
Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
journal homepage: www.elsevier.com/locate/jlamp

Exception-sensitive program slicing ✩

Carlos Galindo, Sergio Pérez, Josep Silva ∗

VRAIN, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 January 2022
Received in revised form 3 June 2022
Accepted 21 October 2022
Available online 27 October 2022

Keywords:
Program slicing
Exception handling
System dependence graph
Conditional control dependence

Program slicing is a technique for program analysis and transformation with many different 
applications such as program debugging, program specialisation, and parallelisation. The 
system dependence graph (SDG), the most commonly used data structure for program slicing, 
has been extended in several ways to manage exception handling constructs. In this paper, 
however, we show that the presence of exception-handling constructs can make even 
the extended SDG produce incorrect and incomplete slices. To solve this situation, we 
survey the current state of the art and merge and extend different approaches (that treat 
throws, try-catch, etc.) to produce a version of the SDG that is able to manage all of them, 
that always produces complete slices, and that increases its precision keeping the same 
time complexity. An interesting side result is the discovering of a new kind of control 
dependence: conditional control dependence, which is needed to properly represent catch
statements.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Program slicing [15] is a technique for program analysis and transformation whose main objective is to extract a slice
from a program: the set of statements that affect a specific set of variables v at a given program statement s, called a slicing 
criterion (denoted as 〈s, v〉). Program slicing has many practical applications such as debugging [3], program specialization 
[11], and software maintenance [6], among others. Modern program slicers include mechanisms to handle specific features 
of programming languages such as non-terminating programs [13], arbitrary control flow [2], or exception handling [1]. 
Traditionally, there are two main indicators used to measure the quality of a program slice: completeness and correctness. 
A program slice is considered to be complete when it contains all the statements that influence the value of the slicing 
criterion. A program slice is considered to be correct when all the statements included in the slice do influence the value of 
the slicing criterion.

In this work we focus on program slicing in presence of exception handling constructs. In particular, we show that 
the current approaches to account for exception handling can produce incomplete slices, and we propose a solution to 
this problem. The most extended approach in the area of exception-aware program slicing (and the basis used in most 
publications) is the one proposed by Allen and Horwitz [1], which in turn extended Sinha’s proposal [14]. It supports 

✩ This work has been partially supported by the EU (FEDER) and the Spanish MCI/AEI under grant PID2019-104735RB-C41, and by the Generalitat 
Valenciana under grant Prometeo/2019/098 (DeepTrust). Sergio Pérez was partially supported by Universitat Politècnica de València under FPI grant PAID-
01-18. Carlos Galindo was partially supported by the Spanish Ministerio de Universidades under grant FPU20/03861 and by the Generalitat Valenciana under 
grant ACIF/2021/155.

* Corresponding author.
E-mail addresses: cargaji@vrain.upv.es (C. Galindo), serperu@dsic.upv.es (S. Pérez), jsilva@dsic.upv.es (J. Silva).
https://doi.org/10.1016/j.jlamp.2022.100832
2352-2208/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.jlamp.2022.100832
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2022.100832&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cargaji@vrain.upv.es
mailto:serperu@dsic.upv.es
mailto:jsilva@dsic.upv.es
https://doi.org/10.1016/j.jlamp.2022.100832
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
1 public void f() {
2 try {
3 g();
4 }catch (Exception e) {}
5 g();
6 }
7
8 public void g() {
9 throw new Exception();

10 }

(a) Original program

public void f() {
try {
g();

}
g();

}

public void g() {
throw new Exception();

}

(b) Allen and Horwitz’s slice

1public void f() {
2try {
3g();
4}catch (Exception e) {}
5g();
6}
7
8public void g() {
9throw new Exception();
10}

(c) The correct slice

Fig. 1. Java program that throws two exceptions but captures only the first one.

throw, try, catch, and finally instructions. Nevertheless, despite being valid for some combinations of the aforementioned 
instructions, it does not completely support all possible combinations, resulting in incomplete slices, as can be seen in 
Example 1.

Example 1 (Incompleteness when slicing try-catch constructs in [1]). Consider the Java program shown in Fig. 1a, in which 
method f is the entry-point. Two exceptions are thrown, one per call to g, but only the first one is caught. If we pick line 9
as the slicing criterion (〈9, ∅〉), then the slice should consist only of the statements that are needed to execute line 9 twice 
(i.e., the same number of times as in the original program). The slice produced by Allen and Horwitz can be seen in Fig. 1b. 
It removes the whole catch block, and thus it is incomplete, as line 9 will only execute once, and then the program will 
exit.

The source of this error is that in Allen and Horwitz’s approach catch blocks are included only in a specific case: the slic-
ing criterion is or requires a variable defined inside the catch block. This only happens when a statement of the catch block 
is included in the slice and, consequently, control dependences force the catch itself to be included too. Unfortunately, this 
is insufficient, since it does not capture the complex control dependences generated by catch blocks. This counterexample 
shows that even empty catch blocks may be necessary in the slice.

1.1. Contributions

In this paper we define an integral solution that merges together the current program slicing extensions used to slice 
programs with exception-handling. This is an important milestone in the area because there is not any survey that relates 
the work done so far (some approaches focused on throw statements, others on the try-catch, etc.). Therefore, our first 
contribution is an integrated explanation of the different graphs and approaches proposed so far. We describe how these 
graphs are constructed incorporating different ideas and approaches all together. Moreover, as a second contribution, we 
present a counterexample that shows different limitations of the current solution. In particular, we show that none of the 
previous approaches can properly treat catch statements, which sometimes leads to incorrect or incomplete results.

Our third and most important contribution is the definition of a new technique to solve the unveiled incompleteness 
problem. Our proposal includes in its basis the ideas presented in previous models, and augments them with the definition 
of a new ternary dependence called conditional control dependence, modelled with two new kind of arcs in the SDG. This 
new kind of control dependence arises when try-catch structures are used, and accurately model the control dependence 
relationships between catch statements and statements executed inside the try block and after the try-catch structure. Our 
solution has been proven complete for all possible try-catch scenarios resulting, to the best of our knowledge, into the most 
accurate static analysis model of exception-handling aware program slicing. Finally, our fourth contribution is the implemen-
tation of the first slicer able to properly treat throws, try-catch, and exception sources (both unconditional and conditional). 
This implementation has been released as free, and has been empirically evaluated with a series of real examples that are 
also described.

The rest of the paper is structured as follows: Section 2 recalls the background about program slicing with exception 
handling and introduces some preliminary definitions. Section 3 analyses the cases in which a catch statement could be 
included in a slice and defines conditional control dependence on that basis. Section 4 describes how to represent pro-
grams with exceptions with arcs representing the new dependence. Section 5 shows an algorithm to slice the new program 
representation. Section 6 describes the implementation and empirical evaluation. Section 8 presents the related work, and 
Section 9 summarizes our results.

2. Background

To keep the paper self-contained, we first define the base concepts of slicing criterion and static backward slice.
2



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Definition 1 (Slicing criterion). Given a program P , a slicing criterion for P is a tuple 〈s, v〉 where s ∈ P is a single statement 
and v is a subset of P ’s variables.

Prior to the definition of static backward slice, we need to define what a sequence of values of a slicing criterion is:

Definition 2 (Sequence of values). Let P be a program and 〈s, v〉 be a slicing criterion for P . seq(P , s, v) is the sequence of 
values to which each variable in v is evaluated each time the execution of P passes through s.

Note that in Definition 1 the variables in v may not appear in s, or v may be empty. In the first case, the value of the 
variable is kept in the sequence, even though it is not used in the statement. In the latter, no variable is evaluated, so the 
sequence of values becomes a sequence of empty values, repeated the number of times that program P executes s.

Definition 3 (Static backward slice). Given a program P and a slicing criterion SC = 〈s, v〉, S is a static backward slice of P
with respect to SC if S fulfils the following conditions:

• S is an executable program.
• S ⊆ P : S is the result of removing zero or more statements from P .
• For any possible input, seq(P , s, v) is a prefix of seq(S, s, v).

2.1. Program slicing based on dependence graphs

The computation of a slice from a given program has been traditionally performed as a graph-reachability problem using 
the system dependence graph (SDG). The SDG is constructed starting from the control flow graph (CFG). However, the presence 
of unconditional jumps in exception handling scenarios (throw statements) makes the traditional control flow graph (CFG) 
unsuitable to represent the flow of the program. For this reason, Ball and Horwitz [2] proposed the augmented control flow 
graph (ACFG), which is able to manage the presence of unconditional jumps. Then, Kumar and Horwitz [10] improved the 
definition of control dependence to increase precision, defining the pseudo-predicate dependence graph (PPDG). In [10] the 
SDG is built by using the ACFG as the starting point to construct a PPDG, and finally a SDG:

ACFG → PPDG → SDG

We describe the SDG generation by showing how each one of these graphs is built.

2.2. Augmented control flow graph (ACFG)

The CFG contains a node for each statement of the program and two special nodes Entry and Exit that respectively 
represent the start and end of the computation. An arc (s1 → s2) connects two statements s1 and s2 if there exists an 
execution in which s2 is immediately executed after s1.

The CFG is often used to define control dependence, whose standard definition is the following:

Definition 4 (Control dependence). Let G be a CFG. Let n and m be nodes in G . A node m post-dominates a node n in G 
if every directed path from n to the Exit node passes through m. Node m is control dependent on node n if and only if m
post-dominates one but not all of n’s CFG successors.

However, Horwitz et al. [2] noted that the above definition is not correct in presence of unconditional jumps. To solve 
the problem, they first identified the class of unconditional jump statements (return, break, throw...) and called them pseudo-
predicates. A pseudo-predicate is a predicate where the true branch is the destination of the unconditional jump and the 
false branch (called non-executable branch) points to the statement that would execute if the statement failed to jump. 
Then, they redefined the CFG as a new graph, the augmented control flow graph (ACFG), that takes into account the pseudo-
predicates.

Definition 5 (Augmented control flow graph (ACFG)). Given a procedure P , which contains a list of statements s = {s1, . . . , sn}, 
the augmented control flow graph of P is a directed graph G = (N, A), where N = s ∪ {Enter, Exit} and A is a set of arcs 
of the form (a, b) | a, b ∈ N . Nodes may be either statements, predicates, pseudo-predicates, or exit nodes. Statements have 
one outgoing arc; predicates have two, labeled true and false; pseudo-predicates are like predicates, but their false arc is 
non-executable; and Exit has no outgoing arcs. Each arc represents that the pair of instructions it connects can execute 
sequentially in some execution of P . Non-executable arcs are the exception, as their name implies. The start and end of the 
procedure are represented with the Enter and Exit nodes.

The ACFG only has one source node, Enter, and one sink node, Exit. The Enter node should be able to reach all other 
nodes, and the Exit node should be reachable from all other nodes.
3



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
1 int f(int a, int b){
2 int sum = a + b;
3 int op = g(sum, b);
4 return op;
5 }

6 int g(int x, int y){
7 int i = 0;
8 while (i < x) {
9 if (i > y)

10 break;
11 y--;
12 i++;
13 }
14 return y;
15 }

Fig. 2. Fragment of code with two methods using call-by-reference.

Fig. 3. ACFG and PPDG of function g in Fig. 2.

Example 2. Consider the fragment of code in Fig. 2, which contains two methods f and g where f calls g. Note that method
g contains an unconditional jump statement (break) in line 10.

Fig. 3a shows the ACFG representation of method g. The arcs of the ACFG are divided into executable arcs (solid) and 
non-executable arcs (dashed).

Note the representation of parameters: procedures with parameters, or that use or modify global variables have
formal-in assignments in the Enter node (a = ain), so that variables defined outside the procedure’s body are defined 
in the graph; and formal-out assignments in the Exit node (aout = a), so that changes made in the procedure can be 
passed back to the caller.

2.3. Pseudo-predicate program dependence graph (PPDG)

Once the ACFG has been built, two kinds of dependences are computed from it, which combined form the pseudo-
predicate program dependence graph (PPDG) [10]. These dependences are data dependence and control dependence, which is 
often defined in terms of postdominance:

Definition 6 (Postdominance [4]). Let G = (N, A) be an ACFG. b ∈ N postdominates a ∈ N if and only if b is present on every 
possible path in G from a to Exit.

Definition 7 (Control dependence in the presence of pseudo-predicates [10]). Let P be a procedure, let G = (N, A) be its ACFG, and 
let G ′ = (N, A′) be its CFG. Given two nodes in the ACFG a, b ∈ N , b is control dependent on a if and only if b postdominates 
in G ′ one but not all of {n | (a, n) ∈ A, n ∈ N} (a’s successors in the ACFG).
4



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Definition 8 (Data dependence [10]). Let G = (N, A) be an ACFG. b ∈ N is data dependent on a ∈ N if and only if a defines a 
variable x, b uses x, and there exists in G a path free from non-executable arcs from a to b where x is not defined.

We can now formally define the PPDG.

Definition 9 (Pseudo-predicate program dependence graph). Given a procedure P and its associated ACFG G = (N, A), the 
pseudo-predicate program dependence graph of P is a directed graph G ′ = (N ′, A′), where N ′ = N \ {Exit} and A′ = Ac ∪ Ad , 
being Ac the set of control dependence arcs and Ad the set of data dependence arcs.

Example 3. Consider again the code in Fig. 2 and its ACFG shown in Fig. 3a. Its associated PPDG is shown in Fig. 3b. In 
this graph, in contrast to the PDG, the break node controls the execution of statements y-- and i++ (because of the 
non-executable arc of the ACFG) since the execution of the break prevents their execution.

It is important to note that, during the construction of the PPDG, the Exit node is removed, and the formal-in and
formal-out assignments are all contained in the Enter node.

2.4. System dependence graph (SDG) and slice computation

After generating the PPDG, each formal-in and formal-out is split to its own node, control dependent on the Enter
node, including a formal-out node for the result of the procedure. Each procedure call is unfolded into its own node, 
and nodes are generated to represent the input and output, called actual-in and actual-out. These are analogous to
formal-in and formal-out. Then, the nodes structure formed in each procedure call is connected to the corresponding 
structure in the associated procedure definition through a new set of (interprocedural) arcs. These arcs are divided into 
input (from call to definition) and output (from definition to call) arcs and represent the information exchange between 
them. They connect all the PPDGs to form a single graph: the SDG. Finally, a new kind of arc called summary arc is added 
from actual-in nodes to actual-out nodes in procedure calls when needed. These arcs are added to procedure calls to 
illustrate data dependences inside the corresponding procedure definitions and are necessary to accurately slice procedure 
calls in the SDG with the algorithm proposed by Kumar and Horwitz in [10].

Once the SDG is built, the slicing algorithm can be used to compute the backward slice. First of all, we locate the node 
that corresponds to the slicing criterion and, starting from this node, all the arcs in the SDG are traversed backwards in two 
sequential phases. During the first phase the traversal ignores output arcs, and during the second one, it ignores input arcs. 
In any of the phases, when the traversal reaches a pseudo-predicate node different from the slicing criterion by traversing a 
control arc, the algorithm prevents the traversal to continue from this node. This process continues until no more arcs can 
be traversed. When the whole process finishes, the nodes reached by the algorithm form the so-called program slice.1

Example 4. Consider the SDG of the code in Fig. 2, represented in Fig. 4. The SDG represents both f and g. In the SDG, the 
PPDG of both method declarations is augmented with the addition of formal nodes for each variable used/defined inside the 
method. For example, in method g, the assignment nodes x = x_in and y = y_in represent formal-in nodes while 
the assignment node y_out = y represents a formal-out node. Analogously, method calls are augmented with the 
corresponding actual nodes. In this case, x_in = sum and y_in = b assignments in method call g(sum,b) represent 
the actual-in nodes while the b = y_out assignment represents the actual-out node of the call. Then, actual and 
formal nodes are linked with corresponding input/output arcs to represent parameter passing. Finally, summary arcs are 
computed for the call arguments and returned value. Once the SDG is built, the slicing algorithm defined in [10] can be 
now applied. Consider variable op in line 4 as the slicing criterion, where the node of the SDG representing its value is 
marked in bold. The corresponding program slice is marked in the SDG of Fig. 4 with grey nodes.

3. A new kind of dependence generated by catch statements

Example 1 reveals that the SDG proposed by Allen and Horwitz can generate incomplete slices because catch blocks are 
not correctly represented. In this section we explain the reason, showing that catch statements induce a kind of dependence 
that is not captured in any of the described graphs. Furthermore, we show that this kind of dependence cannot be captured 
by using traditional control dependence, and a new definition is needed.

A catch block is a statement that is only relevant if the program execution does not occur normally. For this reason, the 
control dependences they induce are slightly different from the ones generated by other statements. Instead of influencing 
other statements with their presence, it is their absence from the slice what may lead to a non-desired behaviour. We 
can illustrate this with the code in Fig. 5, which shows that the catch statement is not part of the slice even if the slicing 
criterion is a statement (line 3) inside the try-catch that throws the exception captured in the catch block (see Fig. 5b); or if 

1 The interested reader can consult the paper by Kumar and Horwitz ([10]) for further explanations about the PPDG traversal.
5



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. 4. SDG of the code in Fig. 2 and slice with respect to 〈4, {op}〉.

1 void main(int x) {
2 try {
3 throw new E();
4 } catch (E e) { }
5 log(x);
6 }

(a) The original program.

void main(int x) {

throw new E();

}

(b) The slice with criterion 〈3, ∅〉.

1void main(int x) {
2
3
4
5log(x);
6}

(c) The slice with criterion 〈5, ∅〉.

Fig. 5. Slices of a code that throws and catches an exception.

the slicing criterion is located after the catch statement (see Fig. 5c). The catch statement should only belong to the slice if a 
statement that throws the captured exception belongs to the slice and also the catch statement affects some instruction that 
is also in the slice. These ideas are explained in the following three different slicing scenarios, which allow us to analyse 
how does the presence or absence of the catch statement in the slice affects other statements:

1. Only the throw statement is part of the slice. There is no reason for including the catch block in the slice if log(x) is 
not included in it. The slice would be lines 1, 3, and 6 (Fig. 5b).

2. Only log(x) is part of the slice. If only log(x) is in the slice, although the catch statement controls it, there is no 
possible statement inside the try-catch block in the slice to raise an exception that the catch captures, and thus the 
inclusion or exclusion of the catch statement does not influence the execution of log(x). The slice would be lines 1, 
5, and 6 (Fig. 5c).

3. Both the throw statement and log(x) are part of the slice. This situation is the counterpart of the previous one. In 
this case, log(x) is included in the slice, but there is also an exception source inside the try block that is part of the 
slice. Thus, to preserve the normal execution of the program and reach the log(x) statement, the catch block cannot 
be omitted. The slice would be the whole program (Fig. 5a).
6



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
These scenarios reveal the need for a new kind of control dependence that works in a conditional way. The catch
instruction controls log(x) and throw new E() only if both of them are present in the slice (it controls both or none). 
This is because the catch instruction controls log(x) only if an exception that it can capture can be thrown, because the 
absence (rather than the presence) of the catch would change the number of times that log(x) is executed. Similarly, 
the catch instruction also controls the source of exceptions, but only when log(x) is included in the slice. This fact 
makes the control dependence of catch blocks completely different from any control dependence seen before. We call this 
new control dependence conditional control dependence.

Definition 10 (Conditional control dependence). Let G = (N, A) be a CFG and s1, s2, s3 ∈ N be nodes in G . s2, s3 is conditionally 
control dependent on s1 if s1 is a catch statement, s2 throws an exception that s1 could capture, and s3 is located outside 
s1’s body and there is a control-flow path from s1 to s3 in G .

4. Extending the SDG to make it exception-sensitive

In this section we introduce a procedure to build a SDG that contains conditional control dependences, so that throw
statements, try-catch statements, exception sources (both conditional and unconditional), and procedures with exceptions 
can be properly represented and sliced. We present our solution as a set of modifications to the construction of the SDG 
described in Section 2. We organize our modifications considering the different graphs used to build a SDG: ACFG, PPDG, and 
finally SDG. In the following, to clearly differentiate between each version of the graph, our extended graphs are prefixed by 
‘ES-’, which stands for “exception-sensitive”, so the ACFG becomes the ES-ACFG, the PPDG becomes the ES-PPDG, and the 
SDG becomes the ES-SDG.

4.1. Modifications to the ACFG to create the ES-ACFG

In this section we compositionally describe how to construct any ES-ACFG: we show the graph representation of each 
syntax construct individually, but using a general representation that can be composed with the other constructs.

Like the ACFG, the ES-ACFG has three kinds of nodes: statements, which have only one outgoing arc; predicates, which 
have two outgoing arcs labeled true and false representing possible execution paths; and pseudo-predicates, which have two 
outgoing arcs labeled true and false, where the false arc represents a non-executable step.

Most instructions of the ACFG keep their traditional representation, but there are five constructs that need to be modified 
to properly account for exception handling: procedure declarations, procedure calls, and all those structures that cause or 
catch exceptions (e.g., throw, try, and catch). The rest of this subsection explains in detail these instructions and their correct 
representation.

Procedure declarations with exceptions. This case represents those function definitions that contain a potential source of 
exceptions, e.g., a throw statement, a possible division by zero, or a call to other procedure that may throw an exception. 
If the procedure contains exception sources, the Exit node contained in the original ACFG is split into three nodes: normal 
exit, exception exit, and Exit [1].

normal exit performs the function of the old Exit node, representing the exit from the procedure when no exception is 
raised. It is represented as a statement, whose arc is connected to Exit.

exception exit is the equivalent to normal exit, but it is only reached by nodes that generate uncaught exceptions. As it 
happened with normal exit, it is a statement whose arc is connected to Exit.

Exit is a sink node, to which the normal exit and exception exit nodes are connected.

Fig. 6 shows how this exit-node transformation is done showing the difference between an ACFG and an ES-ACFG when 
there is an exception source in a function definition. Additionally, as it can be seen, when there are formal-out asso-
ciated to the function exit, they are moved to the specialised exit nodes, for increased precision. It is worth mentioning 
that nodes exception source and exception exit now include an assignment of the thrown exception (which we call “active 
exception”, or ae for short) to propagate this exception until it is caught.

Calls to procedure definitions that may throw exceptions. These calls must be also redefined to differentiate whether the 
procedure ended with a normal execution (normal exit) or an exception was raised and uncaught during the execution 
(exception exit). The treatment is analogous to the one described for procedure definitions: with normal return and 
exception return nodes. The following changes are necessary:

The procedure call node is now a predicate, whose true arc is connected to normal return and the false arc, to exception 
return.

Normal return is a pseudo-predicate, whose true arc is connected to the following instruction, and its false arc is con-
nected to the first instruction executed regardless of whether the normal return or exception return is executed. The 
destination of this false arc is necessary due to the new alternative execution path generated by the exception return. 
Adding the false arc to the first common instruction makes all the nodes after the call that are exclusively in the 
7



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. 6. The ES-CFG uses two exit nodes (normal exit and exception exit) to differentiate normal and abrupt termination of a function.

Fig. 7. The ES-CFG distinguishes between four paths to represent function calls that may produce exceptions.

normal execution path dependent on the normal return of the call, which is the expected semantic behaviour. Note 
that a common node between both paths always exists, and in the worst case scenario this node would be the Exit
node.

Exception return is a pseudo-predicate, whose true arc is connected to the first catch node that may capture the thrown 
exception (or otherwise to the exception exit of the procedure), and its false arc is connected to the first node after 
the try-catch if it is contained in one, or otherwise to the Exit node.

The two return nodes contain assignments for modified global variables and parameters passed by reference. Fig. 7b 
shows the difference between the ACFG structure, where the behaviour is the same for both normal and exception 
procedure execution, and the ES-ACFG structure which differentiates both possibilities resulting into different execution 
paths. Note that both return nodes may not output the same variables, as some may have not been modified when the 
exception is thrown.

Unconditional exception sources. These instructions are those whose execution will always result on an exception being 
thrown or activated. They have an execution flow similar to the return, break or continue unconditional jump 
statements. For this reason, they are represented in the ES-ACFG as pseudo-predicates [1]. The true arc of the pseudo-
predicate will be connected to the first catch instruction that can capture it, or, in case there is no catch able to capture 
it, to the exception exit node. The false arc will be connected to the instruction that would be executed if the pseudo-
predicate failed to throw the exception, i.e., the next instruction in the sequential order of the source code. Fig. 8 shows 
an example of how a throw instruction is represented both in the ACFG and in the ES-ACFG.

Conditional exception sources. These instructions are the ones whose execution may activate an exception at runtime de-
pending on the values given to variables during the execution, e.g., the operation a = 10 / x may generate a division 
by zero exception. This type of exception sources has the same representation as unconditional sources, but instead of 
being pseudo-predicates, they are predicates; to account for the fact that the exception really may or may not be thrown. 
8



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. 8. Representation of a throw statement in the ACFG and ES-ACFG.

Fig. 9. Representation of a conditional exception source in the ACFG and ES-ACFG.

Fig. 9 shows an example, displaying the difference between the ACFG single path representation and the ES-ACFG repre-
sentation, where two paths are now generated due to its predicate nature.

Exception catching structures. These structures are commonly called try-catch structures. In the original ACFG these struc-
tures were never considered, so we need to provide a representation that account for their control dependences correctly. 
The try-catch structure ES-ACFG representation is divided into its two different components:

try The try block represents the container of a sequence of statements where some of them may rise an exception. The 
way try blocks are represented is analogous to the representation of procedure definitions in [2]. They are considered 
pseudo-predicates, connecting their true arc to the first instruction within its body, and their false non-executable arc 
to the first instruction after the whole structure [1]. Thus, every instruction inside the try block is always controlled 
by the try itself. A scheme of how the try block is represented in the ES-ACFG is shown in Fig. 10a.

catch Each catch block is represented as a predicate or a pseudo-predicate depending on whether it captures or not 
all the exception sources connected to it. This means that the same catch block in different try-catch instructions 
can be represented in a different way. When all the exception sources connected to the catch block are captured by 
it, the block is represented as a pseudo-predicate, since the execution of the false arc (which let the execution flow 
continue to the exception exit) is non-executable (Fig. 10b). On the other hand, when any of the exception sources 
that reach the catch block may not be caught, the catch is represented as a predicate as both ES-ACFG paths can be 
executed at runtime (Fig. 10c).

4.2. Modifications to the PPDG to create the ES-PPDG

Once the ES-ACFG has been generated, the next step is to generate the corresponding PPDG by computing control and 
flow dependences. These dependences are computed in the same way as in [10] with a particular difference: while in 
the PDG construction shown in Section 2 formal-out assignments were moved to the Enter node after removing the 
Exit node, in the PPDG, formal-out assignments remain in the corresponding normal exit and exception exit nodes (see 
Fig. 6b). The resulting PPDG is a graph whose control dependences have slightly changed with respect to the original PPDG 
due to the changes introduced in the ES-ACFG. Although the new dependences provide new control dependences related 
to exception handling, the graph is not ready yet to deal with the conditional control dependence described in Section 3. 
9



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. 10. Representation of a try-catch statement in the ES-ACFG.

Algorithm 1 PPDG transformation.

Input: G := (N, A), Ac ∈ A (control dependence)
Output: G ′ := (N, A′)

1: Acc1 := ∅, Acc2 := ∅, A′
c := Ac

2: for all c ∈ N | isCatch(c) do
3: for all (c, n) ∈ Ac | n /∈ stmtsInBlock(c) do
4: A′

c := A′
c \ (c, n)

5: Acc1 := Acc1 ∪ (c, n)

6: for all n ∈ tryStmtsOf(c) do
7: if isExceptionSource(n) ∧ (n, c) ∈ A∗

c then
8: if ∃n′ | (n, n′) ∈ A∗

c ∧ (n′, c) ∈ A∗
c ∧ n = n′ = c then

9: Acc2 := Acc2 ∪ (c, n)

10: A′ := (A \ Ac) ∪ A′
c ∪ Acc1 ∪ Acc2

Hence, a control dependence treatment needs to be done over the graph to classify and complement the control dependence 
arcs of the PPDG to obtain the ES-PPDG.

Algorithm 1 describes the process of adding conditional control dependence arcs to a PPDG. Each dependence generates 
two arcs, and they are placed in two sets: CC1 and CC2. This algorithm calls methods with descriptive names. For instance, 
function stmtsInBlock, that receives a catch node as its argument, returns a set with all the statements in its body; and
tryStmtsOf(c) obtains the statements in the try block of the given catch. The operator ∗ in a set of arcs (e.g., A∗

c ) represents 
its reflexive and transitive closure.

This algorithm analyses every catch node independently and divides its processing into two steps: the first (lines 2-5) 
selects every control arc from a catch node to a statement outside its body and converts it into a CC1 arc. The second step 
(lines 6-9) generates CC2 arcs from the catch node to each exception source in the try’s body, if there is a path of control 
arcs from the exception source to the catch node.

Note that conditional control dependence arcs (CC1 and CC2) are only created when the code contains at least one catch
statement. In the case that no catch statement exists in the code, lines 2-9 cannot be executed, and sets A′

c , Acc1, and Acc2

reach line 10 with their initial value given in line 1, thus, A′ = A. Therefore, the PPDG and the ES-PPDG are equal when 
there are no catch statements.

4.3. From ES-PPDGs to the final ES-SDG

The creation of the ES-SDG can be described as the union of all the ES-PPDGs for each of the program’s procedures, 
where the additional interprocedural and summary dependences are generated. The creation of input, output, and summary 
arcs is the same as in the SDG. The main difference between the standard SDG and the ES-SDG is the treatment of the 
different exit contexts. Every ES-PPDG may have either none or two Exit nodes: normal exit and exception exit. For this 
reason, the ES-SDG uses an output arc to connect an exit node in the declaration to its corresponding return node in the 
call. These can be seen in Fig. 11, where dotted arcs connect each exit to their corresponding return counterparts.
10



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. 11. The ES-SDG associated to the program in Example 1. The slicing criterion is represented with a bold node, and the central square separates the 
nodes that belong to g (inside) from the nodes that belong to f (outside). (For interpretation of the colours in the figure(s), the reader is referred to the 
web version of this article.)

5. Slicing conditional control dependence arcs

The ES-SDG introduces various structural changes and a new kind of arc: the conditional control dependence arcs. There-
fore, the slicing algorithm must consider those changes. The new graph traversal is based on the slicing algorithm proposed 
by Horwitz et al. in [7], modified later by the introduction of the pseudo-predicates and the PPDG (see Algorithm 3 in [10]). 
In the ES-SDG, the presence of conditional control dependence arcs requires the introduction of some extra limitations on 
their traversal, to correctly represent its conditional nature:

1. If a node n is reached via a conditional control dependence arc of type t , it will not be included in the slice unless it has 
also been reached by another conditional control dependence arc of type t′ , such that t = t′ . In that case, n’s incoming 
arcs are not traversed, except if n is (also) reached during the slice traversal via another non-conditional arc (normal 
control, data, etc.).

2. Conditional arcs of type CC1 are transitive, even when the intermediate node is not included in the slice. For example, 
given a →CC1 b →CC1 c, if c is in the slice, a and b are both reachable via a conditional arc of type CC1, even when b is 
not in the slice. It is fundamental to mention that this transitive traversal is exclusively done at the end of each traversal 
phase and starts from any node in the slice. Each transitive traversal path ends when (i) it reaches a node that has only 
been reached by a CC2 arc (in this case, the node is included in the slice); or (ii) it reaches a node that was already 
included in the slice only by conditional arcs. This kind of transitivity is new in the SDG, and is required for cases where 
there is an exception source nested in more than one level of try-catch structures.

Algorithm 2 illustrates how restrictions 1 and 2 are included to the PPDG slicing algorithm described in [10]. Function
Slice represents the slicing process in two phases, function Traverse performs the actual traversal of the graph in each 
phase, traversing the graph backwards and ignoring the set of arc types given in parameter IgnoredTypes, and function
AddTransitiveCC implements the transitive traversal of CC1 arcs described in restriction 2. The algorithm defines sets CC1R
and CC2R, which represent those nodes that have been reached by CC1 and CC2 arcs respectively. Additionally, another set 
CCExclusive is defined to store those nodes included in the slice exclusively by conditional control dependences. During the 
traversal, when we reach a node, the node is added to the set PendingNodes. The elements in PendingNodes are extracted one 
11



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
by one during the traversal and the algorithm analyses them to apply restriction 1 when necessary. Then, all the incoming 
arcs of the extracted node are considered in the traversal. For each arc, if the arcType is contained in the list of IgnoredTypes
(lines 12-13) or the pair {n, arcT ype} does not respect the PPDG traversal restriction (lines 14-15) the arc is ignored and 
the traversal continues by extracting the source node of the arc m. In case the arc type is CC1 or CC2, the node m is 
stored in the corresponding CC1R or CC2R sets respectively (lines 18-21). After adding the node to the corresponding set, 
the algorithm checks whether it is contained in both sets, adding the node to the slice (line 25). Additionally, if the node 
has not been reached and added to the slice before, it is also added to the CCExclusive set (lines 22-24). In case the arc 
type is not conditional control, m is included in the slice and in the PendingNodes set (lines 27-30). Moreover, if m was 
previously in the slice after being reached exclusively by arcs CC1 and CC2, then it is removed from the CCExclusive set 
(line 30). Finally after traversing all possible arcs, the traversal tries to include transitive dependences of CC1 arcs by a call 
to procedure AddTransitiveCC (line 31).

Function AddTransitiveCC considers all the nodes reached by a CC1 arc during the execution of the while loop in 
function Traverse. For all these nodes, the function checks whether they have been included in the slice only by conditional 
control dependences, i.e., they are in the CCExclusive set (line 36). If they are not in the CCExclusive set, the incoming CC1
arcs are traversed iteratively adding to the slice those reached node that have also been reached by CC2 arcs (lines 37-42).

The complexity of the new traversal algorithm remains linear with respect to the number of nodes and arcs in the 
ES-SDG. This is because the changes to the algorithm are to stop the traversal when certain conditions are met; therefore 
lowering the amount of nodes reached. Additionally, each condition check can be made in constant time, and thus slicing 
remains linear. Example 5 shows the ES-SDG and the traversal of the slicing algorithm for the code of Example 1.

Example 5. If we apply Algorithm 2 to the problem shown in Example 1, we obtain the ES-SDG slice shown in Fig. 11. 
In this graph, the slicing criterion 〈9, ∅〉 produces the slice composed of the grey nodes. The slice is computed as follows: 
First, the Enter g() node is included from the slicing criterion, which in turn includes both calls to procedure g. The first 
call causes the inclusion of the try and Enter f() nodes. Finally, thanks to the conditional arcs, the catch node is included, 
producing the expected slice in which the exceptions generated by g’s first call may be caught and g’s second call may be 
executed.

Algorithm 2 Slicing Algorithm for the ES-SDG.

Input: A ES-SDG G and the slicing criterion node nsc .
Output: The set of nodes that compose the slice S of G w.r.t. nsc .
Initialization: CC1R := ∅, CC2R := ∅, CCExclusive := ∅.

1: function Slice(G, nsc)
2: S0 := {nsc}
3: S1 := Traverse(G, S0, nsc, {Output})
4: S := Traverse(G, S1, nsc, {Input})
5: return S

6: function Traverse(G, N, nsc, IgnoredTypes)
7: PendingNodes := N
8: while PendingNodes = ∅ do
9: select some n ∈ PendingNodes

10: PendingNodes := PendingNodes \ n
11: for all arc ∈ getIncomingArcs(n) do
12: if arcType ∈ IgnoredTypes then
13: continue
14: if isPseudoPredicate(n) ∧ n = nsc ∧ arcType = Control then
15: continue
16: m := getSourceNode(arc)
17: if arcType = C C1 ∨ arcType = C C2 then
18: if arcType = C C1 then
19: CC1R := CC1R ∪ m
20: else
21: CC2R := CC2R ∪ m
22: if m ∈ CC1R ∧ m ∈ CC2R then
23: if m /∈ N then
24: CCExclusive := CCExclusive ∪ m
25: N := N ∪ m
26: else
27: N := N ∪ m
28: PendingNodes := PendingNodes ∪ m
29: if m ∈ CCExclusive then
30: CCExclusive := CCExclusive \ m

31: N := AddTransitiveCC(G, N)

32: return N
12



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
33: function AddTransitiveCC(G, N)
34: CC1Pending := CC1R
35: for all n ∈ CC1Pending do
36: if n /∈ CCExclusive then
37: for all arc ∈ getIncomingCC1Arcs(n) do
38: m := getSourceNode(arc)
39: if m ∈ CC2R then
40: N := N ∪ m
41: continue
42: CC1Pending := CC1Pending ∪ m

43: return N

Table 1
Mean times required to generate and slice each SDG implementation.

Program SC G (AllenSDG) G (ES-SDG) S (AllenSDG) S (ES-SDG)

B1.java 〈28,∅〉 17.256 ms 18.977 ms 897 μs 1180 μs
B2.java 〈14,∅〉 13.068 ms 13.266 ms 796 μs 1130 μs
B3.java 〈28,∅〉 12.814 ms 13.297 ms 501 μs 798 μs
B4.java 〈11,∅〉 4.795 ms 4.818 ms 144 μs 167 μs
B5.java 〈18,∅〉 13.947 ms 14.133 ms 71 μs 73 μs
B6.java 〈25,∅〉 13.565 ms 13.947 ms 912 μs 1219 μs
B7.java 〈11,∅〉 3.095 ms 3.168 ms 105 μs 122 μs
B8.java 〈18,∅〉 5.584 ms 5.598 ms 128 μs 200 μs
B9.java 〈9,∅〉 2.629 ms 2.660 ms 111 μs 124 μs
Total 9.689 ms 9.940 ms 407 μs 557 μs

6. Empirical evaluation

In order to determine the degree to which the incompleteness of previous approaches has affected exception-handling 
constructs in program slicing, we have implemented the ES-SDG in a program slicer for Java. In order to perform a fair 
comparison, we implemented previous approaches to program slicing with exceptions. Our Java program slicer has been 
used as a baseline for both implementations, such that both have the same handling of objects, jumps, loops and other 
constructs unrelated to exception handling.

The slicer can be found in a public git repository,2 and it contains two approaches to exception-sensitive programs 
slicing: Allen and Horwitz’s [1] (AllenSDG.java) and our own (ESSDG.java). The whole implementation contains 11K 
lines of code, and it is available under a free software license.

We strictly followed the Georges et al.’s methodology [5]. We executed each graph generation and slice repeatedly. From 
each sequence of executions we extracted all the windows of 10 measurements where steady-state was reached, i.e., where 
the coefficient of variation (CoV, the standard deviation divided by the mean) of the 10 iterations is under 0.01. If no such 
window could be found, we selected the window of 10 measurements with the lowest CoV. The extracted windows were 
used to compute the average time to perform the given operation (build the graph or slice it).

The results of the experiments can be seen in Table 1, where each row shows a specific benchmark (file and slicing 
criterion). The first two columns (Program and SC) identify each benchmark by filename and slicing criterion. The following 
two columns (G (AllenSDG) and G (ES-SDG)) show the time required to generate the graph (in ms). Finally, the last two 
columns (S (AllenSDG) and S (ES-SDG)) display the time required to slice the graph (in μs).

The changes between approaches are not significant enough to alter the time required to generate or slice the graph 
significantly. Although the generation of the ES-SDG introduces a performance downgrade, the slowdown introduced is 
incidental. On the other hand, the main benefit of using the ES-SDG is achieved: the slices generated are now complete, but 
that comes at a slight increase in the time of slicing. The time required by the ES-SDG is 20 to 25% longer than AllenSDG. 
This is due to the additional conditions and the extra catch nodes reached. Overall, the cost is low enough, given that most 
applications of program slicing strictly require slices to be complete.

7. Completeness of the ES-SDG

Given a program P and a slicing criterion C , a static backward slice of P with respect to C must contain all statements 
in P that may influence (in some execution) C (a precise definition of slice can be found in Definition 3). The following 
theorem states that the slices produced by Algorithm 2 are always static backward slices, thus it is complete.

Theorem 1 (Completeness). Let P be a program and G = (N, A) its associated ES-CFG. Let node nsc ∈ N be the node associated with 
the slicing criterion 〈s, v〉. Slice(G, nsc) is a static backward slice with respect to 〈s, v〉.

2 https://mist .dsic .upv.es /git /program -slicing /SDG.
13

https://mist.dsic.upv.es/git/program-slicing/SDG


C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
The proof of this theorem requires to consider all possible combinations of slicing criterion point, execution path, and 
kind of exceptions raised (captured or not by catches). Therefore, it has been moved to Appendix A. This result is particularly 
relevant because it is the first proof of completeness for a variant of the SDG to treat exceptions. Previous approaches, like 
[1] or [8], based their completeness proofs in the fact that the PDG is automatically computed from the CFG and thus, 
slices computed over a PDG are complete. However, their models introduced modifications in the way throw and catch
statements (and the impact of their presence) are represented in the CFG intra and interprocedurally, mainly based on a 
“reasonable” modification in line with previous models used to treat unconditional jumps [10]. The lack of completeness 
proofs in previous approaches has produced a chain of successive improvements to incrementally cover different cases of 
incorrectness or incompleteness. In addition to collecting some key ideas used in those previous works, we have defined 
a new type of dependence that is not considered in the original PDG, together with the introduction of some PDG edges 
(CC2) that are not generated by the classic control algorithms. For these two reasons, we consider a completeness proof to 
be mandatory. In fact, this proof states that our approach finally covers all cases (uncovered in previous approaches), thus 
ensuring completeness.

8. Related work

We have already explained in Section 2 the evolution of the SDG to treat exceptions with the definition of the ACFG 
and the PPDG. Here, we want to complement by commenting some approaches that have been a milestone in this area 
and that have inspired our work or are related to it. One of the most relevant initial approaches to exception-aware pro-
gram slicing was Allen and Horwitz [1], which took advantage of the existing representation of unconditional jumps to 
represent exception-causing instructions, such as throw. Regarding exception-catching constructs, they simulated the real 
control flow and added non-executable control flow to generate the extra dependences they needed inside try-catch blocks. 
Unfortunately, they failed to account for the conditional nature of catch statements. They did not consider the possibility of 
an exception escaping from the catch block and, thus, they did not represent the control dependence between this kind of 
catch statements and the code placed immediately after them.

Later, Jiang et al. [8] described a solution for C++. catch nodes are represented similar to an if-else chain, each trying to 
capture the exception before deferring onto the next catch or propagating it to the calling method. They also were aware of 
the necessity of representing data dependences from procedure calls to catch nodes, but did not generalize that concept to 
all exception sources and usages. Other approaches include Prabhu et al. [12], which centered around the exception system 
of C++, and its specific quirks and design choices; and Jie et al. [9], which combined object orientation and exception 
handling. Jie et al. focused on the object-oriented side, rather than on the exception side, for which they used an approach 
similar to Jiang et al.’s or Allen and Horwitz’s.

9. Conclusions

Program slicing is a powerful software analysis technique, powered by the system dependence graph, a directed graph 
that represents instructions and their dependences. In this paper, we introduce a new approach for program slicing with 
exception handling, merging the results of previous publications, extending those results, and creating a general algorithm 
that is valid for most programming languages with exception handling.

We have presented a counterexample to the current state of the art, which reveals a problem of incompleteness present 
in the literature; and we have proposed a solution, which we have proven complete. This solution also improves the pre-
cision of the slices by using a new notion of control dependence called conditional control dependence, which allows for the 
conditional inclusion of catch statements only when there is a statement that requires an exception to be caught, and at the 
same time, there exists a source of exceptions. Thus, we limit the inclusion of try-catch instructions and exception sources 
to the minimum necessary to generate complete slices.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Appendix A. Completeness proof of Theorem 1

This appendix has been included to ease the reviewers’ reading but, due to its length, it will be published as a separate 
technical report. Appendix A includes the proof of Theorem 1.

Theorem 1 (Completeness). Let P be a program and G = (N, A) its associated ES-CFG. Let node nsc ∈ N be the node associated with 
the slicing criterion 〈s, v〉. Slice(G, nsc) is a static backward slice with respect to 〈s, v〉.

Proof. Assuming that the SDG is already capable of producing slices for programs that do not contain exception-handling 
constructs, we only need to prove that the additions made do not modify the behaviour regarding other instructions, and 
14



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
1 void f() {
2 S1;
3 throw new Exception();
4 }
5
6 void g() {
7 S1;
8 try {
9 S2;

10 throw new Exception();
11 } catch (Exception e) {
12 S3;
13 }
14 S4;
15 }

16
17 Exception ex;
18 void h() {
19 S1;
20 try {
21 S2;
22 throw ex;
23 } catch (Exception e) {
24 S3;
25 }
26 S4;
27 }

Fig. A.12. Three procedures which throw an exception unconditionally, with no exception handling (f), complete exception handling (g), and partial excep-
tion handling (h).

that the behaviour related to exception-generating and handling constructs produces static backward slices (Definition 3). 
We prove the Theorem by induction on the size of the program.

Base case: We first consider the case when only one single try-catch block appears in the code, and make a case analysis 
to show that the slice produced is valid. For this, we study all possible places where the slicing criterion can be placed 
(inside the try block, at the catch instruction, inside the catch block, after the catch block...) and we also consider 
all possible situations that can happen depending on the exceptions raised (captured or not captured by each catch). 
This case is proved in Appendix A.1, where all possible combinations of a single exception source (either unconditional, 
conditional or a procedure call) with an exception-catching mechanism (or lack of it) are considered.

Induction hypothesis: We assume as the induction hypothesis that all the slices produced are valid (they fulfil the condi-
tions in Definition 3) with a program with n nested try-catch blocks.

Inductive case: Finally, we prove the inductive case, when n + 1 try-catch blocks are nested in any of the possible 
combinations mentioned. This is proven in Appendix A.2 with another exhaustive case analysis for all cases where the 
inner try-catch could contain any number of try-catch structures. Each combination is composed of three parts: 
the original code, the ES-SDG, and all the possible slices.

As both the inductive and the base case are proven, we can assert that all combinations of exception-related instructions 
are handled properly by the ES-SDG, being Algorithm 2 complete: it produces static backward slices in all cases.

A.1. Exception sources and simple exception-catching structures

Throughout the rest of the proof, we introduce instructions before and after each exception causing or catching excep-
tions, and they are labeled Sn , where n is a unique identifier in that procedure. They affect neither control nor data flow, 
and their purpose is to display the effects of exception-related instructions in normal instructions.

There are three kinds of exception sources: conditional, unconditional and procedures through which exceptions prop-
agate. On the other hand, we can consider three distinct cases: the exceptions generated are not caught (there is no
try-catch), they are partially caught (the try-catch lets some through and catches some), or they are completely 
caught (the try-catch captures all of them). If we combine both, there are nine distinct possibilities to consider.

In each case, we consider and describe all possible slices given the following slicing criteria: all nodes are possible 
statements, but we will consider that the set of variables is always the empty set, as the problem of exception handling is 
orthogonal to data dependence: the only relevant variable is the active exception, but it cannot be selected as criterion, as 
it is not a variable defined in the program.

A.1.1. Unconditional exception source
In this section we study the different possibilities produced by a single unconditional exception source, e.g. a throw

statement. As any code after an unconditional exception source is dead code, we will not place there a Sn instruction. 
Cases 1, 2, and 3 display the behaviour of unconditional exception sources.

Case 1 (Unconditional exception source, exception not handled). Consider procedure f, declared in lines 1-4 of Fig. A.12. It 
contains a single unconditional exception source, and no exception-catching instructions. Now consider its corresponding 
ES-SDG, shown in Fig. A.13. If the slicing criterion is either statement in the program (S1 or throw), only that statement 
and the Enter node is included in the slice. If the exception exit is reached via interprocedural arcs, S1 will not be included, 
15



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. A.13. ES-SDG corresponding to procedure f in Fig. A.12.

Fig. A.14. ES-SDG corresponding to procedure g in Fig. A.12.

as it is unnecessary for the slice. Finally, if normal exit is included in the slice, only the throw statement will be included. 
This can seem like an error in the ES-SDG, but normal exit is dead code (code that will never be executed), therefore all 
nodes that include (only) normal return and therefore normal exit are also dead code, and therefore the initial CFG is invalid.

Case 2 (Unconditional exception source, exception completely caught). Consider procedure g, declared in lines 6-15 of Fig. A.12. 
It contains a single unconditional exception source, and a try-catch instruction which catches all exceptions produced by 
the source. Now consider its corresponding ES-SDG, shown in Fig. A.14. Let’s now consider which nodes should be included 
for each slicing criterion:

• S1 or S2: the S statement and the Enter node are included. In the second case, try is also included. This will require a 
post-processing to either extract S2 and remove try, or add a catch block; such that the slice is compilable.

• throw: because there is no instruction after the try-catch included in the slice, there is no need to include catch
in it. As such, the slice consists of Enter, try and throw. A similar post-processing of the slice as in the previous item 
is needed to make the slice compilable.

• catch: in order to execute catch the same number of times, all exception sources should be included. And so it is, 
with the slice consisting of Enter, try, throw and catch. The Sn statements are unnecessary because the affect neither 
control nor data flow.

• S3: to execute an instruction in the catch’s body, we need to include the catch itself, plus all its dependencies (see 
previous item). The resulting slice is the one in the previous item, plus S3.

• S4: because the catch captures all exceptions produced within try, the whole try-catch has no influence on 
instructions that come after it. Whether or not an exception is thrown, S4 will be executed. Therefore, no node affects
S4, and the slice is Enter and S4.

• Normal exit behaves similarly to S4, because the only normal exit in the procedure comes immediately after it.
• Exception exit does not include any other node. This is because it is a “dead node”, as no exceptions may escape the try-
catch. However, if for other reasons the exception source is included, the catch node will be included via conditional 
arcs.
16



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. A.15. ES-SDG corresponding to procedure h in Fig. A.12.

1 void f() {
2 S1;
3 log(10 / 0);
4 S2;
5 }
6
7 void g() {
8 S1;
9 try {

10 S2;
11 log(10 / 0);
12 S3;
13 } catch (Exception e) {
14 S4;
15 }

16 S5;
17 }
18
19 void h() {
20 S1;
21 try {
22 S2;
23 log(10 / 0);
24 S3;
25 } catch (Exception e) { // TODO: not leaky!
26 S4;
27 }
28 S5;
29 }

Fig. A.16. Three procedures which throw an exception conditionally, with no exception handling (f), complete exception handling (g), and partial exception 
handling (h).

Case 3 (Unconditional exception source, exception partially caught). Consider procedure h, declared in lines 17-27 of Fig. A.12. 
It contains a single unconditional exception source, and a try-catch instruction which catches only some exceptions 
produced by the source. Now consider its corresponding ES-SDG, shown in Fig. A.15. Let’s now consider the slices produced 
when each node is selected as the slicing criterion, considering that, except for S4, normal exit and exception exit; all other 
nodes have no extra incoming arcs with respect to 2, and therefore the slices are equal. The slices that change are as 
follows:

• S4: because the exception may not be caught, there are control dependencies from throw and try, which means that 
the inclusion of the catch is also necessary. In the end, the slice is the whole try-catch except for S2 and S3.

• Normal exit: exactly the same as S4, but with normal exit in the slice instead of it.
• Exception exit: compared to 2, it now has a data dependency from throw, which means that the whole try-catch

(except for S2 and S3) is included in the slice.

A.1.2. Conditional exception source
In this section, we study the different possibilities produced by a single conditional exception source, e.g., a division 

where the divisor may be 0. The main two differences with unconditional exception sources are the fact that statements 
placed after it are no longer dead code and the change from pseudo-predicate to predicate, which lowers the number of 
control dependence arcs drawn (but not the actual dependences). As with unconditional exception sources, we place Sn-
type instructions to analyse the behaviour at all possible points relative to the exception generation and capture. Cases 4, 5, 
and 6 display the behaviour of conditional exception sources.

Case 4 (Conditional exception source, exception not handled). Consider procedure f, declared in lines 1-5 on Fig. A.16. It contains 
a single conditional exception source, and no exception-capturing instructions. Now consider its corresponding ES-SDG, 
shown in Fig. A.17. Let us consider each node as the slicing criterion and see the resulting slice:
17



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. A.17. ES-SDG corresponding to procedure f in Fig. A.16.

Fig. A.18. ES-SDG corresponding to procedure g in Fig. A.16.

• Enter: no other node is included.
• S1 or 10/0: only the slicing criterion and the Enter are included. In the case of S1, the exception source has no effect 

on it.
• S2 or exception exit: Enter and the exception source are included in the slice, on top of the slicing criterion. The execution 

of the exception source is relevant to the execution or lack thereof of either slicing criterion, so it must be included.
• Normal exit: compared to 1, in which the exception source was unconditional, normal exit is no longer considered “dead 

code”, and therefore is a valid slicing criterion which produces valid slices, which in this case includes Enter, the exception 
source and the slicing criterion.

Case 5 (Conditional exception source, exception completely caught). Consider procedure g, declared in lines 6-17 on Fig. A.16. It 
contains a single conditional exception source, which is captured every time by its surrounding try-catch. Now consider 
its corresponding ES-SDG, shown in Fig. A.18. When compared to unconditional exceptions, it is again very similar to the 
corresponding 2 and Fig. A.14: it has fewer arcs due to the exception source being a predicate and not a pseudo-predicate, 
and it has an additional node (S3). Notice how the addition has converted S3 and S4 in the unconditional case to S4 and
S5 in the conditional case.

Regarding the slices produced, they are the same for all nodes, except the newly introduced S3; whose slice would 
include Enter, try, the exception source and itself.

Case 6 (Conditional exception source, exception partially caught). Consider procedure h, declared in lines 19-29 on Fig. A.16. It 
contains a single conditional exception source, which is partially captured by its surrounding try-catch. Now consider its 
corresponding ES-SDG, shown in Fig. A.19. As with the previous example (5), there are many similarities with its uncondi-
tional exception counterpart (3): there are fewer control dependence arcs due to the conversion from pseudo-predicate to 
predicate, and there is an additional Sn node (S3). Again, the addition converts S3 and S4 to S4 and S5.

The slices produced by this graph are identical to those described in 3; and the slice of the newly introduced S3: Enter,
try, the exception source and itself.
18



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. A.19. ES-SDG corresponding to procedure h in Fig. A.16.

1 void mayFail() {
2 if (cond)
3 throw new Exception();
4 }
5
6 void f() {
7 S1;
8 mayFail();
9 S2;

10 }
11
12 void g() {
13 S1;
14 try {
15 S2;
16 mayFail();
17 S3;

18 } catch (Exception e) {
19 S4;
20 }
21 S5;
22 }
23
24 void h() {
25 S1;
26 try {
27 S2;
28 mayFail();
29 S3;
30 } catch (IOException e) {
31 S4;
32 }
33 S5;
34 }

Fig. A.20. Three procedures in which a procedure that may throw an exception is called, with no exception handling (f), complete exception handling (g), 
and partial exception handling (h). The called procedure’s code is displayed at the top (mayFail).

A.1.3. Procedures that throw exceptions
In this section, we study the different possibilities produced by a procedure call that may or not produce an exception. 

The handling is more complex, as the presence of exception return and normal return generate more variety. In spite of this, 
the dependencies generated are generally the same: the structures where exception sources are needed are the same; the 
representation of the exception is more granular. As with previous sections, we place Sn-type instructions, which behave in 
the control flow graph like statements, in order to be able to simulate and select all possible slicing criteria w.r.t. a procedure 
that may produce exceptions. Cases 7, 8, and 9 display the behaviour of procedure calls that may throw exceptions.

Case 7 (Procedure that may throw exceptions, exception not handled). Consider procedure f, declared in lines 6-10 on Fig. A.20. 
It contains a call to a procedure that may produce exceptions, mayFail, which in turn is declared in lines 1-4 on the 
aforementioned figure. Now consider its corresponding ES-SDG, shown in Fig. A.21. The call arc is represented with a 
dashed edge, and the return arcs are represented with dotted edges. Here are all nodes and the slices produced if they were 
selected as the slicing criterion:

• Enter: the resulting slice contains only itself.
• S1 or mayFail(): the resulting slice contains Enter and the slicing criterion.
• Normal return or exception return: the slice contains the corresponding exit node from the mayFail procedure definition,
throw, if, Enter mayFail, mayFail(), Enter and the slicing criterion.

• Exception exit: the slice contains the same nodes as exception return’s slice, plus the exception exit itself.
• Normal exit or S2: the slice contains the same nodes as normal return’s slice, plus the slicing criterion.
19



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. A.21. ES-SDG corresponding to procedure f in Fig. A.20.

Case 8 (Procedure that may throw exceptions, exceptions completely caught). Consider procedure g, declared in lines 12-22 on 
Fig. A.20. It contains a call to a procedure that may produce exceptions, mayFail, which in turn is declared in lines 1-4 
on the aforementioned figure. Now consider its corresponding ES-SDG, shown in Fig. A.22. The call arc is represented with 
a dashed edge, and the return arcs are represented with dotted edges. Here are all nodes and the slices produced if they 
were selected as the slicing criterion:

• Enter: the resulting slice contains only itself.
• S1 or try: the slice contains the slicing criterion and Enter.
• S2 or mayFail(): the slice contains the slicing criterion, Enter and try.
• Normal return or exception return: the slice contains the corresponding exit node from the mayFail proce-

dure definition, throw, if, Enter mayFail, mayFail(), Enter and the slicing criterion.
• S3: the slice contains the nodes of normal return’s slice and the slicing criterion itself.
• catch: the slice contains the nodes of exception return’s slice and the slicing criterion.
• S4: the slice contains the nodes of catch’s slice and the slicing criterion.
• S5 or normal exit: the slice contains the slicing criterion and Enter. It does not need any node from the try-catch, as 

all exceptions produced are captured. If for any reason an exception source (either mayFail() or exception return) is 
included, then the catch node would also be included, by virtue of the conditional control flow.

• Exception exit: no node is included in the slice, because there is no exception may reach this node. The only case where 
additional nodes will be included is when an exception source is present, and therefore the catch node would be 
needed.

Case 9 (Procedure that may throw exceptions, exceptions partially caught). Consider procedure h, declared in lines 24-34 on 
Fig. A.20. It contains a call to a procedure that may produce exceptions, mayFail, which in turn is declared in lines 1-4 
on the aforementioned figure. Now consider its corresponding ES-SDG, shown in Fig. A.23. The call arc is represented with 
a dashed edge, and the return arcs are represented with dotted edges. Here are all nodes and the slices produced if they 
were selected as the slicing criterion:

• S5, exception exit or normal exit: the slice contains Enter, try, mayFail(), the complete procedure declaration of may-
Fail, normal return, exception return, catch and the slicing criterion. In the case of exception exit, notice how the data 
20



Fig. A.22. ES-SDG corresponding to procedure g in Fig. A.20.

dependency of the “active exception” picks up the exception return node, and otherwise the slice would include nothing 
more than exception exit.

• All other nodes behave in the same way as in 8.

A.2. Nested exception-catching structures

Consider a procedure with n try-catch instructions, all of them nested; and assume that the ES-SDG is capable of 
producing valid slices. Now consider the case where the outermost try-catch is surrounded by another try-catch, 
creating a nested structure of n + 1 try-catch instructions. Each try-catch may contain other additional instructions 
and exception sources apart from the try-catch it holds, but it is not required to do so. In this section, we showcase the 
six possible combinations that the n + 1st try-catch introduces in the system.

Throughout this section, we label all exception sources from within the n nested try-catch as the inner exception 
sources, and all exception sources from within the additional try-catch (but not within the n inner blocks) as the
outer exception sources. Then, we consider where are these two kinds of exception sources captured. In the case of inner 
exceptions, it can either be in any of the inner catch blocks, in the outer catch block or nowhere in the procedure–
meaning they propagate through the call stack. In the case of outer exceptions, due to them being outside the inner try-
catch blocks, they cannot be captured by inner catch blocks, so they can be captured by either the outer catch block 
or nowhere in the procedure. Table A.2 shows the combination of the two locations where inner and outer exceptions are 
captured, which results in six different situations: six different ES-SDGs.

In each ES-SDG present, the code is the same, but the exceptions caught at each level vary. A simplified pseudocode is 
used, in order to avoid changing the catch and exception source’s type to reflect where each exception is captured. The 
pseudo-code for the procedure can be seen in Fig. A.24, where instructions labeled Sn are statements without any effect 
on control or data dependence; exception sources are displayed as inner_source and outer_source; and catch
C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
21



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832

Fig. A.23. ES-SDG corresponding to procedure h in Fig. A.20.

Table A.2
All possible combinations for the location where inner and outer exception are caught (either 
in inner catch blocks, outer catch nodes or none).

Case number 1 2 3 4 5 6

Where are inner 
exceptions caught

inner outer none inner outer none

Where are outer 
exceptions caught

outer outer outer none none none

1 void nested() {
2 S1;
3 try {
4 S2;
5 try {
6 S3;
7 inner_source;
8 S4;
9 } catch (Inner i) {

10 S5;

11 }
12 S6;
13 outer_source;
14 S7;
15 } catch (Outer o) {
16 S8;
17 }
18 S9;
19 }

Fig. A.24. A procedure with two exception sources in two nested try-catch blocks. Instructions of the form Sn are statements that do not generate data 
or control dependencies.
22



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. A.25. The ES-SDG corresponding to the code in Fig. A.24, in the case 1 of Table A.2.

instructions are labeled Inner and Outer to be distinguishable. The following sections showcase the ES-SDG produced for 
each situation and the slices that it results in.

A.2.1. Case 1
Consider the case when the exceptions produced in each source are contained at the same level; inner exception sources 

in the inner catch and outer exception sources in the outer catch. The corresponding ES-SDG for this case is shown in 
Fig. A.25. The slices produced by selecting each node are the following:

Enter Only the slicing criterion is in the slice.
S1, try (outer), S9 or normal exit The slice consists of the Enter node and the slicing criterion.
S2, try (inner), outer_source or S6 The slice consists of the Enter node, the slicing criterion and the outer try node.
S3 or inner_source The slice consists of the Enter node, the slicing criterion and both try nodes (inner and outer).
S4 or catch (inner) The slice consists of inner_source’s slice, plus the slicing criterion.
S5 The slice consists of inner catch’s slice, plus the slicing criterion.
S7 or catch (outer) The slice consists of outer_source’s slice, plus the slicing criterion.
S8 The slice consists of outer catch’s slice, plus the slicing criterion.
exception exit The slice consists of the slicing criterion, as no exception can reach that node and therefore, it is a “dead 

node”.

It is also interesting to consider the case where, instead of selecting a slicing criterion, we select an initial set of nodes 
in the slice and continue from there. The first we could build would be to select both exception sources simultaneously. 
The result is that the inner catch is included, but not the outer one, as there are no instructions after it that need to be 
executed. Another one is selecting a statement after the try-catch (S9) and one of the exception sources. The resulting 
slice in this case would include the corresponding catch (the inner one for the inner source and the outer one for the 
23



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. A.26. The ES-SDG corresponding to the code in Fig. A.24, in the case 2 of Table A.2.

outer source). Finally, if both exception sources are included, plus S9, both catch statements are necessary; and both are 
included in the slice via conditional arcs.

A.2.2. Case 2
Consider the case when the exceptions produced in the inner source are captured either in the inner or outer catch; 

and the exceptions produced in the outer source are captured in the outer catch. The corresponding ES-SDG for this case 
is shown in Fig. A.26. The slices produced by selecting each node are the following:

Enter Only the slicing criterion is in the slice.
S1, try (outer), S9 or normal exit The slice consists of the Enter node and the slicing criterion.
S2 or try (inner) The slice consists of the Enter node, the slicing criterion and the outer try node.
S3 or inner_source The slice consists of the Enter node, the slicing criterion and both try nodes (inner and outer).
S4, catch (inner), outer_source or S6 The slice consists of inner_source’s slice, plus the slicing criterion.
S5 The slice consists of inner catch’s slice, plus the slicing criterion.
S7 or catch (outer) The slice consists of outer_source’s slice, plus the slicing criterion.
S8 The slice consists of outer catch’s slice, plus the slicing criterion.
exception exit The slice consists of the slicing criterion, as no exception can reach that node and therefore, it is a “dead 

node”.

Notice how the control dependency arcs reflect the fact that inner_source’s exception is not completely captured by 
the inner catch, and therefore, the instructions that follow it are dependent on inner_source’s execution. In the case 
of S4, S6 and outer_source, the control dependence from inner_source and the conditional arcs are the reason for 
the inclusion of catch.
24



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. A.27. The ES-SDG corresponding to the code in Fig. A.24, in the case 3 of Table A.2.

A.2.3. Case 3
Consider the case when the exceptions produced in the inner source are partially captured either in the inner or outer

catch; and the exceptions produced in the outer source are captured in the outer catch. The corresponding ES-SDG for 
this case is shown in Fig. A.27. The slices produced by selecting each node are the following:

Enter Only the slicing criterion is in the slice.
S1 or try (outer) The slice consists of the Enter node and the slicing criterion.
S2 or try (inner) The slice consists of the Enter node, the slicing criterion and the outer try node.
S3 or inner_source The slice consists of the Enter node, the slicing criterion and both try nodes (inner and outer).
S4, catch (inner), outer_source or S6 The slice consists of inner_source’s slice, plus the slicing criterion.
S5 The slice consists of inner catch’s slice, plus the slicing criterion.
S7, catch (outer), S9 or normal exit The slice consists of outer_source’s slice, plus the slicing criterion.
S8 The slice consists of outer catch’s slice, plus the slicing criterion.
exception exit The slice consists of exception exit, both catch nodes, inner_source, both try nodes and Enter.

In the case of exception exit, notice how (1) the inclusion of catch nodes is via conditional arcs, (2) the inclusion of the 
inner catch is performed thanks to the transitivity of conditional arcs, and (3) the outer_source is not included, as it is 
completely captured by the outer catch, which means that it cannot produce an exception that reaches exception exit. The 
same exercise of selecting multiple nodes can be performed, but most of them pick inner_source almost immediately, 
due to its exceptions never being completely captured.

A.2.4. Case 4
Consider the case when the exceptions produced in the inner source are captured in the inner catch, and the exceptions 

produced in the outer source are not completely captured. The corresponding ES-SDG for this case is shown in Fig. A.28. 
The slices produced by selecting each node as the slicing criterion are the following:
25



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. A.28. The ES-SDG corresponding to the code in Fig. A.24, in the case 4 of Table A.2.

Enter Only the slicing criterion is in the slice.
S1 or try (outer) The slice consists of the Enter node and the slicing criterion.
S2, try (inner), outer_source or S6 The slice consists of the Enter node, the slicing criterion and the outer try node.
S3 or inner_source The slice consists of the Enter node, the slicing criterion and both try nodes (inner and outer).
S4 or catch (inner) The slice consists of inner_source’s slice, plus the slicing criterion.
S5 The slice consists of inner catch’s slice, plus the slicing criterion.
S7 or catch (outer) The slice consists of outer_source’s slice, plus the slicing criterion.
S8, S9, normal exit or exception exit The slice consists of outer catch’s slice, plus the slicing criterion.

Observe how the data dependency that reaches exception exit is the reason for the inclusion of the appropriate exception 
source. Additionally, notice how the inner catch will only be included when (i) the inner exception source and (ii) any 
instruction after the inner try-catch are simultaneously present in the slice; with (ii) being any of S6, outer_source,
S7, outer catch, S8, S9 or any of the exit nodes.

A.2.5. Case 5
Consider the case when the exceptions produced in the inner source are completely caught in the outer catch, and 

those produced in the outer source are not completely captured. The corresponding ES-SDG for this case is shown in 
Fig. A.29. The slices produced by selecting each node as the slicing criterion are the following:

Enter Only the slicing criterion is in the slice.
S1 or try (outer) The slice consists of the Enter node and the slicing criterion.
S2 or try (inner) The slice consists of the Enter node, the slicing criterion and the outer try node.
S3 or inner_source The slice consists of the Enter node, the slicing criterion and both try nodes (inner and outer).
S4 or catch (inner) The slice consists of inner_source’s slice, plus the slicing criterion.
26



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. A.29. The ES-SDG corresponding to the code in Fig. A.24, in the case 5 of Table A.2.

S5, outer_source or S6 The slice consists of inner catch’s slice, plus the slicing criterion.
S7 or catch (outer) The slice consists of outer_source’s slice, plus the slicing criterion.
S8, S9, normal exit or exception exit The slice consists of outer catch’s slice, plus the slicing criterion.

Similarly to the previous case (4), the inclusion of exception exit is done via data dependencies. Notice how there is no 
data dependence between the inner source and exception exit, because the value thrown there cannot reach the exit, as it is 
completely captured by the outer catch.

A.2.6. Case 6
Consider the case when the exceptions produced in the inner and outer sources are not completely caught in any

catch. The corresponding ES-SDG for this case is shown in Fig. A.30. The slices produced by selecting each node as the 
slicing criterion are the following:

Enter Only the slicing criterion is in the slice.
S1 or try (outer) The slice consists of the Enter node and the slicing criterion.
S2 or try (inner) The slice consists of the Enter node, the slicing criterion and the outer try node.
S3 or inner_source The slice consists of the Enter node, the slicing criterion and both try nodes (inner and outer).
S4 or catch (inner) The slice consists of inner_source’s slice, plus the slicing criterion.
S5, outer_source or S6 The slice consists of inner catch’s slice, plus the slicing criterion.
S7 or catch (outer) The slice consists of outer_source’s slice, plus the slicing criterion.
S8, S9, normal exit or exception exit The slice consists of outer catch’s slice, plus the slicing criterion.

Notice that the only difference between the ES-SDG for Case 6 (Fig. A.30) and Case 5 (Fig. A.29) is the addition of the 
data dependence between the inner exception source and exception exit.
27



C. Galindo, S. Pérez and J. Silva Journal of Logical and Algebraic Methods in Programming 130 (2023) 100832
Fig. A.30. The ES-SDG corresponding to the code in Fig. A.24, in the case 6 of Table A.2.

References

[1] Matthew Allen, Susan Horwitz, Slicing Java programs that throw and catch exceptions, SIGPLAN Not. 38 (10) (June 2003) 44–54.
[2] Thomas Ball, Susan Horwitz, Slicing programs with arbitrary control-flow, in: Proceedings of the First International Workshop on Automated and 

Algorithmic Debugging, AADEBUG ’93, Springer-Verlag, London, UK, 1993, pp. 206–222.
[3] Richard A. DeMillo, Hsin Pan, Eugene H. Spafford, Critical slicing for software fault localization, SIGSOFT Softw. Eng. Notes 21 (3) (May 1996) 121–134.
[4] Jeanne Ferrante, Karl J. Ottenstein, Joe D. Warren, The program dependence graph and its use in optimization, ACM Trans. Program. Lang. Syst. 9 (3) 

(1987) 319–349.
[5] Andy Georges, Dries Buytaert, Lieven Eeckhout, Statistically rigorous Java performance evaluation, SIGPLAN Not. 42 (10) (October 2007) 57–76.
[6] Ákos Hajnal, István Forgács, A demand-driven approach to slicing legacy COBOL systems, J. Softw. Maint. 24 (1) (2012) 67–82.
[7] Susan Horwitz, Thomas Reps, David Binkley, Interprocedural slicing using dependence graphs, ACM Trans. Program. Lang. Syst. 12 (1) (1990) 26–60.
[8] S. Jiang, S. Zhou, Y. Shi, Y. Jiang, Improving the preciseness of dependence analysis using exception analysis, in: 2006 15th International Conference on 

Computing, IEEE, Nov 2006, pp. 277–282.
[9] H. Jie, J. Shu-juan, H. Jie, An approach of slicing for object-oriented language with exception handling, in: 2011 International Conference on Mechatronic 

Science, Electric Engineering and Computer (MEC), Aug 2011, pp. 883–886.
[10] Sumit Kumar, Susan Horwitz, Better slicing of programs with jumps and switches, in: Proceedings of the 5th International Conference on Fundamental 

Approaches to Software Engineering (FASE 2002), in: Lecture Notes in Computer Science (LNCS), vol. 2306, Springer, 2002, pp. 96–112.
[11] Anirban Majumdar, Stephen J. Drape, Clark D. Thomborson, Slicing obfuscations: design, correctness, and evaluation, in: Proceedings of the 2007 ACM 

Workshop on Digital Rights Management, DRM ’07, ACM, New York, NY, USA, 2007, pp. 70–81.
[12] Prakash Prabhu, Naoto Maeda, Gogul Balakrishnan, Interprocedural exception analysis for C++, in: Proceedings of the 25th European Conference on 

Object-Oriented Programming, ECOOP’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 583–608.
[13] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John Hatcliff, Matthew B. Dwyer, A new foundation for control dependence and slicing 

for modern program structures, ACM Trans. Program. Lang. Syst. 29 (5) (August 2007) 27–es.
[14] S. Sinha, M.J. Harrold, Analysis of programs with exception-handling constructs, in: Proceedings. International Conference on Software Maintenance 

(Cat. No. 98CB36272), IEEE, Nov 1998, pp. 348–357.
[15] Mark Weiser, Program slicing, in: Proceedings of the 5th International Conference on Software Engineering (ICSE ’81), IEEE Press, Piscataway, NJ, USA, 

1981, pp. 439–449.
28

http://refhub.elsevier.com/S2352-2208(22)00085-2/bib5AABBBEE166824426A8CB5FB306767C6s1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bib7D8480651C07BB97DA3A9DFF119E58AFs1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bib7D8480651C07BB97DA3A9DFF119E58AFs1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bib1912B72A25ABD0D37B6F19957C46C17Bs1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibBBF5B427FB7E39C18068949419CA608Es1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibBBF5B427FB7E39C18068949419CA608Es1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bib2F2F04FADFEDA3CA282E28F9B0C6F076s1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bib7A1FB145B7589024940204DF9CB226B1s1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibF4D76D3A7B04751DB990E223A0E11CADs1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibA927783F128AB1957CA756EC31C16827s1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibA927783F128AB1957CA756EC31C16827s1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibFE1C4974E6411F5DE7A76300DD43B166s1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibFE1C4974E6411F5DE7A76300DD43B166s1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibEB31607B474C15B3E76BAAD0342059ADs1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibEB31607B474C15B3E76BAAD0342059ADs1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibB70E2A0522EFAFCF89017F13B289A3CBs1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibB70E2A0522EFAFCF89017F13B289A3CBs1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibFB4BCE1FDDADCA0D63E204DFB8BF85A6s1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bibFB4BCE1FDDADCA0D63E204DFB8BF85A6s1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bib1E07EB4BE9E6E404786858788B452C1Fs1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bib1E07EB4BE9E6E404786858788B452C1Fs1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bib0FD3ED4D72AA0EE6D8F0018CE58543E7s1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bib0FD3ED4D72AA0EE6D8F0018CE58543E7s1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bib87159C830B41258C80E133E24CF41C2As1
http://refhub.elsevier.com/S2352-2208(22)00085-2/bib87159C830B41258C80E133E24CF41C2As1

	Exception-sensitive program slicing
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Program slicing based on dependence graphs
	2.2 Augmented control flow graph (ACFG)
	2.3 Pseudo-predicate program dependence graph (PPDG)
	2.4 System dependence graph (SDG) and slice computation

	3 A new kind of dependence generated by catch statements
	4 Extending the SDG to make it exception-sensitive
	4.1 Modifications to the ACFG to create the ES-ACFG
	4.2 Modifications to the PPDG to create the ES-PPDG
	4.3 From ES-PPDGs to the final ES-SDG

	5 Slicing conditional control dependence arcs
	6 Empirical evaluation
	7 Completeness of the ES-SDG
	8 Related work
	9 Conclusions
	Declaration of competing interest
	Appendix A Completeness proof of Theorem 1
	A.1 Exception sources and simple exception-catching structures
	A.1.1 Unconditional exception source
	A.1.2 Conditional exception source
	A.1.3 Procedures that throw exceptions

	A.2 Nested exception-catching structures
	A.2.1 Case 1
	A.2.2 Case 2
	A.2.3 Case 3
	A.2.4 Case 4
	A.2.5 Case 5
	A.2.6 Case 6


	References


