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Abstract: The accuracy and robustness of the shoreline definition from satellite imagery on different
coastal types are crucial to adequately characterising beach morphology and dynamics. However,
the generic and widespread application of satellite-derived shoreline algorithms is limited by the
lack of robust methods and parameter assessments. This work constitutes a quantitative and compre-
hensive assessment of the satellite-derived waterlines from Sentinel-2 by using the novel SAET tool
(Shoreline Analysis and Extraction Tool) on the exposed and mesotidal beach of La Victoria (Cádiz,
SW Spain). The diverse parameters available in SAET, such as water indexes, thresholding methods,
morphological filters, and kernel sizes, were combined to define water/land interface positions that
were compared against coincident video-derived waterlines. Satellite-derived waterline errors are
found to be affected by extraction parameters, as well as by the oceanographic and morphological
conditions at the time of the image acquisition. The application of a morphological erosion filter on
the water mask, which tends to shift the extracted waterline seawards and reduce bias, is the best
solution at the dissipative site of La Victoria Beach. Moreover, using a 3 × 3 kernel size consistently
shows higher accuracies than a larger kernel. Although there was no parameter combination showing
the best skill for all dates, the employment of the Automated Water Extraction Index for images with
no shadows (AWEInsh) with a threshold = 0, erosion morphological filter, and 3 × 3 kernel was,
overall, the best combination of extraction parameters for this beach (average waterline RMSE of
5.96 m). The combination of the Modified Normalised Difference Water Index (MDNWI) with the
Otsu thresholding also led to similar positions of the resulting waterlines and offered good accuracies.
In line with other recent research efforts, our work stresses the lack of generic shoreline extraction
solutions that can be applied automatically at a global level and the necessity to adapt and validate
the extraction methodologies to the different types of coastlines.

Keywords: shoreline definition; Sentinel-2; beach monitoring; water indexes; videomonitoring; SAET

1. Introduction

An efficient management of the coast requires accurate, updated, and homogeneous
data about the beach morphology. The shoreline position provides quantitative information
about the morphological state of the beaches and its changes [1], thus serving as, e.g., a
valuable indicator for understanding long-term shoreline trend and their driver(s) [2],
linking shoreline variability with climate modes of atmospheric and/or oceanographic
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variability [3], and forecasting future scenarios [4]. These applications are essential for
supporting decision-making processes in the face of the diverse erosion problems that
affect the coasts worldwide (e.g., [5–8]), therefore constituting one of the main issues in
coastal zone management. Earth observation data have the potential to offer valuable
information for the characterisation of coastal morphological changes from a local to a
global scale and with high temporal resolution [9]. An example of this is the optical imagery
captured by the Sentinel-2A and 2B satellites provided by the European Commission
through the European Space Agency (ESA). The challenge lies in accurately defining the
water boundary, considering the limitations imposed by the pixel size of the satellite
images. Satellite-derived shoreline (SDS) algorithms such as CoastSat [10], SHOREX [11],
and CASSIE [12] have tackled this challenge by devising efficient approaches to overcome
such limitations (see review and benchmark comparison in Vos et al. [13]). Sustained in
the subpixel solution proposed by Pardo-Pascual et al. [14] and in the workflow followed
by SHOREX, the tool SAET [15] has appeared as a new alternative focused on offering
high autonomy, efficiency and robustness in the extraction. This goal is accomplished
by enabling its application along large coastal segments while tuning the settings and
extraction parameters according to the respective coastal characteristics.

The strategies followed, and the extraction parameters employed for defining the
shoreline influence its final positioning. Many of the current extraction approaches, par-
ticularly those based on the analysis of the maximum gradient [9], proceed to locate the
approximate pixel shoreline (APS) so that, subsequently, a refining process leads to the
final position with sub-pixel accuracy. The location of the APS can be sustained not only by
analysing the original bands but also by combinations of them known as indices. Among
these, the prominent ones include those oriented towards highlighting the radiometric
differences between the water and the land, therefore enabling the thresholding of the
water bodies. This is the case of the MNDW index developed by Xu [16] and employed by
CoastSat [10] and the AWEI index proposed by Feyisa et al. [17]. In turn, AWEInsh with a 0
threshold has appeared as a robust and accurate method for shoreline extraction both at
oceanic coasts [18] and inland water bodies [19].

Regarding the techniques to binarise a given index, the use of a single threshold value
to distinguish the water and the land (theoretically being 0) is a straightforward and efficient
approach (e.g., [19,20]). Alternatively, binarisation can be accomplished using methods
such as Otsu thresholding [21]. This method performs a separation of the classes (zones)
present in the coastal strip by calculating the histogram of the image and defining zones
with a minimised inner variance (e.g., [10,22]). Both thresholding methods were included in
the workflow followed by SAET as they are commonly employed by the different extraction
tools and algorithms [23]. Nevertheless, there are no robust comparisons to support the
advantages of one or the other, and the combination of indices and thresholds for an
optimal extraction in different coastal types is still unknown [9].

After the binarisation, the approximate shoreline can be identified from the water
mask by applying different mathematical morphological filters [24], such as dilation and
erosion. Considering the instantaneous interface between the water (sea) and the land
(emerged beach) or waterline (WL), the APS can be defined either as the first line of land
pixels in contact with water (erosion filter) or as the first line of water pixels in contact with
land (dilation). Thus, taking the ‘water’ class as a reference, the dilation would define the
APS in the first line of pixels landward, while the erosion would define the APS in the first
line of pixels seaward. The effects of using these morphological filters on the positioning of
the resulting WL have been preliminarily evaluated for the case of SAET [18]. The results
indicate that when using the maximum gradient method (and for the same kernel size), the
employment of a dilation or erosion filter can significantly influence the precision (bias) of
the resulting WL in specific coastal typologies.

Once the approximate line is defined, the sub-pixel refinement process leads to the
definition of the satellite-derived waterlines (SDWLs). To achieve this, the maximum
gradient points are identified by analysing the digital levels within a neighbourhood of
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analysis (kernel) and fitting a polynomial function to the digital levels of the pixels in
that area (see [14]). As long as the APS is accurately determined, a smaller kernel size
could potentially result in a more precise positioning of the SDWL. However, although this
assumption has proven correct for extraction tools such as SHOREX [11], it has not been
verified within the context of SAET.

The position of the WL depends on the elevation of the water level, which is defined
by the instantaneous waves and tide conditions in combination with the beach morphol-
ogy. Thus, WL position shifts cross-shore over time by a magnitude proportional to the
elevation of the water level and inversely proportional to the slope of the beach. From the
instantaneous information provided by the WLs, the shoreline positions can be obtained
by referencing the WL positions to a single reference elevation datum [25,26]. This can be
accomplished by horizontally shifting the SDWLs according to their instantaneous total
water level and the local slope. The resulting positions referenced to the same datum consti-
tute the SDSs, which enable the robust analysis of changes over time. The magnitude of the
SDWL errors may be influenced by different factors. While some of the errors are inherent
to the image characteristics, such as their geo-referencing (which can be minimised using
cross-correlation techniques, see [27]), the definition of the SDWL position greatly depends
on the extraction tools and the diverse parameters defining the extraction processes. The
presence of foam can lead to gross errors in the detection [22,26], probably by affecting
the APS definition. At the same time, different authors have pointed out how the run-up
and swash phenomena lead to uncertainties in the realities represented by the SDWLs
(e.g., [28,29]). The extraction tools seem to offer higher accuracies when the transition
between the water and the land is clearly defined, while the errors increase associated with
more diffuse interphases. This mainly appears associated with gentle slopes [13,18,30]
and tidal environments, especially during low tide conditions when saturated areas and
complex intertidal morphologies appear [29]. At this point, the potential to adapt the
extraction methods according to diverse coastal conditions needs to be explored to achieve
the highest possible accuracy when defining the SDWL and, subsequently, the SDS.

SAET is a versatile tool that enables choosing among different parameters and methods
for defining the approximate and the subpixel WL [15]. Their combined testing was
preliminarily addressed by Pardo-Pascual et al. [18] across a variety of coastal types.
However, this assessment was limited to a single date per site and only included a reduced
number of dissipative beaches. This study aims to evaluate SAET performance on a
mesotidal dissipative beach with complex intertidal morphologies, regarding (a) how the
extraction parameters and segmentation methods condition the accuracy when defining the
instantaneous WL, (b) the influence of the morphological and oceanographic conditions on
the resulting errors, enabling (c) to discuss the most favourable combinations of extraction
parameters for this type of beach and to present some recommendations for the shoreline
extraction. Video-derived waterlines (VDWLs) from a mesotidal dissipative beach were
used as ground truth to assess a series of instantaneous SDWLs defined over one year
using SAET.

2. Methods

The analysis consists of the assessment of 19 SDWLs obtained on La Victoria beach
(Cádiz) from Sentinel-2 (S2) images using SAET by comparing their position against
simultaneous VDWLs.

2.1. Study Site

The study site is located in the urban beach of La Victoria (Cádiz, SW Spain). The
beach extends about 3 km following NNW-SSE orientation in the outer part of the Bay of
Cádiz (Figure 1). It is located at a sandy barrier system that separates the inner area of
the Bay of Cádiz from the Atlantic Ocean. The landward limit of the beach is defined by
a promenade built upon the ancient dune system, while its northern limit is constituted
by groins and an intertidal rocky shore platform. Regarding the submerged part of the
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beach, a rocky shore platform formed by a bioclastic conglomerate and quarzitic rocks
extends alongshore discontinuously, with varying widths and depths being its highest part
emerged in spring low tides [31,32]. La Victoria beach is composed of fine sands (grain size
0.22 mm; [33]) and shows an intermediate-dissipative slope, with the common presence of
complex morphologies in the intertidal zone, such as wide and flat swash bars and cusp
systems [34].
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Figure 1. (a) Location map of the study area in La Victoria Beach in Cádiz (SW Spain) including
the SIMAR point (green) and the tide gauge (blue) employed for retrieving wave and sea level data.
(b) Mosaic of the projected images on 26 July 2018 from the video-monitoring system. Background
orthophotograph PNOA 2019 CC BY 4.0 www.scne.es (accessed on 9 January 2023).

Regarding the hydrodynamic regime, tides are semi-diurnal and mesotidal, with a
Mean Spring Tidal Range (MSTR) of 3.06 m. Average wave height is below 1 m with
associated periods of 5–6 s. However, wave height during westerly storms, which occur
mainly between November and March, can exceed 4 m [33]. The dominant longshore drift
is directed towards the southeast.

2.2. Oceanographic and Morphological Conditions

Specific oceanographic and morphological data coincident with the study period
(2018) were retrieved in order to enable an in-depth analysis of their relationship with the
WL behaviour (Figure 2a). According to the satellite images free of clouds employed in
the assessment, the wave data (Hs and Tp) and sea level data (SL) were retrieved at the
time of the satellite passage (systematically acquired at 11:15 GMT, Table 1). Furthermore,
to allow the characterisation of the tidal state at the time of the image acquisition, the SL
was also retrieved one hour before and one hour after. Subsequently, it was possible to
characterise the tidal state for the instant of the image acquisition. Regarding the beach
morphology, 9 topographic surveys were carried out during 2018 (Figure 2b) using an
RTK-DGPS, allowing the definition of the intertidal beach slope (see [35]).

www.scne.es
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Figure 2. (a) Wave data (daily maximum Hs and Tp, presented as dashed green and solid blue
lines) from the modelled point SIMAR 6012044 (see location in Figure 1) from Puertos del Estado
(https://www.puertos.es/, accessed on 9 January 2023) together with the beach-face slope estimated
from topographic surveys (purple dots) and the availability of S2 satellite images (orange crosses).
(b) Topographic profiles from 2018 field surveys (average profile highlighted as a thick black line),
and values for the Mean High Water Spring (MHWS) and Mean Low Water Spring (MLWS).

Table 1. Oceanographic conditions at the time of the S2 image acquisition. Sea level data were
obtained one hour before and after the acquisition of the satellite images from the tide gauge located at
Port of Cádiz by the Spanish Institute of Oceanography (http://indamar.ieo.es/mareas/mareas.htm,
accessed on 9 January 2023, see location in Figure 1) taking MSL as reference. Significant wave height
(Hs), average period (Tm) and peak period (Tp) were obtained from the SIMAR point 6012044 (see
Figure 2).

Date
(DD-MM-YY)

SL (m) acquisit.
Time −1 h

SL (m) 11:15
GMT

SL (m) acquisit.
Time +1 h Tidal State Hs (m) Mean Period

(s) Tp (s)

17-01-18 −0.847 −0.357 0.183 rising 0.56 7.82 14.01

22-01-18 −0.967 −1.087 −0.997 low 0.31 4.18 3.81
27-01-18 0.863 0.783 0.523 falling 0.53 5.78 4.64
11-02-18 0.403 0.603 0.603 high 0.41 6.05 4.03
16-02-18 −0.947 −0.437 0.163 rising 0.71 9.17 14.48
21-02-18 −1.087 −0.977 −0.917 low 0.6 9.89 11.23
28-03-18 0.563 0.993 1.173 rising 0.43 7.19 9.32
17-04-18 −1.247 −0.797 −0.187 rising 0.68 7.82 10.02
27-04-18 0.323 0.943 1.333 rising 0.35 5.23 4.23
17-05-18 −1.177 −0.737 −0.107 rising 0.25 3.71 3.49
22-05-18 0.643 0.283 −0.107 falling 0.34 3.83 3.76
06-06-18 0.193 −0.077 −0.327 falling 0.69 4.92 8.33
16-06-18 −1.247 −0.977 −0.557 rising 0.5 5.03 4.45
26-06-18 0.003 0.503 0.953 rising 0.45 4.2 4.24
16-07-18 −1.237 −1.207 −0.867 low 0.48 3.88 4.21
21-07-18 0.803 0.603 0.283 falling 0.48 3.82 4.21
09-10-18 −0.507 0.143 0.903 rising 0.51 8.98 11.16
23-12-18 −0.957 −0.357 0.393 rising 0.97 5.79 12.11
28-12-18 −0.257 −0.777 −0.987 falling 0.5 5.11 7.52

https://www.puertos.es/
http://indamar.ieo.es/mareas/mareas.htm
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2.3. Video-Derived Waterlines

In order to assess the spatial accuracy of the SDWLs, the VDWLs constituted the
ground-truth data for this analysis. The video monitoring system located at La Victoria
Beach (see [34] for further details) consists of 3 IP cameras (1600 × 1200 pixels resolution)
installed 49 m above mean sea level. The cameras cover about 750 m alongshore, including
the surf and the intertidal zones, the dry beach, the promenade, and the adjacent street.
The system records 10 min of video per hour (MPEG-4 format, 4 Hz), and it allows the
automatic extraction of the Snap (snapshot) and Timex (time-exposure) images using the
system ORASIS [36].

The images acquired by the video monitoring system were projected at sea level
at the time of acquisition of the satellite image, leading to the obtention of the ground-
truth data following the procedures suggested by Sánchez-García et al. [37] and Simarro
et al. [38]. The processing of the images followed three steps (Figure 3): (a) calibration, (b) co-
registration, and (c) geo-projection. The calibration consisted of calculating the internal
parameters of the cameras (i.e., distortions of the lenses), which enabled the undistorting
of the images. The co-registration comprised the overlapping of the images to remove
potential little displacements over time, therefore enabling the use of ground control points
(GCPs) on every image. The geo-referenced projection involved the orientation of the
images according to the GCPs, and subsequently, each image was projected over the
horizontal plane according to the instantaneous sea level. During this third step, each
pixel experienced a deformation as its footprint was projected. Although projected images
presented a spatial resolution of 0.25 m/pixel, the farther a pixel was projected, the larger its
footprint was, leading to footprint differences between the original and the projected pixels.
The farthest projected pixel of the central camera presented a footprint of 6 projected pixels,
i.e., 1.5 m in line from the camera position, which could translate into a lower accuracy
during the photo interpretation. In order to allow a robust definition of the VDWLs, the
farthest camera was removed from the study. Thus, only the closest two cameras were
employed for the assessment, leading to an analysed coastal segment of about 375 m (see
Figure 1b).
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Figure 3. Workflow for the definition of the VDWLs.

The WL was manually digitised on the projected images by two expert users using both
Timex and Snap images. The photo-interpreters (P1 and P2) found that the WL appeared
more clearly defined on the Timex images (derived from the information acquired for
10 min), leading to smaller uncertainties and, therefore, allowing a more robust photo-
interpretation. To validate the use of the reference lines derived from the Timex images,
their positions were compared to quantify the magnitude of the uncertainty caused by the
photo-interpretation process. On average, small differences appeared when comparing
both photo-interpreters and types of images (Table 2, Figure 4). Thus, the higher certitude
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in the photo-interpretation, together with the small differences that emerged between users
and methods, led to the selection of the reference lines identified from Timex (P1) for
subsequent evaluations. Nevertheless, when analysing the dates individually (Figure 4),
the VDWLs on 21 February were discarded from the assessment as important differences
appeared between the positions defined by both photo-interpreters, with a magnitude
remarkably higher than for the rest of the dates.

Table 2. Differences in the spatial location of the VDWLs (expressed as RMSE, in m) defined from both
types of images (Timex and Snap) by two photo-interpreters (P1 and P2). The average differences were
calculated considering Timex_P1 as the reference, with the positive (negative) values representing a
seaward (landward) bias.

Error (m) Snap_P1 Snap_P2 Timex_P2

Mean ± SD −0.49 ± 1.14 0.73 ± 1.69 1.01 ± 1.58
RMSE 1.51 2.31 2.23
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Figure 4. Differences in the spatial location of the VDWLs expressed as RMSE (in m) defined by the
two photo-interpreters (P1 and P2) from both types of images (Timex and Snap). The differences were
calculated for the studied dates considering the first photo-interpreter (P1) and the Timex images as
the reference.

2.4. Detection of the Waterline from Satellite Imagery

The instantaneous SDWLs were defined from the freely available optical Sentinel-2
imagery using the software SAET v4 (https://github.com/jpalomav/SAET_master) with
different configuration parameters (Figure 5). The workflow followed four main phases
(see details in [15]) comprising the image downloading, the segmentation for defining the
APS, its masking, and the final extraction of the sub-pixel waterline.
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1. Image downloading. The S2 images with a cloud coverage below 30% were down-
loaded via the Copernicus Open Access Hub (https://scihub.copernicus.eu/, ac-
cessed on 1 August 2023). Top-Of Atmosphere (TOA) images were employed as the
atmospherically corrected images (Bottom-of-Atmosphere, BOA) did not provide
significant improvements in the SDWL accuracy in previous tests [18].

2. Water/land interface segmentation. The WL was characterised by the limit of the
water mask. This mask was defined employing different water indexes, thresholding
methods, and morphological filters to assess their effect on the positioning of the
resulting APS and, subsequently, the subpixel waterline (see pink squares in Figure 5).
For each image, the two water indices were computed, AWEInsh (Equation (1), as
originally described by Feyisa et al. [17] and the MNDWI (Equation (2), described
by Xu [16]), being subsequently binarised using both a constant threshold = 0 and
the thresholding method by Otsu [21], and finally defined the continuous sets of
pixels that constitute the limit of the water mask (i.e., the water/land interface) by
applying the morphological filters of dilation and erosion (that would displace it
landward/seawards, respectively).

AWEInsh = 4·(G − SWIR1) − (0.25·NIR + 2.75·SWIR2) (1)

MNDWI = (G − SWIR1)/(G + SWIR1) (2)

with NIR, SWIR1, SWIR2 and G the values of the pixel intensity in the near-wave
infrared, short-wave infrared 1, short-wave infrared 2, and green bands, respectively.

3. Water–land mask refinement. Considering the water/land interface of the water mask
as input, the APS was defined after removing pixels classified as clouds according to
the cloud classification bands provided by the image servers.

4. Sub-pixel extraction. Following the pixels defined by the APS, the waterline was
identified at the subpixel level. For this purpose, a kernel analysis of two different
sizes (3 × 3 and 5 × 5 pixels; see emerald squares in Figure 5) was performed on the
SWIR1 band. The sub-pixel location was defined by the points (every 5 m) where the
reflectance values show the highest gradient edge. This step was accomplished by
employing the algorithm described in Pardo-Pascual et al. [14]. To finish the process,
the minimum spanning tree method [39] was applied to remove outliers and obtain
the final SDWL as proposed by Sánchez-García et al. [11].

2.5. Accuracy Assessment

The accuracy of the waterlines resulting from the combination of different extrac-
tion parameters was compared with the reference lines derived from ground-truth data,
i.e., VDWLs. The accuracy (error) of each SDWL was defined by planimetrically comparing
the position of its vertices (points every 5 m alongshore) against its respective reference
line (Timex_P1). This step was carried out by measuring the shortest distance between
each of the points composing the SDWL and the photo-interpreted VDWLs. The accu-
racy results from the combination of different extraction parameters were presented with
the statistics of the errors: bias (mean distance), precision (standard deviation, hereafter
SD), and accuracy (root mean square error, RMSE). According to those values, the most
efficient combinations of image processing levels were identified, and the impact of the
oceanographic characteristics of each date on the resulting errors was analysed.

For the different combinations of extraction parameters proposed, the relationship
between the SDWL accuracy on the different dates and the parameters describing the
oceanographic and morphological conditions (see Figure 2) was analysed. Thus, the
positioning errors of the SDWLs were compared with the sea level and the relative state of
the tide (falling, low, and rising), the parameters characterising the waves such as Hs, Tp,
total water level, run-up (according to Stockdon et al. [40]) and wave factor (understood as
the product of Hs and Tp), and the slope of the beach.

https://scihub.copernicus.eu/
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3. Results

For each date, the waterline position was extracted using two water indexes (for
water/non-water pixel classification), two thresholding methods (to binarise the water
indexes and obtain a water mask), two morphological operations (to obtain the APS) and
two kernel sizes (to obtain the sub-pixel SDWL). This led to a total of 16 combinations
(hereafter C1 to C16) or evaluation cases. The errors registered on the 18 analysed dates
were summarised enabling the identification of the combinations of parameters that lead
to the highest accuracies (Table 3). Note that a positive (negative) bias indicates that the
SDWL is located seaward (landward) of the VDWLs.

Table 3. Average error expressed by the bias (mean distances), precision (standard deviation, SD) and
accuracy (RMSE) of the SDWL series obtained using different kernel sizes, mathematical morphologi-
cal filters, indexes, and thresholding methods. Seaward (landward) displacements are represented by
positive (negative) values. For each descriptor of the error, the lowest values are highlighted in bold.

Combination Extraction Parameters Bias (m) SD (m) RMSE (m)

1 3 × 3, Erosion, AWEInsh, 0 2.70 2.28 5.96
2 3 × 3, Erosion, AWEInsh, Otsu −4.39 2.51 7.64
3 3 × 3, Erosion, MNDWI, 0 −3.15 2.40 6.65
4 3 × 3, Erosion, MNDWI, Otsu 0.82 2.42 7.22
5 3 × 3, Dilation, AWEInsh, 0 −8.76 2.22 9.34
6 3 × 3, Dilation, AWEInsh, Otsu −17.16 2.87 17.48
7 3 × 3, Dilation, MNDWI, 0 −15.44 2.67 15.74
8 3 × 3, Dilation, MNDWI, Otsu −10.92 2.57 11.95
9 5 × 5, Erosion, AWEInsh, 0 −10.30 5.34 12.39

10 5 × 5, Erosion, AWEInsh, Otsu −14.09 2.77 14.60
11 5 × 5, Erosion, MNDWI, 0 −13.64 2.95 14.26
12 5 × 5, Erosion, MNDWI, Otsu −13.59 3.43 14.57
13 5 × 5, Dilation, AWEInsh, 0 −14.58 2.51 14.92
14 5 × 5, Dilation, AWEInsh, Otsu −17.67 2.79 18.00
15 5 × 5, Dilation, MNDWI, 0 −17.20 2.71 17.53
16 5 × 5, Dilation, MNDWI, Otsu −15.10 2.58 15.52

Clear differences appeared in the magnitude of the errors according to the neighbour-
hood of analysis (Table 4). Thus, the 3 × 3 kernel size (combinations 1–8) consistently
performed better than 5 × 5 (combinations 9–16), mainly due to the substantially lower
bias (7 m and 14.5 m seawards, respectively). On the other hand, the thresholding method
did not seem to offer consistent differences in the results. The influence of the thresholding
on the errors seemed to appear when combined with the other extraction parameters,
particularly with the morphological filter.

Table 4. Average errors of the waterlines extracted when employing different indices, thresholding
methods, mathematical morphological filters, and kernel sizes.

Index Thresholding Morph. Operation Kernel Size

Error (m) AWEInsh MNDWI 0 Otsu Erosion Dilation 3 × 3 5 × 5

SD 2.91 2.72 2.89 2.74 3.01 2.62 2.49 3.14
RMSE 10.91 13.99 13.06 12.10 10.49 14.35 10.00 14.78

The combinations, including the morphological filter of erosion (combinations 1–4
and 9–12), performed better than those employing the dilation (5–8 and 13–16). In most
cases, dilation led to errors above 10 m RMSE, mainly due to large differences regarding
the bias (about 7 m and 14 m seawards, respectively). Among those employing the dilation,
the only exception appeared when using the index AWEINSH and the thresholding = 0
(combination five). This was the combination that offered the lowest bias (8.76 m landwards)
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and the lowest standard deviation (2.22 m), leading to the highest accuracy (9.34 m RMSE).
The best accuracies appeared when employing the kernel 3 × 3 together with the erosion
filter (Figure 6). This way, combination one, which employed the AWEInsh index with a
threshold = 0, the erosion filter, and a 3 × 3 kernel, reached the best results overall. This
combination provided the lowest errors, both regarding the precision (2.28 m) and accuracy
(5.96 m RMSE) and the second lowest bias (2.70 m), while the lowest one (0.82 m) appeared
with combination four. Nevertheless, the higher standard deviation (2.42 m) translated
into a lower accuracy (7.22 m RMSE). Both combinations, one and four, were the only ones
that led to seaward-displaced waterlines. On the contrary, combinations two and three
led to waterlines being displaced landward, which resulted in lower accuracy even when
showing similar levels of precision (2.51 and 2.40 m of standard deviation).
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When plotting the errors obtained throughout the year (Figure 7) by using combina-
tions one to four, there is no evidence of a clear seasonal pattern. It can be seen how, on
certain dates, accuracy errors (RMSE) are mainly caused by higher bias, while on other oc-
casions, they are related to a low precision (high SD). Also, when analysing the distribution
of errors versus the pattern of incident waves and slope changes (see Figure 2) along the
year, no clear relationship between the different factors is observed. Although the swell
episodes at the beginning of the year and early spring seem to be linked to a decrease in
beach slope, these two factors do not show any clear relationship with the errors recorded
by the SDWLs. Thus, some of the SDWLs with the highest errors appear on dates with low
waves and with a beach profile that is not excessively steep (e.g., 22 May and 28 December
when employing combination one).

Regarding the magnitude of the errors achieved by the different combinations of
parameters, a similar pattern appeared over time, although important differences arose in
certain dates. The relationship between the tidal level and the waterline errors was analysed,
showing that certain combinations of parameters were more prone to lead to positioning
differences in the SDWLs according to reductions in the tidal level (Figures 7 and 8, Table 5).
Thus, C2 and C3 presented moderate correlations (expressed as R2) between the tidal
level and the bias (0.396 and 0.217) and the RMSE (0.549 and 0.341). On the contrary,
the correlation was almost negligible when employing C1 and C4 (R2 < 0.2 for all the
parameters describing the error).
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Table 5. Relationship, defined by linear correlations (expressed as R2) between tide level and the
waterline errors (defined by the bias, the SD and the RMSE), for the combinations 1–4 of extraction
parameters. The combination showing the highest value for each type of error is highlighted.

Combination Bias SD RMSE

1 0.097 0.002 0.005
2 0.396 0.039 0.549
3 0.217 0.136 0.341
4 0.085 0.010 0.178

To analyse the effect of the tidal conditions on the overall accuracy, different SDWLs
were discarded from the analysis according to the tide level. Thus, it is observed that
when discarding the two SDWLs associated with low tide conditions, overall errors slightly
improved for the different combinations of parameters. Thus, the standard deviation was
reduced by 7% overall, and the RMSE was reduced by 4%. Nevertheless, the improvements
were almost negligible for combinations 1–4, which reduced the bias by 1.5% and the
accuracy by 0.5%. Apart from the previous analysis, the positioning errors obtained on
each date were compared with the parameters characterising the waves, namely Hs, Tp,
run-up, and wave product (Figure 8), as well as the beach slope, showing no significant
correlations between those factors and the magnitude of the SDWLs errors.

4. Discussion

Achieving high accuracy and robustness in the shoreline definition on different coastal
types constitutes a necessary step before adopting this remote approach for beach monitor-
ing purposes. The evaluation of the different methods and parameters offered by extraction
tools and the definition of guidelines for their use is a prerequisite for the widespread
application in coastal monitoring systems. The present work evaluates the influence that
the extraction parameters and the oceanographic conditions have on the errors of the
extracted SDWLs (and, therefore, the SDSs) on a mesotidal and dissipative beach.

4.1. Extraction Parameters and Coastal Conditions Affect SDWL Accuracy

Although the diverse combinations of parameters lead to errors of variable magni-
tude over the analysed dates, combinations one to four seem to offer more robust and
neutral responses under different oceanographic and morphological conditions. These four
combinations have in common the employment of the 3 × 3 kernel size and the erosion
morphological filter. The 5 × 5 kernel increases the likelihood of finding the real WL even
if the initial APS was positioned far from it. However, the higher probability of attaining
an acceptable identification of the real boundary comes at the expense of defining it with a
lower accuracy, as demonstrated by Sánchez-García et al. [11]. Therefore, the employment
of the 3 × 3 kernel allows higher accuracy in the final subpixel SDWL, but it requires a
correct definition of the APS, otherwise leading to very gross errors. In La Victoria Beach,
the usage of the 3 × 3 kernel in combination with the most favourable combinations of ex-
traction parameters did not lead to gross errors, probably because neither the shoreline nor
the instantaneous waterlines experienced great positioning differences along the studied
time frame. The definition of an APS with an acceptable level of error relies on the correct
selection of the extraction parameters previously employed in the extraction workflow, i.e.,
index, thresholding method and morphological filter.

In La Victoria Beach, the application of the morphological filter of erosion on the water
mask for the definition of the APS consistently leads to SDWLs with higher accuracy than
when applying the dilation (see Tables 3 and 4, and Figure 6). Thus, combination one
(AWEInsh index, with thresholding = 0, erosion filter and 3 × 3 kernel size) offers the best
performance, with seaward bias = 2.70 m, SD = 2.28 m, and overall accuracy = 5.96 m
RMSE. The application of the dilation filter leads in all cases to a substantially higher bias,
which translates into errors above 10 m RMSE. The reason why the erosion outperforms the
dilation filter lies in the type of coast. La Victoria is a tidal, low-gradient and exposed beach
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that mainly shows a dissipative behaviour [41]. This translates into situations in which the
emerged beach presents patches of water and saturated sand [35]. The definition of the WL
in this type of environment is extremely challenging. During low tide conditions, those
beaches may present large wet and saturated patches and complex forms [29], sometimes
leading to wet/dry boundaries which are optically similar to a waterline interface [42].
Extraction algorithms may experience difficulties in distinguishing the land and the water
classes, often creating important errors and biases (e.g., [18,26,30]).

Vos et al. [13] benchmarked the extraction tools CASSIE [12], CoastSat [10], HighTide-
SDS [43], ShorelineMonitor [44], and SHOREX [11]. Results evidenced a consistent land-
ward bias on the beaches of Torrey Pines, USA (MSTR 2.3 m, tan β = 0.04) and, more
markedly, on the energetic Truc Vert, SW France (MSTR 3.2 m, tan β = 0.04), probably due
to the challenges posed by the complex morphologies [29]. In line with that, the assessment
of CoastSat by Konstantinou et al. [30] presented a consistent seaward bias of 6.5 m in the
reflective beach of Slapton, UK (tan β = 0.13) versus a 4.2 m landward bias in the dissipative
site Perranporth, UK (tan β = 0.016) although with far lower accuracy. These findings align
with the preliminary assessment of SAET [18], indicating that the lowest errors (and usually
small seaward biases) appear in low-energy microtidal sites and less energetic beaches.
This occurred contrary to the tidal coasts with gentle slopes and dissipative behaviour
(e.g., the Dutch coast) as well as highly energetic beaches (Mira, N Portugal) in which
the landward bias commonly appeared, and the application of the erosion filter seemed
to enable a better SDWL accuracy. Thus, although an increased level of errors seems to
be expected in dissipative beaches as well as in those presenting gentler slopes as they
are more prone to show complex intertidal morphologies and water-saturated sands, the
employment of different combinations of extraction parameters may help to deal with this
challenging morphological reality and minimise the SDWLs errors.

The application of the erosion filter over the water mask instead of the dilation leads
to an APS shifted one pixel seaward. This compensates for the lack of a clear water/land
boundary that usually tends to displace the SDWL position landward and minimises the
bias of the final SDWL. Although C4 (3 × 3, Erosion, MNDWI, Otsu) leads to a lower bias
landward (0.82 m), the higher SD translates into a worse level of accuracy (7.22 m RMSE).
When the AWEInsh index is capable of correctly assigning positive (negative) values for
the land (water), the thresholding employing a constant value of 0 seems the most simple
and convenient solution to achieve a good positioning of the APS. On the contrary, when
the water/land distinction is not properly accomplished, the Otsu method appears as a
useful alternative. When combined with the MNDWI index, Otsu offers the best results.
This method computes the optimal threshold value by analysing the distribution of pixel
intensities in the image [21]. This adaptability makes it more suitable for images with
varying lighting conditions and content, which probably did not constitute a significant
advantage in the present assessment, considering the small size of the site and the lack of
cloudy images.

Even though C1 and C4 reach a comparable level of error, it seems reasonable to
recommend the use of C1 in this beach type. Among the combinations employing the
dilation filter, the best performance is provided when the dilation filter is combined with
the AWEInsh index and the thresholding = 0 (C5), which was proposed by Pardo-Pascual
et al. [18] as the best solution in reflective beaches. In contrast, in the dissipative beach of
La Victoria, this solution leads to an accuracy of 9.34 m RMSE with a significant landward
bias (8.76 m). Both solutions (C1 and C5) are best sustained on the employment of the same
index, threshold and kernel size. This implies that the AWEInsh index and the threshold = 0
perform well together when defining the water mask. Subsequently, and depending on the
beach type (reflective or dissipative), the morphological filter (erosion or dilation) can be
chosen to adapt the extraction tool in order to offer higher waterline (shoreline) accuracies.
In turn, C5 could constitute a compromise solution for intermediate beaches or those with
changeable behaviour over time.
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The performance of the different extraction methods differs according to the diverse
potential sources of error (such as foam, tide, swash and the presence of water or humidity
on the beach surface). The influence of the tide is more evident in some combinations of
parameters. Errors do not appear significantly linked to low tide levels when using C1 and
C4, whereas when employing C2, up to 1/3 of the bias and half of the overall accuracy
appear inversely related (and potentially caused) by the tide level. Thus, SDWLs obtained
with a tide level below 2 m appear consistently biased landward.

The challenges posed by the shoreline definition at tidal environments can be observed
on La Victoria Beach when comparing the positioning of SDWLs obtained during low tide
conditions. Thus, on 22 January 2018 (Figure 9a, MSL = −1.087 m), the SDWLs extracted
from C2 and C3 tend to define the limit of the wet areas instead of the land/water limit,
causing a large bias. On the other hand, combinations one and four were not affected by
this increase in error. This behaviour can be explained by the flooding of the inner part of
the beach on its southern half. The 16 July waterlines (Figure 9b, MSL = −1.207 m) present
important accuracy differences among the different combinations of parameters. While the
SDWL from C1 shows a very high accuracy, C2 experiences an important bias landward.
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Figure 9. Satellite-derived waterlines on 22 January 2018 (a), and 16 July 2018 (b) extracted with
the combinations 1–4 of extraction parameters together with the VDWL (white dashed line). Timex
images are overlapping the orthophotograph PNOA 2019. The study area is delimited by a black
dashed line.

The relationship between the tidal level and the errors would not necessarily be
linear, and the correlations presented in Table 5 would not be optimal for explaining
the phenomenon (in fact, non-linear functions increase the fit R2 above 0.60). Above a
certain tide level, the SDWL errors remain moderate, whereas below that threshold, the
waterline definition becomes more challenging, and the reliability of the SDWLs decreases.
When discarding low tide dates, the error reduction is only subtle or non-existent for the
combinations that already offered the highest accuracies (C1–C4). The different response of
each combination to the tide level suggests that the most robust combinations are those with
fewer difficulties in distinguishing water and land classes, therefore being less susceptible
to associated phenomena such as the presence of wet or saturated areas on the beach surface.
While the elimination of images acquired at lower tidal elevations has been proposed as
a method for obtaining more accurate shoreline series (e.g., [29]), this strategy was not
useful on the dissipative site of Perranporth [30]. The differences would lie in the shape
of the lower intertidal section of the profile. La Victoria Beach commonly presents a large
diversity of morphologies, such as bars and cusp systems [34] and a rocky shore platform
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that extends discontinuously across the area, varying in width and depth and exposed
in spring low tides [31,32]. Discarding images during low tide could reduce the errors
associated with those complex forms only when the extraction is carried out employing
the less precise combinations of parameters. On the contrary, when employing the more
robust combinations of parameters, the APS would be properly located, and the discarding
of these images would not lead to a significant reduction in errors.

Wave characteristics, in combination with beach morphology, seem to constitute a
source of error for certain combinations of parameters. The presence of waves breaking
very close to the shore and the appearance of foam (white-water) are related to a seaward
bias of C1 and C4 (Figure 10). Thus, the 27 April C1 and C4 describe a similar positioning
influenced by the presence of foam, while C2 and C3 appear better describing the WL. This
biased positioning associated with C1 led to a lower precision in the SDWL delineation.
Similarly, on 22 May, C1 led to large errors despite the high tide level, probably caused
by the breaking waves near the beach and the generation of wave foam. This source of
error has been previously pointed out by different studies (e.g., [22,45]). Apart from that,
punctual seaward shifts, when using certain combinations, could be linked to the reflectance
from the seafloor [45]. Contrary to the tide level, neither the parameters describing the
instantaneous wave conditions (Hs, Tp) nor those derived from them (such as the wave
factor and the run-up) could be numerically related to SDWL errors. Similarly, we cannot
conclude that any of the tested combinations are more robust or susceptible to errors
according to the wave conditions or the presence of foam.
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Figure 10. Satellite-derived waterlines extracted with the combinations 1–4 of extraction parameters
together with the VDWL (white dashed line) on different dates: (a) 27 April 2018, Timex image. Note
the high coincidence and overlapping of the points composing the SDWs when using C2 and C3.
(b) 22 May 2018, Snap image. Background: orthophotograph PNOA 2019.

Certain pairs of SDWLs obtained by e.g., the combinations C1 and C4, and C2 and C3,
respectively, show remarkable resemblance. These similarities appear as, in certain cases,
those pairs of combinations may propose the same (or very similar) APS. Subsequently,
when applying the same sub-pixel algorithm and kernel of analysis, the points composing
the resulting SDWLs may be coincident. This behaviour is counterintuitive as they represent
different indices (AWEInsh and MNDWI) and thresholding methods (threshold = 0 and
Otsu). Errors seem to be partly associated with the landward displacements of the SDWLs
extracted when using C2 and C3, probably due to the presence of wet stretches on the
emerged beach. In contrast, C1 and C4 combinations are generally more robust, and the
errors appear motivated by phenomena affecting all the combinations, such as the presence
of foam.
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4.2. The Uncertainty in the Waterline Definition in Dissipative Coastal Environments

This assessment relies on the comparison of SDWLs against VDWLs that define the
water’s edge boundary. This work has employed the Timex images as their interpretation
is considered to be more robust. While the Snap images provide an accurate instanta-
neous representation of the morphological state of the shore, almost synchronous with
the satellite imagery, the Timex images consider the dynamism taking place (for 10 min)
just before, also allowing us to appreciate the breaking waves with the presence of foam.
Nevertheless, the high dynamism of the coastline, together with a combination of tidal
and wave-driven processes, may create fuzzy interfaces that challenge the definition of the
waterline position. This aspect is particularly important in the case of La Victoria Beach
(Cádiz) since it is a meso-tidal beach with large variations in water levels. On certain
dates, especially during low tides, the definition of the waterline is challenging even for
experienced photo-interpreters as there is not an evident boundary defining the WL. Taking
this into account and prior to the use of VDWLs as ground-truth data, a validation of the
manual photo-interpretation processes was performed (see Figure 4). One date (21 Febru-
ary) was discarded from the analysis due to the important differences in the waterline
definition carried out by both photo-interpreters, particularly over the northern part of the
study area (Figure 11). On that day, significant discrepancies appeared among both VDWLs
(defined by P1 and P2) when using the same type of image (Timex and Snap), but also
when the same user employed different types of images. This was largely motivated by the
presence of water-covered areas produced by the tidal ebb, also possibly influenced by the
high range of the spring tides that occurred a few days earlier (17–19 February). This is an
example of another source of uncertainty in the analysis that hinders photo interpretations
in mesotidal environments and with the presence of mesoforms.
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Figure 11. VDWLs defined by two photo-interpreters employing the Snap (solid lines) and the Timex
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(Hs = 0.6 m) and long period (Tp = 9.89 s) after a large swell episode. Timex image overlapping the
PNOA 2019 orthophotograph in the background. The study area is delimited by a black dashed line.

4.3. From SDWL to SDS

The position defined by the SDWLs is a consequence of the water level at the moment
of the acquisition of the satellite image. In beaches such as La Victoria, tide and wave
conditions lead to very changeable water levels. Referring all the SDWLs to the same
datum by removing the effect of the varying water level on the waterline positions leads to
their transformation in SDSs, enabling their comparison over time [25,26].
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In tidal environments, there is an agreement regarding the suitability of applying
a horizontal correction according to the instantaneous tidal conditions. On the contrary,
the number of analysis including the application of wave set-up (e.g., [13,46]) and run-up
corrections (e.g., [29]) is limited, and the issue is still a matter of debate. Depending on
the specific site, some authors suggest that the waterline could represent the upper part
or one portion of the swash [28], while others consider that depending on the beach type,
the waterline would be closer to the downrush limit or still water level [30]. Anyway, the
run-up correction makes sense if accurate slope and wave data are available and if there is
certainty about which morphological reality is being represented.

4.4. Future Research

Further assessments employing a larger number of SDWLs and simultaneous VDWLs,
as well as a variety of coastal sites, are required to progress in this field. In complex
environments such as La Victoria Beach, one year of data (with 18 images) may not be
enough to fully capture the variability of conditions, which might not be seasonal but
interannual [35]. The availability of more data (i.e., long SDWLs series obtained along a
broader tidal range) could allow us to explore more deeply the influence that parameters
and coastal conditions have on the shoreline definition. A larger dataset could enable us to
accurately define the elevation threshold below which the reliability of the SDWL starts to
decrease in this beach, as well as to establish statistical relationships between the punctual
oceanographic and morphological conditions and the SDWLs’ errors.

Carrying out shoreline accuracy assessments on new beaches and coastal types is a
required step to validate and subsequently exploit the potential of shoreline extraction
tools around the globe. The extraction processes still present plenty of challenges in certain
environments, such as macrotidal beaches. In this regard, the combination of different
extraction parameters, as presented in this paper, may have a key role in the definition
and integration within the aforementioned tools of new proxies for those coastal types.
Particularly, the possibility of using proxies that can be mapped automatically (such as the
wet/dry line) constitutes an interesting research issue [13]. The improvement of methods
for water level corrections and removal of flawed images also constitutes an interesting
challenge in high-energy tidal coasts [42]. Furthermore, although the broad diversity of
parameters included in SAET has been tested, new indices and classification alternatives
such as k-means or machine learning may help to provide more accurate results [15,23].

5. Conclusions

This assessment constitutes a further step in the validation of SAET to provide a
robust and accurate definition of the SDSs, therefore constituting a useful tool for coastal
monitoring. The assessment of the shoreline accuracy carried out in the mesotidal and
dissipative beach of La Victoria allows the understanding of the influence of the particular
morphological and oceanographic conditions in the shoreline definition, as well as propos-
ing solutions to deal with them by exploiting the adaptative capabilities of extraction tools
as SAET.

Dissipative beaches are more prone to present complex intertidal morphologies and
water-saturated sands that pose a challenge when identifying the waterline position. Nev-
ertheless, the employment of different combinations of extraction parameters may help
to compensate for this challenging morphological reality and minimise the SDWL errors.
Specific conditions of waves, tide level and range, beach slope and presence of mesoforms
seem to contribute to reducing the accuracy of results. Nevertheless, apart from the clear
effect of the tidal level when using certain combinations of extraction parameters, no solid
numerical relationship could be found between the positioning errors on each date and
the associated morphological and oceanographic conditions, maybe because of the limited
number of dates that have been analysed. The expansion of the dataset could lead to a
deeper exploration of these relationships.
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Anyway, certain combinations of parameters seem not to be greatly affected by the
aforementioned factors and offer robust results regardless of the changeable conditions.
In this dissipative site, the combination of the AWEInsh index with thresholding = 0, the
erosion morphological filter and 3 × 3 kernel size leads to the highest accuracy overall. Our
results suggest that, when defining the approximate shoreline at pixel level from the water
mask, the application of the morphological filter of erosion is a useful and novel strategy
to overcome the landward bias that commonly occurs in dissipative beaches. This occurs
contrary to the significantly larger landward bias obtained when using the dilation filter,
which seems to be more convenient for the shoreline definition on beaches with a clearer
water/land interface and reflective behaviour.

Together with previous studies, this assessment underlines the lack of solutions for
defining the shoreline that can be applied automatically at a global level. Thus, the applica-
tion of extraction parameters on dissipative beaches that gave good accuracy on reflective
coasts leads to significantly biased SDWLs. This idea stresses the need to adapt and validate
the shoreline extraction methodologies to the different types of coastlines as an essential
prior step for the characterisation and interpretation of geomorphological changes on the
different coasts of the planet.
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