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A B S T R A C T   

The purpose of this study was to evaluate texture-based muscle ultrasound image analysis for the assessment and 
risk prediction of frailty phenotype. This retrospective study of prospectively acquired data included 101 par-
ticipants who underwent ultrasound scanning of the anterior thigh. Participants were subdivided according to 
frailty phenotype and were followed up for two years. Primary and secondary outcome measures were death and 
comorbidity, respectively. Forty-three texture features were computed from the rectus femoris and the vastus 
intermedius muscles using statistical methods. Model performance was evaluated by computing the area under the 
receiver operating characteristic curve (AUC) while outcome prediction was evaluated using regression analysis. 
Models developed achieved a moderate to good AUC (0.67 ≤ AUC ≤ 0.79) for categorizing frailty. The stepwise 
multiple logistic regression analysis demonstrated that they correctly classified 70–87% of the cases. The models 
were associated with increased comorbidity (0.01 ≤ p ≤ 0.18) and were predictive of death for pre-frail and frail 
participants (0.001 ≤ p ≤ 0.016). In conclusion, texture analysis can be useful to identify frailty and assess risk 
prediction (i.e. mortality) using texture features extracted from muscle ultrasound images in combination with a 
machine learning approach.   

1. Introduction 

Over the last few decades, geriatrics and gerontology researchers 
have devoted an increasing amount of effort to developing and imple-
menting preventive interventions against frailty. The accomplishment of 
such a task has been hampered by the lack of standardized, and uni-
versally agreed definitions for frailty (Rodríguez-Mañas et al., 2013). 
These definitional ambiguities are also reflected by the absence of reli-
able biomarkers that can identify frailty, track its progression, and 

monitor their response to interventions (Calvani et al., 2015). 
There is a lack of methodology that could be used across many 

populations to optimize frail patient care, and available diagnostic tools 
are not fully exploited. Modern imaging techniques have a high poten-
tial to help fill this gap and facilitate frailty assessment. Ultrasound echo 
intensity is an attractive candidate to explore further as a biomarker of 
frailty (Miron Mombiela et al., 2017), as it can be used to evaluate 
objectively muscle quality and is relatively cheap (Fukumoto et al., 
2012; Watanabe et al., 2013; Akima et al., 2017; Miron Mombiela et al., 
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RF, random forest; ROI, region of interest; SVM, support vector machine; SVM-RFE, support vector machine-recursive feature elimination. 
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2020). Mirón Mombiela and colleagues demonstrated that echo in-
tensity was negatively correlated with muscle strength and was signifi-
cantly greater in frail individuals, even after adjustment for sex and BMI 
(Mirón Mombiela et al., 2017). Two other studies have aimed to 
determine whether morphological and qualitative characteristics clas-
sified by quadriceps are associated with muscle strength, physical 
function, and sarcopenia in community-dwelling older adults (Kawai 
et al., 2018; Yamada et al., 2017), but only one of them tested ROC 
curves for echo intensity and founded an AUC of 0.66 for both men and 
women (Yamada et al., 2017). However, further investigation evalu-
ating the accuracy, reproducibility, and predictive value is required to 
determine if echo intensity could become a useful aid in the diagnosis of 
frailty. 

The ability of muscle ultrasound echo intensity, to prospectively 
predict clinical outcomes for adult and elderly patients has been even 
less investigated (Ticinesi et al., 2017). In addition, the ultrasonographic 
measurement of the rectus femoris cross-sectional area was demon-
strated as an independent predictor of hospital length of stay, mortality, 
and nursing home discharge in a group of adults admitted to an intensive 
care unit (Mueller et al., 2016). A similar study found that loss of muscle 
mass shows a negative correlation with length of stay, and seems to be 
higher during the first 2–3 weeks of immobilization in the intensive care 
unit stay (Gruther et al., 2008). Despite these reports, the relevance of 
muscle ultrasound measures in terms of clinical outcomes needs further 
investigation. 

The usual tools to assess frailty show, among other characteristics, a 
low sensitivity and a low positive predictive value. Many biomarkers of 
frailty have been identified but few of them have been assessed as 
clinical markers and there are controversial results (Rodríguez-Mañas, 
2015). Bearing these considerations in mind, a shift of paradigm is 
needed, moving from the quest for a single biomarker to the develop-
ment of multivariate/multidimensional modelling of a panel of com-
plementary biomarkers. Single or isolated inspection of variables can 
result in a partial or incorrect picture. A recent study combining echo 
intensity and fractal analysis for the diagnosis of frailty concluded that 
fractal analysis was useful to characterize echo intensity, but did not 
improve its diagnostic performance (Mirón Mombiela et al., 2021). 
Authors suggest that combinations of different texture features, also 
known as texture analysis, may be required for accurate diagnosis and 
prognosis of frailty. 

In the past few years, texture analysis has been proven to be an 
excellent source of imaging biomarkers in different areas of medicine 
(Rodriguez-Mañas et al., 2015, Chitalia et al., 2019, Ortiz-Ramón et al., 
2018) including aging and neuromuscular disorders (Fritz et al., 2018; 
Nodera et al., 2018; Sogawa et al., 2017; Nodera et al., 2019). Texture 
analysis refers to the application of different mathematical methods to 
quantify the gray-level patterns and pixel inter-relationships within an 
image (Ríos-Díaz et al., 2019). These methods allow the computation of 
a considerable number of texture features, which can be combined with 
predictive models to increase precision in diagnosis or obtain reliable 
diagnostic tools (Larroza et al., 2016; Materka and Strzelecki, 1998; 
Wang and Summers, 2012). In addition, the use of texture analysis in 
medical images to characterize tissues allows us to quantify the intrinsic 
heterogeneous properties that are normally imperceptible to the human 
eye. We hypothesize that the texture analysis of ultrasound images in 
combination with a machine learning approach can be used for the 
identification of reliable frailty biomarkers. 

The purpose of this study was to investigate the potential of 2D 
features extracted from muscle ultrasound images as a source of imaging 
biomarkers for the assessment and risk prediction of frailty phenotype. 
We also explored the output and impact of including clinical indicators 
in the process. 

2. Materials and methods 

2.1. Study design and setting 

This was a diagnostic performance study of machine learning applied 
to texture analysis-derived features for frailty characterisation at muscle 
ultrasound, using a simple and commonly available clinical determi-
nation of Frailty as the reference standard26. The study was a secondary 
analysis of ultrasound images obtained between November 2014 and 
February 2015 from a prospective trial. The study was conducted on 
humans and adhered to the principles of bioethics included in the 
Declaration of Helsinki and the relevant Spanish legislation. The 
approval of the research committee and the clinical research ethics 
committee (CEIC by its Spanish acronym) of the Consorcio Hospital 
General Universitario de Valencia were obtained on the 30th of 
September 2014 and on the 27th of October 2014, respectively. All 
participants were informed of the experimental procedures and the 
purpose of the study. Each patient gave written informed consent before 
entering the study. Patients were referred from primary care to the 
Radiology Department, where the ultrasound was performed. Informa-
tion about epidemiological data, frailty criteria, and quality of life was 
also obtained. Comorbidities were assessed at baseline and were fol-
lowed up for the development of other comorbidities or death for up to 
two years (until March 31st, 2017). In the primary analysis, the objec-
tive was to determine whether echo intensity might be useful in a pri-
mary care setting to assess frailty, concluding that higher levels of echo 
intensity were associated with lower levels of strength, gait speed, and 
greater frailty (Miron Mombiela et al., 2017). 

The analysis performed in this work comprised a process consisting 
of five major steps: image acquisition, region of interest (ROI) definition 
and preprocessing, feature extraction, feature selection, and classifica-
tion (Fig. 1). 

2.2. Study subjects 

The inclusion criteria were: individuals aged ≥ 60 years old, able to 
walk independently, including with the help of a cane, walker, or similar 
assistance device. Frailty phenotype was determined following the Fried 
criteria (Fried et al., 2001), and it was used to divide the participants 
into robust, pre-frail, or frail based on their responses. In addition, 
participants between 20 and 59 years old were recruited to the control 
group, given the peak of muscular development within this age group27, 
but also to have a true comparison of healthy individuals for the robust 
group and to add rigor to the study. The exclusion criteria were: par-
ticipants suffering from neuromuscular disorders, oncological patients 
undergoing chemotherapy or radiotherapy, or dementia affecting the 
patient’s capacity to understand the informed consent. 

We invited 142 subjects, and 121 accepted to participate. Of those, 
only 112 individuals fulfilled all inclusion criteria and no exclusion 
criteria. Eleven healthy subjects were excluded from the statistical 
analysis either because frailty evaluation or ultrasound images classified 
them as frail, leaving 101 participants for the study. The flowchart of 
subject selection is shown in Fig. 2, and examples of control subjects 
excluded are shown in Supplemental Fig. S1. 

2.3. Image acquisition 

The anterior compartment of the right thigh was scanned by ultra-
sonography (LOGIC S7 Expert, General Electric, USA) in B mode with a 
6–15 MHz linear transducer. Images were acquired on the halfway point 
between the lateral condyle of the femur and the anterosuperior iliac 
spine, where the rectus femoris and the vastus intermedius muscles are 
visible (Fig. 1). The rectus femoris and vastus lateralis muscle were 
selected for the study for the following reasons: a) they are large mus-
cles, in comparison with muscles of the upper extremities and can be 
easily measured even when they become hypotrophic; b) they are easily 
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accessible for an ultrasound examination when the patient is already 
lying for another ultrasound examination of the body; and c) the grand 
majority of the published body of articles on ultrasound parameters 
studied for frailty and/or sarcopenia has been performed in the quad-
riceps muscle which allows for comparisons of current results (Ticinesi 
et al., 2017; Mirón Mombiela et al., 2020). 

Ultrasound measurements and echo intensity were performed ac-
cording to previously developed standards5. Examples of ultrasound 
images corresponding to each of the different groups of participants are 
shown in Fig. 3. 

To assess the test–retest reliabilities of the person scanning the pa-
tients, the Intra-class Correlation Coefficient (ICC) was calculated for 

Fig. 1. Flowchart showing the main steps for ultrasound classification using texture analysis. Abbreviations: MT: muscle thickness; SFT: subcutaneous fat thickness; 
RF: rectus femoris muscle; VI: vastus intermedius. 

Fig. 2. Flowchart of subject selection and classification performed in the study.  
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muscle thickness and subcutaneous fat thickness. The ICC values were 
0969 (95%CI: 0957 - 0992) for muscle thickness and 0992 (95%CI: 0984 
- 0998) for subcutaneous fat thickness. 

2.4. ROI definition (segmentation) 

The rectus femoris and vastus intermedius muscles were manually 
segmented using an in-house software tool developed in MATLAB 
(R2017b, MathWorks Inc., Natick, NA, USA). To perform the segmen-
tation of each muscle ROI, a 2D transverse slice was selected and 

Fig. 3. Examples of ultrasound images corre-
sponding to control, robust, pre-frail and frail 
participants: (a) axial and (b) sagittal images of 
the anterior mid-thigh. For the frailty condition, 
a progressive increase of the echo intensity 
(increased whiteness) in the rectus femoris and 
vastus intermedius muscles can be observed; as 
well as a change in muscle structure, changing 
from a well-defined striated muscle to a less 
defined, blurry structure. With the advance of 
frailty, a progressive decrease in muscle thick-
ness can be also observed. Abbreviations: RF: 
rectus femoris; VI: vastus intermedius; F: femur.   
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segmented by a radiologist with three year-experience in muscle ultra-
sound (R.M.M). The segmented ROI excluded bone, fatty tissue, and 
muscle fascia (Fig. 1). 

Before feature extraction, it was verified that ROI sizes were 
consistent between groups, since some texture features may be influ-
enced by the region size in the texture analysis process (Chitalia and 
Kontos, 2019; Sikio et al., 2015). For this purpose and subsequent 
analysis, the frailty phenotype was dichotomized into non-frail (control 
and robust groups) and frail (pre-frail and frail groups) (Miron Mom-
biela et al., 2021). The Mann-Whitney-Wilcoxon test for independent 
samples was used to determine the p-value between the ROI areas of 
both groups. 

Finally, ROI normalization was performed to reduce the influence of 
image brightness and contrast variation using the µ ± 3σ method (µ: 
mean of the gray levels, σ: standard deviation)30. 

2.5. Feature extraction 

Texture features were computed using the Radiomics MATLAB 
package (Vallières et al., 2015). A total of forty-three features were 
calculated for each ROI based on five statistical methods (Supplemental 
Table S1): intensity histogram (3 features), gray-level co-occurrence 
matrix (9 features), gray-level run-length matrix (13 features), 
gray-level size-zone matrix (13 features) and neighborhood gray-tone 
difference matrix (5 features). 

In matrix-based methods, only one matrix per lesion was computed 
to achieve rotation-invariant features. For this purpose, the neighboring 
properties at a one-pixel distance in four directions (0º, 45º, 90º, and 
135º) were averaged equally (Vallières et al., 2015). 

Finally, all features were standardized to zero mean and unit vari-
ance to avoid the differences in the feature scales could affect the model- 
building process (Kuhn and Johnson (2013) 32. 

2.6. Clinical data extraction and outcome measurements 

Epidemiological data and details of each patient’s medical history 
were obtained (age, gender, weight, height, body mass index (BMI), 
frailty criteria, and quality of life). The presence of comorbidities and 
risk factors was recorded at baseline and followed up with its incidence 
for two years. The primary outcome measure was death. Medical records 
were reviewed two years after the ultrasound examination to determine 
if the patient was still alive. The secondary outcome was comorbidity, 
and it was calculated according to the Charlson Comorbidity index 
(Charlson et al., 1987). 

2.7. Feature selection and classification: Data integration and model 
building 

Feature selection and classification were then applied to the data 
extracted from the ultrasound images to choose the models that more 
accurately classify frail and non-frail samples. 

The feature selection step was implemented within the model- 
building process to avoid overfitting (Ambroise and McLachlan, 2022) 
and two different methods were evaluated. First, a filter method based 
on the p-value provided by the Mann-Whitney-Wilcoxon test for inde-
pendent groups of samples was tested. Then, a wrapper method known 
as support vector machine-recursive feature elimination (SVM-RFE) was 
also analyzed (Guyon et al., 2002). Using these techniques, different 
rankings of features ordered according to their discriminative power 
were obtained and then used by the models to select the optimal number 
of features. 

Six predictive models corresponding to different families of classi-
fiers were studied: naïve Bayes (NB), k-nearest neighbors (KNN), 
multilayer perceptron (MLP), random forest (RF), and support vector 
machine (SVM) with the linear and radial kernel. 

Each model was evaluated using a leave-group-out test within a 

nested cross-validation structure (Fig. 4), so datasets were randomly 
split into training (75%) and testing (25%) a total of 100 times, forming 
100 different groups. The training set of each group was used to obtain 
the ranking of features and these features were progressively added one 
by one obtaining in this way different subsets of features. An inner 10- 
fold cross-validation was used to execute the hyperparameter tuning 
process for each subset of features. For each classifier, the following 
hyperparameters were evaluated:  

• NB: it was selected the Gaussian kernel for estimating the probability 
density function.  

• KNN: the number of neighbors was selected from {1, 3, 5, 7, 9, 11, 
13, 15, 17} and it employed the Euclidean distance.  

• RF: the number of trees was fixed to 500 and the number of variables 
considered at each split was selected from {2, 4, 6, 8, 10, 12, 14, 16}.  

• MLP: a hidden layer with several nodes selected from {3, 5, 7, 9, 11, 
13, 15} was employed.  

• SVM: an SVM with linear kernel was evaluated, selecting the cost 
parameter from {2− 4.24}. An SVM with Gaussian kernel was also 
analyzed, selecting the cost from {2− 4.24} and the kernel spread from 
{10− 4.104}. 

Final results were provided by averaging the area under the receiver 
operating characteristic (ROC) curve over all groups (mean ± CI95%), 
considering all possible feature subsets. The whole process was devel-
oped using R language, version 3.2.5 (R Development Core Team, 
Vienna, Austria). 

2.8. Statistical analysis 

Descriptive data are presented with mean ± standard deviation (SD) 
with the distribution of the data verified by the Kolmogorov-Smirnov 
normality test. To assess the differences in physical characteristics and 
the study variables according to sex, t-Student was used for parametric 
variables and Mann-Whitney for the non-parametric variables. The 
evaluation of the different variables of the study according to frailty 
phenotype and control group was determined using ANOVA for the 
parametric variables (followed by Bonferroni posthoc test) and for the 
non-parametric Kruskal-Wallis test were used. 

The classification performance of the developed models was evalu-
ated using the area under the ROC curve. The Frailty phenotype was 
dichotomized into non-frail (controls and robust group) and at risk of 
frailty or frail (pre-frail and frail groups) for the analysis. To quantify the 
effects of each model on the likelihood of having a frailty phenotype, 
after adjusting for ultrasound characteristics (subcutaneous fat thickness 
and muscle thickness) and physical characteristics (age, sex, BMI, gait 
speed, and muscle strength), a stepwise multiple logistic regression 
analysis was applied. A multiple logistic model was computed for the 
outcome measurements. The false discovery rate method by Benjamini 
& Hochberg was applied as multiple comparisons were performed dur-
ing the study (Benjamini and Hochberg, 1995). 

A p-value < 0.05 was regarded as statistically significant. All statis-
tical analyses were performed with SPSS version 24.0 for Windows (IBM 
SPSS, Inc., Chicago, IL). 

3. Results 

3.1. Patient characteristics and clinical indicators 

The sample was composed of 101 subjects, 46 females and 55 males, 
and it was homogeneous regarding age, BMI, gait speed, muscle 
strength, frailty phenotype, and quality of life according to sex. Baseline 
characteristics according to sex are summarized in Table 1. The study 
sample is homogeneous regarding age, BMI, gait speed, muscle strength, 
and the values of quality of life according to sex. Weight, height, sub-
cutaneous fat tissue, and muscle thickness had statistically significant 
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differences between men and women. The distribution of subjects ac-
cording to the frailty phenotype was 24 controls, 22 robust, 30 pre-frail, 
and 25 frail patients. Baseline characteristics corresponding to the 
different groups are shown in Table 2. The data showed that there were 
statistically significant differences regarding age, height, BMI, gait 
speed, muscle thickness, and quality of life among the different groups. 
The data shows that there are statistically significant differences be-
tween age, height, BMI, gait speed, muscle thickness, and quality of life, 
depending on frailty phenotype. The weight and subcutaneous fat 
thickness were distributed homogeneously within the groups. Moreover, 
females and males were homogeneously distributed among the groups. 

The frequency of comorbidities at baseline and two years later ac-
cording to sex and frailty phenotype was also determined (Supplemental 
Tables S2 and S3). The analysis showed that the average number of 
comorbidities per subject and the estimated 10-year survival were ho-
mogenous according to sex at baseline and in follow-up. The average 
number of comorbidities for each group was different (p = <0.001) and 
increased in frequency at two years follow-ups according to frailty 
phenotype with an associated reduced estimated 10-year survival for the 
subjects of 20%. The mortality of the sample after a 2-year follow-up was 
around 10% and occurred only in the pre-frail and frail groups (Tables 1 
and 2). 

3.2. Influence of the ROI size 

There were no statistically significant differences between non-frail 
(control and robust) and frail (pre-frail and frail) groups when evalu-
ating the ROI areas selected in the rectus femoris muscle (non-frail ROI 
(mean ± SD): 285.76 ± 88 mm2; frail ROI (mean ± SD): 256.79 
± 105.94 mm2; p = 0.06). There were also no significant differences in 
the ROI areas selected in the vastus intermedius muscle (non-frail ROI 
(mean ± SD): 240.03 ± 67.88 mm2; frail ROI (mean ± SD): 288.03 
± 81.40 mm2; p = 0.08). The ROI sizes were consistent between groups 
so they should not influence the texture analysis. 

3.3. Flailty classification 

All features extracted from the rectus femoris and the vastus inter-
medius muscles were analyzed with the six classifiers and both feature 
selection methods. The best classification results in terms of AUC are 
shown in Table 3. 

Regarding the rectus femoris muscle, the highest AUC value was ob-
tained using the p-value feature selection method and the MLP model, 
achieving an AUC of 0.69 ± 0.20 (AUC ± 95%CI) with the top 22 fea-
tures of the ranking. When using the SVM-RFE feature selection method, 
the maximum AUC values were very similar for all the models, achieving 
the highest value with the RF model and 29 features (AUC= 0.67 
± 0.19). Although the results were similar there were statistically sig-
nificant differences between these results and those obtained with the p- 
value method (p < 0.001). 

Concerning the vastus intermedius muscle, all models achieved an 
AUC > 0.7 using the p-value feature method. The best performance was 
also obtained with the MLP model (AUC = 0.79 ± 0.17), using only the 
first two features of the ranking. In this case, the best result in terms of 
AUC using the wrapper method was achieved with the SVM model (AUC 
= 0.75 ± 0.18), without statistically significant differences (p = 0.82) 
but using all the features of the ranking. Fig. 5 shows the ROC curves 
obtained for the six models under analysis when using features extracted 
from both muscle ROIs and both feature selection methods. 

Then, the models that achieved the highest AUC in each of the four 
analyses were selected for the stepwise multiple regression, adjusted for 
the ultrasound and physical characteristics. In summary, the four-tested 
predictive models with stepwise multiple logistic regression analysis 
were statistically significant (p < 0.001) for the discrimination of frail 
vs. non-frail subjects. The models explained between 23% and 100% 
(Nagelkerke R2) of the variance in the frailty phenotype and correctly 
classified from 70% to 87% of cases. They were independent of age, sex, 
BMI, subcutaneous fat thickness, and muscle strength, with one excep-
tion for age. Decreased gait speed was associated with a very high 
likelihood of exhibiting a frailty phenotype, while increased muscle 

Fig. 4. Nested cross-validation structure developed to evaluate the models. Each dataset of features is randomly split into training (75%) and testing (25%), and this 
process is repeated 100 times. The models are evaluated with the AUC, considering the different subsets of features obtained when adding progressively one by one 
the features of the ranking. Abbreviations: AUC: area under the receiver operating characteristic (ROC) curve. 
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thickness decreased that likelihood. The full description of the models 
can be found in the supplemental materials with their corresponding 
tables (Tables S4, S5, S6, and S7), and a summary of all the models can 
be found in Table 4. 

To quantify the effects of each model on the likelihood of mortality 
and comorbidity, a multiple logistic regression analysis was applied. The 
regression analysis on comorbidity (Table 5a) was statistically signifi-
cant in 2 out of 4 models (p = 0.180 to < 0.001). The models explained 
between 12% and 64% (Nagelkerke R2) of the variance of comorbidity. 
Although the data showed a correct prediction of the outcome from 66% 
to 82% of the cases, the regression analysis plots revealed that these 
were associations and not predictions. The regression analysis on mor-
tality (Table 5b) was statistically significant for all models (p = 0.016 to 
< 0.001). The models explained between 39% and 100% (Nagelkerke 
R2) of the variance of mortality and correctly predicted 89–100% of 
cases. 

Finally, as we tested the significance of a considerable number of 
variables, which creates concerns over the accumulated Type 1 error (H. 
J.W.L. Aerts et al., 2014; Hugo J.W.L. HugoJ.W.L. Aerts et al., 2014), the 
false discovery rate was used to give reasonable guidance on the validity 
of the presented results (Fernandez-Lozano et al., 2015). The q-value in 
this study was 10.8%, which means that approximately 11% of signifi-
cant results are false positives. 

4. Discussion 

Frailty is an age-dependent condition in the elderly population and is 
associated with multiple adverse clinical outcomes, such as falls, 

disability, or increased morbidity/mortality. Currently, available bio-
markers are not good at representing the multifactorial aspect of the 
condition and are weakly associated with clinically meaningful out-
comes. The focus of this study was to evaluate the potential of muscle 
ultrasound image analysis for the assessment and risk prediction of 
frailty phenotype. The results obtained indicate that frailty (pre-frail vs. 
frail) and risk prediction (morbidity/mortality) can be assessed by 
employing a set of texture features extracted from muscle ultrasound 
images combined with a machine-learning approach. This was demon-
strated in three ways. First, we developed different predictive models 
able to categorize frailty phenotype as present or absent with moderate 
to good accuracy (0.67 ≤ AUC ≤ 0.79). Second, the stepwise multiple 
logistic regression analysis, demonstrated that the developed models 
correctly classified 70–87% of the cases. Models’ accuracy improved and 
classified correctly 87–100% of the cases when muscle thickness or gait 
speed was inputted into the models. Third, the models were also asso-
ciated with increased comorbidity and were highly predictive of death 
for pre-frail and frail subjects. 

To obtain the best subset of features used by the predictive models to 
achieve the highest AUC values, two feature selection methods were 
employed, a filter method based on the p-value and a wrapper (SVM- 
RFE). Although similar outcomes were obtained using both methods, it 
was observed that the number of features used by the models was lower 
when using the p-value method than when using the SVM-RFE. Models 
with fewer features are less complex and better candidates to be 
generalizable. Therefore, in this case, we consider the feature selection 
method based on the filter a better option for future analysis. 

For this feature selection method, the top 10 features used by all the 
models were derived mainly from the gray-level run-length matrix 
(GLRLM) and the gray-level run-length matrix (GLSZM) feature extrac-
tion methods. Concretely, 8 out of the 10 in the case of the rectus femoris 
and 9 of the 10 in the case of the vastus intermedius muscle. The other 3 
features included in the top 10 are derived from the gray-level co- 
occurrence matrix (GLCM) method. The GLRLM and GLSZM methods 
measure the distribution of groups of connected pixels with the same 
gray-level value, providing regional information and defining the het-
erogeneity properties of these regions. The GLCM method describes the 
spatial interrelationship between adjacent pixels with different or 
identical gray-level values, providing information on local gray-level 
variations. According to these results, it can be interpreted that het-
erogeneity differences are detected between non-frail and frail subjects 
and that these differences depend mainly on regional variations of gray 
levels. 

Regarding both muscles analyzed, it is noteworthy that, in general, 
the highest AUC values have been achieved using features extracted 
from the vastus intermedius, with AUC > 0.7 for all models. However, 
when including the clinical indicators, the percentage of correctly 
classified cases was higher in the models developed with features 
extracted from the rectus femoris. Despite these differences, the results 
show that with features extracted from both muscles, it is possible to 
identify muscle changes between non-frail and frail subjects. 

Although a wide range of functional, anthropometric, and 
biochemical markers are available, they have shown limited clinical 
applicability (Mitnitski et al., 2015; Calvani et al., 2015). This highlights 
the idea that there might not be one single biological marker that can 
reliably track frailty Calvani et al., 2015, Rodríguez-Mañas and Fried, 
2015, Erusalimskiy et al., 2016). The presented work is not the first 
attempt to address this issue. Howlett et al. examined the discriminative 
ability of the standard frailty index (FI-CSHA) constructed from data 
obtained during the clinical evaluation and a second frailty index from 
laboratory data plus systolic and diastolic blood pressure measurements 
(FI-LAB) which achieved an AUC of 0.72 for FI-LAB and 0.73 for 
FI-CSHA, respectively. Mitnitski et al. (Mitnitski et al., 2015) examined 
the effect of a biomarker-based frailty index (FI-B) combining 40 bio-
markers of cellular aging, inflammation, hematology, and immunose-
nescence in predicting mortality. They concluded that the FI-B was more 

Table 1 
Characteristics of the Sample According to Sex.  

Group Female Male Total Statistical 
Test (n = 46) (n = 55) (n = 101) 

Variable Mean 
± SD 

Mean 
± SD 

Mean 
± SD 

p-value 

Physical Characteristics     
Age (years) 66 ± 16 64 ± 15 65 ± 15 0.67* 
Weight (Kg) 71 ± 14 78 ± 13 74 ± 14 0.01* 
Height (m) 1.58 

± 0.1 
1.69 
± 0.1 

1.6 ± 0.1 < 0.001 

BMI (kg/m2) 28.4 
± 5.1 

27.3 
± 4.1 

27.8 
± 4.6 

0.24 

Gait Speed (s) 3.7 ± 1.0 3.5 ± 1.4 3.6 ± 1.2 0.08* 
MS (Kg) 27.9 

± 11.8 
26.0 
± 11.6 

26.9 
± 11.7 

0.38 

Ultrasound Measurements     
SFT (cm) 1.53 

± 0.50 
0.71 
± 0⋅23 

1.08 
± 0.55 

< 0.001* 

MT (cm) 2.36 
± 0.73 

2.68 
± 0.67 

2.53 
± 0.71 

0.03 

Quality of Life (A.U.) 119 ± 6 119 ± 7 119 ± 7 0.83 
Frailty Phenotype N (%) N (%) N (%) 0.22* 
Control 11 (24) 13 (24) 24 (24)  
Robust 6 (13) 16 (29) 22 (22)  
Pre-frail 15 (33) 15 (27) 30 (30)  
Frail 14 (30) 11 (24) 25 (25)  
Outcomes     
CCI – at baseline 3 (7) 3 (5) 3 (3) 0.72* 
Estimated 10-year survival – 

at baseline 
61% 66% 64% 0.69* 

CCI – at two-year follow-up 5 (11) 4 (7) 4 (4) 0.49* 
Estimated 10-year survival - 

at two year follow-up 
41% 47% 45% 0.54* 

Death 5(11) 7 (12) 12 (12) 0.78* 

Abbreviations: SD: standard deviation; BMI: body mass index; MS: muscle 
strength; MT: muscle thickness; SFT: subcutaneous fat thickness; AU: arbitrary 
units; CCI: Charlson comorbidity index, table shows average of the number of 
comorbidities presented by each subject and their estimated 10-year survival. 
* Variables without normal distribution, nonparametric tests used for the 
analysis. 
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powerful for mortality prediction than considering any individual 
biomarker, with an AUC for FI-B = 0.66. Higher accuracy has been 
achieved with the approach presented in this work (0.67 ≤ AUC ≤ 0.79), 
and the developed models also showed a high potential for mortality 

prediction (89–100% of the cases correctly predicted). In a recent study 
performed by Wilkinson et al.(Wilkinson et al., 2021), 5 features 
extracted from the rectus femoris using the GLCM method for feature 
extraction were studied and related to muscle function according to 
image texture homogeneity changes. They concluded that texture 
analysis may indicate changes in muscle microstructure and that better 
muscle quality is associated with values representing greater image 
texture homogeneity. Our findings are in agreement with these results 
and, in addition, we have proved that other higher-order statistical 
methods for feature extraction, such as GLRLM and the GLSZM, play also 
an important role in detecting muscle changes in the rectus femoris, as 
well as the vastus intermedius muscle. 

Therefore, we propose the use of these predictive models as quan-
titative imaging biomarkers (QIBs) for frailty for several reasons: as 
increased heterogeneity of the echo intensity texture features reflects 
frailty-related muscle dysfunction, these anatomical-physiological 
characteristics are what makes it a quality biomarker (Sullivan et al., 
2015). This study can have a clinical impact as imaging is routinely used 
in clinical practice, providing an opportunity to improve 
decision-support in frailty treatment and prevention. Imaging can play 
an important role in the evaluation of geriatric patients as a clinical 
evaluation of these patients becomes increasingly difficult because of 
overall frailty, comorbidities, and medication effects (Sadro et al., 
2015). As these patients have an increased number of illnesses and use 
the healthcare system more frequently (Cesari et al., 2016), doctors will 
inevitably ask for more imaging studies, a trend that is also on the rise. 
The developed methodology provides a non-invasive, low-cost, and ac-
curate way of assessing frailty, being able to detect nuances that humans 
cannot. 

The use of machine learning and artificial intelligence is also 
beginning to show promising results in medical data pre-processing for 
predictive modeling and risk factor discovery for frailty phenotype 
(Hassler et al., 2019; Kruse et al., 2018). There is no question that the 
application of advanced image processing and analysis procedures (e.g. 

Table 2 
Characteristics of the Sample According to Frailty Phenotype.  

Group Controls Robust Pre-frail Frail Total Statistical Test 
(n = 24) (n = 22) (n = 30) (n = 25) (n = 101) 

Variable Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD p-value 

Physical Characteristics       
Age (years) 43 ± 12 68 ± 6 73 ± 7 74 ± 8 65 ± 15 < 0.001* 
Weight (Kg) 73 ± 14 74 ± 11 76 ± 16 75 ± 16 74 ± 14 0.83* 
Height (m) 1.67 ± 0.08 1.66 ± 0.08 1.64 ± 0.09 1.58 ± 0.09 1.64 ± 0.09 0.002 
BMI (kg/m2) 26.1 ± 3.8 26.8 ± 3.5 28.1 ± 4.2 29.8 ± 5.7 27.8 ± 4.6 0.02 
Gait Speed (s) 2.7 ± 0.6 2.9 ± 0.5 3.7 ± 0.7 5.0 ± 1.2 3.6 ± 1.2 < 0.001* 
MS (Kg) 30.5 ± 12.5 29.1 ± 13.8 25.2 ± 10.5 23.3 ± 9.3 26.9 ± 11.7 0.20* 
Ultrasound Measurements       
SFT (cm) 1.2 ± 0.5 0.9 ± 0.5 1.1 ± 0.5 1.1 ± 0.7 1.1 ± 0.6 0.37* 
MT (cm) 3.25 ± 0.59 2.44 ± 0.54 2.41 ± 0.64 2.08 ± 0.54 2.53 ± 0.71 < 0.001 
Quality of Life (A.U.) 119 ± 5 122 ± 7 120 ± 5 115 ± 8 119 ± 7 0.001 
Sex N (%) N (%) N (%) N (%) N (%) 0.23* 
Female 11 (46) 6 (27) 15 (50) 14 (56) 46 (46)  
Male 13 (54) 16 (73) 15 (50) 11 (44) 55 (55)  
Frailty Criteria      < 0.001* 
No positive criterion 17 (70) 22 (100) 0 0 39 (39)  
1 positive criterion 5 (21) 0 13 (43) 0 18 (18)  
2 positive criteria 2 (8) 0 17 (57) 0 19 (19)  
3 positive criteria 0 0 0 11(44) 11 (11)  
4 positive criteria 0 0 0 7 (28) 7 (7)  
5 positive criteria 0 0 0 7 (28) 7 (7)  
Outcomes       
CCI – at baseline 1 (4) 3 (14) 4 (13,3) 5 (20) 3 (3) < 0.001* 
Estimated 10-year survival – at baseline 95% 70% 57% 36% 64% < 0.001* 
CCI – at two-year follow-up 1 (4) 5 (23) 5 (16⋅7) 7 (28) 4 (4) < 0.001* 
Estimated 10-year survival - at two-year follow-up 91% 43% 33% 16% 45% < 0.001* 
Death 0 0 3 (10) 9 (45) 12 (12) < 0.001* 

Abbreviations: SD: standard deviation; BMI: body mass index; MS: muscle strength; MT: muscle thickness; SFT: subcutaneous fat thickness; AU: arbitrary units; CCI: 
Charlson comorbidity index, table shows average of the number of comorbidities presented by each subject and their estimated 10-year survival. 
* Variables without normal distribution, nonparametric tests used for the analysis. 

Table 3 
Best classification results obtained for all models using features extracted from 
the rectus femoris and vastus intermedius muscles (n = 101).  

Feature 
Selection 
Method 

P-value SVM - RFE 

Muscles Rectus 
Femoris 

Vastus 
Intermedius 

Rectus 
Femoris 

Vastus 
Intermedius 

Model     
NB 0.66 

± 0.19 
0.77 ± 0.18 0.64 

± 0.20 
0.66 ± 0.18 

k-NN 0.65 
± 0.20 

0.76 ± 0.18 0.60 
± 0.21 

0.73 ± 0.20 

RF 0.68 
± 0.22 

0.74 ± 0.16 0.67 
± 0.19* 

0.72 ± 0.17 

MLP 0.69 
± 0.20* 

0.79 ± 0.17* 0.65 
± 0.21 

0.74 ± 0.20 

SVM_L 0.68 
± 0.20 

0.78 ± 0.17 0.66 
± 0.20 

0.74 ± 0.21 

SVM_R 0.65 
± 0.26 

0.75 ± 0.17 0.64 
± 0.20 

0.75 ± 0.18* 

Abbreviations: SVM-RFE: support vector machine - recursive feature elimina-
tion; NB: naïve Bayes; k-NN: k-nearest neighbors; RF: random forests; MLP: 
multilayer perceptron; SVM_L: support vector machine with linear kernel; 
SVM_R: support vector machine with radial kernel; AUC: area under the curve; 
CI: confidence interval. 
All data are presented as AUC ± 95%CI. The AUC values were classified as poor 
for values ≤ 0.60, fair for 0.61–0.70, moderate for 0.71–0.80, good for 
0.81–0.90 and very good for 0.91–1.00. 
* Represents the best model in terms of AUC for each muscle and feature se-
lection method. 
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semi-automated or automated segmentation and registration) provide 
for a more robust and efficient incorporation of QIBs into clinical and 
preclinical decision-making (Aerts, Hugo J W L et al., 2014; Gillies et al., 
2016; Kumar et al., 2012; Lambin et al., 2012). This includes the 
development of apps, artificial intelligence (AI) software, and/or 
automatization of QIBs that can be added directly to the pipeline and 
workflow of imaging studies already performed in the Clinical Setting. 
For example, the automatic inclusion of our frailty models for muscle 
quality in radiology reports for patients over 60 years old that get an 
ultrasound in our emergency department, or at the ultrasound outpa-
tient clinic, could be considered. This will help determine if the patients 
have an increased risk of frailty and adverse outcome, which in turn 
could be useful for patient prognosis, and influence any medical or 
surgical decision-making. This approach may promote the early detec-
tion of otherwise subclinical or unsuspected frailty, otherwise known as 
opportunistic screening; diagnostic assessment of clinically manifest 
frailty, and risk stratification of subjects with a suspected or confirmed 
diagnosis. 

According to the World Health Organization, the purpose of 
screening is to identify people in an apparently healthy population who 
are at higher risk of a health problem or condition so that early treat-
ment or intervention can be offered and thereby reduce the incidence 
and/or mortality of the health problem within the population. Within 

the realm of imaging, opportunistic screening has more recently been 
used to describe the practice of systematically leveraging imaging data 
that are incidental to the clinical indication for obtaining the study 
(Pickhardt et al., 2023). Opportunistic screening that delivers on the 
promise of predictive data for better risk stratification, like the QIBs 
presented in this study, may help to rebalance the value equation in 
favor of patients (Pickhardt et al., 2023). Assuming that the value added 
by opportunistic ultrasound-based screening is firmly established, it 
begs the question of whether this puts “intentional” screening back in 
play. The emergence of fully automated artificial intelligence solutions 
should allow for efficient and objective US-based assessment, as well as 
broad application to large, diverse patient populations, which will 
further refine appropriate risk stratification. Demonstrating measurable 
improvements in population health outcomes, associated with reduced 
costs through disease prevention, should be attractive to both patients 
and healthcare systems (Pickhardt et al., 2022). 

The use of ultrasound was recently expanded into daily clinical work- 
ups to assess both muscle quantity and quality. The European Geriatric 
Medicine Society recently proposed a consensus protocol for using ul-
trasound for muscle mass assessments (Cruz-Jentoft et al., 2019). 
Although it remains inconsistently diagnosed, once frailty sets in, the 
therapeutic approach is typically conservative; management is primarily 
dietary supplements and physical activity. This scenario makes the case 

Fig. 5. Average ROC curves for the best subsets of features obtained with the six models under analysis when using: (a) features extracted from the rectus femoris 
muscle and the p-value feature selection method or (c) the SVM-RFE method; (b) features extracted from the vastus intermedius muscle and the p-value feature 
selection method or (d) the SVM-RFE method. The highlighted points on the curves indicate the optimal cut-off points that weigh sensitivity and specificity equally. 
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for a more proactive approach to intervention because if frailty is 
diagnosed early, it can be managed inexpensively and successfully, but if 
left undiagnosed; its impact can be progressively debilitating (Miron 
Mombiela et al., 2020). In the long term, it might be possible to track 
frailty over time with ultrasound imaging, select an appropriate thera-
peutic intervention, and monitor response to treatment, including ex-
ercise and/or physical therapy (Miron Mombiela et al., 2020). However, 
we believe using the developed frailty models in the clinical setting 
would need additional validation. We would propose enhancing the 
models by using a larger dataset of subjects during the training process. 
Additionally, we suggest validating the algorithms using an independent 
dataset to ensure they perform well and are reliable in different 
real-world clinical scenarios. We consider this approach necessary for 
establishing the credibility and effectiveness of the frailty models before 
implementing them in clinical practice. 

A result that requires further explanation or discussion is why 
decreased gait speed was associated with a very high likelihood of 
exhibiting frailty phenotype, while increased MT decreased that 

likelihood within the context of the developed frailty models. In the 
stepwise multiple analysis regression, we included muscle thickness in 
the second step and gait speed in the third step, so we could evaluate the 
degree of effect each variable had over the overall predictive models. It 
was found that muscle thickness, although it was a significant variable, 
its overall effect was smaller in comparison with gait speed. Although 
both variables add important information to the predictive models and 
improve their discriminative capacity, gait speed played a much greater 
role than muscle thickness (Table 4 and Table S4-S7, in the supplemental 
material). We believe this is because gait speed represents the physical 
performance of the subjects, which refers to their capacity to function 
and the muscle quality it poses to perform those functions. Muscle 
characteristics beyond size are known to affect muscle function and 
strength and contribute to mobility limitation Pillen and van Alfen 
(2011)). 

We must also underline that another explanation for this result is that 
of the Fried items, gait speed appears to be the strongest predictor over 
the other four items (unintentional weight loss, self-reported 

Table 4 
Stepwise Multiple Logistic Regression Frailty Models.  

Feature Selection 
Method 

Models Steps Model Chi-Square 
[df] 

% Correct 
Predictions 

Hosmer y Lemeshow 
Test 

Nagelkerke- 
R2 

P-Value Frailty Model 1 Step 1: Echo Intensity 
Texture Analysis 

51.6 [22], p = <

0.001 
80 0.96 0.54 

Step 2: Adjustment with Ultrasound 
Characteristics 

62.8 [24], p = <

0.001 
85 0.07 0.62 

Step 3: Adjustment with Physical 
Characteristics 

106.3 [29], p = <

0.001 
96 0.24 0.87 

Frailty Model 2 Step 1: Echo Intensity 
Texture Analysis 

19.1 [2], p = <

0.001 
70 0.03 0.23 

Step 2: Adjustment with Ultrasound 
Characteristics 

23.6 [4], p = <

0⋅001 
71 0.62 0.28 

Step 3: Adjustment with Physical 
Characteristics 

81.4 [9], p = <

0.001 
87 0.334 0.740 

SVM-RFE Frailty Model 3 Step 1: Echo Intensity 
Texture Analysis 

73.07 [29], p = <

0.001 
87 0.32 0.69 

Step 2: Adjustment with Ultrasound 
Characteristics 

92.6 [31], p = <

0⋅001 
91 0.43 0.80 

Step 3: Adjustment with Physical 
Characteristics 

139⋅2 [36], 
p = 0⋅002 

100 1.00 1.00 

Frailty Model 
4 * 

Step 1: Echo Intensity 
Texture Analysis 

93.3 [43], p = <

0⋅001 
0.81 0.98 87 

Step 2: Adjustment with Ultrasound 
Characteristics 

NA NA NA NA 

Step 3: Adjustment with Physical 
Characteristics 

NA NA NA NA 

Abbreviations: SVM - RFE: support vector machine – recursive feature elimination. 
*Steps 2 and 3 of the stepwise multivariate logistic analysis could not run in the SPSS program due to the high number of variables for this model (43 texture features), 
for a relatively small number of subjects (n = 101). 

Table 5a 
Multiple Logit Regression Analysis of Frailty Models for Comorbidity Outcome.  

Feature Selection Method Models Model Chi-Square [df] % Correct Predictions Hosmer y Lemeshow Test Nagelkerke-R2 Plot 

P-Value Frailty Model 1 27.9 [22], p = 0.18 78  0.22  0.33 Association 
Frailty Model 2 9.4 [2], p ¼ 0.01 66  0.70  0.12 Association 

SVM-RFE Frailty Model 3 39.4 [29], p = 0.09 73  0.54  0.44 Association 
Frailty Model 4 66.2 [43], p ¼ 0.02 83  0.90  0.64 Predictive  

Table 5b 
Multiple Logit Regression Analysis of Frailty Models for Mortality Outcome.  

Feature Selection Method Frailty Textures Analysis Models Model Chi-Square [df] % Correct Predictions Hosmer y Lemeshow Test Nagelkerke-R2 Plot 

P-Value Frailty Model 1 38.6 [22], p ¼ 0.02 91.1 0.90  0.61 Predictive 
Frailty Model 2 22.4 [2], p ¼ <0.001 89.1 0.83  0.39 Predictive 

SVM-RFE Frailty Model 3 73.6 [29], p ¼ <0.001 100 1.00  1.00 Predictive 
Frailty Model 4 73.6 [43], p ¼ 0.002 100 1.00  1.00 Predictive 

Abbreviations: SVM - RFE: support vector machine – recursive feature elimination. 
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exhaustion, weakness, and low physical activity) (Afilalo, 2011; Jung 
et al., 2018; Silva et al., 2016). Gait speed can predict life expectancy, 
functional dependency, and institutionalization in older adults, and it 
has been used as a marker for physical fitness (Jung et al., 2018; Sanchis 
et al., 2014). A study performed among elderly Brazilians evaluated the 
contribution of each item to determine the frailty phenotype. They 
concluded that when gait speed was positive, subjects were more likely 
to develop frailty (OR = 10.50, p < 0.001); the same for muscle strength 
(OR = 7.31, p < 0.001), but to a lesser degree (Silva et al., 2016). Muscle 
strength in our study was not significantly associated with the predictive 
models, a discrepancy when compared to other studies. Not only 
because muscle weakness is another Fried item, but also because pre-
viously published ultrasound studies on muscle echogenicity have found 
increased echo intensity to be inversely related to grip strength and 
general measures of muscle performance (Akima et al., 2017; Cadore 
et al., 2012; Fukumoto et al., 2012; Nishihara et al., 2014; Rech et al., 
2014; 5Watanabe et al., 2013). We believe the reason for this was that 
muscle strength measured by hand dynamometer indicated the strength 
of the arm and not the femoral quadriceps that was measured by ul-
trasound. This may also explain why in this study gait speed had such a 
high correlation with the predictive models, one that was lacking with 
muscle strength. Lower limbs are more relevant for physical function 
than upper limbs, even when handgrip strength has been widely used 
and is well correlated with the most relevant outcomes (Chan et al., 
2014). 

In summary, the application of machine learning and artificial in-
telligence for advanced image processing and analysis provides a more 
robust and efficient incorporation of QIBs into clinical and preclinical 
decision-making (Sogawa et al., 2017; Arts et al., 2007, Aerts et al., 
1995, Lambin et al., 2012). This will help determine if the patients have 
an increased risk of frailty and adverse outcomes, which in turn could be 
useful for patient prognosis, and influence medical or surgical 
decision-making (Bentov et al., 2019). This approach may promote 
opportunistic screening of otherwise subclinical or unsuspected frailty; 
diagnostic assessment of clinically manifested frailty, and risk stratifi-
cation of subjects with a suspected or confirmed diagnosis. 

4.1. Limitations 

We still need a better understanding of the clinical implications of 
the use of this technology and findings must be interpreted considering 
several limitations. First, larger longitudinal studies in diverse pop-
ulations are needed to determine whether changes over time in echo 
intensity are meaningful and whether interventions that improve muscle 
dysfunction can be followed up by ultrasound. Second, it was a single 
sonographer, and the same ultrasound machine was used throughout the 
study. Therefore, the capability of using echo intensity texture features 
from ultrasound images, and the influence of a plurality of devices re-
mains unknown. Third, the development of textural analysis signatures 
with the use of machine learning due to the high number of variables, 
also known as high dimensionality and small n-to-p data bias, raises 
concern for its generalizability and repeatability as sources of variation 
can exist in each step of the workflow. In addition, unrecognized con-
founding variables in the database used are a concern even when we 
performed a robust statistical validation to avoid bias and over-fitting of 
the predictive models. Hence, the present study must be validated 
against a completely independent data set, preferably from another 
institution20. Fourth, the current study only used Fried frailty criteria to 
identify the subjects, future ultrasound studies would benefit from 
comparing several frailty tools, including those that rely less on physical 
attributes. And lastly, although rigorous inclusion and exclusion criteria 
were applied to the patient selection, bias or systematic error could have 
been introduced as patients were recruited from the ultrasound section 
of our Radiology Department, in comparison to patients attending the 
general practitioner office or community-dwelling seniors. 

5. Conclusion 

In conclusion, the presented results show that 2D features extracted 
from muscle ultrasound images can be used as a novel indicator of 
muscle quality, assessing with good accuracy risk prediction of frailty 
phenotype. These promising results denote that, soon, the combination 
of texture-based muscle ultrasound image analysis and clinical data in a 
machine-learning approach could be used for both opportunistic as-
sessments of frailty and risk stratification in the elderly population. 
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