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A B S T R A C T

Contamination flashover remains one of the biggest challenges for power grid designers and maintenance
engineers. Insulator leakage current contains relevant information about their state so that continuous
monitoring is considered the most effective way to prevent contamination flashover. In this work, we attempted
to accurately predict insulator leakage current in real time during normal operations based on environmental
data using long-term recordings.

We first confirmed that the history of environmental data also contained relevant information to predict
leakage current by conditional Granger analysis and determined that 20 was the optimal number of previous
samples for this purpose. We then compared the performance of typical regression models and convolutional
neural network (CNN), when using both current and the last 21 samples as input features. We confirmed
that the model with the last 21 samples might perform significantly better. Input features pre-processing
by cascaded inception architecture was fundamental to capture the complex dynamic interaction between
environmental data and leakage current and significantly improved the model performance. CNN based on
inception architecture performed much better, achieving an average R2 of 0.94 ± 0.03. The proposed model
could be used to predict leakage current in both porcelain insulators with or without coatings and silicone
composite insulators.

Our results pave the way for creating an on-line pre-warning system adapted to individual installations,
can anticipate the negative consequences of weather and/or pollution deposits and is useful for designing a
strategic high-voltage electrical insulator preventive maintenance plan for preventing contamination flashover
and thus increase power grid reliability and resilience.
. Introduction

High voltage electrical insulators play a fundamental role in energy
ransmission and distribution grids, although they can also cause catas-
rophic unplanned power outages generating serious socio-economic
onsequences (Ahmed et al., 2020; Thanh et al., 2021; Zhi-yi, 2003).
uring an insulator’s life it is subjected to numerous stresses, such as
lectrical, mechanical and environmental (pollution deposits) which
ave a great impact on its reliability (Ahmed et al., 2020). Pollution de-
osits themselves do not cause a drastic change in surface conductivity
nd leakage current if the insulator surface is dry. However, pollution
eposits moistened by light rain, fog, or dew, can create a conductive
ayer that considerably increases the leakage current (Gençoğlu and
ebeci, 2008; Rahal and Huraux, 1979). The insulator surface is then
eated by the Joule effect, giving rise to the appearance of a dry band
Alston and Zoledziowski, 1963) due to a local increase of the electric
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field, thus initiating partial discharges that could trigger a flashover.
This process is commonly referred to as contamination flashover and
continually threatens power grid reliability (Ahmed et al., 2020; Gu
et al., 2016; Li et al., 2010; Salam et al., 2013) and remains one
of the greatest challenges for power grid designers and maintenance
engineers.

Insulator leakage current (ILC) is an integral reflection of the
weather, pollution deposits, applied voltage, and surface damage (Kim
et al., 2001; Ramos et al., 1993) and can objectively reveal the entire
process of converting insulator pollution deposits to contamination
flashover (Thanh et al., 2021). Leakage current is considered one of the
most significant and effective parameters for preventing contamination
flashover, as it provides relevant information on the state of the electri-
cal insulator and indicates how close the insulator string is to flashover
(De Santos and Sanz Bobi, 2020). Considering the root-mean-square
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value, the leakage current during the entire process of contamination
flashover is divided into three stages: the security stage, forecast stage
and danger stage (Ahmed et al., 2020). In dry weather it is considered
safe up to 5 mA. In humid conditions, current peaks up to 50 mA
have been observed and are considered safe for operations (Ahmed
et al., 2020). Leakage current over 150 mA–200 mA is considered
dangerous according to the classification guide (Li et al., 2010). As
early detection of anomalous signs in the security stage is the best way
to design contamination flashover pre-warning systems (Li et al., 2010),
continuous monitoring of leakage current is essential to design an
effective strategy adapted to the special weather conditions of individ-
ual installations for the proper maintenance of high voltage electrical
insulators to minimize contamination flashover and unplanned power
outages. The development of a robust and accurate leakage current
prediction model would be valuable to power generating companies,
since it could anticipate the negative consequences of weather and/or
pollution deposits and contribute to designing effective preventive
strategies by increasing power grid reliability and resilience. It would
also allow the optimization of both human and material resources for
its maintenance.

Numerous studies have focused their efforts on developing ILC pre-
diction models using environmental data (Araya et al., 2021; Castillo-
Sierra et al., 2018; Castillo Sierra et al., 2015; Gao et al., 2018b;
Pinotti and Meyer, 2017), the most commonly used data being relative
humidity, temperature, wind direction and speed. The relationship be-
tween leakage current and relative humidity has been widely described
(Bueno-Barrachina et al., 2021; Matsuoka et al., 2002; Waluyo et al.,
2021). By contrast, there is some controversy about the influence of
environmental temperature on the insulator leakage current (Amin
et al., 2009; Rodriguez et al., 1985; Waluyo et al., 2021). In coastal in-
stallations, wind direction and speed are especially relevant to estimate
ILC, as the accumulation rate of saline solution, the rate of diffusion
and penetration, and the distance from the sea are closely related
factors (Hussain et al., 2017; Venkataraman et al., 2008). Regarding
ILC prediction, Vosloo and Holtzhausen attempted to predict the daily
leakage current of porcelain insulators and obtained an R2 that varies
between 0.43 and 0.88 for the linear model, 0.56 and 0.95 for the
non-linear model for 7-day recordings (Vosloo and Holtzhausen, 2002).
Zhao et al. confirmed that the exponential regression equation can
be used to predict the weekly leakage current, while the regression
coefficients must be dynamically adjusted according to the pollution
deposits in long-term 8-month recordings (Zhao et al., 2011). Other
authors who attempted to use the exponential regression model to
predict leakage current obtained an R2 of 0.606, 0.633, and 0.678
for the ceramic, hybrid and polymeric insulator for 28-day recordings,
respectively (Pinotti and Meyer, 2017). Linear multivariate regression
(MVR) has also been proposed to predict insulator leakage current,
obtaining an R2 ranging from 0.674 to 0.938 in short-term-recordings
(<3 months) (Ahmad et al., 2003; Castillo-Sierra et al., 2018).

Recent studies have proposed using more advanced processing tech-
niques to model the complex non-linear interaction of leakage current
with environmental data. A neural network was proposed to predict
leakage current in both exposed ceramic (Khafaf and El-Hag, 2018)
and silicone rubber insulators (Jahromi et al., 2006; Khafaf and El-
Hag, 2018) to salt-fog (laboratory data). Ghiasi et al. used ANN to
predict the leakage current of polymeric insulators from laboratory
data under non-uniform fan-shaped contamination, achieving an error
of 5% (Ghiasi et al., 2022). Bahramiazar and Oskuoee proposed using
artificial neural networks (ANN) for 20-h recordings, obtaining an R2 of
.98 (Bahramiazar and Oskuoee, 2014). Multilayer feedforward neural
etworks were used to predict insulator leakage current in short-term
ecordings, obtaining an average absolute error of 9.11% for testing
ata (Kazemi et al., 2008). The backpropagation neural network was
lso proposed to predict insulators leakage current with partial success
Gao et al., 2018a). Their models were only able to fit the measured
ata well for large leakage currents, while there was a significant
2

deviation between the prediction and the measured data for small
leakage currents (Gao et al., 2018a). By contrast, Xia et al. suggested
that the exponential model performed better than ANN to estimate
leakage current of polluted insulators from laboratory data with a
variable composition of equivalent salt deposit density (ESDD) and
non-soluble deposit density (Xia et al., 2012). Other authors used the
support vector machine (SVM) to classify categorical levels of insulator
leakage current, reaching an accuracy of 87% (Cho and Lin, 2015).

To sum up, the different models for predicting ILC from environ-
mental data based on MVR, ANN and SVM have achieved only a
limited success, obtaining good results for short-term recordings with
a low generalization capability to new incoming data ‘never’ seen by
the model. To date, no evidence has been found of the feasibility
of predicting leakage current in electrical insulators during normal
operations in long-term recordings.

Deep learning, and especially convolutional neural networks (CNN),
have obtained very promising results in facial recognition (Lu et al.,
2020), image classification (Wang et al., 2019), handwriting text recog-
nition (Bora et al., 2020), natural language processing (Zhang, 2021)
and biomedical engineering (Alaskar, 2018). It is the latest achievement
of the machine learning age and initially performed similarly to human
and even superhuman abilities in many applications (Kiranyaz et al.,
2021). CNN is a multilayer learning architecture that can automatically
extract the relevant characteristics using cascading convolutional and
pooling layers with minimal human interaction or expert knowledge,
and then feeds them to multiple fully-connected layers in a daisy-
chain mode to solve the classification task (Li et al., 2020). CNN was
originally proposed for image classification, which was also called
two-dimensional CNN (2D-CNN). A modified version of 2D-CNN has
been developed to process one-dimensional input data (text or time
series data), namely 1D-CNN, for both classification and regression
tasks (Abdeljaber et al., 2017; Avci et al., 2017; Ince et al., 2016;
Kiranyaz et al., 2019, 2016). The main difference lies in that the
kernel convolution only moves in the time dimension, which forces
the kernel size to match the number of input time series. To date, 1D-
CNN has obtained promising results in different applications, including:
automatic speech recognition (Abdel-Hamid et al., 2014), vibration-
based structural damage detection in civil infrastructures (Yu et al.,
2018) and biomedical engineering (Kiranyaz et al., 2016).

In this work, we aimed to develop robust and accurate models
for high-voltage ILC prediction based on environmental data during
normal operations to create a new on-line early-warning system that
anticipates possible negative weather consequences and/or pollution
deposits, among others. For the first time we introduced the inception
1D-CNN to accurately predict electrical insulator leakage current using
environmental data during its normal operation, and showed that
it outperformed MVR and support vector regression (SVR). We also
reported for the first time that the past environmental data also contain
relevant information for predicting ILC. We designed and validated
our model using 30-month long-term recordings from both porcelain
insulators with and without coating, as well as silicone composite
insulators located in a specific outdoor substation to achieve robust
and generalizable models. The proposed method can be easily adapted
to other insulators or substations, since it only involves recordings of
environmental data that can be obtained from conventional weather
stations (temperature, relative humidity, wind direction and speed),
with no need to measure the pollution index, rainfall and ultraviolet
radiation or other factors.

2. Materials and methods

2.1. Data acquisition

Since the accumulation of pollution deposits on insulator surfaces
under natural conditions is a long-term process and can vary from
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Fig. 1. Diagram block of the experimental setup.
onths to years (CIGRE, 2008), we used 30-month long-term record-
ngs to cover all the relevant stages of pollution deposits as well
s the effect of natural self-washing by rain. We measured both the
urface and capacitive components of the leakage current of the seven
nsulators connected to the same phase of a 20 kV busbar during normal
perations using the experimental setup shown in Fig. 1. The auxiliary
nsulator on the pole structure was used to restrain the leakage cur-
ent to the measurement system. The leakage current flowed into the
easurement system through an insulator copper cable connected to
plate with shunt resistors, this latter being protected from possible

hort-circuit currents to the ground by a surge arrester. The shunt
esistors were configured to measure leakage current from 600 μA
o 4000 μA. A 4–20 mA current loop circuit connected to the input
f a CR1000× commercial data logger specially designed for extreme
utdoor conditions (Campbell Scientific Company) was used to process
he voltage at the shunt resistor terminals. A CR Basic programming
anguage software was designed to continuously compute the root-
ean-square of leakage current every 250 ms. We stored the average

alue of the signal in 5-min windows on a microSD card.
We also simultaneously recorded the environmental data (temper-

ture, relative humidity, wind direction and speed) with the leakage
urrent in the seven insulators, with a sampling rate of one sample
very 5 min by means of a METSENS600 meteorological station inte-
rated with a Campbell Scientific data logger through an SDI-12 port
or environmental data monitoring.

Table 1 shows the main characteristics of the insulators installed
n a test panel in an outdoor substation on the Mediterranean coast
ith a high level of saline contamination. Specifically, we compared

he insulator leakage current and its predictability from environmental
ata in: 1 porcelain insulator without coating, 5 porcelain insulators
ith room temperature vulcanization (RTV) silicone rubber coating
nd 1 silicone composite insulator. RTV coatings are usually used in
pplications in polluted environments to improve the insulator perfor-
ance and increase its lifespan and power reliability (Jamaludin et al.,
017) due to their good dielectric properties and flexibility over a wide
emperature range, combined with excellent resistance to ultraviolet,
hemicals, thermal degradation and corona discharge (Aschwanden
t al., 2020).

The RTV coatings used in this work are made up of a silicone

ase, fillers and pigments, to which we added volatile elements with a

3

proportion ranging from 25% to 65% (according to the manufacturer).
To avoid possible damage of the coating during transport, we con-
ducted the vulcanizing process in-situ by spraying the material on the
clean insulator surface using paint guns to achieve a layer thickness of
between 450 and 500 μm. Likewise, The vulcanizing process was carried
out at an environmental temperature between 10 ◦C and 40 ◦C, with
a relative humidity less than 80% and the temperature of the insulator
surface was at least 3 ◦C higher than the dew temperature.

2.2. Data analysis

2.2.1. Cause–effect analysis using conditional Granger causality
The instantaneous relationship between ILC and environmental data

based on correlation analysis such as temperature, humidity, wind
direction and wind speed has been widely described (Amin et al.,
2009; Amin and Salman, 2006; Bueno-Barrachina et al., 2021; Hussain
et al., 2017; Schindelholz and Kelly, 2012; Waluyo et al., 2021),
although to date there has been no study on whether past values of
environmental data provide relevant information for predicting leakage
current. Physically, this phenomenon could be related to the delayed
effect of moisture absorption and drying of the insulator surface (Wang
et al., 2017; Zhang et al., 2013). For this, we analysed the cause–
effect relationship of the environmental data with the leakage current
recorded from each insulator using conditional Granger causality (Bar-
nett and Seth, 2014). This latter can be interpreted as the degree to
which the past of Y (for example temperature) helps to predict X
(leakage current), beyond the degree to which X is already predicted
by its own past and the past of the conditioned variable Z (humidity,
wind direction and speed). Conditional Granger causality can be used
to detect the real interaction between each environmental data and
leakage current avoiding false causality due to the underlying ‘hidden’
interaction between the different environmental data (Waluyo et al.,
2021). A vector autoregressive (VAR) model was first carried out on
each insulator for the prediction of leakage current based on the previ-
ous P (model order) samples of its own information and the controlled
variables from the past. Another VAR model was then built including
the past information of the variable Y under analysis (Barnett and Seth,
2014). The conditional Granger causality is thus defined as the natural
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Table 1
Characteristic of the tested insulators.

Insulator number Insulator base material Insulator coating

1 Porcelain A type (Medium silicone proportion + filler) manufacture 1
2 Porcelain B type (High silicone proportion + filler)
3 Porcelain Without coating
4 Porcelain C type (Medium silicone proportion + filler) manufacture 2
5 Porcelain D type (Medium silicone proportion + filler) manufacture 3
6 Porcelain E type (Medium silicone proportion + filler) manufacture 4
7 Silicone composite –
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logarithm of the covariance matrix of the residual errors of both models
(Barnett and Seth, 2014).

The order of the VAR model contains information on the temporal
dependence of the data and could be used to determine the number
of environmental data in the previous sample to predict ILC. In this
work, we used the commonly used Bayesian Information Criterion (BIC)
to determine the optimal VAR model order to achieve a compromise
between model precision and complexity, thus avoiding the overfit-
ting of a finite data sequence (Barnett and Seth, 2014). Since the
optimal order of the VAR models may change for different insulators,
we used the average optimal P order of the 7 insulators (P previous
samples) to further develop leakage current prediction models. We
also analyzed the statistical significance of the estimated conditional
Granger causality to determine whether each of the environmental data
contains relevant information to predict leakage current (Barnett and
Seth, 2014).

2.2.2. Prediction of leakage current based on environmental data
To avoid overfitting the model and obtain a robust and generaliz-

able model for the new incoming data, we randomly divided the total
database into three datasets by the holdout technique: training (70%),
validation (15%) and test (15%). We used the training and validation
datasets to develop the model by optimizing the hyperparameters of
the algorithm, and the test dataset was used to determine the real
generalization capability for the new incoming data never seen by the
model. To minimize bias due to the randomness of the holdout tech-
nique, we conducted the holdout techniques 10 times, thus generating
10 folders to determine the average performance and its variability. It
should be noted that all the models were developed and evaluated with
the same folders, so that the differences in model performance are due
exclusively to the prediction models and not to random data partition.

As mentioned previously, moisture absorption and drying may have
a delayed effect on the leakage current (Wang et al., 2017; Zhang et al.,
2013). We compared the model performances using only the current
samples of environmental data or the last P + 1 samples (previous P +
current sample) as input features.

2.2.2.1. Multivariate regression. We carried out a global linear MVR
odel on the insulators to predict the leakage current from environ-
ental data: temperature, relative humidity, wind direction and speed.

ince MVR only admits one-dimensional input features, we reshaped
he last P + 1 samples of the 4 environmental data into a feature vector
f dimension 1 × (4 ⋅ P + 4). Since there is no need to adjust the
yperparameters in the model, we worked out each feature’s weight
sing the training data, and then applied it to the validation and test
atasets to determine the model’s performance.

.2.2.2. Support vector regression. Since the interaction between the
nvironmental data and the leakage current may be non-linear, we con-
ucted a global regression model for each insulator using the support
ector regression (SVR), a specific application of the support vector
achine (SVM) for data regression, which consisted of transforming

he input data into a higher dimension space by the kernel function,
n which the data best fits a straight line, namely hyperplane (Wang
t al., 2020). In other words, the largest number of samples should fall
nto the hyperplane or within a margin of error 𝜀. We used the radial
 i

4

basis function kernel, since this latter is one of the most frequently used
non-linear kernels.

We also carried out two SVR models for each insulator using only
current samples or the last P + 1 samples reshaped into a vector feature
of dimension 1 × (4 ⋅ P + 4). The hyperparameters of the models
were optimized using the 10-folder hold-out technique for training
and validation datasets: the parameter 𝛾 of the kernel function, the
regularization parameter C and margin of error 𝜀. The performance of
the model was then determined for the test datasets.

2.2.2.3. 1D-CNN. Theoretically, CNN has the advantage of merging
the feature extraction processes and the classification and/or regression
task into a single learning architecture, so that they can learn to
optimize features during the training phase directly from the raw input
(Kiranyaz et al., 2021). This property makes it ideal for our application
due to the complex underlying mechanism between environmental data
and leakage current for long-term recordings. Instead of standard con-
volutional layers, we tested a variant of the convolutional layer based
on inception architecture which was introduced by the GoogLeNet,
the 2014 edition winner of the large-scale visual recognition Imagenet
competition (Russakovsky et al., 2015). Its main objective was to
achieve high precision at a low computational cost (Szegedy et al.,
2015). Szegedy et al. confirmed the possibility of developing more
accurate image classifiers with even 12 times fewer parameters than the
Krizhevsky’s 2012 winning architecture (Krizhevsky et al., 2012). Other
authors demonstrated the superiority of the inception architecture with
respect to the state of the art in the field of artificial vision, obtaining
a 3.5% error in the Top-5 of the validation set and a 17.3% error
in Top-1 of the validation set (Szegedy et al., 2016). The basic idea
of convolution is to determine both the local structure and its spatial
distribution of the input data. In general, convolution with kernel 𝐾 = 1
s used to determine the local structure of the input data (Lin et al.,
013). There are also more complex features that should take into
ccount the neighboring information that requires convolution with a
arger kernel (𝐾 = 3 and 𝐾 = 5). In general, the number of complex

features tend to reduce with increasingly larger regions (Szegedy et al.,
2015), and can be represented sparsely in most regions (Arora et al.,
2013).

We adapted the inception architecture for 1D-CNN to predict leak-
age current using environmental data (see Fig. 2). This consists of 3
convolutional streams in parallel in which the previous layer is common
to all of them. The first stream only consisted of a simultaneous
convolution with 64 filters with kernel size 𝐾 = 1. The second stream
consisted of 2 cascaded convolutional layers with kernel size 𝐾 = 1 and
𝐾 = 3 in the first and second layer, respectively. Again, we established
he number of filter banks at 64 in both layers. We used the same
adding technique to preserve the dimensionality of the feature map
nd the ReLU activation function. The application of 𝐾 = 1 before
= 3 would considerably reduce the computational cost thanks to the

ispersed data representation of the ReLU activation function. The third
tream is very similar to the second, with two cascading convolutional
ayers of kernel size 𝐾 = 1 and 𝐾 = 5 in the first and second layers,
espectively. The 3 streams later converge to form a single output
y concatenating their outputs. In this way, both local and regional
nformation was extracted on the same features map. We repeated the

nception architecture 4 times in cascade to achieve a deeper network,
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Fig. 2. Flowchart of the CNN based on N = 4 layers of Inception architecture for predicting insulator leakage current, in which the input features are the last (P + 1) samples of
nvironmental data.
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hich made it possible to extract information from increasingly larger
egions (distant time horizon).

The output of the last convolutional layer based on inception archi-
ecture was reshaped to a feature vector by flattening. Next, we used
wo fully connected layers with 200 and 100 neurons respectively as
egression head, both with the ReLU activation function. Finally, the
egressive output that provides the prediction of the leakage current
as formed by a neuron with linear activation. It should be noted that
e did not configure any pooling layers due to the low dimensionality
f the input features (as shown below). Both the filter number and
he number of neurons in the fully-connected layers were determined
xperimentally to achieve a compromise between model accuracy and
omputational cost. The Adam optimizer (Kingma and Ba, 2014) was
sed to train the model, in which the loss function is the R2 of
he regression. We used a batch size of 128 samples and the ‘‘early
topping’’ technique in the validation group to avoid overfitting the
odel. This consisted of stopping the algorithm if it failed to improve

he objective function (R2 of the validation group) in 15 successive
terations.

Analogously, we compared the model’s performance based on 1D-
NN when using only current samples and the last P + 1 samples as

nput features. For this, we also adapted this architecture for the current
ample as input features, in which the convolution with 𝐾 = 3 and
= 5 should be necessarily replaced by 𝐾 = 1.
 c

5

.2.2.4. Evaluation of model performance. Model performance was as-
sessed by the commonly used regression metrics: coefficient of determi-
nation R2, normalized mean square error (NRMSE). R2 was calculated
as a function of the total variation of data from the prediction outcome
(also termed as sum of square residual) and the total variation of data
from the mean value (total sum of squares). Since R2 is in the range 0–1,
the larger the R2, the more accurate the prediction. By contrast, NRMSE
should be as close as possible to 0% for accurate model prediction.

𝑅2
𝑖 = 1 −

sum square residual
total sum of squares(SST) = 1 −

∑𝑁
𝑘=1

(

𝑋𝑖 [𝑘] − �̂�𝑖 [𝑘]
)2

∑𝑁
𝑘=1

(

𝑋𝑖 [𝑘] −𝑋𝑖

)2
(1)

𝑅𝑀𝑆𝐸𝑖 =
1
𝑁

∑𝑁
𝑘=1

(

𝑋𝑖 [𝑘] − �̂�𝑖 [𝑘]
)2

1
𝑁

∑𝑁
𝑘=1

(

𝑋𝑖 [𝑘]
)2

⋅ 100(%) (2)

where 𝑋𝑖 =
1
𝑁

∑𝑁
𝑘=1 𝑋𝑖 [𝑘] ,∀𝑖 = 1…7. The annotation of 𝑋𝑖 refers to

he average value of the leakage current recorded from the insulator
, while �̂�𝑖 is the prediction of the leakage current for the insulator i
stimated by the model.

As for the testing dataset which represents the new incoming data
ever seen by the model, for each insulator we conducted a compar-
tive study between different input features (current sample vs. last P
1 samples) using the Wilcoxon signed rank test (𝛼 = 0.05). We also

ompared the model’s achieved performance using different regression
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Table 2
Conditional Granger causality of environmental data with leakage current of each insulator and the optimal order of the VAR model.
Statistically significant causality is shaded in grey.
techniques when using the current and the last P + 1 samples by the
Friedman test (𝛼 = 0.05) for the 7 insulators. If so, we used the Wilcoxon
signed rank test to determine the significant difference between each
pair of techniques (𝛼 = 0.05).

3. Results

Table 2 shows the degree of interaction between each environmen-
tal data item and the leakage current recorded from each insulator, con-
trolling the other environmental data by conditional Granger causality.
The causality between the different environmental data and the leakage
current is statistically significant for all the insulators, except for wind
direction, which only obtained statistical significance for insulators 1–
3 and 5. Humidity also obtained a higher Granger causality than wind
speed, followed by temperature and wind direction. The optimal order
of the VAR models varied from 17 for insulator 2 to 31 for insulator 5,
with the average optimal order 20. In addition to current samples, we
therefore also used the last 21 samples (20 previous+current sample)
of the environmental data for predicting the ILC.

Table 3 gives the performance of the test dataset of the different
leakage current prediction models based on MVR, SVR and 1D-CNN,
respectively. Fig. 3 shows the box and whisker plot of different leakage
current prediction model performance for the test dataset of the 7
insulators. In general, a higher R2 value is associated with lower
NRMSE. Model performance variability between partitions was low.
When the current samples were used as input features, the prediction
model performance obtained by MVR was relatively low, the average
R2 of the 7 isolators being about 0.40 ± 0.13 and the average NRMSE
18.20 ± 9.08%. Insulators 1 and 2 achieved the best results, obtaining
an average R2 of 0.55 and NRMSE of less than 10%. Insulator 6
performed slightly worse (R2: 0.46 ± 0.01). For insulators 3–5, the
average R2 varied from 0.30 to 0.40 and the average NRMSE oscillated
between 20–31%. The worst performance of the model was obtained
for insulator 7 with an average R2 of 0.22. When using the last 21
samples as input features, the MVR-based prediction models obtained
better statistically significant results, regardless of the insulator. The
average R2 of the 7 insulators was 0.42 ± 0.13 and the average NRMSE
was 17.45 ± 8.63%, which indicated that the MVR-based models could
not accurately predict ILC. Again, insulator 7 performed worst (R2:
0.23 ± 0.01) and the best results were obtained for insulators 1 and
2. These results suggest that the relationship between environmental
data and ILC is non-linear in nature. There was also great variability
between different insulators in the predictability of the leakage current
from environmental data.

The problem is partially mitigated by the SVR technique, which ob-
tained substantially better results, with an average R2 of 0.70 ± 0.13. In
general, using the last 21 samples as input features obtained practically
the same results as the current samples, with no significant differences
between them. We also found a large difference in the leakage current
predictability for the different insulators (R2 of insulator 1, 2 > 6 >
3–5 > 7). Again, the worst performance was obtained by insulator 7
(R2 < 0.50 and NRMSE > 16%) and the best results were obtained by
nsulator 1 (R2∼0.85 and NRMSE∼3.30%). Statistical analysis indicated
6

that the SVR model performed significantly better than the MVR,
obtaining significantly higher R2 and lower NRMSE. Even though SVR
improved the performance of the leakage current prediction model
based on environmental data, it did not reduce the variability between
the different insulators.

The performance of the 1D-CNN-based model using only current
samples was moderately good. The average R2 was 0.68 ± 0.14 for
the test dataset, which was significantly inferior to that of the SVR
model. Similarly, the best results were obtained in insulators 1 and
2 (R2: 0.83 ± 0.01 and 0.80 ± 0.01 respectively), and insulator 7
performed worst (R2: 0.43 ± 0.03). By contrast, the performance of the
model improved considerably when using the last 21 samples as input
features, this difference being statistically significant. The average R2

was 0.94 ± 0.03 and the average NRMSE was 1.71 ± 1.22%. Similarly,
insulators 1 and 2 performed best (R2 = 0.98 ± 0.00), although the other
porcelain insulators (3–6) also obtained excellent performances (R2 >
0.92). Insulator 7 again performed worst, obtaining an average R2 of
0.88 ± 0.02, which was still quite accurate. The 1D-CNN model with
the last 21 samples performed significantly better than other regression
techniques such as MVR, SVR, achieving significantly higher R2 and
lower NRMSE.

Fig. 4 show the scatter plot of the leakage current prediction based
on 1D-CNN using the last 21 samples versus target leakage current.
Regardless of the insulator, the data cloud was located close to the 45◦

reference straight red line, with an almost random distribution around
it. The model tends to underestimate only the case of abnormal leakage
current peaks due to extreme adverse environmental conditions such as
rain and frost. Again, these results confirmed the model’s goodness for
predicting leakage current from environmental data.

Trace (A) of Fig. 5 shows the time evolution of the leakage current
recorded from a silicone composite insulator (n◦ 7) and its prediction
by the 1D-CNN using the last 21 samples. Trace (B) shows the time
evolution of the prediction error. Traces (C) and (D) show the same
figure for 3-month recordings in summer and in winter, respectively. In
general, the model reliably reproduces the leakage current regardless of
the time of year, except for the presence of anomalous current peaks.
Specifically, the percentile 99% of the absolute prediction error was
6.9 μA. These results reaffirmed the model’s goodness for predicting
leakage current from environmental data.

4. Discussion

4.1. Past environmental data for predicting ILC

In this work, we aimed to develop robust and accurate leakage
current prediction models from environmental data during the normal
operation of electrical insulators. Our results suggested that in addition
to the current environmental data, their past (20 previous samples,
equivalent to 100 min) also contained relevant information to predict
ILC. We believe that this is to some extent related to the delayed
effect of moisture absorption on the insulator surface. Previous lab
studies determined that moisture absorption time increases with the

concentration of soluble substances and varies between 5–30 min,
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Table 3
Mean and standard deviation of the leakage current prediction model’s performance for test dataset. Statistically significant
differences when using current and the last 21 samples are shaded in grey.
Fig. 3. Box and whisker plot of different leakage current prediction model performance for test dataset of the 7 insulators. *∙◦⧫ indicates statistical significance between different
regression techniques when using current samples and the last 21 samples, respectively. 𝛥 indicates statistical significance between using current samples and the last 21 samples
for each technique.
Fig. 4. Scatter plot of leakage current prediction based on 1D-CNN using the last 21 samples vs. target leakage current. Red line is the reference straight line if the model predicts
the exact leakage current. (A) Insulator 1. (B) Insulator 2. (C) Insulator 3. (D) Insulator 4. (E) Insulator 5. (F) Insulator 6. (G) Insulator 7.
according to Zhang et al. (2013). Temperature also plays an important
role in the moistening process (Dai et al., 2011; Zhang et al., 2013).
Zhang et al. found that moisture absorption time increases at higher
temperatures (Zhang et al., 2013). The difference between the insulator
temperature and the environmental dew point greatly influences the
leakage current magnitude (Dai et al., 2011). In this regard, the insu-
lator temperature may depend mainly on the past air temperature due
to thermal inertia. The environmental dew point depends on current
information of ambient temperature and humidity. This could explain
why including past environmental data improves the performance of
the leakage current prediction model. Wang et al. found that the water
absorption of the pollution deposits is directly proportional to the
7

temperature difference between the environment and the insulator at
medium humidity levels (60%–75%) (Wang et al., 2017). In addition,
the amount of water absorbed achieved its maximum value after 1 h
for a 25 ◦C ambient temperature and 70% humidity (Wang et al.,
2017). The difference in moisture absorption time is probably due to
the test conditions in the cited works. Long-term recordings may show
a complex interaction between temperature, humidity, wind direction
and speed and the indeterminate and variable composition of pollution
deposits (De Santos and Sanz Bobi, 2020), which could lead to an even
longer absorption time. In the present work we did not measure the
moisture absorption time itself but determined the temporal structure
of the data using the VAR model.
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Fig. 5. (A) Time evolution of raw leakage current recorded on silicone composite insulator n◦7 and its prediction by the 1D-CNN model using the last 21 samples of environmental
data as input features. (B) Prediction error. Red horizontal line indicates the thresholds of 6.9 μA, which consisted of the percentile 99% of absolute prediction error. (C) Detail
of temporal evolution of leakage current prediction for months 17–20, which is the orange rectangle in trace (A). (D) Detail of temporal evolution of leakage current prediction
for month 23–26, which is the cyan rectangle in trace (A).
4.2. Influence of insulator type on leakage current prediction

Regardless of the regression technique, we found a certain differ-
ence in the predictability of the leakage current from the environmental
data. Porcelain insulators 1 and 2 with an RTV coating showed similar
performances and usually gave better results than insulator 3 (porcelain
without coating) and 6 (porcelain with RTV coating), and this in turn
performed better than insulators 4 and 5 (porcelain with RTV coating).
Insulator 7 (silicone composite), in which the lowest leakage current
was recorded, obtained the worst leakage current prediction perfor-
mance. The worse predictability of silicone composite insulators could
be mainly due to their increased accumulation of pollution deposits and
their complex wetting process. Previous studies determined that porce-
lain insulators have a better self-wash ability during heavy rains than
silicone insulators (Chrzan and Zipp, 2020), obtaining three times lower
ESDD values (Chrzan, 2010; Naito et al., 2020). The pollution deposits
on silicone insulator surfaces also cause hydrophobicity degradation
(Arshad et al., 2016; Kumagai and Yoshimura, 2004). In fact, silicone
insulators showed a longer absorption time and a lower temperature
influence on the moisture absorption process than porcelain (Zhang
et al., 2013). Sunlight ultraviolet radiation and heat exposure also play
an important role in the degradation of the silicone insulator surface
(Arshad et al., 2016), which can vary the wetting process over time.
By contrast, despite the fact that insulator 3 with no coating presented
the highest leakage current, the wetting process of this type of insulator
seems to be less complex, since water deposition on the surface was
uniform, forming a water film due to the hydrophilicity of the material.
In addition, porcelain insulators were not influenced by ultraviolet
8

sunlight radiation and heat exposure (Gençoğlu, 2007), so that the
influence of environmental data on the leakage current is relatively less
complex. As for RTV coated porcelain insulators, their wetting process
may be highly dependent on the surface treatment, which determines
the repellence of pollution deposits and the hydrophobicity of the
surface.

4.3. Leakage current prediction using environmental data

In this work, we implemented and compared 3 regression tech-
niques for ILC prediction: MVR, SVR and 1D-CNN. We found that MVR
fitted relatively well for short-term recordings of each week (results
not shown). However, the regression coefficients of the model showed
significant fluctuation and had to be dynamically adjusted with the
measured data every short period of time, which is in agreement with
other authors (Vosloo and Holtzhausen, 2002; Zhao et al., 2011). For
long-term recordings, the MVR technique performed rather poorly, with
an average R2∼0.40, which was considerably lower than the results
obtained by other authors who obtained an R2 above 0.60 for short-
term recordings (Ahmad et al., 2003; Castillo-Sierra et al., 2018; Vosloo
and Holtzhausen, 2002; Zhao et al., 2011). These results suggest that
the interaction of the different environmental variables and the leakage
current were dynamic with large fluctuations over time, giving rise to
a much more complex data structure than a linear relationship, so that
the MVR technique obtained a relatively poor performance.

Thanks to the non-linear transformation using the radial basis func-
tion kernel, SVR models performed significantly better than MVR. We
believe that the ANN would have obtained similar results. Our result
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was much lower than that obtained by Bahramiazar and Oskuoee for
short term recordings (R2 of 0.98) (Bahramiazar and Oskuoee, 2014).
The mean absolute error normalized with respect to the leakage current
itself was of the order of 18% (our result not shown), which was higher
than the 9.11% obtained by Kazemi et al. over a record of 60 days
(Kazemi et al., 2008). Again, we believe that the poorer performance
of our SVR model was due to its greater data structure complexity
when using a long-term recording, and our result more closely reflects
the model’s generalizability. Short-term recordings tend to overestimate
model performance since they do not have representative data that
reflects the underlying leakage current mechanism. Indeed, Gao et al.
suggested the difficulty of developing a valid global model for large and
small leakage currents (Gao et al., 2018a). It should be noted that using
the last 21 samples as input features of the SVR model did not improve
the performance of the test dataset, suggesting that it is necessary to
pre-process the last 21 samples of the environmental data to extract
the relevant information to predict leakage current.

We found that 1D-CNN using current samples as input features
obtained similar results to SVR. In this specific case, since it was
restricted to using kernel size K = 1, the inception architecture could
not extract information on different time scales and therefore did not
provide any advantage over SVR. We believe that standard convolution
layers with deeper architecture would obtain similar results when using
only current sample as input features. By contrast, when using the last
21 samples as input features, 1D-CNN performed significantly better
than SVR and MVR, which was equally valid for the different insulator
types: porcelain with or without coatings or composite silicone. Our
results revealed the importance of extracting both local and regional
information through the inception architecture (Szegedy et al., 2015).
The inception architecture was used to extract both local (𝐾 = 1) and
regional (𝐾 = 3 𝑦 𝐾 = 5) information to determine the interaction of
the environmental data between K time instants (Szegedy et al., 2015).
The combination of local and regional information on the same feature
map can determine their underlying relationship. The successive appli-
cation of inception architecture makes it possible to extract information
from increasingly larger regions, where the extracted features can be
hierarchically and progressively more complex (Szegedy et al., 2015).
Inception architecture convolution layers can automatically capture the
dynamic interaction between environmental data and leakage current
without human interaction or expert knowledge (Li et al., 2020),
achieving an average R2 of 0.94 ± 0.03 for a test dataset.

The performance of our 1D-CNN model using the last 21 samples
as much better than the different leakage current prediction models
eveloped in the literature (Ahmad et al., 2003; Castillo-Sierra et al.,
018; Cho and Lin, 2015; Gao et al., 2018a; Kazemi et al., 2008;
inotti and Meyer, 2017; Vosloo and Holtzhausen, 2002; Zhao et al.,
011). Compared with the leakage current prediction method proposed
y De Santos and Sanz Bobi, which achieved an R2 above 0.85 for
ncovered, half-silicone covered and fully-silicone covered insulators,
ur model offered a similar performance (De Santos and Sanz Bobi,
020). However, our technique also has a number of advantages: first,
e Santos and Sanz Bobi estimated the cumulative pollution index

aking into account both the pollution index with the additional mea-
ure of directional dust deposition and the washing coefficient, ESDD
easurement being necessary together with the leakage current. As the
athematical model parameters must be experimentally configured for

ach electrical insulator in-situ, they are not easily adaptable to other
ubstations since the underlying mechanism between these factors does
ot necessarily respond to the same mathematical model. Furthermore,
he reference insulators for measuring ESDD were not energized, which
as not an accurate ESDD measure of the electrical insulators in which

hey were used to record the leakage current, since pollution does not
eposit in the same way on energized and non-energized insulators
Vosloo, 2002). Our 1D-CNN model using the last 21 samples is not only
ccurate in predicting leakage current in different types of electrical
nsulator, but can also be implemented in real-time applications on
9

mobile devices (Abdeljaber et al., 2017; Avci et al., 2018; Kiranyaz
et al., 2019) thanks to its lower computational cost. In addition, we
believe that our method can also be easily adapted for predicting insula-
tor flashover, which still remains a challenge in the scientific-technical
community (Arshad et al., 2020; Narmadhai and Jeyakumar, 2011;
Salem et al., 2021; Samakosh and Mirzaie, 2020; Zhu et al., 2021).
Also, long-term recording has representative data of the underlying
mechanism between the different environmental data and the leakage
current of the in-situ installation, including seasonal fluctuations and
therefore our model has high leakage current generalizability of the
same insulators in the same substation at a later time. Thanks to the
self-learning ability of CNN to learn the relevant features, the model is
easily adaptable to other electrical insulators and/or other substations.
Starting from a trained CNN model, transfer learning can also be used
to develop the leakage current prediction models of other electrical
insulators and/or substations by transferring knowledge contained in
a different but related source domain (our model) to the domain of
interest (other insulators and/ or substations) (Zhuang et al., 2019).
Transfer learning requires far fewer samples for its training (Zhuang
et al., 2019).

4.4. Limitation and future works

Despite the promising results, this work is not without its limi-
tations. First, since we used recordings conducted on new insulators
during the first two years, which have been shown to have an average
useful life of around 24 years (Amin and Amin, 2014; Ghosh and
Khastgir, 2018), insulator aging was not considered in our model.
Even so, we believe that our model can be implemented in practice
to improve electrical insulator maintenance. It could be used to an-
ticipate the negative consequences of the weather and/or pollution
deposits in the short and medium term, when the effect of aging
on the leakage current is irrelevant, potentially constituting a new
engineering tool for designing a strategic preventive maintenance plan
for high voltage electrical insulators. It can also be used to determine
the discrepancy between the predicted leakage current and the data
measured in situ. A large discrepancy between these may indicate some
anomalies: abnormally high pollution deposits, insulator aging and/or
presence of surface damage, in which case an installation stop can
be programmed for cleaning. Increasing the frequency of installation
stops would be related to the material’s aging effect, suggesting its
replacement. As simultaneous recording of the insulator surface tem-
perature by cameras may help to identify surface damage (Darwison
et al., 2019), it would thus be useful to include a thermal camera
to measure insulator surface temperature in future applications. Our
model also tends to underestimate leakage current peaks due to rain
or other phenomena. We believe that a more accurate leakage current
prediction model can be obtained by including additional information,
such as precipitation (Ahmad et al., 2000; Cho and Lin, 2015; Gao et al.,
2018a; Pinotti and Meyer, 2017), ultraviolet radiation (Abdullah et al.,
2020; Amin et al., 2009; Bahramiazar and Oskuoee, 2014; Vosloo and
Holtzhausen, 2002), environmental pressure (Abdullah et al., 2020),
images of spark discharge (Thanh et al., 2021), insulator creepage
distance (Abdullah et al., 2020) and insulator surface temperature by
thermal cameras (Darwison et al., 2019), among others. Regardless of
this, to the authors’ knowledge, this is the first time that an accurate
leakage current prediction model has been successfully achieved using
only 4 environmental data items for 30-month long-term recordings
during normal insulator operation. The method can also be easily
transferred to other insulators and/or other substations.

5. Conclusions

The experimental results showed that the last 21 samples of en-
vironmental data contained relevant information for predicting ILC,
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although including their past raw information does not necessarily
improve prediction performance. The pre-processing of input features
was an indispensable step in capturing the data’s temporal structure
to describe the complex underlying dynamic mechanism between the
environmental data and ILC. This was achieved by simultaneously
extracting increasingly larger local and regional information through
the successive application of the inception architecture.

The 1D-CNN model based on inception architecture using the last
21 samples of environmental data as input features performed much
better than SVR and MVR, achieving an average R2 of 0.94 ± 0.03
nd NRMSE of 1.71 ± 1.22%. Our model could be used for precise
rediction of leakage current on porcelain insulators with or without
oating and silicone composite insulators during normal operations in
hich the wetting of surface pollution deposits is much more complex.
ur results pave the way for developing an on-line early-warning

ystem to anticipate negative weather consequences and/or pollution
eposits. This system will potentially constitute an engineering tool
or designing an effective strategy for preventive maintenance of high-
oltage electrical insulators and minimizing contamination flashover,
esponsible for unexpected power outages, thus increasing power grid
eliability and resilience.
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