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Our motivation for this article was the realization that there are still some less known, if possibly even 
new, characterizations of Asplund spaces. We present them below, thus hoping that the Asplund property 
can be yet better understood. By the very definition, a Banach space X is called an Asplund space provided 
every convex continuous function defined on an open convex subset D of X is Fréchet differentiable at the 
points of a dense (necessarily Gδ) subset of D. This concept comes from E. Asplund’s paper [1]. The name 
“Asplund space” was articulated a few years later by I. Namioka and R.R. Phelps in their paper [18].

Sufficient conditions for Asplundness in the setting of smoothness (i.e., Gateaux differentiability) of the 
norm were provided from the very beginning of the theory (Asplund [1] used local uniform rotundity of the 
dual, Ekeland and Lebourg [8] profited from the existence of a Fréchet differentiable bump, and Diestel and 
Faires [7] considered Gateaux differentiability of the norm combined with norm-to-weak continuity of its 
derivative —the so-called “very smoothness”). In absence of smoothness, it is natural to consider continuity 
properties (upper, lower semicontinuity) of the duality mapping, see Remark 5 below.
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For a rich supply of information about Asplund spaces we refer, e.g., to [19], [6, Section I.5], or [10, 
Chapter 11].

Here we concentrate on the existence of selectors of the first Baire class both for the duality mapping on 
X and for the argmin function on the Banach space C((BX∗, w∗)) (abbreviated C(BX∗)) of all continuous 
functions on the compact topological space (BX∗ , w∗) (i.e., the closed unit ball of the dual X∗, endowed with 
the restriction of the w∗-topology on X∗), equipped with the supremum norm ‖ · ‖ (for the definition of the 
argmin function, see equation (1) below), something related —but not equivalent— to upper semicontinuity 
properties of the duality mapping. The reader may find two proofs of one of the crucial implications of our 
main result: The first one, in the spirit of Godefroy [15], is circumscribed to the duality mapping, and is 
based on Simons’ inequality [20], see also [10, Lemma 3.123] (for the reader’s convenience, we shall record 
its precise formulation in Lemma 2 below). The other, in a sense simpler, follows a clever argument due to 
Stegall done on the space C(BX∗); thus avoiding the need of Simons’ Lemma 2.

Let (X, ‖ · ‖) be a Banach space with the dual space X∗. For x ∈ X and x∗ ∈ X∗ we put 〈x∗, x〉 := x∗(x). 
On X∗, we can consider three topologies: “norm”, “weak” (w, for short) and “weak∗” (w∗, for short). The 
duality mapping, that is, the Moreau-Rockafellar subdifferential ∂‖ · ‖ : X −→ 2BX∗ of the norm ‖ · ‖, is 
defined by

∂‖ · ‖(x) := {x∗ ∈ BX∗ : 〈x∗, x〉 = ‖x‖}, x ∈ X.

Alaoglu’s theorem asserts that the closed unit ball BX∗ in X∗ provided with the w∗ topology is a compact 
space.

Consider the set-valued mapping

C(BX∗) � f �−→
{
x∗ ∈ BX∗ : f(x∗) = min f(BX∗)

}
=: argmin (f) ⊂ BX∗ ; (1)

thus argmin: C(BX∗) −→ 2BX∗ . The mapping argmin is widely used in variational analysis. Notice that for 
every f ∈ C(BX∗) we have agmin (f) = BX∗ ∩∂‖ ·‖(−f) where ‖ ·‖ means the “maximum” norm on C(BX∗)
(and we assume that BX∗ is a subset of C(BX∗)∗).

For a compact space K, the mapping argmin: C(K) → 2K satisfies argmin (f) = ∂‖ · ‖(−f) ∩K, where 
f ∈ C(K) and ‖ · ‖ is the maximum norm on C(K). The mapping κ : X −→ C(BX∗) given by

κ(x)(x∗) := 〈x∗, x〉, x ∈ X, x∗ ∈ BX∗ (2)

is a linear isometry into, and argmin (κ(x)) = ∂‖ · ‖(−x) ∩ BX∗ . Throughout this note we shall always 
have in mind its action on the broader scope of the continuous functions on the compact space (BX∗, w∗). 
Remarks 7 and 8 below help to stress this point.

We shall use several times in this note the following well-known fact. For the reader’s convenience, we 
include the proof:

Lemma 1. Every w-separable subset M of a Banach space is norm-separable.

Proof. If M is nonempty, find a countable set {sn : n ∈ N} in M such that its weak closure contains M . 
Let Q be the family of all (infinite) sequences (q1, q2, . . .) with non-negative rational entries, all of them 
zero but a finite number, and such that q1 + q2 + · · · = 1. Clearly, Q is a countable set. Thus, the set 
{q1s1 +q2s2 + · · · : (q1, q2, . . .) ∈ Q} is also countable. Moreover, the latter set is obviously w-dense in coM . 
Hence coM is w-separable. Now, Mazur’s theorem (see, e.g., [10, Theorem 3.45]) guarantees that coM (and 
so M) is norm-separable. �

Theorem 3 below is the main result of this note. The proof of (iii-w)⇒(i) depends, at a certain stage, of 
Simons’ inequality. As promised, we reproduce here its statement as a lemma:
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Lemma 2 (Simons). Let Γ be a nonempty set. Let (gk) be a sequence in �∞(Γ), and let Δ be a subset of 
Γ with the following property: Whenever λ1, λ2, . . . are nonnegative numbers such that 

∑∞
n=1 λn = 1, there 

exists γ ∈ Δ with (
∑∞

n=1 λngn)(γ) = ‖ 
∑∞

n=1 λngn‖∞. Then,

sup
{

lim sup
n

gn(γ) : γ ∈ Δ
}

≥ inf {‖g‖∞ : g ∈ co {gn : n ∈ N}} .

Theorem 3. For a Banach space (X, ‖ · ‖) the following are equivalent:
(i) X is an Asplund space.
(ii) The set-valued mapping argmin : C(BX∗ , w∗) −→ 2BX∗ admits a selector which is of the norm-to-

norm first Baire class.
(ii-w) The set-valued mapping argmin : C(BX∗ , w∗) −→ 2BX∗ admits a selector which is of the norm-to-

weak first Baire class.
(iii) The duality mapping ∂ ‖ · ‖ : X −→ 2BX∗ admits a selector which is of the norm-to-norm first Baire 

class.
(iii-w) The duality mapping ∂ ‖ · ‖ : X −→ 2BX∗ admits a selector which is of the norm-to-weak first 

Baire class.

Proof. (i)⇒(ii). Clearly, for every f ∈ C(BX∗) the set argmin(f) is non-empty and w∗-compact. The map-
ping argmin is norm-to-w∗-upper semicontinuous. To check this, fix any f ∈ C(BX∗) and any w∗-relatively 
open subset W of BX∗ containing argmin (f). Then for sure min f(BX∗ \ W ) > min f(BX∗). Hence, if 
g ∈ C(BX∗) and ‖g − f‖ is small enough, we have that min g(BX∗ \W ) > min g(BX∗), and so argmin (g)
must be a subset of W . This proves the norm-to-w∗-upper semi-continuity of the mapping argmin.

Now, once X is an Asplund space, the dual space X∗ is w∗-dentable by [19, Theorem 2.32]; hence, the 
Jayne-Rogers selection theorem, see [17, Theorem 8] or [9, Theorem 8.1.2], provides the desired selector 
ϕ0 : C(BX∗) −→ BX∗ for the set-valued mapping argmin. In more detail, it gives a sequence (ϕj)∞j=1, where 
each ϕj : C(BX∗) −→ BX∗ is a norm-to-norm continuous mapping, such that for every f ∈ C(BX∗) we have 
ϕj(f) −→ ϕ0(f) ∈ argmin(f) as j → ∞.

(ii)⇒(ii-w) and (iii)⇒(iii-w) are trivial.
(ii)⇒(iii) and (ii-w)⇒(iii-w) are based on the observation after equation (2) above.
(iii-w)⇒(i). We will profit from Godefroy’s technology of working with the so called James boundaries, 

see [13], [11], [15], and [10, Sections 3.11.8.2 and 3.11.8.3]. Its definition and main features are made explicit 
in Remark 2 below. Here we provide the complete argument for the reader’s convenience: From (iii-w) we 
find a sequence (ϕj)∞j=1, where each ϕj : X −→ BX∗ is norm-to-w-continuous and such that, for every 
x ∈ X, we have ϕj(x) −→ ϕ0(x) ∈ ∂‖ · ‖(x) weakly as j → ∞. Put

Φ(x) := {ϕ1(x), ϕ2(x), . . .} (⊂ BX∗), x ∈ X.

Take any separable subspace Y of X. We will show that

spΦ(Y )�Y
‖·‖

= Y ∗. (3)

(Here the closure is computed in the canonical dual norm of Y ∗, and x∗�Y means the restriction of x∗ ∈ X∗

to Y ; accordingly, we put M�Y :=
{
x∗�Y : x∗ ∈ M} for any M ⊂ X∗.) Observe that

Φ(Y ) ⊂ ϕ1(Y ) ∪ ϕ2(Y ) ∪ · · · (4)

Since the ϕj ’s are norm-to-w-continuous, the union in (4) is w-separable (thus, norm-separable, see Lemma 1
above). This shows that sp Φ(Y ) is also norm-separable in X∗ (and so spΦ(Y )�Y is norm-separable in Y ∗). 
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Thus (3) will guarantee the separability of Y ∗, and hence the whole space X will be Asplund by [19, 
Corollary 2.15].

Suppose that (3) is false. Then the Hahn-Banach separation theorem yields a y∗∗0 ∈ SY ∗∗ and a y∗0 ∈ BY ∗

such that

〈y∗∗0 , y∗0〉 > 0 = 〈y∗∗0 , y∗〉 for every y∗ ∈ sp Φ(Y )�Y
‖·‖ (

= sp Φ(Y )�Y
w)

. (5)

Put Δ := Φ(Y )
w�Y (⊂ ϕ1(Y ) ∪ ϕ2(Y ) ∪ · · · w�Y ⊂ BY ∗) (see (4) above). The arguments around (4) show 

that Δ is norm-separable. We can easily verify that for every y ∈ Y there is a δ ∈ Δ such that ‖y‖ = 〈δ, y〉; 
thus Δ is a James boundary of BY ∗ ; see [10, page 132] and Remark 2 below. We know that (the canonical 
embedding of) the unit ball BY is w∗-dense in the double dual unit ball BY ∗∗ . Thus, the norm-separability 
and boundedness of Δ yield a sequence (yk)∞k=1 in BY which converges to y∗∗0 pointwise on each element 
of Δ ∪{y∗0}. By omitting a few elements of the sequence, and then relabeling it, we can and do assume that

〈y∗0 , yk〉 >
1
2 〈y

∗∗
0 , y∗0〉 (> 0) for all k ∈ N. (6)

Now, we will apply Simons’ Lemma 2, with Γ := BY ∗ , with our Δ, and with gk := yk �BY ∗ , k ∈ N. From 
the definition of Φ we can easily deduce that the premise of Lemma 2 is satisfied. In fact, consider any 
non-negative numbers λ1, λ2, . . . satisfying λ1 + λ2 + · · · = 1 and put y := λ1y1 + λ2y2 + · · · . Clearly y is 
well defined and belongs to Y , and we noticed above that Δ is a James boundary of BY ∗ .

Observe that u(y∗) := lim supk gk(y∗) = 0 for y∗ ∈ Δ (see equation (5) above). Thus,

sup{u(y∗) : y∗ ∈ Δ} = 0. (7)

However, if g ∈ co {gk : k ∈ N}, we have ‖g‖ > (1/2)〈y∗∗0 , y∗0〉 (> 0) (see equation (6) above), hence

inf{‖g‖ : g ∈ co {gk : k ∈ N}} ≥ 1
2 〈y

∗∗
0 , y∗0〉 (> 0). (8)

Finally, (7) and (8) together contradict Simons’ inequality. �
It is worth to mention that the implication (ii-w)⇒(i) has a simpler, more direct proof, not needing 

Simons’ lemma. (No wonder because the set-valued mapping argmin is defined on C(BX∗), which is much 
bigger/richer than its subspace X, the domain of the set-valued mapping ∂‖ ·‖.) We will imitate ideas of Ch. 
Stegall, see [21] and [4]. Assume that there are norm-to-w-continuous mappings ϕj : C(BX∗) −→ BX∗ , j ∈
N, such that ϕj(f) −→ ϕ0(f) ∈ argmin (f) weakly for every f ∈ C(BX∗).

In order to show that X is Asplund, we must prove that (Y ∗, ‖ · ‖) is separable for every separable 
subspace Y of X (see [19, Theorem 2.19]). So, fix a separable subspace Y of X. Let {sn : n ∈ N} be a 
norm-dense subset of the unit ball of Y . By L we denote the family of all functions of the form

BX∗ � x∗ �−→
k∑

n=1
2−n

∣∣an − 〈x∗, sn〉
∣∣, (9)

where k ∈ N and a1, a2, . . . , ak are rational numbers in [−1, 1]. Clearly, each element in L is w∗-continuous. 
Thus L is a countable subset of C(BX∗). Further put

Λ :=
{
ϕj(g) : j ∈ N, g ∈ L

}
(⊂ BX∗);

This set is also countable.
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Pick any y∗ ∈ BY ∗ . Put

f(x∗) :=
∞∑

n=1
2−n

∣∣〈y∗, sn〉 − 〈x∗, sn〉
∣∣, for x∗ ∈ BX∗ .

Clearly, f belongs to L, the norm-closure of L. Notice that, for x∗ ∈ BX∗ ,

f(x∗) =
{

0 if x∗�Y = y∗,

> 0 otherwise.

Thus, argmin (f)�Y = {y∗} and, since ϕ0(f) ∈ argmin (f), we have that ϕ0(f)�Y = {y∗}.
Fix any w-open neighborhood W of the origin in X∗. Recalling that ϕj(f) ⇀ ϕ0(f) (weakly) as j → ∞, 

there is j ∈ N so that ϕj(f) ∈ ϕ0(f) − 1
2W . As f ∈ L and ϕj is continuous, there is g ∈ L so that 

ϕj(g) ∈ ϕj(f) − 1
2W . Adding the latter two inclusions we get that ϕ0(f) ∈ ϕj(L) + W ⊂ Λ + W . This 

happens for every w-open neighborhood W of 0; so ϕ0(f) ∈ Λw. Then finally, ({y∗} =) ϕ0(f)�Y ⊂ Λw�Y . 
But the latter set here is w-separable, hence also norm-separable (see again Lemma 1 above). And y∗ being 
arbitrary, we get that BY ∗ lies in the norm-separable set Λw�Y . Therefore (Y ∗, ‖ · ‖) is separable. We thus 
have got (i).

Remarks. 1. The equivalence (i)⇔(iii) can be found in [6, page 32].
2. The key step in the proof of (iii-w)⇒(i) follows from the statement: If JB is any norm-separable James 
boundary of BX∗ , then co‖·‖(JB) = BX∗ ; see [13], and also [10, Section 3.11.8.3, in particular Theorem 
3.122] (a James boundary of BX∗ is any subset JB of BX∗ such that every x ∈ X attains its norm at a 
point of JB). Assume that ∂‖ · ‖ has a selector that is the pointwise-weak limit of a sequence (ϕn)∞n=1 of 
norm-to-weak continuous mappings from X into X∗. Let Y be an arbitrary separable subspace of X. Then 
JB :=

⋃∞
n=1 ϕn(Y )

w
is a separable James boundary for Y (see the discussion in the proof of (iii-w)⇒(i), 

Theorem 3 above). Hence Y ∗ is separable, and so X is Asplund by [19, Corollary 2.15].
3. From Theorem 3 (ii-w) we immediately get: If the duality mapping ∂ ‖ · ‖ admits a norm-to-norm, or just 
norm-to-weak, continuous selection on X \ {0}, then X is Asplund. (We avoid here the origin 0 because 
there is no chance for the lower semicontinuity of ∂‖ ·‖ there —look at the norm R � x �→ |x|.) In particular, 
if the norm ‖ · ‖ on X is Gateaux smooth, with norm-to-weak continuous derivative on X \ {0}, then X is 
Asplund. This is a result of Diestel and Faires quoted in the introduction.
4. What if ∂‖ · ‖ is norm-to-norm, or norm-to-weak, or just norm-to-weak∗ lower semicontinuous off 0? Then 
we can rather easily squeeze that ∂‖ · ‖ must be a singleton off 0, that is, the norm is Gateaux smooth. We 
actually have the following equivalence: Given a convex function ϕ : X −→ R, continuous at some x ∈ X, 
then ∂ϕ(x) is a singleton if and only if the subdifferential ∂ϕ is norm-to-weak∗ lower semicontinuous at x. 
Proof. Assume that |∂ϕ(x)| = 1. By [19, Proposition 2.5], ∂ϕ is norm-to-weak∗ upper semicontinuous at 
x; this is a general fact. Hence, using the very definitions, ∂ϕ is also norm-to-weak∗ lower semicontinuous 
at x. Further assume that |∂ϕ(x)| > 1. Then for sure there is an h ∈ X such that |∂ϕ(x)h| > 1, which, 
by the convexity of the set ∂ϕ(x)h, means that this set is a non-degenerate linear segment, [a, b] say. Find 
ξ ∈ ∂ϕ(x) such that 〈ξ, h〉 = a. Put U := {x∗ ∈ X∗ : 〈x∗, h〉 > 1

2 (a + b)}. This is a weak∗ open set and 
U ∩ ∂ϕ(x) �= ∅. But U ∩ ∂ϕ(x − th) = ∅ for all t > 0 small enough. Indeed, if η ∈ ∂ϕ(x − th), then from the 
monotonicity of ∂ϕ we get

0 ≤ 〈ξ − η, x− (x− th)〉 = t(a− 〈η, h〉);

thus 〈η, h〉 ≤ a (< 1 (a + b)) and so η /∈ U . We disproved the norm-to-weak∗ lower semicontinuity of ϕ at x.
2
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5. Sufficient conditions for Asplundness in the presence of smoothness were considered in the introduction. 
See also Remark 1 above for a particular case. In absence of smoothness, and besides looking at the existence 
of selectors of the multivalued duality mapping with particular continuity properties (see again Remark 1 
above), it is natural to rely on continuity properties (upper semicontinuity, to be precise; for lower semicon-
tinuity see Remark 3 above) of this mapping in order to obtain Asplundness, as it was already mentioned 
in the introduction. It is well known that the duality mapping is always norm-to-weak∗ upper semicontin-
uous (Cudia [3], [19, Proposition 2.5]). Hu and Lin [16] proved that its norm-to-weak upper semicontinuity 
implies Asplundness, and Giles, Gregory, and Sims [12] got the same conclusion under a weaker form of the 
condition. Other important contributions were provided by Godefroy [13] (strong subdifferentiability —see 
below in this same item— implies Asplundness), and, by using the same technology (Simons’ inequality, to 
be precise), Contreras and Payá [2] proved that every quite smooth Banach space is Asplund. A Banach 
space X is said to be quite smooth if for every non-zero x ∈ X and for every weak neighborhood V of 0 in 
X∗ there exists δ > 0 such that ∂‖ · ‖(x) ⊂ ∂‖ · ‖(x0) + V whenever 0 �= x ∈ X and ‖x − x0‖ < δ. Clearly, 
norm-to-weak upper semicontinuity of the duality mapping implies quite smoothness. If, instead of V being 
a weak neighborhood of 0 in the definition of quite smoothness we let V be a norm neighborhood, we get the 
so-called strong subdifferentiability of the norm. In [14] this concept was used for getting a characterization 
of Asplundness in the setting of separable Banach spaces: A separable space X whose dual is not separable 
has an equivalent norm that is nowhere strongly subdifferentiable except at the origin. Apparently, the 
nonseparable case is still open.
6. Theorem 3 is useful when deriving structural results on Asplund spaces, see [11], [6, Section VI.3], [4], 
and [5].
7. In the conditions (ii) and (ii-w), it is possible to consider the set-valued mapping argmin only on the 
family

{ ∞∑
n=1

2−n|an − 〈·, sn〉| : a1, a2, . . . ∈ [−1, 1], s1, s2, . . . ∈ BX

} (
⊂ C(BX∗)

)
.

Note that this family is disjoint from κ(X) (see equation (2) above), and that Simons’ lemma is still not 
needed.
8. What are the novelties in this note? The use of C(BX∗), of the set-valued mapping argmin, considering 
the weak topology instead of the norm topology in X∗, and finally a rather careful account of what happens 
if the duality mapping ∂‖ · ‖ has various (semi) continuity properties.
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