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Wolfgang H. Sommer d,e, Santiago Canals f,*,1, David Moratal a,*,2 

a Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain 
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A B S T R A C T   

Alcohol use disorder (AUD) is a complex condition representing a leading risk factor for death, disease and 
disability. Its high prevalence and severe health consequences make necessary a better understanding of the 
brain network alterations to improve diagnosis and treatment. The purpose of this study was to evaluate the 
potential of resting-state fMRI 3D texture features as a novel source of biomarkers to identify AUD brain network 
alterations following a radiomics approach. A longitudinal study was conducted in Marchigian Sardinian alcohol- 
preferring msP rats (N = 36) who underwent resting-state functional and structural MRI before and after 30 days 
of alcohol or water consumption. A cross-sectional human study was also conducted among 33 healthy controls 
and 35 AUD patients. The preprocessed functional data corresponding to control and alcohol conditions were 
used to perform a probabilistic independent component analysis, identifying seven independent components as 
resting-state networks. Forty-three radiomic features extracted from each network were compared using a 
Wilcoxon signed-rank test with Holm correction to identify the network most affected by alcohol consumption. 
Features extracted from this network were then used in the machine learning process, evaluating two feature 
selection methods and six predictive models within a nested cross-validation structure. The classification was 
evaluated by computing the area under the ROC curve. Images were quantized using different numbers of gray- 
levels to test their influence on the results. The influence of ageing, data preprocessing, and brain iron accu
mulation were also analyzed. The methodology was validated using structural scans. The striatal network in 
alcohol-exposed msP rats presented the most significant number of altered features. The radiomics approach 
supported this result achieving good classification performance in animals (AUC = 0.915 ± 0.100, with 12 
features) and humans (AUC = 0.724 ± 0.117, with 9 features) using a random forest model. Using the structural 
scans, high accuracy was achieved with a multilayer perceptron in both species (animals: AUC > 0.95 with 2 
features, humans: AUC > 0.82 with 18 features). The best results were obtained using a feature selection method 
based on the p-value. The proposed radiomics approach is able to identify AUD patients and alcohol-exposed rats 
with good accuracy, employing a subset of 3D features extracted from fMRI. Furthermore, it can help identify 
relevant networks in drug addiction.   
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1. Introduction 

Excessive alcohol consumption represents a major public health 
concern, contributing to 3 million deaths per year, a 5.3% of all deaths 
globally. Overall, the harmful use of alcohol accounts for a large burden 
of disease and injury, being responsible for 5.1% of all disability- 
adjusted life years (World Health Organization, 2018). Alcohol use 
disorder (AUD) is a mental health condition related to alcohol abuse and 
alcohol dependence, and it is one of the leading risk factors for death, 
disease, and disability (Dupuy and Chanraud, 2016). AUDs have a high 
prevalence, with the highest rate in the European Union (14.8% and 
3.5%, men and women) (World Health Organization, 2018). 

Although significant efforts are being made trying to understand the 
causes and outcomes of AUD, a better understanding of the brain 
mechanisms and pathophysiology underlying this complex phenomenon 
is still necessary. Neuroimaging studies, mainly based on Magnetic 
Resonance Imaging (MRI), have repeatedly revealed structural and 
functional brain abnormalities induced by alcohol drinking. Recent 
studies have proposed resting-state functional Magnetic Resonance Im
aging (rs-fMRI) as a powerful tool in the study of the dynamic course of 
alcoholism and the evaluation of AUD effects (Fede et al., 2019; Zhu 
et al., 2018). By measuring the low-frequency fluctuations of the 
bold-oxygenated-level-dependent signals, it is possible to obtain the 
resting-state networks (RSNs), brain regions with temporally coherent 
activity (Karahanoglu and Van De Ville, 2015). 

Alterations in various RSNs, as well as in their functional connec
tivity (FC), have been detected in AUD patients, particularly in the ex
ecutive control, default mode, salience, attention, visual, and reward 
networks (Bordier et al., 2021; Chanraud et al., 2011; Kamarajan et al., 
2020; Müller-Oehring et al., 2015; Weiland et al., 2014; Zhu et al., 2018, 
2017) and similarly in animal models (Perez-Ramirez et al., 2017; 
Scuppa et al., 2020). However, the results reported are mixed, and some 
of the studies differ regarding the FC. While there are analyses showing a 
decreased connectivity in networks such as default mode, executive 
control, salience, and reward, others suggest increased connectivity 
(Kohno et al., 2017; Zhu et al., 2018). Therefore, although these studies 
have undoubtedly provided valuable information related to brain FC 
alterations in alcoholism, the use of alternative techniques may offer 
new insights into identifying consistent measures as potential AUD 
biomarkers. 

In the last few years, radiomics analysis has attracted significant 
research interest, becoming a valuable source of imaging biomarkers, 
notably in the field of clinical oncology (Avanzo et al., 2017; Liu et al., 
2019). However, the scope of radiomics applications is continuously 
growing and currently includes successful applications in neurology and 
psychiatry (Feng and Ding, 2020; Park et al., 2020; Shu et al., 2021). 
This approach focuses on extracting quantitative features from medical 
images by means of advanced analysis combined with machine learning 
methods, or any other method from the field of artificial intelligence, to 
improve the decision-support process noninvasively (Gillies et al., 
2016). Although it involves several steps like image acquisition, image 
segmentation and pre-processing, feature extraction, feature selection, 
and model building, the heart of the process is the extraction of features 
that describe the region of interest quantitatively. Such radiomic fea
tures are often categorized into shape/size features, histogram-based, 
and texture-based features that are obtained by quantifying statistical 
inter-relationships between voxels and gray-level patterns. Radiomic 
features can also be extracted from filtered or mathematical transformed 
images (Rizzo et al., 2018; van Timmeren et al., 2020). 

Several studies have applied machine learning techniques using 
features extracted from rs-fMRI to discriminate individuals with AUD 
from healthy controls, predict alcohol dependence or predict alcohol use 
severity. But in all cases, features related to FC within and between 
resting-state networks were almost exclusively used (Fede et al., 2019; 
Kamarajan et al., 2020; Zhu et al., 2018). We hypothesize that stan
dardized radiomic features extracted from rs-fMRI can be used to 

discriminate the occurrence of excessive levels of alcohol drinking in 
subjects and, therefore, identify relevant networks in alcohol addiction. 
This hypothesis is based on the radiomics assumption that both struc
tural and functional images likely contain quantifiable information 
reflecting the underlying tissue pathophysiology (Rizzo et al., 2018). 

Therefore, the purpose of this study was to investigate the capability 
of 3D radiomic features extracted from rs-fMRI to identify subjects with 
AUD following a radiomics approach, thereby identifying key brain 
networks in alcoholism. We explored the potential of this analysis as a 
source of imaging biomarkers using a multilevel strategy: (1) applying 
the methodology to rs-fMRI data acquired in a rat model of AUD before 
and after alcohol intake. This longitudinal design conveys statistical 
power to the preclinical analysis, avoids confounding factors commonly 
associated with AUD patient comorbidities, and facilitates a causal link 
between the potential alterations found by texture analysis to alcohol 
drinking; (2) applying the methodology to cross-sectional rs-fMRI data 
acquired in patients with AUD and healthy controls; (3) validating the 
methodology in a different imaging modality, specifically using struc
tural MRI scans in both, animals and humans. For the animal study, we 
used the Marchigian-Sardinian alcohol-preferring (msP) rats (Cicco
cioppo et al., 2006), an animal model of excessive alcohol consumption 
which has previously demonstrated excellent translational validity (De 
Santis et al., 2020, 2019). For the human study, we used MRI data from a 
recently published clinical trial in treatment seeking AUD patients and 
healthy subjects (Bach et al., 2021, 2020). 

2. Materials and methods 

A general diagram showing the major steps of the proposed radio
mics methodology is presented in Fig. 1. 

2.1. Animal study 

All experiments conducted on animals were approved by the Insti
tutional Animal Care and Use Committee at the Instituto de Neuro
ciencias, Alicante, Spain, and were performed in accordance with the 
Spanish (law 32/2007) and European regulations (EU directive 86/609, 
EU decree 2001–486 and EU recommendation 2007/526/EC). 

Experiments were carried out using two cohorts of male msP rats, 18 
rats in each cohort (370–480 g), imported from the breeding facility at 
the School of Pharmacy, University of Camerino, Italy. All the animals 
were singly housed under controlled conditions (temperature: 22 
± 2 ◦C, mean ± SD; relative humidity: 55 ± 10%, mean ± SD; 12-hour 
light/dark cycle) and with access to food and water at all times. For 
this purpose, transparent polycarbonate cages with bedding were used, 
and a wooden stick and nesting material were provided as a form of 
enrichment. 

A first longitudinal study was conducted on animals of cohort 1 
(n = 18). In this experiment, the rats had free-choice access to two 
drinking bottles (replaced every 2–3 days), one containing water and the 
other a 10% (v/v) of ethanol in water. Liquid intake and animal weight 
were recorded each time the bottles were replaced. Rats underwent MRI 
before alcohol access (control condition) and after 4 weeks of alcohol 
consumption (alcohol condition). 

A second longitudinal study was conducted on animals of cohort 2 
(n = 18). These rats were housed under the same conditions but only 
with water access to evaluate whether age may be influencing the brain 
alterations detected. These rats underwent MRI at the same time points. 

2.2. Human study 

The study was conducted at the Central Institute of Mental Health in 
Mannheim, Germany. The experimental groups consisted of 35 males, 
recently detoxified, abstinent alcoholics (age 45.91 ± 9.05, abstinence 
days 21 ± 7, 260 ± 120 [g]/day of alcohol pretreatment) and 33 
healthy male volunteers (age 41.78 ± 9.48) recruited within the ERA- 
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NET NEURON TRANSCALC study (WHO-International Clinical Trials 
Registry Platform: DRKS00003357). Analyses of resting-state fMRI, 
tasked-based fMRI, and diffusion data from this trial have been recently 
reported (Bach et al., 2021, 2020; Bordier et al., 2021; De Santis et al., 
2020, 2019). Here we focus on the investigation of 3D radiomic features 
extracted from rs-fMRI data and hence included a subset of participants 
of the previously reported sample for whom high quality image data was 
available. Clinical characteristics are listed in the Supplementary Ma
terial (Table S1). 

The key inclusion criteria for the AUD group was the diagnosis of 
alcohol dependence according to the Diagnostic Statistical Manual of 
Mental Disorders, DSM-IV (here equated to AUD), controlled abstinence 
of at least 2 weeks (21.91 ± 6.04 days, mean ± SD) before the MRI 
session, and completion of medically supervised detoxification (treat
ment of withdrawal symptoms with short acting benzodiazepines had to 
be completed for at least 3 days). Patients with psychiatric comorbidities 
or abuse of other substances (except smoking) were excluded. Details on 
the clinical assessment of patients are reported in the Supplementary 
Material, in the Extended Methods section. The local ethics committee 
approved the study procedures in accordance with the Declaration of 
Helsinki, and all participants gave written informed consent. 

2.3. MRI acquisition protocols and image preprocessing: rat study 

Imaging studies on rats were conducted on a 7 T, 30 cm bore size 
scanner (Bruker, Biospec 70/30, Ettlingen, Germany) equipped with a 
675 mT/m and 11.4 cm inner diameter actively shielded gradient coil 
(Bruker, BGA 12-S). A 1 H rat brain receive-only phase array coil with 
integrated combiner and preamplifier, no tune/no match, was combined 
with an actively detuned transmit-only resonator (BrukerBioSpin MRI 
GmbH, Germany). 

The same scanning parameters were used for all subjects since a 
variation in these parameters may affect the radiomic features and, as a 
consequence, the performance of the model (Rizzo et al., 2018; Waugh 
et al., 2011). Rs-fMRI acquisition was performed using a GE–EPI 
sequence with the following parameters: repetition time/echo time of 
2000/15 ms; flip angle of 60º; matrix size of 96 × 96; pixel size of 
0.26 × 0.26 mm2; slice thickness of 1 mm and 90 time points consisting 
of 15 coronal slices. T2-weighted structural images were acquired using 
a rapid acquisition relaxation enhanced sequence (RARE) with the 
following parameters: repetition time/echo time of 2000/56 ms; RARE 
factor of 8; matrix size of 192 × 192; pixel size of 0.13 × 0.13 mm2; slice 
thickness of 1 mm and 15 coronal slices. 

Data were preprocessed using a combination of tools provided by the 

Oxford FMRIB software library (FSL; version 5.0, https://fsl.fmrib.ox.ac. 
uk/fsl/fslwiki) (Jenkinson et al., 2012; Smith et al., 2004) and in-house 
scripts developed with MATLAB 2014a (The MathWorks, Inc., Natick, 
MA, USA, https://www.mathworks.com/). First, images were converted 
from Bruker to NIfTI (Neuroimaging Informatics Technology Initiative, 
https://nifti.nimh.nih.gov/) and voxel size resized by a factor of 10, a 
common step in rodents to fit human brain dimensions and apply the 
same algorithms (Kalthoff et al., 2011; Pan et al., 2015). Second, the 
fMRI data were motion corrected and segmented using the middle vol
ume (middle time point) of each subject as reference (Jenkinson et al., 
2002; Smith, 2002). Thereafter, two matrices were computed and 
concatenated to obtain the transformation matrix to be used in later 
steps to register the functional images to a rat brain template: a rigid 
matrix to co-register the functional images to the brain-extracted 
T2-weighted structural images and an affine matrix to normalize the 
structural images to the standard rat brain T2-weighted template 
(Schwarz et al., 2006). Afterward, spatial smoothing was applied for 
noise reduction using a Gaussian kernel with a 4 mm full-width at 
half-maximum (FWHM), and a global 4D mean-based intensity 
normalization was performed. A nuisance regression model was used to 
regress out head motion parameters (three translations plus three rota
tions and their derivatives) and linear trends. A band-pass temporal 
filtering was then applied (non-linear high-pass filter of σ = 50 s, and a 
Gaussian linear low-pass filter of σ = 2 s) to retain all frequencies 
ranging from 0.01 to 0.1 Hz (Pan et al., 2013). Finally, the filtered 
functional images were normalized to the standard space (Schwarz 
et al., 2006) by applying the computed transformation matrix (pixel 
dimensions: 0.19 × 0.19 × 0.8 mm3). 

For the analysis with the structural images, the inverse of the affine 
matrix was used to warp the regions under study from standard space to 
anatomical space and thus work with the native anatomical resolution. 

2.4. MRI acquisition protocols and image preprocessing: human study 

Imaging studies on humans were conducted on a 3 T Siemens 
MAGNETOM Trio TIM (Siemens AG, Munich, Germany) with a 32-chan
nel head coil. Rs-fMRI acquisition was performed using a multiple 
gradient echo-planar T2 * -weighted pulse sequence with the following 
parameters: repetition time/echo time of 1500/28 ms; flip angle of 80º; 
matrix size of 61 × 73; pixel size of 3 × 3 mm2; slice thickness of 3 mm 
and 230 time points consisting of 58 slices. Structural images were ac
quired using a T1-weighted magnetization prepared rapid acquisition 
gradient echo sequence (MPRAGE) with the following parameters: 
repetition time/echo time of 2300/3.03 ms; flip angle of 9º; matrix size 

Fig. 1. Major steps of the proposed radiomics pipeline: image acquisition, region of interest definition (segmentation) and pre-processing, feature extraction, feature 
selection, and classification (model building and evaluation). 
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of 256 × 256; pixel size of 1 × 1 mm2; slice thickness of 1 mm and 192 
slices. 

Data were preprocessed by combining the SPM8 software (Wellcome 
Trust Centre for Neuroimaging, London, UK, https://www.fil.ion.ucl.ac. 
uk/spm/software/spm8/) and in-house scripts developed with MAT
LAB. Firstly, data were corrected for physiological artifacts using Aztec 
(Van Buuren et al., 2009), thus removing the effects of heart rate and 
respiration acquired during scanning. Secondly, slice-timing correction 
was performed using the middle slice as reference (Sladky et al., 2011), 
images were also realigned to correct for head motion and co-registered 
with the structural images. After that, normalization to the standard 
MNI space (Montreal Neurological Institute, McGill University, Mon
treal, Canada) was performed, and spatial smoothing using a Gaussian 
kernel with a FWHM 8 mm was applied (Mikl et al., 2008). Finally, head 
motion parameters (three translations plus three rotations together with 
their derivatives) were regressed out, and a high-pass temporal filtering 
was applied (0.01 Hz). 

For the analysis with the structural images and following the same 
procedure as in the animal study, the inverse of the matrix obtained in 
the normalization step was used to warp the regions under study from 
standard to anatomical space. 

2.5. Region of interest definition and preprocessing 

A fundamental question in radiomics analysis is where to locate the 
region of interest (ROI) to extract the most sensitive measurements. In 
this sense, using fMRI in radiomics studies could serve two functions. 
First, it allows the identification of data-driven regions of interest based 
on their activation dynamics in a resting state network analysis, 
potentially identifying disease-associated ROIs. Then, these functional 
ROIs can be used to focus the radiomics analysis since fMRI can also 
provide the voxel level data (BOLD contrast) for the texture analysis. In 
addition, using data-driven methods to define ROIs may lead to better 
predictions than using a predefined atlas (Dadi et al., 2019). 

Therefore, a data-driven fMRI analysis method was used in this study 
to identify the regions of interest. To this end, a probabilistic indepen
dent component analysis (PICA) (Beckmann and Smith, 2004) was 
applied using MELODIC (FSL tool; version 3.14, https://fsl.fmrib.ox.ac. 
uk/fsl/fslwiki/MELODIC). 

The preprocessed data corresponding to control and alcohol condi
tions were temporally concatenated, whitened, and projected into a 17- 
dimensional subspace employing principal component analysis. The 
estimated component maps were divided by the standard deviation of 
the residual noise and thresholded to place an equal loss on false posi
tives and false negatives (Beckmann and Smith, 2004). The obtained 
independent components (ICs) were visually inspected to identify those 
corresponding to RSNs and discard those associated with artifacts 
(Perez-Ramirez et al., 2017). 

All ICs corresponding to RSNs were selected as ROIs, but ahead of 
feature extraction, some preprocessing was implemented within the 
ROIs to improve feature discrimination. Firstly, the 3D regions were 
resampled to the in-plane resolution using the cubic B-spline interpo
lation method. This step was performed only in those studies with non- 
isotropic voxels. Secondly, intensities were normalized between the 
range μ ± 3σ (mean ± 3 SD of the gray level values) (Collewet et al., 
2004). Finally, quantization to a smaller number of gray-levels (nGL) 
was performed to improve the signal-to-noise ratio and reduce the 
computation time (Gibbs and Turnbull, 2003). Four different nGL were 
analyzed and compared (16, 32, 64, and 128) to study their effect on the 
discriminatory power of the features. 

2.6. Feature extraction 

Forty-three features were extracted for each ROI using the Radiomics 
MATLAB package (Vallières et al., 2015) (https://github.com/mval
lieres/radiomics). For the functional images, radiomic features were 

computed using the mean volume of the normalized data corresponding 
to the ROIs of each subject (Hassan et al., 2016). The extracted features 
follow the Image Biomarker Standardization Initiative (ISBI) (Zwanen
burg et al., 2020), and they were computed based on five different sta
tistical methods (summary in the Supplementary Material, Table S2): 
intensity histogram, gray-level co-occurrence matrix (GLCM), gray-level 
run-length matrix (GLRLM), gray-level size zone matrix (GLSZM) and 
neighborhood gray-tone difference matrix (NGTDM). 

The texture features computed were rotationally invariant to avoid a 
possible source of bias in classification due to image orientation. To this 
end, in matrix-based methods, the neighboring properties of voxels in 13 
directions of 3D space were averaged, obtaining only one matrix per 
method (Vallières et al., 2015). All feature values were standardized to 
zero mean and unit variance. 

Afterward, a statistical analysis was performed across each selected 
ROI in the animal study. The main objective of this analysis was to 
evaluate the statistical significance of all the extracted features to 
determine if there are features that could be used as biomarkers to 
discriminate between control and alcohol conditions and thus identify 
the brain network with the most significant alterations in the patho
logical state. The features extracted from this brain network were then 
used for model building in both studies (animals and humans). For this 
purpose, features extracted in control and alcohol conditions across each 
ROI were compared using a Wilcoxon signed-rank test, and the p-values 
were adjusted for multiple comparisons using the Holm method. Alpha 
level was set at 0.05 for statistical significance. 

2.7. Feature selection and classification 

For the feature selection (FS) step, two different methods were 
employed to obtain a ranking of features ordered according to their 
relevance. First, a filter method based on the p-value was applied. This 
method scores each feature independently, without evaluating different 
combinations of features (Kuhn et al., 2013). To this end, the Wilcoxon 
signed-rank test was used in the animal study (paired samples) and the 
Mann-Whitney-Wilcoxon for independent groups of samples in the 
human study. This method was compared with a wrapper method, the 
support vector machine recursive feature elimination (SVM-RFE) tech
nique (Guyon et al., 2002). To avoid overfitting, this step was imple
mented within the model-building process (Ambroise and McLachlan, 
2002) and the models used the obtained rankings to select the optimal 
number of features. 

Six predictive models were evaluated using the Caret package (Kuhn, 
2008) implemented in R language, version 3.2.5 (R Development Core 
Team, Vienna, Austria, https://topepo.github.io/caret/). These models 
were selected to take into account different families of classifiers and 
because of their well-known performance in other datasets (Fernán
dez-Delgado et al., 2014):  

• Naïve Bayes (NB): a Gaussian kernel was used to estimate the 
probability density function.  

• K-nearest neighbors (KNN): the Euclidean distance was used as the 
distance metric, and the optimum number of neighbors was chosen 
from {1, 3, 5, 7, 9, 11, 13, 15} in the parameter tuning process.  

• Random forest (RF): the number of trees was set to 250, and the 
number of variables randomly sampled as candidates at each split 
was chosen from {2, 4, 6, 8, 10, 12, 14} in the parameter tuning 
process.  

• Multilayer perceptron (MLP): one hidden layer was used, with 
several nodes chosen from {3, 5, 7, 9, 11, 13, 15} in the parameter 
tuning process.  

• Support vector machine – linear (SVM_L): the SVM with linear kernel 
was used, and the cost parameter was chosen from {2− 4.24} in the 
parameter tuning process.  

• Support vector machine – radial (SVM_R): the SVM with Gaussian 
kernel was used. The cost and kernel spread parameters were chosen 
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from {2− 4.24} and {10− 2.102}, respectively in the parameter tuning 
process. 

Model performance was evaluated using a nested cross-validation 
(CV) structure (Supplementary Material, Fig. S1). A leave-group-out 
CV (LGOCV) was implemented in an outer loop to randomly split the 
dataset into training (75%) and testing (25%) a total of N = 100 times, 
forming N groups. In each group, the training set was used to obtain the 
ranking of features, and the classification accuracy was computed for all 
possible subsets of features. The feature subsets were generated by 
progressively adding the features one by one according to the ranking. 
Each feature subset was used to execute the parameter tuning process of 
the classification model (10-fold CV inner loop), so different parameter 
combinations were evaluated across the folds to select the optimal ones. 

The optimal parameters were then used to train a definitive model using 
the whole inner loop data and to compute the classification accuracy on 
the testing set in the outer loop. Classification performance was 
computed by averaging the area under the curve (AUC) of the receiver 
operating characteristic (ROC) over groups’ estimates (mean ± SD). The 
optimal number of features was chosen for each model by comparing the 
classification accuracy for the different feature subsets. Sensitivity and 
specificity were also computed. 

3. Results 

3.1. Animals 

During the four-week period of alcohol access, the animal average 

Fig. 2. (a) Resting-state networks obtained with group-PICA considering control and alcohol conditions (Perez-Ramirez et al., 2017). (b) Heatmap showing the 
results of the statistical analysis performed for nGL= 16 across each selected ROI. The intensity of color represents the Holm-corrected p-value. The red tones indicate 
statistically significant values. 
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alcohol intake was 5.8 ± 1.4 g/kg/day (mean ± SD). 

3.1.1. Texture alterations in the different RSNs 
Seven relevant RSNs were identified using the group-PICA analysis 

and selected as ROIs: striatal network (StrN), sensory-cortex network 
(SCN), motor-retrosplenial network (MRN), medial prefrontal-cingulate 
network (mPCN), parietal association network (PAN), occipital network 
(OccN), and temporal-cortex network (TCN). The most representative 
slice of each network is shown in Fig. 2(a). 

We next compared all the extracted features in all ROIs before and 
after alcohol drinking to evaluate their statistical significance. Consid
ering all quantization levels, forty-three features from four ROIs showed 
statistical significance (p < 0.05, Wilcoxon signed-rank test, multiple 
comparisons corrected by the Holm method), and twenty-three of them 
derived from the same ROI, the StrN. On the contrary, three RSNs did 
not provide any significant feature: mPCN, OccN, and TCN. Between six 
and eight significant features derived from each of the remaining three 
ROIs. It is noteworthy that most statistically significant features were 
obtained from regions quantized with a lower number of gray-levels, 
highlighting the results obtained with nGL= 16 (Fig. 2(b)). 

Considering these first-stage results, the StrN seems to be the 
network better classifying the pathological state; hence features 
extracted from this network were selected for subsequent analysis. 

3.1.2. Classification analysis using the striatal network 
Longitudinal analysis in the StrN comparing naïve and alcohol con

ditions was performed with six different classifiers and two feature se
lection methods, achieving high classification accuracy (AUC > 0.85) in 
all cases. 

The highest AUC value was obtained using features from the ROI 
quantized with nGL= 32 and the SVM-RFE feature selection method, 
achieving an AUC of 0.915 ± 0.100 with the top 12 ranked features. For 
this FS method, the best classification performance in terms of AUC for 
the six models is reported in Table 1. 

As can be seen in Table 1, the best results for each model were ob
tained for different nGL. In fact, the nGL used in the quantization process 
affected the performance of the models differently (Fig. 3(a)). In general, 
features from the ROI quantized with nGL of 32 and 64 provided better 
classification accuracy, losing discriminative power specially when 

quantizing with nGL= 128. RF and SVM_R outperformed the rest of the 
models for all nGL. The optimal nGL in both cases was 32 with better 
performance with the RF model (paired Wilcoxon test, p < 0.01). 
Regarding the computational time, it is worth mentioning that using a 
computer with an Intel Core i5 processor of 2 GHz with 16 GB of RAM 
running on macOS Catalina (v. 10.15) operating system, the training 
time of the definitive RF model was 6 min, and 48 s. However, the 
training time of the SVM_R was almost triple (18 min and 58 s). 

When using the model with the highest AUC (RF model) but with 
features extracted after quantizing with nGL= 64, the results were also 
good (AUC = 0.909 ± 0.114, 6 features), although significantly lower 
than those obtained with nGL= 32 (paired Wilcoxon test, p < 0.01). 
Representative ROC curves for the six models when using features 
extracted from the StrN quantized with nGL = 32 are shown in Fig. 3(b). 

These results were compared with those obtained using the p-value 
FS method to check if ranking the features according to different criteria 
improved the classification results and reduced the optimal number of 
features (Fig. 4(a)). The best overall performance using the filter method 
was also achieved with the RF model (AUC = 0.911 ± 0.117, 24 fea
tures), without statistically significant differences but increasing the 
number of features used. In fact, the optimal number of features 
increased notably for all models, which reduces the chances of the 
models being generalized and increases the computational cost. Taking 
this into account, selecting the SVM-RFE method would be the best 
option in this case, as it uses less than half of the features to achieve 
similar AUC values. 

The top 15 features returned by the SVM-RFE method averaged over 
cross-validation are shown in Fig. 4(b). This top 15 of the ranking 
included features from all feature extraction methods. However, most of 

Table 1 
Best classification results obtained for all models using the SVM-RFE feature 
selection method (animal study).  

Model nGL # 
features 

AUC* Sensitivity* Specificity* 

NB 64 2 0.859 
± 0.155 

0.832 
± 0.198 

0.830 
± 0.173 

KNN 64 39 0.872 
± 0.121 

0.905 
± 0.149 

0.740 
± 0.173 

RF 32 12 0.915 
± 0.100 

0.847 
± 0.200 

0.822 
± 0.171 

MLP 32 36 0.886 ± 0115 0.780 
± 0.204 

0.78 ± 0.204 

SVM_L 64 6 0.898 
± 0.146 

0.800 
± 0.221 

0.830 
± 0.173 

SVM_R 32 9 0.906 
± 0.094 

0.590 
± 0.335 

0.855 
± 0.174 

* mean ± SD as a result over groups’ estimates. 
Sensitivity and specificity were computed according to the optimal cutoff point 
of the ROC 
curve, measured with the ‘closest-to-(0,1)’ criterion. 
The highest AUC is highlighted in bold. 
Abbreviations: NB – Naïve Bayes, KNN – K nearest neighbors, RF – Random 
Forest, 
MLP – Multilayer perceptron, SVM_L – Support vector machine – linear, SVM_R – 
Support vector machine- radial, nGL – number of gray-levels, AUC – Area under 
the ROC 
curve. 

Fig. 3. (a) Comparison among the maximum AUC results obtained using fea
tures extracted from the StrN quantized with four different nGL and applying 
the six models under study with the SVM-RFE feature selection method. (b) 
Average ROC curves for the six models using the SVM-RFE feature selection 
method (nGL=32). The highlighted points on the curves indicate the optimal 
cutoff points that weight sensitivity and specificity equally, measured with the 
‘closest-to-(0,1)’ criterion. 
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the features used by the RF model (8 out of the 12) derived from the 
GLRLM and GLSZM methods. 

3.1.3. Influence of animal age 
Next, it was checked whether changes detected in the StrN network 

were solely due to alcohol drinking or had an ageing-related contribu
tion. We tested on animals of cohort 2 whether 30 days without alcohol 
exposure (alcohol-naïve condition) induced any alteration in the 
network. 

For this purpose, the model with the best performance in terms of 
AUC (RF model, nGL= 32, SVM-RFE FS method, 12 features) was 
selected. The model was trained in cohort 1 (control and alcohol con
ditions) using this best subset of features, and it was tested in cohort 2 
(naïve-control conditions). Both cohorts were preprocessed in the same 
way, and the classification parameters and procedures remained iden
tical. Applying this procedure, it was achieved an AUC = 0.5030, so the 
model was not able to detect changes between both time points in the 
animals of cohort 2. Since, in the previous section, the results obtained 
with the RF model using the p-value FS method (nG = 32, 24 features) 
were similar in terms of AUC (without statistical significance, 
p = 0.218), we repeated the procedure with this model, obtaining an 
AUC = 0.467. Therefore, we can conclude that ageing in the 1-month 
period between the two imaging time points had no significant contri
bution to the alterations detected in the striatal network. 

3.1.4. Influence of data preprocessing: global signal regression 
The inclusion of the global signal as a nuisance regressor in the 

functional MRI preprocessing is a step that generates a great deal of 
confusion and controversy (Liu et al., 2017). To check if this step 

produced significant changes in the feature outcome, the entire pipeline 
was repeated, modifying solely the data preprocessing step. In this case, 
the global signal was included as a nuisance regressor. 

The results obtained with the models built using the data pre
processed with global signal regression were very similar to those ob
tained with the models without global signal regression. The highest 
AUC value was also obtained using the RF model and the SVM-RFE FS 
method, with nGL= 32 and 7 features, achieving an AUC of 0.912 
± 0.102. In fact, there were no statistically significant differences be
tween these results and those obtained without signal regression for any 
of the models (Supplementary Material, Fig. S2). 

Therefore, it could be verified that this preprocessing step did not 
produce significant differences in the feature outcome and, conse
quently, in the final classification results. 

3.2. AUD patients 

The same pipeline was applied to the human fMRI data set. The 
relevance of the striatal region in AUD, and that of the insular cortex, 
was recently highlighted in a network analysis using this dataset (Bor
dier et al., 2021). Therefore, for comparison with the animal model 
results, we selected the striatal region and a ROI equivalent to rat StrN, 
composed of the caudate putamen, nucleus accumbens, and ventral 
pallidum. 

All features extracted from the selected region were analyzed using 
the six classifiers and both feature selection methods. The highest AUC 
values were obtained using the p-value FS method when quantizing the 
ROIs with 16 and 32 nGL (Table 2), decreasing the classification per
formance when increasing the number of gray levels, as found in the 
animal study (Fig. 5(a)). The results obtained when quantizing with 
nGL= 128 were very poor (AUC < 0.544). 

As shown in Fig. 5(a), SVM_L and MLP models slightly outperformed 
the rest of the models in terms of AUC, with almost the same maximum 
AUC values for most nGL. The lower performance of all models with 
human data was expected due to the higher variability inherent to the 
clinical population and, most importantly, to the cross-sectional vs. 
longitudinal design in the human vs. the rat study, respectively. 
Therefore, with the human sample, we studied the distribution of the 
results in more detail to determine which was the model with the best 

Fig. 4. (a) Barplot comparing the mean and standard deviation of AUC values 
obtained with the six models (nGL=32) using two FS methods: a filter (p-value) 
and a wrapper (SVM-RFE). The asterisks indicate a statistically significant dif
ference in the classification performance (paired Wilcoxon test). The white 
numbers indicate the number of features used to achieve the maximum AUC. 
Error bars represent SD. (b) The top 15 features mainly contributing to 
discriminating between control and alcohol conditions using the SVM-RFE 
method. Features are classified by average position in the ranking, so lower 
values indicate higher importance of the feature. The red crosses indicate the 
average position, and the boxplots the distribution of importance over cross- 
validation. Centre lines within boxplots represent the median value, box 
limits indicate the 25th and 75th percentiles, and whiskers extend to the 
extreme values within 1.5 times the interquartile range from the upper and 
lower quartile. 

Table 2 
Best classification results obtained for all models using the p-value feature se
lection method (human study).  

Model nGL # 
features 

AUC* Sensitivity* Specificity* 

NB 16 2 0.710 
± 0.120 

0.619 
± 0.157 

0.716 
± 0.148 

KNN 32 2 0.731 
± 0.124 

0.690 
± 0.153 

0.672 
± 0.162 

RF 16 9 0.724 
± 0.117 

0.646 
± 0.184 

0.673 
± 0.164 

MLP 16 2 0.745 ± 0123 0.672 
± 0.154 

0.698 
± 0.168 

SVM_L 16 2 0.746 
± 0.123 

0.658 
± 0.157 

0.743 
± 0.165 

SVM_R 32 2 0.712 
± 0.116 

0.583 
± 0.174 

0.706 
± 0.175 

* mean ± SD as a result over groups’ estimates. 
Sensitivity and specificity were computed according to the optimal cutoff point 
of the ROC 
curve, measured with the ‘closest-to-(0,1)’ criterion. 
The highest AUC is highlighted in bold. 
Abbreviations: NB – Naïve Bayes, KNN – K nearest neighbors, RF – Random 
Forest, 
MLP – Multilayer perceptron, SVM_L – Support vector machine – linear, SVM_R – 
Support vector machine- radial, nGL – number of gray-levels, AUC – Area under 
the ROC 
curve. 
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classification performance (Fig. 5(b)). Interestingly, we observed that 
the RF was the model with the highest median and the least variability 
for both 16 and 32 nGL. In general, less variability was observed for most 
of the models in the results obtained with nGL = 16. The opposite 
occurred with the model with the highest AUC (SVM_L), being the model 
with the lowest median and highest variability in the results. Therefore, 
RF was again considered the model with the best overall performance, 
achieving a maximum AUC of 0.724 ± 0.117 with the top 9 ranked 
features after quantizing the images with nGL= 16, a similar value to the 
AUC obtained with the MLP and SVM_L models. ROC curves for the six 
models using features extracted from the ROI quantized with nGL = 16 
are shown in Fig. 5(c). 

These results were compared with those obtained using the SVM-RFE 
feature selection method (Fig. 6(a)). In this case, the best overall per
formance was also achieved with the RF model (AUC = 0.692 ± 0.120). 
Still, the optimal number of features was doubled, and the results were 
significantly lower than those obtained with the p-value FS method 
(p < 0.01). Maximum AUC values were higher using the p-value FS 
method for all the models, and the number of features used was lower. 

The top 15 features returned by the p-value method averaged over 
cross-validation are shown in Fig. 6(b). Most of the features used by the 
RF model (7 out of the 9) derived from the GLRLM and GLSZM feature 
extraction methods, as also found in the animal model. However, in this 
case, it is worth highlighting two features derived from the GLCM, which 
always appeared in the ranking in the first two positions. These features 
are the Sum Average and the Autocorrelation. 

3.3. Influence of iron accumulation 

Previous evidence suggests an association between different neuro
psychiatric disorders and abnormalities in brain iron content, including 
AUD, which is associated with excess iron accumulation. Brain iron 
concentration has been previously studied in AUD patients using rs- 
fMRI, and higher iron levels have been detected in deep grey matter 

regions such as the caudate nucleus, putamen, globus pallidum, and 
dentate nucleus (Juhás et al., 2017). An increase of brain iron has also 
been found in animals with acute and chronic alcohol exposure (Crews 
and Nixon, 2009; Rouach et al., 1990). Iron deposits in the brain result in 
a signal dropout in fMRI and other imaging modalities, being more 
significant the effect when the field strength increases (Pfefferbaum 
et al., 2010). 

Therefore, we checked whether a change in iron metabolism could 
contribute to the texture results. To detect changes in iron accumulation, 
we compared the signal intensity in the T2 * -weighted images of control 
and alcohol conditions in rats and humans. In the animal study, there 
was a slight signal loss in the alcohol condition but did not reach sig
nificance (p = 0.1297, paired Wilcoxon signed-rank test). Interestingly, 
in the human study, there was a slight increase in signal in the ROIs 
corresponding to AUD patients but also without statistically significant 
differences (p = 0.1003, Mann-Whitney-Wilcoxon test for independent 
groups of samples). The results of the analyses are shown in the Sup
plementary Material, Fig. S3. These preliminary results do not suggest 
differences in iron accumulation as a significant contribution to the al
terations detected with texture analysis in the regions analyzed. 

3.4. Structural MRI 

Finally, the developed methodology was validated using a different 
imaging modality. We studied the capability of radiomic features to 
identify AUD subjects using structural MRI scans in animals and 
humans. 

In the animal study, high classification (AUC > 0.93) was obtained 
for the six models (Table 3). In general, the best classification perfor
mance was obtained after quantizing the ROIs with nG = 16 and using 
the p-value FS method, decreasing the classification accuracy slightly 
when increasing the nGL (Fig. 7(a, b)). The highest AUC result was 
achieved with the MLP model followed by the SVM_R (nGL= 32), with 
no statistical significance between these results (paired Wilcoxon test, 

Fig. 5. (a) Comparison among the maximum AUC results obtained using features extracted from the ROI quantized with four different nGL and applying the six 
models under study with the p-value FS method. (b) Boxplots of the AUC results for the six models (p-value FS method) with nGL= 16 (dark color) and nGL= 32 (light 
color). (c) Average ROC curves for the six models using the p-value FS method (nGL=16). The highlighted points on the curves indicate the optimal cutoff points that 
weight sensitivity and specificity equally, measured with the ‘closest-to-(0,1)’ criterion. 

S. Ruiz-España et al.                                                                                                                                                                                                                           



Computerized Medical Imaging and Graphics 104 (2023) 102187

9

p = 0.073). However, with the MLP model, a considerably smaller 
number of features was necessary to achieve the best classification, thus 
facilitating its application to other datasets and considerably reducing 
the computational time. The training times of the definitive MLP and 
SVM_R models were 13 min and 11 s, and 29 min and 53 s, respectively. 
The best subset of features used by the MLP model (2 features) was 
derived from the GLRLM method. The top 15 features returned by the p- 
value method averaged over cross-validation are shown in Supplemen
tary Material, Fig. S4 (a). 

In the human study, good classification results were obtained after 
quantizing the images with nGL= 16 and nGL= 64, and using the p- 
value FS method (Table 3). MLP and SVM_L outperformed the rest of the 
models for all numbers of gray levels (Fig. 7(c)). Regarding these two 
models, the highest AUC value was achieved using the SVM_L, with 
results significantly higher (paired Wilcoxon test, p < 0.01) than those 
obtained with the same model and nGL= 64 (AUC = 0.821 ± 0.098). 
However, using this model, all features were necessary to achieve 
optimal classification performance (43 features). On the other hand, 
good AUC results were also achieved when using the MLP model (nGL =
64), and, in this case, the number of features used to obtain the highest 
AUC value was notably lower (18 features). Although both models got 
similar outcomes, models with fewer features are better candidates to be 
generalizable. ROC curves for the six models using features extracted 
from the ROI quantized with nGL = 64 are shown in Fig. 7(d). The best 
subset of features used by the MLP model included features from all the 
texture extraction methods. However, more than half of the features (10 
texture features) were derived from the GLSZM and the GLRLM 
methods. The top 15 features returned by the p-value method averaged 
over cross-validation are shown in Supplementary Material, Fig. S4 (b). 

4. Discussion 

The focus of this translational study was two-fold. First, proposing a 
3D texture analysis combined with machine learning techniques on rs- 
fMRI following a radiomics approach able to discriminate individuals 
with AUD and, second, identify key brain networks in alcohol addiction 
based on the texture analysis. 

A first-stage analysis where seven RSN were identified in msP rats 
provided insight into possible brain targets in alcoholism, with the 
striatal network accumulating the largest statistically significant dif
ferences between image features after alcohol exposure. This finding 
was in agreement with recent human literature where brain alterations 
involving this network and associated with alcohol use have been 
detected in AUD patients (Kohno et al., 2017; Müller-Oehring et al., 
2015; Perez-Ramirez et al., 2017). The proposed radiomics approach 
applied both to the msP rats and a cohort of AUD patients and matched 
healthy controls, supported these findings, showing that features 
extracted from the striatal region discriminated both alcohol conditions 
with good accuracy in rats (AUC > 0.9) and humans (AUC > 0.72). 

Convergent results were found in both species, achieving the best 
overall performance using the Random Forest model in both cases. 
Previous studies also found that this model had higher prognostic per
formance than other predictive models (Rizzo et al., 2018), and it has 
shown the potential to detect adverse alcohol-related effects (Fede et al., 
2019; Kamarajan et al., 2020; Zhu et al., 2018). In this work, the models 
obtaining the highest AUC values were not always considered the best 
models throughout the different analyses. In this sense, it is important to 
highlight the results obtained with the SVM model, achieving the 
highest accuracy on several occasions, such as in the human study using 
functional features. However, it was also one of the models with higher 
variability in the results. On the contrary, the RF model was generally 
the model with the highest median and least variability achieving 
similar AUC values, so it was considered the model with the best overall 
performance in the functional analysis. One of the advantages of the RF 
model is its relatively smaller bias and lower variance, increasing its 
generalization power (Kamarajan et al., 2020). Also, the number of 

Fig. 6. (a) Barplot comparing the mean and standard deviation of AUC values 
obtained with the six models (nGL= 16) using two FS methods: a filter (p-value) 
and a wrapper (SVM-RFE). The asterisks indicate a statistically significant dif
ference in the classification performance (paired Wilcoxon test). The white 
numbers indicate the number of features used to achieve the maximum AUC. 
Error bars represent SD. (b) The top 15 features mainly contributing to 
discriminating between control and alcohol conditions using the p-value FS 
method. Features are classified by average position in the ranking, so lower 
values indicate higher importance of the feature. The red crosses indicate the 
average position, and the boxplots the distribution of importance over cross- 
validation. Centre lines within boxplots represent the median value, box 
limits indicate the 25th and 75th percentiles, and whiskers extend to the 
extreme values within 1.5 times the interquartile range from the upper and 
lower quartile. 

Table 3 
Best classification results obtained for all models using the p-value feature se
lection method (structural scans).   

Animal study Human study 

Model nGL # 
features 

AUC* nGL # 
features 

AUC* 

NB 16 3 0.936 
± 0.092 

16 6 0.746 
± 0.099 

KNN 16 2 0.939 
± 0.112 

64 9 0.761 
± 0.103 

RF 16 42 0.944 
± 0.063 

64 10 0.764 
± 0.094 

MLP 16 2 0.955 
± 0087 

64 18 0.821 
± 0.104 

SVM_L 16 3 0.942 
± 0.097 

16 43 0.823 
± 0.098 

SVM_R 32 23 0.949 
± 0.067 

16 43 0.768 
± 0.102 

* mean ± SD as a result over groups’ estimates. 
Sensitivity and specificity were computed according to the optimal cutoff point 
of the ROC 
curve, measured with the ‘closest-to-(0,1)’ criterion. 
The highest AUC is highlighted in bold. 
Abbreviations: NB – Naïve Bayes, KNN – K nearest neighbors, RF – Random 
Forest, 
MLP – Multilayer perceptron, SVM_L – Support vector machine – linear, SVM_R – 
Support vector machine- radial, nGL – number of gray-levels, AUC – Area under 
the ROC 
curve. 
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features used to achieve the best performance was considered a key 
factor since reducing the number of features usually implies a less 
complex and more generalizable model. This happened in the human 
study using structural features, where the SVM model achieved the 
maximum AUC values again but using all the available features. How
ever, similar outcomes were obtained with the MLP model using less 
than half of the features, thus becoming a better candidate to be 
generalizable. 

This work is not the first attempt to identify alcohol-related brain 
changes using machine learning techniques (Cosa et al., 2017; Kamar
ajan et al., 2020). Previous works also applied these techniques to fMRI 
data to predict alcohol use severity or dependence (Fede et al., 2019; 
Zhu et al., 2018), but mainly using values of FC within and between 
resting-state networks. Previous studies, however, demonstrate an 
overall lack of consensus and/or reproducibility of reliable patterns of 
FC alterations across rs- fMRI studies (Badea et al., 2017; He et al., 2019; 
King et al., 2019). Therefore, a robust method based on standardized 
feature computation could represent a significant step forward for 
developing robust imaging biomarkers based on rs-fMRI. The outcome 
of the present study supports the hypothesis that standardized radiomic 
features (Zwanenburg et al., 2020) extracted from rs-fMRI can identify 
robust brain network alterations driven by alcohol drinking, an impor
tant step towards reproducible radiomics. 

The presented methodology was validated using structural MRI, 
achieving a high classification performance in both animals (AUC >
0.95) and humans (AUC > 0.8). Again, the human findings mirrored 
those obtained in the animal study, achieving the best overall 

performance, in this case, using the MLP model in both species. This was 
the case, even considering that the structural contrast was different in 
both species, with T2 or T1 weighted images in rats and humans, 
respectively. This result highlights the robustness of radiomics for 
biomarker discovery. The use of combined features (functional and 
structural) was not evaluated as it was out of the scope of this work. As 
previously commented, one of our main objectives was to develop an 
alternative approach to identify potential AUD biomarkers using 
radiomic features instead of features related to FC, which are mainly 
used in these kinds of works. This process also allowed us to focus on 
identifying key brain networks in alcohol addiction and demonstrating 
the possibility of capturing functional heterogeneity. Since this imaging 
modality is commonly used in the study of AUD, our results now open 
the possibility of retrospective analysis of published data in which tar
geted ROIs can be selected based on functional (fMRI-based) findings. 
However, future work will evaluate the possibility of a combined anal
ysis. Even so, it is worth mentioning that not always applying a multi
modal analysis (i.e., combining functional and structural MRI) implies 
better results since the additional features may lead to overfitting in the 
training process (Fede et al., 2019). 

We also proved that the discriminative power of the features was 
affected by the quantization process, obtaining different results 
depending on the nGL used. These results support previous studies that 
concluded that the optimal nGL should be determined according to the 
application (Mahmoud-Ghoneim et al., 2008; Ortiz-Ramón et al., 2018). 

In this work, we compared two FS methods, a filter based on the p- 
value and a wrapper (SVM-RFE). In general, the best results were 

Fig. 7. Comparison among the maximum AUC results obtained using features extracted from the ROI quantized with four different nGL and applying the six models 
under study with the p-value feature selection method: (a) animal study, (c) human study. Average ROC curves for the six models using the p-value feature selection 
method: (b) animal study (nGL=16), (d) human study (nGL= 64). The highlighted points on the curves indicate the optimal cutoff points that weight sensitivity and 
specificity equally, measured with the ‘closest-to-(0,1)’ criterion. 
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obtained using the filter method. The only exception was in the animal 
study using functional features, where we considered the wrapper a 
better option because the model required fewer features, but there were 
no statistically significant differences between both results. We observed 
that the FS algorithm was relevant in the process as the best results were 
achieved with a substantially reduced set of features in all cases. 

In all the subjects (animals and humans with both imaging modal
ities), most of the optimal features used by the models with better per
formance were derived from the GLSZM and the GLRLM feature 
extraction methods. These features provide regional information, 
defining the heterogeneity properties of the region by measuring the 
distribution of connected groups of pixels with identical gray-levels 
values. Therefore, the identified heterogeneity differences in the 
analyzed ROIs between AUD and controls depended mainly on regional 
gray-levels variations. Therefore, the results obtained show the ability of 
these features to capture functional heterogeneity, highlighting their 
possible role in capturing physiological events. Elucidating the nature of 
these events will require further work in animal models and/or post
mortem tissue to investigate the neurobiological underpinnings. 
Recently, a microglial reaction in the grey matter associated with a 
change in the extracellular space geometry (De Santis et al., 2020), as 
well as alterations in white matter microstructure (De Santis et al., 
2019), were found in msP rats after one month of drinking and paral
leled by DTI findings in AUD patients. These alterations might support 
the texture biomarkers identify in the current study. 

Previous studies have demonstrated that features extracted from 
volumetric regions can capture more information about the region 
heterogeneity and are more discriminative than 2D features extracted 
from a single slice (Depeursinge et al., 2014; Ortiz-Ramón et al., 2018). 
Although structural MRI is the modality most used in radiomics analysis, 
extrapolating this approach to fMRI reveals an enormous potential in 
detecting AUD patients and identifying relevant brain networks in 
alcohol addiction. However, a lower performance using fMRI data was 
expected as parameters such as spatial resolution have been reported to 
have a particularly strong effect on radiomic features (Mayerhoefer 
et al., 2020). Discrimination based on texture analyses improves with 
higher spatial resolution since the finest textural details can be spotted, 
so we consider that the better resolution of the structural scans is an 
essential factor that could have an important impact on the difference in 
the results. Despite that, promising results have been achieved 
employing only functional data, and further validation would be 
necessary to ensure that the developed models are generalizable for both 
imaging modalities. 

The fact that the findings in humans reflect those obtained in rats is 
important to establish a causal relationship between alcohol drinking 
and the detected brain network changes. Using an animal model allows 
us to avoid the comorbidities, the use of medication, and heterogeneous 
drinking patterns usually found in AUD patients, thus allowing causal 
inference on the effects of alcohol. However, we consider important to 
mention the different nature of alcohol effects on the brain by 
comparing exposures of 4 weeks (rats) and decades (humans). It may be 
the case that network effects that occur after four weeks of exposure 
change over years of exposure, ultimately resulting in structural 
changes. Indeed, these two conditions are not comparable when 
assessing tissue alterations, and our intention is not to draw this direct 
parallelism. However, the results in the animal model have the added 
value of supporting the utility of the developed technique to identify 
initial changes in the system. 

Our study has several limitations. First, while in the rat study, the 
animals were evaluated before and immediately after 30 days of alcohol 
consumption, in the human study, healthy controls were compared with 
abstinent alcoholics (abstinence days: 21 ± 7). Therefore, more analyses 
are needed to clarify the contribution of abstinence to the found results. 
Second, the sample under study included only male participants, as most 
of the AUD patients admitted to our inpatient care are males. Therefore, 
future studies using gender-matched groups are necessary. Finally, 

although the presented methodology has been validated using another 
imaging modality, further validation using an independent cohort is 
required for future work. 

5. Conclusion 

The results presented in this study show that 3D radiomic features 
extracted from rs-fMRI combined with machine learning techniques can 
identify subjects with AUD in both rats and humans with good accuracy. 
The results obtained also confirm the striatal network as a key target of 
alcohol effects. This emphasizes the utility of the presented radiomics 
approach to identify relevant networks in drug addiction. Although 
further validation is required, the results obtained are promising and 
confirm the validity of radiomic features as potential AUD biomarkers. 
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