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Abstract: With the increasing demand for online shopping and home delivery services, optimizing
the routing of electric delivery vehicles in urban areas is crucial to reduce environmental pollution
and improve operational efficiency. To address this opportunity, we optimize the Steiner Traveling
Salesman Problem (STSP) for electric vehicles (EVs) in urban areas by combining city graphs with
topographic and traffic information. The STSP is a variant of the traditional Traveling Salesman
Problem (TSP) where it is not mandatory to visit all the nodes present in the graph. We train an
artificial neural network (ANN) model to estimate electric consumption between nodes in the route
using synthetic data generated with historical traffic simulation and topographical data. This allows
us to generate smaller-weighted graphs that transform the problem from an STSP to a normal TSP
where the 2-opt optimization algorithm is used to solve it with a Nearest Neighbor (NN) initialization.
Compared to the approach of optimizing routes based on distance, our proposed algorithm offers a
fast solution to the STSP for EVs (EV-STSP) with routes that consume 17.34% less energy for the test
instances generated.

Keywords: electric vehicle routing; Steiner Traveling Salesman Problem; digital elevation model;
artificial neural networks; node filtering

1. Introduction

The increasing demand for sustainable transportation options has fostered the expan-
sion of electric vehicles (EVs). Furthermore, in many urban areas, low-emission zones are
delimited to make cities more sustainable. Fully or hybrid EVs will have free access to
them, which will push the adoption of EVs for delivery [1,2] or for rent or car sharing [3,4].
Therefore, for optimizing delivery routes, we have to consider the distance or time needed,
as well as the energy consumption and recovery. Furthermore, with the adoption of au-
tomatic driving, the energy cost will be even more relevant in the operational costs of
transport and delivery systems. In addition, this is an important step toward reducing
carbon emissions and moving toward more sustainable transportation systems.

Key factors for optimizing EV routing are the city topography and traffic conditions [5].
To improve the accuracy of energy estimation, it is crucial to use high-quality digital ele-
vation model (DEM) data as inaccurate DEM data can lead to significant errors in energy
estimation [6,7]. Apart from basic electric features inherent to each vehicle, to estimate EV
energy consumption, we must consider factors such as road gradient, rolling friction coeffi-
cient, air drag, and kinetic energy [7]. Therefore, low speeds will result in a lower energy
consumption than higher speeds. When speed is low, as in traffic jams, we may incorporate
the representation of losses generated by the drive train and the supply of auxiliary systems
by providing a more accurate representation of the energy consumption [8].
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In the logistics domain, strategies for solving the TSP have been approached through
diverse methods. Solutions in the field of air logistics involve the utilization of a mixed
descending optimization technique, which combined 2-Opt, Or-Opt, and Single-Node
Insertion to address the TSP [9]. As a different choice for resolving the TSP, the nodes could
be partitioned into clusters, addressing the problem by visiting only one node within each
cluster [10].

We can find several examples of EV routing optimization, including the Electric Vehicle
Traveling Salesman Problem (EV-TSP) and the electric vehicle routing problem (E-VRP)
based on the Traveling Salesman Problem (TSP) [11,12]. The time windows for EV-TSP
are where batteries are fully/partially recharged at each stop [13]. Alternatively, the TSP
can be considered for full or hybrid electric vehicles [14,15] or even with stochastic battery
depletion [16]. As time execution is a concern [17,18], preprocessing traffic and energy
consumption information [19] is needed to solve the E-VRP. Nevertheless, there is a lack
of open datasets that can be used to easily analyze these problems with elevation data
integrated into them. This would facilitate researchers to concentrate in the algorithmic
part and not in the data preparation.

In this work, we present an efficient solution for the Steiner Traveling Salesman
Problem for EVs (EV-STSP) that considers traffic information and city topography data,
incorporating good-quality elevation data. On average, the algorithm took 113.93 s to solve
instances of size 80 for the STSP and 22.14 s to solve instances of size 40 within the city
of Madrid. Our proposed solution combines (1) an artificial neural network (ANN) that
estimates the electric consumption when traveling between two nodes in the city graph
under different traffic states, which allows transforming the problem from an STSP to
a normal TSP; (2) the 2-OPT algorithm with a Nearest Neighbor (NN) initialization to
solve the TSP; and (3) the Bellman–Ford algorithm [20–22] to reconstruct the entire route,
since the energy recovery of EVs leads to negative weights on the city graph, and the
shortest-path algorithms like Dijkstra do not support them [23].

Our methodology is evaluated on real-world instances of the city of Madrid. We
show its effectiveness in reducing electric consumption compared to traditional routing
algorithms based solely on distance. Its efficiency makes it suitable for real-time use and
well-suited for the delivery and transportation industries.

We also provide the datasets and instances used in this work to facilitate the compari-
son with other approaches and analyze other logistic problems in this context. The Python
code and data of this work can be found in Supplementary Materials [24]. We hope to
encourage further research in the field and facilitate the development of more efficient and
sustainable routing strategies for electric delivery vehicles.

The paper is organized as follows. In Section 2, we explain the method employed
for acquiring the city graph and its subsequent integration with elevation and traffic data.
As we progress to Section 3, a comprehensive introduction to the problem at hand is pro-
vided, encompassing the modeling of electric consumption for EVs and the formalization of
the presented algorithm. The technical implementation and validation of the algorithm are
then demonstrated in Section 4. In Section 5, we present the final conclusions, summarizing
the research findings, implications, and potential future research areas.

2. Data Acquisition and Integration

For this work, we have chosen data from Madrid city, which presents significant height
differences across the city of more than 200 m at different points. We first describe how to
construct the city graph and later explain how we integrate elevation data.

2.1. Construction of the City Graph

Our data acquisition and integration process is divided into three parts: (1) obtain-
ing the directed graph of segments and intersections and (2) integrating elevation and
(3) sequential traffic data. First, we used the OSMnx library [25] to generate a basic city
graph. Here, each node represents an intersection at any point where three or more seg-
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ments meet. Each edge represents a segment that connects two nodes following the traffic
directions, as shown in Figure 1.

Figure 1. Example of a map-based graph representation.

We assign each node its geographic coordinates and the number of adjacent seg-
ments. Each edge contains the identifiers of the source and destination nodes, the segment
length, and relevant information on the road, such as its name, direction, number of lanes,
and maximum speed.

2.2. Integration of Elevation Data

The next step is to integrate elevation data. We first downloaded the necessary files
from the Spanish National Geographic Information Center [26]. Each file consists of a
grid of approximately 5700 by 3700 cells. Each cell is associated with a geographic point
on the plane (x and y coordinates) and its corresponding elevation value (z coordinate).
Each measuring point is 5 m away from the four nearest points to the east, west, north,
and south. These measurements are significantly more accurate than those provided by
NASA’s SRTM service [27], whose DEM is commonly used in routing problems despite its
resolution being 90 m.

The next step is to assign each node in our graph its elevation value. Since not all
our nodes are located precisely on a measuring point, in this case, we have decided to
impute the height of the nearest point. Applying complex interpolation methods for grids
of elevation values with a resolution of fewer than 10 m is unnecessary, as the results
do not show statistically significant differences [7]. The impute elevation values have a
maximum horizontal error of

√
12.5 ≈ 3.53 m. Figure 2 presents the elevation map of

Madrid, with heights ranging from 550 to 800 m. Finally, we add the slope of each segment,
calculated from the elevation values at the source and destination nodes.

The last preprocessing stage is to obtain and integrate historical traffic data of the city
of Madrid [28]. We generate a series of snapshots, one for each instant measured in hours:
24 snapshots per day. There are 4719 measuring points scattered throughout the city. Each
snapshot contains the values of average vehicle speed measurements at each measuring
point. The average speed of vehicles in a given segment is obtained as the average of the
speeds at the measuring points closer to each segment ends. When traffic data are not
available, we assign as average speed the maximum speed associated with each segment.
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Figure 2. Elevation map of nodes in the Madrid city graph.

We have generated a heatmap where each segment’s mean speed is calculated from
the values from measuring points within an area of effect. In this way, we can obtain a
reliable image of the traffic state for each snapshot; see Figure 3. It is worth noting that
warmer colors do not necessarily represent traffic jams since the speed mean depends on
variables such as weather, speed limits, street widths, number of lanes, or accidents.

Figure 3. Visual representation of a speed snapshot.

3. Problem Formalization

The EV-STSP is a variant of the classical STSP in which the cost of traveling between
locations is based on electric consumption rather than distance or travel time. The main
difference between the TSP and STSP is that the TSP aims to find the shortest route that
visits all nodes in a graph exactly once, while the STSP focuses on finding the shortest route
that visits a subset of nodes in the graph [29]. Figure 4 provides a visual representation of
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the problem, where a connected directed graph G = (V, E) models the road network of
a city, V represents the intersections, and E represents roads or segments. The problem
involves a list V0 ⊂ V of stops to visit, and the objective is to find a path that visits all the
stops and returns to the starting point, minimizing the electric consumption. We also denote
n0 = |V0|. d(i, j) as the electric consumption between stop vi, vj ⊂ V0, and x(i, j) = δij
(Kronecker’s delta) to indicate whether we travel from vi to vj.

Figure 4. STSP problem in a road network.

This can be stated by minimizing

n0

∑
i=1

n0

∑
j=1

x(i, j)d(i, j) (1)

subject to:
n0

∑
j=1

x(i, j) = 1, for all i ∈ {1, . . . , n0} with i 6= j (2)

n0

∑
i=1

x(i, j) = 1, for all j ∈ {1, . . . , n0} with j 6= i (3)

x(i, j) ∈ {0, 1}, for all i, j ∈ {1, . . . , n} (4)

We estimate the traveling costs d(i, j), taking into account both distance and elevation
as in Graser et al. [7]. The forces acting against the vehicle are represented in (5), a com-
bination of the traction force, the rolling resistance, and the aerodynamics resistance. We
recall that in (5), a is the acceleration, m is the mass, g the gravity constant, α the road grade
angle, v the speed measured in meters per second, ρ is the air density, crr the rolling friction
coefficient, A is the vehicle front surface area, and cw indicates the air drag coefficient.

In Equation (6) the terms ηM correspond to the energy efficiency of power conversion,
ηG is the efficiency of energy regeneration, and P0 is the basic consumption of the vehicle.

Once we compute these forces, we can compute electrical energy Eel drawn during
the trip along a time window [0, T] as d(i, j) = Eel =

∫ T
0 Pel dt, where the power Pel can be

obtained in terms of FT :

FT = a · f ·m + m · g · sin(α) + m · g · cos(α) · crr +
ρ · A · cw

2
. v2 (5)

Pel =

{
FT ·v
ηM

+ P0 for FT ≥ 0

FT · v · ηG + P0 for FT < 0
(6)

In order to accurately represent the low efficiency of the vehicle under conditions such
as traffic jams, we incorporate the representation of losses generated by the drive train
(7). It is worth mentioning that for speeds lower than 80 km, this represents a higher loss
than the specific energy consumption itself; see Figure 1 of Evtimov et al. [8]. We also in-
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corporate the energy consumption for the supply of auxiliary systems (8), as proposed also
in Evtimov et al. [8] using a Weibull model, which is typically used to model inefficiencies
in mechanical systems:

EDT = (3 · 10−10v6 − 2 · 10−7v5 + 5 · 10−5v4 − 0.0057v3 + 0.358v2 − 10.26v + 139.27) · d0 (7)

EAUX = 121.1v−0.794 · d0 (8)

where v is expressed in km/h and the total distance d0 in km. The final expression for
calculating energy consumption in EVs is the result of adding Eel , EDT , and EAUX that is
expressed in Wh. A visual representation of the forces applied to the car (5) is offered in
Figure 5. Figure 6 presents the electric consumption divided by each source of energy
consumption in the car for different speeds and with a road gradient of 1%.

Figure 5. Visualization of road gradient and friction on a car.

Figure 6. Electric consumption categorized by gradient, air resistance, road friction, basic systems,
drive train, and auxiliary systems.

The TSP is an NP-hard problem, meaning that there is no known polynomial-time
algorithm that can solve it exactly for all instances. This implies that as the problem size
grows, the time required to find an optimal solution grows exponentially. Approxima-
tion algorithms and heuristics are commonly used to find suboptimal solutions within a
reasonable time [30,31].

The approach we propose to solve this problem combines (1) an ANN to estimate the
electric consumption between nodes in the route and generate a new subgraph with only
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the nodes that we need to visit [22] and (2) a heuristic algorithm to solve the TSP. The results
from the ANN estimation will be compared with the results obtained by applying Bellman–
Ford, since the electric consumption can be negative on some edges of the graph.

Subgraph extraction involves generating a new graph containing only the nodes likely
to be included in the route, typically performed by computing distances between nodes
and applying a size-filtering process. This process allows us to transform the STSP problem
into a normal TSP. The ANN is trained using historical simulation data to capture traffic
patterns. This allows us to generate a subgraph that consists of n (places to visit in the
route) nodes and (n− 1)2 edges and permits us to reduce the computational complexity of
solving the TSP. In any case, we will compare the estimations of these distances with the
ones obtained through Bellman–Ford. Afterward, as a heuristic to solve the TSP, we have
chosen the 2-opt algorithm [32] with an initial solution obtained from NN algorithm [33].
We show in Algorithm 1 a pseudo-code version of the proposed solution pipeline.

Algorithm 1: Electric STSP Algorithm for Energy-Efficient City Touring.

cityGraph← graph of the city.
nodeToVisit← array of nodes to visit.
hour, weekday← string of the hour and the weekday.
workingday← 1 if it is a working day, else 0.
n, f ullRoute← length of nodesToVisit and an empty array.
energyMat← n× n matrix with values 213.
for each i and node in nodesToVisit do

for each j and node2 in nodesToVisit do
if node 6= node2 then

energyMat[i][j]← ANN(node, node2, hour, weekday, workingday)
end

end
end
f inalRoute← result of the function twoOptNearestNeighbors(energyMat)
for each i in range of n do

f ullRoute←
f ullRoute + BellmanFord(cityGraph, f inalRoute[i], f inalRoute[i + 1])

end
Return f inalRoute

4. Algorithm Implementation
4.1. Estimation of the Energy Consumption through an ANN

To train our ANN, we use historical traffic data from October to November of 2022 to
obtain hourly traffic city simulations. The impact of traffic was incorporated by utilizing
the mean velocity recorded for the specific segment during that timeframe. We assign the
maximum speed permitted there if traffic data are missing for some segments.

As previously indicated, we compute the estimated energy needed for each edge
in the graph. Within each hour interval in the two months of data used, we simulated
200 routes throughout the city and determined the most energy-efficient route using the
Bellman–Ford algorithm to minimize the estimated consumption. The implementation
of Bellman–Ford used is extracted from the NetworkX Python Library. The vehicle of
reference for the energy estimation of (5) and (6) is the Nissan eNV200 van, which is
relatively representative of delivery vehicles within a city. Its vehicle parameters have been
extracted from Graser et al. [7], and the inner losses given by (7) and (8) are taken from
Evtimov et al. [8] since this term does not present huge differences among vehicles, as the
aerodynamics is not relevant in their description. The parameters are set to: m = 1480 kg;
ρ = 1.24 kg/m3; crr = 0.01; A = 3.26 m2; cw = 0.31; ηM = 0.95; ηG = 0.6; P0 = 0.5 kW.
To maintain consistency and reliability in our measurements, we have chosen not to
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consider acceleration when evaluating electric consumption, as it depends on the driving
style of individual drivers.

For each obtained route, we recorded the hour of the day, the day of the week, if it is a
working day or not, the latitude, longitude, and altitude of both the starting and ending
points and the energy cost used to travel along that route. These data points were used
to train the model and make predictions based on traffic patterns and the city’s topology.
“Hour” and “weekday” are different categories. We divided the data into training and test
sets in an 80-20 ratio. The ANN used to predict energy consumption was created using
the Keras library for Python. It comprises an input layer of 38 neurons (24 for coding
hours, 7 for the day, 4 for coordinates, and 2 for height), and three hidden layers containing
64 neurons each, as shown in Figure 7.

Figure 7. Visualization of the ANN architecture.

During the development, various architecture combinations were tested. It was dis-
covered that increasing the number of neurons could lead to overfitting. On the other hand,
reducing the number of neurons allowed the model to converge faster during training but
often resulted in lower performance on the test data. Moreover, decreasing the number of
hidden layers in the network decreased the model’s performance. By reducing the number
of layers, the model has fewer opportunities to learn these higher-level representations,
which can result in a less accurate prediction.

A rectified linear unit (ReLU) function was used for activation since it allows for mod-
eling nonlinear relationships between input and output variables [34]. Moreover, we have
used Adam optimizer [35] that computes adaptive learning rates for each ANN parameter,
allowing for a faster convergence and better optimization of the model. After several trials,
we took a learning rate of 0.001.

We employed the early stopping technique to prevent overfitting and determine the
ideal number of epochs [36]. By using early stopping, we ensure that the model is not
overfitting and is able to generalize well to new data. The model stopped improving at
epoch 151, with a patience of 50.

The performance of our ANN was evaluated on the test set, resulting in a root-
mean-squared error (RMSE) of 95.1565 and an R2 coefficient of determination of 0.9869.
The model’s predictive performance can be visually observed through the scatter plot in
Figure 8, illustrating the distribution of predicted versus actual values. The number of
samples in the test data is 58,560 routes.
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Figure 8. Prediction vs. actual energy consumption.

4.2. 2-Opt with Nearest Neighbors

We have two ways to calculate the energy required between nodes to generate a new
subgraph. The first method involves the application of the Bellman–Ford algorithm to
obtain the route with the minimum energy consumption between any pair of nodes to be
considered in the STSP route, whereas the second method employs the ANN estimation.

The proposed algorithm for solving the final TSP after node filtering is a hybrid
method based on the NN algorithm and the 2-opt algorithm [22]. Other TSP solutions, such
as Ant Colony Optimization [37], can be effective but may be too time-consuming for our
purposes. Our approach uses the NN algorithm to obtain an initial solution that selects
the closest unvisited node at each step until all cities are visited [38,39]. By combining the
NN algorithm and the 2-opt algorithm, the proposed hybrid method is able to obtain good-
quality solutions for the final TSP after node filtering. Moreover, the proposed algorithm
has been tested on asymmetric instances of the TSP and shown that its performance is close
to the real minimum.

Finally, once a solution is obtained through each approach, the routes between each
pair of nodes are recalculated using the Bellman–Ford algorithm

4.3. Results

Table 1 illustrates a comparative analysis between using Bellman–Ford, which ob-
tains the real minimum energy needed, and the ANN approach to estimate the electrical
consumption between nodes. The results are obtained from 50 random instances of size-
10 nodes to visit each. We can appreciate that the final performance of the TSP is almost
identical while requiring 88.78% less time than using the ANN approach.

Table 1. Comparison between node filtering with Bellman–Ford and the ANN model.

Bellman–Ford ANN Difference

Average energy consumption (kWh) 10.966 10.969 0.0205%

Average execution time (s) 19.25 2.25 −88.28%
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The proposed algorithm has an average execution time of 5–9 s for instances of 20 stops,
12–14 s for instances of 30 stops, and 19–26 s for instances of 40 stops when run on a laptop
with an AMD Ryzen 5 4680U processor and 8 GB of RAM. These execution times are
sufficiently fast for real-time routing applications, given that the single-core performance
of this processor is readily available in modern smartphones on the market.

Figure 9 offers a visual representation of how the algorithm optimizes the routes
compared to the shortest path solution. The graph includes the elevation profile for both
routes. It shows that the energy-minimizing route is longer but has a lower gradient than
the distance-minimizing route. The distance-minimizing route consumes the most energy
when it takes high-step roads, whereas the energy-minimizing route avoids steep inclines,
resulting in a smoother and less energy-intensive path. The incline of roadways, as men-
tioned earlier, is a significant yet not sole determinant impacting energy consumption. This
aspect holds particular significance since EVs can solely recuperate a portion of energy
when traversing downhill gradients.

Figure 9. Example of a comparative analysis of electricity consumption and elevation during a
vehicle trip. The dashed lines represent how the elevation changes along the distance. The solid line
represents the cumulative consumption values.

To evaluate the effectiveness of our approach, we compared the results of our proposed
algorithm to the traditional approach of minimizing the distance for EVs. We conducted
experiments using real-world scenarios. Table 2 compares two methods of solving the TSP:
minimizing distance and the proposed approach. To evaluate the performance of each
method, we generated 25 STSP instances of varying sizes (5, 10, and 15) using the graph of
Madrid. The traffic state used is 10 October 2022 at 14 h. Each group of instances is named
Madrid5, Madrid10, and Madrid15 and is available at [24]. The distance-based approach
minimizes distance instead of electric consumption and was solved using the Dijkstra
algorithm to generate the subgraph and reconstruct the route. On average, our proposed
approach resulted in STSP routes that consumed 17.34% less energy while only requiring
7.52% more distance compared to minimizing the distance approach. The efficiency of our
proposed approach was similar across all instances of varying sizes. It is worth to mention
that speeds are 18.9% (size 5), 17% (size 10), and 16.44% (size 15) higher when minimizing
the distance, which result in 35 to 40% more air-resistance forces. The consumption rates are
higher by 22.61% (size 5), 20.63% (size 10), and 20.53% (size 15) due in part to the difference
in heights and in average speeds.
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Table 2. Comparing energy consumption and distance-based STSP solving approaches.

Madrid5 Madrid10 Madrid15

Energy Distance Energy Distance Energy Distance

Travel distance (km) 44.19 41.2 69.73 64.22 89.23 83.51

Travel time (min) 63.99 50.15 99.57 78.38 126.24 101.53

Average speed (km/h) 41.43 49.29 42.02 49.16 42.38 49.35

Energy consumption (kWh) 6.72 8.24 10.71 12.92 13.83 16.67

Energy efficiency (km/kWh) 6.58 5 6.5 4.97 6.45 5

5. Conclusions

Our proposed approach provides a novel and effective solution to optimize the rout-
ing of electric delivery vehicles in urban areas, considering both topographic and traffic
information to reduce electric consumption. Our algorithm demonstrated a significant
reduction in energy consumption while only requiring a slight increase in distance com-
pared to the traditional distance-based approach. The efficiency and speed of our algorithm
make it suitable for real-time routing applications, enabling fast and reliable solutions for
large-scale STSP instances.

Future investigation could combine the proposed methodology with a more efficient
routing algorithm in a negatively weighted graph. Furthermore, considering the integration
of the clustered generalized Traveling Salesman Problem methodology into our proposed
algorithm holds potential for exploration.

Furthermore, we have made the weighted city graphs, which incorporate elevation
data, available to the public to facilitate the analysis of different electric routing problems,
taking into account traffic data and height variations along the route. We hope these data
and methods will encourage further research in the field and facilitate the development of
more efficient and sustainable routing strategies for electric delivery vehicles.

Overall, our proposed approach permits the development of more efficient routing
strategies for EVs in the delivery industry. It can potentially improve the operational effi-
ciency of delivery companies while reducing their environmental impact, thus contributing
to a more sustainable future.
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Abbreviations
The following abbreviations are used in this manuscript:

EV Electric Vehicle

NN Nearest Neighbor

ANN Artificial Neural Network

DEM Digital Elevation Model

TSP Traveling Salesman Problem

STSP Steiner Traveling Salesman Problem

EV-TSP Electric Vehicle Traveling Salesman Problem

EV-STSP Electric Vehicle Steiner Traveling Salesman Problem
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