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a b s t r a c t

Based on the previous literature about the random logistic and Gompertz models, the
aim of this paper is to extend the investigations to the generalized logistic differential
equation in the random setting. First, this is done by rigorously constructing its solu-
tion in two different ways, namely, the sample-path approach and the mean-square
calculus. Secondly, the probability density function at each time instant is derived in
two ways: by applying the random variable transformation technique and by solving
the associated Liouville’s partial differential equation. It is also proved that both the
stochastic solution and its density function converge, under specific conditions, to
the corresponding solution and density function of the logistic and Gompertz models,
respectively. The investigation finishes showing some examples, where a number of
computational techniques are combined to construct reliable approximations of the
probability density of the stochastic solution. In particular, we show, step-by-step, how
our findings can be applied to a real-world problem.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper is a contribution to the field of random differential equations. These are defined as classical differential
quations whose coefficients and initial conditions are random variables or stochastic processes, and the solution is
differentiable stochastic process [1–3]. Due to the existence of different types of limits in probability theory, such

olution may have different interpretations: sample-path, mean-square, etc. The sample-path notion, which refers to the
rajectories of the solution, is the weakest and the usual one in a computational setting [1,4–7]

The statistical content of the solution is of interest. When the interest relies on the moments, different techniques may
e used: Monte Carlo simulation, based on sampling and calculating the statistics of the sample; perturbation expansions,
ased on Taylor’s expansions around a parameter with a certain radius of convergence; generalized polynomial chaos
xpansions, constructed from orthogonal polynomials; etc. [8,9]. On the other hand, for the explicit computation of
he probability density function (PDF), the Random Variable Transformation (RVT) technique has been of use in the
iterature when a closed-form solution exists [10–12]. This method has been applied to the solution of the logistic random
ifferential equation [13,14]. A complementary approach is based on the resolution of the Liouville’s partial differential
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equation (PDE) [15–19]. A recent application of Liouville’s equation can be found for the Gompertz random differential
equation [20].

The logistic differential equation has been generalized in different senses to better modeling the dynamics of real-
orld phenomena where it has been applied. This generalization has included its reformulation in terms of fractional
erivatives; the substitution of the contagion rate term by a power-law function, etc. [21–23]. In this paper, we deal with
he following generalization of the logistic differential equation

Y ′(t) = AY (t)

(
1 −

(
Y (t)
K

)B
)

, t ≥ t0, Y (t0) = Y0. (1.1)

s usual, t is interpreted as the time. The parameter A is the growth rate, K is the carrying capacity, and B is a power
hat controls how fast the limiting number K is approached. When B = 1, the classical logistic differential equation is
btained. And when B tends to 0, the Gompertz equation is given. Indeed, given A, B > 0, we put Â = AB, and then (1.1)
an be written as

Y ′(t) =
Â
B
Y (t)

(
1 −

(
Y (t)
K

)B
)

. (1.2)

ow, let us calculate the limit as B → 0+ of the following term that defines the right-hand side of the above equation:

lim
B→0+

(
1 −

( Y (t)
K

)B)
B

= lim
B→0+

−

(
Y (t)
K

)B

ln
(
Y (t)
K

)
= − ln

(
Y (t)
K

)
= ln

(
K

Y (t)

)
.

s a consequence, as B → 0+, the differential equation (1.1) can be expressed as

Y ′(t) = ÂY (t) ln
(

K
Y (t)

)
,

which corresponds to the Gompertz model [24,25]. The incorporation of the power B allows for more flexible S-shaped
urves to model growth phenomena over time. Examples of application include tumor growth [26–29] and diseases such
s SARS [30,31], dengue fever [32], influenza H1N1 [33], Zika [34], Ebola [35], and COVID-19 [36–39].
We investigate the random counterpart of (1.1), in order to extend the previous literature on the logistic random

ifferential equation [13,14] and the Gompertz random differential equation [20]. It is assumed that B > 0, K > 0,
Y0 ∈ [0, K ] (almost surely) and A are random variables on a common underlying and complete probability space (Ω,F,P).
Due to uncertainty propagation, the solution Y (t) is a differentiable stochastic process. The randomness of the parameters
arises from the uncertainty inherent to the problem that in principle cannot be reduced by additional knowledge [9].

The organization of the remaining part of the paper is the following. In Section 2, the sample-path and mean-square
solution to (1.1) is rigorously found. In Section 3, the PDF of the solution is obtained in two ways, by the RVT technique
and by solving the Liouville’s PDE. In Section 4, the behavior of the solution, when the power tends to 1 or 0, is examined
(through the mean-square convergence and also via the convergence of the densities) to replicate the deterministic
counterpart. In Section 5, we illustrate our main findings with two examples that include a real-world application. Finally,
in Section 6, the main conclusions are drawn.

2. Stochastic solution

In this section, we investigate the existence and uniqueness of a stochastic solution to the generalized logistic random
differential equation model (1.1). Two notions of solution are treated: sample-path solution and mean-square solution.

2.1. Sample-path solution

It is known that Y (t) is a sample-path solution to (1.1) if Y is a stochastic process [i.e. measurable from (Ω,F) to
(R, Borel sets) for each t ≥ t0] and its trajectories solve (1.1) on [t0, ∞) in a deterministic sense [2, chapter 3], [1,
Appendix I]. The construction of the sample-path solution is usually straightforward; one merely solves the deterministic
problem and checks that the conditions for being a sample-path solution (measurability and common time domain for
the trajectories) are satisfied.

In the present case, model (1.1) corresponds to a Bernoulli differential equation. After the standard change of variables
X = Y−B, a linear differential equation is derived for X . At the end, the solution to (1.1) becomes

Y (t) =
K[

1 +

(
−1 +

(
K
Y0

)B)
e−AB(t−t0)

]1/B . (2.1)

hen 0 ≤ Y0 ≤ K almost surely Y (t), which is defined by (2.1), is the sample-path solution and it lies within [0, K ]

almost surely, for every t ≥ t .
0
2
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2.2. Mean-square solution

It is known that Y (t) is a mean-square solution to (1.1) when the derivative in (1.1) (and in general any limit) is
considered in the metric of the Lebesgue space L2(Ω, dP), [2, chapter 4], [1,3]. This space is Hilbert with the inner product
(Y1, Y2) ↦→ E[Y1Y2] =

∫
Ω
Y1Y2 dP, where E denotes the expectation operator. It consists of the random variables with finite

variance. The norm of L2(Ω, dP) is denoted by ∥ · ∥2. Mean-square convergence is of great interest because convergence in
this setting implies convergence of the two most sought moments of a stochastic process: the mean and the variance [1].

Among the remaining Lebesgue spaces (Lp(Ω, dP), ∥ · ∥p), the case p = ∞, whose norm ∥ · ∥∞ corresponds to the
almost surely least upper bound (essential supremum), will be needed.

Let us see that the sample-path solution defined by (2.1) is also the mean-square solution on [t0, ∞), whenever
∥ A ∥∞< ∞, B > 0 almost surely, ∥ B ∥∞< ∞, 0 ≤ Y0 ≤ K almost surely, and 0 < κ0 ≤ K ≤ κ1 < ∞ almost
surely, where κ0 and κ1 are constant.

Let

F (Y , ω) = A(ω)Y

(
1 −

(
Y

K (ω)

)B(ω)
)

, Y ∈ [0, K (ω)], ω ∈ Ω.

Fix an ω ∈ Ω . By the triangular inequality and the mean value theorem, it is easy to see that F (·, ω) is Lipschitz on
[0, K (ω)], with Lipschitz constant ∥ A ∥∞ (1 + κ1 ∥ B ∥∞ /κ0):

|F (Y1, ω) − F (Y2, ω)| =

⏐⏐⏐⏐⏐A(ω)Y1

(
1 −

(
Y1

K (ω)

)B(ω)
)

− A(ω)Y2

(
1 −

(
Y2

K (ω)

)B(ω)
)⏐⏐⏐⏐⏐

≤ |A(ω) ∥ Y1 − Y2|

(
1 −

Y1

K (ω)

)B(ω)

+|A(ω)|Y2

⏐⏐⏐⏐⏐
(
1 −

Y1

K (ω)

)B(ω)

−

(
1 −

Y2

K (ω)

)B(ω)
⏐⏐⏐⏐⏐

≤ ∥ A ∥∞ |Y1 − Y2|+ ∥ A ∥∞ |Y2|
∥ B ∥∞

κ0
|Y1 − Y2|

≤ ∥ A ∥∞

(
1 +

κ1 ∥ B ∥∞

κ0

)
|Y1 − Y2|.

By Tietze extension theorem [40, Th. 1], F (·, ω) can be extended to a Lipschitz map F̃ (·, ω) : R → R with Lipschitz
onstant ∥ A ∥∞ (1+ κ1 ∥ B ∥∞ /κ0). Consider Y ′(t) = F̃ (Y (t)). By [2, Th. 4.3], [1, Th. 5.1.2], the Lipschitz condition on the
hole R implies that the problem Y ′(t) = F̃ (Y (t)), Y (t0) = Y0, possesses a unique mean-square solution on [t0, ∞). Any
ean-square solution is equivalent to the sample-path solution [41, Th. 3(a)], which is (2.1) precisely. Then (2.1) is the
ean-square solution. This completes the proof.

. Two methods for computing the PDF of the solution stochastic process

In this section, we compute the PDF of Y (t), denoted as fY (t)(y). By definition, the PDF is a non-negative Borel
easurable function characterized by P[Y (t) ∈ B] =

∫
B fY (t)(y) dy for any Borel set B in R. Two complementary techniques

are employed: the application of the RVT method and the resolution of the Liouville’s PDE. The former requires the
computation of a Jacobian, while the latter needs the resolution of the continuity equation. The computation of the PDF
is advantageous since it allows for the computation of any one-dimensional moment

E[(Y (t))k] =

∫
∞

−∞

ykfY (t)(y) dy, k = 1, 2, . . . , (3.1)

provided it exists. In particular, the mean (case k = 1) and the variance (from k = 2), V[Y (t)] = E[(Y (t))2] − (E[Y (t)])2.

.1. First method: RVT technique

Let (Y0, K , A, B) be an absolutely continuous random vector with a certain joint probability distribution, f(Y0,K ,A,B). Fix
t ≥ t0. To apply the technique, we need a transformation that relates the inputs, (Y0, K , A, B), to the output, Y (t). The
transformation mapping is the following:

g(Y0, K , A, B) =

⎛⎜⎜⎜⎝ K[
1 +

(
−1 +

(
K
Y

)B)
e−AB(t−t0)

]1/B , K , A, B

⎞⎟⎟⎟⎠ ,
0

3



V. Bevia, J. Calatayud, J.-C. Cortés et al. Communications in Nonlinear Science and Numerical Simulation 116 (2023) 106832

T

S
m

N
i
b

v

w

where the auxiliary components K , A and B have been conveniently chosen. The inverse mapping is computed easily:

h(Y , K , A, B) =

⎛⎜⎝ K[
1 +

(
−1 +

( K
Y

)B)
eAB(t−t0)

]1/B , K , A, B

⎞⎟⎠ .

he Jacobian of h is the determinant of the matrix of first partial derivatives of h:

Jh(Y , K , A, B) =
∂Y0

∂Y
=

K 1+BeAB(t−t0)

Y B+1
[
1 +

(
−1 +

( K
Y

)B)
eAB(t−t0)

]1/B+1 > 0.

uch positivity holds because 0 < Y < K and B > 0 almost surely. By the RVT formula [12], [42, Th. 2.1.5], and after
arginalizing with respect to K , A and B, the PDF of Y (t) is obtained in a semi-implicit manner through a triple integral:

fY (t)(y) =

∫
D(K ,A,B)

f(Y0,K ,A,B)

⎛⎜⎝ K[
1 +

(
−1 +

( K
Y

)B)
eAB(t−t0)

]1/B , K , A, B

⎞⎟⎠
×

K 1+BeAB(t−t0)

Y B+1
[
1 +

(
−1 +

( K
Y

)B)
eAB(t−t0)

]1/B+1 dK dA dB. (3.2)

Here D(K ,A,B) denotes the support of (K , A, B).
The PDF (3.2) is the general formula. Sometimes, it may be simplified. First, if Y0, K , A and B are independent random

variables, then the joint PDF f(Y0,K ,A,B) factorizes:

f(Y0,K ,A,B) = fY0 × fK × fA × fB.

In consequence, the PDF of the solution can be expressed via an expectation

fY (t)(y) =

∫
DB

∫
DA

∫
DK

fY0

⎛⎜⎜⎜⎝ K[
1 +

(
−1 +

(
K
y

)B)
eAB(t−t0)

]1/B
⎞⎟⎟⎟⎠ fK (K )fA(A)fB(B)

×
K 1+BeAB(t−t0)

yB+1

[
1 +

(
−1 +

(
K
y

)B)
eAB(t−t0)

]1/B+1 dK dA dB

= E

⎡⎢⎢⎢⎣fY0

⎛⎜⎜⎜⎝ K[
1 +

(
−1 +

(
K
y

)B)
eAB(t−t0)

]1/B
⎞⎟⎟⎟⎠ K 1+BeAB(t−t0)

yB+1

[
1 +

(
−1 +

(
K
y

)B)
eAB(t−t0)

]1/B+1

⎤⎥⎥⎥⎦ .

ote that this is a parametric approximation of the PDF because it is obtained as an expectation of a transformation of the
nput random variables (A, B, K ). This PDF representation is beneficial since Monte Carlo simulation can be easily applied
y sampling the involved random variables and then computing the expectation that approximates the PDF [43].
Secondly, if an input random variable (Y0, K , A or B) is discrete, rather than absolutely continuous, its PDF may be

iewed in a generalized sense. For example, if K is discrete, then

fK (k) =

∑
i

kiδ0(k − ki),

here ki > 0 are the mass points of the discrete random variable K and δ0 is the Dirac delta function (everywhere zero
but with infinite value at the origin and integral equal to 1). The integral over DK would become a sum over the points
{ki}i.

3.2. Second method: Liouville’s PDE

The procedure and the notation from [20] are replicated. Let us denote model (1.1) as
′
Y (t) = g(Y (t), K , A, B),

4
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where

g(Y , K , A, B) = AY

(
1 −

(
Y
K

)B
)

. (3.3)

his g , and later h, are different to those from the previous subsection, and match with [20]. The Liouville’s PDE for the
oint PDF of (Y (t), K , A, B), f(Y (t),K ,A,B)(y, K , A, B), is

∂ f (y, K , A, B)
∂t

+
∂{f (y, K , A, B)g(y, K , A, B)}

∂y
= 0,

where the notation f := f(Y (t),K ,A,B) was used in order to shorten the expression. Such partial derivative with respect to
y is the divergence operator in dimension one. By computing the derivative of the product in the second summand, we
can obtain an alternative and useful formulation of the Liouville’s PDE,

∂ f (y, K , A, B)
∂t

+ g(y, K , A, B)
∂ f (y, K , A, B)

∂y
= −f (y, K , A, B)

∂g(y, K , A, B)
∂y

. (3.4)

he explicit solution to the Liouville’s equation is [1, Chapter 6]

f(Y (t),K ,A,B)(y, K , A, B) = f(Y0,K ,A,B)(Y0, K , A, B) exp
(

−

∫ t

t0

∂g
∂Y

(Y (τ ), K , A, B) dτ
)⏐⏐⏐⏐

Y0=h−1(y,K ,A,B,t)

,

where Y (t) = h(Y0, K , A, B, t) is the input–output relation and

Y0 = h−1(Y , K , A, B, t) =
K[

1 +

(
−1 +

( K
Y

)B)
eAB(t−t0)

]1/B
s the inverse relation, in terms of the initial condition. The partial derivative of g with respect to Y is

∂g
∂Y

= A

(
1 −

(
Y
K

)B
)

−
AB
K B Y

B.

An important term in the solution of the Liouville’s PDE is

exp
(

−

∫ t

t0

∂g
∂Y

(Y (τ ), K , A, B) dτ

)
= e−A(t−t0)

(
K B

+ (−1 + eAB(t−t0))Y B
0

)(1+B)/B

K 1+B .

Then the Jacobian of the RVT formula is retrieved as

exp
(

−

∫ t

t0

∂g
∂Y

(Y (τ ), K , A, B) dτ
)⏐⏐⏐⏐

Y0=h−1(y,K ,A,B,t)

=
K 1+BeAB(t−t0)

Y B+1
[
1 +

(
−1 +

( K
Y

)B)
eAB(t−t0)

]1/B+1 .

hus, after marginalizing the calculated f(Y (t),K ,A,B)(y, K , A, B) with respect to K , A and B, it is obtained the PDF (3.2) as
ell.

. Convergence when the power tends to 1 or 0

By the deterministic theory, it is known that the classical logistic and Gompertz differential equations are retrieved
hen B = 1 and B → 0, respectively. The aim of the present section is to extend those results to the random scenario.
ifferent convergence measures for Y (t) are used: mean-square convergence and convergence of densities.

.1. Mean-square convergence

We investigate the mean-square convergence of Y (t). Two cases are distinguished, according to the probabilistic
onvergence of B:

• Case B → 1 or B → 0 almost surely. By the deterministic theory, it is known that Y (t) converges to the logistic
curve or the Gompertz curve almost surely when B → 1 or B → 0 almost surely, respectively. It is also known that
0 ≤ Y (t) ≤ K ∈ L1(Ω, dP), and analogously for the logistic and the Gompertz curves. By the dominated convergence
theorem [44, result 11.32, p. 321], the almost sure convergence of Y (t) translates into mean-square convergence. In
conclusion, Y (t) converges to the logistic curve or the Gompertz curve in the mean-square sense when B → 1 or
B → 0 almost surely.

• Case B → 1 or B → 0 in the mean-square sense. Pick any sequence {Bn} → 1 or {Bn} → 0 in the mean-square sense.
There exists a subsequence such that {Bnl} → 1 or {Bnl} → 0 almost surely. By the previous item, the corresponding
{Ynl (t)} converges in mean-square to the logistic curve or to the Gompertz curve, respectively. At the end, this implies
that Y (t) converges to the logistic curve or the Gompertz curve in the mean-square sense when B → 1 or B → 0 in
mean-square.
5
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4.2. Convergence of densities

We prove that, if B → 1 or B → 0 almost surely, then fY (t)(y) converges to the PDF of the logistic curve or the PDF
f the Gompertz curve almost everywhere, respectively. Almost everywhere convergence of densities is a strong mode of
onvergence, as it implies convergence in L1(R, dy) by Scheffé’s lemma [45, p. 55], [46].
For the proof, it is assumed that Y0 and (K , A, B) are independent, A > 0 almost surely (increasing trend), Y0 ≥ z > 0

lmost surely (z constant), ∥ B ∥∞< ∞, there exists C > 0 such that fY0 (y) ≤ min{C/y, C/y1+∥B∥∞} for all y > 0, and
[eA∥B∥∞(t−t0)] < ∞ (finite moment-generating function of A). Due to the independence, the PDF (3.2) is rewritten as

fY (t)(y) = E
[
fY0 (RB)(RB)1+BeAB(t−t0)

1
yB+1

]
,

where

RB =
K[

1 +

(
−1 +

( K
Y

)B)
eAB(t−t0)

]1/B
nd the domain is y ≥ z. Now,

0 ≤ fY0 (RB)(RB)1+BeAB(t−t0)
1

yB+1 ≤ CeA∥B∥∞(t−t0) min
{
1
z
,

1
z1+∥B∥∞

}
,

here such upper bound is a constant that, in consequence, belongs to L1(Ω, dP). The dominated convergence theo-
rem [44, result 11.32, p. 321] allows for interchanging the limit on B and the expectation.

5. Numerical examples and real data

In this section, the previous theoretical findings will be applied to analyze the dynamics of the solution stochastic
process to the random generalized logistic model (1.1), through its PDF and main moments (mean and variance). This
analysis is first performed via two numerical examples, and afterward using real-world data. As several numerical
challenges may appear when solving model (1.1), we shall also recall a number of deterministic and probabilistic tools
that will be used in the examples.

Section 5.1 deals with the description of a numerical scheme based on the Lagrangian form of the Liouville’s PDE.
It is formulated in the case of deterministic coefficients and extended to the case of random coefficients. Afterward,
in Sections 5.2–5.4, a brief presentation of a fast computational technique based on adaptive mesh generation and
wavelets (wavelet compression-based adaptive mesh refinement); a metaheuristic optimization algorithm (Particle Swarm
Optimization algorithm) and a method to construct reliable PDFs from sampled information (Principle of Maximum
Entropy) will be given, respectively. Finally, in Sections 5.5 and 5.6, an application of the numerical procedures to some
numerical examples and a full study of a real-world case of microbial growth data will be discussed, respectively.

5.1. Lagrangian form of the Liouville’s PDE

It is well known that first order PDEs whose dynamical behavior is dominated by convection, such as the Liouville’s
equation, may be analyzed by the evolution of the equation solution in certain curves, called characteristic curves
[47, Sec. 3.2]. The formulation of the problem in such a way is called the Lagrangian formulation of the PDE [48]. We
point out that throughout this section the previous notation, fY (t)(y), for the PDF of the solution for the generalized logistic
odel (1.1) will be conveniently adapted to our new setting in order to stress the dependence of the new quantities that
ill appear. This will be underlined in due course.
The Lagrangian formulation is different than the classical, fixed-mesh and Eulerian formulation of a PDE. When

omputing a numerical solution of a PDE, both the time domain and the space domain must be discretized, and the
iscretized values of the PDE at each point in the discretized space domain (mesh, or grid) are updated in each timestep.
agrangian methods, however, treat the discretized values of the initial PDE state as individual particles that move as
efined by the velocity, or field, function, defined by g(y; K , A, B) in (3.3) in our case, and change their inherent quantity
ccordingly (in this case, the PDF f ).
In the case of the Liouville’s PDE, we can transform its classical, or Eulerian formulation (3.4), to its Lagrangian

ormulation in the following way:
d
ds

y(s; K , A, B) = g(y(s; y0); K , A, B), y(t0) = y0, (5.1)

d
ds

f (y(s; y0), s | K , A, B) = −f (y(s; y0), s | K , A, B)
∂g
∂y

(y(s; y0); K , A, B). (5.2)

herefore, the family of curves {y(s; y0)}y0∈R are the characteristic curves, written in the so-called Lagrangian coordinates
s; y ). As it can be seen, they are determined by the flow function, g(y; K , A, B), in the form of an ODE given by (5.1). The
0
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second Eq. (5.2), which defines the change of the PDF through each characteristic curve, can be solved in an exact way
using the method of separation of variables

fY (t)(y) = f (y(t; y0), t | K , A, B) = f0(y0) exp
{
−

∫ t

t0

∂g
∂y

(y(τ ; y0); K , A, B) dτ
}
. (5.3)

s emphasized with the former notation, this expression is another representation of the PDF of Y (t), which is equivalent
o (3.2). As expression (5.3) shows, the time evolution of the PDF only depends on the computation of the integral through
ach of the characteristic curves. However it is not always possible to compute the integral in an exact way. And even if
t is possible, the resulting function may be too unstable for a computer to efficiently handle. This is what often happens
hen carrying out computations for the generalized logistic model as it shall be illustrated in the examples.
When dealing with random coefficients, another step must be done. Particularly, an interpolation into a common grid

f all conditional PDFs, f (y, t | K , A, B), must be computed regularly after some time steps in the simulation. Afterward,
ll that is left is to compute the marginal PDF with respect to these random parameters in the common grid points

fY (t)(y) =

∫
R3

f (y, t | K , A, B)fK ,A,B(K , A, B) dKdAdB.

For the numerical computation of the solution to the system formed by (5.1)–(5.2), or equivalently, the Eqs. (5.1)
and (5.3), any ODE integrator can be used. We have used the Runge–Kutta 4 (RK4) scheme, and the Simpson rule for
the computation of the integral in (5.3) [49]. The time step used for the simulations shown in this section has been
determined heuristically, by comparing one simulation with a certain time step and another one with half its time step.
We then choose a time step after which there is no noticeable improvement. In Sections 5.5 and 5.6, we specify the
particular time step used in this contribution.

5.2. Wavelet compression-based AMR

Dynamical systems such as the generalized logistic equation model (1.1) have many interesting properties, such as
asymptotic stability. This means that the system converges to a specific state or value. Suppose the asymptotic state is
deterministic or a random variable with a small variance. Then, the PDF will evolve into a function with very narrow
support, or in 1-dimensional models such as the one studied in the present contribution, it may converge to a Dirac delta
distribution. Asymptotic stability may pose a problem when computing its PDF via its related Liouville’s PDE through
numerical schemes.

Despite using a Lagrangian method for the PDF computation, an underlying grid in which the particles’ positions and
values are initialized at each time step is required, as explained in the previous subsection. In order to have a reliable
computation of the evolution of the PDF, even at times values when the random system approaches its steady-state, a
very high resolution, i.e., very fine grid must be chosen. However, a high-resolution grid would only be truly useful near
the steady state PDF, whereas an unnecessarily high computational cost is forced in all previous time steps. This may lead
to an unaffordable computational burden.

These kinds of problems, also known as multi-scale problems [50], appear in a wide variety of fields, especially in
computational fluid dynamics. This problem has been addressed by using Adaptive Mesh Refinement (AMR) techniques.
There are many AMR procedures; however, we have used the so-called wavelet-based AMR technique. We refer to [50]
for further details on how it is practically used.

5.3. PSO algorithm

The Particle Swarm Optimization (PSO) algorithm is an optimization algorithm widely used in cases where the
parameters to be optimized are not in a discrete set. In short, it generates a number of particles (combinations of possible
optimal values) where a certain fitness function (FF) is evaluated. Taking into account the values of the FFs at those points,
the particles are updated by imitating the behavior of birds when searching for food [51]. We will take advantage of this
optimization technique to search for the best estimates for model parameters in the subsequent examples.

5.4. Principle of Maximum Entropy (PME)

There are various ways of assigning distributions to random variables or vectors. One of them is the so-called Principle
of Maximum Entropy (PME [52] or MaxEnt [53]). This data-driven method seeks to obtain a PDF that captures the
maximum uncertainty (which is measured by the so-called Shannon Entropy functional) from the available sampled
information (usually described via the moments such as the mean, variance, etc.) about the random variable [54]. In
this contribution we will only use the mean and variance, since adding more moments does not change the resulting PDF
noticeably in this case. In Section 5.6, this method is applied to assign a PDF to a set of real data.

Mathematically speaking, we want to compute the following:

fsample = argmax
{∫

f (y) log(f (y))dy | f ∈ L1(D), f ≥ 0
}

,

D

7
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Fig. 1. Triangular distribution PDF used as initial condition for both numerical examples in Section 5.5.

Table 1
Parameter values used in Case 1 (A1, B1, K1) and Case 2 (A2, B2, K2), respectively. Numerical example.

Case 1 Case 2

Parameter A1 B1 K1 A2 B2 K2

Value 0.33 1 5 0.33 2.5 5

subject to the following constraints∫
D f (y)dy = 1,∫

D y f (y)dy = µsample,∫
D y2 f (y)dy = σ 2

sample + µ2
sample.

Here D denotes the domain of the random variable Y . Using the Lagrange multiplier method, it can be shown that the
PDF has the following form [55]

fsample(y) = exp{−1 − λ0 − λ1 y − λ2 y2},

here λ0, λ1 and λ2 are the Lagrange multipliers. These values are determined by solving the system defined by the
onstraints, which usually requires numerical methods since it is often nonlinear in λ0, λ1 and λ2.

.5. Numerical example

In this section, we will take advantage of the mathematical tools summarized in Sections 5.1–5.4 to compute and
isualize the dynamical behavior of the PDF of the solution stochastic process for the generalized logistic model (1.1).
e will assume that t0 = 0 and that t is measured in hours. First, two numerical examples will be shown in order to

ntroduce a brief idea about how the numerical solution performs. Then we will solve an inverse problem with real-world
ata. All computations in the following sections have been performed in an AMD Ryzen 5800H-based laptop computer
ith 16 GB of RAM.

.5.1. Deterministic coefficients
Only the initial condition is assumed a random variable which follows a symmetric triangular distribution with

arameters 1.1, 1.3, whose mode is located at 1.2. It can be seen in Fig. 1. The rest of model parameters, A, B and K ,
re assumed deterministic. We have considered two scenarios, Case 1 and Case 2, where only the value of B differs (see
able 1). In this way, we can better observe the role that parameter B plays in the model (this can repeated for the rest
f model parameters). It is important to note, however, that the support of the PDF must be contained inside the interval
0, K ] in all times; that is, supp{f ([0, +∞), ·)} ⊂ [0, K ]. This is due to the nature of the model, which assumes that K is
he carrying capacity, or asymptotic equilibrium state. We have chosen our initial high resolution grid to consist of 4096
oints. Figs. 2 and 3 show the time evolution of the PDF in Cases 1 and 2, respectively, along with the mean and standard
eviation functions, computed from the PDF by means of (3.1). The whole computation took about 0.6 s.
Note that there are some similarities between both simulations. In particular, we can see that both simulations

onverge to a stationary value (the carrying capacity, K = 5) and their standard deviations decay to zero as this happens.
his is to be expected because of the fact that the mean-square solution of the random IVP is also a pathwise solution
8
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Fig. 2. Top four panels: PDF of the solution stochastic process to the generalized logistic equation model (1.1) at different time instants (in hours).
ottom panel: Mean (blue, left axis) and standard deviation (orange, right axis) of the solution stochastic process. Case 1 (Numerical Example).
aximum absolute error in the PDF total mass: ∼ 5.3 · 10−4 .

Fig. 3. Top four panels: PDF of the solution stochastic process to the generalized logistic equation model (1.1) at different time instants (in hours).
ottom panel: Mean (blue, left axis) and standard deviation (orange, right axis) of the solution stochastic process. Case 2 (Numerical Example).
aximum absolute error in the PDF total mass: ∼ 6.1 · 10−3 .
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Table 2
Time at which measurements are taken with the mean of the measurements. 28
measurements were taken at each time. The variance was only computed in the first
time, in order to use the PME. Measurements were obtained by specialized fluorescent
imaging techniques whose measurement units are known as Optical Density (OD). More
details about the data and how it was collected in [56]. Real-world example.
Time (h) Mean (OD) Time (h.) Mean (OD)

0.000 0.286 3.547 0.527
0.233 0.308 3.828 0.547
0.465 0.331 4.061 0.558
0.698 0.354 4.294 0.569
1.001 0.383 4.527 0.581
1.234 0.403 4.759 0.590
1.466 0.416 4.992 0.597
1.839 0.437 5.275 0.608
2.072 0.450 5.508 0.612
2.304 0.464 5.740 0.616
2.537 0.476 6.039 0.616
2.849 0.486 6.271 0.617
3.081 0.500 6.503 0.617
3.315 0.514 6.803 0.619

Table 3
Lagrange’s multipliers obtained in the PME method (see Section 5.4
for further details about the computation of the Lagrange’s multipliers).
Real-world Example.
λ0 λ1 λ2

443.84321 −3132.90787 5470.16958

of the random IVP. The carrying capacity is a globally asymptotically stable state of both the logistic and the generalized
logistic equations. This means that, independently of the initial value and the values for A > 0 and B > 0, all paths
orresponding to the realizations of both the initial condition and the coefficients will approximate the carrying capacity
alue as time goes on. It is also noteworthy that the integral of the PDF, in the whole domain, is very close 1 at every
imestep. This property of the PDF has been used to check the numerical approximations of the PDF when solving the
iouville’s PDE are reliable at every timestep.
There also are some differences between both scenarios. In Case 1, it can be seen how standard deviation has a smooth

rowth and posterior decay to zero. Also, the mean curve shows a very gentle logistic-type curve, as it was expected due
o the theoretical development in previous sections. However, Case 2, where the deceleration parameter is increased to
.5, shows a sharper growth and decay of the standard deviation. Correspondingly, the mean curve stabilizes much faster
han in Case 1.

.6. Real-world example

In this subsection, we are going to apply the theoretical and numerical concepts and findings discussed in previous
ections to a real data set regarding the growth of a biological culture studied at [56]. Measurements were obtained by
pecialized fluorescent imaging techniques whose measurement units are known as Optical Density (OD). The means
f the measurements at each measured time can be seen in Table 2. All details about the biological and experimental
rocedures can be found at [56].
By applying the PME technique to the data regarding the set of measurements at time t0 = 0, we assign an initial PDF

ith the form described in Section 5.4. Particularly, we remind that the PDF has the form

f0(y) = exp{−1 − λ0 − λ1 y − λ2 y2}, (5.4)

here the λi are the ones defined in Table 3. In Fig. 4, we have plotted this PDF. It has been calculated by the wavelet
ompression-based adapted mesh. It can clearly be seen where there is a higher concentration of points. These points are
btained exactly where the function has a larger gradient.

.6.1. Deterministic coefficients
First, the deterministic parameter values are determined in order to have a first, expected representation of the sample

ata. Since the PDE computation time is relatively fast, we can use the PSO algorithm directly from the PDE itself. The
omputational procedure used for this purpose consists of the following steps, and it is shown in the flowchart depicted

n Fig. 5:

10
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p

Fig. 4. PDF at t0 = 0 used as the initial condition for the Liouville’s PDE (see expression (5.4) and Table 3). Initial high resolution grid of 4096
oints. Adapted grid with 330 points. Real-world Example.

1. Extract growth data from the data set, Yi, at each time measurement ti. At this point we have a collection of
24 measurements per time instant, with a total of 28 measurements; that is, we have {(ti,Yi)}28i=1, where Yi =

(Y 1
i , . . . , Y 24

i ).
2. Compute the initial density, f0, in its adapted grid G0 (see Section 5.2), using the PME (see Section 5.4). Also, compute

the mean of the measurement vectors, Y i =
1
24

∑24
j=1 Y

j
i at each time instant ti, i = 1, . . . , 28. At this point, we have

the initial PDF, f0(G0), and the curve of the sample means {(ti, Y i)}28i=1.
3. We now enter the PSO algorithm (see Section 5.3). In the present work, we have used 60 particles and a maximum

of 100 iterations. The parameter values used for the evaluation of the error function may be computed in two
different ways depending on whether it is the first iteration or not.

• In the first case, 60 points are generated at random positions in the parameter space; that is, {(Al, Bl, Kl)}60l=1.
• In the latter case, the same number of points are generated following a very specific set of rules [51], returning

the updated set of parameter values {(A′

l, B
′

l, K
′

l )}
60
l=1.

4. After the set of parameter values has been defined (let it be at the first iteration or after an update), we compute the
numerical solution of the PDF at each of the time instants {ti}28i=1 using the Lagrangian approach (see Section 5.1).
At this point we have a family of PDFs and their corresponding adapted grids; that is, {f (Gi, ti | A, B, K )}28i=1 for each
tuple of parameter values (A, B, K ) ∈ {(Al, Bl, Kl)}60l=1. Note that we have dropped the conditional PDF notation in
the following steps for the sake of simplicity.

5. For each of the PDFs defined as in the previous step, we compute their respective expectations, given by Eq. (3.1)
and denoted by {f (Gi, ti)}28i=1, and compute its absolute error respect to the sample mean Y i at each time instant ti.
We then compute the sum of these absolute errors; that is

Error =

28∑
i=1

|f (Gi, ti) − Y i|.

6. Now, if the following absolute error

Error =

28∑
i=1

|f (Gi, ti) − Y i|

varies below a given threshold, among all generated (A, B, K ), which the authors have chosen as 10−9, we keep the
tuple of parameter values with the best fitness function value, (A∗, B∗, K ∗). If not, we update the set of parameter
values and we start at point (3) of the present description.

The optimal values obtained as the PSO procedure output, as defined in Fig. 5, can be found in Table 4. Fig. 6 shows
the numerically computed PDF using the optimal values collected in Table 4. 60 particles were used in order to compute
an optimum and the PSO ended after 100 iterations with an error tolerance of 10−9. It is worth noting that the whole
optimization procedure takes about 9 minutes to compute in an AMD Ryzen 7 5800H, whereas the simulation itself takes
around 0.4 s to carry out calculations (no parallel computations were performed). Both cases were simulated with a
∆t = 0.005 time step in the Lagrangian method. We refer to Fig. 6 for more information.
11
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Fig. 5. Flowchart describing the entire PSO-based optimization procedure for deterministic parameters. Real-world Example with deterministic
parameters.

Table 4
Optimal model parameters. Real-world example with deterministic
parameters.
A∗ B∗ K ∗

0.4911 1.5212 0.635

Note that the objective function to be minimized by the PSO is not necessarily convex, so no global minimum is
assured. Therefore, the parameter tuple given by the PSO algorithm may not be the global minimum of the error function
defined in step 6 of the procedure explanation. However, as seen in Figs. 6–8, they provide a parameter vector that
allows approaching the real data with reasonable accuracy. In Fig. 7 we have plotted the average or sample mean of the
sample data together with the mean and a confidence interval constructed as mean plus/minus 3 standard deviations both
obtained from repeatedly solving the Liouville’s PDE sampling the initial condition from its PDF, f (y). We can observe
0
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Fig. 6. Time evolution of the PDF with model parameters given in Table 4. Real-world Example with deterministic parameters. Maximum absolute
error in the PDF total mass: ∼ 6.7 · 10−4 .

Fig. 7. Mean of the PDF obtained by solving the Liouville’s PDE along with a confidence interval centered at the mean with a 3 standard deviation
radius. Starry points denote the sample mean at each of the time instants. Real-world Example with deterministic parameters.

that this confidence interval captures most of the uncertainty at every time instant and, when computing the integral in
the corresponding intervals, we obtain values of approximately 0.9, so we are representing a confidence interval of 90%.

Finally, in Fig. 8, absolute and relative errors between the mean computed from sampled data and the Liouville’s PDF
re shown. Notice that graphical representations shown in Figs. 7 and 8 are in full agreement. It is interesting to see the
scillation of the error functions in Fig. 8 which shows that, for this particular data set, we have an appropriate fit given by
he generalized logistic model. We have obtained a parameter vector that allows us to represent the expected behavior
f the biological population under study. Non-oscillatory error functions would be given by a fit that is always above
over-predicting), or below (under-predicting), the mean curve. This would mean that the generalized logistic model is
ncapable of representing the dynamics of this data set appropriately. Moreover, as the biological culture approaches its
teady state, we will have a lower variability and, in theory, the amplitude will eventually decrease and stabilize.
13
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Fig. 8. Absolute error (left axis, blue curve) and relative error (right axis, orange curve) of the mean of the PDF computed by the Liouville’s PDE
ith respect to the sample data. Real-world Example with deterministic parameters.

.6.2. Random coefficients
In order to perform realistic simulations taking into account the uncertainty in model parameters, probability distri-

utions are assigned in such a way that the expectation of these distributions match their corresponding deterministic
ptimal values collected in Table 4. In our subsequent calculations, this will be assumed for model parameters A and B,
hat is,

A∗
=

∫
Ω

A(ω) dP(ω), B∗
=

∫
Ω

B(ω) dP(ω),

while K = K ∗
= 0.635 will be taken as the deterministic optimal value (see Table 4) since from its own biological

interpretation its variability is negligible with respect to the one of A and B.
Probability distributions for A and B have been assigned following particular biological reasons. They are assigned a

priori in such a way that the support of their corresponding PDFs makes sense in this biological problem; for example
A > 0 and B > 0. Particularly, we have chosen A ∼ Exp(1/A∗) and B ∼ Unif(B∗(1 − 0.15), B∗(1 + 0.15)); that is, an
Exponential distribution whose expectation is A∗ (recall that the mean of an exponential distribution is the inverse of its
parameter) and a Uniform distribution centered at B∗ with a 15% support radius interval, respectively.

Now, simulations of the full 28 time values of Table 2, that is, up to time 6.803 h, are computed. Fig. 9 shows
the simulated PDFs at several time instants. Full simulation with random coefficients and a 4096-point base grid was
performed in just over 37 min, with a timestep of ∆t = 0.005.

As previously indicated, note that we have assumed the carrying capacity to be a constant, K = K ∗
= 0.635. Also

note in Figs. 10 and 11 that the optimization procedure returned a set of parameters that allows a very good description
of the sample data with the distributions chosen for A and B. As in the case of the deterministic coefficients, we can
observe an oscillation of the error functions which again is a sign of a coherent fit to the mean data curve. Notice that
there is a slight difference in the amplitude of the oscillations. This difference is natural and it is because of the nature of
both problems. The case of deterministic coefficients consists in obtaining the PDF of a stochastic process depending on
a single random variable, that is, the initial condition. The second case, which is represented in Figs. 10 and 11, consists
in obtaining the PDF of a stochastic process where 3 of its parameters are random variables. Moreover, the relationship
between the solution stochastic process and its parameters is nonlinear. This is reflected in the evolution of its PDF as it
can be seen when comparing Figs. 7 and 8 with 10 and 11.

6. Conclusion

With the aim of extending recent studies performed for the logistic random differential equation and the Gompertz
random differential equation, in this paper we have investigated the generalized logistic random differential equation.
This equation includes a power term into the classical logistic model, to better control how fast the limiting capacity
is approached. We have assumed that the parameters are random variables. Then, we have obtained the sample-path
and mean-square solution rigorously, and we have computed its Probability Density Function by applying the Random
Variable Transformation technique and the Liouville’s equation. We have analyzed how the model reduces to the classical

logistic equation and the Gompertz equation when the power tends to 1 and 0 in a probabilistic sense.

14
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Fig. 9. Time evolution of the PDF. Real-world Example with random parameters. Maximum absolute error in PDF mass: ∼ 4.8 · 10−5 .

Fig. 10. Mean of the PDF obtained by solving the Liouville’s PDE along with a confidence interval centered at the mean with a 3 standard deviation
adius. Starry points denote the sample mean at each time instant. Real-world Example with random parameters.

Furthermore, we have made use of a type of numerical methods specially suited for the computation of the solution
f partial differential equations such as Liouville’s equation, where convection is the main dynamical behavior of the
olution. It has first been applied to a case with deterministic coefficients and it has been extended to the scenario
here coefficients are given by random variables. Afterward, an optimization procedure based on the Particle Swarm
ptimization algorithm has been implemented. Its objective has been to obtain the deterministic coefficient values which
llow describing the mean behavior of the biological culture growth data set.
Further research includes the full theoretical and numerical study of other growth models with uncertain parameters.

ikewise, the improvement in the computational methodology used in this contribution is a main objective of the authors.
pecifically, accelerating the computation of solutions to the Liouville equation using graphics cards, and extending these
ethods to a multidimensional setting are some of the main goals. This will further allow us to explore the potential and

imitations of the methodology exposed in this contribution.
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Fig. 11. Absolute error (left axis, blue curve) and relative error (right axis, orange curve) of the mean of the PDF computed by the Liouville’s PDE
with respect to the sample data. Real-world Example with random parameters.
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