τ, ω)

)]
∞

{0.1, 0.05} 1.4270e − 05 4.3763e − 06
{0.05, 0.025} 9.9408e − 06 2.9493e − 06
{0.025, 0.0125} 4.8485e − 06 1.4057e − 06
{0.0125, 0.00625} 2.5455e − 06 7.2469e − 07

several time instants τ = {0.1, 0.3, 0.5, 0.7} together with the points where the mean of the interface s.p. is located
in the spatial axe. In these simulations we have considered K = 800 Monte Carlo realizations and the step-sizes
(h, k) = (0.05, 4e − 04).

4. Conclusions

Assuming uncertainty of the values of parameters in partial differential models turns them into random partial
differential problems. To the best of our knowledge, this study seems to be the first time about moving boundary
random Stefan problems in the mean square framework. In these problems not only the numerical solution of
the unknown magnitude as concentration or temperature stochastic process needs to be obtained but also the

approximation of the moving interface stochastic process. Inspired in the deterministic case where the front-fixing
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Fig. 10. Absolute deviations over the time τ = 1 for both statistical moments of the approximate interface s.p. between two successive
realizations {Kℓ, Kℓ+1}, Kℓ ∈ {25, 50, 100, 200, 400, 800}. The step-sizes (h, k) = (0.05, 4e − 04) are considered fixed and the temporal
points are tn

= t0
+ nk, t0

= 0.01, 0 ≤ n ≤ N = 2475, in the temporal domain [0, τ = 1]. Plot (a): Successive absolute differences (75)
for the mean of the approximate interface s.p.: AbsDev

[
µ

(
sKℓ,Kℓ+1 (tn, ω)

)]
. Plot (b): Successive absolute differences (75) for the standard

deviation of the approximate interface s.p.: AbsDev
[
σ

(
sKℓ,Kℓ+1 (tn, ω)

)]
.

Fig. 11. Absolute deviations over time τ = 1 for both statistical moments of the approximate concentration s.p. for K = 100 Monte Carlo
simulations and considering successive spatial step-sizes {hℓ, hℓ+1}, hℓ ∈ {0.1, 0.05, 0.025, 0.0125, 0.00625} with their corresponding time
tep-sizes kℓ ∈ {1.5e − 03, 4e − 04, 1e − 04, 2.6e − 05, 6.6e − 06}. Plot (a): Absolute deviation of the mean of the approximate concentration
.p. (76).: AbsDev

[
µ

(
vK ,hℓ,hℓ+1 (z, 1, ω)

)]
Plot (b): Absolute deviation of the standard deviation of the approximate concentration s.p. (76).:

bsDev
[
σ

(
vK ,hℓ,hℓ+1 (z, 1, ω)

)]
.

ransformation allows to fix the spatial domain and incorporates the interface as a part of the derived transformed
on-linear problem, we develop a random front-fixing method. For solving the transformed problem we propose
random explicit finite difference scheme providing the numerical analysis to guarantee qualitative properties of

he solution such as stability, positivity and monotonicity. Monte Carlo technique provides a useful technique to
anage the complexity of the moving boundary random problem in order to give numerical answer to the unknown
ean and standard deviation of the involved approximating stochastic process. Future studies will focus in more

omplex random Stefan problems as two-phase ones.
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Fig. 12. Evolution of both statistical moments of the interface s.p. along the time τ = 1 refining the time step-size k ∈ {1.5e − 03, 4e −

4, 1e−04, 2.6e−05, 6.6e−05} attending one to one the values of the spatial step-size h ∈ {0.1, 0.05, 0.025, 0.0125, 0.00625} and considering
K = 100 Monte Carlo simulations. Plot (a): The mean of the interface s.p. computed by (62): µ [sK (tn, ω)]. Plot (b): The standard deviation
f the interface s.p. computed by (62): σ [sK (tn, ω)].

Table 11
Values of the mean µ

(
sK (t N , ω)

)
and the standard deviation σ

(
sK (t N , ω)

)
of the interface s.p. in the last time instant t N

= t0
+ Nk = 1,

0
= 0.01, for different time step-sizes k but fixing the number of realizations K = 100 . Column µ-differences is the subtract between the

onsecutive values of µ
(
sK (t N , ω)

)
and column σ -differences is the subtract between the consecutive values of σ

(
sK (t N , ω)

)
.

(h, k) (M, N ) µ
(
sK (t N , ω)

)
µ-differences σ

(
sK (t N , ω)

)
σ -differences

(0.1, 1.5e − 03) (10, 660) 0.34270 – 6.5004e − 04 –
(0.05, 4e − 04) (20, 2475) 0.34463 0.00193 8.2072e − 04 1.7068e − 04
(0.025, 1e − 04) (20, 9900) 0.34575 0.00112 9.1462e − 04 9.3900e − 05
(0.0125, 2.6e − 05) (40, 38077) 0.34628 0.00053 9.5896e − 04 4.4340e − 05
(0.00625, 6.6e − 05) (160, 150000) 0.34655 0.00027 9.8227e − 04 2.3310e − 05

Table 12
CPU time seconds and their corresponding real time in seconds spent to compute both statistical
moments at τ = 1 with a fixed number of Monte Carlo realizations K = 100 as step-sizes (h, k)
vary.

(h, k) [µ/σ ] (vK (zi , τ, ω), sK (tn, ω)) [µ/σ ] (vK (zi , τ, ω), sK (tn, ω))
CPU, s real time (seconds)

(0.1, 1.5e − 03) 0.4063 0.20
(0.05, 4e − 04) 1.1563 0.49
(0.025, 1e − 04) 4.0938 3.33
(0.0125, 2.6e − 05) 20.66 19.57
(0.00625, 6.6e − 06) 108 101.74
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Fig. 13. Plot (a): Evolution of the mean of the concentration s.p. in several time instants τ = {0.1, 0.3, 0.5, 0.7}. The red points in the
patial axe denote where the mean of the interface s.p. is located. (Bottom plot) Values of the mean of the interface s.p. in each time instant
= {0.1, 0.3, 0.5, 0.7}. Plot (b): Evolution of the standard deviation of the concentration s.p. and the locate of the mean of interface s.p. in

he same time instants. In both graphics the Monte Carlo simulations are K = 800 and (h, k) = (0.05, 4e − 04).
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