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Resumen

Esta tesis, desarrollada bajo una beca de formación de personal investigador
de la Universitat Politècnica de València, tiene como objetivo proponer y
aplicar metodologías de Statistical Machine Learning en contextos de Inge-
niería Biomédica. Este concepto pretende aunar el uso de modelos de apren-
dizaje automático junto con la búsqueda de comprensión e interpretabilidad
clásica del razonamiento estadístico, dando lugar a soluciones tecnológicas de
problemas biomédicos que no pasen únicamente por el objetivo de optimizar el
desempeño predictivo de los modelos. Para ello, se han dibujado dos objetivos
principales que vertebran además el documento: proponer metodologías nove-
dosas dentro del paraguas del Statistical Machine Learning, y aplicar soluciones
a problemas biomédicos reales manteniendo esta filosofía en mente. Estos obje-
tivos se han materializado en contribuciones metodológicas para la simulación
de valores atípicos y la imputación de datos faltantes en presencia de datos
atípicos, y en contribuciones aplicadas a casos reales para la mejora de procesos
de atención médica, la mejora en el diagnóstico y pronóstico de enfermedades,
y la estandarización de procedimientos de medición en entornos biotecnológi-
cos. Dichas contribuciones se han artículado en capítulos correspondientes
a las dos partes principales ya mencionadas. Finalmente, las conclusiones y
líneas futuras cierran el documento, recalcando los mensajes principales de las
contribuciones de la tesis doctoral en general, y sentando además las bases
para líneas futuras que se han dibujado a consecuencia del trabajo realizado a
lo largo del doctorado.
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Resum

Aquesta tesi, desenvolupada sota una beca de formació de personal investi-
gador de la Universitat Politècnica de València, té com a objectiu proposar i
aplicar metodologies de Statistical Machine Learning en contextos d’Enginyeria
Biomèdica. Aquest concepte pretén unir l’ús de models d’aprenentatge au-
tomàtic juntament amb la cerca de comprensió i interpretació clàssica del raon-
ament estadístic, donant lloc a solucions tecnològiques de problemes biomèdics
que no passen únicament per l’objectiu d’optimitzar el rendiment predictiu dels
models. Per a això, s’han dibuixat dos objectius principals que vertebren a més
el document: proposar metodologies noves dins del paraigua del Statistical
Machine Learning, i aplicar solucions a problemes biomèdics reals mantenint
aquesta filosofia en ment. Aquests objectius s’han materialitzat en contribu-
cions metodològiques per a la simulació de valors atípics i la imputació de dades
mancants en presència de valors atípics, i en contribucions aplicades a casos
reals per a la millora de processos d’atenció mèdica, la millora en el diagnòstic
i pronòstic de malalties, i l’estandardització de procediments de mesurament
en entorns biotecnològics. Aquestes contribucions s’han articulat en capítols
corresponents a les dues parts principals ja esmentades. Finalment, les con-
clusions i línies futures tanquen el document, recalant els missatges principals
de les contribucions, de la tesi doctoral en general, i assentant a més les bases
per a línies futures que s’han dibuixat com a consequència del treball realitzat
al llarg del doctorat.
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Abstract

This thesis, developed under a research personnel formation grant from the
Universitat Politècnica de València, aims to propose and apply methodologies
of Statistical Machine Learning in Biomedical Engineering contexts. This con-
cept seeks to combine machine learning models with the classic understanding
and interpretability of statistical reasoning, resulting in technological solutions
for biomedical problems that go beyond solely optimizing the predictive per-
formance of models. To achieve this, two main objectives have been outlined,
which also structure the document: proposing novel methodologies within the
umbrella of Statistical Machine Learning and applying solutions to real biomed-
ical problems while keeping this philosophy in mind. These objectives have
materialized into methodological contributions for simulating outliers and im-
puting missing data in the presence of outliers and applied contributions to
real cases for improving healthcare processes, enhancing disease diagnosis and
prognosis, and standardizing measurement procedures in biotechnological en-
vironments. These contributions are articulated in chapters corresponding to
the aforementioned two main parts. Finally, the conclusions and future lines
of research conclude the document, reiterating the main messages of the con-
tributions and the overall doctoral thesis and laying the groundwork for future
lines of inquiry stemming from the work conducted throughout the doctorate.
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Chapter 1. Justification, Objectives and Contributions

1.1 SynBioFactory and SynBioControl projects

The present thesis has been developed with funding from a research person-
nel formation (FPI) grant subprogram I from the Universitat Politècnica de
València (PAID17-I) from 2018 to 2021. At the beginning of 2018, this grant
was related for several months to the project Synthetic biology for bioproduc-
tion enhancement: Design, optimisation, monitoring and control (acronym
SynBioFactory, code DPI2014-55276-C5-1-R-AR). Then it continued with the
project Design, characterisation and optimal tuning of synthetic biocircuits for
bioproduction with control of the metabolic load (acronym SynBioControl, code
DPI2017-82896-C2-1-R-ARR), which lasted between 2018 and 2021.

The team involved in SynBioFactory integrated five research groups from
academia and a biotech company, bringing in the expertise from two sys-
tems and control engineering groups specialised in bioprocess modelling and
control, and systems and synthetic biology (GCSC-UPV, ML-UdG), a chem-
ical engineering group with experience in bioprocess optimisation and model-
building in systems biology (IIM-CSIC); two applied statistics groups with
expertise in multivariate statistical tools for modelling, monitoring, process
scaling-up, mega-data analysis in −omics, and meta-heuristic optimisation and
decision making (GIEM-UPV, UPCT-UMU), and BiopolisS.L., a leader Span-
ish biotech company providing R&D and production services for the agrifood,
pharmaceutical, chemical and energy sectors.

The technical purpose of the SynBioFactory project was to apply Synthetic
Biology (SynBio) for bioproduction enhancement, emphasising engineering de-
sign methods’ role in exploiting optimisation, monitoring and feedback control.
Its broader goal was to help SynBio to become an engineering discipline empha-
sising engineering principles and methodology in designing, constructing and
characterising biological systems used for genetic engineering research. Within
this framework, SynBioFactory targeted two practical problems from the bio-
process industry that aim to understand and drive the microorganism to the
states maximising yield and productivity:

• Goal 1: Develop efficient production systems for protein synthesis and
expression, emphasising control of protein expression variability and host-
circuit interaction.

• Goal 2: Rational design and optimisation of synthetic pathways for syn-
thesising commodities, emphasising methods and circuits to drive metabolic
fluxes to maximise yield and productivity and manage the metabolic bur-
den.
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Moreover, two other goals were related to the relevance of methodological as-
pects concerning the availability of biological parts (biobricks), biological de-
vices, and software tools to decouple design from implementation. Therefore,
in transversal to the goals above, the following ones expressed their materiali-
sation into applied contributions:

• Goal 3: Fostering Synthetic Biology to become engineering by making
designing more systematic (standardised), modular, predictable, robust,
scalable, and efficient.

• Goal 4: Implement software methods and biobricks on an open-source,
public-access basis.

Methods from mathematical optimisation, systems engineering and control,
and multivariate statistics were used to achieve these goals. These methods
were the tools that, coupled with metabolic engineering and DNA synthesis and
assembly, allowed the proposal of proper solutions to the described challenges
and goals.

This research line continued with the SynBioControl project, which integrated
two groups the SB2CLab (former GCSC-UPV), the GIEM-UPV group, the
IIM-CSIC group and the company Biopolis S.L. as well.

The SynBioControl project tackled the integration of more complex synthetic
genetic circuits to produce proteins and metabolites of industrial importance.
Increasing the complexity of the synthetic genetic circuits also meant increasing
the metabolic and genetic load of the cell, resulting in altered dynamics caused
by the interplay of shared resources. Targeting these phenomena required, as
part of SynBioControl, to design and implement feedback control mechanisms
of protein and metabolite expression, considering the effects of metabolic and
genetic load. Two methodological goals tackle this general goal:

• Goal 1: Development of structural design methods, analysis and robust
parametric tuning of synthetic control genetic circuits through multiob-
jective optimization.

• Goal 2: Development of data analytics methods and grey models with
application to scaling up from the laboratory to the pre-industrial biore-
actor.

Additionally, two objectives will be considered transversal to the previous ones:
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• Goal 3: Contribution to the conversion of Synthetic Biology into engi-
neering, making the modelling and design process more systematic (stan-
dardized), modular, predictable, and robust, with an emphasis on the
development of methodologies that can be applied effectively in the prac-
tical environment of a standard industrial biotechnology laboratory.

• Goal 4: Implement open source software tools and devices or biological
parts (biobricks) of public access, facilitating the dissemination of Syn-
thetic Biology as an engineering area.

1.2 Objectives of this thesis

This section describes the objectives of this thesis. The core objectives of this
thesis are:

1. Propose, implement and deploy new methodologies for Statistical Ma-
chine Learning, and

2. Apply existing and novel Statistical Machine Learning techniques to real
Biomedical Engineering problems.

At this point, I felt the need to add a personal commentary addressing the
leap from the Biotechnological field to the Biomedical Engineering one. Despite
the biotechnological focus of SynBioFactory and SynBioControl projects, many
other areas share the need to use mathematical tools for studying biological and
medical problems. Given my academic background and interest in Biomedical
Engineering, and under the agreement of my supervisor and all researchers
involved in the abovementioned projects, I found room for setting Biomedical
Engineering as the applied context for the methodological proposals described
throughout this thesis, embedding the contributions for Synthetic Biology as
part of this broad discipline.

The following points link the core objectives of the thesis with the previous
projects, specifically concerning the use of model reduction for analysing bi-
ological systems, the proposal of solutions for the systematisation and stan-
dardisation of Synthetic Biology, and applying these methods to real datasets,
providing tools for data understanding.
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1.2 Objectives of this thesis

Objective 1: Propose, implement and deploy new methodologies for
statistical machine learning

Regarding Objective 1, two main contributions are related to different points
of applying statistical machine learning. Chapter 5 contains a proposal to sim-
ulate outliers using the framework of a Principal Component Analysis (PCA,
more in Section 3.3.1) model, i.e., associating outliers with large values of the
Squared Prediction Error (SPE) and the Hotelling’s T 2. Using this pair of
statistics to describe observations provides meaningful criteria to define out-
liers, controlling not only the type of simulated outliers but also how far these
outliers will be from the reference data set.

Chapter 6 will propose a new algorithm to impute missing data when matri-
ces might present as well cellwise, single rowwise or grouped rowwise outliers.
This work has two main contributions. The main one is the proposal of a
new algorithm that imputes missing data, detects and corrects cellwise out-
liers, detects rowwise outliers and imputes if they are forming a cluster. This
algorithm, named RadarTSR, introduces conceptual novelty by splitting the
rowwise outliers category into single rowwise outliers (not creating a cluster)
and grouped rowwise outliers (forming a cluster). This distinction is the scaf-
fold for a step that extends the existing work on dealing with missing data
and outliers, whose furthest point reached was the missing data imputation,
the detection of rowwise outliers and the detection and correction of cellwise
outliers. Moreover, to simulate the single rowwise outliers, the framework from
Chapter 5 was used.

Objective 2: Apply existing and novel statistical machine learning
techniques to real biomedical engineering problems

The content related to this second objective is structured in different chapters,
each one of them associated with a different context of biomedical engineering,
defined by a problem and a provided solution employing statistical machine
learning approaches.

Chapter 7 proposes the use of latent variable-based multivariate statistical
techniques, such as Partial Least Squares regression (PLS, Section 3.4.1), in the
Six Sigma statistical toolkit for healthcare processes improvement, illustrating
their implementation into the DMAIC (Define, Measure, Analyze, Improve and
Control) phases of a Six Sigma project carried out in an Outpatient Pharma-
ceutical Care Unit in the Department of Pharmacy at Hospital Universitario
Doctor Peset in Valencia (Spain). This unit provides prescription drugs and
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pharmaceutical care services to outpatients. The outcomes of the multivariate
Six Sigma approach will be compared with the conclusions obtained by classical
Six Sigma statistical tools, such as the ANalysis Of Variance (ANOVA).

Chapter 8 uses PLS-DA approaches to classify individuals in the healthy
control or case groups of Myalgic Encephalomyelitis/Chronic Fatigue Syn-
drome (ME/CFS), also determining which variables could be used as potential
biomarkers, holding the most discriminant power between these two classes
of participants. In this context, the performance of Partial Least Squares for
Discriminant Analysis (PLS-DA, Section 3.4.1) models is assessed in terms of
performance, including a comparison with other machine learning techniques
(Support Vector Machines, Random Forest and Linear Discriminant Analysis)
and their interpretability. This chapter illustrates how this characteristic of
latent variable-based models, including both capabilities of prediction and in-
terpretation, directly affects the applicability of predictive models, reducing the
number of necessary variables and providing insight into the physiopathology
underlying different health conditions.

Chapter 9 contains a work whose goal was to predict the severity level of the
disease in a COVID-19 patient admitted to the hospital as early and accurately
as possible. This meant identifying the contributing factors of mortality, and
developing an easy-to-use score that could quickly assess the mortality risk
using only information recorded during the hospitalization event. Multiple
machine learning algorithms were developed to predict mortality, and the in-
formation about these classifiers’ performance was used to determine the most
influential factors in predicting mortality. This information was used after-
wards to define a mortality score that could be easily calculated using minimal
mortality predictors while yielding accurate patient severity status estimates.

Chapter 10 is directly related to the SynBioFactory and SynBioControl projects,
and it proposes a model to transform fluorescence measurements, expressed
in arbitrary units and relative to the plate reader setting, to units of cali-
brant concentration, which are absolute, comparable, and independent of the
measurement device setup. To achieve this independence from the device pa-
rameters (namely from the gain parameter), we propose a correction of the
fluorescence readings by using a gain-effect model. To address the problem
of the arbitrariness of units, we used already established protocols with cali-
brants that can be used to produce precise estimates of molecules equivalent
to fluorescein (MEFL) from fluorescence measurements, deriving fluorescein
concentration values. The resulting unit calibration model enabled users of
fluorescence plate readers to bring experimental measurements into a common
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gain-independent domain, which means a step towards the standardization of
data and the comparability of results obtained from different plate readers.

1.3 Contributions

1.3.1 Articles in peer-reviewed journals

González-Cebrián, A., Arteaga, F., Folch-Fortuny, A. & Ferrer, A. How
to Simulate Outliers with the Desired Properties. Chemometrics And
Intelligent Laboratory Systems. 212 (2021), https://doi.org/10.1016/
j.chemolab.2021.104301.

González-Cebrián, A., Almenar-Pérez, E., Xu, J., Yu, T., Huang, W.,
Giménez-Orenga, K., Hutchinson, S., Lodge, T., Nathanson, L., Morten,
K., Ferrer, A. & Oltra, E. Diagnosis of Myalgic Encephalomyelitis/Chro-
nic Fatigue Syndrome With Partial Least Squares Discriminant Analy-
sis: Relevance of Blood Extracellular Vesicles. Frontiers In Medicine. 9
(2022), https://www.frontiersin.org/articles/10.3389/fmed.2022.
842991.

González-Cebrián, A., Hermenegildo, M., Climente, M. & Ferrer, A.
Multivariate Six Sigma: A case study in an outpatient pharmaceutical
care unit. Quality Engineering. 34 (2022), https://doi.org/10.1080/
08982112.2022.2042018.

González-Cebrián, A., Borràs-Ferrís, J., Ordovás-Baines, J.P., Hermene-
gildo-Caudevilla, M., Climente-Marti, M., Tarazona, S., Vitale, R., Palací-
López, D., Sierra-Sánchez, J.F., Saez de la Fuente, J. & Ferrer, A. Machine-
learning-derived predictive score for early estimation of COVID-19 mor-
tality risk in hospitalized patients. PLOS ONE. 17 (2022), https://doi.
org/10.1371/journal.pone.0274171.

González-Cebrián, A., Borràs-FerrFerrís, J., Boada, Y., Vignoni, A., Fer-
rer, A. & Picó, J. PLATERO: A Calibration Protocol for Plate Reader
Green Fluorescence Measurements. Frontiers in Bioengineering and Bio-
technology. 11 (2023), https://doi.org/10.3389/fbioe.2023.1104445.

González-Cebrián, Folch-Fortuny, A., Arteaga F. & Ferrer, A. RadarTSR:
A New Algorithm for Cellwise and Rowwise Outlier Detection and Miss-
ing Data Imputation. Chemometrics And Intelligent Laboratory Systems.
247 (2023), https://doi.org/10.1016/j.chemolab.2023.105047
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1.3.2 Conference contributions
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tation of Trimmed Scores Regression to deal with outliers in model build-
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(2019)

González-Cebrián, A., Arteaga, F., Folch-Fortuny, A. & Ferrer, A. Radar-
TSR: Robust Adaptation for Datasets with Anomalous Rows and cells of
Trimmed Scores Regression. XXXIX Congreso Nacional de Estadística e
Investigación Operativa. 39 169 (2022)

Borràs-Ferrís, J. González-Cebrián, A., Martínez-Minaya, J., Palací-López,
D., Ferrer, A. Statistical Machine Learning for defining the Design Space.
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1.3.3 Software

González-Cebrián CRAN - Package SCOUTer. (CRAN,2020), https:
//cran.r-project.org/package=SCOUTer.

González-Cebrián PLATERO: A Plate Reader Calibration Protocol to
work with different instrument gains and asses measurement uncertainty.
(GitHub,2020), https://github.com/sb2cl/PLATERO.git.

González-Cebrián RadarTSR: Robust Adaptation for Anomalous Rows
and cells of Trimmed Scores Regression. (GitHub,2020), https://github.
com/albagc/RadarTSR-matlab-master.git.
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Chapter 2. On biomedical engineering

2.1 Introduction

This chapter will introduce the scientific domain of Biomedical Engineering
(BME). First, a general description of the discipline will be provided, followed
by a critical commentary on its future concerning the Industry 4.0 and Health-
care 4.0 paradigms. Afterwards, two main sections will address in more detail
two branches of BME related to the contributions of this thesis: Synthetic
Biology and Biomedical Informatics.

Biomedical engineering (BME) is an interdisciplinary area of
science that applies engineering principles and tools to under-
stand, modify or control biological systems.

At its beginnings in the 1950s and 1960s, BME’s main concern was the security
of the use of medical devices. Since then, the area evolved by reaching many
other scenarios where engineering methodologies are applied to solve problems
defined by medical or biological constraints and requirements [1], [2]. This has
led to new areas whose etymology reflects this symbiotic essence: Bioinstru-
mentation, Bioinformatics, Biomaterials, Biomechanics, Genetic Engineering,
Clinical Engineering, Bionanotechnology, etc.

Whereas areas of BME, either with a biological or medical application, are
boundlessly branching over time, they are all connected to the engineering and
mathematical core of BME. This methodological trunk has remained a channel
of innovation from Information and Technology (IT) disciplines. For instance,
the increase in computational power materialised in better equipment and tools
for medical imaging, an unseen abundance of data, and automated biomedical
data analysis systems. On this last matter, the role of Machine Learning (ML)
models and Artificial Intelligence (AI) has become crucial, but these concepts
are explored in more depth in Chapter 3.

This interdisciplinary effort on deploying fast, automated, and data-based solu-
tions puts BME as a particular case within the context of Industry 4.0, a term
coined at the end of 2011 by a German government article defining the tech-
nological strategy for 2020 [3]. This strategic plan embraced the ideas of the
Fourth Industrial Revolution, characterised by accelerated changes in technol-
ogy, industries, and societal patterns fostered by the increasing interconnection
and automation of processes.
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Undoubtedly, the Industry 4.0 scenario has impacted BME, resulting in the
fourth “major update” of healthcare: Medicine 4.0 or Healthcare 4.0. Similar
to Industry 4.0, Healthcare 4.0 is characterised by using wearable, intelligent
sensors and medical devices integrated with cloud computing, big data analysis,
AI, and decision support techniques [4].

A key feature of the 4.0 paradigm is the transcendence beyond the traditional
monogamy between a dataset, a process, and a specific scientific domain. To-
day’s outlook is characterised by continuous permeation between the physical,
digital, and biological worlds: the same dataset can be shared and fed to
processes and analyses for various purposes, or datasets might be merged to
expand the frontiers of certain studies. Three main concepts articulate such
an ecosystem [5]:

1. the Internet of Things, as an infrastructure of interconnected devices
generating a continuous streamline of data;

2. the Cloud, as the warehouse for this massively produced data; and

3. the Big Data technologies, as the tools to extract value from the large
volumes of heterogeneous data.

This thesis is mainly related to the third item, proposing tools to extract in-
formation from biomedical data, often called the “smart” feature of Healthcare
4.0. This characteristic is brought by using AI and ML models and pursuing
individualised and patient-centred healthcare management. However, as good
as it seems, this paradigm presents several technological and social challenges
further discussed in this thesis.

The effects of the 4.0 paradigm come across all levels of granularity within BME
applications, reflected in the different scales at which contributions presented
in this thesis affect. The cell scale considers models and tools for controlling
compounds using cells as bioreactors. Systems Biology studies this first level.
The tissue level, although not included in the contributions of this thesis, has
the collective of cells as its reference unit. The next levels are the individual
level, considering the interaction with each patient for a specific clinical ca-
suistic, and the organisational level, which includes institutions for healthcare
and public health policymaking.

The rest of this chapter will describe the two main branches of BME related
to the contributions included in Part III of this thesis. On the one hand,
Chapter 10 is devoted to process understanding at the cell scale in the context
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of biological processes, a part of Systems Biology, described in Section 2.2. The
rest of the applied contributions in the thesis could be included as examples
of research in the field of Biomedical Informatics, described in Section 2.3,
both at an individual level (Chapters 8 and 9) and at an organisational level
(Chapter 7).

2.2 Systems biology

In 1957, Francis Crick stated one of the basic notions about living organisms,
coined “the central dogma of molecular biology” [6], [7]. This lemma described
the flow of genetic expression by claiming that: “the transfer of information
from nucleic acid to nucleic acid, or from nucleic acid to protein may be pos-
sible, but transfer from protein to protein, or from protein to nucleic acid is
impossible. Information means the precise sequence determination, either of
bases in the nucleic acid or amino acid residues in the protein”. This statement
suggests a unidirectional path of information codified in genes (Deoxyribonu-
cleic acid, DNA) which is transcribed to Ribonucleic acid (RNA) and then
translated to proteins. Over time, the described pathway has been modified
with additional flows, such as the replication of RNA molecules or the reverse
transcription of RNA-yielding DNA.

The ultimate goal of Systems Biology is to analyse, describe, predict and con-
trol such biological information across all its different layers of expression; to
do so, it uses mathematical modelling and statistics [8]. It pursues understand-
ing all layers in the studied biological processes within organisms, integrating
information related to different omics sciences: genomics, transcriptomics, pro-
teomics, metabolomics and fluxomics.

The first two omic sciences refer to different chain levels described by the
central dogma of molecular biology:

• Genomics aims to identify an organism’s genome, establishing the link
between the structure and function of genes. A frequent type of data to in-
fer information about genetic expression is fluorescence data. Chapter 10
uses fluorescence data emitted by fluorescein, a fluorescent compound
with a spectral pattern similar to the one of Green Fluorescent Protein
(GFP, [9]). The use of GFP is widespread, especially in Synthetic Biology,
a discipline described in more depth in Section 2.2.1.

• The genetic information codified as DNA is transcribed to RNA. There
are different types of RNA depending on their function (messenger RNAs,
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transfer RNA, etc.), but they are generally referred to as “transcripts”.
Transcriptomics looks at this information by studying these RNA molecules
produced by the transcription of those genes. This perspective helps to
infer the processes in which genes will be involved via their assembled
transcripts. Chapter 8 contains an analysis of the presence of micro RNA
(miRNA) sequence searching for potential biomarkers but also to infer
the network of interactions between genes. Section 2.2.2 describes the
essays to quantify miRNA expression and conduct network analysis in
more depth.

Beyond the translation of RNA into a protein, three different omics are study-
ing the structure and function of biochemical compounds and phenomena.
Proteomics examines the structure and function of proteins and their inter-
actions. More generally, metabolomics identifies metabolites, i.e., biochemical
molecules and compounds involved in biochemical reactions that will use or
produce them. The chains of these reactions resulting in a flux of metabolites
are studied by fluxomics. Section 2.2.3 gives the basic information about Ra-
man spectroscopy, a technique widely used to identify the presence of specific
metabolites from the chemical fingerprint of biological samples.

The following subsections will address in more depth three types of data related
to different omic levels that will be used in some Chapters of this thesis. Some
context about the goal and experiments associated with acquiring these data
will also be provided.

2.2.1 Quantifying genetic expression in Synthetic Biology

Bridging industry and biology, Synthetic Biology is a scientific area that in-
volves redesigning organisms genetically to dote them with new abilities to
carry out valuable purposes. These tasks include the production of compounds
of interest, such as a medicine or fuel, or gaining a unique ability, such as acting
as sensors for certain biochemicals or specific environmental conditions [10],
[11]. This industrially oriented biotechnology is also named “white biotech-
nology”, referring to the industrial use of microorganisms as the resources to
produce several biochemical compounds. This fusion between industry and
biology, which resonates with the Industry 4.0 paradigm, has its epitome in a
concept envisioning cells as small factories: the biofactories.

Like in any other manufacturing industry, the success of biofactories as stan-
dard methods of production is intrinsically determined by the prosperity of
Synthetic Biology in the construction of new organisms with the necessary

15



Chapter 2. On biomedical engineering

functions to adapt to production demands. Yet, when classical schemes of in-
dustrial production for measuring, monitoring, modelling, and control have to
be applied to microorganisms, technical challenges are presented.

Enhancing Synthetic Biology for its transition from a trial-and-error process to
an engineering discipline embracing more formal methods requires standards.
These facilitate the Design-Build-Test-Learn (DBTL) lifecycle by enabling the
integration of inherently different tools and techniques into coherent workflows.
The DBTL cycle requires a complete description of the components in a bi-
ological system, data to describe the system function and interconnections,
and computational models to predict the impact of environmental parameters
on the system’s behaviour. In this context, data standards describing genetic
constructs and their mathematical models foster information sharing, which is
crucial to overcoming characterization and reproducibility issues across labo-
ratories.

A common source of information in Synthetic Biology is fluorescent signals
emitted by cells through the expression of fluorescent reporters. This infor-
mation is commonly used for quantifying gene expression levels and a wide
range of other biological properties. In these settings, a measure of the light
emitted by a specific fluorescent molecule, e.g. the Green Fluorescent Protein
(GFP), is used to estimate the amount of GFP molecules expressed by the
cell. Thus, by linking the expression of a gene of interest to that of GFP,
fluorescence measurement can be used to measure the expression level of the
first one indirectly.

Currently, there are two main devices for measuring fluorescence: flow cy-
tometers and plate readers, with the latter being the most affordable option.
However, these measurement techniques still face some challenges, mainly re-
lated to the lack of standard frameworks to normalize the fluorescence data,
remove any effects associated with the measuring setup, and retrieve informa-
tion about the genetic activity.

Improvements in this matter can be divided into two main categories. On
the one hand, some studies focused more on autofluorescence correction by
normalization of fluorescence measurements with fluorescence-free cell cultures
grown simultaneously in parallel with the fluorescence-loaded ones [12]. On the
other hand, other strategies try to use mathematical expressions to normalize
the data. Most of these approaches acknowledge autofluorescence’s effect, the
gain used for the measurements, and the plate reader. Some examples are the
FlopR software by [13] and the software FlowCal from [14].
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Nevertheless, despite the attempts to address autofluorescence and normal-
ization, these approaches present limitations. Approaches based on parallel
fluorescence-free cell cultures [12] require more resources, limiting their scala-
bility and practical implementation across diverse experimental setups. Simi-
larly, solutions based on mathematical expressions utilized for data normaliza-
tion [13], [14] encounter hurdles in accommodating the dynamic complexities
inherent in varied biological systems and, while acknowledging autofluorescence
and instrument-related gains, struggle to encapsulate the nuanced interplay of
factors affecting the variability of fluorescence measurements.

Given this casuistic, it seems reasonable to leverage statistical tools to elevate
the state-of-the-art and proffer novel innovations. Such questions are further
discussed in Chapter 10, which includes a calibration protocol to fit a normal-
ization model based on a unified mathematical framework and using a set of
statistical tools that provide validation for the underlying mathematical as-
sumptions, a quantification of the uncertainty within the predictions, and an
assessment on the plate reader‘s measuring quality.

2.2.2 Quantification of miRNAs

Around 90% of genomic information in eukaryotes is transcribed to RNA, from
which 98% approximately will not be translated to a protein. This vast amount
of RNA sequences is named non-coding RNAs (ncRNAs). Among ncRNAs,
microRNAs (miRNAs) have received considerable attention [15].

Discovered in 1993, fragments of miRNAs are single-stranded chains of ap-
proximately 22 nucleotides whose main mission is to inhibit gene expression.
They have been reported in a wide range of living organisms. Besides acting
intracellularly, they can mediate cell-cell communication via extracellular vesi-
cles (EVs) secreted by most cell types in the extracellular space and different
biological fluids. Moreover, dysfunction or dysregulation of miRNAs was re-
ported in several types of diseases [16], [17]. For all these reasons, miRNAs
have earned attention as biomarkers for diseases.

The different systems to quantify the concentration of miRNAs in fluids can be
divided into direct and indirect measurements. Direct measurements quantify
the miRNA counts in a sample, whereas indirect methods rely on previous
RNA extraction and/or amplification before measuring the concentration of
miRNAs in the samples. After quantifying the presence of miRNAs, inferring
the network of elements involved in a particular process enables the obtention
of a functional picture where nodes in the network represent the entities related
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to the detected miRNAs (genes or transcripts), and they are linked according
to the relationships inferred from the analysis of the measurements. Different
techniques can calculate relationships, entropy, and mutual information metrics
[18].

Among these technologies, data from indirect miRNA measurements are used
in Chapter 8. The technology used for miRNA measurement is the NanoS-
tring’s nCounter. This indirect method relies on a one-to-one relationship
between each miRNA sequence and different miRTags, sequences of oligonu-
cleotides specific for each miRNA strand. After coupling the miRNA and the
miRTag, a code complex complementary to the hybridized miRTag and miRNA
sequence pairs with it. Each code complex has a unique barcode at its end,
formed by a combination of six positions and four different fluorophores. When
the complexes are stabilized on a cartridge, the quantification of each one of
the barcodes takes place. This assay relies only upon the extraction of the
RNA and can include up to 800 different miRNA sequences. However, it has
presented lower sensitivity than other technologies, and its turnaround time of
approximately two days can prevent its use for real-time clinical diagnosis.

Despite being promising, the approval of miRNA quantifications as diagnostic
tests is far from being established since they present several limitations re-
garding the high variability of their levels within the organism, the effects of
the sample preparation and storage, variability in the efficiency of the RNA
purification, and the lack of consensus in the choice of reference molecules for
the posterior normalization of the analyzed data. For this reason, using data
analysis tools that enable the comparison between the information inferred
via miRNA quantification and more traditional tools is especially interesting.
The benefits of such analysis would be bidirectional: on the one hand, miRNA
results would be validated against well-established conventional means, and
on the other hand, this might also validate already existing tools but more
affordable than miRNA technologies.

2.2.3 Identification of metabolites by Raman spectroscopy

Raman spectroscopy is based on the phenomenon of Raman scattering. This
occurs when a beam of photons interacts with the electrons of a sample. Sup-
pose this interaction changes the polarizability of the sample’s molecules con-
cerning their previous stage. In that case, the Raman effect takes place, and
the incident photons are then returned with a scattering proportional to the
polarizability change. This produces a spectrum with different levels of energy
associated with the frequencies of the captured photons, whose energy will vary
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according to the sample’s composition. Although this is the basic principle for
Raman spectroscopy, this technique has dozens of variations.

The use of Raman spectroscopy in metabolomics to study the composition
of samples is well established. The returned chemical fingerprints enable the
identification of different compounds present in biochemical structures. Specifi-
cally, Raman spectroscopy has been widely used to study the composition of bi-
ological and clinical samples, given its lack of interference with water molecules.
Moreover, Raman spectroscopy experiments are easy to apply: they come at a
low cost, with a high speed of analysis, and provide broad information about
the chemical composition and the studied structures.

Thus, models integrating the information acquired from affordable and non-
invasive tests, such as Raman spectroscopy, with data from other omic levels
can be especially interesting in carrying out translational research and suggest-
ing more accessible sources of disease biomarkers. It has gained more interest
in the last years, given its performance without the need for biopsies and more
invasive tests. Namely, Raman spectroscopy has shown in previous works its
utility in detecting composition differences in patients’ EVs [19], [20].

In this thesis, Raman spectroscopy data appears in Chapter 8 to characterize
the composition of Extracellular Vesicles (EVs), exemplifying an application
of Raman spectroscopy in the context of biomarkers research from body fluids
and secretions.

2.3 Biomedical Informatics

Biomedical informatics started being used in the 1970s to refer to any generic
interaction between computers and medical attention. From then on, com-
puter programs were developed targeting specific medical fields, reaching the
decade of the 1980s with the emergence of computational biology. The growing
assertion about biomedical data’s power culminated in the 90s with the for-
mal apparition of global interdisciplinary projects such as the Human Genome
Project [21]. In parallel, this pathway was nurtured by improvements in com-
putation science, which yielded smaller hardware devices with increasing pro-
cessing power, easing their implementation in medical devices.

This brief but rapid history took us to the present time, with an outlook that
is well known: data generation is more abundant than ever, and individuals
are more self-aware based on their data (e.g., steps counters, estimated caloric
consumption, etc.). This engagement was expected to expand with a com-
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pound annual rate of 36% growth in the volume of healthcare data produced
between 2018 and 2025 [22]. Moreover, this growth might be underestimated,
considering the significant role of data in managing the COVID-19 pandemic.

This systematic implementation of the IoT has several implications involving
all actors across health systems, with data generation reaching the user level,
probably being its most transcendent feature. This scenario has enabled the
integration of all its actors (patients, hospitals, research institutions, and poli-
cymakers). As a result, new products embracing this new paradigm were born
during the last few years. The entities embodying most clearly this integration
of information across all levels of healthcare are probably Clinical Decision
Support Systems (CDSS).

A CDSS is intended to improve healthcare delivery by enhancing medical de-
cisions with targeted clinical knowledge, patient information, and other health
information. This concept mainly undertakes patient-centred approaches fo-
cused on providing a personalized healthcare service aligned with the Health-
care and Medicine 4.0 ideal.

The following sections will provide more information about CDSS. First, Sec-
tion 2.3.1 describes the types of CDSS depending on the goal of their applica-
tion. Secondly, Section 2.3.2 delves into the barriers faced by CDSS implemen-
tation in healthcare environments and ends with a critical comment focused
on the technical solutions that could be provided to overcome some of the
obstacles and weaknesses discussed in the section.

2.3.1 Types of Clinical Decision Support Systems

There are several criteria to classify CDSS. In terms of their components,
Greenes describes CDSS as an integration of five parts: the method of compu-
tation, the knowledge needed as an input, the information model that imposes
how the data is provided to the CDSS, the type of recommendation offered,
and how the process interacts with the application environment [23]. Hence,
different kinds of CDSS can be defined by articulating other choices for each
one of the components mentioned above.

Berner provides another interesting definition: most CDSS consist of three
parts [24]:

• The knowledge base is the information used to build links between pieces
of data, i.e., if–the rules, associated risks between symptoms and diag-
noses, or treatment incompatibilities.
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• The inference engine is the logical or mathematical syntax that combines
the rules with data from a certain patient.

• The communication mechanism is the interface enabling the input of pa-
tients’ data and the visualization of CDSS’ outcome.

According to clinicians’ active or passive role in the use of CDSS, Berner dis-
tinguished between knowledge-based or non-knowledge-based CDSS [24]. The
first ones are more permeable to clinicians’ voices, e.g., suggesting a list of
potential diagnoses or expecting the user to filter and override systems recom-
mendations according to their judgment. On the contrary, the latter is based
mainly on ML techniques to detect a specific pattern or condition from the
patient’s data. These systems have always been controversial because of the
unjustifiable decision-making process that cannot explain the use of specific
data and the relationships established to yield the obtained outcomes.

Another classification of CDSS can attend to their functionality. The applica-
tion of CDSS in hospital environments can assist with managing patients on
research/treatment protocols, logistics, preventive care, and healthcare process
improvement. Sutton distinguishes six different functions attributed to CDSS
[25]:

• Improve patient safety by reducing medication/prescribing errors and ad-
verse events.

• Enhance clinical management by controlling the adherence to clinical
guidelines and including alert systems with treatment follow-up reminders.

• Cost containment by reducing redundant tests, saving time by automat-
ing tedious steps, and suggesting more affordable treatment options.

• Administrative functions such as automating repetitive tasks like selecting
standard medical codes or tracking service performance.

• Diagnostics support systems suggest diagnoses based on patient data,
automating the interpretation of test results. A subcategory of these
systems concerns directly analyzing data from medical images and labo-
ratory tests.

• Patient-facing decision support aims to provide the CDSS outcome di-
rectly to the patient, mainly done via extensions of a commercial EHR
service or standalone web-based or mobile-based applications.
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Interestingly, merging the three first functionalities (improve patient safety
while reducing errors and costs) results in CDSS resembling the process im-
provement philosophy propelled by the Lean Six Sigma methodology [26], [27].
The Lean Six Sigma methodology uses the Lean Manufacturing principles and
the Six Sigma statistical tools to understand and improve a particular pro-
cess. Although these techniques have been widely and traditionally applied
in manufacturing and industrial environments, they can also improve health-
care processes. For instance, addressing protocol inaccuracies can improve
patient adherence to hospital visits and treatments, reducing the variability
of clinicians’ agendas and ultimately resulting in a better healthcare service.
Chapter 7 contains a case study of clinical management to shorten waiting
time and to reduce the variability in the attention time for outpatients of a
hospital’s pharmacy unit.

The second type of CDSS receiving more attention in this thesis is CDSS for
clinical diagnosis, also known as diagnostic decision support systems (DDSS),
mentioned as the 5th functionality in [28]. Given the known incidence of diag-
nostic errors, particularly in primary care [29], DDSS can be helpful in labo-
ratory testing and interpretation to improve diagnosis [30]. Over the last few
years, the explosion of data generated resulted in DDSS using non-knowledge-
based techniques like certain machine learning models. This philosophy might
pave the way for a more accurate diagnosis. Still, it presents some drawbacks,
and, unfortunately, DDSS has not had as much influence as other types of
CDSS for reasons further discussed in Section 2.3.2. Chapters 8 and 9 present
different real biomedical problems in which DDSS were applied following an
approach that tried to overcome some of the barriers commented on in the
next section.

2.3.2 Challenges of clinical decision support systems

As it has been exposed in this section, CDSS might be the most symbolic ma-
terialization of Medicine 4.0 paradigm. However, their use and implementation
are far from clear, and there is an ongoing discussion about technical and eth-
ical challenges brought by CDSS. This section briefly describes the different
dimensions of these controversies: ethical, technological and financial.

First, there is scepticism about the ethical and professional consequences of
CDSS implantation. This would be a long-term consequence of humans’ over-
reliance on CDSS, resulting in trespassing the decision-making to the CDSS
and complete dependence on CDSS [31]. This “de-skilling” case raises a fre-
quent ethical discussion about the responsibility of decision-making. However,
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the doubts of such debate are based on the myth of machines’ ethical respon-
sibility, as CDSS decisions should always be double-checked and approved by
humans [32].

Another long-term scenario involves the “carryover effect”, which occurs when
CDSS are used as educational tools and stop being required after completing
the training [33]. The “carryover effect” could be solved by a continuous update
of CDSS that should be part of proper maintenance, an often neglected part
of their life cycle. Yet, this need leads to further questions (e.g., the update
frequency, the interaction with other applications or operating systems, etc.) of
a more pragmatic nature that also relate to the technical challenges described
in the next paragraph.

Secondly, on a more technical side, as with any other computer service, the
transportability and interoperability of CDSS can be hampered by complex
programming and the intrinsic diversity of clinical data sources [34]. Besides,
CDSS must also update their knowledge bases, as constituted by the datasets
used to train the systems and by the approved medical guidelines. The dif-
ficulty of keeping CDSS up to date with the fluid medical knowledge is well
known, and this part of maintenance is even more obscured if there is no way
of identifying the algorithmic rules behind CDSS. As Musen, Middleton, and
Greenes point out, many CDSS are embedded directly by vendors in their
products, resulting in a wide range of approaches that are difficult to compare,
inspect, formalize, and share [35].

The relation between these technical challenges and the ethical ones previously
described seems clear, which leads to the question of how materially possible
it is to implement CDSS if they already present considerable technical and
ethical issues.

The previous question pinpoints the third and last dimension contemplated
in this brief critical comment: the economic barriers. The truth is that even
assuming a good integration of CDSS within the medical environment in all
the aspects above, financial viability remains a struggle. Implementation costs
to set up and integrate new systems can be substantial, and even if this bar-
rier is overcome, ongoing costs should also be considered. Even cost-benefit
assessments about CDSS implementations are limited, given the dependence
on social and technological factors. This yields mixed, sparse conclusions that
require systematic approaches to evaluate the economic effects of CDSS [36]–
[40].
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Thus, as has been exposed in this section, the implantation of CDSS faces
many obstacles. The culture of personalized and fast services, spurred by the
enthusiastic use of ML, AI, and Deep Learning tools, has met the complexity
of factors involved in health. Although the technological progress seen in the
last decades and described in Section 2.1 might explain the predominant role of
accuracy in the design of CDSS, it also seems so far such a vision almost exclu-
sively based on accuracy is not enough to push for the complete implantation
of CDSSs in our healthcare systems.

Perhaps the next steps towards a more realistic and sustainable use of CDSS re-
quire looking at health as something beyond an individual service that focuses
on individualized but opaque approaches. This last point backslides to the
importance of interpretability in models used for CDSS. The exclusive focus
on accuracy often implies hermetic decision-making rules that do not provide
global knowledge, which can limit CDSS implementation, as already men-
tioned. Besides, health also comprehends collective dynamics and phenomena,
with repercussions as crucial as the ones we could see recently with the COVID-
19 pandemic when epidemiologists had to look beyond individual-level factors
in understanding the virus dynamics. In the last instance, knowledge is de-
rived from interpreting the information, guiding the ultimate decision-making.
Nonetheless, the described technical barriers can inspire new solutions based
on ML. Retaking Berner’s definition of CDSSs, systems more permeable to
clinicians’ knowledge and completing the relationship between data – informa-
tion – knowledge [41], [42], might be a good inspiration for proposing ML tools
in BME.

The core motivation of this thesis is to pursue biomedical and healthcare knowl-
edge that still leads to “smart” solutions encouraged by the 4.0 philosophy
without jeopardizing the personalized component of the healthcare attention
process focused on accuracy. Yet, this benefit can hardly be seen the other way
around, i.e., the implantation of opaque CDSS does not allow the inference of
factors with collective meaning. This pinpoints a second notion motivating this
thesis: ML models’ opacity can conflict with the intrinsic nature of research
and science, whose ultimate goal is to understand reality better.

All the discussion maintained throughout this chapter, and more incisively
along this section, falls upon the need for a critical gaze on the tools used to
achieve the Healthcare 4.0 paradigm. Yet, this should not be read as a call-
back for the exclusive use of rudimentary statistical tools but as an appeal for
their integration along with ML approaches that can successfully account for
complex interdependencies of variables, nonlinearities, and the heterogeneous
nature of data massively recorded. This synergy between ML techniques and
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traditional statistical thinking is embodied by the term Statistical Machine
Learning (SML), which is addressed more deeply in Chapter 3.
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3.1 Introduction

This chapter starts with an Introduction defining the concept of Machine
Learning (ML), bringing in the debate around the “prediction culture” and
linking it with the previous problem on the use of ML within BME, culminating
with the definition of statistical machine learning as the direction guiding the
research within this thesis. The next sections describe techniques and concepts
that will be methodologically relevant throughout the rest of the chapters.

In 1959, Arthur Samuel (1901 - 1990) coined the term Machine Learning (ML)
as [43]:

Machine Learning is the field of study that gives computers the
ability to learn without being explicitly programmed.

The goal of obtaining knowledge from data was initially pursued by Statis-
tics, a discipline based on inductive reasoning, materialized and formalized in
the problem of statistical inference. Over the beginning of the past century,
starting from separate applications in different fields, Statistics consolidated
as a discipline on its own after the cohesion brought by the formulation of gen-
eral mathematical concepts by personalities such as Karl Pearson or Ronald
Fisher. Although the interpretative character of Statistics brought light to
many fields dominated by purely theoretical abstractions, such as economics,
physics, or agronomy, classical statistics faced certain limitations in dealing
with increasingly complex problems.

From then on, the trajectory of Statistics starts curving towards being regarded
as a computer science approach [44]. The advances in computational capac-
ity led to new applications of mathematical concepts previously addressed by
statistics. Some examples are resampling methods such as bootstrap and jack-
knife, the implementation of Expectation - Maximization algorithms to find
the maximum likelihood estimators, or Monte Carlo Markov Chain (MCMC)
approaches for parameters’ inference.

The increase in computational power also democratized the use of sensors, and
the massive acquisition of data gradually replaced the traditional experimental
design planned before any data gathering. As a result, many of the assumptions
required to apply statistical methods developed over the 20th century were
not met under this new paradigm. This development of computational power
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and the limitations encountered by classical statistical tools led to a different
generation of tools for data science: Machine Learning techniques.

Machine Learning models are tools based on algorithms using a certain strat-
egy to optimize a given target function: minimizing the estimation error, max-
imizing the sensitivity of a classification problem, etc. These models are all
tuned by numerous parameters and hyperparameters that give them almost
boundless freedom to adjust the problem represented by the data properly.

This turned into a rise of a “prediction culture” within research, a term coined
by Leo Breiman, who, in his essay “Statistical modelling: the two cultures”,
compares the culture of data models to the culture of algorithmic modelling,
i.e., of ML models, standing himself as an advocate for the second one [45].

In his article, Breiman exposes the limitations that he found when classical
model-based statistical thinking was applied to real problems with real data.
As a response, he got equally interesting replies from Professor David Cox and
Brad Efron, previously mentioned in this section. Cox acknowledges the utility
of empirical approaches based on prediction accuracy to certain problems but
adds:

“Prediction (is) always hazardous without some understanding ...]. Formal
models are useful and often almost, if not quite, essential for incisive

thinking. [...] Professor Breiman takes a rather defeatist attitude towards
attempts to formulate underlying processes; is this not to reject the base of

much scientific progress?”.

This scepticism on Breiman’s view is perhaps more constructively shaped in
Efron’s response, who takes Breiman’s perspective not as a rejection of classical
statistics but as a call for their update:

“New methods always look better than old ones. [...] Complicated methods are
harder to criticize than simple ones, [...] One of the best things statisticians

do is clarify the inferential basis of a proposed new methodology. I believe the
hardest part of this work remains to be done. Papers like Leo’s are a call for
more analysis and theory, not less. [...] I believe that the current interest in

statistical prediction will eventually invigorate traditional inference, not
eliminate it. [...] The whole point of science is to open up black boxes,

understand their insides, and build better boxes for the purposes of
(human)mankind.”
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Yet, the most inspiring part might be, paradoxically, the last piece of words of
Breiman’s paper, written by himself as his concluding remark responding to
the previous comments from other authors:

“The danger is that if we define the boundaries of our field in terms of
familiar tools and familiar problems, we will fail to grasp the new

opportunities.”

Ironically, the success of Breiman’s vision meant familiarizing data scientists
with the prediction culture brought by ML tools. Following Breiman’s advice,
it might be time to reassess this moment of data science research with a critical
gaze.

The statistical framework offered something aforementioned by Cox and Efron
that mere Machine Learning lacks: statistical thinking. Currently used al-
gorithms are usually black boxes that can hardly be generalized, as they are
paired with the data used to fit them. Their opacity prevents the explanation
of their decisions, their proper use in slightly different scenarios, or the jus-
tification of their service when they have public and social consequences. As
Efron also put it in his essay, “We are back at the beginning [...], with lots
of ingenious ad hoc algorithms, but no systematic framework for comparing
them”. It seems timely to propose updates that merge statistical thinking with
the new methodological corpus provided by machine learning, which is critical
in BME research for the reasons exposed in the following paragraphs.

As exposed in Chapter 2, medical data generation is expected to expand in
volume and variety in the upcoming years. From a technical side, such hetero-
geneous data are often incomplete or unbalanced, which may affect the use of
advanced technology for its analysis. Coming across this “dirty” data to obtain
a clean and usable data set can need domain knowledge, which can be dif-
ficult to integrate quantitatively and qualitatively without tools providing an
exploratory analysis of the original data. Yet, the assessment of results derived
from such exploratory analysis often requires the choice of techniques that are
permeable to the biomedical knowledge base of researchers and clinicians.

Moreover, even if models can be obtained from curated datasets, insufficient
details or transparency can lead to low confidence in their outcomes and im-
plementation. On the other side of the spectrum, models with too much detail
about a specific situation might be difficult to scale up, and extrapolating
slightly different conditions can become unfeasible. Thus, even the most ac-
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curate prediction models should account for this trade-off between process
complexity and the feasibility of the proposed methodology.

From a social perspective, “smart” approaches based on AI and ML models
bring value because of their accurate and individualised predictions. However,
the black-box models at their cores opaque the decision-making process of the
resulting algorithms. Such an approach trades might not be necessarily in the
best interest of research on understanding biology’s or health’s nature. Yet, the
complexity of factors involved requires new approaches quite different from tra-
ditional causal inference, needing to account for interdependencies of variables,
nonlinearities, and the heterogeneous nature of data massively recorded. This
leads to the technical problem described in the previous paragraph, restart-
ing the circular path defined by the complex relationship between “smart”
automation and the extraction of global knowledge. Besides, using opaque
decision-making systems also affects the implantation of CDSS, as pointed out
previously in Chapter 2.

This complexity dominating the Industry 4.0 and Healthcare 4.0 eras raises
challenges but also sets the perfect breeding ground for innovations which the
exposed critical thinking should nurture. Recommendations include using tools
to identify causal effects and analytical approaches that can ground theoret-
ical assumptions. All of this highlights the use of the appropriate statistical
methods. Specifying precisely the causal questions related to a certain issue
brings a better understanding of the data needed to implement workflows as a
response, to decide the best analytical approach for decision-making, and also
provides ground to validate the assumptions involved.

In summary, understanding bioprocesses and health at all levels requires in-
tegrating many different types of evidence, rigorous quantitative analysis of
observational studies, and systems modelling. The arrival of Industry 4.0 and
Healthcare 4.0 paradigms already broke the barrier to accessing increasing
amounts of linked data. Now, it is the turn of the research community to offer
new methodologies and technical solutions to tackle this exciting challenge.

This thesis aims to be a small step toward finding this balance between hypothe-
sis-driven approaches and emerging data-driven algorithms. The concept of
Statistical Machine Learning aims to embody such balance. With that philos-
ophy in mind, different methodologies have been applied to propose both new
algorithms for data science research (Part II) and new models for BME prob-
lems (Part III), keeping a translational approach in mind. More methodological
context is provided in this Chapter, with the following sections describing some
of the techniques applied throughout this thesis.
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3.2 Notation

This thesis will represent scalar values as italic capital letters (e.g., N) and
indices as lower-case letters (e.g., i). When an index is related to a particular
scalar, the same letter will be used for both (e.g., n = 1, . . . , N).

Column vectors are represented as bold lower-case letters (e.g., x) and row
vectors as their transpose (e.g., x⊤). When the elements within a vector are
listed, they will be expressed between brackets (e.g., x⊤ = [x1, . . . , xK ]. The
same notation without commas will be used if a vector is a concatenation of
vectors (e.g., x⊤ = [y⊤z⊤]).

Matrices will appear as bold capital letters (e.g., X) and are often illustrated
as squares and rectangles. Rows will represent observations or individuals,
whereas columns will represent variables. The same notation as in vectors will
be used for matrices (also applicable to rows and columns of a matrix). When
possible, the same letter will be used for the dimension of a matrix and the
index of one of its elements (e.g., the kth column of the matrix X with K
columns, will be referred to as xk).

Either Latin or Greek characters will be used to represent scalars, vectors, or
matrices. When a vector or matrix has the same value for all its entries, it will
be expressed as a bold number with the dimensions (e.g., 0⊤

N is a row vector
with N zeros).

The mathematical operator × will be used to denote the size of a matrix.
The mathematical operator · will denote products between scalars, vectors, or
matrices. The mathematical operators ⟨ and ⟩ indicate the inner product. The
mathematical operator ⊙ denotes the Hadamard or element-wise product.

In sections related to missing data (Section 3.5), matrices and vectors will be
treated as a partition between observed (denoted by ∗) and missing values
(denoted by #), i.e.: X =

[
X∗X#

]
. For instance, T ∗ = X∗P ∗ would be the

scores obtained by projecting the observed variables onto the PCA model.

Finally, in the context of machine learning (ML) models, it’s pivotal to distin-
guish between Model Building (MB) and Model Exploitation (ME) contexts.
MB refers to the phase where the model is trained or fitted using available
data. This process involves learning the underlying patterns or relationships
within the data, adjusting model parameters to minimize errors, and estab-
lishing a predictive or descriptive framework. On the other hand, ME occurs
after the model has been constructed and validated; it involves deploying the
trained model to make predictions or projections on new or unseen data. In
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summary, ME utilizes the model fitted during the MB phase. Understanding
this distinction is crucial as it illuminates the dual roles of ML models: one
in constructing the model (MB) and the other in applying that model to new
data (ME).

This chapter provides the mathematical framework of ML models used in the
rest of the chapters of this thesis. The division will be based on the most
common division of ML models, which is based on the mathematical nature
of the problem they are supposed to solve as unsupervised or supervised. An
assessment of their interpretability will be provided in their corresponding
sections.

3.3 Unsupervised machine learning techniques

When the modelling task uses only the information about inputs, without
labels or response variables within the dataset, it uses unsupervised learning.
With these algorithms, the target function to be optimized cannot be the
accuracy of the response prediction.

Probably, the best-known type of unsupervised learning is clustering. The
goal of clustering methods is to find similarities in the training data. The
underlying assumption of clustering is that assigned clusters could be, in the
last instance, a classification of the observations not explicitly declared in the
data. The output of unsupervised models is a certain structure of the data.

A typical case is the use of unsupervised models as exploratory tools. A cost
function can be minimized to assess the resulting structure’s goodness. For
instance, the distance between observations and the representative parameters
of its assigned cluster is minimized. Moreover, it is essential to guarantee that
the extracted patterns represent the data and that no over-fitting is artificially
generating them.

3.3.1 Principal component analysis

Let X be a matrix with N observations on K variables. After some pre-
processing, such as mean-centring and unit variance scaling, a Principal Com-
ponent Analysis (PCA) model is estimated ([46]). This is done by compressing
the high-dimensional X matrix into a low-dimensional subspace of dimension
A (with A ≤ rank(X)).
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Mathematically, PCA is based on the bilinear decomposition of X as in Equa-
tion 3.1.

X = TP⊤ +E (3.1)

where T is an N × A matrix of scores and P is a K × A matrix of loadings.
The A columns of the loading matrix P are the A loading vectors p.

The score matrix T can be considered as a collection of row vectors τ⊤ (scores
of an observation) or column vectors t (latent variables, with ta = Xpa and
a = 1, 2, . . . , A). The score matrix can be obtained as T = XP , that is,
as the projection of the X matrix on the A−dimensional space of the PCA
model (i.e., columns of P matrix). Analogously, given an observation x⊤ of
the original K−dimensional space, its projection τ onto the subspace of the
model can be obtained using the projection matrix P as well by τ = P⊤x.

From the scores matrix, one can recall the explained part of X by the PCA
model as X̂ = TP⊤. This notation can be used as well for individual obser-
vations, where x̂ = Pτ . The original observation can be decomposed into a
part explained (i.e., predicted) by the model (signal or x̂) and an error term
not considered in any of the A latent variables (noise or e). Thus, for a given
observation we have x = Pτ + e and then e =

(
I − PP⊤)x.

3.3.2 Robust principal component analysis

In real datasets, finding outliers within the matrix used for PCA Model Build-
ing (PCA-MB) is frequent, which becomes a threat for those methods purely
based on least-squares (LS) estimators. The property used more frequently
to quantify the resistance of an estimator to the presence of outliers is its
breakdown value [47].

The breakdown value of an estimator (Equation 3.2) is given by the minimum
number of M observations among a set of N that must be replaced by arbitrary
values so that the estimator T applied to the altered sample X ′, yields a value
beyond all bounds:

ϵ∗N(T ;X) =
1

N
{M ∈ 1, . . . , N : supMD(T (X);T (X ′)) = ∞} (3.2)

where X is the original clean set, X ′ is the new set with M altered observa-
tions, T is a given estimator and D is a distance metric.
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Another attribute defining the robustness of an estimator is its influence func-
tion, which measures the effect of infinitesimal contamination at a point x,
following a clean distribution F , on the estimator T :

IF (x, T, F ) = limε→0

T (Fε)− T (F )

ε
(3.3)

where ε is the fraction of contamination and Fε = (1 − ε)F + ε∆x, with ∆x

having all its mass in x. Robust estimators should show a bounded IF with
small values. Another useful property is the efficiency of an estimator, which
compares the goodness of its values for non-contaminated data to the estimates
yielded by a classical estimator.

For instance, the classical PCA model from Section 3.3.1 has a 0% breakdown
value, i.e., even a single outlying point could break the PCA model. Under-
standably, such a low breakdown value for classical PCA inspired the proposal
of robust adaptations of the PCA model.

Robust PCA models propose different strategies for obtaining a PCA model
clean from the influence of outliers. In broad lines, there are three types of ro-
bust PCA models according to the strategy they follow. There are robust PCA
models based on robust estimators, robust PCA models based on projection
pursuit approaches, and robust PCA models that merge both approaches and
are named hybrid robust PCA methods. The following sections briefly describe
each group, diving more deeply into robust steps included in the MacroPCA
algorithm from Hubert et al. [48], used later in Chapter 6.

Robust Estimators

One possibility to robustify the PCA model is to obtain it from a robust
estimation of the mean and covariance matrix. One of the first attempts was
the M -estimators proposed by Huber [49]. These M -estimators are defined as
the solutions µ̂ and Σ̂ to the system of equations:n−1

∑n
i=1 u1

[
{(xi − µ̂)⊤Σ̂−1(xi − µ̂)}1/2

]
(xi − µ̂) = 0

n−1
∑n

i=1 u2

[
{(xi − µ̂)⊤Σ̂−1(xi − µ̂)}

]
(xi − µ̂)(xi − µ̂)⊤ = Σ̂

(3.4)

where u1(s) and u2(s) are nonnegative, nonincreasing and continuous functions
defined for s ≥ 0. The key is to find such functions u1(s) and u2(s) that
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act as weights of the observations in the computation of the location and
scatter parameters. When these weights are equal to 1 for all the observations
(i.e., observations have full weight regardless of their Mahalanobis distance),
Equations 3.4 are the classical least squares estimators.

Some weaknesses of M -estimators include a potential lack of robustness for ma-
trices with small samples of high dimensionality [50], and their suboptimality
if observations are outlying only for one principal component, but with normal
values along the rest of directions [51]. This later criticism resulted in Camp-
bell’s proposal of iteratively computing principal components little influenced
by outliers, sequentially estimating each eigenvector from Σ̂ until extracting
all A principal components or until reaching a specified proportion of explained
variance. The final robust estimate for the covariance matrix is reconstructed
from the spectral decomposition using the fitted eigenvectors and eigenvalues.

Whereas the methods mentioned above kept a modified version of the least
sum of squares estimation based on their reweighting, the Minimum Covari-
ance Determinant (MCD) algorithm [52] aimed to minimize the covariance
determinant by finding the set of h least outlying observations:

1. The sample mean µ̂0 of the h observations yielding the MCD is calculated.

2. The covariance matrix yielded by the same set of h observations is calcu-
lated and multiplied by a consistency factor Σ̂0.

3. A reweighting step is applied to improve the efficiency of the estimators
based on observations’ Mahalanobis distance to the hyperellipsoid defined
by the raw MCD estimates µ̂0 and Σ̂0, yielding the final estimates as:

µ̂MCD =

∑N
i=1 W (d2i )x

⊤
i∑N

i=1 W (d2i )
(3.5)

Σ̂MCD = c1
1

n

N∑
i=1

W (d2i )(x
⊤
i − µ̂MCD)(x

⊤
i − µ̂MCD)

⊤ (3.6)

with di =
√
(x⊤

i − µ̂0)⊤Σ̂
−1
0 (x⊤

i − µ̂0) where W (d2) is a weight function
and the constant c1 is another consistency factor.

However, finding the subset of the h least outlying observations implied a
search among

(
N
h

)
combinations, which was too time-consuming. This lim-
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itation motivated the proposal of the Fast-MCD algorithm years later [53].
This new proposal reduced the number of subsets of size h considered for the
computation of the MCD while keeping the robust properties of the MCD
estimator.

However, none of these robust methods could resist many outliers and they
required the inversion of the estimated covariance matrix at some point in their
implementation, which could be problematic with high-dimensional datasets.

Projection Pursuit

In contrast to approaches from Section Robust Estimators, Projection Pursuit
(PP) approaches define the robust PCA model fitting as an optimization prob-
lem other than minimizing the sum of squared residuals. The pioneering work
by Li and Chen [54] obtained the eigenvectors of the covariance matrix, i.e., the
loadings of the PCA model, as the directions with maximal dispersion of the
scores, using as a measure of dispersion a robust scale estimator ŝR (yielded
by applying the sR function to a matrix or vector):

vsR,a = argmax||v||=1,v⊥vsR,1,...,v⊥vsR,k−1
sR(v

⊤x1, . . . ,v
⊤xn) (3.7)

The associated eigenvalues are calculated as the robust variances of the pro-
jections, and the covariance matrix could be obtained from the spectral de-
composition using the obtained A eigenvectors and eigenvalues.

The main drawback of this method was the computationally intensive opti-
mization of Equation 3.7. This limitation fostered the proposal of more PP
approaches still based on the concept from Equation 3.7, but varying either the
robust scale metric (sR) or the searching method to obtain the set of directions
v, considered as potential eigenvectors.

The algorithm of Croux and Ruiz-Gazen(C–R algorithm) [55] proposed a new
PP algorithm based on the work from Li and Chen, but using the L1-median as
the robust location estimate µR and the M -estimator of scale as sR. However,
given the problematic use of M -estimators in high-dimensional data sets where
N < K, authors suggested using the MAD (Median Absolute Deviation) or
the Q estimator as robust scale measures in such matrices [56].

The key component of the C–R algorithm was the search for new direction
among the set V (a) (Equation 3.8), instead of considering all potential solu-
tions.
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V (a)(X) =
xa

i

||xa
i ||

; 1 ≤ i ≤ n (3.8)

Therefore vectors in V (a) are actually the directions of the data points deflated
by their reconstructed versions using the already obtained a− 1 eigenvectors:

xa
i = xa−1

i − τ a−1
i v̂sR

a−1∀i = 1, . . . , N (3.9)

This algorithm, usually referred to as the C–R algorithm, was based on the
idea that it might be simpler to inspect the observations to find a fairly close
direction to the ath eigenvector indicating the true maximum dispersion of the
data. However, despite improving the previous results from PP approaches,
the C–R algorithm still lacks numerical stability and was quite time-consuming
for high-dimensional datasets.

The work from Hubert, Rousseeuw, and Verboven [57], used the C–R algorithm
as a base to propose the RAPCA algorithm, which stands for Reflection-based
Algorithm for PCA. The RAPCA method kept the same robust estimators and
the stepwise approach from [56] but included two new steps. It included the
Reflection step (R–step) to solve the numerical issues presented by the C–R
algorithm in high dimensions. Nonetheless, since the R–step took more compu-
tation time, the RAPCA algorithm included a previous kernel transformation
of X to speed up the computations when K > N .

The first step of the RAPCA algorithm is to map the original data onto the sub-
space spanned by the N observations. This subspace is the kernel approach for
obtaining the eigenvalue decomposition of (X − 1N (µ̂C)

⊤
)(X − 1N (µ̂C)

⊤
)⊤,

where µ̂C is the classical mean vector of the initial matrix X. This decompo-
sition is performed on a N ×N matrix instead of on a K×K matrix, which is
especially helpful for cases where K >> N . All the obtained eigenvectors are
stored in the loading matrix P̃ to project the data.

X − 1N

(
µ̂C

)⊤
= T̃ P̃⊤ (3.10)

where T̃ is a matrix of N ×R dimensions, P̃ is a matrix of K×R dimensions,
µ̂C is the classical mean vector and R = rank(X − 1N (µ̂C)

⊤
) ≤ (N − 1).

It is important to notice that the goal of this step is to accelerate posterior
calculations, not to search for the latent dimension of the dataset, and thereby,
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it is critical to use all yielded eigenvalues, not only the first ones related to the
biggest eigenvalues.

Secondly, the RAPCA algorithm introduces the reflection step (R-step) used
for the stepwise search of the principal components’ directions. The input of
this step is the centered scores matrix T̃ − (µ̂R

T )
⊤

= X(1), with µ̂R
T being a

robust location estimator of T̃ , namely the median:

1. The first eigenvector v̂1 is obtained as in the C–R algorithm.

2. The data is transformed by a reflection transformation U1 such that:

U1(ṽ1) = e1 = (1, 0, . . . , 0)⊤ ∈ RR (3.11)

A vector with the direction mapping ˆ̃v1 onto e1 and with unitary module,
is obtained as:

n1 =
e1 − ṽ1

||e1 − ṽ1||
(3.12)

The reflection operation is applied on each observation x
(1)
i as:

x̃
(2)
i = U1(x

(1)
i ) = x

(1)
i − 2⟨x(1)

i n1⟩n1 (3.13)

which yields a vector x̃
(2)
i of the same module as x

(1)
i and aligned in the

direction n1.

3. The data points x
(1)
i are projected directly onto the orthogonal comple-

ment of x̃(2)
i by omitting its first coordinate, yielding x̃

(2)
i = (x

(2)
i2 , . . . , x̃

(2)
iR )⊤ ∈

RR−1

4. The second eigenvector ˆ̃v2 is found applying the C–R strategy to the set
X̃(2). The vector ˆ̃v2 is backtransformed to RR by applying the inverse
reflection.

5. The steps are repeated until A eigenvectors are found. This yields the
final matrix ˜̃P = (v1, . . . ,vA) of R × A dimensions. The final loadings
matrix of the PCA model is obtained by its back-projection onto the
loadings matrix of the kernel transformation:
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P = P̃ ˜̃P (3.14)

And similarly, with the location estimator:

µ̂R = µ̂C + µ̂R
T P̃

⊤ (3.15)

The final PCs computed by the RAPCA algorithm are expressed in the fol-
lowing equation:

T =
((

X − 1N µ̂
C
)
P̃ − 1N µ̂

R
T

)
˜̃P =

(
X − 1N µ̂

c − 1N µ̂
R
T P̃

⊤
)
P̃ ˜̃P =(

X − 1N

(
µ̂R

)⊤)
P

(3.16)

This line of work started with the RAPCA algorithm and was then followed
by the same research group with a series of new hybrid algorithms for robust
PCA, explained in the following section.

Hybrid approaches

A third line of work merges both strategies previously mentioned. Hybrid ap-
proaches usually start from a PP step used for initial dimension reduction.
Then, robust covariance estimators can be applied once this reduction is ob-
tained (with N > K).

After the proposal of the RAPCA algorithm [57], Hubert, Rousseeuw, and
Vanden-Branden [58] proposed the ROBPCA algorithm. This algorithm com-
bined an initial PP part for initial dimension reduction with the estimation
of the final latent subspace using the MCD estimator. The ROBPCA method
follows three main stages:

1. The reduction of the data space to the subspace spanned by the N ob-
servations is applied with the same philosophy as in RAPCA [57]. The
reconstructed matrix using the R0 resulting eigenvectors and eigenvalues
is used for the subsequent steps.

2. The h least outlying observations are searched as those observations yield-
ing the smallest value of Equation 3.17, where B contains all directions
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through two data points and if
(
n
2

)
> 250, a random set of 250 directions

is selected.

outl(xi) = maxv∈B

|x⊤
i v − tMCD(x

⊤
i v)|

sMCD(x⊤
i v)

(3.17)

This outlyingness measure is a version of the originally proposed Stahel–
Donoho affine–invariant outlyingness measures (Stahel 1981, Donoho 1982).
In case of having null variance for a given projection, sMCD(x

⊤
i v), that

is an “exact fit” case, and it means that the direction v of projection is
completely orthogonal to the hyperplane Hv containing h observations.
In this case, the ROBPCA algorithm applies the reflection step from the
RAPCA algorithm [57].

Once the set H0 of h least outlying observations is found, their mean
(µ̂(1)) and covariance matrix (Σ̂(0)) are obtained. The latent dimension
A0 is set according to the eigenvalues of the spectral decomposition of
Σ̂(0), yielding the matrix P (∗) of dimensions R0 × A0 and the scores are
obtained as T (∗) = (X − 1N µ̂

⊤)P (∗).

3. The FAST-MCD algorithm from Rousseeuw and Van Driessen [53] is
applied after applying some C-steps to observations x

(∗)
i with i ∈ H0.

This might yield another h-subset H1 of least outlying observations, with
a location estimator µ̂(3) and a covariance matrix Σ̂(1) yielding a lower
determinant than those from H0. The FAST-MCD algorithm is applied
on this subset H1, yielding the (µ̂(3), Σ̂(2)) estimates. The set (µ̂(2), Σ̂(1))

or (µ̂(3), Σ̂(2)) corresponding to the lower covariance matrix determinant,
will be the one used in further steps.

A reweighted mean and covariance matrix are obtained, yielding (µ̂(5), Σ̂(4)).
The spectral decomposition of Σ̂(4) yields the loadings matrix P (2). The
final loading matrix and the final location estimator are back-projected
to the original space yielding the final location vector, covariance matrix,
and loadings matrix.

This algorithm outperformed its precedent, purely PP version RAPCA (see
Section 3.3.2 [57]), showing lower errors in estimating the eigenvalues. Nonethe-
less, ROBPCA was not prepared to deal with the existence of a different
type of outlier, cell-wise outliers. Its next adaptation came years later as the
MacroPCA algorithm [48], which applied ROBPCA after a previous step exe-
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cuting the Detect Deviating Cells (DDC) algorithm [59] to deal with outlying
cells (see Section 3.6.2).

3.4 Supervised machine learning techniques

Supervised learning aims to fit an ML model that successfully reproduces an
already-existent classification or forecast system (made by humans or other
machines). This type of learning focuses on relating the inputs to the outputs of
the data set, driven by target functions that measure the goodness of predictive
relationships.

In these cases, models are susceptible to the training data set. Biases and
imbalances can be reproduced by supervised models, including them in the
future classification with new individuals. Thus, over-fitting is a problem found
for these models as well. This can be especially critical if the training data set
contains unrecognized or misclassified outliers, given that the resulting model
will also fit these observations, misinterpreting the correct generalization rules.

3.4.1 Partial Least Squares Regression

Partial Least Squares Regression (PLS) [60], [61] pursues finding a subspace
in the N input space X and a subspace in the N output space Y to maximize
the covariance of the resulting LVs after projection,

Whereas Multiple Linear Regression (MLR) or ML techniques focus on mod-
eling the relationship between inputs (X) and outputs (Y ), PLS links both
spaces through the LVs providing not only a model for this relationship but
also a model for X, what offers unique properties. LVs computed in the PLS
model represent the main driving forces linking the input to the output space.
The following equations describe the PLS regression model structure:

T = XW ∗ (3.18)
X = TP⊤ +E (3.19)
Y = TQ⊤ + F (3.20)

Columns of T are the PLS score vectors, conforming to a matrix of dimensions
N × A, where A is the number of LVs of the model. These are estimated as
a linear combination of the original variables with the corresponding weight
vectors from W ∗ (Equation 3.18).
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As commented, PLS models the relation between X and Y through their
projection onto the latent subspace of dimension equal to the number of LVs.
This is the reason why PLS scores, T , are simultaneously good summaries of
X according to P (Equation 3.19) and good predictors of Y according to Q
(Equation 3.20). Besides, the number of selected LVs is related to the effect
of the dimensionality reduction. The bigger the reduction, the fewer LVs (A),
and the information not represented by these A LVs is stored in the error terms
E (for inputs) and F (for outputs).

Consequently, E and F become key indicators of the PLS model goodness of
fit: the smaller the sum of squares of F is, the better the model is for the
prediction, and the smaller the sums of squares of E is, the better the model
explains the X-space. Usually, the number of latent variables is selected in
such a way that E and F matrices can be considered to contain nothing but
noise, keeping the meaningful information (signal) stored in the A PLS latent
variables.

For a given observation, to evaluate the model performance, projecting an ob-
servation, x, onto it, the Hotelling-T 2 in the latent space, T 2, and the Squared
Prediction Error (SPE), are calculated:

τ = W ∗⊤x (3.21)
T 2 = τ⊤Λ−1τ (3.22)

SPE = (x− Pτ )
⊤
(x− Pτ ) = e⊤e (3.23)

Where e is the residual vector associated with the observation, Λ−1 the diag-
onal matrix containing the inverse of the A variances of the scores associated
with the LVs, τ the vector of scores corresponding to the projection of the n-th
observation x onto the latent subspace of the PLS model, and the T 2 and the
SPE hold the same meaning as for the PCA model (see Section 3.3.1).

The PLS model can be expressed as well as a function of the input variables
by substituting Equation 3.18) into Equation 3.20):

Y = XW ∗Q⊤ + F = XB + F (3.24)

where matrix B contains the PLS regression coefficients stored by columns.

The Variable Importance to Prediction coefficient (Equation 3.25) informs
about the influence of the predictor variable xk in a PLS model of A PCs.
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V IPk =

√∑A
a=1 (SSYa · w2

ak ·K)

SSY ·A
(3.25)

SSYa is the sum of squares of explained variance for the a-th component, and
SSY is the sum of squares of the explained variance by the model with A
components.

All PLS model parameters can be calculated sequentially using the NIPALS
algorithm [60], which also handles missing data. This makes the PLS an at-
tractive tool for analyzing complex databases. Moreover, when the response
variable is categorical, there is an adaptation of PLS that can be used for dis-
criminant and classification purposes. This version is named PLS-Discriminant
Analysis (PLS-DA) [62].

Along this thesis, PLS coefficients are often expressed by their associated jack-
knife intervals. Jackknife [63], [64] is an approach to compute confidence inter-
vals for a given estimate without making assumptions about the parameter’s
distribution but about the parameter’s bias.

Let x be a vector with N values of a certain variable X, and θ the parameter of
interest about X distribution. The term θ̂(i) refers to the value of the parameter
θ obtained when the element xi is removed from x, and θ̂(·) is the average of
all θ̂(i) values. The pseudovalues of the estimator are:

θ̃i = Nθ̂ − (N − 1) θ̂(i) (3.26)

where θ̂ is the value of the parameter estimated from the N observations of
the sample x. Therefore, a jackknife estimation systematically removes each
observation from the data matrix, computes the estimate of interest, and pro-
vides confidence intervals for that estimate, considering the standard deviation
between each iteration’s estimate and the global estimate with all the observa-
tions. The confidence intervals are calculated using the single-point estimate
of the parameter (Equation 3.27) and its estimated variance (Equation 3.28).

θ̂JACK =
1

N

N∑
i=1

θ̃i (3.27)

σ̂2
θ,JACK =

1

N − 1

N∑
i=1

(
θ̃i − θ̂JACK

)2

(3.28)
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Using Equations 3.27 and 3.28, a confidence interval for the parameter can be
provided as:

CI(θ)100(1−α)% =

[
θ̂JACK − tα/2,N−1

σ̂θ,JACK√
N

; θ̂JACK + t1−α/2,N−1

σ̂θ,JACK√
N

]
(3.29)

where tα,N−1 is the value of the normal distribution with N − 1 degrees of
freedom for which P (t > tα,N−1) > α.

PLSDA

Partial Least Squares for Discriminant Analysis (PLS-DA) is the direct exten-
sion of PLS, developed for classification problems [62]. First of all, the response
matrix Y must be one-hot encoded. This encoding consists of having, for each
observation, a dummy L-dimensional row vector with “1” on the columns of
the class the observation belongs to, and “0” otherwise in the rest of L − 1
columns, with L being the number of categories. Then, matrix X is regressed
via PLS on Y .

What the PLS equations (Equations 3.18 to 3.20) will obtain for new observa-
tions will actually be a class prediction that can be interpreted in a non-strict
way as the probability, given the input values x⊤, of belonging to each one of
the L classes. The assignation to return a categorical output respecting the
original nature of the classification problem can be carried out according to
different rules: assigning the label with the highest probability a posteriori,
assigning the label provided that it is above a certain threshold, etc.

3.4.2 kernel Partial Least Squares Regression

Section 3.4.1 exemplified how to adapt the PLS framework to deal with cate-
gorical response variables, overcoming the limitation of assuming a continuous
response. In an analogous way, kernel PLS focuses on another limitation, the
assumption of that latent variables should be linear combinations of the origi-
nal features. To bypass this limitation, a prior kernel transformation is applied
to the data expanding the dimensionality of the original feature space. The
kernel transformation is given by:

K(x⊤
i ;x

⊤
j ) = ⟨x⊤

i ;x
⊤
j ⟩ (3.30)
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where x⊤
i and x⊤

j are two row vectors of the original data matrix to which a
specific mapping function is applied, while ⟨ and ⟩ denote the inner product.

If one applies this transformation to every possible couple of vectors consti-
tuting a generic array, X, with dimensions N × K, it will be converted into
a squared symmetric N ×N kernel matrix, K, whose elements constitute dis-
similarity or distance measurements between two different observations.

When dealing with kernel-based approaches, it is not needed to know the
mapping function a priori. There are many generic kernel functions one can
resort to for obtaining K and all of them exhibit two fundamental properties:
i) they allow the original data to be projected onto a higher-dimensional space,
the feature space; ii) they provide a way to calculate the inner product between
observations in such a feature space.

The former permits to describe in a linear way possible non-linear relationships
in X. The latter makes all the algorithms of classical multivariate linear
methodologies, which are based on the calculation of the inner product matrix
of X (e.g. PCA, PLS and PLSDA), suitable for being applied in this higher-
dimensional feature space.

Among the available kernels, in this thesis it will be particularly used the
Gaussian on, also known as the radial basis function kernel.

exp

(
−||xixj||2

2σ

)
(3.31)

Therefore, once the kernel matrix, K, has been computed, a classical bilinear
technique can be applied to it generating the classical model. Although the
use of a previous kernel distorts in a certain way the interpretability of the
model, it is possible to retrieve the inner connections between responses and
predictors by a pseudosampling approach [65].

3.4.3 Random Forest

Random Forests (RF, [66]) is a type of ensemble model based on CART (Clas-
sification And Regression Trees, [67]) and on bagging. The CART algorithm
is a machine learning technique that emulates a sequential binary decision-
making process by fitting classification or regression trees. At the initial or
root node, all observations remain together. Then, the CART algorithm will
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generate internal nodes, splitting the data set into two new nodes. Internal
nodes generate the partition, asking for specific information on the predictors.

In each node, the variable selection and the threshold to split the data are
made according to the Gini index, which measures the node’s entropy (also
called heterogeneity or impurity). Gini’s entropy index of a given note t is
calculated by summing the probability pi of each item being chosen times the
probability 1− pi of a mistake in categorizing that item.

I(t) =
N∑
i=1

pi (1− pi) (3.32)

Thus, it reaches the zero value when all cases in the node fall into a single
target category.

The CART algorithm stops growing the tree when a leaf node is reached. Leave
nodes can be defined by meeting certain algorithm hyperparameters, such as
having reached the maximum number of tree partitions or if the number of
observations in that node is below a certain number.

One of the main advantages of the CART algorithm is that it can model non-
linear problems and still be interpretable. However, complex issues usually
resulted in long and complicated decision trees, which were difficult to inter-
pret. Moreover, the CART algorithm required a phase named “pruning” to
reduce the number of partitions of the decision tree to avoid overfitting.

Random Forests overcame these limitations by implementing resampling tech-
niques that allowed the use of the Law of Large Numbers. A set of decision
trees defines a Random Forest model fitted utilizing a subset of observations
and a subset of features (Equation 3.33).

{h (x,Θk) , k = 1, . . .} (3.33)

For each tree, bootstrapping [68] is done to sample with replacement N ob-
servations from the initial data set, with an independent and identically dis-
tributed probability of each observation being selected. Moreover, a random
selection of variables is also performed for each tree. Then, for a new obser-
vation, the RF obtains a prediction from each one of its trees and assigns the
most voted response.
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In the original work proposing RF, it is proved that the combination of enough
trees ensures RF convergence and prevents over-fitting problems. Moreover,
the bootstrapping implementation also enables an unbiased prediction error
estimation. Observations not used for a subset of trees are known as out-of-
bag observations. Analogously, for each observation, there will be a subset of
trees that did not use it for their fitting, i.e., that observation remained out-of-
bag for such trees. This allows using these trees to obtain a set of predictions
for the same observation.

This out-of-bag estimates can present certain advantages to computing the
uncertainty within the predictions, which remain biased in other resampling
schemes such as cross-validation. Moreover, when the number of cases is re-
duced, the out-of-bag estimation would allow the prediction error computation
as in an external test set without performing the classical partition within the
training and test set.

Regarding interpretability, RF cannot return a single decision-making struc-
ture as the CART algorithm does. However, the out-of-bag procedure also
enables estimating metrics about the importance of each variable, known as
Variable Importance for the Prediction (VIP).

To compute variables’ VIP, a given tree’s out-of-bag observations are permuted
on a single predictor xj. These corrupted observations on the xj variable are
then run down the tree, obtaining a particular decision. This procedure is
repeated for each one of the K variables. When some variable is corrupted,
the outcomes obtained for each observation are compared to the observations’
true labels (or responses). The increase in the misclassification rate when a
variable is corrupted is compared to the out-of-bag misclassification rate. This
increase, expressed as a percentage, provides a measure of the importance of
the variable.

While the out-of-bag estimation allows computing prediction errors and esti-
mating variable importance without the need for a separate test set, an essen-
tial aspect to note is that within the process of estimating VIP coefficients, a
single predictor xj is permuted among a tree’s out-of-bag observations. There-
fore, it’s important to acknowledge that corrupting individual variables in this
manner creates observations that may disrupt the correlation structure of the
dataset, essentially generating new instances that significantly differ from those
in the training dataset. This introduces a potential limitation to the method as
it attempts to predict observations that could essentially be outliers or anoma-
lous data points, altering the typical data structure.
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3.4.4 Evaluation of supervised models

This section introduces some notions used throughout the thesis, namely in
Chapter 6 from Part II, but especially Part III, to compare across ML models.
The terms upon which this comparison will be established will be divided
into two main types: those describing model performance according to the
traditional evaluation for supervised models and those reporting about the
interpretability of the models in terms of the inferred relationship between
input and output variables.

Comparison of models’ performance

The following lines describe metrics used to evaluate the performance of su-
pervised models trained for classification problems. The term TP refers to
True Positives, FP to False Positives, TN to True Negatives, and FN to False
Negatives:

• The recall (Sensitivity or True Positive Rate) measures the proportion of
positive instances correctly identified by the model. It is calculated as the
ratio of true positives to the sum of true positives and false negatives. A
high recall indicates that the model is good at capturing positive cases,
reducing the number of false negatives.

Recall =
TP

TP + FN
(3.34)

• The specificity (True Negative Rate) measures the proportion of negative
instances correctly identified by the model. It is calculated as the ratio
of true negatives to the sum of true and false positives. High specificity
means that the model is effective at identifying negative cases, reducing
the number of false positives.

Specificity =
TN

TN + FP
(3.35)

• The precision (Positive Predictive Value) measures the proportion of pos-
itive predictions made by the model that are correct. It is calculated as
the ratio of true positives to the sum of true and false positives. A high
precision indicates that the model is making few false positive predictions.
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Precision =
TP

TP + FP
(3.36)

• The Area Under the Curve (AUC, Equation 3.37) refers to the area under
the Receiver Operating Characteristic (ROC) Curve. The ROC curve is
a graphical representation of the model’s performance across different
classification thresholds. The AUC is the area under the ROC curve
and represents the overall performance of the model. A higher AUC
value (closer to 1) indicates better discrimination power, i.e., the model is
better at distinguishing between positive and negative cases. The AUC is
typically calculated by adding successive trapezoid areas below the ROC
curve.

AUC =

∫ 1

0

TPR(x)dx, x = 1− TNR (3.37)

• The accuracy (Equation 3.38) quantifies the proportion of correctly pre-
dicted instances (both true positives and true negatives) out of the total
instances in the dataset. In essence, accuracy indicates how well a model
predicts the correct class labels for the given data.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.38)

While accuracy is a straightforward and easy-to-understand metric, it
might not be suitable for imbalanced datasets where one class signifi-
cantly outweighs the other, as it can lead to misleadingly high scores.
In such cases, complementary metrics like the F1-score or the Matthew’s
Correlation Coefficient, explained below, are often used to provide a more
comprehensive assessment of a model’s performance.

• The F1-score (Equation 3.39) is calculated as the harmonic mean of pre-
cision and recall and considers both false positives and false negatives,
making it particularly useful when dealing with imbalanced datasets.

Accuracy =
2TP

2TP + FP + FN
(3.39)
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It ranges between 0 and 1, where a higher F1-score indicates a better
balance between precision and recall, suggesting a model that provides
both accurate positive predictions and captures a substantial portion of
actual positives.

• Matthew’s Correlation Coefficient (MCC, Equation 3.40) takes into ac-
count true positives, true negatives, false positives, and false negatives,
providing a balanced evaluation of classification performance, especially
for imbalanced datasets, as it doesn’t inflate scores due to skewed class
distribution.

MCC =
TP · TN − FP · FN√

(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)
(3.40)

It considers all four outcomes of a binary classification and produces a
score between -1 and 1, where 1 indicates perfect predictions, 0 indicates
random predictions, and -1 indicates complete disagreement between pre-
dictions and actual outcomes.

• Cohen’s Kappa (κ, Equation 3.41) is a statistic that measures the agree-
ment between the model’s predictions and the actual outcomes while
considering the agreement that could be expected by chance. It is par-
ticularly useful when dealing with imbalanced datasets. A value of κ = 1
indicates perfect agreement, 0 indicates agreement by chance, and nega-
tive values indicate poor agreement.

κ =
2(TP · TN − FN · FP )

(TP + FP )(FP + TN) + (TP + FN)(FN + TN)
(3.41)

These metrics are commonly used to assess the performance of classification
models and can provide valuable insights into the model’s ability to classify
positive and negative instances correctly. It is essential to consider these met-
rics together to get a comprehensive understanding of the model’s strengths
and weaknesses.
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Comparison of models’ interpretation

Interpreting machine learning models is crucial for understanding their decision-
making processes and gaining insights into the relationships between input
features and predictions. Model interpretability ensures that the predictions
are not treated as black boxes, allowing users to trust, validate, and improve
the model. There are two broad categories of interpretability metrics: model-
specific and model-agnostic methods.

Model-specific interpretability metrics aim to elucidate the decision-making
process and feature importance within specific machine learning models. These
metrics provide insights into the influence of input features on model predic-
tions, and they are tailored to the characteristics of each model type. We
categorize these metrics into three distinct groups based on their primary re-
porting focus:

• Reporting about Magnitude and Direction. This type of metric includes
coefficients and weights such as those from linear models (e.g., Linear Re-
gression, Logistic Regression, or the B coefficients from the PLS model,
see Section 3.4.1). These coefficients represent the magnitude and di-
rection of the relationship between each feature and the target variable.
Positive coefficients indicate a positive correlation, while negative coeffi-
cients imply a negative one. The larger the magnitude of a coefficient, the
stronger the impact of the corresponding feature on the model’s predic-
tions. Another example is the support vectors from Support Vector Ma-
chines (SVM), which enclose a subset of data points defining the decision
boundary. Identifying the support vectors reveals the most influential
data points significantly affecting the model’s decision-making process.
Analyzing the weights assigned to these support vectors offers insights
into the impact of specific data instances on the final classification.

• Reporting about Magnitude. Partially similar to the previous type of met-
rics, these metrics report the influence of different variables on a certain
objective function. For instance, in the CART algorithm, the Variable
Importance for the Prediction metrics evaluate input features based on
their ability to reduce impurity (e.g., Gini impurity or entropy). By mea-
suring the decrease in impurity caused by each feature, Decision Trees
rank features according to their importance. High-ranking features have
a greater magnitude and influence in determining the model’s predictions.

• Reporting about the Decision-Making Process. This final category refers
to schematic visualizations of the overall decision-making process, en-
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abling a certain degree of interpretability without directly quantifying
the relationship between inputs and outputs. For instance, the inher-
ent structure of Decision Trees provides a transparent representation of
the decision-making process. Visualizing the tree reveals the sequence of
feature tests performed to arrive at a prediction. Each node in the tree
corresponds to a feature test, and each branch represents the outcome of
the test, culminating in a final prediction at the leaf nodes.

Model-agnostic interpretability metrics provide insights into machine learning
models’ behaviour independent of their specific architecture. These metrics
apply to many models, including complex black-box models. Their philoso-
phy is to perform a Sensitivity Analysis, generating hypothetical scenarios to
answer “what-if” questions posed to the model. For instance, a strategy is to
calculate the permutation-based feature’s importance. This method evaluates
feature importance by randomly permuting the values of a single feature across
the dataset and measuring the subsequent drop in model performance. Fea-
tures that lead to a significant decrease in performance when permuted are
considered important to the model’s predictions.

Another example is pseudosamples, which involve creating hypothetical sam-
ples with different feature values while fixing other features. By observing how
the model’s predictions change in response to these perturbations, the features’
importance and the model’s sensitivity to variations in input features can be
assessed. Using this concept, the variations of the model can be reported in
different ways:

• Global feature importance can be indicated by consistent trends across
the entire dataset, visualized via Partial Dependency Plots (PDP) [69].
This tool explores the impact of a single feature on the model’s predictions
by plotting the feature’s values against the corresponding model predic-
tion. By doing so, PDPs reveal descriptively the direction and magnitude
of the relationship between the feature and the target variable.

• Local Interpretable Model-agnostic Explanations (LIME) approximate
the behaviour of any black-box model near a specific prediction using
a simpler, interpretable model [70], [71]. By understanding the inter-
pretable model’s predictions for individual instances, LIME provides lo-
cal explanations, allowing users to comprehend the factors contributing
to specific model outputs. For example, Individual Conditional Expec-
tation (ICE) plots extend the idea of PDPs to offer a local perspective.
Instead of showing the average impact of a feature, ICE plots illustrate
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the model’s predictions for each instance separately. By examining ICE
plots for different instances, users can understand how the model treats
individual data points based on their feature values.

In this thesis, univariate pseudosamples appear in Chapters 9 and 11.

3.5 Missing Data

Missing Data (MD) refers to open entries in a data set. A data set is a matrix
where rows are observations and columns represent variables measured for each
observation. Missing data is ubiquitous, especially in multivariate data sets,
where several variables might be missing for some observations. Most tools for
data analysis assume that they will work with a complete and clean database.
Thus, a proper imputation of missing data is mandatory in most cases. In this
section, the missing data problem will be described, and imputation methods
will be addressed.

3.5.1 The missing data problem

The first step when dealing with missing data is to identify the missing data
pattern and mechanism. On the one hand, the missing data pattern refers
to the structure of missing entries within a matrix. There are four types of
missing data patterns:

• Unstructured missing data. Missing data are randomly distributed among
the matrix.

• Univariate missing data. Only one variable presents missing data. For
instance, if some measurements of a certain experiment could not be
obtained.

• Block-wise missing data. This pattern is the multivariate version of the
previously mentioned missing data patterns: when missing values are
concentrated among various variables, which might be more difficult to
measure than others.

• File matching missing data. When certain variables do not share any
observed values, since there are no cases with joint information between
these features, the imputation of missing entries cannot rely on parame-
ters that relate to these variables.
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Once missing data are present in a matrix, the only way to solve the missing
data problem is to stop having missing values. This means either working only
with observed data or imputing missing values. However, working only with
complete observations (Complete Case analysis, CC) results in a considerable
loss of information, and using all observed values of each variable (Available
Case analysis, AC), changes the sample used to compute estimates depending
on the variables. These two drawbacks of CC and AC analyses are worsened
in multivariate datasets where a whole observation might be deleted by just
having a single missing value and where high correlations worsen the instability
caused by changing sample size.

Therefore, neither CC nor AC is optimal for multivariate datasets, making
imputation approaches attractive. Still, the applicability of imputation tech-
niques relies on the missing data mechanism defining the relationship between
values and their missingness. Little [72] used the following nomenclature for
missingness in terms of probability models for M , the missingness indicator
matrix of the same dimensions as X, with 1s in missing entries and 0 otherwise:

• Missing completely at random (MCAR). In this scenario, there is not
any relationship between the missingness of a cell and its value. That is:
P (M |X,ϕ) = P (M |ϕ) , ∀X,ϕ, where ϕ are the parameters describing
the missing pattern.

• Missing at random (MAR). In this case, missingness depends on the ob-
served part of data, that is P (M |X,ϕ) = P (M |X∗,ϕ) ,∀X∗,ϕ.

• Not missing at random (NMAR). The probability of an entry being miss-
ing depends on its unobserved value. This can happen when measure-
ments are below or above the detection threshold of the recording device
or in surveys when the answer is missing because of the implications of
that given response.

If data presents NMAR missingness, the missing data generation mechanism
is Nonignorable (NI) and has to be modelled alongside the imputation model.
Since a numerical analysis of missing values is not feasible, a proper under-
standing of the data, its collection, and some expertise on similar cases can
help study this issue.

On the contrary, if the reason why data is missing is ignorable (MCAR or
MAR scenarios), there is no need to model the missing data mechanism, and
the imputation can rely only on the observed relationship between variables.
In such a case, there are two different scenarios. If an already-existent model
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can be used to impute incomplete cases, the problem can be undertaken by
a Model Exploitation (ME) framework. However, finding missing values in
all rows is widespread when a model is unavailable. Such a case, when the
imputation model has to be estimated despite missing values, is known as the
Model Building (MB) framework.

The following section will explain some missing data imputation methods,
usable when ignorable missingness is present. Afterwards, multivariate missing
data imputation methods based on Principal Component Analysis models will
be described, mentioning both their MB and ME implementations and focusing
particularly on the results that justify the use of the Trimmed Scores Regression
(TSR) algorithm in Chapter 6.

3.5.2 Missing data imputation methods

Missing data imputation aims to provide a plausible value for missing entries.
This estimation is done by a prediction based on the observed data. There
are many strategies for missing data imputation. Still, they are divided into
two categories: single imputation methods providing one estimate per missing
value and multiple imputation methods providing several estimates per missing
value.

Single imputation

These algorithms predict one value for each missing entry, returning a complete
data matrix. Nonetheless, this does not come free of risks. This subsection
describes four different strategies sorted by increasing complexity.

The simplest, most risky and least advised option is to perform Unconditional
Mean Imputation (UMI), which involves imputing missing values of a variable
using the average value of observed values for that variable. This method does
not consider the correlation between variables, and the estimated covariance
matrix from the imputed data set can be seriously distorted.

Conditional Mean Imputation (CMI) considers the correlation between vari-
ables by predicting missing values as a regression based on the observed vari-
ables. However, this imputes the mean of the regression, underestimating the
variability naturally present in the data. Methods like stochastic regression
tried to overcome this by adding some variability to the estimations by draw-
ing samples from an assumed distribution for the residuals. Nonetheless, all
these methods would require adjustments if the covariance matrix of the ob-
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served values is ill-conditioned since it must be inverted to obtain the missing
estimates.

Finally, iterative algorithms are based on the Expectation Maximization (EM)
approach. Under the assumption of multivariate normality, let X be a matrix
whose distribution is characterized by parameters Θ = {µ,Σ}. Dempster,
Laird and Rubin introduced the term EM [73] to describe an iterative procedure
where at each iteration s:

1. The M step performs maximum likelihood estimation (MLE) of Θ(s) as
if there were no missing data.

2. The E step estimates missing data from the observed data, yielding an
imputed dataset X(s), which will be used for the M step of the s + 1
iteration.

Under general conditions, each iteration increases the likelihood L (Θ|X∗)
yielding reliable convergence after some iterations to a local or global max-
imum.

When X contains MAR or MCAR missing values, likelihood-based inferences
about Θ will be unaffected by the missing pattern M [74]. This allows us to
safely ignore the missing data mechanism to estimate Θ. Still, as a drawback,
EM algorithms slow their convergence speed as the percentage of missing values
increases. Besides, the expectation step can be vulnerable to ill-conditioning or
singularity problems. However, this second issue can be overcome by choosing
a prediction method based on biased regression, such as the ones explained in
Section 3.5.3.

Multiple imputation

One drawback shared by most single imputation methods is the underesti-
mation of the variability, which a single imputation of missing values cannot
reflect. Multiple Imputation tackles this problem by creating several impu-
tations for each missing value. This is done by sampling M different sets of
observations used to fit the imputation model. Two sources to estimate vari-
ability are provided with MI, the variability within estimates from each data
set and the variability across the M complete data sets, which can be combined
to obtain confidence intervals for the estimates [75].
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The most known MI method is the Data Augmentation algorithm [75]. It
relies on a two-step procedure consisting of an Imputation step, which esti-
mates X#(s) from the conditional distribution given X∗ and Θ(s−1), and a
Posterior step, which estimates Θ(s) from X#(s) and X∗. The initial Θ(0)

estimates are usually obtained by EM. The algorithm is run until the conver-
gence of the estimate’s distribution. In Model Building contexts, when the
distributions must be estimated from matrices with missing values, the DA
algorithm is not so used since it still implies the inversion of the covariance
submatrix corresponding to the known variables given an observation, which
might not be feasible as data sets with high numbers of variables can yield
singular covariance submatrices.

The Multiple Imputation with Chained Equations (MICE) algorithm is also
well known [76]. This method performs imputation variable-wise, which means
that an equation is used to predict each variable according to its relationship
with the rest of the variables within the data set. This framework presents
some advantages, such as the possibility of dealing with different prediction
methods according to the nature of each column of the matrix, i.e., using a
classical or logistic regression for continuous and binary variables, respectively.

3.5.3 PCA models for missing data imputation

When dealing with multivariate datasets, PCA has been extensively and suc-
cessfully used to impute missing values. This section will summarize the avail-
able work on this approach until reaching the proposal of the Trimmed Scores
Algorithm for PCA-MB. In all the following expressions, the data X is as-
sumed to be already centred and scaled, and each one of its observations can
be seen as a vector x =

[
x∗ x#

]
, formed by the concatenation of its K − R

observed values and its R missing ones.

Model Exploitation

The first attempts to use PCA for missing data imputation started on the
PCA-ME case, based on a known PCA model. Arteaga and Ferrer compared
several approaches for missing data imputation with PCA-ME [77]:

• The Trimmed Scores (TRI) method estimates x = Pτ + e, where τ =
P⊤x, and x# has missing entries imputed as the unconditional mean.
This method is efficient and simple but can yield large errors if variables
with important loadings are missing.
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• The Single Component Projection (SCP) method proposed by Nelson,
Taylor and MacGregor [78] is based on the NIPALS algorithm, which cal-
culates the principal components sequentially. In each iteration to obtain
a new component a, the measured and unexplained part of observation is
modelled as x∗

a−1 = τp∗
a + e∗

a. The minimization of the error part yields
τ̂a = p∗⊤

a x∗
a−1/

(
p∗⊤
a pa

)
as the least squares estimator of the scores based

on the measured values. The part of the observation explained by the
new component is then subtracted, repeating the process. This method
can yield relevant estimation errors that will be passed over the iterations
if they start being large for the computation of the first scores.

• The Projection to the Model Plane method (PMP) is a method to obtain
all the scores at one proposed by Wold [79] and Martens and Naes [80].
Its estimator is obtained as: τ̂ =

(
P ∗⊤P ∗)−1

P ∗⊤x∗. Therefore, it relies
exclusively on the observed part of each observation without attributing
any value, as in the TRI method. Its one-shot approach to computing
the PCs prevents error propagation from SCP. However, the inversion of
P ∗⊤P ∗ can be threatened if loading vectors are nearly collinear, which can
happen as well in TRI and SCP, given the distortion on the orthogonality
introduced by missing values. Arteaga and Ferrer [77] proved that PMP
was equivalent to two other algorithms:

– The Iterative Algorithm from Walczak and Massart [81], which ini-
tially assumes the unconditionally mean imputation from TRI, but
re-iterates the estimation of the missing part until reaching its con-
vergence.

– The Minimization of the Squared Prediction Error (SPE) method
aims to minimize the SPE of observations as a function of their
missing part.

• The regression-based methods proposed by Arteaga and Ferrer [82] sug-
gest fitting the regression model X# = (X∗L)B+U defining the impu-
tation as a function of a key matrix L. They compared two alternatives
for this regression:

– The Known Data Regression (KDR) method uses LKDR = IK−R.
Therefore:

BKDR =
(
X∗⊤X∗)−1

X∗⊤X# = (S∗∗)
−1

S∗# (3.42)
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And the final estimation of the missing values for an observation is
given by regression on its available values:

x# = S#∗ (S∗∗)
−1

x∗ (3.43)

– The Trimmed Scores Regression (TSR) performs the regression on
the observed scores, as X# = T ∗B + U = (X∗L)B + U , using
LTSR = P ∗. Therefore:

BTSR =
[
(X∗P ∗)

⊤
(X∗P ∗)

]−1

(X∗P ∗)
⊤
X# =(

P ∗⊤X∗⊤X∗P ∗)−1
P ∗⊤X∗⊤X# =(

P ∗⊤S∗∗P ∗)−1
P ∗⊤S∗#

(3.44)

And the final estimation is given by regression on the scores of the
available values of the observations:

x# =S#∗P ∗ (P ∗⊤S∗∗P ∗)−1
P ∗⊤x∗ =

S#∗P ∗ (P ∗⊤S∗∗P ∗)−1
τ ∗

(3.45)

The results of their comparison showed that regression-based methods were
statistically more efficient than the other methods studied. However, TSR
required the inversion of a matrix of sizes A×A, being much more efficient than
the inversion of the covariance matrix in KDR of dimensions (K−R)×(K−R).
This KDR issue can be solved using other biased regression methods, such as
Principal Component Regression (PCR) or PLS.

Model Building

In this scenario, the PCA model must be estimated simultaneously as missing
values are imputed. Regarding PCA-MB, two methods are frequently used by
practitioners. The first consists of adapting the nonlinear iterative partial least
squares algorithm (NIPALS) to ignore the missing data along its iterative re-
gressions [83]. The second one is the adaptation by Walczak and Massart of the
IA – mentioned above – for the MB case by filling in the missing data with the
predictions obtained from previous PCA models, iterating until convergence
[84].
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Folch-Fortuny, Arteaga and Ferrer [85] proposed to adapt the IA method in
PCA-MB by replacing the prediction of missing values and applying a regres-
sion method as in PCA-ME. Among the adapted regression methods, TSR
was the one outperforming the rest. The TSR method can be summarised as
follows:

1. Fit the elements of the regression models from Equations 3.42 and 3.44.

2. Estimate the missing part using equations Equations 3.43 and 3.45.

This process was repeated until reaching the convergence of the imputed values,
which differed less than a defined tolerance after a certain number of iterations.

Results showed that the TSR method performed remarkably well, representing
the best compromise solution among prediction quality and computation time
across all data structures. From the rest of the methods analysed, DA and
KDR performed well with thin data sets (N > K), but they were more time-
consuming, and their performance worsened with fat data sets (N < K),
where DA was unfeasible, and KDR yielded the worst performance. The KDR
methods with PCR and PLS overcame the later fat data sets issue but were still
more time-consuming. The other methods (NIPALS, PMP and NLP) showed
convergence problems for high percentages of missing data.

As a result, the IA from Walczak and Massart was the only method, jointly
with TSR, that could be applied to all data sets regardless of their dimensions
and the percentage of simulated missing values. However, its performance level
in all four data sets was statistically worse than TSR’s.

3.6 Outliers

Once a model is obtained, it can raise the question: Is an observation normal
according to that model, or is it an outlier? This section uses the framework
provided by Latent Variable-based models, such as PCA or PLS, to inform
about anomalous values and outliers.
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3.6.1 Properties of outliers

An observation can be considered an outlier in terms of a PCA model, accord-
ing to its values for the Squared Prediction Error (SPE ) and the Hotelling’s
T 2 (T 2, or more specifically, T 2

A for a PCA model with A components). These
statistics, obtained from the residuals and the scores respectively, offer comple-
mentary information about the distance of an observation to the PCA model
and the majority of data. Ferrer provides a comprehensive explanation about
the mathematical aspects of SPE and the T 2

A and their use to detect outlying
observations [86].

The SPE is the squared Euclidean (perpendicular) distance from the obser-
vation x to the A−dimensional subspace of the model, that is SPE = e⊤e,
where e is the error vector of the observation x. From the previous expression,
the SPE can be rewritten as SPE = x⊤(I − PP⊤)⊤(I − PP⊤)x. Since
(I − PP⊤) is symmetric and idempotent matrix:

SPE = x⊤ (
I − PP⊤)x (3.46)

Assuming that residuals follow a multivariate normal distribution, Box, Jack-
son and Eriksson derived approximate distributions for such quadratic forms
[87]–[89].

On the other hand, the Hotelling-T 2
A statistic for an observation is defined as

T 2
A = τ⊤Θ−1τ =

A∑
a=1

(
τ 2
a/λa

)
(3.47)

where Θ(A×A) is the covariance matrix of T (diagonal matrix of the highest
A eigenvalues {λ1, . . . , λA}). It represents the estimated squared Mahalanobis
distance from the center of the latent subspace to the projection of an obser-
vation onto this subspace.

When diagnosing which variables yield the obtained values for the SPE and
the T 2 it can be useful to check the contributions of each variable to each
statistic [86].

From these two statistics (the SPE and the T 2), two complementary control
metrics are obtained. Firstly, with an appropriate reference set of data, the
in-control PCA model is built. The control limits are defined as well using the
reference distributions for each statistic.
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Regarding the Upper Control Limit (UCL) for the SPE, several procedures
can be used. Jackson and Mudholkar showed that an approximate SPE critical
value at significance level α is given by

UCL(SPE)α = θ1

[
zα

√
2θ2h2

0/θ1 + 1 + θ2h0(h0 − 1)/θ21

]1/h0

(3.48)

where θk =
∑rank(X)

j=A+1 (λj)
k, h0 = 1 − 2θ1θ3/3θ

2
2, λj are the eigenvalues of the

PCA residual covariance matrix E⊤E/(N − 1), and zα is the 100(1 − α)%
percentile of a standard normal variable [88].

Alternatively, one can use an approximation based on the weighted chi-squared
distribution (gχ2

h) proposed by Box [87]. Nomikos and MacGregor suggested a
simple and fast way to estimate parameters g and h which is based on matching
moments between a gχ2

h distribution and the sample distribution of SPE [90].
The mean (µ = gh) and variance (σ2 = 2g2h) of the gχ2

h distribution are
equated with the sample mean (b) and variance (v) of the SPE sample. Hence,
the Upper SPE Control Limit at significance level α is given by

UCL(SPE)α = vχ2
(2b2/v),α/(2b) (3.49)

where χ2
(2b2/v),α is the 100(1-α)% percentile of the corresponding chi-squared

distribution with 2b2/v degrees of freedom.

Upper Control Limits (UCL) for the T 2
A at a significance level (type I) risk α

can be obtained assuming that the statistic follows an F distribution

T 2
A ∼ A

(
N2 − 1

)
FA,(N−A)/(N (N −A)) (3.50)

Thus, the corresponding UCL from Equation 3.50 is given by

UCL(T 2
A)α = A

(
N2 − 1

)
F(A,(N−A)),α/(N (N −A)) (3.51)

According to the aforementioned conceptual meaning of these multivariate
statistics (SPE and T 2

A), observations above their associated UCL will be
representing different types of outliers.

63



Chapter 3. On statistical machine learning

3.6.2 Contamination models

Most approaches used to define and simulate outliers assume the paradigm
of rowwise outliers. This paradigm defines an outlier as a whole observation
or K−dimensional row x⊤ in a matrix X of N × K dimensions. Probably,
the most famous model to define this situation is the classical Tukey-Huber
Contamination Model (THCM) [49]:

X = (1−B)Y +BZ (3.52)

In these scenarios, the observed data X is thus a mix of unobserved distribu-
tions defining two different submatrices Y and Z, representing data from two
diverse populations. The term B follows a binomial distribution B ∼ Bin(1, ϵ)
where ϵ is a random contamination indicator.

This “rowwise” contamination assumed by the THCM is also known as the
Fully Dependent Contamination Model (FDCM), since for a given row, the
probability of a cell being contaminated depends on the rest of the cells within
the row.

The FDCM framework assumes, first, that the majority of the cases are free
of contamination. Secondly, it also implies that contaminated observations
should be discarded as a whole, as they come from a completely different
population. This conceptual frame influenced the design of robust methods (see
Section 3.3.2), relying on identifying a minority of contaminated cases, always
assumed to be lower than the 50% of rows, which is the maximal breakdown
point of robust covariance estimators [91].

However, these assumptions become limitations when dealing with more recent
data sets, as they present more heterogeneous contamination. For instance, in
high dimensional datasets, only a fraction of variables may be contaminated,
and if so, ignoring such observations completely would be inconvenient, espe-
cially if N < K.

These limitations of fully-dependent contamination motivated the update of
the contamination models, emphasizing the relevance of the so-called cellwise
outliers. Cellwise outliers are entries with suspicious values caused by random
events such as measurement errors [59], [92], [93]. This contamination model
is called the Fully Independent Contamination Model (FICM).

Even a small proportion of these cellwise outliers can affect more than 50% of
the observations, which is the maximum contamination that rowwise robust
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methods can deal with, and this is critical considering that the cellwise contam-
ination effect is even more pronounced in high-dimensional situations, where
they are frequently found. As Alqallaf et al. show, data following FICM can
severely upset standard robust procedures, even if the fraction of contaminated
cells in the data is quite low [92].

Finally, it is also important to mention that the most likely scenario to be
found in real datasets is the coexistence of both types of contamination, also
known as the Partially Clean Independent Contamination model (PCICM).
This model assumes that a case x⊤ is free of contamination with a certain
probability 1 − α (as in the FDCM), but otherwise, its different K cells are
independently contaminated with chance β.

Among the methods in the literature, the MacroPCA algorithm [48] is the only
one dealing with a PCICM (cellwise and rowwise contamination) and missing
data. Nonetheless, Chapter 6 describes the proposal of a new algorithm dealing
with PCICM and missing data: the Robust Adaptation of Trimmed Squares
Regression for Anomalous Rows and cells (RadarTSR).
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Chapter 4. Material

4.1 Hardware

The computations and results of this work were performed in two units:

• MacBook Pro (Retina, 13-inch, Early 2015), CPU 2,7 GHz Dual-Core
Intel Core i5 and 8 GB of RAM.

• LAPTOP-IV8D2E99, CPU 2,3 GHz Intel Core i7-105110U and 16 GB of
RAM.

Each part of the thesis indicates the computer being used for its results.

4.2 Software

The OS used were:

• Mac OS versions from Catalina to Big Sur.

• Windows 10

Most calculations were obtained by using self-developed scripts and programs
in the following environments, sorted by decreasing usage:

• Matlab from versions 2018b to 2020b.

• RStudio with R (versions from 2020 - 2022). For computations with
cellWise, results from Sections 6, , 8 and [refSCOUTer].

• Python within Anaconda environment (versions from 2019).

Each part of the thesis indicates the environment and language being used for
its execution.

Software packages developed in this thesis are:

• SCOUTer: Simulation of Controller OUTliers. It is available for R as a
package submitted and admitted in the Comprehensive R Archive Net-
work (CRAN), with unstable R and Matlab versions available in the
GitHub repositories https://github.com/albagc/SCOUTer.git (Chap-
ter 5).

68

https://github.com/albagc/SCOUTer.git


4.3 Datasets

• RadarTSR: Robust Adaptation for Datasets with Anomalous Rows and
cells of Trimmed Scores Regression. It implemented in Matlab and it is
available in the GitHub repository https://github.com/albagc/RadarTSR-
matlab-master.git (Chapter 6).

• PLATERO: Plate Reader Operator. It is implemented in Matlab and
it is available in the GitHub repository https://github.com/sb2cl/
PLATERO.git (Chapter 10).

Other code developed without being part of a deployed software toolbox, is
mentioned and linked along the thesis.

Other software packages playing a main role along the thesis are:

• ProSensus Multivariate (ProSensus, Inc.)

• CellWise package

• MDI Toolbox

• Minitab 2017

• SIMCA

More transversely used packages, such as ggplot2, miceAdds or ROxygen were
part of several parts of the thesis, and they are properly cited in each of the
corresponding Sections and contributions along this document.

4.3 Datasets

Different datasets were used to test the performance of the approaches being
developed and compared in many parts of this work. Data sets are thoroughly
described in each section, although a initial division can be done at this point:

• Simulated datasets: missing data with outliers (Chapter 6).

• Experimental datasets: Fluorescein measurements datasets (Chapter 10).

• Clinical datasets: COVID-19 national database of the Spanish Society of
Hospital Pharmacy (Chapter 9), UFPE database (Chapter 7) and CFS
(Chapter 8).
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Part II

New methodological proposals





Chapter 5

SCOUTer: a standard
framework to generate

controlled outliers

Part of the content of this chapter has been included in:

[94]González-Cebrián, A., Arteaga, F., Folch-Fortuny, A. & Ferrer, A.
How to Simulate Outliers with the Desired Properties. Chemometrics
And Intelligent Laboratory Systems. 212 (2021), https://doi.org/10.
1016/j.chemolab.2021.104301.
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Chapter 5. SCOUTer: a standard framework to generate controlled outliers

5.1 Introduction

Principal component analysis (PCA) models (explained in depth in Section 3.3.1)
are instrumental in the context of highly correlated data sets, given their di-
mensionality and noise reduction power. Its compression and interpretability
make it widely used for Exploratory Data Analysis (EDA). When PCA is used
in an EDA framework, a model is built, known as the PCA Model Building
(PCA-MB) stage. In its basic definition, PCA uses least squares parameters,
which outliers’ influence can distort. However, specifically in the first stages
of data analysis, such as EDA, it is common to have outliers within the data
[48], [77], [95].

Several approaches that avoid this adverse effect have been proposed in the
literature to deal with this issue, assembled in what is known as robust PCA
methods. There are plenty of strategies to conduct PCA robustly. However,
beyond the particularities of each proposal, what defines these algorithms is
their ability to neglect the influence of potential outliers during the PCA-MB
stage.

To develop methodological work on detecting and treating outliers, it is often
helpful to simulate this type of anomalous data. Examining the literature,
one can notice that the task of simulating the data sets and outliers in the
framework of PCA-MB has been addressed differently [48], [93], [96], [97].
In general terms, all proposals are linked by their definition of outliers by
setting the population parameters to which they belong. Thus, observations
are classified as outliers because they are drawn from a distribution different
from the one that describes the clean data.

However, it is not straightforward to establish the relationship between the cho-
sen parameters for the outliers’ distribution and the simulated observations’
resulting properties. As a result, simulating observations with the desired dis-
tance from the reference data set by setting different parameters of the data
distribution becomes practically unfeasible. Moreover, working with this simu-
lation paradigm means making assumptions about the distributions describing
the reference and outlying data set. Usually, a multivariate normal distribu-
tion is assumed, and the mean vector or the covariance matrix is altered to
generate outlying observations. Yet, assuming a particular probability distri-
bution might not be that simple in case one wants to simulate outliers for a
real reference data set.

For these reasons, though the traditional paradigm is technically correct, we
believe that one could further exploit the information offered by a PCA model
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to generate outliers with more control of their properties based on two statis-
tics: the Squared Prediction Error (SPE) and the Hotelling T 2 (also referred
from now on simply as T 2). Following this conceptual framework, previously
introduced in Section 3.6.1, this chapter proposes a standard framework for
outliers definition and simulation based on its characterization in terms of the
SPE and the T 2 statistics.

Firstly, the methodology to generate moderate and severe perturbations, based
on shift directions of the SPE and the T 2, is explained in Section 5.2. Later
on, in Section 5.3, the proposed variants of the algorithm to simulate outliers
are introduced, and some examples of how to simulate controlled outliers are
shown. Moreover, some practical applications will be provided in Section 5.3.2
to illustrate the potential of the proposed method as a standard framework
to simulate outliers. In these examples, our procedure to simulate controlled
outliers will be configured to emulate other strategies of outliers generation
from the literature on PCA models. Additionally, the consistency of the out-
lying properties will be assessed by projecting our simulated outliers onto a
robust PCA model. Finally, a summary of the main conclusions, including the
proposed method’s limitations, is provided in Section 5.4.

The Matlab code and documentation for outliers generation are available in the
GitHub repository https://github.com/albagc/SCOUTer.git. Detailed code
lines to reproduce the results from Section 5.3.1 are available in the howto.pdf
document on the repository. Further details about references for the outliers
simulation are also provided.

5.2 Algorithm to generate outliers with the desired
properties

The proposed method to generate outliers is based on transforming an ob-
servation x, with given SPE and T 2 values. This chapter will use a specific
notation to refer to the SPE and T 2 values of different observations, where
each observation will be indicated as subscripts of the statistics. Therefore,
SPEx and T 2

x, refer to the SPE and T 2 of the observation x⊤, respectively.
The proposed method is based on the transformation of x⊤, into a new ob-
servation y⊤ with an SPE and/or T 2 values specified by the user (SPEy and
T 2
y , respectively). The transformation will consist of a shift of the observation

following a certain direction in the space of the original variables.
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Chapter 5. SCOUTer: a standard framework to generate controlled outliers

Moving the observation x in the direction v to obtain a new observation y =
x+v, we can calculate the new value of the SPE and the T 2 statistics, based
on the original values:

SPEx+v = (x+ v)
⊤ (

I − PP⊤) (x+ v) =

SPEx + v⊤ (
I − PP⊤) (2x+ v)

(5.1)

T 2
x+v = (x+ v)

⊤
PΘ−1P⊤ (x+ v) = T 2

x + v⊤PΘ−1P⊤ (2x+ v) (5.2)

The next issue is choosing the direction v. An obvious choice is to shift the
observation in the direction that joins it with the origin of coordinates in the
original data space, taking v = cx. In this case, it is easy to calculate the
change in both statistics:

SPEx+cx = (1 + c)2SPEx (5.3)

T 2
x+cx = (1 + c)2T 2

x (5.4)

However, directions of interest are those for which we can control the change
that occurs in each statistic. For example, specific directions allow the change
in one of both statistics without affecting the other.

In particular, we can move the observation in the direction of its residual vector
in the PCA model so that a change in the SPE will occur without modifying
the T 2:

vSPE = e =
(
I − PP⊤)x (5.5)

Similarly, we can move it in the direction that joins the projection of the
observation on the model with the origin (i.e., the direction of the predicted
observation x̂) so that there will be a change in T 2, without modifying the
SPE:

vT 2 = PP⊤x (5.6)
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As both directions are orthogonal, we can compose both displacements in one
operator, with control over the amount by which each of them increases. This
will be illustrated in the following sections.

Shift of the SPE statistic

If we move the observation x in the direction from Equation 5.5 given by its
residual vector (according to the PCA model), multiplied by a scalar a, we get,
from Equations 5.1 and 5.2:

SPEx+a(I−PP⊤)x = SPEx + ax⊤ (
I − PP⊤) (2x+ a

(
I − PP⊤)x) =
(1 + a)2SPEx

(5.7)

T 2
x+a(I−PP⊤)x = T 2

x + ax⊤ (
I − PP⊤)PΘ−1P⊤ (

2x+ a
(
I − PP⊤)x) =

T 2
x

(5.8)

We can choose the value a to achieve a target value for the SPE statistic, say
SPEy:

(1 + a)2SPEx = SPEy −→ a =
√
SPEy/SPEx − 1 (5.9)

Note that the selected direction is the one that maximizes the change in the
SPE because the gradient of this statistic is: ∇(SPE)(x) = 2

(
I − PP⊤)x.

Shift of the T 2 statistic

If we move the observation x in the direction from Equation 5.6, multiplied by
a scalar b, we get, from Equations 5.1 and 5.2:

SPEx+bPP⊤x = SPEx + bx⊤PP⊤ (
I − PP⊤) (2x+ bPP⊤x

)
=

SPEx

(5.10)

T 2
x+bPP⊤x = T 2

x + bx⊤PΘ−1P⊤ (
2x+ bPP⊤x

)
= (1 + b)2T 2

x (5.11)
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We can choose the value b to achieve a target value for the T 2 statistic, say
T 2
y :

(1 + b)2T 2
x = T 2

y −→ b =
√
T 2
y/T

2
x − 1 (5.12)

We can also select the direction that maximizes the change in the T 2 statistic
without changing the SPE statistic, choosing the gradient of the T 2 statistic:
∇(T 2) = 2PΘ−1P⊤x. We do not use this direction because it is difficult to
parametrize the amount of change in the T 2 statistic.

Shift both statistics simultaneously

If we have an observation x with statistics SPEx and T 2
x, we can transform it

into a new observation with statistics SPEy and T 2
y combining the aforemen-

tioned transformations:

y = x+ a
(
I − PP⊤)x+ bPP⊤x (5.13)

With a =
√
SPEy/SPEx−1 and b =

√
T 2
y/T

2
x−1, as seen in Equation 5.9 and

Equation 5.12. The procedure to build a new observation with desired SPE
and T 2 statistics, based on an arbitrary prior observation x, is illustrated
in Figure 5.1a. The visual representation of the algorithm with a model of
only one PC for an original space with only two variables is represented in
Figure 5.1b.

Furthermore, another aspect can be used to control the outlying behaviour of
the new observations. Given the reference and target values of a statistic, one
can generate a series of M −1 intermediate observations between the reference
and the target one: {y1,y2, . . . ,yM−1}. Mathematically, the expected value of
a statistic Hm as a result of a transition from the reference H0 to the target
value HM :

Hm = H0 + (m/M)
γ
(HM −H0) m = 1, 2, ...,M − 1 (5.14)

Thus, SPEm and T 2
m will gradually change according to the number of steps

and the spacing between them. This spacing is regulated in Equation 5.14 by
the γ parameter. As it can be appreciated in Figure 5.2, when this parameter
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5.2 Algorithm to generate outliers with the desired properties

(a) Scheme to generate a new observation with
target statistics.

(b) Simple representation of the transformation
from Equation 5.13.

Figure 5.1: Graphical representations of the transformation from the original observation
x⊤ to the observation y⊤.

Figure 5.2: Curves for the SPE (left) and T 2 (right) statistics along the shift in 20 steps
for different values of their spacing parameters γ.

is set to 1, the spacing between steps is linear, shifting towards a non-linear
dynamic as it drifts from 1.

Given that both parameters (γSPE and γT 2) can be shifted simultaneously,
this gives the user the flexibility to simulate a wider variety of trajectories for
each possible combination of values along the spacing of the two parameters.
Performing simultaneous shifts with some values for the parameters results in
the curves of Figure 5.3.

This framework, including the possibility of controlling the distance between
intermediate observations in a series of outliers, can help study and compare
the sensitivity of different robust PCA approaches or methods for outlying
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Figure 5.3: Curves for the SPE and T 2 statistics along the shift in 20 steps for different
combinations of their γ parameters.

detection. Thus, one could know for what type of outliers and at which step
one method performs differently. Finally, considering all these parameters, one
has the complete flux diagram of the procedure in Figure 5.4.

If a given observation x is moved in different directions, it will be appreciated
in the SPE and T 2 statistics and the scores. Figure 5.5 illustrates various shifts
on a five-dimensional observation x according to a reference PCA model.

In Figure 5.5a, red dashed lines represent the UCL for the T 2 and SPE statis-
tics. The ellipse defined in the score plot from Figure 5.5b is the contour curve
of the confidence ellipsoid for the T 2 statistic, calculated for a confidence level
of (1 − α) × 100%. From Equation 3.51, it is obtained an ellipsoid delimited
in each dimension (i.e., PC) of the latent subspace. The contour of that el-
lipsoid represents a region of the space that holds T 2 = T 2

100(1−α)%CL for each
observation lying on that contour. Since the score plot is bi-dimensional, the
bi-dimensional representation of the confidence ellipsoid turns into a confidence
ellipse. Therefore, observations outside the ellipse will surpass the UCL for the
T 2 statistic.

The first directions correspond to the five variables (x1, ..., x5). The trivial
direction (v = x) is also considered. The direction corresponding to the resid-
ual vector (v = (I−PP⊤)x) is easy to recognize since it causes an increase in
the SPE without affecting the T 2 statistic. In the distance plot (Figure 5.5a),
it is represented as a vertical arrow, whereas it does not appear in the score
plot (Figure 5.5b), given that the projection of x+a(I−PP⊤x) in the model
space is the same as that of x, for all a values.
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Figure 5.4: Flux diagram of simulation algorithm including all the parameters.

(a) Distance plot with five different shift direc-
tions for an observation.

(b) Score plot with five different shift directions
for an observation.

Figure 5.5: Five different shift directions for an observation.

81



Chapter 5. SCOUTer: a standard framework to generate controlled outliers

The last two directions are PP⊤x and PΘ−1P⊤x (labelled as ∇(T 2) in Fig-
ure 5.5). These two directions are in the model plane, meaning that the SPE
will not be affected, which can be appreciated by the horizontal arrows in
Figure 5.5a. The magnitude of the shift in the T 2 value is bigger for the
PΘ−1P⊤x direction since it corresponds to the gradient of the T 2 statistic.
The trajectory described by the scores when the direction PP⊤x is chosen is
an extension of the segment that joins the origin (0,0) with the scores of x (i.e.,
the direction of the predicted observation x̂). The trajectory followed when
the shift is performed in the direction PΘ−1P⊤x (∇(T 2)) is perpendicular to
the (1−α)×100 confidence level Hotelling’s T 2 ellipse, which is defined as the
level curve for the T 2 statistic.

5.3 Comparative study

This section shows examples of how to simulate outliers with the desired prop-
erties. This section is divided into two main parts. The first part will present
results for three different scenarios of outliers simulation. Afterwards, four ex-
amples of outliers simulation extracted from literature are emulated using the
framework proposed in this work. This exercise aims to show how the tech-
nique described in this work can comprise other particular simulation settings.
Finally, an assessment of the properties of the simulated outliers in terms of a
robust PCA model is also provided.

5.3.1 Cases of use of the proposed method.

These results illustrate three generic simulation scenarios: generating outliers
in one step, generating a sequence of outliers, and generating a grid of outliers.
For this purpose, a reference matrix X of n = 50 observations and k = 5
normally distributed variables is simulated. The PCA model based on X is
built with two PCs, assuming a type I risk α of 5% and performing a mean
centring. All functions, documentation, and scripts to reproduce the following
scenarios can be downloaded from the GitHub repository https://github.
com/albagc/SCOUTer.git. A detailed explanation about the obtention of the
following results can be found in the howto.pdf file.
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(a) Illustration of a one-step simulation of controlled outliers.

(b) Distance plot with the reference (blue circles) and the shifted (red triangles) data sets, per-
forming a single step keeping the initial SPEX value, but setting a target value T 2

Y = 40 for all the
observations.

Figure 5.6: Concept and result of a one-step simulation with a group of observations.

Case I: One-step simulation of outliers.

This is the simplest case, in which from an initial observation x with reference
values SPEx and T 2

x, a new observation y is obtained, with the desired SPEy

and T 2
y values (Figure 5.6a). The scheme mentioned above can be easily gener-

alized for a set of observations. The original X matrix will be drifted from its
initial coordinates in the following example. In this scenario, a set of one-step
outliers is generated by increasing only the T 2 value (i.e., extreme outliers).
The SPE remains at its reference value.

As it can be seen in Figure 5.6b, all observations have been shifted in their
distance to the centre on the model plane, drawing a contour on the score plot
for the value T 2

A = 40, whereas they have kept their values on the SPE statistic.
In other words, this is an example of how to simulate extreme observations.
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(a) Illustration of a M -step simulation of controlled outliers.

(b) Distance plot after performing a 10-step shift both in the SPEx and the T 2 values from one
initial observation x (blue circle).

Figure 5.7: Concept and result of a step-wise simulation with an observation.

Case II: Step-wise simulation of outliers

In this scenario, the transition between the reference and the target values for
the statistics is performed with a spacing of n steps between them. From a
reference observation x (or set of observations X) with reference values SPEx

and T 2
x (or SPEX and T 2

X), a series of M − 1 new sets of observations up to y
(or Y ) with the desired SPEy and T 2

y (or SPEY and T 2
Y ) values is generated

(5.7a).

The above example (Figure 5.7b) shows a linear spacing between steps for the
SPE and the T 2. However, the spacing between steps can be tuned, as seen
in Figure 5.2 and Figure 5.3 from Section 5.2.
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Case III: Grid-wise simulation of outliers

The step-wise approach performs the same number of steps for both statistics.
Finally, the grid-wise case enables different steps for each statistic. Starting
from an initial data set x (or X) with reference values SPEx and T 2

x (or
SPEX and T 2

X), a grid of new observations combining each step of the statis-
tics is obtained (Figure 5.8a). As a result, many data sets are simulated as
combinations between the steps of the statistics.

In this last case, a grid with two steps for the SPE and three steps for the T 2

has been produced, setting different spacing parameters for each parameter as
well (Figure 5.8b).

Special case: Limitations

This section addresses in further detail the results obtained with the method
to simulate outliers with desired properties when used on a matrix with non-
linearities or binary data.

The reference matrix X0 is simulated using the functions from Arteaga and
Ferrer [98]. The following code lines are the ones used to generate the reference
matrix:

1 [X,S,srnd] = simdataset(100,10,[6,3],ones(1,10));
2 [X_0,srndn]=randnm(S,100,srnd);

The resulting matrix has 100 observations, 10 normally distributed variables,
and two principal components, which explain more than 80%

Non linearities. In this case, the matrix will present relations between vari-
ables that the classical PCA model cannot capture. To study to what extent
this limitation of the PCA model would affect the simulations, we generated
outliers with a reference matrix that contained non-linearities and increased
only the T 2 of the outliers. This means that the generated observations should
not break the correlation pattern described by variables.

The new matrix Y is the result of concatenating the original matrix X0, and
a set of non-linear variables generated from the original ones in X0. The
non-linear relations included in each variable are:

1 rng(1101)
2 varind = randperm(10,8);
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(a) Illustration of a grid-case simulation with M -step shifts for the SPE and the T 2.

(b) Distance plot after performing two steps for the SPE with γSPE = 3 and three steps for the
T 2 with γT2 = 0.3 from one reference observation x (blue circle).

Figure 5.8: Concept and result of a grid-wise simulation with an observation.
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3 Y_11 = X_0(:,varind(1)).^2;
4 Y_12 = X_0(:,varind(2)).^3;
5 Y_13= exp(X_0(:,varind(3)));
6 Y_15 = rand(1,1) + X_0(:,varind(5)) + X_0(:,varind(5)).^2;
7 Y_16 = X_0(:,varind(2)).*X_0(:,varind(4));
8 Y_17 = X_0(:,varind(6)).*X_0(:,varind(7)).^2;
9 Y_18 = exp(X_0(:,varind(3))).^(X_0(:,varind(7)) + X_0(:,varind(8)));

10 Y_19 = X_0(:,varind(3))*2;
11
12 Y = [X_0,Y_11,Y_12,Y_13,Y_14,Y_15,Y_16,Y_17,Y_18,Y_19];

As one can notice, the selection of the variables that were non-linearly com-
bined was performed randomly. Also, a linearly generated variable (y19) was
included in the set to compare if the outliers on this variable still followed their
analytic relation with the column used to generate them.

As mentioned, some outliers on the T 2 were generated to keep the original
correlation structure between variables. The PCA reference model based on
Y had to be calculated to do so. By setting “0” as the second input argument
in the PCA-MB function, it returns a suggestion about the number of PCs to
consider:

1 pcamodel_ref = pcamb_classic(Y, 0, 0.05, 'cent');
2
3 Suggested number of PCs:
4 − Singular values of covariance matrix > 1 = 6
5 − Minimum PCs to reach cumulative variance > 80 \% = 3
6 Select the number of PCs: 3

A number of three PCs were selected. Then, outliers on the T 2 were generated,
setting the same target value for all of them in the scout.m function:

1 T2target = 60*ones(size(Y, 1), 1);
2 Yextreme = scout(Y, pcamodel_ref, 'simple', 't2y', T2target);
3 Yall = [Y; Yextreme.X];

The resulting outliers are represented in Figure, 5.9 where it can be seen that
the new observations accomplish the specified target values for the T 2.

However, the relations between the non-linear variables and the original columns
generated have been distorted. Figure 5.10 shows a clear difference between
blue and red observations.
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Figure 5.9: Distance (left) and score (right) plot for the reference (blue circles) and the
outliers (red triangles) generated.

Figure 5.10: Scatter plots with the reference (blue circles) and new (red triangles) obser-
vations for all the new variables in Y generated as combinations of the variables in X0.
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Whereas the blue circles perfectly describe the analytical relation used to gen-
erate them, that is not the case for red triangles since they break the relative
pattern between variables. This is not the case for the last variable (x19),
which was generated as a linear combination. This result reinforces the limita-
tion produced when the method has to consider non-linear relations between
the variables.

Binary variables. This second example shows the changes produced on cat-
egorical variables when the algorithm is used on a mixed matrix with contin-
uous and categorical data.

In this case, four binary variables with different percentages of 0s and 1s are
simulated. The resulting matrix Y has the original variables from X0 and the
four additional binary columns.

1 rng(1101)
2 Y = [X_0,zeros(size(X_0,1),4)];
3 Y(randperm(size(X_0,1),round(0.2*size(X_0,1))),11) = 1;
4 Y(randperm(size(X_0,1),round(0.4*size(X_0,1))),12) = 1;
5 Y(randperm(size(X_0,1),round(0.6*size(X_0,1))),13) = 1;
6 Y(randperm(size(X_0,1),round(0.8*size(X_0,1))),14) = 1;

Similarly, as in 5.3.1, a PCA model is fitted with Y , but two PCs were selected
in this case.

1 pcamodel_ref = pcamb_classic(Y, 0, 0.05, 'cent');
2 Suggested number of PCs:
3 − Singular values of covariance matrix > 1 = 2
4 − Minimum PCs to reach cumulative variance > 80 \% = 2

In this case, we generated outliers increasing the SPE and the T 2, impos-
ing a target value 50 for both of them and all the data points. As shown
in Figure 5.11, the set of new observations has the specified values for both
statistics.

1 T2target = 50*ones(size(Ybin, 1), 1);
2 SPEtarget = 50*ones(size(Ybin, 1), 1);
3 Yout = scout(Ybin, pcamodel_ref, 'simple', 't2y', T2target,'spey',SPEtarget);
4 Yall = [Ybin; Yout.X];

Nonetheless, it is easy to see in Figure 5.12 that new observations are outside
the range of accepted values for binary variables. This artefact is produced
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Figure 5.11: Distance (left) and score (right) plot for the reference (blue circles) and the
outliers (red triangles) generated.

Figure 5.12: Distance (left) and score (right) plot for the reference (blue circles) and the
outliers (red triangles) generated.

because the simulation algorithm assumes to work with continuous variables.
Consequently, it does not include any constraint in data generation to respect
variables’ binary or qualitative nature.

5.3.2 Comparison to other simulation methods and PCA
frameworks

This section aims to address two critical questions about the simulation method
proposed in this work: i) Does the proposed simulation framework encompass
other existing simulation strategies, and ii) Will the properties of the simulated
outliers be maintained when they are projected onto PCA models fitted with
other algorithms rather than the classical least squares version.
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Table 5.1: Strategies followed by different authors to simulate the reference data sets and
the outlying observations.

Reference. Simulation of clean data set Simulation of outliers

[96]

X0 ∼ Nn(0n, In) → X0 = TAP⊤
A +E0 X2 = T2,AP⊤

A +E2

E1 ∼ N(0,1) · 0.1 E2 ∼ N(10,1)
X1 = T1,AP⊤

A +E1

n = 98; k = 20;A = 4

[97]

TA ∼ NA (0A, IA) X2 ∼ NA (15A, 8 ∗ IA)
PA :⊥ k×A uniformly distributed pseu-
dorandom numbers
Ek ∼ Nk (0k,1k)/100
X1 = TA P⊤

A +E

[85]
X1: Reconstruction of fourth
benchmark problem’s metabolic
network

X2: outliers
xij,2 = −xij,1 if |xij,1| ≤
mj + 1.5sj

[48]

X1 ∼ N(0,ΣA09) X2 ∼ N(mνA+1,ΣA09)
A = 6PCs,N = 100,K = 200 m ∈ 1, . . . , 50
ΣA09 = VA09DA09V

⊤
A09 νA+1 = VA09 [:, A+ 1]

DA09 =
diag(30, 25, . . . , 5, 0.098, 0.0975, . . . , 0.005)

Simulation of other outlier generation strategies

To assess if the proposed method can be seen as a general simulation frame-
work, four strategies to simulate outliers extracted from literature [48], [85],
[96], [97] will be redefined in terms of the proposed simulation framework.

Table 5.1 provides information about the method used in each referred work to
simulate the reference data set and the outlying observations. Some notation
was adapted from the original works to avoid potential confusion with other
terms used in this chapter. The result of executing each simulation procedure is
illustrated in Figure 5.13, which provides a graphical comparison between the
simulated outliers following the original strategy from the previously mentioned
works and using the algorithm proposed in this chapter.

At first glance, one can notice in Figure 5.13 that despite sharing the purpose of
simulating outliers, each strategy leads to very different outliers in qualitative
and quantitative terms. In Figures 5.13a and 5.13d, outliers are far regarding
their orthogonal distance, but their projection onto the model plane seems still
under control limits. These plots differ from the ones reported in Figures 5.13b
and 5.13c, where outliers are distant regarding the T 2 and the SPE.

Furthermore, the simulation procedure from Figure 5.13c differs strategically
from the others since the same set of observations is shifted 50 steps from their
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(a) Simulations from [96] (b) Simulations from [97]

(c) Simulations from [85] (d) Simulations from [48]

Figure 5.13: Distance plots of the observations simulated using the approach from the
original work and the proposed algorithm controlling the outlier properties.
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reference values. In Figure 5.13d, the gradual shift of the same set of observa-
tions increasing their SPE and randomly shifting the T 2 can be appreciated.
This can be seen as well in Figure 5.13c. It also stands out the difference
between the upper and lower distance plots in Figure 5.13d. This is because
we considered that variations of the T 2 in their simulated outliers were not a
strategic feature of the simulation.

Comparing the original methods to simulate outliers (upper row of plots in
Figure 5.13), it can be seen that all of them increase the SPE of the outliers,
since in the end, despite following different strategies, all procedures to simulate
outliers rely on breaking the correlation structure described by the reference
data set. This is done differently by each author.

Stanimirova, Daszykowski and Walczak [96] use a simulation strategy relying
on adding noise to the outlying observations, whereas Hubert, Rousseeuw, and
Vaden Branden [48], the noise is introduced as the new mean vector of the
outlying distribution. This results in outliers with an increased SPE but a
moderate T 2, as seen in Figures 5.13a and 5.13d. In Serneels and Verdonck
[97], outliers are generated by altering the variance of variables, which leads to
an increase in the T 2 (Figure 5.13b). The mean vector of the outliers distribu-
tion is also changed so that the correlation pattern is not respected anymore,
which leads to the increase of the SPE. Finally, Folch-Fortuny at al. [85] shift
the sign of randomly selected cells. Consequently, they are breaking the cor-
relation structure, which can also increase the T 2 of the outlying observations
(Figure 5.13c).

The comparison between plots from the upper and lower row in Figure 5.13
shows that results obtained by the proposed algorithm to simulate outliers with
the desired properties are fairly similar to the ones obtained by other simulation
settings. Furthermore, some limitations of the traditional paradigm to simulate
outliers can also be seen. This traditional framework relies on changing the
distribution parameters that describe the outlying population. Still, there is no
direct and transparent relationship between the new parameters of the outlying
distribution and their effect on the SPE or the T 2.

Consequently, controlling how this new distribution will affect the outliers’
outlying properties is difficult when projected onto the reference PCA model.
This can be appreciated because most simulation strategies easily increase the
SPE of their observations without controlling its value and having the same
control over the T 2 of the outliers. The T 2 seems to be a more uncontrolled
parameter, and none of the proposals includes specific outliers for the T 2.
This is probably because it is not trivial to find a new mean vector for the
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distribution of the outliers that still respects the correlation structure of the
reference data set.

The change from the traditional simulation paradigm to the new one proposed
in this work simplifies the relationship between the simulation setup and the
properties of the resulting outliers. The algorithm proposed in this work does
not rely on the distribution of the reference and the outlying observations, and
it has independent control over the SPE and the T 2. This results in a new
simulation approach that is versatile enough to encompass other particular
simulation strategies (Figure 5.13). Besides, differences between simulation
settings can be directly measured regarding the outliers’ target SPE and T 2.

Properties of the simulated outliers in a robust PCA model

The second aspect of assessing this comparison is to what extent (just quanti-
tative or also qualitative) outliers simulated by the proposed algorithm behave
as outliers in terms of other detection techniques. In this sense, it is also in-
teresting to assess if the properties of simulated outliers change when they are
expressed in terms of different distance metrics. For instance, some robust
PCA techniques differ in the core algorithm to calculate the principal compo-
nents and the statistics that measure the distance of observation to the model.
Hence, the fundamental basis used by our proposed framework to define the
outliers differs in these cases. This may affect the properties of simulated
observations when they are defined in these new terms.

For this purpose, simulation scenarios from Section 5.3.1 were projected onto
a robust PCA model calculated with MacroPCA [48]. This technique can be
considered as an ensemble of several outlier detection methods. It includes
the Detect Deviating Cells (DDC) [59] algorithm as the first step to detect
outlying cells, which itself can be regarded as an outlier detection technique.
Later on, the MacroPCA algorithm fits a robust PCA model using a version
of the ROBPCA algorithm [58], explained in Section 3.3.2 from Chapter 3.

It is worth highlighting that although the distance metrics used in MacroPCA
[48] do not coincide with the SPE and T 2, their conceptual meaning is equiva-
lent since they represent the orthogonal distance and the Mahalanobis distance
on the model plane, respectively. Thus, we considered MacroPCA clearly rep-
resentative as a state-of-the-art outlier detection method and a robust PCA
model-building algorithm. Moreover, its good performance in outliers detec-
tion and the similarity of its distance metrics (orthogonal and score distances)
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(a) Data from Figure 5.6 (b) Data from Figure 5.7.

(c) Data from Figure 5.8.

Figure 5.14: Distance plots of the observations simulated in Figure 5.6b when projected
onto the PCA model fitted using MacroPCA with the reference data set. Blue circles rep-
resent reference observations, whereas red triangles represent the simulated outliers. Black
lines represent the Upper Control Limits for the Orthogonal Distance (ordinate) and the
Score Distance (abscissa).

to ours (the SPE and the T 2) were considered interesting factors for the com-
parison.

Results shown in Figure 5.14 were obtained using the cellWise package in R
(available in https://CRAN.R-project.org/package=cellWise).

As shown in Figure 5.14, qualitative properties of the simulated outliers are
still met in terms of alternative PCA models and distance metrics. However,
there are some differences in the distance values and their Upper Control Lim-
its, which is reasonable given that the Orthogonal Distance and Score Distance
are not precisely the SPE nor the T 2. Results in Figure 5.14a also show an
increase of the simulated outliers in terms of the orthogonal distance. Given
the robust estimation of the covariance determinant in the detMCD step of
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MacroPCA, extreme observations in the T 2 were detected as outliers and ex-
cluded for the computation of the final PCA model parameters. As a result,
since these observations were excluded from the PCA model building at some
point, we find it reasonable that they also increased their distance to the model.
Nonetheless, in all cases, simulated outliers keep the outlying character that
they were asked to represent in the first instance. This can be appreciated by
their position above the cut-off values for the distances in all distance plots,
indicating the persistence of their outlying properties.

5.4 Conclusions

In this work, a new framework to simulate outliers directly controlling their
outlying properties has been proposed. This approach is based on the use
of a well-known pair of statistics, the SPE and the Hotelling-T 2 from a PCA
model, which evaluates in a complementary way how far an observation is from
the majority of the data set (i.e. the outlyingness degree).

Given an observation with initial values for the statistics, a PCA model and
target values for the pair of statistics, our simulation method drifts the previous
observation in a direction that shifts the initial SPE and Hotelling-T 2 until
reaching their target values. This shift direction combines two orthogonal
directions, independently controlling the shift on the SPE and the Hotelling-
T 2.

This feature is a key factor since it enables specific control over the two prop-
erties that define multivariate outliers in a PCA model. This becomes critical,
especially when simulating anomalous data, a general procedure when testing
the performance of different statistical methods handling datasets with outly-
ing observations.

However, the outliers generation is usually an ad hoc procedure lacking stan-
dard protocols. It is based most of the time, even when working with PCA
models, on distributions and parameters that do not tune either how or how
much observation is outlying. This makes the supposed benefits of the differ-
ent statistical methods depend on the nature of the simulated outliers. Con-
sequently, comparing the different methods reported in the literature becomes
difficult or impossible.

Moreover, most simulation methods require an assumption about the distribu-
tion of the reference data set and simulate outliers by changing one of its pa-
rameters, such as the mean or the covariance matrix. This simulation paradigm
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might not be feasible to implement with real data sets when the distribution
is unknown. Furthermore, the relationship between the new distribution pa-
rameters and the simulated observations’ outlying properties is not simple and
direct.

In Section 5.3.2, we showed how the methodology proposed in this article
successfully encompasses particular simulation strategies presented in the lit-
erature in a common framework. Consequently, comparing approaches can be
easily measured regarding target specifications or procedures followed to shift
the outliers, i.e., one-step, step-wise or grid-wise.

Besides, we also illustrated the shortage of extreme (good leverage) outliers
simulated in the literature given the difficulty of modifying the reference dis-
tribution while respecting its covariance structure, which is easily achieved by
the simulation framework proposed in this chapter (Figure 5.6b). Moreover, in
Section 5.3.2, we also showed how the outlying properties are, at least, quali-
tatively consistent when the simulated outliers are projected on a robust PCA
model.

However, the proposed method has some limitations, further addressed in Sec-
tion 5.3.1. The simulation procedure does not set any restriction in case that
binary or categorical variables are present in the matrix. Naturally, this frame-
work is also restricted by the same limitations as the PCA model, such as the
inability to model non-linear relations between variables (see Section 5.3.1).

In summary, the framework proposed in this chapter offers the possibility of
generating outlying observations with a wide range of desired properties, given
that the user can control the pair of statistics that essentially define the outly-
ingness degree: the SPE and the Hotelling-T 2. This procedure has been im-
plemented in Matlab, providing a set of functions to perform the PCA Model
Building and the simulation of controlled outliers. Further details about the
Matlab code can be found in the documentation file available in the GitHub
repository.

Appendix: Software implementation

Implementation in Matlab

The results shown in Chapter 5 were obtained by executing the functions from
the repository available in https://github.com/albagc/SCOUTer.git. This
GitHub repository contains all the functions and scripts to run the simulations.
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They were programmed in Matlab version R2020a 9.8.0.1323502. Moreover,
further information about the functions can be found in the documentation.pdf
and howto.pdf documents on the repository.

Implementation in R package

We also implemented SCOUTer in an open-code and license-free environ-
ment to make the code available for non-Matlab users. A set of functions
and scripts analogous to the one implemented in Matlab can be found as
part of the SCOUTer R package, accepted in the CRAN repository https:
//github.com/albagc/SCOUTerRpack.git. [99]. Moreover, an unstable ver-
sion is also available in the GitHub repository

Implementation in Shiny App

Following the idea of making SCOUTer as accessible as possible, a GUI im-
plementing all the functions of the SCOUTer package was developed using R
Shiny. This environment enables the operation of the set of functions of the
R package SCOUTer in a user-friendly way, using an interface where any pro-
gramming is necessary to build a PCA model and simulate the desired outliers.
The app is hosted in https://sdralgonceb.shinyapps.io/SCOUTerShinyApp.

The GUI is divided into three main panels. The first one, displayed in Fig-
ure 5.15, controls the data loading and offers a quick view of the number of
observations and variables in the selected dataset. A demo option also includes
the data used in this chapter and in [94].

The second panel (Figure 5.16) controls the PCA-MB step using the reference
data. It has several options to select the range of observations to fit the model,
the number of PCs, the α parameter to calculate the UCLs and the type of
data preprocessing.

Finally, the third panel (Figure 5.17) controls the simulation of outliers, in-
cluding all the options and parameters mentioned in the chapter. The distance
and score plots are interactive: when a datapoint is clicked, its contributions
for the SPE and T 2 are displayed below, along with the information about
its simulation. At the bottom of this panel is a “Download” section, where the
user can select the downloaded file format containing the reference data, the
simulated outliers and the reference PCA model.
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Figure 5.15: Data loading and descriptive summary panel.

Figure 5.16: PCA Model Building panel.
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Figure 5.17: SCOUTer and download panel with interactive options to explore the contri-
butions of observations from the distance and score plots.
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Chapter 6

RadarTSR: PCA model
building with missing data and

outliers

Part of the content of this chapter has been included in:

[100]González-Cebrián, Folch-Fortuny, A., Arteaga F. & Ferrer, A. RadarTSR:
A New Algorithm for Cellwise and Rowwise Outlier Detection and Miss-
ing Data Imputation. Chemometrics And Intelligent Laboratory Systems.
247 (2023), https://doi.org/10.1016/j.chemolab.2023.105047
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6.1 Introduction

Real datasets often present missing data and/or outliers. Missing data (MD)
appears in various scenarios (unanswered survey questions, data acquisition
failures, etc.). In massive data collection scenarios, more than 70% entries in a
dataset might be missing [101], [102], resulting in many proposals of imputation
methods that can be used when the missingness mechanism is ignorable (see
[102]). Analogously, there is a whole branch of robust statistics and algorithms
to deal with the existence of outliers [103], but most of them assume to work
with a full matrix. As a result, the number of approaches simultaneously
dealing with missing data and outliers is drastically reduced.

Moreover, most robust approaches assume the existence of rowwise outliers,
i.e., observations (rows) whose variables (columns) do not follow the model
described by most observations. However, some authors have highlighted the
relevance of cellwise outliers. These are entries with suspicious values caused
by random events such as measurement errors [59], [92], [93]. Even a low pro-
portion of cellwise outliers can affect more than half the observations, which is
the maximum contamination fraction that rowwise robust methods based on
affine equivariant estimators can deal with, and this is critical considering that
the cellwise contamination effect is even more pronounced in high-dimensional
situations, where they are frequently found [91], [92]. Therefore, proposing
techniques that not only deal with missing data and/or outliers but also ac-
count for the high dimensionality of datasets is a task of great interest.

For this reason, techniques tailored for imputation and outlier correction within
Principal Component Analysis (PCA) operate efficiently in scenarios where the
missing data generation mechanism is deemed ignorable, typically adhering
to Missing Completely At Random (MCAR) or Missing At Random (MAR)
assumptions. As far as we are concerned, the MacroPCA algorithm [48] is
the only available technique based on a PCA model, which deals with missing
values and rowwise and cellwise outliers within a dataset. However, it presents
some aspects that are worth to be discussed.

First, the imputation in MacroPCA is done by an iterative estimation yielded
by a PCA model [46], [84]. However, as it is proved in [85], when outliers are
not present in the dataset, the Trimmed Scores Regression (TSR) algorithm is
statistically superior in terms of the Mean Squared Predictive Error (MSPE)
in comparison with the Iterative Classic PCA (ICPCA) model. Moreover, it
has proved to work well in the context of Model Building (MB, when fitting a
model) [85], Model Exploitation (ME, when using a model with new data) [77]
and in prediction contexts (when having a matrix of predictors and responses)
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[104]. Hence, the choice of ICPCA might be sub-optimal if compared with
TSR.

Furthermore, once cellwise contamination is detected, it can be fixed by impu-
tation correcting cellwise outliers and keeping the rows that may contain them.
This, added to the (possibly) already present missing data in the same matrix,
highlights the importance of using the appropriate missing data imputation
technique. Thus, the interest in proposing novel approaches with TSR for
missing data imputation and cellwise outliers correction seems clear. However,
TSR is a technique based on classical PCA, inheriting its least-squares nature,
which is not robust to the effect of outliers. Even a single outlier can have
enough leverage to distort the extracted principal components (PCs). This
can mislead the interpretations of the PCA model and can also mask outliers,
disguising them as non-outlying observations according to the fitted PCs [97].

This poses a direct question: could a robust algorithm using TSR for the cell-
wise and missing data imputation improve the results yielded by MacroPCA?
A straightforward answer to this question could have been to include TSR as
the imputation step of the MacroPCA algorithm, but this would inform merely
about the optimal imputation strategy in the context of the MacroPCA algo-
rithm. There are many other options for robust PCA algorithms, generally
divided into those using robust estimators of the covariance matrix, projection
pursuit approaches, or both strategies combined. A good review can be found
in [97]. Nonetheless, only a few robust PCA solutions can deal with missing
data, and most assume the existence of rowwise outliers, i.e., rows which do
not belong to the population defined by the majority of observations.

Therefore, instead of analyzing the optimal combination between an already
existing robust PCA algorithm and TSR, we decided to take a different di-
rection and robustify the TSR algorithm for imputation by keeping a balance
between adding a low number of robust steps and reaching the necessary ro-
bustness of the algorithm in the presence of outliers. By doing so, we might
obtain a trade-off solution holding the superiority of least-squares methods
in the absence of outliers but with robustness that successfully prevents the
outliers’ influence on the model estimates.

Finally, a second aspect that deserves further consideration is that rowwise
outliers are usually treated as non-imputable cases, i.e., the PCA model fitted
with non-outlying observations cannot be used on them. However, we believe
that rowwise outliers should be divided into two categories: single and grouped
rowwise outliers. Whereas single rowwise outliers are observations that can’t
match the same pattern as any other observation in the dataset, grouped row-
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wise outliers might not fit the reference model but show a consistent agreement
with other rowwise outliers. Thus, in the case of having grouped rowwise out-
liers constituting a cluster, they can (and should) be imputed using their own
model. Nonetheless, the furthest point offered by MacroPCA is the detection
of such rows as rowwise outliers by setting thresholds to the orthogonal and
scores distances (see [48]) of the observations, but without any further attempt
to assess the existence of that potential cluster.

In this chapter, we propose the algorithm RadarTSR (Robust Adaptation
for datasets with Anomalous Rows of Trimmed Scores Regression) to im-
pute missing data, detect cellwise and rowwise outliers, and impute minor-
ity sub-populations, if detected. It uses the TSR algorithm for missing data
imputation and cellwise outliers correction, an already validated solution for
dealing with missing data [77], [85]. This work upgrades this problem with
the potential presence of all the abovementioned outliers, preventing TSR´s
breakdown by adding the minimum number of computationally efficient robust
steps. Hence, the RadarTSR algorithm takes a heuristic approach due to the
interplay between the goals mentioned above, allowing for striking a balance
between achieving robustness in the presence of outliers and leveraging the
superiority of least-squares methods in the absence of outliers.

Next, the Methodology section briefly introduces the PCA model framework
and explains the RadarTSR algorithm in the MB context. The Results section
shows a comparison between RadarTSR and other state-of-the-art techniques,
including MacroPCA [48], TSR [85], and the Iterative Classic PCA (ICPCA)
[84]. Several real and simulated datasets were considered, generating outliers
and missing data when data matrices were complete. Finally, the Conclusions
section summarises the main remarks and outcomes of the work.

6.2 Methodology

The notation used in this section will use bold uppercase letters to denote
matrices, also indicating their dimensions the first time they are mentioned,
e.g., X is a matrix of N rows and K columns. Bold lowercase letters denote
column vectors of the matrices expressed in uppercase, e.g., x is a column
vector of N rows from matrix X. Lowercase subindices i and j accompanying
vectors or scalars indicate they are a specific row or column from a matrix,
respectively, e.g., xi and xij are the i-th row and the element located in the
i-th row and j-th column of X, respectively. The notation used in the chapter
can be found in Appendix 6.A.
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A central piece of RadarTSR’s algorithm is the PCA model. The PCA model
[46] performs a low-rank bi-linear decomposition on a matrix X as X =
TP⊤ +E, where T is the matrix of scores and P is the matrix of loadings. A
detailed explanation of the PCA model can be found in Section 3.3.1. Through-
out this chapter, two metrics from the PCA model will be key: the Squared
Prediction Error (SPEi = e⊤

i ei) and the Hotelling’s T 2 (T 2
i =

∑a
j=1 t

2
ij/λ

2
a) of

an observation, which measure the orthogonal distance of observation to the
model and the Mahalanobis distance in the latent space, respectively. Such
metrics, control limits, and schemes can be implemented to detect outliers
[86].

In this chapter, several phenomena threatening the fitting of the classical PCA
model when present in the matrix X are considered. First, some entries xij

can be missing. The assumed mechanism generating this missingness will be
ignorable, i.e., cells will be Missing Completely At Random (MCAR) or Miss-
ing At Random (MAR). This assumption is necessary to apply TSR as an
imputation technique. For more information on the Missing Data problem, see
Section 3.5.2.

Secondly, the data may contain cellwise outliers generated at random. Such
randomness assumption enables treating outlying cells as imputable missing
entries using TSR. It is worth mentioning that cellwise outliers can only ex-
ist in non-outlying rows since outlying values of rowwise outliers are part of
their multivariate outlying pattern. Therefore, rows with cellwise outliers are
inherently non-outlying rows.

Finally, outlying rows can also be in X. Some rows are single rowwise outliers,
which do not belong to a particular group within X. Hence, missing entries
within single rowwise outliers will not be imputable. However, there can be
grouped outlying rows constituting a minority cluster within X. In this case,
missing entries within grouped rowwise outliers can be imputed with their
imputation model.

The following section will explain the steps of the RadarTSR algorithm to
detect and correct all the mentioned phenomena.
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6.2.1 RadarTSR algorithm for Model Building

This section explains how the RadarTSR algorithm achieves its goals in the
context of MB when it seeks to fit a PCA model given a potentially contami-
nated matrix. Figure 6.1 shows the sequence of steps the RadarTSR algorithm
applies to the initial X matrix in an MB scenario.

Given a matrix X, the RadarTSR algorithm aims to impute missing cells, to
detect and correct cellwise outliers, to detect rowwise outliers, and to impute
them if they happen to be grouped rowwise outliers. This multi-goal aspect
of RadarTSR leads to several outcomes along the algorithm. The following
notation will be used to refer to each one of them:

• the NA-imputed matrix, of dimensions N ×K where outlying rows and
cellwise outliers are not imputed, but only missing entries of non-outlying
rows;

• the cell-imputed matrix, of dimensions N × K, with cellwise outliers,
imputed for non-outlying rows and missing entries imputed for all rows,
no matter the outlyingness; and

• the cluster-imputed matrix, of dimensions N×K, with non-outlying rows
being cell-imputed, single rowwise outliers NA-imputed (i.e., imputing
only missing cells) with the reference PCA model, and grouped rowwise
outliers NA-imputed with their corresponding PCA model.

The vector y indicates the cluster assigned to each N observation and the
corresponding PCA model used for its imputation. In a scenario with a single
cluster (i.e., without grouped rowwise outliers), y = 0N . As new clusters are
detected, it generates new corresponding y values, sorting them in descending
order according to the number of observations within each cluster. That way,
the “zero” cluster tag value always refers to the reference (most numerous)
group.

Finally, the reference cluster also has the thresholds for the detection of cell-
wise (with subindex cw) and rowwise (with subindex rw) outlying events{
ccw, c

pcw

rw , cSPE
rw , cT

2

rw

}
, the indicator matrices

◦

M ,
•

M , of dimensions N × K,
and the indicator vector m with ones for missing cells, outlying cells and out-
lying rows, respectively. Further details about the definition of all the elements
mentioned earlier can be found in Section 6.2.2 and Appendix 6.A.
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Cellwise outliers detection

Potential rowwise outliers
detection

PCA model
Detection thresholds

Iterative reference model
estimation with TSR for PCA-MB
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Figure 6.1: Flowchart with the six main steps of the RadarTSR algorithm for PCA-MB
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This section explains how the RadarTSR algorithm achieves its goals in the
context of MB when it seeks to fit a PCA model given a potentially con-
taminated matrix. Supplementary Figure 1 shows the sequence of steps the
RadarTSR algorithm applies to the initial X matrix in an MB scenario.

Given the input matrix X, the RadarTSR algorithm performs six main steps,
further explained below. Even after applying the common preprocessing step
before fitting a PCA model, the resulting preprocessed matrix will be referred
to as X to simplify the notation. To prevent outliers’ influence, centring
and scaling along the RadarTSR algorithm are performed with 1-step location
and scale estimators, respectively. These estimators are the same ones as in
[48], referred to as robloc and robscale, yielding the µ̂ and σ̂ parameters,
respectively. The autoscaled matrix is the input to the sequence of steps from
Supplementary Figure 1, explained in more detail along the following lines:

1. Cellwise outliers detection. The goal is to spot extreme cellwise outliers.
This is done by comparing cells from the autoscaled X in absolute value
to the threshold ccw = zα/2, referring to the 100 (1− α/2)% percentile of
a standardized normal distribution. By default, α is set to 1%. Cells for
which |xij| > ccw, are signaled as cellwise outliers in matrix

•

M , setting
the corresponding entries •

mij = 1. This matrix yields the vector of the
percentage of outlying cells per row (pcw

n ) and also indicates which entries
xij must be set as missing so that they can be imputed and corrected in
further steps.

2. Potential rowwise outliers detection. This step aims to detect potential
rowwise outliers that could be masked after imputing missing cells and
cellwise outliers. A threshold on the expected amount of cellwise outliers
in a non-outlying row (cp

cw

rw ) is calculated as:

cp
cw

rw = robloc (pcw) + zα

√
robloc (pcw) (1− robloc (pcw)) /k (6.1)

where pcw is a vector of N elements indicating the proportion of outlying
cells detected in each row. The number of outlying cells per row follows
a binomial distribution, where the expected rate of cellwise outliers is
denoted as pcw and the number of variables is denoted as K. To determine
the threshold for identifying rowwise outliers, the normal approximation
is used when Kpcw(1−pcw) ≥ 10; otherwise, the threshold is set based on
the binomial distribution. Rows with pcwi ≥ cp

cw

rw are initially identified as
potential rowwise outliers by setting corresponding entries in the vector
m(0) to one.
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It is worth noting that the proportion-based filter for rowwise outliers
is sensitive to the dimensionality of the dataset: low-dimensional rows,
even if they exhibit only one outlying cell, could be detected as row-
wise outliers. However, rowwise contamination implies that a group of
variables deviates from the overall multivariate pattern. Therefore, rows
flagged in m(0) are also required to have at least two or more outlying cells
(kcw ≥ 2). On a related note, one might argue that detecting multivariate
outlying patterns by searching for univariate outliers, which are assumed
to be independent and equally likely, is a naive approach. Nonetheless,
the set of flagged rowwise outliers (m(0)) is not final and will be updated
in subsequent steps (m(s), s > 0).

3. Iterative reference model estimation, missing data imputation, and out-
liers detection. This step incorporates iterative reference model estima-
tion, missing data imputation, and outliers detection using TSR for PCA-
MB. The entries of the input matrix X(0) are set as missing according to

◦

M and
•

M matrices. Outlying observations according to m(0) are also
removed from X(0), yielding a matrix of N ′ ×K dimensions. The term
N ′ will denote the varying number of non-outlying observations along the
iterations s. The latent subspace dimension A is determined based on fac-
tors such as eigenvalue scree plots or cross-validation methods like the one
proposed in [105]. In this case, A is set as the number of PCs reaching an
accumulated explained variance above 80%, and a default maximum num-
ber of 10 PCs is also set. After the first iteration, half of the observations
with an SPE below the upper control limit (i.e., SPEi ≤ crw,SPE/2.5)
and with the lowest T 2, are used to fit the PCA model. This is done
to avoid the generation of artificial PCs by extreme outliers, which could
mask undetected moderate outliers (i.e., SPE outliers). At each iteration
s:

(a) TSR for PCA-MB is applied to non-outlying observations (i.e., for
which m

(s−1)
i = 0) from

•

X(s−1), resulting in a PCA model and im-
putations on

•

X(s).

(b) Projection onto the PCA model yields Squared Prediction Error
(

•

SPE
(s)
i ) and Hotelling’s

•

T 2 (
•

T 2(s)
i ) for all observations. The au-

toscaled residual matrix
•

R(s) = X(s) −
•̂

X(s) is used to flag all cells
with | •rij| ≥ ccw as cellwise outliers, as in Step 1. The robloc and
robscale estimators are applied to autoscale the

•

R matrix.

109



Chapter 6. RadarTSR: PCA model building with missing data and outliers

(c) The threshold for the expected percentage of univariate outliers per
row, cp

cw(s)
rw , is calculated as in Step 2. Depending on its value, out-

lying entries in rows with pcw(s) < cp
cw(s)

rw are set as missing, while
rows with pcw(s) ≥ cp

cw(s)
rw retain their outlying entries.

(d) Observations that exceed the thresholds cSPE(s)
rw /2.5 or cT

2(s)
rw are

identified as rowwise outliers, marked in the m(s) vector and re-
moved from subsequent iterations. The calculation of the thresholds
cSPE
rw and cT

2

rw is described in Section 6.2.2. The threshold for detect-
ing moderate outliers is directly equal to the Upper Control Limit
for the SPE(s) to enhance the sensitivity of RadarTSR in identifying
moderate outliers, which is the main goal of this step.

The iterations continue until reaching the maximum number of itera-
tions (s = 200 by default) or convergence, defined by a tolerance for the
maximal angle between loading vectors from consecutive iterations (by
default of 0.005) [48]. The output provided is the cell-imputed original
matrix

•

X(0), the reference PCA model {µ̂,P ,λ}(s), and the thresholds
cp

cw(s)
rw , cSPE(s)

rw and cT
2(s)

rw used for rowwise outliers detection. The set of
flagged cellwise outliers from Step 1 (

•

M) is updated with cellwise outliers
detected in

•

R(s), and all rows with
•

SPEi > cSPE(s)
rw , are included in m.

4. Projection and detection of orthogonal outliers. After the convergence of
Step 3, TSR in the Model Exploitation framework is applied to obtain the
NA-imputed

◦

X matrix. Cellwise outliers are detected from
◦

R, updating
the matrix

•

M . Orthogonal rowwise outliers are detected as well, updating
vector m with ones in rows with an

•

SPEi ≥ cSPE
rw or a pcwi ≥ cp

cw

rw .

5. Final model estimation and detection of outliers. TSR for PCA-MB is ex-
ecuted without outlying rows according to m and setting all cells flagged
in

•

M as missing. Then, the resulting model is used to detect cellwise out-
liers in

•

R and update the percentage of cellwise outliers per row. Rows
with a

•

SPEi > cSPE
rw and with a

•

T 2
i > cT

2

rw, are updated in m. The cell-
imputed matrix is obtained accordingly, along with the final detection of
outliers, yielding

•

M and m.

6. Search for outlying clusters. This step aims to find groups of moderate
outliers that need a different PCA model for a proper missing data im-
putation. Since outliers were removed in Steps 3 and 4, relevant PCs,
presumably due to patterns among previously removed rowwise outliers,
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could be extracted from a PCA on the residual matrix
•

E =
•

X -
•̂

X. The
approach to identify clusters relies on the K-means algorithm further ex-
plained in Section 6.2.2. If a cluster is detected, TSR for PCA-MB is
applied to its observations. This results in the final cluster-imputed ma-
trix X̃ with missing entries imputed in each row using its cluster’s PCA
model.

6.2.2 Dealing with rowwise outliers

RadarTSR performs different steps to detect outliers and protect the least-
squares core of the TSR algorithm used to build the PCA model and to impute
missing data and cellwise outliers. This section gives more technical details
first, on rowwise outliers’ detection, and second, on the clustering approach.

Rowwise outliers detection

In RadarTSR, rowwise outliers are detected based on the SPE and Hotelling’s
T 2 statistics. These two statistics define the outlyingness of the observa-
tions, and two complementary thresholds, cSPE

rw (Equation 6.2) and cT
2

rw (Equa-
tion 6.3), can be obtained based on percentiles of their assumed distributions
[86], [88], [106].

cSPE
rw = 2.5 · θ1

[
zα

√
2θ2h2

0/θ1 + 1 + θ2h0 (h0 − 1) /θ21

]
(6.2)

cT
2

rw = 2.5 ·A
(
N2 − 1

)
F(A,(N−A)),α/ (N (N −A)) (6.3)

In Equation 6.2, θi =
∑K

j=A+1(λj)
i, and h0 = 1 − 2 (θ1θ3) / (3θ

2
2), with λj

being the eigenvalues of the PCA residual covariance matrix and zα is the
100 (1− α)% percentile of a standard normal variable. In Equation 6.3, the
term F(A,(N−A)),α refers to the 100 (1− α)% percentile of a Fisher distribution
with A degrees of freedom in the numerator, N −A in the denominator. The
factor of 2.5 is applied to both Equations 6.2 and 6.3 according to a widely
used heuristic to determine a threshold value that works reasonably well.

Observations could be moderate outliers if their SPE is above cSPE
rw , and/or

extreme outliers if their Hotelling’s T 2 is above cT
2

rw. While a high T 2 indicates
extreme values that, if the SPE is not high, still respect the general correlation
pattern, high SPE values characterize observations far from the latent sub-
space, i.e., observations not respecting the correlation pattern and not fitting
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Chapter 6. RadarTSR: PCA model building with missing data and outliers

the PCA model. For this reason, the reference PCA model should not be used
to impute missing values in moderate outliers.

Yet, if moderate outliers formed groups of observations distancing with a con-
sistent pattern from the PCA model, we would like to detect such clusters and
separately run TSR for PCA-MB on them. The following section describes the
strategy based on the K−means algorithm for clustering of moderate outliers.
However, we emphasize that this strategy is described as a clustering step
within RadarTSR but not as a standard and standalone clustering algorithm.

Clustering of moderate rowwise outliers

To determine whether rowwise outliers are single or grouped, we fit a PCA
model on the residual matrix

•

E of dimensions N ′′ ×K, where N ′′ represents
the number of moderate rowwise outliers identified in Step 5 (Section 6.2.1).
The relevant A′′ principal components are identified by setting a threshold of
10% on the explained variance. If any PCs surpass this threshold, the clustering
process proceeds. It is important to note that a minimum of 5 observations
is also required to establish the existence of a cluster. This threshold on the
minimum number of observations (cny

) is a configurable hyperparameter of the
RadarTSR algorithm, allowing users to adapt it to their specific dataset.

Next, the scores matrix T (Ė) of dimensions N ′′ ×A′′ obtained from the residual
PCA model is inputted into a K-means algorithm [107]. The K-means algo-
rithm models the data using C cluster means iteratively recalculated after as-
signing all objects the cluster label of the closest mean (µ̂(y) with y ∈ 1, . . . , C).
Therefore it minimizes the within-cluster sum-of-squared errors (Equation 6.4).

wcssq =
C∑

y=1

∑
t
(Ė)
i ∈Cy

||t(Ė)
i − µ̂(y)||22 (6.4)

RadarTSR defaults to using the Euclidean distance to determine the closest
mean to each observation, and to determine the number of clusters C, there
are two options. Since the appropriate number of clusters can vary depending
on the research questions of each user, a manual option is provided, based on
visualizing the distribution of the residual scores and the wcssq (Equation 6.4)
for each number of clusters C, which is similar to a scree plot. Appendix 6.C
contains these two outcomes used to determine the number of clusters for real
datasets in Section 6.5.2. Although this approach should always be preferred,
there is also an automatic option based on the Calinski-Harabasz criterion
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(Equation 6.5), which selects C as the value that maximizes the ratio between
the overall between-cluster variance and the within-cluster variance (i.e., the
wcssq)[108].

V R =

∑C
y=1 ||µ̂(y) − µ̂||22

wcssq
(6.5)

Finally, it is important to mention that the cluster labels in the returned vector
y are sorted in descending order based on their sample sizes. This means that
label “0” corresponds to the most populated cluster, followed by “1”, and so on.

6.3 Datasets

The comparative study contains six case studies representing different data
structures. These cases included two simulated data sets and four real data
sets. Section 6.3.1 explains how various artefacts were produced for the simu-
lated datasets. Section 6.3.2 describes the real datasets, outlining their main
characteristics, contextualising them, and arguing for their inclusion as part of
this chapter.

6.3.1 Simulated datasets

For simulated cases, we generated two clean data structures X0 of N × K
dimensions, referred to in this section as the “wide” (N < K) named A09 and
the “long” (N > K) data set named MDI Sim.

The wide clean data set (N = 100, K = 200, A = 6) was generated following the
procedure from [48], using the A09 correlation structure. The A09 correlation
structure is given by the expression ρij = (−0.9)|i−j|, which was applied for
each off-diagonal entry (i.e., ∀i, j ∈ 1, . . . , K; i ̸= j). Then, the spectral
decomposition of the covariance matrix was obtained as:

Σ = PLP⊤

Secondly, the diagonal elements of L are replaced by:

diag(30, 25, 20, . . . , 5, 0.098, 0.0975, . . . , 0.0020, 0.0015)

. This way, 6 PCs, whose importance is determined by the eigenvalues of the
covariance matrix, will explain 91.5% of the total variance.
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The long clean data set (N = 100, K = 10, A = 3) was taken from the
simulated example used in [109]. The correlation structure was calculated from
the original reference matrix for this data set. Each clean data set included
different simulated artefacts, as explained in the following sections.

Simulation of missing at random missingness

To simulate the MAR pattern, missingness must depend on the value of other
cells but not on the value of the missing cell. Thus, to generate a percentage
pMD of MAR missing cells, the following strategy was applied:

u(j) = |x(j−1)|+ |x(j+1)| if uij ≥ (100− pMD) −→ xij = NA (6.6)

The formula in Equation 6.6 uses the same strategy for MAR missing data
simulation as in [48]. For the j-th column x(j) from X, a column u(j) is
obtained by the addition of adjacent columns x(j−1) and x(j+1) in absolute
value. Then, cells xij among the highest percentile pMD of ui values are set to
missing. The results for the MAR simulations are in Appendix 6.D.

Simulation of cellwise outliers

Once the clean dataset has been simulated, a certain percentage of cells are
randomly selected, as for the MCAR data simulation. These cells are replaced
by the value γσj, where σ2

j is the j-th diagonal element of Σ and γ ranges from
0 to 20.

Simulation of single rowwise outliers

To simulate results from Simulations with single rowwise outliers, we used the
Simulation of Controlled OUTliers algorithm (SCOUTer [94]), also explained
in Chapter 5 of this thesis. This strategy proposes a general framework to
simulate outliers having specific properties concerning a given PCA model.
Provided a data matrix and a reference PCA model, SCOUTer shifts the spec-
ified observations to achieve a target SPE and/or T 2 value. Moreover, the
number of intermediate steps and the linearity between the intermediate SPE
and/or T 2 values are also tunable options.

To use SCOUTer in these simulations, a PCA model was built with the same
reference matrices as in the other simulations (following an A09 or ALYZ
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Figure 6.2: Distance plot of the simulated outliers for the case with moderate outliers (first
column of plots), with extreme outliers case (second column of plots), and with outliers both
for the SPE and the T 2 (third column of plots).

correlation structure). Afterwards, the level of outlyingness achieved by the
simulation procedure from [48] was set as a target for the SCOUTer function.

This way, three scenarios could be achieved: simulation of extreme outliers,
simulation of moderate outliers, and simulation of severe and extreme out-
liers. In Figure 6.2, both distance plots for the moderate outliers case and
the extreme outliers case are shown. Lines represent the gradual shift of each
observation along the 50 steps. As it can be seen, SPE and T 2 values are more
spaced towards the final steps of the shift. Thus, there is more concentration of
outliers on lower levels of distance, exploring more carefully the point at which
outliers become “outlying enough” for each algorithm. The third case is the
one in which the SPE and the T 2 vary simultaneously. In this case, models
will have to deal with the influence of bad leverage points. These outliers can
generate artificial PCs due to their big variance (high T 2). Moreover, these
artificial PCs will be unrepresentative of the actual correlation of most of the
data set (high SPE).

Simulation of grouped rowwise outliers

Once the structure defining the non-outlying cluster (X0) has been defined,
the reference covariance structure is altered for the outlying cluster (X1) by
using the first residual eigenvector (νA+1) as the mean vector of the outlying
distribution.

X0 ∼ N (0K ,Σ0)
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X1 ∼ N (γνA+1,Σ0)

This mean vector is multiplied by the factor γ ∈ 1 . . . 50 to tune the magnitude
of the outliers.

6.3.2 Real datasets

The first case study, from chemometrics, is the NIR spectra dataset. Since this
dataset was in the proposal of TSR for PCA-MB with missing data [109], we
considered it an interesting case for comparison. It contains K= 401 wave-
lengths (750 – 1550 in 2 mm increments) of N = 40 diesel fuels obtained at
the Southwest Research Institute (SWRI) on a project sponsored by the U.S.
Army [110].

The second case study is the MRI breast dataset, with perfusion magnetic
resonance imaging (MRI) data. This medical image modality expresses each
pixel’s intensity as the concentration of an injected contrast agent, capturing
the diffusion of the contrast in the tissue over a temporal sequence. The
analysis of the contrast’s washout dynamic can be used to develop effective
techniques for cancer diagnosis [111]. The dataset has a pixels × frames
structure, with dimensions of N = 23193 pixes (151×432 originally) and K =
6 frames. Clinical experts classified beforehand the pixels as either healthy
(i.e., non-outlying class) or corresponding to the Region Of Interest (ROI, i.e.,
rowwise outliers), which presented a lesion indicating tumour development
initiation.

The third case study is the Glass spectra dataset. This dataset [112], [113]
contains spectra with K = 750 wavelengths of N = 180 archaeological glass
samples from the 16th-17th century, analyzed via electron-probe X-ray micro-
analysis (EPXMA). It has been used in several works about robust statistics
and clustering, including the work proposing the MacroPCA algorithm [48].
Some spectra were measured with a contamination layer on the detector’s
surface, decreasing the detector efficiency [114]. This indicates the existence
of at least one cluster of grouped rowwise outliers in the dataset.

Finally, the fourth case study is the Digitized Palomar Observatory Sky Survey
(DPOSS), a digital version of a three-band photographic survey of the northern
sky (POSS-II), which was released to the astronomical community [115] From
this database of celestial objects, authors in [48] selected N = 20,000 entries
at random, and we also used this same query. Rows represent celestial objects,
and K = 21 columns represent seven measurements taken with J, F, and N

116



6.4 Comparative study

emulsions, i.e., different colour bands. In this dataset, 50,2% of entries are
missing, and 84,6% of rows contain missing entries.

6.4 Comparative study

The case studies were used to compare RadarTSR to ICPCA [84], MacroPCA
[48] and TSR [85]. ICPCA and TSR were added to the comparison because
they can be seen as the least-squares versions of the missing data imputation al-
gorithms used in MacroPCA and RadarTSR, respectively. The MacroPCA al-
gorithm was included as the best state-of-the-art approach for PCA-MB in the
presence of missing data, cellwise and rowwise outliers. Whereas RadarTSR
and TSR were executed in Matlab, MacroPCA and ICPCA calculations were
run in R, using the cellWise package [116].

For both simulated case studies, different scenarios were generated. All the
details for the simulation of the artefacts have been described in Section 6.3.1,
and this paragraph limits its content to define the values of the parameters
used for the simulations. Missing data were generated with seven incremental
levels of missing cells, ranging from 5% to 80%, following MCAR and MAR
patterns. It was essential to apply the imputation methods since they rely on
the assumption of ignorable missingness mechanisms. As per cellwise outliers
and rowwise outliers, the parameter γ denoting the distance of the outliers, i.e.,
the contamination level, was set to range from 0 to 20 for cellwise outliers and
from 0 to 50 for rowwise outliers. When missing data appeared in combination
with outliers, the percentage of missing cells was always set to 20%. When
only one type of outlier (rowwise or cellwise) was generated, its percentage
was set to 20% of contaminated rows or cells. If cellwise and rowwise outliers
coexisted in the matrix, 10% of each outlier type was generated. Each scenario
was repeated 50 times, changing the affected cells and/or rows.

For the NIR spectra dataset, MCAR missingness was simulated, ranging from
5% to 80%. The missingness generation was repeated ten times, changing
the cells set as missing to estimate the variability expected for the error. For
the MRI breast dataset, pixels from the ROI (the region with damaged tissue
indicating potential tumoural development) were considered rowwise outliers.
Since the ROI was constituted only by 84 pixels (0.362 % of rows), a low
percentage of MCAR missing data was simulated, setting 10% of the entries
as missing to include outliers and missing data. For the Glass spectra dataset,
since it was originally complete, 40% of MCAR missing data were simulated
to include a dataset with all the artefacts (missing data, rowwise outliers, and
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Figure 6.3: Flux diagram illustrating the methodology followed to obtain the MSPE (Equa-
tion 6.7), the weighted sum of cosines between loadings (Equation 6.8), and the detection
metrics from Table 6.1, used for the comparative study.

cellwise outliers). Finally, for the DPOSS stars dataset, it already presented
all sorts of events: missing data (> 50% of entries were missing, and > 80% of
rows had missing values) and outliers, potentially both rowwise and cellwise.

Figure 6.3 illustrates the framework to compute all the performance metrics
used for the comparison. For each generated matrix, a classical PCA was
applied to the matrix Xclean of dimensions N ′ ×K, where N ′ refers to rows
that were not replaced by rowwise outliers (i.e., those for which mi = 0). This
yields a reconstructed matrix X̂clean, which is compared to the reconstructed
matrix X̂method yielded by each one of the methods. Both matrices, X̂clean

and X̂method, were used to compute the mean squared prediction error (MSPE,
Equation 6.7).

MSPE =

∑
∀i∈mi=0

∑K
j=1

(
x̂clean
ij − x̂method

ij

)2
N ′ ·K

(6.7)

It is important to remark that among the outcomes yielded by MacroPCA,
the “cell imputed” option was used in this comparative study. This matrix
imputes missing cells for all rows and cellwise outliers (which cannot appear
in outlying rows). Additionally, the outcome used to compute the MSPE

obtained by RadarTSR is the matrix X̃, which has the missing data imputed
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by the model corresponding to the cluster of each observation, and the cell-wise
outliers corrected for the reference cluster using the reference model.

Since the MSPE might vary depending on the dataset, it is only a relative
value that lets us compare across methods. However, it does not hold an
absolute interpretation, i.e., we cannot know if an MSPE value is high or low.
To measure the distortion of the PCA model fitted by each method, we also
compared loading vectors yielded by each method to the ones obtained from
the original clean dataset (Equation 6.8). The dot product between each pair of
homologous loading vectors is calculated and then weighted by the percentage
of variance explained by that PC according to the clean PCA model.

wcosP =
A∑

j=1

(
pclean
j

)⊤ · pmethod
j · λj∑A

j=1 λj

(6.8)

Finally, several metrics evaluating the detection of cellwise and rowwise outliers
were also calculated to compare MacroPCA and RadarTSR (Table 6.1).

Table 6.1: Metrics used to evaluate the results with simulated datasets. Outlying elements
(cells and/or rows) are referred to as Positives (P ), and then TP stands for True Positives,
TN for True Negatives, FP for False Positives, and FN for False Negatives.

Metric Evaluation Expression

Sensitivity Probability of detecting an outlier TP/(TP + FN)
Precision Probability for a predicted outlier of truly being so TP/(TP + FP )
Specificity Probability of detecting a non-outlier TN/(TN + FP )

To assess if the differences between methods were statistically significant, a 3-
factor mixed-effect ANOVA model was fitted for each case study, using Method
(4 levels) and Artifact (missing data percentage with seven levels, cellwise
outlyingness with 20 levels, or rowwise outlyingness with 50 levels) as fixed
effects, and Repetition (50 levels for simulated case studies and 10 for real
dataset case studies), as a random-effect factor used as a blocking factor.

For the MSPE, a logarithmic transformation was used to expand the dif-
ferences in scale between lower and higher levels of the artefacts and im-
prove the ANOVA normality assumption. Its corresponding 95% Least Signif-
icant Difference (LSD) intervals were plotted (Figures 6.4 to 6.20 and Appen-
dices 6.B and 6.C), with non-overlapping LSD intervals indicating statistically
significant differences between the corresponding group means, i.e., showing
that some effect or interaction was statistically significant (p value <0.05) in
the ANOVA model.
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For the MRI breast, as the percentage of outlying values was very low (un-
der a 1%), simulating a range of missing values could lead to the deletion of
all entries holding the information about the outlying rows. Therefore, only
10% of MCAR missing data was simulated. For the Glass and DPOSS stars
datasets, neither the MSPE nor the detection metrics from Table 6.1 could
be calculated because there is not a clean dataset (without any outlier) to
use as reference. Therefore, residual maps were used to assess the compari-
son between methods. Residual maps are an idea from [59], also used in [48]
to represent the autoscaled difference between the original matrix X and the
reconstruction of the cell-imputed matrix

•̂

X yielded by the PCA model. It
is worth mentioning as well that each technique used its own location and
scale estimators to normalize the residual matrix, as in [48], i.e., ICPCA and
TSR used the least-squares mean and standard deviation, while RadarTSR
and MacroPCA used the robloc and robscale ones.

The resulting matrix is represented with colour-coded cells (see Supplementary
Figures 12 and 15). Intense blue is used for extreme negative residuals ( •

rij ≤
−zα/2), becoming more yellow as residuals tend to zero and turning red as the
residuals increase and grow to high positive values ( •

rij ≥ z1−α/2). Next to
the residual map, a grey scale bar indicates the outlyingness of each row. This
outlyingness vector dmodel is calculated as the scaled orthogonal distance of the
N cell-imputed observations (i.e., as

•

SPEi/c
SPE
rw for RadarTSR or as

•

ODi/cOD

for MacroPCA), and it attains its darkest colour when the orthogonal distance
exceeds the threshold obtained by the fitted PCA model for each observation
(i.e. when dmodel

i ≥ 1). The more outlying a row is, the higher its distance di
and the darker it will appear. On the contrary, rows with a low distance to
the PCA model will appear white.

6.5 Results

6.5.1 Simulations

The following figures show the average of all performance criteria over the 50
repetitions. The shaded region represents the LSD intervals at a 95% confi-
dence level. As expected, the more missing or outlying values (higher γ values)
are considered, the higher the MSPE values. In this section, only the results
assuming MCAR missing data are shown. The results with MAR missing data
lead to the same conclusions (see Appendix 6.B).
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Matrices with missing data

Figures 6.4 and 6.5 show that, for all methods, the MSPE (upper left plots) in-
creases with the percentage of missing cells in the absence of outliers. RadarTSR
is overlapped with ICPCA and TSR, which have the best results for most miss-
ing data percentages. Yet, MacroPCA usually shows the highest MSPE, being
closer to the rest for the long dataset (upper left plots in Figures 6.4 and 6.5).

Figure 6.4: Missing data case results for the wide dataset. The upper left plot shows
the results for the MSPE, the upper right plot shows the weighted sum of cosines between
loadings, and the lower left and lower right plots show the detection metrics for rowwise
and cellwise outliers, respectively. The x-axis of each plot denotes the MD percentage. The
dotted, circles, dashed, and solid lines denote the results of ICPCA, MacroPCA, TSR, and
RadarTSR, respectively. The shaded areas represent the 95% LSD confidence intervals of
the metrics obtained by each method.
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Chapter 6. RadarTSR: PCA model building with missing data and outliers

Similar conclusions are obtained from the weighted sum of cosines between
loadings (Equation 6.4), proving that RadarTSR succeeds in keeping the least-
squares performance in the absence of outliers, at least up to 60% of missing
data (upper right plots in Figures 6.4 and 6.5).

Figure 6.5: Missing data case results for the long dataset. More details are in the caption
of Figure 6.4.

Regarding detecting outliers, RadarTSR has higher rowwise specificity and the
same high cellwise specificity as MacroPCA. This means that MacroPCA tends
to over-detect rowwise outliers. In fact, MacroPCA’s rowwise over-detection
prevented the obtention of a clean imputed long dataset in a part of the repeti-
tions with 70% of missing data and in all repetitions with 80% of cells missing.
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Matrices with missing data and cellwise outliers

Figures 6.6 and 6.7 show in the MSPE (upper left plots) the breakdown of
ICPCA and TSR when cellwise outliers are included. In contrast, RadarTSR
shows the lowest MSPE, the highest similarity to the loadings of the clean
PCA model, and both the highest rowwise specificity and cellwise sensitivity.

The increase of the MSPE with the γ (indicating outlier’s magnitude) for
MacroPCA and RadarTSR is due to their imperfect rowwise specificity and
cellwise sensitivity (lower rows in Figures 6.6 and 6.7). It is more noticeable
for MacroPCA as its over-detection of rowwise outliers prevents obtaining the
cell-imputed version of clean rows, maintaining the effect of cellwise outliers.

Figure 6.6: Missing data (20%) and cellwise outliers (20%) case results for the wide dataset.
The x-axis of each plot denotes the outliers’ distance, γ. More details are in the caption of
Figure 6.4.
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Figure 6.7: Missing data (20%) and cellwise outliers (20%) case results for the long dataset.
The x-axis of each plot denotes the outliers’ distance, γ. More details are in the caption of
Figure 6.4.

Matrices with missing data and single rowwise outliers

Figures 6.8 and 6.9 show the results obtained by adding MCAR missing data
and single SPE rowwise outliers. In this case, MacroPCA and RadarTSR
obtain a similar MSPE (upper left plots), while both purely least-squares
techniques (ICPCA and TSR) show an increase of the MSPE with γ. The
weighted sum of cosines between loadings (upper right plots) corroborates
MSPE results, with RadarTSR obtaining the loadings closest to the ones
from the clean PCA model for both datasets.

Rowwise sensitivity curves (lower left plots) show that RadarTSR detects mild
rowwise outliers (at low values of γ) worse than MacroPCA. Besides, the delay
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Figure 6.8: Missing data (20%) and single rowwise outliers (20%) case results for the wide
dataset. More details are in the caption of Figure 6.4.

of RadarSTR in rowwise outliers’ sensitivity is coupled with a decrease in
cellwise specificity for the same range of γ values (lower right plots).

This suggests that RadarTSR masks mild rowwise outliers by treating them as
rows contaminated with cellwise outliers, correcting their outlyingness. Nev-
ertheless, this masking effect does not come at the cost of distorting the PCA
model fitted with RadarTSR more than the one obtained by MacroPCA,
as seen in the weighted sum of loading cosines (upper right plots in Fig-
ures 6.8 and 6.9). On the contrary, rowwise precision curves (lower left plots)
show that MacroPCA tends to over-detect rowwise outliers, as seen previously
in Figures 6.6 and 6.7.
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Figure 6.9: Missing data (20%) and single rowwise outliers (20%) case results for the long
dataset. More details are in the caption of Figure 6.4.

Figures 6.10 and 6.11 show the results values when single T 2 rowwise outliers
and MCAR missing data are present. In this case, ICPCA and TSR obtain
a significantly lower MSPE than MacroPCA and RadarTSR. Nonetheless, the
order of magnitude of the MSPE (10−5, 10−6) makes such differences probably
irrelevant in practical terms. This result was expected since purely extreme
rowwise outliers still respect the covariance structure of the data.

On a related note, despite being less harmful, the weighted sum of loadings’
cosines still displays the effect of extreme rowwise outliers in purely least
squares methods (upper right plots in Figures 6.10 and 6.11, respectively).
Even if rowwise outliers still respect the covariance structure, classical least
squares PCA is sensitive to extreme values because such outliers can inflate
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Figure 6.10: Missing data (20%) and single T 2 rowwise outliers (20%) case results for the
wide dataset. More details are in the caption of Figure 6.4.

variances or introduce spurious correlations. Besides, single T 2 rowwise outliers
seem to have a bigger effect on the wide dataset, where the higher dimension-
ality already increases the dispersion of the data points, making it easier for
inflated variances-covariances to affect the resulting PCA model.

Another noticeable aspect is a more pronounced rowwise outliers’ masking ef-
fect by RadarTSR for the long dataset (i.e., in low-dimensional cases), as can
be seen by comparing Figure 6.11 with Figures 6.9 , 6.10 and 6.11. Although
this brings RadarTSR’s MSPE and the weighted sum of cosines closer to the
values of the rest of the techniques and lowers its rowwise sensitivity and cell-
wise specificity, it does not prevent RadarTSR from reaching the least affected
loadings for the most outlying cases (upper right plot in Figure 6.11).

127



Chapter 6. RadarTSR: PCA model building with missing data and outliers

Figure 6.11: Missing data (20%) and single T 2 rowwise outliers (20%) case results for the
long dataset. More details are in the caption of Figure 6.4.

Finally, Figures 6.12 and 6.13 show the results when single T 2 and SPE row-
wise outliers and MCAR missing data are present.

As it can be seen, the outcomes and conclusions are practically identical to
the ones derived from simulations with matrices with missing data and single
SPE rowwise outliers (Figures 6.8 and 6.9), being the main difference a better
detection of mild rowwise outliers by RadarTSR (lower left plots).
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Figure 6.12: Missing data (20%) and single T 2 and SPE rowwise outliers (20%) case
results for the wide dataset. More details are in the caption of Figure 6.4.

In the following cases, cellwise outliers were included when the different types
of single rowwise outliers were simulated. This is the most complex scenario
and also the most likely one to be found in real datasets. As it will be seen,
adding cellwise outliers exacerbates, in general, RadarTSR’s rowwise masking
effect and MacroPCA’s rowwise over-detection.

Figures 6.14 and 6.15 show the results when missing data, single SPE row-
wise outliers and cellwise outliers are present in a matrix. Since cellwise out-
liers are present in this scenario, MacroPCA yields higher MSPE values than
RadarTSR for both datasets (upper left plots), as the cell-imputed matrix
used to calculate the MSPE does not correct cellwise outliers undetected by
MacroPCA.
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Figure 6.13: Missing data (20%) and single T 2 and SPE rowwise outliers (20%) case
results for the long dataset. More details are in the caption of Figure 6.4.

Besides, the masking effect of RadarTSR seems related to the dataset dimen-
sion, affecting the long dataset (Figure 6.9) more drastically than the wide
dataset (Figure 6.8). Nevertheless, the weighted sum of cosines between load-
ing vectors (upper right plots in Figures 6.8 and 6.9) shows that RadarTSR
still has the best performance for the wide dataset, and the long dataset shows,
at its worst, an overlap with MacroPCA, which shows the second best perfor-
mance, followed by ICPCA and TSR.
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Figure 6.14: Missing data (20%), single rowwise outliers (10%), and cellwise outliers (10%)
case for the wide dataset. More details in caption of Figure 6.4.

The following results in Figures 6.16 and 6.17 showcase the effect of adding
cellwise outliers to matrices contaminated with single T 2 rowwise outliers. Sim-
ilarly to Figures 6.10 and 6.11, the performance of purely least squares methods
(ICPCA and TSR) is less affected in comparison to cases when single SPE
rowwise outliers are present.
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Chapter 6. RadarTSR: PCA model building with missing data and outliers

Figure 6.15: Missing data (20%), single rowwise outliers (10%), and cellwise outliers (10%)
case for the long dataset. More details in caption of Figure 6.4.

Resembling when only single T 2 rowwise outliers were present (Figure 6.11),
the masking effect of RadarTSR is accentuated for the long dataset (i.e., the
low-dimensional case, Figure 6.17). This is again appreciated by low rowwise
sensitivity values coupled with a decay in cellwise specificity that persists until
reaching high values of γ.
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Figure 6.16: Missing data (20%), single T 2 rowwise outliers (10%), and cellwise outliers
(10%) case results for the wide dataset. More details are in the caption of Figure 6.4.

Finally, Figures 6.18 and 6.19 show the results when cellwise outliers are added
to matrices with single SPE and T 2 rowwise outliers. As can be seen, re-
sults resemble, to a great extent, those seen in Figures 6.14 and 6.15, and
RadarTSR’s masking effect does not persist.
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Figure 6.17: Missing data (20%), single T 2 rowwise outliers (10%), and cellwise outliers
(10%) case results for the long dataset. More details are in the caption of Figure 6.4.

Matrices with missing data and grouped rowwise outliers

The results of these last simulations include the MSPE for both clean and out-
lying rows since the latter were generated from the same outlying distribution,
and a PCA could be fitted on them.

Figures 6.20 and 6.21 show a very similar picture as the one seen for single
rowwise outliers in Figures 6.8 and Figures 6.9, with RadarTSR yielding the
lowest MSPE and the least distorted loadings (upper right plots), in general.
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Figure 6.18: Missing data (20%), single T 2 and SPE rowwise outliers (10%), and cellwise
outliers (10%) case results for the wide dataset. More details are in the caption of Figure 4
of the main manuscript.

RadarTSR also yields low MSPE values for the outlying cluster of the wide
dataset (upper central plot in Figure 6.20). On the contrary, the MSPE of out-
lying rows from the long dataset increases with the γ parameter (Figure 6.21).
Yet, this dataset’s rowwise sensitivity curves (lower left plot in Figure 6.21)
show that RadarTSR detects these rowwise outliers, even mild ones. This out-
come suggests that the clustering step of RadarTSR might be inefficient when
dealing with low-dimensional matrices.

Figures 6.22 and 6.23 show similar results when cellwise outliers are also present
with missing data and grouped rowwise outliers. RadarTSR is the technique
showing the least affected loadings (upper right plots). Still, cellwise outliers
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Figure 6.19: Missing data (20%), single T 2 and SPE rowwise outliers (10%), and cellwise
outliers (10%) case results for the long dataset. More details are in the caption of Figure 4
of the main manuscript.

and the imperfect precision detecting rowwise outliers increase RadarTSR’s
MSPE values with γ for both the reference and outlying clusters.

Moreover, RadarTSR also suffers from the mentioned rowwise masking effect
with the long dataset, showing a delayed rowwise sensitivity coupled with a de-
lay in cellwise precision. Nonetheless, both ICPCA and TSR yield completely
distorted PCA models (upper right plots) and show a monotonic increase of
their MSPE, as well as MacroPCA, whose low rowwise precision (lower left
plots) prevents the correction of cellwise outliers in clean rows. This results in
RadarTSR being the algorithm that yields, in general, the lowest MSPE.
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At this point, the shown simulation scenarios have exposed the most important
points of the comparative study, compared and summarised in Table 6.2.

Table 6.2: Comparative summary of the metrics (columns) obtained with the simulated
scenarios (rows) shown in Section 6.5.1. “MSPE” stands for Mean Squared Prediction Error;
“wcosP ” for weighted sum of cosines between loadings;“RW” for rowwise outliers; “CW”
for cellwise outliers; “Spec.” for specificity; “Sens.” for sensitivity; “Prec.” for precision;
“sRW” for single rowwise outliers; “gRW” for grouped rowwise outliers. Letter “R” means
better results of RadarTSR (63.16% of applicable cases); letter “M” means better results of
MacroPCA (13.16% of applicable cases); symbol “=” means a tie between RadarTSR and
MacroPCA (21.05% of applicable cases), and filled cells are cases in which certain metrics
could not be obtained because they were not applicable.

Test case MD MD + sRW MD + gRW
CW CW CW

MSPE = R = R R R
wcosP R R R R R R

RW spec. R R R R R R
RW sens. M M M R / M
RW prec. R R R R
CW spec. R = = = = =
CW sens. R R R
CW prec. = M M

First of all, results show that RadarTSR yields MSPE values for non-outlying
rows (first row, MSPE, of Table 6.2) comparable to the ones obtained by
MacroPCA, which is the state-of-the-art method to deal with missing data,
cellwise outliers, and rowwise outliers. In cases of the absence of outliers
(Figures 6.4 and 6.5), there’s a tie in terms of MSPE between RadarTSR and
MacroPCA (first row of Table 6.2). Nevertheless, there is a clear superiority
in the similarity of loadings yielded by RadarTSR and those fitted with the
clean dataset (second row in Table 6.2).

Another substantial difference seen between RadarTSR and MacroPCA is in
terms of rowwise sensitivity and precision, where MacroPCA and RadarTSR
seem to be antagonistic: whereas MacroPCA shows an over-detection of row-
wise outliers (Table 6.2, 4th row), RadarTSR masks them, especially in low-
dimensional scenarios, and treats them as cellwise outliers (Table 6.2, 7th
column).

In practical terms, the consequences of both phenomena in the MSPE val-
ues of the clean rows are almost not appreciable. On the one hand, using
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MacroPCA would result in an over-detection of rowwise outliers (relationship
between 4th, 5th, and 7th rows in Table 6.2), preventing the correction of cell-
wise outliers in cellwise contaminated rows. On the other hand, RadarTSR’s
masking effect (relationship between 4th, 7th, and 8th rows in Table 6.2) could
yield a deficient detection of rowwise outliers, as seen especially for the long
dataset in Figures 6.14 and 6.22. Yet, as RadarTSR fits a PCA model close
to the uncontaminated one, outlying patterns could still be appreciated in the
reconstruction error, and its higher rowwise precision (fifth row in Table 6.2)
would prevent the loss of clean rows compared to MacroPCA.

An important aspect of commenting on the masking effect of RadarTSR is
that it relates to the dataset’s dimensionality and accentuates when rowwise
and cellwise outliers are present in the matrix. Indeed, it is reasonable that
for low numbers of variables (K), it becomes less clear whether a cellwise or
rowwise contamination is the one behind outlying values.

To illustrate this, one could consider the minimal multidimensional case with
K = 2. If a row shows an outlying value, how can it discriminate if such
an outlying entry is outlying by itself (cellwise contamination) or represents a
different multivariate (rowwise contamination) pattern? This question exceeds
the scope of this chapter, but it illustrates an effect that should be considered
when applying these techniques and opens an interesting question that could
be a matter of further research work. One potential solution to overcome this
issue could be to check the matrix of residuals and use specific knowledge about
the dataset to determine if rows showing high residuals correspond to a cellwise
or rowwise contamination paradigm.
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Figure 6.20: Missing data (20%) and grouped rowwise outliers (20%) case for the wide
dataset. The upper row of plots shows the MSPE for the clean (left) and outlying (right)
rows; the centre-left plot shows the weighted sum of cosines; the centre-right plot shows the
rowwise detection metrics; and the bottom plot shows the cellwise detection metrics. More
details in caption of Figure 6.4.
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Figure 6.21: Missing data (20%) and grouped rowwise outliers (20%) case for the long
dataset. More details in captions of Figures 6.4 and 6.20.
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Figure 6.22: Missing data (20%), grouped rowwise outliers (10%) and cellwise outliers
(10%) case for the wide dataset. More details in captions of Figures 6.4 and 6.20.
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Figure 6.23: Missing data (20%), grouped rowwise outliers (10%) and cellwise outliers
(10%) case for the long dataset. More details in captions of Figures 6.4 and 6.20.
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6.5.2 Real datasets

NIR spectra data

For this dataset, to select the number of PCs, we did a first inspection of the
eigenvalues’ scree plot obtained with a matrix with a 5% of missing cells. After
examining it, two PCs (A = 2) were selected for inclusion in the PCA model.
Figure 6.24 shows the scree plots obtained for one iteration of the experiments
with MacroPCA (Figure 6.24a) and RadarTSR (Figure 6.24b).
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(a) MacroPCA scree plot with the eigenvalues. (b) RadarTSR scree plot with the eigenvalues.

Figure 6.24: Scree plots with eigenvalues showing the number of principal components
suggested by MacroPCA (left) and by RadarTSR (right) for the NIR dataset for the matrix
with a 5% of MCAR missing entries.

Figure 6.25 shows how least-squares techniques (TSR and ICPCA) obtain lower
MSPE values than MacroPCA and RadarTSR. The MSPE of RadarTSR
overlaps with MacroPCA for most missing data percentages, except for the
last one, which yields a significantly lower MSPE. Contrary to Figure 6.4,
RadarTSR obtains a significantly higher MSPE than ICPCA and TSR, al-
though the order of magnitude of the MSPE values makes such differences
irrelevant in practical terms.

Moreover, the weighted sums of cosines overlap all techniques, and the row-
wise specificity shows that rowwise and cellwise specificity are overlapped for
MacroPCA and RadarTSR. However, MacroPCA yields more false positives
in rowwise outliers detection on average than RadarTSR.
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Figure 6.25: NIR spectra dataset. Average and LSD intervals for MSPE, the weighted
sum of cosines, rowwise specificity, and cellwise specificity as a function of the percentage of
missing cells.

MRI breast data

The original dataset, with the sequence of six frames of perfusion MRI, is
shown in Figure 6.26 with the ROI shaded in pink. Since the most interesting
outcome of this dataset concerns the detection of outliers, only the results of
the outliers detection for MacroPCA and RadarTSR are shown for this case.

The scree plot analysis (Figure 6.27) led to the selection of two PCs (A = 2)
for the PCA model. Figure 6.28 shows the loadings obtained by MacroPCA
and RadarTSR, which are very similar.
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Figure 6.26: MRI breast dataset. The six frames contain the ROI with damaged pixels
coloured in pink, healthy pixels coloured in green, and the background colour in black.
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(a) MacroPCA scree plot with the eigenvalues. (b) RadarTSR scree plot with the eigenvalues.

Figure 6.27: MRI breast dataset. Scree plots with eigenvalues showing the number of
principal components suggested by MacroPCA (left) and by RadarTSR (right) for the MRI
breast dataset with 10% of MCAR missing entries.

The results in Figures 6.29 and 6.30 show once again that whereas MacroPCA
might be more sensitive in detecting rowwise outliers, RadarTSR is more pre-
cise and specific. Moreover, the right plot in Figure 6.29 colours rowwise out-
liers differently depending on the cluster label assigned by RadarTSR, showing
the pixels of the ROI belonging to the same cluster (coloured in red), whereas
pixels from other regions are labelled to cluster 2 (coloured in blue).
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Figure 6.28: MRI breast dataset. Loadings obtained by the MacroPCA (left) and by the
RadarTSR (right) algorithm. The loadings represent the first (black full line) and the second
(blue dashed line) components.

Figure 6.29: MRI breast dataset with 10% of MCAR missing data. Mask with the true
ROI marking the outlying pixels (left), mask with the pixels detected as rowwise outliers
by MacroPCA (centre), and image of the clusters assigned to the rowwise outliers detected
by RadarTSR (right). The pictures correspond to three column vectors of N = 23, 193
rows which have been reshaped to the original sizes of the images, with 151 × 432 pixels
represented in the vertical and horizontal axes, respectively.

This observation provides additional insight into the handling of rowwise out-
liers and highlights the ability of RadarTSR to strike a balance between detect-
ing false positives. Unlike MacroPCA, which does not offer this feature, the
differences in loadings and outlier distances observed in RadarTSR contribute
to a more comprehensive understanding of the presence and impact of rowwise
outliers.
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Figure 6.30: MRI breast dataset with 10% of MCAR missing data. Confusion matrix of
the detection of rowwise outliers (pixels within the Region Of Interest) by RadarTSR and
MacroPCA.

Figure 6.31 shows the distance from the model (left plots) and within the model
(right plots) for each pixel, calculated using the metrics implemented by each
algorithm. As can be seen, the SPE yielded by RadarTSR (upper left plot)
highlights specifically the ROI. In contrast, MacroPCA’s Orthogonal Distance
(OD) gives a higher intensity to pixels spread over all the healthy tissue.

This is aligned with the higher rate of false positives obtained by MacroPCA
(Figure 6.30). Besides, in terms of the distance within the model (right column
of plots), the same phenomenon is present. However, both techniques highlight
the contours of anatomical structures, indicating that pixels at the borders
might emit higher signals but still fit the multivariate pattern of the rest of
the healthy pixels.

Finally, Figure 6.32 shows the reconstruction error for each frame. As can be
seen, pixels from the ROI are highlighted in most of the frames, with RadarTSR
showing a higher precision to highlight pixels almost exclusively within the
ROI. This result shows how checking the reconstruction error can complement
the rowwise detection of RadarTSR, balancing the potential masking of row-
wise outliers.
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Figure 6.31: MRI breast dataset with 10% of MCAR missing data. Images showing the
distances to the PCA model (left) and within the PCA model (right) obtained by RadarTSR
(above) and MacroPCA (below) algorithms. For RadarTSR, the SPE and T 2 are used as
distances, whereas the orthogonal and score distances (OD and SD, respectively) are used
as their homologous metrics obtained by the MacroPCA model (see [48]).

Glass spectra data

Upon reviewing the scree plot, it was determined that a total of four principal
components (A = 4) should be included in the PCA model (Figure 6.33), which
was the same number of PCs selected by the authors for the analysis of the
glass dataset without missing data [48].

Figure 6.34 shows the residual maps simulating 40% of MCAR missing data.
The colours in these maps represent the average values of 5×5 cell blocks,
enhancing visualization. ICPCA and TSR residual maps were not informative
as their PCA models failed to account for outlier effects, resulting in outlying
values not being evident in the maps. Conversely, MacroPCA and RadarTSR
identified several observations (rows 143 to 180, 22 to 30, 53 to 63, and 74 to 76)
as having a significant distance from the model (indicated by the black colour
in the distance bar). Red cells along these rows indicate positive residuals,
suggesting higher observed concentrations for specific compounds than the
expected values from the reference PCA model.
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(a) MacroPCA error maps.

(b) RadarTSR error maps.

Figure 6.32: MRI breast dataset with 10% of MCAR missing data. Images with the
normalized reconstruction error yielded by MacroPCA (above) and RadarTSR (below).

Figure 6.35a depicts the confusion matrix illustrating the disagreement in row-
wise outlier detection between MacroPCA and RadarTSR. Despite some differ-
ences, both techniques showed substantial agreement, with MacroPCA identi-
fying only nine additional glass samples as rowwise outliers.

Figure 6.36 showcases the score and distance plots of cell-imputed glass samples
obtained through RadarTSR with the cluster tags assigned to detected rowwise
outliers. Non-outlying observations are denoted as black circles with a tag “0”.
Glass samples from group 1 (rows 143 to 180) are represented as red triangles,
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(a) MacroPCA scree plot with the eigenvalues. (b) RadarTSR scree plot with the eigenvalues.

Figure 6.33: Glass dataset with 40% of MCAR missing data. Scree plots with eigen-
values showing the number of principal components suggested by MacroPCA (left) and by
RadarTSR (right) for the MRI glass dataset with 40% of MCAR missing entries.

exhibiting bad leverage data points indicated by a high T 2 and also high SPE.
These samples were measured with a less efficient detector, suggesting they
may belong to a different population, consistent with the results obtained by
RadarTSR and MacroPCA.

Similarly, clusters 2 (rows 53 to 64 and 74 to 76) and 3 (rows 22 to 30) are
depicted as blue squares and green diamonds, respectively. The detection of
more than one cluster is consistent with previous studies of the dataset [48],
[113] demonstrating both the successful detection of outlying sets and the
prevention of their influence on the fitted PCA model by RadarTSR.

When the loadings obtained by the different methods are compared (Fig-
ure 6.37), there are noticeable differences between the methods. First, whereas
MacroPCA, ICPCA, and TSR show the same positive peak for the first loading
vector close to the 200th wavelength, RadarTSR does not.

Figure 6.38, which shows the loadings obtained by RadarTSR when the TSR
for PCA-MB is applied on clusters “1” and “2”, shows the peak in the 1st
loading vector of cluster “1” loadings (left plot).

This difference suggests that this cluster could have influenced the PCA mod-
els of the rest of the techniques. Besides, the first PC (black-solid line in
Figure 6.37) of MacroPCA and RadarTSR captures a negative weight for in-
termediate wavelengths, which is not captured by ICPCA nor by TSR. Finally,
the second PC of RadarTSR and MacroPCA (blue dashed line in Figure 6.37)
also captures a correlation pattern not found on ICPCA or TSR loadings.
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Figure 6.34: Glass dataset with 40% of MCAR missing data. Residual maps were obtained
by ICPCA (first), TSR (second), MacroPCA (third), and RadarTSR (fourth).
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(a) Confusion matrix for the Glass dataset. (b) Confusion matrix for the Glass DPOSS.

Figure 6.35: Confusion matrices of the detection of rowwise outliers by RadarTSR and
MacroPCA for the Glass and the DPOSS stars datasets.

Figure 6.36: Glass dataset with 40% of MCAR missing data. The score plot (left) and
distance plot (right) were obtained with RadarTSR. Dashed red lines are the UCLs at a 95%
confidence level. Solid red lines represent the thresholds used for outliers detection (cSPE

rw

and cT
2

rw, see Section 6.2.2).
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Figure 6.37: Glass dataset with 40% of MCAR missing data. Loading vectors of the first
(solid line) and second (dashed line) PCs fitted with each one of the methods.

Figure 6.38: Glass dataset with 40% of MCAR missing data. Loading vectors of the first
(solid line) and second (dashed line) PCs fitted for the two clusters detected by RadarTSR.
The third cluster presented too many missing values to fit the PCA model using the same
variables as the original model.

DPOSS stars data

The last real dataset included was the DPOSS stars dataset [48], [115]. Seven
variables were recorded at each colour band, resulting in 21 variables denoted
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by the variables’ names followed by the name of the colour band used for the
measurement (J, F, or N). Three variables measure light intensity (“MAper”,
“MTot”, and “MCore”), whereas the rest (“Area”, “IR2”, “csf”, and “Ellip”) report
the size and shape of the objects.

The scree plot of both methods (Figure 6.39) showed a stabilisation on the
eigenvalues decay for the 4th PC, and therefore we set A = 4 for both methods.
This was also the same number of PCs selected by the authors for the analysis
of the DPOSS stars dataset in [48].
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(a) MacroPCA scree plot with the eigenvalues. (b) RadarTSR scree plot with the eigenvalues.

Figure 6.39: DPOSS stars dataset. Scree plots with eigenvalues showing the number of
principal components suggested by MacroPCA (left) and by RadarTSR (right) for the MRI
DPOSS stars dataset.

The upper plots depicted in Figure 6.40 illustrate the score plots of Macro-PCA
and RadarTSR. In these plots, observations with the lowest and highest outlier
distances (OD) based on MacroPCA are represented by black and red dots,
respectively. Overall, the loading plots generated by both methods exhibit con-
sistent signs for the first principal component (PC). However, there are notable
disparities in the magnitudes of the loadings between the two techniques.

A previous report on this dataset emphasized the significance of variables
“MTot”, “MCore”, “Area”, and “IR2” in distinguishing between galaxies and
stars [115]. This finding aligns with the loadings captured by the first PC of
RadarTSR, indicating that objects with high positive values on this PC are
large objects emitting less intense light signals.

Conversely, observations with negative values on the first PC correspond to
dense objects with small sizes but emitting more intense light signals. In
contrast, the loadings obtained from MacroPCA analysis on the first principal
component (PC) indicate that the variable “Ellip” is the most influential one,
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Figure 6.40: DPOSS stars dataset. Scores and loadings were obtained by the MacroPCA
(left) and by the RdarTSR (right) algorithm. Black and red dots represent the observations
with the lowest and highest OD, respectively, according to MacroPCA. The loadings are
shown only of the first (black full line) and the second (blue dashed line) components, with
vertical red lines separating the three colour bands.

and it displays a positive correlation with the remaining variables associated
with the shape and size of objects. However, when examining the loadings
on the second PC, it becomes apparent that “Ellip” is positively correlated
with light intensity variables rather than size and shape variables, thereby
contradicting the correlation pattern observed in the loadings of the first PC.

Regarding the second PC of RadarTSR, the most relevant variables are “csf”
and “Ellip”, while the remaining variables’ loadings oscillate around zero. Addi-
tionally, “csf” presents differences across colour bands, with band J having the
most significant loadings, followed by band F, and finally, band N, whose vari-
ables are almost irrelevant. This colour-based separation of celestial objects
and the hierarchy of variable importance across colour bands are consistent
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with previous findings on the DPOSS dataset, which reported a high signal-
to-noise ratio for variables from the N colour band [115].

The residual map of RadarTSR is presented in the left plot of Figure 6.41. Sim-
ilarly to the residual map of MacroPCA (right plot), each row block represents
25 stars, with the top six rows corresponding to the 150 stars with the highest
OD according to MacroPCA. In general rowwise outliers typically demonstrate
elevated values (indicated by red residuals) of light intensity, size, and shape.
This observation implies that these celestial entities might correspond to giant
stars, aligning with conclusions drawn from prior investigations conducted by
[48].

Figure 6.41: DPOSS stars dataset. Residual maps for RadarTSR (left) and MacroPCA
show the groups of celestial objects with higher OD at the top of the map and the groups
with the lowest OD at the bottom.

The score plot on the left side of Figure 6.42 indicates that RadarTSR suggests
one cluster that groups most of the detected rowwise outliers. The loadings
presented in Figure 6.42 were obtained when applying TSR for PCA-MB to
all rows tagged as “1”. While “MAper”, “MTot”, and “MCore” exhibit negative
values for all colour bands, similar to Figure 16, “IR2” and “csf” are less relevant
compared to “Area” in these loadings. The variable “Area” represents the total
space covered by a celestial object, and “IR2” measures the intensity-weighted
second spatial moment of the pixels within an image, indicating the dispersion
of objects from their centre. Loadings for the second PC assign positive values
to intensity-related variables. Moreover, there is considerable homogeneity in
loading values across the three colour bands.
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Figure 6.42: DPOSS stars dataset. Score plot (left) showing the clusters of celestial objects
suggested by RadarTSR, with non-outlying observations as black circles, single rowwise
outliers as black triangles, and grouped rowwise outliers as ref triangles. The centre and
right plots show the scores and loadings of the PCA model fitted running TSR for PCA-MB
on the observations from cluster “1”. The loadings are shown only for the first (black full
line) and the second (blue dashed line) components, with vertical red lines separating the
three colour bands.

This correlation structure suggests that objects within cluster 1 are homoge-
neous light sources (“IR2” loadings close to zero) but vary in size and lumi-
nosity. Furthermore, observations in the left upper quadrant of the score plot
indicate small and very luminous objects. This result suggests that the clus-
tering stage of RadarTSR could potentially improve through the utilization
of more robust techniques, enhancing the discrimination of minority clusters
within the set of rowwise outliers.

6.6 Conclusions

The RadarTSR algorithm can handle cellwise outliers, rowwise outliers, and
missing data, including a hypothetical cluster of rowwise outliers. Simulations
showed that its performance was similar in terms of MSPE to MacroPCA’s,
the state-of-the-art method to deal with cellwise outliers, rowwise outliers, and
missing data. RadarTSR always obtained comparable results to MacroPCA in
the presence of outliers, even superior in some scenarios regarding PCA model
similarity. In the absence of outliers, RadarTSR performed more similarly to
least squares methods, making RadarTSR preferable in most scenarios. More-
over, even if the PCA model provided by RadarTSR is not the modelling tech-
nique of interest for a given problem, a good imputation of missing data will
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positively affect the outcomes obtained by other supervised or non-supervised
models fitted on the imputed dataset.

Simulations also showed an antagonistic performance of MacroPCA and Radar-
TSR: MacroPCA tends to over-detect rowwise outliers, and RadarTSR treats
mild rowwise outliers as rows with cellwise outliers, correcting and ultimately
masking them. The main consequence of MacroPCA’s low precision for row-
wise outliers is the loss of observations as part of the reference set. Moreover,
this could also be a limitation for high-precision tasks, as with the MRI breast
dataset, where anomalous pixels would be considered potential tumoral tissue.
On the other hand, the main consequence of the masking effect produced by
RadarTSR would be the opposite: to include such rowwise outlying observa-
tions as part of the reference set. Nevertheless, users could check the RadarTSR
residual maps to address this issue, assessing if outlying cells might correspond
to a rowwise contamination paradigm. An example of this can also be seen
for the MRI breast dataset, where the reconstruction errors showed higher
error values in magnitude for pixels within the ROI that RadarTSR could
have missed. Moreover, the rowwise outliers’ masking artefact of RadarTSR
is less likely as the number of columns (K) increases, i.e., for high-dimensional
datasets, which are the most frequent case in many scientific areas where au-
tomated data collection techniques are applied, such as chemometrics.

Besides, RadarTSR was the only technique including a further assessment
of the detected rowwise outliers by including a clustering step. This feature
was tested with the MRI breast dataset, the Glass spectra dataset, and the
DPOSS stars dataset, and the clusters detected by RadarTSR aligned with
the subpopulations either known a priori or described in previous works [48],
[113], [115].

Despite its strengths, the RadarTSR algorithm also has some limitations that
should be acknowledged, paving the way for further research and expansions
of the method. The first limitation derives from RadarTSR’s heuristic nature,
which limited the assessment of its general properties to an empirical evaluation
comparing its performance to other methods in this study. While this empirical
evaluation provides valuable insights, a more formal mathematical analysis of
RadarTSR’s properties could further enhance its understanding and contribute
to its theoretical foundations.

The second limitation concerns the clustering step in RadarTSR, which may
benefit from further refinement. In some cases, such as the long dataset with
grouped rowwise outliers and the DPOSS stars dataset, there is a possibility
that clusters could remain undetected or become mixed with larger sets. To
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address this limitation, incorporating more robust clustering techniques, such
as the K-medoids algorithm, known for its resilience to noise and outliers [117],
could enhance the clustering performance of RadarTSR.

The third limitation concerns the applicability of RadarTSR in some scenar-
ios. For instance, RadarTSR assumes ignorable mechanisms producing miss-
ing data and the presence of continuous variables. While these limitations
are shared by the other methods included in the comparison, they restrict
the applicability of RadarTSR to datasets where the missing data mechanism
meets the ignorable assumption, and adaptations would be necessary to han-
dle discrete and categorical data. Moreover, the presented work contemplated
so far using RadarTSR for PCA-MB. Hence, expanding RadarTSR to the
Model Exploitation (ME) scenario is a straightforward future line of research.
Nonetheless, this step deserves careful consideration, as it includes nontrivial
aspects such as recognizing new clusters of grouped outliers that might not
present during the MB stage.

The algorithm was programmed in Matlab. The code and the documentation
are available on GitHub. Further improvements to improve its accessibility
include programming the algorithm in open code languages like R or Python.
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6.A Appendix: Notation

This appendix contains further information about the notation used through-
out the chapter.

Table 6.3: Elements of the generic PCA model.

X original matrix
Z standardized matrix
µ̂ location estimator
σ̂ scale estimator
P loadings of X
T scores of X according to µ̂ and P
Θ covariance matrix of the latent variables
λ variances of the scores sorted decreasingly
E residual matrix
R standardized residual matrix
X̂ reconstruction of X using a PCA model
SPE Squared Prediction Error of an observation
T 2 Hotelling’s T 2 of an observation
UCL(SPE)α Upper Control Limit for the SPE assuming a type I risk of α
UCL(T 2)α Upper Control Limit for the Hotelling’s T 2 assuming a type I

risk of α

Table 6.4: Notation used for elements of the RadarTSR algorithm.

◦

X NA-imputed matrix with only missing entries of non-outlying
rows imputed.

•

X cell-imputed matrix with cellwise outliers imputed for non-
outlying rows and missing entries imputed for all rows, no mat-
ter the outlyingness.

X̃ cluster-imputed matrix with cellwise outliers imputed for non-
outlying rows and missing entries imputed for all rows, using
the PCA model corresponding to the cluster tag assigned to
each observation.

◦

M logical matrix indicating missing cells
z1−α/2 percentile of the normal distribution
ccw cut-off to detect cellwise outliers

•

M logical matrix indicating outlying cells
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pcw
n vector with the proportion of cellwise outliers of each row, ob-

tained from
•

M
cprerw cut-off to detect potential rowwise outliers in Step 2 based on

•

M
cp

cw

rw cut-off to detect rowwise outliers based on the proportion of
cellwise outliers of each row

cSPE
rw cut-off to detect moderate outliers
cT

2

rw cut-off to detect extreme outliers
m logical vector indicating outlying rows, based on

•

SPE,
•

T 2,
cSPE
rw and cT

2

rw

m(0) logical vector indicating outlying rows at the beginning of the
iterative reference model estimation, for the first iteration (s =
0), based on cprerw

m(s) logical vector indicating outlying rows at the end of iteration s

of the Step 3, based on
•

SPE(s),
•

T 2(s), cSPE(s)
rw and cT

2(s)
rw

N ′ number of observations not considered as rowwise outliers
cny

threshold on the minimum number of observations necessary
to be considered as a cluster

Cy number of clusters among rowwise outliers
{µ̂,P ,λ}(y) elements of the PCA model built using observations from clus-

ter y

{µ̂,P ,λ}(Ė) elements of the PCA model built on the residual matrix
•

E
N ′′ number of observations considered as rowwise outliers
A′′ number of PCs of the PCA model fitted on the residual matrix

of the detected rowwise outliers
T (Ė) matrix of scores obtained by projecting the residual matrix

•

E
on its PCA model

y vector with the cluster tag assigned to each observation
µ̂ vector with the cluster mean
C matrix with all mean vectors µ̂A′′ for each cluster

Table 6.5: Notation used for the comparative study.

Xclean clean matrix without missing data and outliers
Xmethod imputed matrix yielded by each method
Xclean clean matrix without missing data, outliers, and without outlying

rows from
◦

Xmethod, used to build the clean PCA model
Xmethod imputed matrix yielded by each method without outlying rows
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X̂clean reconstructed clean matrix by using a PCA model fitted on Xclean

X̂method reconstructed imputed matrix by using the PCA model fitted by
each method

P clean loading matrix obtained after fitting a PCA model on the matrix
Xclean

Pmethod loading matrix yielded by each method
Xmethod imputed matrix yielded by each method
•

R normalized residual matrix obtained as the difference between the
original matrix and the imputed matrix yielded by each method

dmodel distance metric computed as the scaled distance to the model for
each one of the techniques, using its distance (SPE for RadarTSR
and TSR and OD for MacroPCA and ICPCA) and scaling it by
the threshold for such distance computed by each algorithm
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6.B Appendix: Results for the time used for the simulated
datasets

This appendix contains the results for the time employed by each algorithm to
obtain the results of the simulated datasets shown in Section 6.5.

Figure 6.43: Missing data case results. The left plot shows the execution time in seconds
for the 50 repetitions of the simulations for the wide dataset and the right plot for the long
dataset. The x-axis of each plot denotes the MD percentage. The dotted, circles, dashed,
and solid lines denote the results of ICPCA, MacroPCA, TSR, and RadarTSR, respectively.
The shaded bars represent the 95% LSD confidence intervals of the metrics obtained by each
method.
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Figure 6.44: Missing data (20%) and cellwise outliers (20%) case results. The x-axis of
each plot denotes the outliers’ distance, γ. More details are in the caption of Figure 6.43.

Figure 6.45: Missing data (20%) with single SPE rowwise outliers (20%) in the upper row,
and with single SPE rowwise outliers (10%) and cellwise outliers (10%) in the lower row.
The x-axis of each plot denotes the outliers’ distance, γ. More details are in the caption of
Figure 6.43.
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Figure 6.46: Missing data (20%) with single T 2 rowwise outliers (20%) in the upper row,
and with single T 2 rowwise outliers (10%) and cellwise outliers (10%) in the lower row.
The x-axis of each plot denotes the outliers’ distance, γ. More details are in the caption of
Figure 6.43.
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Figure 6.47: Missing data (20%) with single SPE and T 2 rowwise outliers (20%) in the
upper row, and with single SPE and T 2 rowwise outliers (10%) and cellwise outliers (10%)
in the lower row. The x-axis of each plot denotes the outliers’ distance, γ. More details are
in the caption of Figure 6.43.
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Figure 6.48: Missing data (20%) with grouped rowwise outliers (20%) in the upper row,
and with single grouped rowwise outliers (10%) and cellwise outliers (10%) in the lower row.
The x-axis of each plot denotes the outliers’ distance, γ. More details are in the caption of
Figure 6.43.
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6.C Appendix: Assessment of the number of clusters for real
datasets

This appendix contains the intermediate outputs offered by the RadarTSR
algorithm and used to assess the number of clusters after running a PCA on
the residual matrix yielded by MRI breast, Glass and DPOSS stars datasets
from Section 6.5.2. In this section, the parameter K will refer to the number
of clusters (as in, K-means) but not to the dimensionality of the dataset. In
the rest of the chapter, the number of clusters is called C.

Figure 6.49: Distributions of the scores from the PCA on the residual matrix (left) and
within-clusters sums of squares for each number of clusters, K (right) for the MRI breast
dataset with 10% of simulated MCAR missing data.
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Figure 6.50: Distributions of the scores from the PCA on the residual matrix (left) and
within-clusters sums of squares for each number of clusters, K (right) for the Glass dataset
with 40% of simulated MCAR missing data.

Figure 6.51: Distributions of the scores from the PCA on the residual matrix (left) and
within-clusters sums of squares for each number of clusters, K (right) for the DPOSS stars
dataset.

6.D Appendix: Results simulating MAR missing data

This appendix includes the results obtained for both simulated data sets when
MAR missing data were simulated. The MAR pattern was simulated as ex-
plained in Section 6.3.1. In all the following figures, the first row of plots shows
the MSPE results; the second shows the weighted sum of cosines between load-
ings, and the third and fourth rows show the detection metrics for rowwise and
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cellwise outliers, respectively. The x-axis of each plot denotes the outliers’ dis-
tance γ. The first column shows the results for the wide dataset, and the
second row for the long dataset. The dotted, circles, dashed, and solid lines
denote the results of ICPCA, MacroPCA, TSR, and RadarTSR, respectively.
The shaded bars represent the 95% LSD confidence intervals of the metrics
obtained by each method.
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Figure 6.52: Missing data MAR (20%) and cellwise outliers (20%) case. More details are
in the introduction of the Appendix.
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Figure 6.53: Missing data MAR (20%) and single SPE rowwise outliers (20%) case. More
details are in the introduction of the Appendix.
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Figure 6.54: Missing data MAR (20%) and single T 2 rowwise outliers (20%) case. More
details are in the introduction of the Appendix.
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Figure 6.55: Missing data MAR (20%) and single SPE and T 2 rowwise outliers (20%)
case. More details are in the introduction of the Appendix.
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Figure 6.56: Missing data MAR (20%), single SPE rowwise outliers (10%) and cellwise
outliers (10%) case. More details are in the introduction of the Appendix.
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Figure 6.57: Missing data MAR (20%), single T 2 rowwise outliers (10%) and cellwise
outliers (10%) case. More details are in the introduction of the Appendix.
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Figure 6.58: Missing data MAR (20%), single SPE and T 2 rowwise outliers (10%) and
cellwise outliers (10%) case. More details are in the introduction of the Appendix.
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Figure 6.59: Missing data MAR (20%) and grouped rowwise outliers (20%) case. More
details are in the introduction of the Appendix.
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Figure 6.60: Missing data MAR (20%), grouped rowwise outliers (10%) and cellwise out-
liers (10%) case. More details are in the introduction of the Appendix.
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Chapter 7. Healthcare process understanding and improvement

7.1 Introduction

The application and interest of process improvement in hospital environments
have grown in the last years [119]–[122]. Strategies such as Lean [123], Six
Sigma (6S) [124] or their combination (Lean Six Sigma, L6S) [125], tradition-
ally used in industrial or manufacturing sectors, are being widely used in other
contexts, such as finance or healthcare.

There is a bunch of existing work that already shows how 6S and L6S concepts
can significantly improve process performance. In terms of hospital service,
improving performance can have multiple meanings: reducing prescription er-
rors [122], reducing the waste of time [119], [126], [127], increasing patient
satisfaction [128], etc. A hospital is a complex environment with many parallel
processes that affect the same issue. For instance, staff rotations, interdepen-
dencies between internal services, and specific patient profiles affect and define
the optimal workflow that should be applied to each case, and, therefore, data
should reflect this reality as accurately as possible.

Thus, to improve the care of these patients using statistical tools like the ones
included in the Six Sigma toolkit, it becomes mandatory to deal with increas-
ingly complex datasets. This issue becomes even more critical considering the
tendency towards personalized medical care, where the patient becomes the
focus of the caring process, which means that forthcoming process improve-
ment should account for information about patients and the hospital processes
involving them.

With the new paradigm of Medicine 4.0, it is undeniable that the Six Sigma
toolkit needs to be upgraded with machine learning (ML) tools and more
sophisticated multivariate statistical techniques, such as latent variable-based
models [129]. These tools can be beneficial for discovering patterns, exploring
the data, and obtaining accurate predictions. Moreover, when a process’s
understanding and optimization are pursued, it is also interesting to guarantee
causality using data-driven approaches.

This chapter includes a case study in which latent variable-based multivari-
ate statistical techniques, such as PLS, are used as a Six Sigma statistical
toolkit for healthcare process improvement. This work was carried out as a
6S project in an Outpatient Pharmaceutical Care Unit in the Department of
Pharmacy at Hospital Universitario Doctor Peset in Valencia (Spain). This
unit provides prescription drugs and pharmaceutical care services to outpa-
tients. The outcomes of the multivariate Six Sigma approach will be compared
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with the conclusions obtained by classical Six Sigma statistical tools, such as
the Analysis Of Variance (ANOVA).

7.2 Methods

This section briefly introduces the 6S methodology and then clarifies how the
PLS model is integrated into this framework. A description in detail of the
PLS model can be found in Section 3.4.1.

• Define: problem selection and benefit analysis.

• Measure: translation of the problem into a measurable form and mea-
surement of the current situation; refined definition of objectives.

• Analyze: identification of influence factors and causes that determine the
critical to quality characteristics (CQCs) behaviour.

• Improve: design and implementation of adjustments to the process to
improve the performance of the CQCs.

• Control: empirical verification of the project’s results and adjustment of
the process management and control system so that improvements are
sustainable.

To illustrate the inclusion of PLS as a tool for Six Sigma projects, we followed
a two-step procedure in this work:

1. To fit a PLS model that will point out interesting(new and suspected)
relationships between process inputs and outputs. The general overview
of the complex relationships between X's and Y 's provided by the PLS
weighting plot is a useful tool to drive the following steps in the Analyze
phase. This provides a route map of what is worth studying in more
depth.

2. To assess these potentially interesting relationships with traditional ex-
ploration tools.
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Figure 7.1: Timeline of the Six Sigma project, indicating the data recording periods and
implementation of changes.

7.3 Datasets

The following sections describe each one of the datasets acquired for this 6S
project. It is important to mention two data collection moments (Figure 7.1).
The first took place in 2018, as part of the Measure phase, and the second took
place in the same period of 2019, once the changes for the process improvement
had been implemented and the process had enough time to stabilize after its
new organization.

7.3.1 Daily agenda datasets (2018 and 2019)

This data showed an outlook of the daily activity in the Outpatient Pharma-
ceutical Care Unit: number of scheduled visits, number of recorded visits at
the end of the day, and number of missed visits. Each one of these metrics
was shown globally (accounting for all patients) and split by visit type: first,
successive, and dispensing visit. The difference between successive and dis-
pensing visits is that the former requires the attention of pharmaceutical staff,
given that they may involve changes in medication doses or prescriptions. In
contrast, dispensing could be performed both by pharmaceutical and nursery
staff.

7.3.2 Outpatient visits datasets (2018 and 2019)

This database was designed on purpose by the Six Sigma technical team. Each
day for two weeks, it recorded information about each outpatient visiting the
Outpatient Pharmaceutical Care Unit. This required the assistance of addi-
tional personnel for the data collection and a strong engagement of all the staff,
who responded very well to the demands of the technical team. The confec-
tion of a Fishbone diagram was used to determine potential causes affecting
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the waiting time. The included variables collected information about several
aspects of the visit:

• Information about the visit context: type of visit (type), day of visit (date
and weekday), and hour of visit (turn). This last variable was split into
three categorical variables: turn 1 (from 8:00 a.m. to 10:30 a.m.), turn
2 (from 10:30 a.m. to 12:30 p.m.), and turn 3 (from 12:30 p.m. to 2:30
p.m.).

• Information about the patient: assigned clinical service (service), the
hour of arrival to the desk (arrival), and the hour of start and end of the
pharmaceutical care consultation (enter, exit).

• Information about the treatment: if they were stored in the refrigerator
(refrigerator), how many units were prescribed (number), and the route
of administration (via).

• Information about the pharmacy unit staff attending the patient (profes-
sional) and the profile of the attending person (profile).

Two output variables (i.e., critical characteristics, CC) were calculated from
all these variables: waiting time and attention time. The waiting time was
computed as the minute difference between the entry and the arrival hours.
The attention time was calculated as the minute difference between the exit
and the entry hours.

7.4 Results

The project timeline went from July 2018 to September 2019 (Figure 7.1).
This section will follow the pathway defined by DMAIC steps, illustrating the
results and the project’s process.

7.4.1 Define Phase

This stage aims to determine the improvement project potentially leading to
reduced costs, increased customer satisfaction, etc. This implies a necessity of
defining a practical problem to be tackled. By studying the process and its
relation to the problem, an assessment of the costs and benefits of addressing
the project goal can be evaluated. This provides a first clue about the necessity
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of resources, staff involved in the project, and potential constraints. All these
initial aspects were portrayed in the Project Charter (Figure 7.2).

This Six Sigma project focused on outpatients’ timing (waiting and attention
times) during their visit to the hospital’s Department of Pharmacy. The reason
why this was the main focus was based on data about previous years. The last
outpatients’ satisfaction questionnaire, performed between November 2016 and
February 2017, showed that although the majority were globally very satisfied
with the care, half of them evaluated the waiting time as short. This reflected
an improvement opportunity based on the voice of the external customer, i.e.,
the outpatients. Besides, there was also an internal customer: the outpatient
pharmaceutical care unit staff (nurses and pharmacists) suffering from daily
work overload. Both voices aligned in the same direction: a consistent overflow
of patients and long waiting times.

Figure 7.3 confirms the voice of the internal customer. Data about the 2018
year’s (January – June) agenda showed an evident overload of patients. This
overload was calculated daily as the difference between attended and scheduled
outpatients for each day. Figure 7.3a shows this systematic overload, which
can be appreciated by the consistent position of data points above the diagonal
representing the equivalence between the planned patients on the agenda and
the recorded visits for each day. This is also appreciated in Figure 7.3b, where
the overload boxplots are above the zero reference (red dashed line) line for
every month analyzed.

However, the data recorded until 2018 did not register each of the attended
patients, losing the information about the timing per patient, which made it
very difficult to formally raise the patient complaints and redesign the unit’s
workflow. Moreover, a big part of the staff had other activities in the hospi-
tal pharmacy department, implying that changes to the organizational scheme
would be carried out only under solid evidence supporting the need for im-
provement since other adjacent unit processes could also be affected.

With the help of the pharmacist staff, a Suppliers, Inputs, Process, Outputs,
Customers (SIPOC) diagram was outlined (Figure 7.4).

As a result of the process diagram and considering the Voice of the Customer
(VOC), both internal and external, the project team designed and agreed upon
a data-collecting scheme. The project was led by a Six Sigma black belt with a
high profile in the hospital pharmacy organizational scheme, and the technical
team consisted of six Outpatient Pharmaceutical Care Unit staff members and
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Project Charter: Definition sheet Date:

Title of the project

Project leader BB: Process owner

Agents involved

Available resources

Starting date Expected ending date:

Initial valueGoals: Target valueMetrics:

Project constraints

Expected benefits for the clients

Expected economic results

Problem description

Team members

Reduction of the average waiting time for patients of the hospitalary pharmacy unit of external patients

July 2nd of 2018 October 5th of 2018

Mónica Climente

The number of attended patients is growing since 2013, which generates planning difficulties in the agenda of 
the unit, dealing everyday with a 50% of non-scheduled patients. This generates waiting times of almost one 
hour. Moreover, the stress generated by this overload seems to be affecting also to the attention time, causing 
differences on the attention procedure between staff members.

Minutes 24 20

Increased satisfaction from the external client perspective, thanks to the reduction of the waiting time.
Increased satisfaction of the internal client (hospital pharmacy unit staff), thanks to the reduction of the 
overload and the pressure in the work environment.

(Results not measured in ecomomic terms)
Process improvement in terms of eliminating non-quality from the attention service provided to patients. 
Process improvement increasing the efficiency of the service and reducing bottlenecks of the process.

Staff: hospital pharmacy unit personnel (two residents, two pharmaceuticals, one nurse and two auxiliary staff.

Material: laptop and software for the statistical analysis of the data. 

Ana Moya

Ángel Marcos 
Carlos Cortés

Marta Hermenegildo
Tamara Lidia Paredes

Irene Miccichè
Mercedes Riera

Alba González

Champion: Mónica Climente
Black Belt: Ana Moya
Work team Tamara L.P., Irene M., Mercedes R., Ángel M., Carlos C., Marta H., Alba G.

Reduction of the average waiting time 
between 8:30 and 14:30.
Reduction of the overload of visits between 
8:30 and 14:30.

Patients/day 28 14

July 2nd 2018

Figure 7.2: Project Charter of the Project.
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(a) Attended vs scheduled patients with the di-
agonal representing the equivalence between the
planned and the recorded visits for each day.

(b) Boxplot of daily overload during the data
recorded in 2018 (January to June), where the
red dashed line represents the zero reference.

Figure 7.3: Plots illustrating the systematic overload values during 2018 before starting
the project, appreciated by the consistent position of data points above the zero-overload
diagonal (a) and by the persistent position of the overload boxplots above the zero-overload
line (b).

Figure 7.4: SIPOC diagram of the Outpatient Pharmaceutical Care Unit workflow.
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two black belts with engineering and statistical backgrounds. The chief of the
hospital pharmacy department championed the Six Sigma project.

The initial description of the project was the following: “The number of at-
tended outpatients has been increasing since 2013, stressing out the scheduling
of the Outpatient Pharmaceutical Care Unit agenda, and over 50% of the pa-
tients who attended daily had not been scheduled for that day. This results in
waiting times of nearly an hour. Moreover, the stress of this systematic work
overload may be affecting the attention time, generating differences between
attending staff and, thus, an undesired variability on the caring process”.

7.4.2 Measure Phase

During this phase, the collection of the datasets described in Section 7.3 took
place. In particular, the assembly of the Outpatients’ visit data set (Sec-
tion 7.3.2) required the assistance of additional personnel for the data col-
lection and a strong engagement of all the staff, who responded very well to
the demands of the technical team. The confection of a Fishbone diagram
was used to determine potential causes affecting the waiting time. Two out-
put variables (i.e., critical characteristics, CC) were calculated from all these
variables: waiting time and attention time.

The waiting time was computed as the minute difference between the entry and
the arrival hours. The attention time was calculated as the minute difference
between the exit and the entry hours. The data were validated after checking
the existence of transcription errors (such as negative duration). Since the
pharmacy staff had notes and records about the visits, some mistakes could be
solved. Still, all those entries with misleading information that could not be
contrasted were not considered for further analysis.

7.4.3 Analyze Phase

In this stage, the goal was establishing factors affecting the CCs: waiting and
attention times. The reference values were an average waiting time of 24,17
minutes and an average attention time of 4,78 minutes. These values were
obtained from the data recorded in 2018. A descriptive summary of the initial
situation from 2018 can be found in Figure 7.5.

This figure summarizes the CCs (along with the overload of patients) at the
beginning of the Six Sigma project. Setting reference values is critical to quan-
titatively proving the usefulness and success of the improvement actions and
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(a) Descriptive summary of the overload in 2018.

(b) Descriptive summary of the waiting time in 2018.

(c) Descriptive summary of the attention time in 2018.

Figure 7.5: Descriptive statistics for CCs according to the data from 2018.192
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the Six Sigma project overall. Thus, reference values shown in Figure 7.5 will
be the base for the later comparison between the pre-Six Sigma project situ-
ation of the process (from 2018) and the post-Six Sigma situation (from data
recorded in 2019).

Regarding the waiting time, the analysis focused on checking for any pattern of
visits related to longer waiting times. Moreover, the study of the visit’s data set
in 2018 would enable precise quantification of the average waiting time, setting
a reference for the Six Sigma project. The attention time presented another
casuistic. Given the comments of patients arguing unfair differences in the
caring process, the goal was to establish if there was an undesired variability
in attention time for the same visit profile. This would reflect a difference in
the attention protocol followed by different staff members, which could impact
the quality of the caring process.

A PLS model was fitted to get this information, including all predictor variables
and CC . This analysis would let us identify the sources of variability of the
attention process affecting each CC. Weighting plots were used to interpret the
relationships between process variables and CCs found by the model.

The PLS analysis on the outpatient visits data set 2018 (N = 658, K = 13,
L = 2) pointed out some interesting facts. In the weighting plot (Figure 7.6),
the attention and waiting times (CCs) are represented by red squares along
two almost orthogonal directions of variability, showing a lack of relationship
between those two CCs. The directions of variability aligned with the CCs
(red dashed lines) give information on the degree of correlation between pre-
dictors (i.e., process variables) and each of the CCs. The closer to the extreme
of a predictor’s red dashed line, the more correlated it will be with the CC
associated with this direction of variability. This correlation will be positive if
the predictor is located on the same side of the CC and negative if it is on the
opposite side of the red dashed line.

This plot gives a clear picture of the latent structure of the process in the
hospital pharmacy unit, showing that the process affecting the attention time
is nearly independent of the process affecting the waiting time. The following
analyses will focus on each CC independently to ease the understanding of
both processes.

193



Chapter 7. Healthcare process understanding and improvement

Figure 7.6: Weighting plot highlighting the relationships of process variables to the waiting
time and the attention time. The orange-dotted contour circles process variables positively
correlated with waiting time, and negatively correlated predictors are contained within the
blue-dashed contour.

Waiting time

According to PLS results from Figure 7.6, it would be worth closely checking
the relationship between the turn, the type of visit, the oncological and haema-
tological specialities, and the resident profile concerning the waiting time. This
can be seen in the weighting plot (Figure 7.7), which shows that successive vis-
its, Oncology or Haematology patient visits, Turn 3 visits, and visits attended
by a Resident are related to longer waiting times. On the contrary, dispensing
visits and visits occurring in Turn 1 are associated with shorter waiting times.

This information is also displayed in Figure 7.8, where the PLS coefficients in-
dicate the relationship between predictors (X) and the response variables (Y ),
in this case, waiting time. This plot shows only statistically significant predic-
tors (whose 95% jackknife confidence intervals do not contain the zero value).
The interpretation of this plot is the following: process variables with posi-
tive and statistically significant BPLS coefficients are positively correlated to
waiting time, while process variables with negative and statistically significant
BPLS coefficients are negatively correlated to waiting time.
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Figure 7.7: Weighting plot highlighting the relationships of process variables to the waiting
time and the attention time. The orange-dotted contour circles process variables positively
correlated with waiting time, and negatively correlated predictors are contained within the
blue-dashed contour.

Figure 7.8: BPLS coefficients plotting the relationship between variables in X and the
waiting time.
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(a) Boxplots of waiting time for each type of visit
(dispensing, successive, and first visit) and at each turn
(T1, T2, and T3).

(b) Pie chart of the types of assigned hos-
pital service of successive visits during Turn
3.

Figure 7.9: Plots showing the relation between each Turn with the waiting time (a) and
with the assigned hospital service (b).

Figure 7.9a shows an increasing trend of the waiting time along with the visit
turns. This is particularly evident for successive visits. Besides, more than 80%
of successive visits during turn 3 were for patients from the oncology (52,8%)
or haematology (31,9%) service, as highlighted in Figure 7.9b.

The association between these process variables relied on oncological and haema-
tological visits attended mainly by a resident and only in Turn 3. Arriving at
complex associations like this can be tricky and time-consuming via univariate
descriptive charts and analyses. In contrast, this relationship between several
factors (onco/haema services, Turn 3, successive visits, and resident profile)
and the waiting time stands out from the PLS analysis (Figure 7.9).

As the PLS revealed, All this evidence pointed toward a bottleneck associated
with Turn 3 and Oncology/Haematology-associated patients. Moreover, in
an eyeshot, the weighting plot from the PLS analysis also showed that visits
scheduled at the first hour (Turn 1) or on Mondays seemed to be related to
shorter waiting times (Figure 7.9a).

To quantify the statistical significance of these effects through the classical
Six Sigma statistical toolkit, we run some ANOVA tests to doublecheck these
hypotheses. A univariate ANOVA test finally confirmed the statistically sig-
nificant effect of assigned hospital service on waiting time (P -value < 0.05).
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Figure 7.10: 95% confidence intervals for the mean waiting time (minutes) for each assigned
hospital service

A Fisher LSD test with a 95% confidence level for multiple comparisons (Ta-
ble 7.1) shows that Oncological and Haematological visit profiles had statis-
tically significant longer average waiting times than the rest of the hospital
services.

Attention time

The PLS weighting plot (Figure 7.11) and the BPLS coefficients plot (Fig-
ure 7.12) showed that the nursery staff profile was associated with the shortest
attention times, whereas pharmacists and resident profiles, were associated
with the longest attention times.

Similar to the waiting time analysis, a univariate doublecheck was carried out.
An ANOVA test confirmed the statistically significant relationship between
attention time and the professional profile of the attending staff. To make a
fair comparison, only those visits that all professional shapes could attend (and
hence, were comparable) were included.

As seen, nursery staff showed statistically significant shorter attention times
than the other professional profiles staff (Figure 7.13 and Table 7.2).
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Table 7.1: Fisher LSD intervals with a confidence level of 95% for the difference between
mean waiting time for each hospital service.

Service N Average Group

Onco. 51 66.88 A
Haem. 34 51.29 B
Dig. 32 25.13 C
Reu. 61 20.90 C
Neum. 31 19.87 C
Derma. 37 19.38 C
Gin. 16 19.38 C
Nefro. 98 18.61 C
Neuro. 36 18.17 C
Int.Med. 198 18.11 C
Other 26 17.73 C
Endo. 19 17.58 C
Pediat. 19 17.11 C
Cardio. 6 12.67 C

Figure 7.11: PLS weighting plot highlighting the relationship of process variables associated
with the attention time. The orange dotted contour circles process variables positively
correlated with the attention time, and negatively correlated predictors are contained within
the blue dashed contour.
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Figure 7.12: PLS coefficients for the relationship with variables in and the attention time.

Figure 7.13: 95% confidence intervals for the mean attention time for each professional
profile.

199



Chapter 7. Healthcare process understanding and improvement

Table 7.2: Fisher LSD intervals with a confidence level of 95% for the difference between
mean attention time assigned to the different staff profiles.

Staff N Average Group

Staff pharmacist 128 5.80 A
Nursery 344 3.90 B
Resident pharmacist 58 5.81 A

These differences were, on average, two minutes. Considering that the average
attention time of these visits was between 4-5 minutes, these differences repre-
sented between 40% and 50% of the visit duration. This variability could imply
substantial differences in the attention procedure protocol. On the one hand, if
shorter times do not mean worse attention, then time is being wasted by more
prolonged attention procedures. On the other hand, shorter times could imply
less careful attention, which could become critical in health matters such as
this one.

7.4.4 Improve Phase

After the analysis performed on waiting and attention times, the technical
team of the Six Sigma project had a meeting to discuss the reported results
and possible improvement actions.

Regarding the longer waiting times for the Onco-Haema visits, all the team
agreed that attending all these visits on a specific Onco-Haema turn had be-
come a bottleneck. This was initially done because these patients may change
their medication more frequently, requiring supervision and approval from a
pharmacist specializing in oncological and haematological treatments. How-
ever, the distribution of the attention time for Onco-Haema visits (Figure 7.14)
showed that most of them had a duration below 5 minutes. This meant that
most of these visits did not need a comprehensive re-evaluation of the medica-
tion and were just for drug dispensing.

To alleviate this bottleneck, it was proposed that those patients whose on-
cologist had not changed the medication did not need a specific visit. Thus,
pharmacists could attend them all morning, not only during turn 3.

Another improvement to reduce the waiting time was to add a specific hour
for outpatient scheduling. The usual procedure involved only a day of the
schedule. However, Turn 1 in the morning showed little waiting times (see
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Figure 7.14: Histogram of the attention time for oncological and haematological visits.

Figure 7.9a), which indicated that scheduling more patients at this time would
improve the patient flow, preventing the accumulation on Turn 3.

Finally, there were some improvements regarding the variability in the atten-
tion time. Attention protocols were designed and implemented to standardize
the time and depth of the attention for each visit. All the proposed changes
were implemented in November 2018. In May 2019, the Outpatient Pharma-
ceutical Care Unit had implemented regularly all the proposed changes.

7.4.5 Control Phase

Once the improvements were shown to work, the activity tracking was kept on.
An intensive data collection for another two weeks was done to evaluate the
effects of the changes in the unit workflow. This data collection yielded two new
datasets: the daily agenda data for 2019 (N = 124, K = 5) and the outpatient
visits data for 2019 (N = 1043, K = 13, L = 2). The comparison between
the initial and final output values can be seen in Figures 7.15 , 7.16b and 7.17,
and Tables 7.3 , 7.4 and 7.5.

As can be seen in Figure 7.15a and in Figure 7.16a 5, the overload of patients
changes from its historical values (January – October 2018), gradually decaying
over November 2018 to March 2019, and finally stabilizing around April 2019.
These differences are stated monthly (Figure 7.16b).

Table 7.3 shows the LSD interval that confirmed these differences to be sta-
tistically significant (p-value<0.05): in 2019, there were, on average, nearly 20
patients less daily overload than in 2018.
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(a) LSD intervals for the differences in the overload on mornings.

(b) LSD intervals for the differences in the waiting time for oncological and haematological patients.

(c) LSD intervals for the differences in the attention time for the three staff profiles.

Figure 7.15: 95% confidence intervals comparing the situation before (2018) and after
(2019) the changes in the Outpatients Pharmaceutical Care Unit.
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(a) Time series of the overload from
January 2018 to September 2019.

(b) Boxplots of the overload over the comparable months
(April to September) of 2018 and 2019.

Figure 7.16: Plots showcasing the temporal evolution of the patients’ overload, comparing
the situation before the L6S project and after it.

Table 7.3: Fisher LSD interval for the difference between mean outpatients’ overload of
2019 and 2018.

Metric LSD intervals at 95% for the difference 2019 – 2018 (patients/day)

Overload [−21, 38; −15, 23]
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Figure 7.17: Confidence Intervals for the waiting of 2018 and 2019.

Table 7.4: Fisher LSD intervals for the differences between mean waiting times of 2019 and
2018 for oncological and haematological outpatients and all other medical specialities.

Service LSD intervals at 95% for the difference 2019 – 2018 (min./patient)

Onco. [−56.45; 29.85]
Haema. [−39.55; 17.78]
Others. [−1.71; 1.09]

Regarding the waiting time, there was a significant reduction in the overall
waiting time, between 3 and 7 minutes per patient. This meant a reduction of
the mean waiting time from 24 minutes per patient to 19 minutes (Figure 7.17),
achieving the project goal (with one minute more of reduction). This differ-
ence was even more noticeable for the waiting time for the Oncological and
Haematological patients (Figure 7.15b).

Table 7.4 shows the 95% LSD confidence intervals for the difference between
average waiting times for these two services, where a statistically significant
reduction can be appreciated. Moreover, there was no statistically significant
increase in the waiting time for all other medical specialities (95% LSD inter-
val contains the zero value). This result provided a solid improvement and
achievement of the 6S project.

Finally, Figure 7.15 (c) shows that differences between attention times were also
reduced. Table 7.5 shows two interesting things. First, the biggest time gap
between attention times is now 1.2 minutes/patient, which was a reduction of
52% concerning the previous maximal difference (2.5 min/patient, Table 7.5 3).

204



7.4 Results

Table 7.5: Fisher LSD intervals for the differences between mean attention times of 2019
for different professional profiles.

Profiles LSD intervals at 95% for differences between staff profiles
(min./patient)

Nurs – Staff phar. [−0.42; 0.27]
Res. Phar. – Staff phar. [−1.21; −0.26]
Res. Phar. – Nurs. [−1.09; −0.24]

Table 7.6: Summary of the improvement goals, the implemented changes on the workflow
of the hospital pharmacy unit, and the results obtained after the implementation.

Improvement goal Implemented change Outcome

To reduce overload Schedule all patients with day
and hour

Reduction of average overload
between 15 and 21 patients/-
day

To reduce the waiting time of
turn 3

Non-specific oncological
and hematological visits are
moved to turns 1 and 2

Reduction of waiting time be-
tween 3 and 7 min./patient

To reduce differences in atten-
tion times for Scheduled Dis-
pensing visits

Standard caring protocols Reduction from 2.5 min. of
difference in 2018 to 1.2 min.
in 2019.

Secondly, differences are presented for a different professional profile (resident)
after the protocol update.

This outcome can be used as evidence for future updates of the attention
protocol, focusing now on reducing the variability of the attention time due to
the different performances of professional profiles.

Table 7.6 summarizes the goals, the implemented changes, and the outcomes
obtained for each one of the improvement goals.

After controlling the improvements, the collection of the agenda database was
kept on, registering all the daily information about outpatient schedules. This
database provides a continuous flow of data analyzed by the Outpatient Phar-
maceutical Care Unit staff and the Department of Pharmacy.

The success of this project also meant the configuration of a solid, continu-
ous improvement technical team in the Outpatient Pharmaceutical Care Unit,
which is responsible for future updates and changes in response to the results
of this project and to further data.
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7.5 Conclusions

In this work, PLS has been incorporated into the Six Sigma toolbox to explore
and analyze the data set from a Six Sigma project in a university hospital’s
Outpatient Pharmaceutical Care Unit in the Department of Pharmacy. In con-
trast to univariate techniques, PLS shows in a single shot an overall picture of
how input and output variables of the caring process are correlated, providing
a clear interpretation of the results that becomes crucial for process under-
standing and implementing actions for improvement. Moreover, PLS findings
efficiently guide the confirming process using classical Six Sigma tools such as
ANOVA, simplifying the number of statistical tests needed, if needed.

Thus, the classical Six Sigma DMAIC scheme can be upgraded for a more
effective and time-saving methodology able to work with increasingly com-
plex databases by including latent variable-based techniques, such as PLS, in
the future to the next generation of process improvement methodology in 4.0
environments: the Multivariate Six Sigma.
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Chapter 8

Biomarkers extraction for
chronic fatigue syndrome

Part of the content of this chapter has been included in:

[130] González-Cebrián, A. et al., Diagnosis of Myalgic Encephalomyeli-
tis/Chronic Fatigue Syndrome With Partial Least Squares Discriminant
Analysis: Relevance of Blood Extracellular Vesicles, Front. Med., 9,
(2022), https://doi.org/10.3389/FMED.2022.842991.
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Chapter 8. Biomarkers extraction for chronic fatigue syndrome

8.1 Introduction

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a highly
debilitating disease characterized by unexplained profound fatigue lasting over
six months (ICD-10 code R53.82 or G93.3 if post-viral) [131], which is exac-
erbated by physical, mental or emotional activity, a process known as post-
exertional malaise (PEM); lack of restoring sleep, dysautonomia, and frequent
additional comorbidities [132].

Despite recent intense biomarker research, ME/CFS diagnosis relies on clinical
symptom assessment after excluding potential underlying health problems that
could relate to patient symptoms [133]–[135]. Previous studies explored the
potential of genome-wide screenings of microRNAs contained in Peripheral
Blood Mononuclear Cells (PBMCs) and Extracellular Vesicles (EVs) collected
from blood samples [136]–[139]. However, no miRNA was widely validated
as a biomarker of ME/CFS, and all identified so far appear to have limited
diagnosis value, individually or when combined.

One potential limitation of these studies could be related to the applied sta-
tistical methodology. The use of rudimentary statistical methods such as two
sample tests (i.e., t-test or Wilcoxon-Mann Whitney test), followed by multiple
comparison corrections (i.e., Bonferroni or False Discovery Rate, [140]) for the
analysis of −omic data present several drawbacks. These include low statistical
power, lack of interpretability of results, and the omission of complex relation-
ships among variables, which could, in principle, be addressed using statistical
models such as linear or generalized linear models. However, these methods
also suffer from other problems when dealing with −omic data, such as a large
number of variables and low sample size, which produces overfitting, and a high
correlation among variables, which produces multicollinearity. Those limita-
tions have motivated the development of numerous novel statistical techniques
during the last decades [141].

Prediction methods such as Partial Least Squares (PLS) [61] is a technique
especially suitable for the analysis of −omic data due to its ability to deal
with more variables than observations, and by its good model interpretation
capacity [142]. Section 3.4.1 from Chapter 3 provides more information on
PLS. PLS was conceived as an alternative to classical regression, modelling
the latent space of predictors and responses (X and Y subspaces, respectively)
and finding the subspace that maximizes the covariance between both latent
subspaces. Barker and Rayens proposed PLS-DA (Discriminant Analysis) as
a variant of PLS for binary responses [62].
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This chapter used PLS-DA to classify individuals in the healthy control or
case group and determine which variables hold the best discriminant power
between these two classes of participants. This study was the first to provide a
PLS-DA model for accurately diagnosing severe ME/CFS based on a discreet
combination of variables. In addition, it was also the first to use Raman
fingerprints of EVs to enhance the ability to discriminate severely affected
ME/CFS patients from healthy controls.

8.2 Methods

The study included three PLS-DA models:

1. The first one was a multiblock PLS-DA [143] model (Section 8.4.1), ap-
plied to over 800 variables obtained from 15 severe ME/CFS female cases
and 15 matched healthy controls from the ME/CFS UK monographic
biobank. Data included subject phenotyping with validated instruments,
complete blood analytics, miRNA profiles from peripheral blood mononu-
clear cells (PBMCs) and from plasma-isolated extracellular vesicles (EVs),
plus EV-associated features, as previously described [137]. The results
showed that a combination of 32 variables, including several EV features,
best discriminates severe ME/CFS cases from healthy subjects. Raman
spectroscopic data further supported the value of EV features for the
assessment of ME/CFS.

2. The second PLS-DA model (Section 8.4.2) focused on detecting discrim-
inant regions of the Raman spectra. These results were compared with
classification based on Raman spectra using three other binary classifi-
cation techniques: an adaptation of linear discriminant analysis (LDA)
[144] to deal with more variables than observations, random forest (RF)
[66] and support vector machines (SVM) [145].

3. Finally, a multiblock approach was used again for the third PLS-DA
model (Section 8.4.3), which included the previously mentioned set of
32 variables from the first PLS-DA and the relevant regions of the dis-
criminatory spectra from the second PLS-DA. This approach aimed to
determine if the good performance of the first PLS-DA model could be
maintained by integrating relevant Raman spectra information and re-
ducing the number of required miRNAs from PBMCs.
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These PLS-DA models had two goals: obtaining an accurate classifier usable
with new individuals and interpreting the discriminant features. Given the
small sample size of the database, we followed a two-step procedure:

1. First, we used all observations (i.e., participants) to fit a PLS-DA model,
obtaining a set of statistically significant discriminant predictors. This
way, most observations could be used to fit the PLS-DA model, reducing
the uncertainty in estimating the model’s parameters, which is a critical
aspect of the interpretation goal.

2. Secondly, the dataset was split into calibration and validation subsets.
The PLS-DA model was fitted using the relevant predictors of observa-
tions from the calibration subset, and the model was then used to predict
new observations from the validation set. Eight randomly selected indi-
viduals were included in the validation subset (four ME/CFS cases and
four controls).

It is important to mention that each dataset used different data preprocessing
schemes, calibration, and validation schemes.

A multiblock approach with block scaling and variable autoscaling was ap-
plied for the first PLS-DA model. Each block contained a different group of
variables with similar features. Five blocks were established: (i) Demographic
Variables, (ii) Analytic Variables, (iii) PBMCs miRNA expression levels, (iv)
EVs miRNA expression levels, and (v) EVs characteristics. The third PLS-DA
model (multiblock) included an additional block with relevant Raman profile
features.

For the Raman spectra PLS-DA model, the goal was to determine if an accurate
diagnostic tool could be developed solely based on Raman spectra differences.
It was crucial to compare all classifiers not only in terms of classification per-
formance but also in terms of model stability. For this reason, the chosen
setup consisted of a three-fold cross-validation scheme. Each fold contained
1/3 of the data, i.e., each containing ten observations (five of each class). In
each round, two folds were used to fit the model, and the other fold was used
as an external validation set. This way, all observations were used to fit and
validate the model, studying the stability of its performance. In this model,
the preprocessing consisted of variable centring.

Once a PLS-DA model is fitted, it is pretty common to follow an iterative depu-
ration procedure variable-wise and observation-wise until a PLS-DA model
without outliers and relying only on relevant predictors is obtained. On the
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one hand, outlying observations were studied in terms of the Squared Predic-
tion Error (SPE) and Hotelling T 2 metrics (Chapter 3, Section 3.4.1).

On the one hand, it is quite common to find that some predictors are not rele-
vant, and if so, removing irrelevant predictors can reduce the uncertainty of the
model’s estimates, as the number of parameters to be estimated is decreased.
This can be especially helpful for “fat” case studies with N << K, as this one.
The variable-wise depuration in PLS models is carried out by assessing the b
and V IP coefficients. When the confidence interval of a b coefficient contains
a zero value or the confidence interval of a V IP coefficient is below one, that
predictor might be considered not statistically significant, being removed and
refitting the PLS-DA model. For the parameters and outcomes of the PLS-
DA model, statistical significance was assessed by jackknife intervals at a 95%
confidence level. These intervals are calculated in a cross-validation scheme
implemented by the Aspen ProMV© software used to obtain the PLS-DA
model.

The performance of the depurated PLS-DA models was evaluated by the R2

coefficient (goodness of fit) and the Q2 coefficient (goodness of prediction).
Permutation tests were used to assess the statistical significance of the model
using the SIMCA© software. The Receiver Operating Characteristic (ROC)
curve was also obtained to evaluate the model’s classification performance. For
each ROC curve, the AUC (Area Under the Curve) was calculated [146].

Finally, to confirm and visualize the discriminant properties of the selected
variables (i.e., those showing statistical significance in the PLS-DA), a bivariate
two-sample t-test was applied a posteriori to each potential biomarker included
in the final multiblock PLS-DA model.

8.3 Datasets

Ethical approval of the study was granted by the Public Health Research Ethics
Committee DGSP-CSISP, Valencia (Spain), (study number UCV_201701) and
by the UCL Biobank Ethical Review Committee-Royal Free London NHS
Foundation Trust (B-ERC-RF), (study number EC2017.01) before the UK
ME Biobank released the samples.

Patient recruitment and clinical assessment for the monographic UK ME Biobank
was mainly performed through the UK National Health Service (NHS) primary
and secondary health care services [137]. Compliance with the Canadian Con-
sensus [134], CDC–1994 [133] and Institute of Medicine (IOM, 2015) criteria
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were ensured for patient recruitment [147], [148]. Clinical diagnosis was com-
plemented with score differences in the SF-36 questionnaire ([149]) and the
GHQ (General Health Questionnaire) ([150]), the last also assessed by a Likert
scale [137].

Participants were excluded if: (i) had taken antiviral medication or drugs
known to alter immune function in the preceding three months; (ii) had any
vaccinations in the preceding three months; (iii) had a history of acute and
chronic infectious diseases such as hepatitis B and C, tuberculosis, HIV (but
not herpes virus or other retrovirus infection); (iv) had another chronic disease
such as cancer, coronary heart disease, or uncontrolled diabetes; (v) had a
severe mood disorder; (vi) had been pregnant or breastfeeding in the preceding
12 months; or (vii) were morbidly obese (BMI≥ 40). Relevant guidelines and
regulations are performed on all methods. All subjects signed informed consent
before samples could be included in the corresponding sample collection.

The final participants were women with an average age of 46.8 (age range 38
- 53) for the disease cohort and 45.2 (age range 18 - 52) years for the healthy-
matched control group. Median ages were 48 and 47 for the ME/CFS and
healthy control groups, respectively. The average time from disease onset was
17.5 (range 1.5 - 30.9) years, with a median of 18.4 years. Health survey SF-36
and General Health Questionnaire (GHQ) scores, including Likert scale for the
GHQ, scores separated ME/CFS and HC groups (p-value<0.05) [137].

For all these patients, the miRNAs variables corresponded to Nanostring data
generated by Almenar-Pérez et al. [136], available from the NCBI Gene Ex-
pression Omnibus (GEO) database (Accession Number GSE141770) and the
Supplementary information of the cited article.

The samples for the Raman analysis consisted of EV aliquots from the cited
study isolated from 0.5 ml of platelet-poor plasma from 15 severely ill ME/CFS
females and 15 age-population-matched healthy females, obtained from dipotas-
sium EDTA blood-collection tubes (Becton Dickinson, Franklin Lakes, NJ,
USA) by UK ME Biobank professionals. Tubes were centrifuged at 10, 000xg
for 10 mins, with Total Exosome Isolation Reagent (TEIR) (Invitrogen by Life
Technologies, Cat. 4484450), and the isolated EVs were characterized following
MISEV (Minimal information for studies of extracellular vesicles) [136], [151].

After diluting the isolated EVs to a concentration of 5×108 EVs/ml in distilled
water, 1.5 µL of the suspension was deposited on aluminum Raman slides
and exposed to room temperature until the sample was dehydrated. Spectra
were acquired using an HR Evolution confocal Raman microscope (Horiba
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Jobin-Yvon, UK, Ltd) with a 532 nm laser. Laser power was 4.5 mW, and
a filter of 25%. The acquisition time per spectrum was 3 s at a resolution
of 4 µm. All spectra were preprocessed by cosmic ray correction, polyline
baseline correction, and area normalization using the entire spectral region,
using LabSpec 6 (Horiba Scientific, France).

The complete set of data included 34 blood analyte variables, 775 miRNAs
expressed above threshold levels (136 in PBMCs and 639 in EVs), EV concen-
tration, size, and z-potential of vesicles prepared with and without proteinase
K treatments for a total of six EV-associated measures, together with two de-
mographic variables. It also included fifteen variables obtained from the SF-36
questionnaire [149] and the GHQ questionnaire [150], the last assessed by a
Likert scale (Likert, 1932). Table 8.2 contains a legend of each variable name
in the upcoming figures and explains its meaning.

Four classification models were trained with a three-fold cross-validation setup
to classify a spectrum as either severe ME/CFS or HC using an adaptation
of linear discriminant analysis (LDA) [144] to deal with more variables than
observations, random forest (RF) [66], a support vector machine (SVM) [145]
and PLS-DA [62]. The classifier learning app in MATLAB© was used to op-
timize model hyperparameters for the LDA, RF, and SVM models. The AUC
was calculated for each model, allowing the comparison of their classification
performance.

Analysis of predicted and validated miRNA-mRNA interactions was performed
with the freely available software MiRTargetLink 2.0© (https://www.ccb.uni-
saarland.de/mirtargetlink2) [152]. Gene ontology (GO) enrichment analysis
was performed using the miRNA tool incorporated into MiRTargetLink 2.0©,
targets were retrieved, sorted by adjusted p-value, and presented in table for-
mat. Selected networks of mRNAs targeted by at least two miRNAs were
drawn using Adobe Illustrator© software.

8.4 Results

Several ME/CFS PLSA-DA models were obtained and assessed using the data
obtained from the 30 participants. However, it is important to mention that
variables obtained from questionnaires were excluded in all models reported
throughout this section since a diagnostic based solely on objective measure-
ments was pursued.
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Figure 8.1: Squared Prediction Error (SPE) for the observations (i.e., patients) with the
initial PLS (Partial Least Squares)-DA (Differential Analysis) multiblock model. Black tri-
angles are healthy controls, whereas orange triangles are ME/CFS patients. The observation
with ID 13041 is an example of an outlier over the SPE control limit (red lines).

8.4.1 PLS-DA model to classify ME/CFS identifies EV features
as potential disease biomarkers

Given the small sample size of the cohort, this first PLS-DA modelling step
focused on finding the most statistically significant biomarkers for identifying
severe ME/CFS subjects. All observations (i.e., participants) were used to fit
the model to reduce the uncertainty in estimating the model parameters as
much as possible.

ME/FCS modelling with PLS-DA

The initial model was fitted with three latent variables (obtained by cross-
validation) with a cumulative value of 96% for the R2 coefficient (goodness of
fit) and 68% for the Q2 coefficient (goodness of prediction). After obtaining
the PLS-DA model, we checked for potential outliers, removing subjects with
an SPE (i.e., Euclidean distance to the model) surpassing the control limit (an
example of an outlier can be seen in Figure 8.1).

The initial PLS-DA model also presented a huge number of predictors hav-
ing a V IP with a confidence interval clearly below 1 (Figure 8.2a) and non-
statistically significant b coefficients (Figure 8.2b). Thus, after performing an
iterative variable selection, as described in Methods.

This depurated PLS-DA model with 32 variables (Figures 8.3a and 8.3b) had
similar cumulative R2 and Q2 values (98.71% and 96.31%, respectively), and
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(a) Set of BPLS coefficients.

(b) Set of V IP PLS coefficients.

Figure 8.2: PLS-DA multiblock model based on all variables measured from 15 ME/CFS
patients and 15 HCs.

the optimal number of components based on cross-validation was three (as the
initial model). This was based on the final model with the most discriminant
variables obtained a set of N = 24 observations, having 12 of each class.

The permutation test (Figure 8.4) showed that the R2 and Q2 values of the
obtained PLS-DA model (points belonging to the 100% correlation between
original y and permuted y) are greater than any of those belonging to the
permuted datasets. Thus, the statistical significance of the 98.71% and 96.31%
values for the R2 and Q2, respectively, is accepted, rejecting the hypothesis of
obtaining these values by chance (with p-value < 0.05).
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(a) Set of jackknife b coefficients for each variable and the class “Healthy Control” with its 95%
jackknife confidence interval, obtained with the full data set. Each variable block is represented by
one colour (demographic variables in blue, analytic variables in orange, PBMCs miRNAs variables
in green, EVs miRNAs variables in purple, and EVs’ characterization in pink).

(b) V IP coefficients of the predictor variables for the PLS-DA model with all the Set of predictors.
The colour code is the same as in the b coefficients figure.

Figure 8.3: Partial Least Squares (PLS)-Discriminant Analysis (DA) multiblock model
based on 32 variables measured from 12 ME/CFS patients and 12 HCs.
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Figure 8.4: Permutation test for the variable filtered PLS-DA model. The values of the
model coefficients are expressed in the vertical axis, whereas in abscissa, the correlation
between the real response vector and the different permuted versions is expressed.

Additionally, the stability and reliability of the final PLS-DA model in terms
of its prediction performance can be visualized both in the scores scatterplot
(Figure 8.5a) and in the observed vs prediction plot (Figure 8.6a).

The score scatterplot (Figure 8.5a), showing a clear separation between groups,
is directly related to the weighting plot (Figure 8.5b), which shows the cor-
relation structure between the original and the latent variables. Thus, the
probability of being a severe ME/CFS individual (orange triangle in the score
scatterplot) is positively correlated with the variables at the same side (left)
of the weighting plot, which are the same variables with a positive b coefficient
for the CFS class. This means those variables tend to have greater CFS values
than healthy individuals.

Analogously, the set of variables placed at the opposite semi-plane (right part)
of the weighting plot (with negative b coefficients for the ME/CFS class) neg-
atively correlates to the probability of belonging to the CFS class. This means
these variables tend to have lower values in ME/CFS than in healthy individu-
als. Finally, variables near the origin (0,0) point are those with coefficients not
statistically different from zero (i.e., no statistical differences in both groups of
participants).

Finally, the observed vs. prediction results for the participants showed a class
prediction with 95% confidence intervals (magenta lines) using just three com-
ponents, allowing all 12 patient observations to be correctly classified in the
ME/CFS group and all 12 observations from healthy subjects in the HC group
(Figure 8.6a). The ROC curve of the model shows a perfect classification of
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(a) Score plot. The colour code of observation
groups is the same as in Figure 8.1.

(b) Weighting plot. The colour code of variable
blocks is the same as in Figure 8.3.

Figure 8.5: Partial Least Squares (PLS)-Discriminant Analysis (DA) multiblock model
based on 32 variables measured from 12 ME/CFS patients and 12 HCs. The axis corresponds
to the 1st and 2nd components (horizontal and vertical, respectively).

the samples (Figure 8.6b) since the AUC for both classes reaches a value of 1.
This means that the model has excellent sensitivity and specificity (equal to 1),
i.e., it detects all patients and differentiates all controls as healthy individuals.

Classification performance of the PLS-DA model with calibration and
validation set

The second modelling approach focused on evaluating the potential of our PLS-
DA model as a tool to correctly assign new observations to ME/CFS and HC
groups. As explained in the Methods section, the database was partitioned
into training and validation subsets for this second PLS-DA model.

The trained model with three components (the same number as the previous
model with all the observations) reaches cumulative values of 99.32% for the
goodness of fitting coefficient (R2) and 88.52% for the goodness of prediction
coefficient (Q2).

The b coefficients obtained are almost of the same order, according to their
importance, but with wider confidence intervals (Figure 8.7a and 8.7b). This
is caused by removing the validation samples from the training set, decreasing
the sample size, and increasing model uncertainty.

Once the model is fitted, the observations of the validation set are projected
onto the latent subspace, obtaining their corresponding scores and predictions
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(a) Observed vs. Predicted values (with 95%
confidence intervals as magenta lines) for partic-
ipants using three components. Figure 8.1 shows
the group colour code, and RMSEE stands for
Root Mean Square Error of Estimation.

(b) ROC curve for the classification of partic-
ipants. The red cross locates the optimal per-
formance point (maximum specificity and sensi-
tivity) using the classification threshold between
0.0869 and 0.8732.

Figure 8.6: Partial Least Squares (PLS)-Discriminant Analysis (DA) multiblock model
based on 32 variables measured from 12 ME/CFS patients and 12 HCs

(Figure 8.8a and 8.8b). These results support the validity of the model devel-
oped in 3.1.1. for the diagnosis of severe ME/CFS patients.

The ROC curve for the validation samples (Figure 8.8c) shows perfect discrim-
ination (AUC = 1) when the PLS-DA model is used to classify new individuals
as healthy or those affected by severe ME/CFS. This means that the model
maintains the perfect detection of ME/CFS patients (perfect sensitivity) while
keeping the perfect discrimination of healthy controls (specificity = 1).

Intrigued by the fact that four out of the six physical associated parameters
of EVs (EV concentration, size and z-potential obtained with or without pro-
teinase K pretreatment), corresponding to the size and zeta potential of vesicles
(as described in [137]) were discriminating features selected by our initial PLS-
DA model (Figure 8.7), we decided to further explore the differential nature
of ME/CFS EVs by Raman spectroscopy analysis. This approach has proven
to differentiate EVs from various cell sources [153] and has been successfully
used to detect ME/CFS-specific changes in PBMCs [154].
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(a) ME/CFS class b jackknife coefficients for the X subspace using the calibration dataset. The
colour code corresponds to the block to which each variable belongs, being those analytical variables
(blue), PBMCs miRNAs (orange) and EVs characteristics (green). Jackknife confidence intervals
were calculated at a 95% confidence level.

(b) VIP coefficients with jackknife confidence intervals at 95% of confidence for the X subspace
using the calibration dataset. Data set legends can be consulted in Table 8.2. The colour code for
each variable block is the same as in the rest of the figures.

Figure 8.7: Partial Least Squares (PLS)-Discriminant Analysis (DA) multiblock model
based on 32 variables fitted using only the patients from the training dataset.
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(a) Score plot (1st and 2nd components) for the
validation observations. For more information,
see Figure 8.5a.

(b) Observed vs Prediction values for the vali-
dation observations. For more information, see
Figure 8.6a.

(c) ROC curve for classifying the validation observations with the trained dataset. For more infor-
mation, see Figure 8.6b.

Figure 8.8: Projection of the validation dataset on the Partial Least Squares (PLS)-
Discriminant Analysis (DA) multiblock model from Figure 8.7.
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Figure 8.9: Complete Raman spectra of EVs isolated from plasma from 15 ME/CFS
patients (red) and 15 matched control individuals (blue).

8.4.2 ME/CFS classification model based on Raman fingerprints

To further investigate the power of Raman spectroscopy to differentiate pa-
tients from controls, we again used PLS-DA as a classifier solely based on the
whole Raman spectra. The complete spectra of individuals within each group
are represented in Figure 8.9 (controls in blue and ME/CFS patients in red).

As can be appreciated, signals were already preprocessed and can be directly
used for further analysis with multivariate statistics techniques. Due to a
slight (though not relevant) mismatch in the wavelengths of different records,
abscises axes in Figure 8.9 represent wavelength bins that contain the signal
recorded for wavelengths within each interval. We also compared PLS-DA with
a modified version of the LDA, RF and SVMs to evaluate if there were more
suitable techniques to classify individuals using only the Raman spectra as an
input.

PLS-DA model

We applied PLS-DA analysis to Raman data to evaluate the biomarker value of
the observed differential Raman peaks. The wavelength intervals with discrim-
inant information should appear with significant BPLS or V IP coefficients.

The first PLS-DA model (R2 of 23.95% and Q2 of 16.33%) was not able to
separate the groups since many variables are non-statistically significant in
terms of the BPLS and V IP coefficients. This can be observed from the high
number of jackknife confidence intervals for the VIPs below the V IP = 1
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threshold (see Figure 8.10a) and by the jackknife confidence intervals for the
b coefficients that contain a zero value (see Figure 8.10b).

(a) Set of BPLS coefficients.

(b) Set of V IP PLS coefficients.

Figure 8.10: PLS-DA multiblock model based on all variables measured from 15 ME/CFS
patients and 15 HCs.

All non-significant variables according to these parameters were deleted, and
the model re-estimated. The resulting model selects only one latent variable,
slightly increasing its goodness of fit (R2 of 29.57%) and prediction (Q2 of
26.36%). Figure 8.11a and 8.11b display the BPLS and V IP coefficients for
predicting the ME/CFS class. Variables with positive b coefficients indicate
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(a) Summary of the b PLS coefficients. (b) Summary of the V IP PLS coefficients.

Figure 8.11: Summary of the depurated PLS-DA model with the Raman spectroscopy data.
The red cross locates the optimal performance point(maximum specificity and sensitivity)
using the classification threshold 0.3935. Data set legends can be consulted in Table 8.2.
Black triangles represent healthy controls, whereas orange triangles represent ME/CFS cases.

wavelengths of the spectrum for which the ME/CFS patients show a statisti-
cally significant higher signal when compared to the movement of the healthy
controls.

According to the BPLS coefficients, relevant variables highlight the importance
of regions close to the 1158cm−1 peak. On the other hand, the right window
encloses wavelengths relative to the 1521cm−1 peak. These bands are char-
acteristic of carotenoids with the C–C stretching mode (coupled with C–H
in-plane bending) contributing to the 1158cm−1 band and the C = C stretch-
ing mode of the conjugated chain in carotenoids contributing to the 1510cm−1

band [155]. A later univariate test for these two bands indicated a statistically
significantly higher content of carotenoids in ME patients than in healthy con-
trols (p = 0.003 and p = 0.005).

The classification performance of the depurated PLS-DA model (Figures 8.11
and 8.12) is illustrated in the observed vs. predicted values (Figure 8.12b) and
in its corresponding ROC curve generated using the 3-fold cross-validation
scheme (Figure 8.12c). The model reaches an optimal AUC value of 0.7044,
setting a threshold of 0.3942 on the predicted response. Despite the poor per-
formance of the model in terms of classification, there might still be statistically
significant information that could be useful in discriminating the two groups.
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(a) Summary of the scores. For more informa-
tion, see Figure 8.5a.

(b) Observed vs predicted values. For more in-
formation, see Figure 8.6a.

(c) ROC curve. For more information, see Figure 8.6b.

Figure 8.12: Summary of the depurated PLS-DA model with the Raman spectroscopy data.
The red cross locates the optimal performance point(maximum specificity and sensitivity)
using the classification threshold 0.3935. Data set legends can be consulted in Table 8.2.
Black triangles represent healthy controls, whereas orange triangles represent ME/CFS cases.
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Comparison of PLS-DA model to other classification models

To further investigate the value of the Raman spectra in differentiating severe
ME/CFS patients from healthy controls, we trained three other binary classi-
fication models. We used an adaptation of linear discriminant analysis (LDA)
for cases with more variables than observations, a random forest (RF), and
a support vector machine (SVM). Some of these techniques (such as RF and
SVMs) can model non-linearities, which could improve the outcome yielded by
the PLS-DA model.

The classification results were also obtained in MATLAB, training the classi-
fiers with the classification learner app and optimizing model hyperparameters
to ensure a fair comparison to the already optimized PLS-DA model. The
same 3-fold cross-validation setup for the PLS-DA model was used to com-
pare results. This lets us preserve 2/3 of the data for the training, leaving the
other 1/3 of observations for external validation. Moreover, all words had a
prediction obtained without using them for the model fitting.

Some classifiers offer the interpretation of the discriminant predictors to a
certain extent. However, this was not feasible for all of them, as we address
in the following points, providing some details about certain technical aspects
considered for each classifier:

• Linear Discriminant Analysis. This model was run in Matlab using
an algorithm that adapts the classical LDA to deal with more variables
than observations. The LDA model was fitted using all the predictors (K
= 1018 variables). One mathematical aspect of the LDA is that it needs to
invert the covariance matrix of the predictors. This step is compromised
when the number of variables is higher than the number of observations,
as in this case (1018 variables >> 30 observations). Nonetheless, numer-
ical solutions are implemented to enable a solution’s obtention. However,
this can come at the cost of losing coherence in the model’s coefficients.
In fact, as for the PLS-DA, a previous depuration step based on the co-
efficients of the discriminant function was considered. However, as seen
in Figure 8.13, there was too much numerical instability to perform this
depuration. This can be appreciated by the high number of coefficients
containing the zero value, which means that depending on the fitting
round, these coefficients could be either positive or negative. The er-
ror bars indicate the coefficient’s variation range, i.e., its minimum and
maximum, along the three cross-validation folds.
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Figure 8.13: Coefficients of the predictors in the discriminant functions fitted for each fold
of the cross-validation scheme used for the Raman spectra classifiers.

Figure 8.14: Variable importance metrics obtained for the Random Forest model based on
the Raman spectra.

• Random Forest. The RF model was fitted using all the predictors (K =
1018 variables). The MATLAB classification learner app performed the
hyperparameters optimization. This optimization involves finding the
model configuration that minimizes the cross-validated misclassification
rate. In this case, the Variable Importance metrics could also be used
to refine the model or to know which variables hold more discriminant
power. In this case, variable importance is measured by a permutation
test. This test randomly shuffles the values of a given variable and mea-
sures the difference in the classification error due to altering that variable.
Figure 8.14 illustrates the variable importance for predictors whose im-
portance metrics were above zero over the three cross-validation folds.
The fact that they present a positive average importance means that
their permutation causes a detriment to the model performance. As it
can be seen, some variables selected indicate the importance of wave-
lengths close to the 1158 cm-1 peak and to the 1521 cm-1 peak. However,
not all the important variables agree with those selected by the PLS-DA
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Figure 8.15: ROC curves with their AUCs of the four models classifying ME or HC based
on their Raman spectra. The ROC curve is plotted with a true positive rate against a false
positive rate.

model, and the meaning of their relevance, according to the RF model,
is beyond further study and understanding. However, the fact that their
minimum and maximum values (limits of the error bars) have different
signs suggests a lack of coherence in the predictors’ importance and that
their relevance might not be statistically significant.

• Support Vector Machine. The SVM model was fitted using all the
hyperparameters’ optimization of the MATLAB classification learner app.
This optimization involves finding the model configuration that minimizes
the cross-validated misclassification rate. The optimizer selected a linear
kernel function for the first fold, a Gaussian kernel function for the second
fold and a polynomial kernel function for the third fold. This incoherence
to the optimal SVM suggests a lack of information within the Raman
spectra to build a stable and reliable classifier aligned with the conclusions
obtained with the rest of the classifiers.

Figure 8.15 shows all ROC curves with their respective AUCs for all four meth-
ods. These results suggest that the Raman spectroscopy data does not hold
enough information to discriminate between ME/CFS patients and healthy
subjects: to achieve a 100% true positive rate, classifiers would produce a high
rate of false positives. However, AUC values close to 0.7 ( Figure 8.15) suggest
that EVs might still represent part of the disease phenotype. For this reason,
we proposed the last model, combining our initial biomarkers and EV Raman
profiles.
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8.4.3 Refinement of the initial PLS-DA model with EV Raman
profiles

The results of Raman spectrometry analysis show that further information
is required to develop a more comprehensive diagnostic tool. Therefore, we
proceeded to reanalyze our first multiblock PLS-DA model (Section 8.4.1) to
check if the relevant Raman wavelengths selected by the PLS-DA model on the
spectroscopy data (Section 8.4.2) could be helpful to predictors when combined
with the previously identified biomarkers.

To study this possibility, we fitted a PLS-DA model using the selected variables
from the former PLS-DA model, adding the key differential wavelengths from
our PLS-DA analysis of Raman spectroscopy data. It is important to highlight
that the adequacy of this approach resides in the fact that the samples used to
generate the two models came from the same blood samples. The reason for
maintaining the use of PLS-DA was that, according to the previous results, it
was a technique yielding one of the best classification performances and the
only one enabling the interpretation of the discriminant power of the predictors,
establishing a set of statistically significant biomarkers.

An initial PLS-DA model was fitted using all observations to allow for selecting
key discriminating variables and removing potential outliers. The initial fused
model sets an optimal number of nine latent variables (R2 of 99.37% and Q2

of 81.15%). This model was depurated observation-wise and variable-wise, as
previously described. The b coefficients and V IP coefficients of the final set of
selected variables are shown in Figure 8.16a and 8.16b, respectively.

This refined PLS-DA model was fitted based on the final set of selected predic-
tors, excluding the observations used for external validation in the first PLS-DA
model. The final model presents a similar performance (R2 of 93.38% and Q2

of 77.06%). Figure 8.17 shows the result of the permutation test performed
on the PLS-DA model fitted with the calibration set, proving the statistical
significance of the yielded coefficients.

The observed vs. predicted values for the observations in the calibration set
(Figure 8.18a) and the external validation set show that classes can be perfectly
separated (Figure 8.18c). The ROC curves in Figure 8.18b and 8.18d also
illustrate this, showing that a threshold on the predicted outcome of 0.481
yields a perfect classification with an AUC of 1.

Inspecting the b PLS and V IP coefficients (Figure 8.16a and 8.16b, respec-
tively), although some of the predictors still appear as statistically non-significant,
their jackknife confident intervals are almost under or above zero for the b co-
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(a) Summary of the BPLS coefficients.

(b) Summary of the V IP PLS coefficients.

Figure 8.16: Summary of the depurated PLS-DA model with the Raman spectroscopy
data. Data set legends can be consulted on Table 8.2. Black triangles represent HCs,
whereas orange triangles represent ME/CFS patients. Predictor coefficients in (A, B) are
coloured according to their information block (blue for analytical features, orange for PBMCs
miRs features, green for EVs features, and purple for Raman spectra features).
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Figure 8.17: Permutation test for the depurated PLS-DA model based on the fused
database. The values of the model coefficients are expressed in the vertical axis, whereas in
abscissa, the correlation between the real response vector and the different permuted versions
is expressed.

efficients, or almost contain the value V IP = 1 for the V IP coefficients. This
suggests that the width of the confidence intervals might be influenced by the
small sample size, which leads to wide jackknife confidence intervals.

In conclusion, this final model yields a perfect classification (AUC = 1) and has
35 predictors, meaning that some of the most relevant predictors, according to
the previous PLS-DA model, have been replaced by wavelength intervals of the
Raman spectroscopy analysis. Among these relevant wavelengths, both peaks
(around 1158 cm−1 and 1521 cm−1) hold important information as potential
biomarkers. Most eliminated predictors from the previous PLS-DA model
carried information about PBMC miRNAs.

A posterior GO pathway analysis of DE miRNAs from PBMCs selected by
our refined PLS-DA model (Figure 8.16) showed that six out of seven common
share gene targets with top cellular functions belonging to immunity, neu-
roinflammation, and metabolism (Table 8.1), all being widely associated with
ME/CFS in the literature.
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(a) Observed vs. predicted values for the train-
ing set. For more information, see Figure 8.6a.

(b) ROC curve for the training set. For more
information, see Figure 8.6b.

(c) Observed vs. predicted values for the valida-
tion set. For more information, see Figure 8.6a.

(d) ROC curve for the validation set. For more
information, see Figure 8.6b.

Figure 8.18: Summary of the depurated PLS-DA model with the Raman spectroscopy
data. Data set legends can be consulted on Table 8.2. Black triangles represent HCs,
whereas orange triangles represent ME/CFS patients. Predictor coefficients in (A, B) are
coloured according to their information block (blue for analytical features, orange for PBMCs
miRs features, green for EVs features, and purple for Raman spectra features).
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Table 8.1: Top GO categories containing gene targets of at least 2 DE discriminant miRNAs
from PMBCs and which were relevant according to the refined PLS-DA model.

GO Subcategory P-adjusted Q-adjusted miRNAs/precursors

positive regulation of T cell-
mediated immunity

2,60E-03 2,60E-03 hsa-miR-223-3p,
hsa-miR-146a-5p

positive regulation of neuroin-
flammatory response

2,60E-03 2,60E-03 hsa-miR-223-3p,
hsa-miR-146a-5p

positive regulation of type
2 immune response 2,60E-03
2,60E-03

hsa-miR-223-
3p, hsa-miR-
146a-5p

adaptive immune response 5,18E-03 5,18E-03 hsa-miR-223-3p,
hsa-miR-146a-5p

positive regulation of adaptive
immune response

5,18E-03 5,18E-03 hsa-miR-223-3p,
hsa-miR-146a-5p

adaptive immune response
based on somatic recombi-
nation of immune receptors
built from immunoglobulin
superfamily domains

5,84E-03 5,84E-03 hsa-miR-223-3p,
hsa-miR-146a-5p

neuroinflammatory response 5,84E-03 5,84E-03 hsa-miR-223-3p,
hsa-miR-146a-5p

regulation of adaptive immune
response

5,84E-03 5,84E-03 hsa-miR-223-3p,
hsa-miR-146a-5p

regulation of neuroinflamma-
tory response

5,84E-03 5,84E-03 hsa-miR-223-3p,
hsa-miR-146a-5p

regulation of reactive oxygen
species metabolic process

7,08E-03 7,08E-03 hsa-miR-590-5p,
hsa-miR-223-3p,
hsa-miR-146a-5p

regulation of carbohydrate
metabolic process by regu-
lation of transcription from
RNA polymerase II promoter

1,44E-02 1,44E-02 hsa-miR-106b-5p,
hsa-miR-223-3p

8.5 Conclusions

In 2015, the Institute of Medicine (IOM) in the US informed that ME/CFS is a
medical illness and should not be considered a psychiatric condition [156]. De-
spite numerous studies supporting the biological basis of ME/CFS by reporting
neurologic, [157], immune [158] and metabolic [159] disturbances, ME/CFS
biomarker validation remains a significant challenge. Still, the low number
of participants and disease heterogeneity hamper the search for biomarkers.
Almenar-Pérez et al. [137] attempted to improve patient homogeneity by re-
stricting the inclusion of participants to only severe female cases. This resulted
in a large dataset with 34 blood analytic variables, 775 different miRNAs ex-
pressed above threshold levels (136 in PBMCs and 639 in EVs), EV concentra-
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tion, size, and z-potential. Although limited by the small sample size and the
use of univariate statistical tools, results suggested some biological differences
with limited diagnostic potential at the individual level. These set the basis
for searching for more appropriate tools to analyze this data.

In the current study, we combine these variables and add Raman spectroscopic
profiling as a new marker of EV function in the same blood samples. By
applying PLS-DA analysis to this large dataset, we identified 32 variables that
can effectively differentiate ME/CFS cases from healthy controls (AUC = 1,
i.e., sensitivity and specificity = 1, Figure 8.8c).

Moreover, the PLS-DA models also helped to assess the initial hypothesis
about the role of EVs. Some EV physical features, including their size and
z-potential, were relevant for the effective diagnosis of patients, indicating a
potentially important role of EVs in ME/CFS. This brought interesting points
for a biomedical discussion.

On the one hand, increased absolute zeta potential values of EVs detected in
ME/CFS patients by previous studies [137] suggested differences in the rela-
tive abundance of charged groups in their membranes. Modifications of EVs
membrane potential have been related to other pathological conditions, includ-
ing cancer, where the change in EV net charge was attributed to a disbalance
in the relative abundance of sialic acid [160]. Interestingly, polysialylation
of exosomal membranes has been shown to have a thermo-protecting effect,
modulating exosome-plasma membrane interactions and thus their signalling
capacity [161]. Further evaluation of these modifications present in ME/CFS,
EVs, will be essential to future studies on their functional impacts, as proposed
in [162].

On the other hand, results differ from previous works reporting higher counts
of EVs in different cohorts of ME/CFS patients [137], [163], [164]. However,
the fact that increased EV numbers have been reported for other diseases with
an inflammatory component [165], [166] may argue for a restricted disease
specificity of this feature.

To unveil potential differences in EVs’ composition supporting the reduced
diameter zeta potential (increased electronegativity) seen in severe ME/CFS
patients [137], EVs from ME/CFS patients were compared to control EVs by
Raman micro-spectroscopic analysis. Since Raman spectroscopy has shown its
utility in detecting composition differences in patients’ EVs [19], [20], it could
be developed as a cost-effective diagnostic method with its ability to identify
complex patterns in biological materials.
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The analysis of EVs Raman spectra showed differences between severe ME/CFS
patients and healthy controls related to two carotenoid peaks (Figure 8.11).
Zhang et al. recently found a shift of a peak at 1553cm−1 (tryptophan/amide
II) to 1528cm−1 (carotenoid) in trophoblast-derived EVs during late stages of
pregnancy [167], time at which circulating EVs counts increase and inflamma-
tory responses vary [168], [169]. Verma and Wallach [170] already described
a relationship between carotenoids and red blood cells (RBC) hemolysis [171]
typically linked to disease. Moreover, recent studies have shown reduced RBC
deformability in ME/CFS patients [172]. Thus, it is tempting to speculate that
the EVs observed by Raman are due to EVs of RBC origin, generated when
the RBC is stressed in the patient’s circulation.

In support of this hypothesis, it is interesting to observe that increased mean
corpuscular haemoglobin (labelled mch) and means corpuscular haemoglobin
concentration (labelled mchc), which have been related as well to decreased
deformability of RBCs [173], and were identified by the PLS-DA analysis as
discriminant variables (Figure 8.16). Moreover, Fiedor et al. have recently
shown that increased beta-carotene concentration in RBC membranes affects
cell shape and sensitivity to osmolysis and alters haemoglobin-oxygen affinity
with potential physiologic implications [174].

Regardless of EV composition differences described by Raman spectra analysis,
the diagnostic value of Raman data seemed limited when compared to the rest
of PLS-DA models, including analytic variables, PBMC miRNA profiles, and
EV features (Figures 8.6b and 8.18d).

Nonetheless, purifying EVs from plasma may lead to the purification of EV sets
that may differ from other procedures. Despite the high purity attributed to
EVs prepared by ultracentrifugation, this procedure is laborious and requires
a large volume of fluid and expensive equipment. A diagnostic method based
on EVs requires a much simpler way, preferably allowing the analysis of small
volumes of fluids without compromising performance. Total Exosome Isolation
Reagent (TEIR) was selected from the available kits because, according to
Helwa et al., it provides higher yields using smaller amounts of plasma when
compared to other commercial alternatives or concerning ultracentrifugation,
ultrafiltration, or gel chromatography [175]. Moreover, exploratory EV studies
using highly purified EV sets (i.e., exosomes) could turn into missing relevant
EV subsets, and thus, a less restrictive method was preferred.

Among the blood analytic group of variables, blood creatine phosphokinase
(CK, labelled as cpkbloodb) level was a feature reported as significant by first
and third PLS-DA models (Figures 8.3 and 8.16). This finding is aligned with

235



Chapter 8. Biomarkers extraction for chronic fatigue syndrome

CK levels being a clinical feature previously reported as a potential biomarker
of ME/CFS, showing significantly reduced levels in an expanded cohort of
patients [176]. The CK enzyme is key in ATP homeostasis in these compounds,
highly expressed in muscle, heart, and brain. Hence, low levels might reflect
energy dysregulation in these tissues and may be linked to the profound fatigue
found in ME/CFS patients, with the severe having the lowest CK levels.

Moreover, all miRNAs holding discriminant power came from the PBMCs
group but not from the EVs one. This may be associated with the complexity
of ME/CFS, requiring features from different compartments for its definition.
In support of this argument, a later GO pathway analysis of six out of the
seven DE miRNAs from PBMCs selected by the PLS-DA model (Figure 8.16)
pointed out that those shared common gene targets with top cellular functions
belonging to immunity, neuroinflammation, and metabolism, all being widely
associated with ME/CFS in the literature.

In summary, this work describes for the first time an ME/CFS model based
on PLS-DA of 32 analytical variables capable of diagnosing the disease with
perfect sensitivity and specificity (AUC = 1), further confirming the biologic
nature of this disease and highlighting the relevance of patient EV features
for their diagnosis. An ME/CFS EV Raman spectroscopic fingerprint is also
provided, pioneering the potential use of this method for diagnosing ME/CFS
and detecting possible RBC defects in severe ME/CFS.

Finally, we show that although the diagnostic potential of Raman is limited, its
simplicity and low sample requirement highlight its potential utility as an early
screening tool before more comprehensive testing with miRNAs from PBMCs.
Moreover, the inclusion of Raman data for the refinement of our previous
model, although incapable of increasing the already perfect separation of cases
from controls (AUC=1) (Figures 8.6b and 8.18d), allowed for a significant
reduction in the number of PBMC miRNAs from 21 in our initial PLS-DA
model (Figures 8.3 and 8.7) to only 7 in the PLS-DA Raman refined model
(Figure 8.16).

The findings obtained in this study are expected to pave the way for unrav-
elling the subjacent disease mechanisms in which EVs and PBMC miRNAs
participate with clear implications for the future diagnosis and treatment of
ME/CFS, perhaps embracing other patient groups suffering from chronic fa-
tigue.
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Appendix: Supplementary tables

Table 8.2: Description of variables from Table 8.3

Variable name Variable description

Z potential w/Prot K Z-potential (mV) of EVs obtained with Proteinase K pre-
treatment

Size EV average size (diameter in nm) of EVs obtained in the
absence of Proteinase K pretreatment

Size w/Prot K EV average size (diameter in nm) of EVs obtained with Pro-
teinase K pretreatment

mchcbloodb Mean corpuscular haemoglobin concentration (g/L) - base-
line

cpkbloodb Creatine phosphokinase (U/L) - baseline
Z potential Z-potential of EVs obtained in the absence of Proteinase K

pretreatment
P_hsa-miR-106b-5p PBMC hsa.miR
TSHBloodB TSH (Thyroid-stimulating hormone) (mU/L) - baseline
mchbloodb Mean corpuscular haemoglobin (pg) - baseline
P_hsa-miR-644a PBMC hsa.miR
P_hsa-miR-106a-17-5p PBMC hsa.miR
P_hsa-miR-146a-5p PBMC hsa.miR
P_hsa-miR-361-3p PBMC hsa.miR
P_hsa-miR-549a PBMC hsa.miR
P_hsa-miR-590-5p PBMC hsa.miR
P_hsa-miR-30c-5p PBMC hsa.miR
eosinbloodb Eosinophils(109/L)− baseline
P_hsa-miR-1253 PBMC hsa.miR
ureabloodb Urea(mmol/L) - baseline
kbloodb Potassium(mmol/L) - baseline
basobloodb Basophils(109/L)− baseline
P_hsa-miR-130a-3p PBMC hsa.miR
P_hsa-miR-1976 PBMC hsa.miR
P_hsa-let-7c-5p PBMC hsa.miR
P_hsa-miR-30a-5p PBMC hsa.miR
P_hsa-miR-30b-5p PBMC hsa.miR
P_hsa-miR-222-3p PBMC hsa.miR
P_hsa-miR-33a-5p PBMC hsa.miR
P_hsa-miR-223-3p PBMC hsa.miR
P_hsa-miR-19a-3p PBMC hsa.miR
P_hsa-miR-151a-3p PBMC hsa.miR
P_hsa-miR-32-5p PBMC hsa.miR
wl 1506.95-1508.95 EV Raman peak wavelentgh range (nm)
wl 1503.76-1505.76 EV Raman peak wavelentgh range (nm)
wl 1510.14-1512.14 EV Raman peak wavelentgh range (nm)
wl 1157.84-1160.96 EV Raman peak wavelentgh range (nm)
wl 1500.58-1502.58 EV Raman peak wavelentgh range (nm)
wl 1154.52-1157.65 EV Raman peak wavelentgh range (nm)
wl 1513.32-1515.32 EV Raman peak wavelentgh range (nm)
wl 1151.2-1154.33 EV Raman peak wavelentgh range (nm)
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wl 1497.39-1499.39 EV Raman peak wavelentgh range (nm)
wl 2058.94-2060.9 EV Raman peak wavelentgh range (nm)

Table 8.3: Relation of PLSDA variables sorted by descending relevance.

PLSDA w/out Raman differential peaks PLSDA w/ Raman differential peaks

Z potential w/Prot K Size
Size Z potential w/Prot K
Size w/Prot K Size w/ Prot K
mchcbloodb mchcbloodb
cpkbloodb Zpotential
Z potential P_hsa-miR-549a
P_hsa-miR-106b-5p P_hsa-miR-1253
TSHBloodB P_hsa-miR-146a-5p
mchbloodb wl 1506.95 - 1508.95
P_hsa-miR-644a cpkbloodb
P_hsa-miR-106a-17-5p wl 1157.84 - 1160.96
P_hsa-miR-146a-5p P_hsa-miR-590-5p
P_hsa-miR-361-3p wl 1510.14 - 1512.14
P_hsa-miR-549a wl 1503.76 - 1505.76
P_hsa-miR-590-5p P_hsa-miR-644a
P_hsa-miR-30c-5p P_hsa-miR-106b-5p
eosinbloodb wl 1154.52 - 1157.65
P_hsa-miR-1253 wl 1513.32 - 1515.32
ureabloodb eosinbloodb
kbloodb wl 1500.58 - 1502.58
basobloodb wl 1516.51 - 1518.51
P_hsa-miR-130a-3p TSHBloodB
P_hsa-miR-1976 wl 1151.2 - 1154.33
P_hsa-let-7c-5p wl 1161.15 - 1164.28
P_hsa-miR-30a-5p wl 1519.69 - 1521.69
P_hsa-miR-30b-5p wl 1147.88 - 1151
P_hsa-miR-222-3p mchbloodb
P_hsa-miR-33a-5p P_hsa-miR-223-3p
P_hsa-miR-223-3p wl 1522.87 - 1524.87
P_hsa-miR-19a-3p ureabloodb
P_hsa-miR-151a-3p wl 1144.56 - 1147.68
P_hsa-miR-32-5p kbloodb

wl 1497.39 - 1499.39
wl 1141.24 - 1144.36
basobloodb
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Mortality risk model for
covid-19 patients
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Chapter 9. Mortality risk model for covid-19 patients

9.1 Introduction

The pandemic produced by the SARS-CoV-2 virus in 2020 - 2022 has caused
to date (Aug 2022) more than 560 million infections and more than six million
deaths worldwide, already ranking in many countries as one of the three main
causes of death. In Spain, one of the European countries most affected by this
pandemic, there have been over 13 million infections and more than 109,000
deaths [178].

The clinical course of COVID-19 is highly variable, and although most infected
patients suffer minor flu symptoms, 10% - 20% of them require hospitalization
(mainly due to the development of bilateral pneumonia and hypoxemia), and
10-15% of these develop a severe respiratory illness requiring mechanical ven-
tilation or ICU admission, which increases the risk of death [179]. Progression
to severe disease appears to be linked to damages to organs other than the res-
piratory tract that occur through an organic inflammatory syndrome possibly
related to massive cytokines release [180].

In the clinical setting, it is essential to predict the severity level of the disease in
a COVID-19 patient admitted to the hospital, both from the individual point
of view and what concerns potential health system collapses, whose prevention
requires decisions about patient management with appropriate triage criteria.
This prediction involves identifying the contributing factors of mortality, which
enables the adoption of targeted strategies in high-risk patients [181]. Most
therapies (monoclonal antibodies, remdesivir, molnupiravir, specific protease
inhibitors, etc.) that could improve the prognosis of this disease are usefully
applied early, within the first days after the appearance of symptoms. There-
fore, early identification of the risk of death from COVID-19 can be critical.

Several researchers have published observational prognostic studies on COVID-
19 patients to identify predictive variables of death or severity of illness. How-
ever, later works have highlighted the need for a more precise statistical assess-
ment of these types of studies, ensuring statistical coherence and the prevention
of bias in finally proposed models [182], [183].

The objectives of this study are i) to determine key predictors of mortality
in adult patients admitted to the hospital with a diagnosis of SARS-CoV-
2 infection, ii) to obtain a predictive model of mortality for these patients,
and iii) to propose a reliable and easy-to-use mortality risk score that can be
calculated readily and straightforwardly at hospital admission.
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9.2 Methods

The work aimed to build a model that, provided a set of variables recorded
at the hospital admission, could predict the mortality risk of a patient with
COVID-19 during admission and until 42 days following hospital discharge.
The methodology for model training, evaluation and comparison is illustrated
in Figure 9.1.

Figure 9.1: Flux diagram of the data used for the mortality prediction model building
and validation. Data were stored in the REDCap storage service. The initial database (N
= 15,628) was preprocessed and split into calibration (N = 10,008) and validation (N =
2,501) subsets without replacement. The calibration data set was used to set the optimal
hyperparameters of the classifiers. The final model was chosen to assess the performance
with the validation data set. LR = Logistic Regression. PLSDA = Partial Least Squares–
Discriminant Analysis. kPLSDA = kernel PLSDA. RF = Random Forest.

The initial data set (N = 15,628 with 2,846 deceased individuals) was prepro-
cessed to obtain a clean Basal data set (n = 12,509). This depuration process
eliminated variables and observations with excessive missing values or errors
in the data. A preliminary univariate study (Table 9.3) was conducted to
explore potential significant predictors for the mortality outcome. This way,
the missing data percentage could be reduced while being cautious of keeping
potentially important predictors. Technical details of the data pre-processing
step yielding the Basal dataset are described in the following paragraphs.
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9.2.1 Missing data cleaning and imputation

First, the process of “cleaning” and imputing the missing values within the
Initial database of the study until reaching a final Basal dataset with complete
observations. This goal required finding a balance between the number of
variables and observations that would be removed, trying to minimize the loss
of information, and, simultaneously, the imputation’s impact on interpreting
the data modelling results.

Given the unbalancedness between alive and deceased individuals (81,79% vs.
18,21%), the priority was to preserve as many patients of the latter class as
possible since they constitute the limiting category. Moreover, ICU-related
variables were not considered as not all patients underwent ICU treatment
or monitoring, which induced the presence of missing values not directly im-
putable by standard approaches typically utilized for this purpose. Similarly,
nested variables (e.g., the dose of drug A is nested to whether a patient has
received the corresponding treatment) were also removed. Other variables,
such as the Body Mass Index (BMI), Lymphocytes to C-reactive protein Ratio
(LCR), Platelets to Lymphocytes Ratio (PLR), and Neutrophils to Lympho-
cytes Ratio (NLR), were included since they could be potential biomarkers for
mortality.

Investigating the distribution of missing values across patients (i.e., database
rows), it was observed that for the group of alive patients, approximately 757
(6%) out of the 12,782 individuals showed more than 30% of missing data
records. This percentage increases up to 8.4% (120/2,846) for the deceased
class (Figure 9.2a).

Thus, a first cut-off point was established to filter out observations with a
percentage of missing entries larger than 30% for the alive patients. After this
first step, the residual percentage of missing values was assessed variable-wise
(i.e., database columns). As one can easily deduce from Table 9.1, the number
of variables with over 50% of missing records was practically the same for both
classes of patients. Therefore, those exhibiting more than 50%

This alternating “cleaning” procedure was iterated until variables such as “af-
fected quadrants”, “curb65” or “oxygen saturation”, appeared as the next ones
to be deleted because of their missing data percentage. Given their medical
relevance, they must be kept in the final dataset. For this reason, we decided
to stop this row/column selection at this point, which yielded a database con-
taining 10,515 alive and 2,085 deceased individuals, each with less than 20%
of missing data records (Figure 9.2b).
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(a) First iteration of missing data cleaning pro-
cedure applied to the Initial dataset.
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(b) Second iteration of missing data cleaning
procedure applied to the Initial dataset.

Figure 9.2: Number of patients with a percentage of missing values beyond the values
expressed along the x-axis for the deceased (up) and the alive group of patients (down), for
the first iteration of missing data cleaning (a) and for the second one (b).

This database was then used to obtain one with complete patient observations
(i.e., without missing data), consisting of 36 variables, 158 deceased and 1,243
alive individuals. If some of the previously removed variables were found to
have complete records for this subset of patients, they were finally re-integrated
into the ultimate data structure.

Figure 9.3 shows a bar plot with the percentage of missing data for the remain-
ing removed variables within the patients gathered in the complete database.
As can be seen, most of them show more than 25% of missing entries. If com-
plete observations were to be kept, considering these variables would, thus,
imply reducing the sample size under study even more. Considering that an
already substantial reduction of the number of observations was performed
(only data for 9.72% of alive patients and 5.55% of deceased patients were
finally analyzed), it was decided not to re-include any of them.

Finally, the missing values on the Calibration dataset were imputed using an
extension of Trimmed Scores Regression (TSR) capable of coping with cat-
egorical and integer variables. This adaptation was not fully developed but
was tested and compared to other approaches, enabling missing data imputa-
tion for categorical variables. This drew a direction for a contribution which
is still ongoing. More information can be found in the Future Lines section
(Chapter 11, Section 11.3.1).
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Table 9.1: Percentage of missing values for the variables measured in this study (sorted in
descending order). Only those with over 35% of missing records are listed for each category
of patients under study.

Deceased patients Alive patients

Missing Data (%) Variable Name Missing Data (%) Variable Name

65.57% height 63.17% lactic acid
62.27% weight 53.29% height
52.26% glasgow 52.89% glasgow
51.58% lactic acid 50.48% ferritin
51.36% creatine kinase 48.35% weight
49.28% ferritin 47.98% creatine kinase
41.32% affected quadrants 35.38% procalcitonin
26.90% procalcitonin 33,37% affected quadrants
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Figure 9.3: Percentage of missing entries within the measured variables excluded by the
cleaning procedure for the deceased (above) and the alive (below) patients included in the
complete database.

9.2.2 Outlier detection

Mathematically, outlier removal is justified, given the distortions that the cor-
responding observations can induce in the estimated parameter of the fitted

244



9.2 Methods

model, which can bias the study’s conclusions. Detecting anomalous obser-
vations and studying the reasons behind their anomalous behaviour is key
before further using a particular dataset. Thus, in the second step, the com-
plete database was examined by Principal Component Analysis (PCA, Sec-
tion 3.3.1).

Here, each individual’s Distance to the Model (DModX) was assessed to iden-
tify the presence of anomalous observations. The DModX statistic assumes
abnormally high values when atypical patterns in the correlation structure of
the measured variables are observed. Only one patient (highlighted by a red
circle) was characterized by a relatively large DModX value. When the contri-
butions of each predictor to the DModX associated with the outlying patient
are inspected, the highest one is related to NLR. Plotting the raw values of
this variable for all the patients of the complete dataset highlights that the one
for the concerned individual is relatively larger compared to those measured
for all the other subjects.

9.2.3 Model evaluation

Afterwards, as seen in Figure 9.1, the basal data set was randomly split into the
calibration data set (N = 10,008) and the validation data set (N = 2,501). The
calibration data set was used to fit classifiers and to build a missing data im-
putation model using an adaptation of the Trimmed Scores Regression method
(Section 11.3.1). The imputed Calibration data set was repeatedly (100 repe-
titions) split into a training subset and a test subset. Four supervised algorith-
mic techniques were used as classifiers: Logistic Regression (LR) [184], Partial
Least Squares Discriminant Analysis (PLSDA) [62], kernel-PLSDA (kPLSDA)
[185], and Random Forest (RF) [66].

In each repetition of the calibration, all classifiers were trained and then used
to predict the mortality of the test subset. Next, all classifiers were compared
in three different types of assessment. The classification performance and the
importance and coherence of the measured variables were evaluated as com-
mented on in Section 3.4.4. Besides, a third type of assessment on the quality of
risk calibration was also performed. This type of analogy is especially relevant
for medical classification models, given the direct implications that an over (or
under) estimation of the mortality risk can have in medical decision-making.
With this purpose, a calibration curve was fitted using the information about
the predicted risk (x-axis) and the observed proportion of deceased patients
among those within that group of expected risk (y-axis) [186].
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The optimal model was selected considering the model that, with the min-
imum number of most important predictors, yielded the best classification
performance and the best calibration of the predicted risk [186]. Finally, the
information about the optimal model was used to configure the mortality score
model. This procedure aims to replicate a simplified classifier not based on a
complicated and device-based calculus.

All datasets are accessible in ZENODO [187]. The statistical analysis was
executed using MATLAB (2020b), R 4.0.2, and Python 3.8.3.

9.3 Datasets

The data used in this study were obtained from the RERFAR-COVID-19-
SEFH Registry, a nationwide prospective registry sponsored by the Spanish So-
ciety of Hospital Pharmacy (SEFH). It is an extensive repository of anonymized
COVID-19 medical records of 15,628 patients admitted to Spanish hospitals
from March 20 to July 15, 2020. The Spanish Agency approved the study
protocol for Medicines and Medical Devices (AEMPS) and the Institutional
Review Boards of the 174 participating hospitals. The protocol is available
online at the European Network of Centers for Pharmacoepidemiology and
Pharmacovigilance (ENCePP)(R) website [188].

All registered patients were diagnosed with SARS-CoV-2 testing on nasopha-
ryngeal swabs (real-time reverse transcriptase-polymerase chain reaction) at
admission. Data were collected and managed using REDCap electronic data
capture tools hosted at SEFH [189]. This vast database contained 256 fields
for each patient from admission to death or 42 days following hospital dis-
charge. A total number of 1,036 pharmacists from 174 hospitals contributed
to the collection of anonymized data from the patient’s electronic medical
records. A maximum of 200 patients per hospital was recommended to pre-
vent over-representation bias from large hospitals. Patient selection was done
by centralized randomizing up to 200 patients in each hospital.

The primary endpoint was all-cause mortality, codified as the binary variable
“mortality” with levels “alive” (numerically as zero) or “deceased” (numerically
as one). The baseline was the date of hospital admission. The follow-up
censoring date was July 15th, 2020; if a patient had not reached the outcome
(death) by the time the data were obtained, their outcome was considered null.
Clinical routine data from medical records available in the database included
demographic variables, clinical conditions at admission, comorbidities (type
and number), chronic medication treatments, biochemical and haematological
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analytics, and timing of events (from the onset of symptoms to emergency
room visit, admission or microbiological diagnosis)–see Table 9.2.

Table 9.2: Blocks of variables included in the data set registered at the admission event
of a patient with COVID-19. ACEI - angiotensin-converting enzyme inhibitors; ARB -
Angiotensin II receptor blockers; NSAID - Non-steroidal anti-inflammatory drugs.

Block Number of
variables

Variable Names

Demographic vari-
ables

2 Age, Sex.

Clinical variables at
admission

6 Fever within previous 24h (Fever 24), Conscience, Respi-
ratory frequency > 24 breaths per minute (Rf 24), Sys-
tolic Blood Pressure < 90 mmHg within the previous 24
hours (SBP 90), Affected quadrants, Oxygen saturation.

Comorbidities 11 High Blood Pressure (HBP), Diabetes Mellitus (DM),
Chronic Obstructive Pulmonary Disease (COPD),
Asthma, Cardiac Failure, Ischemic Heart Disease (IHD),
Kidney failure, Cirrhosis, Neurological precedents, Neo-
plasia, Number of comorbidities

Pharmacological
treatments for
chronic conditions

4 Previous treatment with ACEI, ARB, Previous treat-
ment with NSAID, Previous treatment with mon-
telukast.

Analytics at admis-
sion

12 Creatinine, Lactate dehydrogenase (LDH), Leukocytes,
Neutrophils, Lymphocytes, Platelets, C-reactive protein
(CRP), Hemoglobin, Procalcitonin (PCT), Neutrophils
to Lymphocytes Ratio (NLR), Lymphocytes to CRP Ra-
tio (LCR), Platelets to Lymphocytes Ratio (PLR).

Admission event
variables

3 Time between the initial symptoms and the arrival to
the emergency room (Time init - urg), Time between the
initial symptoms and the hospital admission (Time init -
admission), Time between the initial symptoms and the
microbiological confirmation (Time init - micro).

9.4 Results

The first part of this section reports a descriptive analysis. Secondly, the
results obtained by the four classifiers to predict mortality are presented and
compared. Finally, the confection of the mortality score based on the structure
of the best model is explained.

An initial univariate analysis was done to identify the variables that could
be potentially important in further study steps. Such research was done first
with the data set of complete observations. Table 9.3 shows the results only
for those predictors found to be the most relevant a posteriori, based on the
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results obtained by the four classification techniques exploited in this study.
Additional univariate analyses were carried out on the imputed Calibration
and Validation datasets to check the coherence of the results from Table 9.3.

Table 9.3: Characteristics of patients in the complete data set. Summary of the univariate
tests based on the odds-ratio yielded by univariate logistic regression models built between
every predictor and the mortality response. p-values in bold are < 1.10−6. The mean and
standard deviation (in parentheses) values are indicated for each numerical predictor. The
number and percentage (in parentheses) of cases are reported for each categorical predictor.

Complete
dataset

Total Alive Deceased Odds ra-
tio

pvalue

N = 1400 N = 1243 N = 157
Variable m(s.d.)/N(%) m(s.d.)/N(%) m(s.d.)/N(%) (95%C.I.)

Age, years 63.82 (14.73) 62.44 (14.44) 74.75 (12.27) 1.07
(1.06;1.09)

<0.0001

Oxygen satu-
ration, %

92.9 (5.5) 93.36 (5.1) 89.27 (7.01) 0.91
(0.88;0.93)

<0.0001

Platelets,
103/mm3

208.63 (87.55) 210.14 (88) 196.66 (83.21) 1 (1;1) 0.07

LDH, U/L 375.17
(193.31)

362.29
(178.78)

477.14
(262.37)

1 (1;1) <0.0001

Creatinine,
mg/dl

1.01 (0.64) 0.97 (0.57) 1.34 (1.01) 1.73
(1.52;1.93)

<0.0001

Lymphocytes,
103/mm3

1.68 (4.18) 1.73 (4.36) 1.3 (2.27) 0.95
(0.86;1.03)

0.21

Leukocytes,
103/mm3

7.34 (5.21) 7.17 (5.14) 8.65 (5.59) 1.04
(1.01;1.06)

0.006

Hemoglobin,
103/mm3

13.89 (1.95) 13.92 (1.94) 13.6 (2) 0.92
(0.83;1)

0.047

D dimer,
103/mm3

1,233.45
(2,488.68)

1,092.22
(2,017.04)

2,351.62
(4,662.09)

1 (1;1) <0.0001

Time init - ad-
mission, days

7.14 (4.83) 7.27 (4.64) 6.08 (6.07) 0.94
(0.89;0.98)

0.0028

N. of comor-
bidities

1.22 (1.23) 1.13 (1.2) 1.92 (1.31) 1.57
(1.44;1.69)

<0.0001

Altered con-
science

6.09
(5.62;6.55)

<0.0001

No 1,312 (93.71%) 1,189 (95.66%) 123 (78.34%)
Yes 88 (6.29%) 54 (4.34%) 34 (21.66%)

Respiratory
frequency >
24 bpm

2.58
(2.24;2.92)

<0.0001

No 1,028 (73.43%) 942 (75.78%) 86 (54.78%)
Yes 372 (26.57%) 301 (24.22%) 71 (45.22%)

Cardiac failure 2.15
(1.52;2.79)

0.018

No 1,337 (95.5%) 1,193 (95.98%) 144 (91.72%)
Yes 63 (4.5%) 50 (4.02%) 13 (8.28%)
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Neurological
precedents

2.46
(2.05;2.86)

<0.0001

No 1,219 (87.07%) 1,100 (88.5%) 119 (75.8%)
Yes 181 (12.93%) 143 (11.5%) 38 (24.2%)

Neoplasia 1.31
(0.7;1.92)

0.38

No 1,307 (93.36%) 1,163 (93.56%) 144 (91.72%)
Yes 93 (6.64%) 80 (6.44%) 13 (8.28%)

SBP < 90 4.09
(3.61;4.58)

<0.0001

No 1,313 (93.79%) 1,183 (95.17%) 130 (82.8%)
Yes 87 (6.21%) 60 (4.83%) 27 (17.2%)

Kidney failure 2.8
(2.28;3.32)

0.00012

No 1,314 (93.86%) 1,178 (94.77%) 136 (86.62%)
Yes 86 (6.14%) 65 (5.23%) 21 (13.38%)

According to the preliminary analysis in Table 9.3, deceased patients presented
higher risk factors at hospital admission: age, creatinine levels, SBP under 90
and respiratory frequency above 24 bpm. Deceased patients also exhibited a
higher proportion of altered conscience. Besides, the number of comorbidities
(≥2) was also significantly higher in deceased individuals, with a higher preva-
lence of cardiac failure, neurological antecedents, neoplasia, or kidney failure.
On the contrary, deceased patients presented significantly lower values for the
following protective factors: oxygen saturation, platelets and lymphocytes at
hospital admission.

Next, we evaluated the different classification models for predicting COVID-19
outcomes using the framework of repeated training and testing. The Random
Forest classifier performed best, with a median AUC of 0.8648. Still, results
were very similar for all the methods when including all predictors (Table 9.4).
However, as reducing the number of features eases the practical implemen-
tation of a classifier, we implemented a forward step-wise approach to select
the minimum number of predictors for the final model while maintaining the
trade-off between performance and usability.

Using the predictor importance coefficients, all 38 predictors were ranked ac-
cording to the values of their corresponding coefficients. Figure 9.4 displays
the median predictor coefficients over the 100 re-sampling folds. Colour in-
tensity indicates the strength of the relationship between each predictor and
the mortality risk. Positive coefficients are represented in red and denote risk
factors (positively correlated with the mortality risk), while negative coeffi-
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Table 9.4: Evaluation metrics for the calibration data set obtained over the 100 folds
of training and testing with the calibration data set. The same values are illustrated
in S1 Fig. The classifier LR refers to Logistic Regression, PLSDA to Partial Least
Squares—Discriminant Analysis, KPLSDA to Kernel PLS-DA and RF to Random Forest.
The parameters correspond to the 2.5% percentile (P2.5), to the 50% percentile (Median)
and the 97.5% percentile (P97.5).

Classifier Value Sensitivity Specificity AUC Accuracy F1-score MCC

LR
P2.5 0.7384 0.7957 0.8611 0.7551 0.5255 0.4430
Median 0.7468 0.8340 0.8640 0.7607 0.5355 0.4518
P97.5 0.7817 0.8424 0.8684 0.7842 0.5541 0.4665

PLSDA
P2.5 0.7285 0.7627 0.8428 0.7432 0.5061 0.4187
Median 0.7612 0.8041 0.8557 0.7670 0.5331 0.4430
P97.5 0.7788 0.8365 0.8672 0.7820 0.5584 0.4687

KPLSDA
P2.5 0.7530 0.6694 0.8395 0.7486 0.5083 0.4068
Median 0.7755 0.7729 0.8521 0.7745 0.5396 0.4423
P97.5 0.8394 0.8297 0.8672 0.7944 0.5784 0.4824

RF
P2.5 0.6861 0.7076 0.8513 0.7158 0.4993 0.4178
Median 0.7598 0.8129 0.8648 0.7698 0.5397 0.4479
P97.5 0.8356 0.8711 0.8780 0.8161 0.5738 0.4864

cients are graphed in blue and connote protection factors against mortality by
COVID-19.

Figure 9.4: Importance metrics for all predictors. Median values (over the 100 re-sampling
folds) of the 38 predictor coefficients sorted by type of data blocks (demographic variables,
clinical variables at admission, comorbidities, pharmacological treatments for chronic condi-
tions, analytics at admission and information about the admission event).

Instead, the coefficient sign consistency over the 100 folds mentioned above
can be inferred from Figure 9.5, where each bar indicates the percentage of
times the corresponding coefficient was positive or negative. Low consistency
points out unclear relationships with the mortality risk that may arise from
the adopted re-sampling scheme and might not be necessarily substantiated by
biomedical rationales.
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Figure 9.5: Coherence metrics for all predictors and classifiers. Bar charts representing the
percentage of folds in which each predictor was found to show a positive (red) or a negative
coefficient (blue) for the LR model (A), the PLSDA model (B), the kPLSDA model (C), and
the RF model (D). Bars with high colour consistency indicate highly consistent relationships
between predictors and mortality.

Based on the coefficients’ magnitude and their sign’s consistency, a subset of
18 features showing high median coefficient (absolute) values and high sign
consistency (above 75%) was selected. Figure 9.6 shows the absolute value of
their median coefficients, sorted in descending order.

The ranking of the most important features was finally used for model valida-
tion. To this end, an incremental strategy was implemented. The first model
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Figure 9.6: Importance of most relevant variables. Ranking (in descending order) of the
18 variables selected according to their Importance and the consistency of their relationship
with the mortality risk over the 100 re-sampling iterations.

to predict mortality was fitted using only the most important feature (age),
and its corresponding classification metrics were obtained. Afterwards, the
second most predictive feature (oxygen saturation) was additionally consid-
ered for model calibration and the resulting classification metrics were stored.
This was iterated for all 18 features from Figure 9.7.

The results obtained when the trained models were used to classify the val-
idation data set were assessed from two perspectives. In the first place, the
sensitivity (Equation 3.34), the specificity (Equation 3.35), the AUC (Equa-
tion 3.37), the accuracy (Equation 3.38), the F1-score (Equation 3.39) and the
Matthew’s Correlation Coefficient (MCC, Equation 3.40), were calculated to
report the overall classification performance. The results showed that satis-
factory classification metrics were achieved using all the employed classifiers.
The LR, RF and kPLSDA classifiers yielded an AUC of around 0.85 with the
final validation data set. Besides, their evolution with the number of impor-
tant variables modelled seemed to agree strongly. This coherence was a good
indicator of the overall classification quality. Still, it was important to ac-
count for another criterion for determining the best classifier: the quality of
the prediction risk.

A second assessment of the quality of the predicted risk was completed in the
performance report. Figure 9.7 shows the estimated Intercept and slope of
the risk calibration curve fitted for each incremental model and classification
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Figure 9.7: Assessment on the quality of the risk calibration. Intercept and slope of the risk
calibration curve obtained for each incremental model with LR (A), PLSDA (B), kPLSDA
(C) and RF (D).

technique. Confidence intervals were calculated assuming a confidence level of
95% and using the estimated coefficients’ standard error.

Figure 9.8 shows each classification technique’s calibrated risk prediction curve
at its optimal variable number setting. These optimal calibration curves are
the closest ones to the dashed diagonal line. Curves in regions aside from the
diagonal would indicate an underestimation of the mortality risk (leading to
under-treatment) or an overestimation (leading to over-treatment).

In general, all the algorithms had a similar performance, although there were
differences in the optimal number of variables. Six variables (age, oxygen
saturation, platelets, LDH, creatinine, and lymphocytes) were selected for LR
and kernel PLSDA. The PLSDA model reached an optimal performance with
ten predictors (from age to rf-24) and RF with five predictors (from generation
to creatinine).

Consequently, in light of the results, Random Forest was selected as the best
classifier, showing slightly better results and with the minimum number of
predictors. Figure 9.9 shows violin plots with the distribution of the five most
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Figure 9.8: Optimal calibration risk prediction curves. Observed mortality (%) vs. the
predicted mortality risk for all the classification algorithms under study at their optimal
variable number setting. Predicted risk values were rounded to the first decimal digit, i.e.,
predicted value 0.1 refers to predictions between 0.05 and 0.15.

important variables on this ranking for the deceased and the alive patients
from the calibration data set.

The results yielded by the RF classification model suggested that five predic-
tors encoded enough information to predict a given patient’s mortality risk
accurately. These five predictors were then explored to devise a simplified
classifier based on them.

Initially, the marginal distributions of age, oxygen saturation, platelets, LDH
and creatinine for each class (“alive” and “deceased”) were inspected (Fig-
ure 9.10). Values of interest (such as the intersection points between the group
distributions of each variable and the percentiles delimiting such distributions)
were chosen as thresholds for each predictor.

Next, a regression model was fitted between these five dichotomized variables
(as shown in Figure 9.10) and the mortality risk predicted by the RF model.
Therefore, the importance of each variable in the mortality score definition
can be quantified as its respective regression coefficient. These coefficients
were scaled by the minimum one and rounded to the closest integer after-
wards, which yielded a scale of variable relative importance for the mortality
prediction (Table 9.5).
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Figure 9.9: Marginal distributions of predictors used by the RF. Violin plots (blue: alive
patients; red: deceased patients) for age (A), oxygen saturation (B), platelets (C), LDH (D),
and creatinine (E).

The relative importance from Table 9.5 was used to establish more intervals for
variables with relative importance above one. These new intervals were based
on searching characteristic points of the distributions, such as slope increase
or decrease. This way, the importance of each variable according to the model
was accounted for to develop a realistic set of scoring rules (Figure 9.11).

It is worth mentioning that, at first, applying these rules leads to a score
ranging from zero to 11. However, since the first three levels of the score were
grouping very little information about the mortality in the deceased group
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Figure 9.10: Histograms with marginal distributions of the final set of predictors. Age,
oxygen saturation, platelets, LDH and creatinine distribution within alive (blue) and de-
ceased (red) patients.

Table 9.5: Relative importance of the five dichotomized variables.

Variable Relative Importance Final Relative Importance
(rounded)

Age 3.60 4
Oxygen saturation 2.60 3
Platelets 1 1
LDH 1.20 1
Creatinine 1.60 2

(Figure 9.12), they were merged into the “zero” category, resulting in the final
score with nine levels, ranging from zero to eight.

The final mortality score ranged from zero to eight, increasing with the mor-
tality risk as shown in Figure 9.13, with the percentage of deceased and alive
patients for each level of the mortality score.
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Figure 9.11: Final set of scoring rules. Formulation of the nine-levels mortality score for
COVID-19 patients at their hospital admission
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Figure 9.12: Accumulated distributions of deceased (red) and alive (blue) patients along
the score values for the calibration dataset (left) and the validation dataset (right).
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Figure 9.13: Observed mortality vs Score curves. Observed mortality at each level of the
score for the Calibration data set and for the Validation data set.

9.5 Conclusions

In this work, we applied machine learning and multivariate statistical classifi-
cation techniques to data prospectively collected from COVID-19 hospitalized
patients in all regions of Spain to build a model for predicting their mortality
risk during hospitalization. The final model encompassed five predictors (age,
oxygen saturation, creatinine, platelets, and LDH) and was trained based on
the Random Forest algorithm. It returned in external validation (when pa-
tients not considered for model training and optimization were to be assessed)
an AUC of 0.8454.

Virtually all published studies on COVID-19 populations agree that both age
and oxygen saturation at hospital admission are closely related to the likelihood
of death [181], [190]–[199]. Besides, COVID-19 mortality is strongly linked to
a specific inflammation process and a coagulation disorder. Some patients de-
velop a severe inflammatory syndrome, which results in uncontrolled activation
of the immune system and a massive release of pro-inflammatory cytokines,
which translates into an increase in acute-phase reactants such as C-reactive
protein, interleukin-6, ferritin, cell destruction markers such as LDH, and an
increase in pro-inflammatory cells such as neutrophils [190], [192], [196], [197],
[200], [201].

Another complication that results in high mortality in these patients is co-
agulation disorders. COVID-19 results in a systemic hypercoagulation state,
producing pulmonary thromboembolisms, ischemic strokes, and other condi-
tions, and many patients experience severe complications. This complication
can be assessed based on two laboratory parameters: D-Dimer and platelets
[191], [193]. Most prognostic studies also identified creatinine or urea as impor-
tant factors related to mortality risk [181], [190]–[199], [202]. Our data showed
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that creatinine is the laboratory parameter that most influences mortality in
renal function, indicating whether renal filtering is effective.

Model calibration was carried out, exploiting exclusively information that can
be easily recorded at the admission to the hospital of COVID-19 patients.
However, even if this information is available at the early stages of their hospi-
talization, we also tried to reduce as much as possible the number of variables
to obtain an accurate mortality risk prediction without compromising its qual-
ity and performance.

A clear strength of our work is that the original database contains routinely
obtained clinical data readily available at the hospital admission of this kind of
patient. In multiple epidemiological studies, age, oxygen saturation, platelets,
LDH, and creatinine were previously identified among the core variables re-
lated to morality and severe disease development after SARS-CoV-2 infection.
These five variables were also the most predictive features in our research,
independently of the classification algorithm utilized. In practical terms, this
means that predictive models could accurately estimate the mortality risk for a
given patient just by recording the values for these five clinical parameters. All
these features are coherent with the information already available about this
disease [181], [197], [198]. Our results showed that the probability of mortal-
ity for COVID-19 depends on variables of different nature and not exclusively
on those associated with respiratory functions. In addition to making models
more economical, reducing the number of predictors to a minimum set that is
easy to measure also enables easy implementation of this predictive strategy
for clinical use and further validation with other datasets.

Another strength of this analytical approach lies in the sample size, a prospec-
tively recruited cohort of 12,509 patients, including more than 2,000 deceased
individuals. The sample size of previous studies on mortality among COVID-
19 inpatients performed at Spanish hospitals ranged between 2,000 and 4,000
individuals [193], [203] with 6.5% and 28.0% of mortality, respectively. Con-
versely, other studies with a larger sample size could not achieve proper pre-
dictive models [204]. Besides, the massive number of articles submitted during
the pandemic in 2020 forced editorial offices (even of well-known biomedical
journals) to change their policies due to scandals and polemics related to the
reliability of the published data [205].

Furthermore, a systematic approach was implemented to compare statisti-
cal and machine learning algorithms regarding classification performance and
model inference on the predictors. This compelling (but barely used) approach
enables a more comprehensive assessment of inferential coherence among differ-
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ent methodological strategies, which otherwise would be exploited as black-box
techniques. Consequently, we consider that this additional validation increases
the reliability of our results.

Our study showed, though, several limitations. This model was fitted in one of
the worst moments of the pandemic. The patients included in this study were
hospitalized during the first period of the pandemic, so the clinical characteris-
tics of patients in our country today could be different [206]. Moreover, in 2022,
patients could have different outcomes given better knowledge of COVID-19
disease and the coverage of the vaccination campaign. However, in many coun-
tries - especially less developed ones - the situation may differ greatly from our
current scenario, and our findings may still be clinically helpful. In any case,
our final prediction model should be tested with an updated and more recent
picture of the COVID-19 situation. Although it is not clear if the predictors
of mortality have changed, new conditions may result in lower mortality rates
for patients with a high-risk profile. Such an assessment constitutes one of the
main objectives of our future research work.

In conclusion, we used several statistical and machine learning approaches to
obtain a data-driven model based on variables that could be easily acquired
at COVID-19 patients’ admission to the hospital to determine their mortality
risk. This resulted in a final model based on five predictors (age, oxygen
saturation, platelets, LDH, and creatinine) that yielded a highly satisfactory
classification performance (with an AUC of 0.8454). The interpretation of this
model and the investigation of the relationships between these five predictors
and the mortality risk contributed to the definition of a mortality score for
COVID-19 patients at their admission that can be easily calculated and easily
interpreted (it linearly increases along with the mortality risk). Once validated
with a prospective cohort representative of the latest COVID-19 management
protocols, the mortality prediction model could be used as a powerful tool for
the early recognition of the gravity and priority needs of SARS-Cov-2-infected
hospitalized patients.
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Fluorescence measurements
standardization
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10.1 Introduction

Synthetic Biology is a field with an increasing role within the manufacturing
industry. However, its settlement from a trial-and-error process to an engi-
neering discipline, embracing more formal methods, requires standards. These
facilitate the Design-Build-Test-Learn (DBTL) lifecycle by enabling the inte-
gration of inherently different tools and techniques into coherent workflows.
The DBTL cycle requires a complete description of the components in a bio-
logical system, data to describe the system function and interconnections, and
computational models to predict the impact of environmental parameters on
the system’s behaviour. In this context, data standards expressing genetic con-
structs and their mathematical models foster information sharing, which is key
to overcoming characterization and reproducibility issues across laboratories.

Reproducibility can be ensured by establishing an unbroken chain of calibra-
tions to specified reference standards [208], [209] and quality control of the ref-
erence materials used for calibration. Using calibrated absolute standard units
and protocols allows measurements and estimations from different sources or
measurement device settings to be integrated and compared faithfully into a
common domain.

The expression of fluorescent reporters is commonly used for quantifying gene
expression levels. Fluorescent dyes are also used for quantifying a wide range
of other biological properties. Two main classes of devices are used for mea-
suring fluorescence: flow cytometers and plate readers. A measure of the light
emitted by a certain fluorescent molecule, e.g. the Green Fluorescent Protein
(GFP), is used to estimate the amount of GFP molecules expressed by the
cell. Thus, by linking the expression of a gene of interest to that of GFP,
fluorescence measurement can be used to measure the expression level of the
first one indirectly.

Two main problems affect the proper characterization of gene expression using
fluorescence measurements. On the one hand, the values obtained are affected
by the measurement device setup. In particular, the device’s gain is set so
that measurements do not saturate. Consequently, for a series of related ex-
periments spanning a wide range of fluorescence intensities, it is common for
different device gains to be used. This makes comparing results difficult, as
the relationship between the actual fluorescence and the gain-affected measure-
ment may be nonlinear.

On the other hand, fluorescence measurements are usually expressed in ar-
bitrary units. Some studies have been trying to normalize fluorescence mea-

262



10.1 Introduction

surements with a biological sample cultured in parallel with the experimental
models [12]. However, such normalization may produce less precise measure-
ments than normalization using an independent calibrant due to the ill-defined
potential variability of the biological samples used for normalization [210].

The model used by PLATERO transformed from fluorescence measurements
relative to the plate reader setting and expressed in arbitrary units to units
of calibrant concentration, which are absolute, comparable, and independent
of the measurement device setup. As for the measurement device setup, we
propose a correction of the fluorescence readings by using a gain-effect model.
To address the problem of the arbitrariness of units, we use already established
protocols [208]–[210] with calibrants that can be used to produce precise esti-
mates of molecules equivalent of fluorescein (MEFL), and fluorescein concen-
tration from fluorescence measurements. The resulting unit calibration model
enables users of fluorescence plate readers to bring experimental measurements
into a common gain-independent domain. This allows for comparing results
obtained from different plate readers possibly located at other laboratories
(Figure 10.1a).

A key aspect of any measurement device and its associated measurement pro-
tocol is the analysis of the uncertainty of the calibration and the study of
variability and its sources associated with the protocol operations and the
measurement device. PLATERO’s calibration protocol embeds a Measurement
System Analysis (MSA) that provides both an estimation of the uncertainty
that we can expect on the predicted concentration value and an assessment of
the plate reader being used and the sources of uncertainty.

PLATERO has been implemented as a Matlab toolbox and is freely available
at https://github.com/sb2cl/PLATERO.

The remaining chapter is organized as follows. Section 10.2 describes the
materials used to carry out the protocol and gives a detailed list of instructions.
In Section 10.2.2, we explain the methods underlying the calibration model and
the associated analysis of uncertainty. In Section 10.4, we describe the results
that can be obtained using the protocol and how they can be assessed using the
embedded Measurement System Analysis. Finally, a brief discussion is given
in Section 10.5.
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(a) This flowchart shows how the PLATERO calibration model brings the experimental measure-
ments into a common gain-independent domain using standard concentration MELF units. The
calibration protocol embeds a Measurement System Analysis providing an estimation for the uncer-
tainty that can be expected on the predicted concentration value, an assessment of the plate reader
being used, and the sources of uncertainty.

(b) This flowchart shows the procedure diagram to retrieve concentration values from observed
fluorescence (Fobserved). The Fobserved values are a function (fG) of the medium fluorescence
(FBLK), the fluorescence of the reporter (Freporter), and the gain (G) at which fluorescence values
are measured. Once the gain and background effects are removed, the Freporter values are retrieved.
The units conversion function (fUC) transforms these corrected fluorescence values into standard
concentration units.

Figure 10.1: Workflows illustrating the experimental procedure followed to fit the
PLATERO calibration model (a) and then to exploit it with new samples of the fluores-
cent reporter (b).
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10.2 Methods

10.2.1 Experimental procedure

The PLATERO protocol requires preparing serial dilutions of a reference flu-
orescein sodium salt solution (Sigma-Aldrich #46970) [209] to perform the
fluorescence calibration.

This reference solution can be prepared from the fluorescein sodium salt power
by weighing and dissolving in a known volume. The concentration of this
reference solution can be further confirmed by measuring its absorbance at
492 nm and calculating concentration using an extinction coefficient of 68.029
mM−1 cm−1, the appropriate pathlength from your spectrophotometer (nor-
mally ℓ = 1cm) and the law of Beer-Lambert as follows:

C =
Abs492
ε · ℓ

(10.1)

Starting from 1mL of the 10µM reference solution of fluorescein in Phosphate
Saline Buffer (PBS), the experimental protocol described in [211], modified
from [208], [212]), has to be carried out to get serial dilutions.

In short, following the protocol obtains a serial dilution of fluorescein with
five increasing concentrations plus only PBS solution for blanks (FBLK). In
our case, we used the concentrations 0.0391, 0.0781, 0.1562, 0.3125, and 0.625
µM. Samples of this serial dilution have to be randomly transferred into a 96-
well black/clear flat bottom microplate with 16 replicates for concentration.
Therefore, the 96-well plate contains 16 technical replicates per each of the five
fluorescein concentrations and 16 technical replicates of the blank FBLK .

Fluorescence measurements of the 96-well plate using a plate reader must be re-
peated eight times. The plate reader has to be configured to cover a wide range
of the spectrum of gains of the plate reader. In our case, we used the Agilent
BioTeK Cytation 3 Cell Imaging Multi-Mode Reader to show the capabilities
and benefits of using PLATERO. We configured it using an excitation/emis-
sion wavelength of 488/530nm. In addition, we arranged it at four different
detection gain levels, G = 50, 60, 70, 80.
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10.2.2 Calibration model

In this section, we first describe the calibration model used by PLATERO,
which enables converting from arbitrary fluorescence units to concentration
expressed as the equivalent concentration of fluorescein. Next, we show how
the uncertainty estimation was included as the final step of the calibration
model fitting to validate the conversion model. We show how the Linearity
and Bias analysis (L&BA) is applied to obtain the uncertainty of the esti-
mated concentrations the protocol model provides. We used a test based on
the confidence interval built around estimating the true concentration of re-
porters within a well. We will consider the estimation valid if this confidence
interval contains the true concentration value. Finally, we describe how to
apply the Reproducibility and Repeatability analysis (R&RA) to assess the
different sources of the observed variability in the estimations.

A detailed list of the steps required to apply the full calibration protocol and
the Matlab functions performing each step can be found within the PLATERO
toolbox available from the GitHub repository https://github.com/sb2cl/
PLATERO. Throughout the following subsections, some references to the corre-
sponding functions of the toolbox are provided.

Figure 10.1b depicts the different factors involved in the fluorescence measure-
ment provided by a plate reader. To obtain the calibration model used by
PLATERO, we have to (1) compensate for the background fluorescence and
correct the effect of plate reader gain on the fluorescence observations and (2)
convert the arbitrary units of fluorescence of these observations to standard
fluorescein concentration units.

Device gain and background fluorescence.

The plate reader gain is one of the key parameters to set up before measuring
the fluorescence of a reporter. If the gain is too low, the lower limit of the
measured fluorescence range will not be correctly detected by the instrument.
Conversely, if the gain is too high, the upper limit of the fluorescence range
will saturate, so it cannot be measured. The relationship between the actual
fluorescence in a sample (Freal) and the fluorescence measured by the plate
reader (Fobserved) is a nonlinear function of the gain, as depicted in Figure 10.1.

To obtain the relationship between Freal and Fobserved, we carried out an iter-
ative model search looking at the experimental relation between fluorescence
Freal and the gain G (Figure 10.2). At first glance, visualizing Figure 10.2a,
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(a) Fluorescence values (with the medium fluo-
rescence values, FBLK subtracted) of the calibra-
tion subset against gain values for each concen-
tration level.

(b) Fluorescence values (with the medium flu-
orescence values, FBLK subtracted) of the cali-
bration subset in logarithmic scale against gain
values for each concentration level.

Figure 10.2: Fluorescence values of the calibration data subset for different gains (a) and
considering a log transformation (b). As can be seen, the y-axis represents Fobserved−FBLK ,
with the additive background noise already removed as suggested later in Equation 10.4, but
it is still not Freal, as the Gain effect has not been removed yet.

it seems clear that there is not a linear relation between fluorescence values
and gain. On the contrary, such a non-linear relation appears to be exponen-
tial. For that reason, an exponential effect of the gain is initially proposed in
Eq. 10.2.

Fobserved = fG(Freal, G) = Freal · eb1·G (10.2)

Note that taking logarithms in Eq. 10.2 yields the analytical expression of
a linear model. Therefore, if it was an adequate approximation, one would
expect to see a linear relation when representing the logarithm of the fluores-
cence as a function of G. However, Figure 10.2b shows a slightly quadratic
relation. Hence, it could conceivably be hypothesized to add a quadratic effect
to Eq. 10.2 in the exponential term .

From this, we inferred an exponential relationship between Freal and Fobserved

with a gain-dependent quadratic term in the exponent:

Fobserved = fG(Freal, G) = Freal · eb1·G+b2·G2

(10.3)
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Figure 10.3: Schema representing the assessment on the proposed model done by a model
building and a model validation step. Particularly, eleven out of the sixteen wells (≈ 70%)
for each concentration level were randomly selected for the Model Building step, and the
rest were used for the Model Validation.

Where b1 y b2 are the coefficients of the linear and the quadratic terms, re-
spectively, modelling the exponential effect of the gain on the fluorescence.
We assumed that the gain correction (Equation 10.3) does not depend on the
measured fluorescence values. That is, its structure and the importance of the
coefficients depend on the measurement device but not on the range of the
fluorescence.

Next, we considered a simple additive relation between the fluorescence signal
in a well Freal, the actual reporter fluorescence Freporter, and the inherent
fluorescence background FBLK :

Freal = Freporter + FBLK (10.4)

As depicted in Figure 10.3, Freal is the input signal to the plate reader. In
practice, separating the Freporter signal from the FBLK noise is not feasible
for each well. The background term FBLK is usually estimated by having
some wells with culture medium but no fluorescent reporter, and obtaining
their averaged measured fluorescence. This common estimate is then used to
retrieve the Freporter value for each of the wells in the plate. In our case, FBLK

was estimated as the median fluorescence value of wells containing only PBS
buffer, acquired at the same gain (see Section 10.2.1). The function checkblk.m
in the PLATERO toolbox provides fast analysis of the blank wells and prevents
including potential outliers, which could distort the estimation of FBLK .
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Replacing Equation 10.3 in Equation 10.4, we can obtain the true fluorescence
value of the signal of interest Freporter:

Freporter = (Fobserved − FBLK,G) · e−b1·G−b2·G2 (10.5)

where FBLK,G refers to the FBLK estimate at a certain gain level G.

The function gaincfs.m in the PLATERO toolbox computes the coefficients
b1 and b2 in Equation 10.5. Further details about using this function can be
found in the toolbox documentation.

Conversion of concentration units

To convert the arbitrary units of fluorescence to standard fluorescein concen-
tration units, we assumed a linear model between the reporter fluorescence
(Freporter) and a concentration, C:

C = fUC(Freporter) = c0 + c1 · Freporter (10.6)

where fUC is the units conversion function, Freporter is obtained from Equa-
tion 10.5, c0 is the intercept term of the linear model and c1 is the slope of the
linear model. Notice one might expect a calibration curve containing the (0,0)
point (no fluorescence measured at 0 nM concentration, i.e. c0 = 0). However,
the coefficient c0 is important to capture offset biases introduced by the plate
reader.

Estimating coefficients c0 and c1 in Equation 10.6 is implemented in the func-
tion cfcoeff.m in the PLATERO toolbox. This function returns the estimated
values and further information about the quality of the fitting.

Finally, the calibration model for the fluorescence concentration can be ex-
pressed as in Equation 10.7, where the correction of the gain effect (Equa-
tion 10.5) and the conversion of units to equivalent fluorescein concentrations
(Equation 10.6) are included.

C = c0 + c1 · (Fobserved − FBLK,G) · e−b1·G−b2·G2

(10.7)
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10.2.3 Measurement system analysis

Determining the quality of the measurement system is critical to trust the read-
ings of any measurement system. This is done by evaluating the Repeatability
and Reproducibility (R&RA) and the Linearity and Bias (L&BA) analyses.
On the one hand, the L&BA assesses the variability of the predictions yielded
by Equation 10.7 along the range of concentration values, i.e., how much vari-
ability should be expected in the predictions.

On the other hand, the R&RA allows us to quantify and decompose the uncer-
tainty as the sum resulting from the different sources of variability, i.e., where
is that variability in the predictions coming from? Since the (R&R) analysis
will be performed with data already expressed as the predicted concentration
(Equation 10.7), assessing the variability of the measurement system will in-
clude:

• variability due to lack of repeatability: “Do we get the same predicted con-
centration value if we measure the same well several times under identical
conditions?”

• variability due to lack of reproducibility: “Do we get the same predicted
concentration value if we compare values of the same well but measured
with different gains?”

Thus, performing a Measurement System Analysis (MSA) that integrates both
L&BA and R&RA lets PLATERO not only measure the uncertainty expected
from the measurements but also check and validate the calibration model,
comparing the reproducibility and repeatability terms.

Linearity and bias analysis

The accuracy of a measurement system (more specifically referred to as bias)
reflects the difference between the observed measurements and the correspond-
ing true values. Besides, the linearity of the measurement system reflects dif-
ferences in bias over the range of measurements made by the system. We
consider a simple model for bias:

Bias = Ĉ − CT = d0 + d1 · CT (10.8)
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Where Ĉ is the predicted concentration value given by Equation 10.7, CT is
the true value of the concentration obtained from a master or gold standard,
d0 the intercept, and d1 the slope of the model.

PLATERO evaluates Equation 10.8 for I wells measured K times each, us-
ing J different device gains for each well and L different concentration levels.
Therefore, an experiment will have I × J ×K × L individual measurements.
Using these values, the equation parameters are estimated using the functions
provided by PLATERO (see Section 10.4.1). The number of degrees of freedom
(DF ) of the error after fitting Equation 10.8 is also stored as part of the model
estimates because it will be used in Equation (10.12) to obtain the t-Student
statistics (tDF,α/2)

Once the parameters from Equation 10.8 have been estimated, the linearity
and bias contributions, %Linearity and %Bias respectively, are calculated to
evaluate their relevance as:

linearity = V ariation · d1 (10.9)

%Linearity =
linearity

V ariation
· 100 = d1 · 100 (10.10)

%Bias =
L∑

l=1

Biasl
V ariationl

/L (10.11)

where Biasl is the average of Bias for the l-th concentration level, V ariationl

is the 6 · σ̂total for the l-th concentration level (from the R&R analysis in
Section 10.2.3), and L is the total number of concentration levels. All terms
from Equation 10.8 to 10.11 can be estimated by the function biasanalysis.m.

Modelling the bias as in Equation 10.8 is also necessary to consider uncer-
tainty in the predictions. The (1 − α) · 100% confidence interval (CIC) for a
given concentration prediction Ĉ is calculated by function cipred.m, using the
expression:

CIC = Ĉ ± tDF,α/2 · sBias (10.12)

Where tDF,α/2 is the (1 − α) percentile of a t-Student distribution with DF
degrees of freedom (degrees of freedom of the error from the linear model in

271



Chapter 10. Fluorescence measurements standardization

Equation 10.8) and sBias is the estimated standard deviation of Bias (Equa-
tion 10.8).

Note that Equation 10.12 assumes that the predictions’ uncertainty is the
same for all concentrations (i.e., homoscedasticity). However, it is usual to
find that the variance for the projections is different across concentrations
(i.e., heteroscedasticity). In the case of having a proportional relationship
between the error and the magnitude being measured, the heteroscedasticity
can be easily neutralized by normalizing the bias values with the observed
concentration level in the calibration data set using the following equation:

Bias · 1

CT

= d0 ·
1

CT

+ d1 (10.13)

The scaling mentioned above affects the calculation of the confidence intervals.
The Equation 10.12 is rewritten as:

CIC = Ĉ ± tDF,α/2 · sBias · Ĉ (10.14)

Where sBias is the estimated standard deviation of the scaled Bias, calculated
with Equation 10.8, the last term in Equation 10.14 is the concentration value
that undoes the scaling of the Bias and gives to the confidence interval, the am-
plitude corresponding to a particular concentration level. Ideally, this should
be the right concentration level CT . However, when the true concentration val-
ues remain unknown in model exploitation, the predicted concentration (Ĉ) is
used.

R & R analysis

Generally, the total observed experimental variability σ2
T is the sum of the

part-to-part variability of the measured magnitude (σ2
P2P ), and the inherent

variability arising from measurement errors (σ2
MS). In our case, σ2

P2P arises
when different plate wells containing the same concentration yield different
fluorescence measurements. This can be explained by the stochastic component
of the biochemical reactions within the well and the intrinsic experimental
variability introduced during the preparation of the well plate. By contrast,
σ2
MS comes from the measurement device (plate reader) [213], [214]. In turn,

the measurement system has two sources of variability: i) the variance due
to lack of repeatability σ2

Repeat (observed variability when repeating the same
measurement), and ii) the variance coming from the lack of reproducibility,
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σ2
Reprod (observed variability when the same well is measured under different

gains). This can be expressed mathematically as:

σ2
T = σ2

P2P + σ2
MS = σ2

P2P + σ2
Repeat + σ2

Reprod (10.15)

The purposes of the R& R analysis (R& RA) are:

1. Determine how much of the total variability is generated by the measure-
ment instrument.

2. Isolate the measurement system components of variability (i.e. σ2
Repeat

and σ2
Reprod).

3. Assess whether the measurement instrument is suitable for the intended
application.

The R& RA isolates all the components of variability from Equation 10.15 and
estimates them individually using Design of Experiments (DOE) and Analysis
of Variance (ANOVA).

In our work, the analyzed data come from a DOE with two factors: the well
(W) and the device gain (G) at which the fluorescence values were measured.
Consider the measurement instrument measures I wells at J gains for K rep-
etitions. The statistical model that describes the sources of variability is rep-
resented as follows:

yijk = µ+Wi +Gj + (WG)ij + εijk


i = 1, 2, . . . , I

j = 1, 2, . . . , J

k = 1, 2, . . . ,K

(10.16)

where yijk is an individual measurement of fluorescence, µ denotes the general
mean, Wi, Gj and (WG)ij are independent random variables accounting for
the effect of the well, the gain, and the interaction between well and gain,
respectively, and εijk is an independent random variable that represents the
random error.

If each variable Wi, Gj, (WG)ij and εijk is normally distributed variables with
zero mean and variance defined as:

var(Wi) = σ2
W (10.17)
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var(Gj) = σ2
G (10.18)

var(WGij) = σ2
WG (10.19)

var(yijk) = σ2
T = σ2

W + σ2
G + σ2

WG + σ2 (10.20)

Estimating each variance component using ANOVA as shown in [213] is possi-
ble. The variability of the wells σ2

P2P corresponds to σ2
W , σ2

Repeat corresponds
to the random error σ2, and σ2

Reprod corresponds to σ2
G +σ2

WG. Thus, the total
variability σ2

T is estimated as:

σ̂2
T = σ̂2

P2P + σ̂2
MS = σ̂2

P2P + σ̂2
Repeat + σ̂2

Reprod = σ̂2
W + σ̂2

G + σ̂2
WG + σ̂2 (10.21)

Once we have estimated the variability of each isolated component, it is possible
to calculate the respective contribution to the total variability:

Cont(σ̂2
MS) = σ̂2

MS/σ̂
2
T (10.22)

Cont(σ̂2
Repeat) = σ̂2

Repeat/σ̂
2
T (10.23)

Cont(σ̂2
Reprod) = σ̂2

Reprod/σ̂
2
T (10.24)

Cont(σ̂2
P2P ) = σ̂2

P2P/σ̂
2
T (10.25)

Note that the R& R analysis will be carried out on the predicted concentration
values from Equation 10.7. Hence, when we report the measurement system’s
performance, we will include the unit conversion operation as part of the mea-
surement system, as illustrated in Figure 10.3. Thus, the results obtained in
this analysis will serve as a part of the validation of the unit conversion model
proposed in Equation 10.7.
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10.3 Datasets

The following section includes a comparison between three different measure-
ment setups:

• Plate reader 1 (PR 1 ): this setup yielded the data already used along
the chapter in Sections 10.4.1 , 10.4.1 , 10.4.2 and 10.4.3. In this case,
all concentrations, even those outside the calibration range used in Sec-
tion 10.4.3, were included as part of the validation data set.

• Plate reader 2 experiment 1 (PR 2 exp. 1 ): fluorescence was measured
with a different plate reader and modifying a part of the measurement pro-
cedure, i.e., the fluorescein dilutions were not stirred between repetitions.
The model was fitted with 70% of the measurements and validated with
the remaining 30%. In this case, the gains used to calibrate the model
were between 60 and 90, and all concentrations were used for training
and validation.

• Plate reader 2 experiment 2 (PR 2 exp. 2 ): for the third setup, PLATERO
was executed with data from plate reader 2, but following the same mea-
surement procedure as in PR 1. The model was fitted with 70% of the
measurements and validated with the remaining 30%. In this case, the
gains used to calibrate the model were between 60 and 90, and all con-
centrations were used for training and validation.

The concentrations and repetitions obtained in the experimental protocol above
were arranged in a database using the following Design Of Experiments (DOE):
for a crossed design with two factors involved (Well and Gain), the measure-
ment instrument measured I wells at J gains for K repetitions or replicas.
This way, one set of I × J × K measurements was obtained for each one of
the L concentration levels. Particularly, our database had 2048 observations.
That is, L = 4 concentrations (3 fluorescein + 1 empty) ×16(I) wells ×4(J)
gains ×8(R) measurement repetitions. Thus, each observation combined a
concentration level, a well, the gain used for its acquisition, and the number
of replicas. The resulting data and test software are publicly available as a
Zenodo repository [215].
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10.4 Results

This section goes through the different steps of PLATERO’s calibration proto-
col in a tutorial-like style, showing how to apply it. To this end, we used two
other plate readers. Notice the values of parameters in this section, and the
results of the evaluation of the variability obtained, are particular to the plate
readers we used. The section aims to show how PLATERO is applied and the
results and analysis that can be drawn for its application.

The sections are divided into four main parts. Section 10.4.1 describes the
results obtained from using PLATERO with a fluorescein calibration dataset,
estimating the coefficients in Equation (10.7) and (10.12) to predict the flu-
orescein concentration of the plate wells. Next, Section 10.4.2 assesses the
validity of the gain effect function fG in Equation 10.3, showing the results ob-
tained from a hypothetical scenario where an incorrect gain effect function fG
is assumed. Finally, Section 10.4.3 describes the results when the expressions
fitted in Section 10.4.1 are applied to predict the concentration of samples with
fluorescein concentration out of the calibration range. Finally, Section 10.4.4
gives the results obtained for a second plate reader, showing how in this case,
PLATERO warned of problems related to the consistency of measurements
caused by the device. The datasets we used in all cases and the Matlab scripts
running PLATERO on these datasets can be obtained from the Zenodo repos-
itory [215].

10.4.1 Model building and validation

This is a two-step procedure, as depicted in Figure 10.3. It is the first task
a user of PLATERO must carry out before exploiting the calibration model
with fluorescence measurements from cells expressing any fluorescent reporter,
in this case, Green Fluorescent Protein (GFP). The experimental calibration
protocol followed the steps detailed in Section 10.2.1, yielding a data set with
fluorescein measurements.

We used the dataset obtained from the first plate reader [215]. This dataset
was divided into two subsets: one for the Model Building process and another
for the Model Validation. In the following sections, we will show the results
obtained with our particular data set in the Model Building (Section 10.4.1)
and Model Validation (Section 10.4.1) steps.
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Model building

The first step a user of PLATERO must carry out is the Model Building.
In our case, the model-building dataset contained approximately 70% of the
wells with fluorescein, chosen by random selection. That is, we used 1056 of
Fobserved (3 concentrations×4gains×11wells×8 repetitions). Random selection
prevents potential location effects due to the selection of wells in a specific row
or column order.

First, the gain effect model (fG) was fitted for each set of four Fobserved val-
ues acquired from each well at each repetition. Thus, 264 estimates (N=8
repetitions×11 wells×3 concentrations) for the coefficients b1 and b2 in Equa-
tion 10.5 were obtained. This approach was preferred instead of having one
single estimate for each parameter in fG because we wanted to assess the sta-
bility of the FBLK,G, b1 and b2 parameters from fG.

The first step for this assessment was to estimate the FBLK,G terms for each
gain level. At this point, it is important to acknowledge that working with real
data sets may imply the existence of potential outliers due to measurement
errors or other issues.

(a) FBLK values by wells and gain. (b) FBLK values by gain.

Figure 10.4: Fluorescence values for the wells without fluorescein (FBLK,G) used to measure
the reader bias by wells and gain (a) and just by gain levels (b).

As it can be seen in Figure 10.5a, some observations (well G6) had higher
fluorescence measurements than the majority of the values acquired at the
same gain. To prevent the influence of these potential outliers in the estimation
of FBLK,G in Eq. 10.5, they were calculated as the median fluorescence of the
empty wells for each gain level. These were used to correct the additive noise
introduced by the medium.
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Afterwards, to check if b1 and b2 were significantly consistent for all levels
of concentration, a nested arrangement employed to estimate components of
variance is used, called hierarchical design [216]. Thus, the different wells
are hierarchically subsumed under the levels of concentration. The associated
ANOVA table is shown below.

(a) ANOVA result for the b1 coefficient.

(b) ANOVA result for the b2 coefficient.

Figure 10.5: ANOVA tables assessing the stability of values obtained for the two coefficients
in Equation 10.5.

In Figure 10.5, it can be seen that assuming a 5% type I risk α, there were no
statistically significant differences between coefficients fitted with data from
different concentrations (p-values > 0.05 for the concentration factor). As
a result, this validated the third assumption of the same gain effect for all
concentration levels. The final b1 and b2 values were calculated as the median
values of the overall coefficients. The global coefficient values are shown in
Table 10.1.

Table 10.1: Estimated coefficients for the gain effect model (N = 264)

Coefficients Median Interquartile range

b1 0.24298 0.0035
b2 -9.933·10−4 2.5933·10−5

Median values for b1 and b2 (Tables 10.1 and 10.2) were finally considered
as the global estimates of the gain effect in the fluorescence measurements
Freporter from Equation 10.5. These values are part of the final calibration
model (Equation 10.26).
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Table 10.2: Coefficients of the units conversion model.

FBLK,G b1 b2 c0 c1 sBias DF
G=50 G=60 G=70 G=80

4 10 26 65 0.243 −9.933 · 10−4 −1.1185 · 10−3 1.0576 0.0225 1054

(a) Scatter plot of concentration vs. the raw
original values (Fobserved).

(b) Scatter plot of concentration vs. corrected
fluorescence values (Freporter).

Figure 10.6: Calibration data set before and after correction with Equation (10.5).

Figure 10.6 depicts the difference between the data before and after removing
the gain effect fG (left and right plots, respectively). In Figure 10.6a, the
observed fluorescence (Fobserved) at different gain values (ranging from G=50 to
G=80) has a clear non-linear effect concerning each fluorescein concentration.
On the contrary, this effect disappears in Figure 10.6b, where all data points
describe the same linear relationship between the fluorescence Freporter at each
concentration value, regardless of the gain.

The second step is to fit the units conversion model, fUC , to obtain fluorescence
data expressed in standard fluorescent units. PLATERO automatically fits the
units conversion model using the function fUC and the estimated parameters
for Equation 10.6. The resulting model for this first plate reader was:

Ĉ = −1.1185 · 10−3 + 1.0576 · (Fobserved − FBLK,G) · e−0.24298·G+9.933·10−4·G2

(10.26)

where FBLK,G=50 = 4, FBLK,G=60 = 10, FBLK,G=70 = 26 and FBLK,G=80 = 65.

Now, for a given value of fluorescence (Fobserved) measured at any gain (G),
we can provide a prediction of the fluorescence concentration Ĉ in standard
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units. However, the fluorescence values in Figure 10.6 showed some variability
despite belonging to the same concentration or gain level for either Fobserved

(Figure 10.6a) or Freporter (Figure 10.6b). This resulted from the inherent
experimental variability, and we must consider it to provide more confident
predictions. To do so, we applied Equation 10.26 to the Model Building dataset
and analyzed the error (bias) between the estimated concentration Ĉ and the
true concentration values CT .

As shown in Figure 10.7a there was a clear heteroscedasticity (i.e., unequal level
of dispersion along the range of a variable) in the residuals. This is reflected by
bias values being more dispersed for higher concentration values. Indeed, this
could affect the quantification of the uncertainty: an increased dispersion of
the residuals, along with concentration values, should be reflected accordingly,
yielding higher levels of uncertainty for the predictions of higher concentration
values. Nonetheless, as the relationship between the error and the magnitude
being measured is proportional, heteroscedasticity can be easily neutralized by
Equation 10.13 (Figure 10.7b).

Figure 10.7 illustrates the normal probability plots of the residuals after fitting
the bias regression model using bias values without (Figure 10.7a) and with
(Figure 10.7b) the scaling from Eq. 10.13.

(a) Normal probability plots of the raw residuals.
(b) Normal probability plots of the scaled resid-
uals.

Figure 10.7: Residual analysis with Normal probability plots of the residuals quantifying
the uncertainty without including (a) and including (b) the normalization by the concentra-
tion values from Eq. 10.13

As it can be appreciated, the right normal probability plot, which included the
scaling mentioned above of the residuals by the concentration, fitted the line of
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(a) Scatter plot of the scaled bias values, where
black dots represent every scaled bias value and
red squares are the mean scaled bias value for
each concentration level.

(b) Normal probability plot of the scaled resid-
uals. The red dashed line represents the curve
described by a perfect normal distribution. Black
crosses are the scaled residuals.

Figure 10.8: Results of the Bias and Linearity analysis with the scaled residuals obtained
using Equation 10.13 with observations in the Model Building subset.

the normal distribution. Thus, the sBias term was estimated as the standard
deviation of the scaled bias.

Figures 10.8a and 10.8b illustrate the dispersion and the normal probability
plot of the scaled residuals, respectively, obtained with Equation 10.13. As it
can be seen, the normal probability plot fits the line of the normal distribution,
validating the use of the scaled bias model from Equation 10.13.

The last step is to estimate the sBias term as the standard deviation of the
scaled bias. This resulted in the following expression (for the case of our partic-
ular calibration dataset) to compute the confidence intervals for the estimated
concentration Ĉ, at a (1− α) · 100% confidence level:

CIC = Ĉ ± t1054,α/2 · 0.0225 · Ĉ (10.27)

where Ĉ is the concentration prediction from Equation 10.26, and t1054,α/2 is
a t-Student statistic automatically calculated by the cipred.m function.

To sum up, Table 10.2 contains all the estimates for the parameters obtained
in the Model Building step.
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Model validation

The calibration model fitted in the previous Section 10.4.1 was used to predict
the fluorescein concentration levels using the Model Validation data set (see
Figure 10.3). Particularly, these predicted concentration values were used:

• to carry out an R&R analysis assessing the sources of variability affecting
the predictions for each concentration level;

• to perform a B&L analysis assessing the variability of the scaled residuals
across the range of concentration levels; and

• to validate if the confidence intervals of such predictions contained the
true fluorescein concentration value.

R&R analysis. These analyses (one for each concentration level) seek to eval-
uate how the experimental conditions (well location, well volume, the gain
of the device, or the number of repetitions of a measurement) relate to the
differences observed between the values of the predictions of concentration, Ĉ.

The R&R analysis decomposes the total variability seen in Ĉ into different
sources of variability as the result of different experimental factors: (1) the
“Part-to-Part” component (σ2

P2P ) associated with differences among the wells,
(2) the “Reproducibility” component (σ2

Reprod) generated by the differences re-
lated to measuring at different gain values, and (3) the “Repeatability” compo-
nent (σ2

Repeat) that is associated to differences seen between repetitions of the
measurements.

Figure 10.9 shows the distributions of these three sources of variability for
the concentrations analyzed with the data corresponding to the Plate Reader
1. The part-to-part variability contributed more to the total variability than
the reproducibility component for all concentrations. This means that the
variability of the predictions of concentration Ĉ for the same well, even if
taken at different gain levels, is lower than that of the predictions obtained
for additional wells measured at the same gain. In other words, the gain
effect has been successfully modelled and removed. Interestingly, after the
unit conversion process, we can still distinguish among the wells with the same
fluorescein concentrations.
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(a) R&R analysis for the validation dataset. The total variability is decomposed into the Part–
to–Part (σ2

P2P ) and the Measurement System contribution. In turn, the Measurement System
contribution contains both Repeatability plus Reproducibility values. The Part-to-Part variability
represents the differences between Ĉ values for different wells with the same fluorescein concentration.
The Reproducibility (Gain) variability (σ2

Reprod) represents the differences between concentration
values for the same measurement recorded at different gain levels.

(b) L&B analysis for the validation data set, illustrating the scattering of the scaled bias values
(black dots) for each Concentration-1 level. The plot also illustrates if there is a tendency between
average values of the scaled bias (red squares) and the Concentration-1.

Figure 10.9: Analyses of the validation data set.
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Table 10.3: Performance metrics using the calibration and validation sets after using the
exponential and linear fG (Equation 10.5 and 10.28, respectively).

Data set MSE MinRE (%) MaxRE (%)

Calibration 5.6728 · 10−6 0.0040 · 10−2 5.6197
Validation (exponential fG) 3.4285 · 10−6 0.0017 · 10−5 5.5619
Validation (linear fG) 0.0028 9.12 81.76

L&B analysis. The L&B analysis considers the relationship between the scaled
Bias (Equation 10.13), and the predicted fluorescence concentration Ĉ. This
was necessary to evaluate the model proposed in Equation 10.8. Studying the
statistical features of the prediction error across all concentration levels was
necessary to consider any corrections to the proposed model that might be
required, as shown in the following results. Figure 10.8b plots how, for the
Plate Reader 1 we used, the Bias/Concentration values are approximately
symmetrically scattered around zero.

As seen from the analysis, there was no linear relationship between the scaled
bias and the inverse of the concentration level. This meant the model had
properly captured the relationship between the real concentration and the pre-
dicted one. Hence, the bias term did not contain any relevant information
missed by the model but noise. This was quantitatively represented by the
low contribution (in percentage) of both the linearity (1.5218%) and the bias
(7.5792%) terms on the total variability of the scaled residuals.

In summary, the residuals’ linearity and bias are irrelevant to the total residual
variability. Therefore, no important information remained on the prediction
errors, i.e., the model used for the prediction was valid. This was also an indi-
cator of the consistency of the functions fUC and fG for all the concentrations
within the experimental range of values.

Confidence intervals. Finally, it is important to assess the prediction error.
Table 10.3 lists some common metrics for the prediction error: the means
squared error (MSE) and the minimum and maximum relative errors. These
metrics can be compared to the results obtained from different datasets or with
varying proposals of unit conversion models.

However, the metrics used in Table 10.3 are relative and do not explicitly
validate if such error values are small enough to assume that the concentration
predictions Ĉ are close enough to the ones known a priori CT . To this end,
PLATERO’s last step in the validation process is the analysis of the confidence
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Figure 10.10: Confidence Intervals (95%) for the concentration values (shaded area) and
reference concentration values (dashed line). Each row refers to one concentration level, the
same as in the Model Building step, measured at the same gains but from different wells.
Each column corresponds to a different well and location on the 96-well plate. For each well,
we had 32 (8 repetitions × four gains) predictions of Ĉ.

intervals for the predictions. Specifically, the confidence intervals of every
predicted concentration Ĉ were obtained from Equation 10.27, using the tDF,α/2

and sBias from the Model Building step.

If the confidence interval contains the true concentration value CT , the pre-
diction will be valid, i.e., the predicted Ĉ value is close enough to the true
concentration. Figure 10.10 depicts the true concentration values for every
data as dashed lines with the confidence region (blue shaded area) limited by
the extremes of the confidence intervals for the predictions. These values were
calculated at a 95% confidence level (α = 0.05). Figure 10.10 shows that the
confidence intervals for the predictions contain the true concentration value for
nearly 95.3125% of the observations in the validation data set.

Notice that wells E9 and G11 (corresponding to CT = 0.039063) had less than
95% of their confidence intervals containing the true concentration value.The
key aspect of dealing with this variability is assessing whether the differ-
ences between the theoretical concentration value and the obtained one are
big enough to consider that a certain well is not a valid replicate for a given
concentration level.
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Figure 10.11: Observed fluorescence values (Fobserved) for all wells of the validation data
set containing the CT = 0.039063µM concentration level, measured at four different gain
levels. The horizontal axes indicate the specific well yielding the Fobserved measurements.

We did not consider the results obtained in wells E9 and G11 invalidated the
calibration model. Instead, we hypothesized that the real concentration on
those wells was not exactly the theoretical one (CT ). This was probably the
result of the inherent variability of the experimental procedure. The introduc-
tion of the human factor leads to small differences between the theoretical and
the real fluorescein concentration deposited in the wells.

This hypothesis was supported by the fact that the same bias was seen in the
confidence intervals from wells E9 and G11 in Figure 10.10. This was also
appreciated in the raw fluorescence values Fobserved obtained for those wells, as
seen in Figure 10.11. This means that the difference between the real and the
assumed concentration was already present in the sample, and the calibration
model did not introduce it.

It is worth mentioning that this variability between wells of the same concentra-
tion was already pointed out by the high contribution of the part-to-part (σ2

P2P )
variability source in the R&R analysis (Figure 10.9a). Moreover, this also ex-
plains the lower average bias for the lowest concentration level, which is the
highest 1/Concentration level obtained in the L&B analysis (Figure 10.9b).

Finally, the low variability of the reproducibility term (σ2
Reprod < σ2

P2P ), to-
gether with the soft contributions of the linearity and bias terms, and the high
percentage of confidence intervals for the expected concentration containing
the true concentration value statistically validate the proposed units conver-
sion model and the assumptions from Section 10.2.2.
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(a) Freporter values assuming a linear effect
of the gain on the fluorescence measurements.
Marker shapes and colours depend on the Gain
level G used.

(b) Normal probability plot of the scaled resid-
uals after using the fG expression from Equa-
tion 10.28 to predict the concentration.

Figure 10.12: Results obtained after using Calibration data set before and after correction
with Equation (10.28).

10.4.2 Assessment of the gain effect function

This section will address the question: what if we used an incorrect fG ex-
pression? This is a very legitimate question since the plate reader manufac-
turer does not formally present the gain effect. In this section, we assumed a
widespread correction expression, assuming a linear development of the gain
in the fluorescence (Equation 10.28).

Freporter =
Fobserved − FBLK

G
(10.28)

Figure 10.12a shows the result after applying Equation 10.28 to the Freporter

values. There are still large differences (up to 3 orders of magnitude) among
the values for the same concentration caused by measuring them at differ-
ent gain levels. The result seen in Figure 10.8b is very different from the
one in Figure 10.12b, where values acquired at different gain values are al-
most indistinguishable after correcting them with the model Equation 10.5.
Therefore, the gain effect and its linear form remain on the data after using
Equation 10.28.

The same conclusion is attained by inspecting Figure 10.12b, which illustrates
the normal probability plot of the residuals after assuming a linear effect of
the gain on the measurements. As seen, residuals form small groups, contrary
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(a) R&R analysis. (b) L&B analysis.

Figure 10.13: Results of the Measurement System Analysis obtained after using Calibra-
tion data set before and after correction with Equation (10.28).

to the distribution seen in Figure 10.12b, indicating that the gain effect has
not been completely removed from the observations.

Both results would be enough to validate the calibration function fG given by
Equation 10.3 and 10.5. However, R&R and B&L analysis was carried out for
the exponential gain effect.

Figure 10.13a illustrates that the measurement system is the main source of
variability among measurements. Specifically, the “Reproducibility (Gain)”
term is the one constituting almost 100% of the total variability, indicating
that the gain effect correction is not appropriate.

The L&B plot (Figure 10.13b) clearly shows non-null bias values and a linear
relationship between the scaled bias and the inverse of the concentration. This
outcome differs substantially from the one seen in Figure 10.13, suggesting an
incorrect assumption of the gain function fG.

Finally, the metrics shown in the third row of Table 10.3 also provide a compar-
ative corroboration that concludes the improvement of modelling the gain ef-
fect as an exponential relationship among the observed fluorescence (Fobserved),
the one emitted by the reporter (Freporter), and the gain used for the mea-
surements (G) (Equation 10.5). These results consistently prove that using
Equation 10.28 is not properly modelling the gain effect on the measurements.

288



10.4 Results

(a) R&R analysis. (b) L&B analysis.

Figure 10.14: Results of the Measurement System Analysis for a dataset with concentration
values outside the calibration range used for the model building.

10.4.3 Extrapolation to other concentrations

We also addressed the issue of the goodness of the calibration model outside
the concentration range used for the Model Building and Validation steps.
Therefore, we used different and higher fluorescein concentrations as a new
dataset. The concentrations we used to test the extrapolation ability of the
model were 0.3125 µM and 0.625 µM . They were not part of the calibration
procedure because the fluorescence measurements saturated at the gains of 70
and 80.

Figure 10.14 shows the R&R and L&B analysis results for these concentrations.
As we can see in Figure 10.14a, the reproducibility (Gain) contribution is still
lower than the part-to-part (Well) assistance for both concentrations. Thus,
the proposed fG and fUC functions are still valid to convert from arbitrary
fluorescence units to standard concentration ones.

However, Figure 10.14b shows a negative bias on average for both concentra-
tions. The same negative bias is also noticed in the confidence intervals for
the predicted concentrations of each well (Figure 10.15). This means that the
expected concentration is consistently lower than the theoretical concentration.

In Figure 10.15, we can see that some of the wells in the 96-well plate with
less than 95% of the confidence intervals contained the reference concentration
value from the fluorescein pattern. Nevertheless, as said before, the same bias
affecting the predictions can be appreciated in the raw fluorescence values (see
Figure 10.16).
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Figure 10.15: 95% Confidence Intervals for the concentration values outside the model
buildings’ concentration range (shaded area) and reference concentration values (dashed
line). Each row refers to one concentration level. Each column corresponds to a well’s
location on the 96-well plate.

Figure 10.16: Observed fluorescence values (Fobserved) for all wells in the 96-well plate
with concentration values outside the calibration range used for the model building. Each
row refers to one concentration level. Each plot contains the Fobserved values recorded at a
certain Gain level. The horizontal axes indicate the specific well identity (ID) yielding the
Fobserved measurements.
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This result may be explained by the fact that most of the variability is due to
the part-to-part term (Figure 10.14), which is close to the 80%, whereas, for
the concentrations used for the model calibration, it was below the 60%. This
increment in the part-to-part variability could be due to outlying wells whose
concentration differs from the rest with the same expected concentration.

In such a case, one would expect a behaviour similar to one of the wells D12
and F1, with less than the 50% confidence intervals containing the reference
concentration value. This consistent bias seen for wells D12 and F1 remains
independent of the gain associated with the measurements, which suggests that
the error is associated with the real fluorescein concentration deposited in those
specific wells. This result also illustrates that confidence intervals for the pre-
dicted concentration could be used to detect atypical wells in the plate during
the calibration step. This also might help to establish statistically significant
differences between the predicted concentration within different wells.

From the results above, we could say that the theoretical expression for the
units conversion model could be valid to extrapolate to concentration values
outside the calibration range. However, as expected when a model extrapo-
lates, this has some drawbacks and limitations. Consequently, we recommend
including these concentrations for the model building and estimating the pa-
rameters to estimate the uncertainty better.

10.4.4 Comparison between plate readers

As Section 10.3 explained, three datasets were obtained under different mea-
surement setups. The appendices contain the results obtained after fitting
each one of the models. All the data and software to run the tests and get the
results can be obtained from [215]. As it can be seen, an acceptable percentage
of confidence intervals contained the theoretical concentration (91.62% for PR
1, 97.5% for PR 2 exp. 1, and 96.38% for PR 2 exp. 2 ). The contributions
of the bias and linearity terms to the residuals model are also acceptable for
all of them, at maximum, 10%. However, the R&R results (Figure 10.17 and
Table 10.4) point out relevant differences between the measurement systems.

In Figure 10.17, the first contribution plot from PR 1 illustrates the measure-
ment system’s expected and proper performance. This good quality is reflected
by both Repetition’s contributions being the minimal sources of variability and
by Measurement System’s contributions being smaller than Part-to-Part’s for
all concentrations.
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(a) Plate Reader 1 Experiment 1.

(b) Plate Reader 2 Experiment 1.

(c) Plate Reader 2 Experiment 2.

Figure 10.17: R&R analyses for the validation datasets measured with different plate
readers and experimental procedures.
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Table 10.4: Variance in measurements obtained with different plate readers.

Concentration Source PR 1 PR 2 exp. 1 PR 2 exp. 2

C = 0.0391
Reprod. (Gain) 2.14E − 07 2.96E − 07 6.89E − 07

Repeat. (Repetition) 6.92E − 08 1.05E − 05 6, 72E − 06
Part-to-Part. (Well) 2.85E − 07 1.50E − 07 7.12E − 06

C = 0.0781
Reprod. (Gain) 1.00E − 06 2.35E − 06 1.33E − 06

Repeat. (Repetition) 1.39E − 07 3.43E − 05 1.71E − 05
Part-to-Part. (Well) 1.54E − 06 1.72E − 06 4.81E − 05

C = 0.1563
Reprod. (Gain) 3.39E − 06 1.15E − 05 5.28E − 06

Repeat. (Repetition) 5.11E − 07 1.13E − 04 4.31E − 05
Part-to-Part. (Well) 4.58E − 06 2.61E − 07 6.88E − 05

C = 0.3125
Reprod. (Gain) 1.89E − 05 4.85E − 05 1.65E − 05

Repeat. (Repetition) 1.16E − 06 4.39E − 04 1.91E − 04
Part-to-Part. (Well) 4.47E − 05 6.93E − 06 3.34E − 04

C = 0.625
Reprod. (Gain) 5.03E − 05 2.11E − 04 6.69E − 05

Repeat. (Repetition) 5.41E − 06 1.75E − 03 9.11E − 04
Part-to-Part. (Well) 2.20E − 04 4.99E − 05 1.84E − 03

This desirable performance seen for PR 1 measurements is not maintained in
the PR 2 ones. In general, PR 2 shows a clear increase in the repeatability
contribution to the total variability. In the first experiment (PR 2 exp. 1 ),
the well plates were not stirred between repetitions, contrary to the indica-
tions of PLATERO’s experimental standard procedure. This small difference
is captured by the R&R analysis, showing an unacceptable contribution of the
Measurement System to the total variability generated by a great variability
between repetitions.

In the second experiment, PR2, exp. 2, the experimental protocol was executed
correctly, and the balance between Measurement System’s and Part-to-Part’s
contributions are reestablished, resembling more the values obtained for PR 1.
However, the Repeatability contribution to the total variability is still higher
than for PR 1. Table 10.4 shows the absolute values of these contributions.
As it can be seen, the absolute values of the Gain’s variance term are similar
between PR 1 and PR 2 exp. 2, but the absolute value of the variance between
repetitions is persistently higher for PR 2. This result suggests that the plate
reader PR 2 would require a technical revision to evaluate if low maintenance
causes the low repeatability of its measurements. Otherwise, if this is the
expected variability for measurements provided by PR 2, this outcome would
be a quantitative measure of the difference in quality between plate readers.

In summary, the results yielded by the R&R analysis may inform users about
the need for maintenance for plate readers and the relative quality of mea-
surements between them. Moreover, as seen for the case of PR 2 exp. 1, the
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R&R analysis should always be included as part of the calibration model’s
validation, for they may also detect problems with the experimental protocol.

10.5 Conclusions

In this work, we propose a unit conversion model that enables users of fluo-
rescence plate readers to obtain comparable results. The conversion model is
a composition of two functions: the gain effect function (fG) and the units
conversion function (fUC). The uncertainty around the estimates of the model
and its parameters may vary depending on the machine being used and the
user intervention during the experimental protocol to get empirical data. For
this reason, the second pillar of this protocol consists of a Measurement System
Analysis (MSA) via an R&R and a B&L analysis.

Three real datasets from two different plate readers were obtained following
the proposed procedure and used to assess the performance of the calibration
model. The results in Section 10.4.1 showed that over 95% of confidence in-
tervals for the predicted concentration contained the true concentration value.
Furthermore, as seen in Figures 10.10 and 10.15, the confidence intervals can
be used to detect wells differing from the expected concentration value, as-
sessing the quality of the experimental procedure quantitatively. Additionally,
Section 10.4.2 illustrates how the protocol would warn users about the assump-
tion of incorrect gain effect functions. Section 10.4.3 shows how the model
performs when it is used with concentration values above the concentration
range of values used to fit the calibration model. Although the model seems
to extrapolate fairly well, we would encourage users to re-apply the protocol
and assess the differences in the model parameters when a different range of
concentrations is used. Finally, Section 10.4.4 illustrates the need to include
the R&R analysis, informing users about the data quality and potential ad-
justments required to maintain the quality of plate readers’ measurements or
fix issues during the experimental protocols used to gather the data.

Beyond the analytical expressions proposed in this chapter for the gain effect
(fG) and for the conversion to concentration units (fUC), the main contribu-
tion of this work is the proposal of a whole methodological framework with a
solid statistical basis that can and should be applied to test future proposed
analytical expressions. Thus, using alternative valid analytical proposals for
converting units would not devalue or invalidate the methodology and tools
presented in this chapter. Rather than offering a unique and universal expres-
sion usable with all plate readers and in all experimental conditions, this work
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aims to pave the way towards standardising fluorescence data and expanding
the limits of the comparable scenarios in posterior analyses.

In conclusion, proposing a single analytical expression to predict concentration
from fluorescence values, estimate the uncertainty expected on such predictions
and assess the variability of the plate reader’s measurements bring a solid sta-
tistical foundation to the presented work. As far as we know, integrating
these statistical tools is a differential aspect compared to other proposals to
correct the gain effect or convert fluorescence values to concentration values.
Moreover, calculating confidence intervals for the predicted concentration con-
stitutes a validation tool for the proposed unit conversion model and its overall
assumptions.

Moreover, PLATERO’s approach is so general that it can be used to estimate
fluorescence concentrations at any wavelength, provided that the appropri-
ate reference fluorescence solution is chosen. The underlying model can be
extended not only for fluorescence measurements but also for absorbance or
luminescence measurements.

We believe that tools such as the PLATERO (Plate Reader Operator) toolbox
will play a key role in Synthetic Biology, enabling the proper comparison of
databases coming from different experimental settings, the validation of the
quality of the acquired experimental data, and the extension of the measure-
ment system range to a broader one being able to detect more subtle signals
but at the same time seeing strong signals.
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Chapter 11

Conclusions

In this thesis, several problems commonly found in biomedical engineering
were addressed using the Statistical Machine Learning philosophy, which fo-
cuses not solely on the use of Machine Learning techniques but also on the
general knowledge that can be obtained from their resulting models. Ad-
ditionally, new methodologies were proposed to deal with challenges closely
linked to the 4.0 paradigm, where the volume and heterogeneity of data are
increased. The context, challenges and relations between the 4.0 paradigms in
Medicine, Healthcare and Industry and the philosophy of Statistical Machine
Learning were discussed throughout Chapters 2 and 3. The different contribu-
tions distinguished two parts after an initial introduction exposing key concepts
and implications. Part II: New Methodological Proposals studied the problem
of simultaneous outliers detection and missing data imputation. In Part III:
Applications in Biomedical Engineering, several issues related to Biomedical
Engineering were tackled with a Statistical Machine Learning philosophy, in-
cluding healthcare process improvement, searching for biomarkers integrating
different -omics layers, confectioning a mortality predictive model and propos-
ing a standard framework for fluorescence data normalisation, materialised in
a protocol to calibrate conversion models for plate readers models within the
context of systems biology. This last part summarises the thesis’s conclusions,
relevance and future lines.
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11.1 Meeting the objectives

This section outlines the main remarks in this document to demonstrate that
the objectives have been met.

Objective 1: Propose, implement and deploy new methodologies for
statistical machine learning

The most transcendent feature of the Medicine, Healthcare and Industry 4.0
paradigms is probably the reach of data generation to the user level. Data
generation is more abundant than ever, and it is expected to expand with a
compound annual rate of 36% growth in the volume of healthcare data pro-
duced between 2018 and 2025 [22]. This growth comes also entangled with
diversifying the sources pouring data, with medical data expected to expand
in volume and variety in the upcoming years. Consequently, the expectation is
to have tools to deal with a first exploratory analysis of this data as efficiently
as possible: automatically squeeze out as much information as possible. From
a technical side, such heterogeneous data are often incomplete or unbalanced,
which may affect the use of advanced technology for its analysis. Coming across
this “dirty” data to obtain a clean and usable data set can need domain knowl-
edge, which can be challenging to integrate quantitatively and qualitatively
without tools providing an Exploratory Data Analysis (EDA).

Chapter 5 presented a novel framework to define outliers based on their prop-
erties concerning an original PCA model. This framework aims to bring tools
to compare objectively and, in a standardised way, to assess the performance
of different methods meant to deal with outliers during these first steps typical
of the EDA stage when dealing with real datasets. This framework was used
in Chapter 6 to simulate outlying observations with specific characteristics.

In Chapter 6, the RadarTSR algorithm was introduced as a versatile method
capable of effectively handling cellwise outliers, rowwise outliers, and miss-
ing data, even in the presence of hypothetical clusters of outliers. Through
simulations, the algorithm’s performance was compared to the state-of-the-art
method, MacroPCA, revealing similar results in scenarios with outliers and
greater similarity to least squares methods in outlier-free situations, making
RadarTSR the preferred choice for most scenarios. Additionally, the reason-
able imputation of missing data by RadarTSR positively impacted outcomes
obtained by other models fitted on the imputed dataset. Yet, RadarTSR’s ap-
proach to treating mild rowwise outliers as rows with cellwise outliers provided
a means of correction and masking. However, careful inspection of residual
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maps was recommended to address this effect. The chapter highlighted the
potential applications of RadarTSR in various scientific fields utilising high-
dimensional datasets. However, the heuristic nature of the algorithm and the
clustering step were identified as areas for further improvement, along with
adaptations needed for specific scenarios involving discrete and categorical
data. Despite these limitations, the chapter concluded that RadarTSR pre-
sented a promising approach for handling outliers and missing data, and its
implementation in open-source languages could increase its accessibility and
practicality.

Hence, the chapters discussed within Part II make a significant stride towards
realizing the objective of proposing, implementing, and deploying innovative
methodologies for statistical machine learning. The contributions described
in the mentioned chapters address challenges presented by the surge in data
generation within Medicine, Healthcare, and Industry 4.0 paradigms, providing
new tools for advancing statistical machine learning methodologies and offering
tangible tools to navigate the complexities of contemporary exploratory data
analysis.

Objective 2: Apply existing and novel statistical machine learning
techniques to real biomedical engineering problems

From a social perspective, “smart” approaches based on AI and ML models
bring value because of their accurate predictions. However, the black-box
models at their cores opaque the decision-making process of the resulting algo-
rithms. Such an approach trades generalization for accuracy, which is not nec-
essarily in the best interest of research on understanding biology’s or health’s
nature. This triggers a difficult circular path that can only be broken by the
introduction of tools pursuing a good individual outcome – as in good predic-
tive performance –and a collective benefit – derived from a better knowledge
and understanding of the tackled casuistic.

Chapter 7 introduces the incorporation of Partial Least Squares (PLS) into
the Six Sigma toolbox for analyzing data from a Six Sigma project in a univer-
sity hospital’s Outpatient Pharmaceutical Care Unit. Unlike univariate tech-
niques, PLS provides a comprehensive view of correlations between input and
output variables, facilitating process understanding and improvement actions.
Integrating PLS with classical Six Sigma tools like ANOVA streamlines the
confirmation process, reducing the number of statistical tests required. This
enhancement to the traditional Six Sigma DMAIC scheme offers a more effi-
cient and time-saving methodology, making it adaptable to complex databases
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and paving the way for the next generation of process improvement, known as
Multivariate Six Sigma, in 4.0 environments.

Chapter 8 presents a study that incorporates Partial Least Squares Discrim-
inant Analysis (PLS-DA) to differentiate Myalgic Encephalomyelitis/Chronic
Fatigue Syndrome (ME/CFS) cases from healthy controls based on a diverse
dataset. The dataset includes blood analytic variables, miRNA profiles, and
extracellular vesicle (EV) features, with Raman spectroscopy providing a new
marker of EV function. The PLS-DA analysis identified 32 variables that ef-
fectively distinguish ME/CFS cases from controls, achieving perfect sensitivity
and specificity. The study also explores the role of EVs in ME/CFS, highlight-
ing their potential significance in the diagnosis. Raman spectroscopy revealed
differences in carotenoid peaks, suggesting a possible link to stressed red blood
cells in the patient’s circulation. Despite its limited diagnostic value, Raman
data proved valuable for reducing the number of PBMC miRNAs required for
diagnosis. The study’s findings provide insights into ME/CFS pathogenesis
and offer promising implications for future diagnosis and treatment.

Chapter 9 aimed to develop a predictive model for determining mortality risk
in hospitalized COVID-19 patients using machine learning and statistical clas-
sification techniques. The model was based on data collected from 10 preterm
infants in Spain and utilized five predictors: age, oxygen saturation, creati-
nine, platelets, and LDH. The Random Forest algorithm achieved an AUC of
0.8454 in external validation. These predictors have been consistently linked
to COVID-19 mortality in previous studies. The model’s strength lies in its
simplicity and reliance on readily available clinical data at hospital admission,
making it practical for clinical use. The sample size of over 12,000 patients,
including over 2,000 deceased individuals, adds robustness to the findings. Ad-
ditionally, a systematic approach comparing different algorithms enhances the
model’s reliability. However, the study acknowledges limitations related to the
timing of data collection during the pandemic, suggesting the model should be
validated with updated data. Overall, the mortality prediction model shows
promise as a valuable tool for early recognition and prioritization of severe
COVID-19 cases.

Chapter 10 proposes a unit conversion model for fluorescence plate readers to
obtain comparable results. The model consists of the gain effect function and
the unit conversion function. The uncertainty of the model and its parameters
can vary depending on the experimental setup. We conducted a Measure-
ment System Analysis (MSA) via an R&R and a B&L analysis to address
this. Real data sets from two plate readers are used to assess the performance
of the calibration model, showing that the confidence intervals for predicted
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concentrations contain the actual values. The protocol also helps detect wells
with unexpected concentration values, assess the quality of experimental pro-
cedures, and warn about incorrect gain effect functions. The model seems to
extrapolate well outside the concentration range, but users are encouraged to
assess differences in model parameters for different concentration ranges. The
authors emphasize that the main contribution of this work is the proposal
of a methodological framework with a solid statistical basis that can be ap-
plied to test future analytical expressions for unit conversion. The PLATERO
toolbox presented in this study provides a general approach applicable to var-
ious measurements beyond fluorescence. Overall, this methodology will play
a crucial role in Synthetic Biology, facilitating the comparison of databases
from different experimental settings, validating data quality, and expanding
the measurement system range.

In conclusion, the common thread among the mentioned Chapters is the ap-
plication of existing and novel statistical and machine-learning techniques to
address real-world biomedical engineering problems. Each chapter tackles spe-
cific challenges in the biomedical field, ranging from process improvement in a
hospital pharmacy to predicting mortality risk in COVID-19 patients and iden-
tifying apnea episodes in preterm infants. The chapters demonstrate the power
of statistical and machine learning methods in handling complex and diverse
biomedical data, providing valuable insights and improving decision-making in
clinical settings.

Overall, the content of Part III exemplifies the potential of AI and ML models
to bring accurate predictions and improve healthcare outcomes. Additionally,
there is an emphasis on the importance of a systematic and statistically rig-
orous approach to validate and interpret the results, ensuring the robustness
and reliability of the proposed methodologies. By addressing these challenges
and providing practical solutions, the Chapters mentioned above contribute to
advancing the field of biomedical engineering and its application in real-world
healthcare scenarios.

11.2 Relevance

The relevance of the present PhD thesis is highlighted in the following points:

• This thesis has been developed within the framework of two research
projects from the Spanish Ministry of Economy, coordinated among dif-
ferent Spanish sites. An international research stay was carried out (Eind-
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hoven). Several healthcare institutions related to the two Chapters have
applied the proposed solutions and promoted the diffusion of the results
obtained from this work. Therefore, the contributions in this thesis have
been disseminated across many levels of institutions linked to different
layers of biomedical engineering.

• The SCOUTER algorithm for outliers simulation provides a new method-
ological framework for standard comparison of methods dealing with out-
liers, enabling the simulation of virtually all outliers while considering a
dataset’s natural and specific structure.

• The RadarTSR algorithm has updated the previous TSR algorithm effi-
ciently by including the minimally necessary robust steps. Results have
proved that the RadarTSR algorithm yields similar and even better re-
sults for the MSPE than MacroPCA, the state-of-the-art method to deal
with missing data, cellwise outliers and rowwise outliers. Moreover, the
algorithm presented in Chapter 6 also included the distinction between
single and grouped rowwise outliers, enabling a further diagnosis of rows
classified as rowwise outliers by the algorithm, searching for connections
between them.

• The incorporation of Partial Least Squares (PLS) into the Six Sigma
toolbox improved the efficiency of a hospital unit by providing a more
effective and time-saving methodology for process improvement. This
demonstrated the potential for implementing Multivariate Six Sigma in
4.0 environments, paving the way for future process improvement method-
ologies.

• The use of Partial Least Squares Discriminant Analysis (PLS-DA) in
Chapter 8 enabled the differentiation of Myalgic Encephalomyelitis/Chronic
Fatigue Syndrome (ME/CFS) cases from healthy controls. Moreover, in-
corporating Raman spectroscopy as a new marker of EV function ex-
panded the understanding of EVs’ role in ME/CFS diagnosis and patho-
genesis. The study’s findings offered promising implications for future
diagnosis and treatment of ME/CFS and highlighted the importance of
EVs in the disease.

• The predictive model for determining mortality risk in COVID-19 pa-
tients from Chapter 9 offered a valuable tool for early recognition and pri-
oritization of severe cases, enhancing patient management and resource
allocation. The model’s simplicity, relying on readily available clinical
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data at hospital admission, makes it practical for clinical use in real-world
settings.

• Chapter 10 proposes a unit conversion model for fluorescence plate read-
ers, providing a standardized approach for obtaining comparable results.
The PLATERO toolbox offers a general method applicable to various
measurements beyond fluorescence, making it a valuable tool for Syn-
thetic Biology research. The methodology paves the way for expanding
the measurement system range and detecting more subtle signals while
maintaining data quality and enhancing the comparison and validation
of experimental data.

11.3 Future lines

In light of the novel insights garnered from the present thesis, this section de-
lineates prospective avenues for future research to augment existing knowledge
and address pertinent areas that could not be explored with depth enough to
constitute a chapter of the thesis. The findings of this doctoral study lay the
groundwork for potential endeavours, encompassing two main themes: adapt-
ing the TSR and RadarTSR to deal with categorical variables and developing
multivariate pseudosamples as model-agnostic metrics for ML interpretation.
By embarking upon these forthcoming trajectories, the concept of Statisti-
cal Machine Learning and the biomedical engineering research community can
collectively advance the frontiers of knowledge.

11.3.1 Trimmed Scores Regression with categorical variables

As mentioned in Section 3.5 and Chapter 6, missing data frequently affects
datasets containing binary and categorical data referring to the same objects.
However, the RadarTSR algorithm proposed in Chapter 6 only contemplates
datasets with continuous variables. Hence, a straightforward task includes
adapting to datasets, including features of a different nature.

For pragmatic purposes, dealing with the dataset from Chapter 9 meant adapt-
ing TSR to work with quantitative and qualitative data. To do so, this strat-
egy focused on the preprocessing of the dataset, performing a block-scaling
to ensure that all variables represented a comparable amount of information
in terms of variance. Afterwards, hard constraints were imposed to ensure
that each block of variables respected its nature (i.e., those binary variables
∈ {0, 1} would always have imputed values in the same domain). These results
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were validated by comparing PLS-DA models fitted with the imputed datasets
using the adapted TSR (named cat-TSR), an adaptation of the NIPALS algo-
rithm provided by SIMCA © and the MICE algorithm included in the mice R
package (https://cran.r-project.org/web/packages/mice/index.html).

Nonetheless, even though the results for this particular case were acceptable,
dealing with categorical variables in PCA models is a non-trivial task that can
be answered from different angles.

On the one hand, from a purely geometrical perspective, i.e., understanding
variance as the data scattering along with space, the adaptation of TSR should
be regarded as a way of ensuring a fair comparison between the variance of
quantitative and qualitative variables. Moreover, some hard constraints to
respect the mathematical nature of variables should also be included. The
problem of working with binary data could be directly reframed by using Mul-
tiple Correspondence Analysis (MCA) [217], [218]. In MCA, as in PCA, a
lower-dimensional space represents latent structures correlating the original
variables. It is based on an indicator matrix, built with as many rows as indi-
viduals and columns as levels of the categorical variables. When a categorical
variable has more than two levels, its corresponding dummy variables are ob-
tained and used instead as part of the indicator matrix. When PCA is applied
in a matrix with only categorical data, its solution is equivalent to the one
obtained by MCA.

On the other hand, from a probabilistic perspective, it’s worth noting that
while PCA doesn’t impose explicit distributional assumptions on the original
variables in matrix X, it deals with the linear combinations of these variables
to generate components (i.e., the scores bmT ) whose behaviour is assumed to
be approximate normality due to the Central Limit Theorem. However, the
presence of qualitative or ordinal data challenges the typical assumptions of
normality in these components. An existing solution accounting for this prob-
abilistic scope is the Generalised Simultaneous Component Analysis (GSCA)
[219]. This framework splits the original matrix X in a set of qualitative bi-
nary data, X1, and a set of quantitative normally distributed measurements
X2, both referring to the same observations. In [219], the authors propose a
GSCA framework for these coupled datasets. This proposal also includes a
penalization for estimating the latent subspace dimension and contemplates
the possibility of missing data in the data used for PCA-MB. Nonetheless, the
missing data imputation is carried out by a PMP procedure, which was shown
to be inferior to TSR in some scenarios [85].
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Thus, the challenge of adapting TSR and RadarTSR encompasses several ques-
tions:

1. Proving if the adapted TSR still shows superiority in the MSPE over
other imputation strategies. To answer this question, either the TSR
algorithm could be adapted to deal with categorical variables by adding
or modifying the required steps, or the TSR expressions for missing data
imputation could be embedded in existing algorithms for PCA-MB with
missing data and mixed variables, such as the GSCA algorithm;

2. Successfully adapting TSR also implies providing an imputation that re-
spects the nature of each variable;

3. The adapted TSR algorithm should also represent faithfully and without
distortion the amount of explained variance by each variable. This could
be assessed by comparing the loading matrices (P ) with those obtained
by other frameworks for PCA-MB with mixed datasets in the presence of
missing data.

4. The adaptation of RadarTSR should include all the points mentioned
above and the simulations of outliers within discrete variables. This en-
closes an indirect task, which is to adapt the framework of the SCOUTer
simulation algorithm, presented in Chapter 5 and used for simulations in
Chapter 6, to work with categorical variables.

So far, as part of this thesis, the first approach mentioned in item 1 (i.e., adapt-
ing the TSR algorithm to deal with categorical variables) was implemented as
part of a solution needed for Chapter 9. Even though the work is incomplete,
the following results illustrate the actual implementation stage. These results
were obtained with two goals.

The first goal was to assess the potential distortion introduced using the
adapted TSR for missing data imputation. This was done by comparing the
terms of a PLS-DA model fitted with the TSR–imputed dataset to the ones
obtained when NIPALS and MICE were used for the imputation. Figure 11.7
shows the BPLS coefficients obtained by PLS-DA models fitted with each one
of the datasets imputed with the three different techniques. As can be seen,
there is a significant agreement in the sign and the magnitude of the variables´
coefficients.
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Figure 11.1: Graph displaying the coefficient values BPLS of PLS models obtained using
matrices imputed with different techniques. The colours represent positive values (red),
values close to zero (white), and negative values (blue), with the intensity of the colour
increasing with the magnitude of the coefficient.

Figure 11.2 shows the differences between the BPLS coefficients shown in Fig-
ure 11.7 for each variable. As can be seen, the differences are of a low magnitude
and very close to zero.

Secondly, once the algorithm had shown acceptable results for its primary use,
it was later compared with more mixed datasets (i.e., including continuous
and/or categorical variables). These datasets, however, were complete in the
first place, enabling the simulation of different percentages of missing data and
comparing the imputed values with the real ones. This was impossible with the
PROCOVID dataset, which presented missing values from its origin. These
results highlighted weaknesses that should be improved, paving the way for
future steps in refining the algorithm.

The following Figures show some cases of the results obtained when the adap-
tation of TSR to deal with categorical variables and the GSCA algorithm were
executed for missing data imputation with different datasets. Several percent-
ages of MCAR missing data ranging from 1% to 70% were simulated. Two
metrics were used to measure the errors due to the imputation performed with
the two different algorithms. On the one hand, the Mean Squared Prediction
Error (MSPE) measures the error in predicting real and ordinal variables. On
the other hand, the Percentage of Falsely Classified observations (PFC) is used
to measure the error caused by the imputation in categorical variables. To com-
pare the results, Least Significant Difference (LSD) intervals were calculated,
comparing across methods and missing data percentages.

Figures 11.3 and 11.4 show the results for two datasets containing a mix of
continuous and binary variables, with the former containing more continuous
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Figure 11.2: Graph illustrating the differences between the coefficient vectors of Partial
Least Squares Regression (BPLS) according to the employed imputation algorithm.

variables and the latter having more binary ones. Results show that catTSR
and GSCA yield similar MSPE and PFC values. Nonetheless, adapting TSR to
deal with categorical variables yields statistically significant lower PFC values
for the Heart StatLog dataset up to a 50% of missing values (Figure 11.3).
On the other hand, GSCA yields lower PFC values from 30% onwards for the
Thoracic Surgery dataset.

Figures 11.5 and 11.6 show the results for the Primary Tumour and the SCADI
datasets, which contain only binary variables. The first one has a long structure
(i.e., N > K), whereas the second one has a wide type of structure (i.e.,
N < K). Results show that whereas for the first case, the adaptation of TSR
to deal with categorical variables yields statistically significantly higher values
for the PFC for more than 30% of missing values (Figure 11.5), it consistently
yields a significantly lower PFC for the SCADI dataset (Figures 11.6).

In conclusion, the findings presented in this section strongly suggest that de-
veloping a robust and effective adaptation of TSR (Time Series Regression) for
handling categorical variables holds practical significance and can potentially
become a valuable asset within the data science community. Nonetheless, fur-
ther algorithm refinement and comprehensive testing across various scenarios
and dataset types are necessary to enhance its efficacy. Additionally, exploring
the adaptation to address outliers, such as utilizing the RadarTSR algorithm
instead of TSR, would be of considerable interest.
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Figure 11.3: Results obtained for the Heart Stat log dataset (N = 270, K = 11 with 6
real variables and 5 binary variables). The plots show the MSPE (left) and PFC (right)
results. Blue solid lines represent the average values for the adapted TSR, and red dashed
lines for the GSCA algorithm. The shaded areas of the corresponding colours delimit the
LSD intervals.

Figure 11.4: Results obtained for the Thoracic surgery dataset (N = 470, K = 14 with 3
real variables and 10 binary variables). More information is in the caption from Figure 11.3.
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Figure 11.5: Results obtained for the Primary Tumour dataset (N = 336, K = 14 being
all of them binary variables). More information is in the caption from Figure 11.3.

Figure 11.6: Results obtained for the SCADI Tumour dataset (N = 70, K = 205 being all
of them binary variables). More information is in the caption from Figure 11.3.
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11.3.2 Multivariate pseudosamples

Despite the potential of pseudosamples, the univariate approach has some
weaknesses. In this work, we address two of them: interactions and their
outlyingness. When the model’s outcome depends on an interaction between
predictors, the univariate pseudosampling approach may fail to capture them.
Whereas there are proposals to consider the interactions between variables,
there is still no assessment regarding the realism of the pseudosamples, which
is addressed in the following lines.

To rely on the model predictions, the pseudosamples projected onto it should
resemble the predictors’ space used to fit the model as much as possible. To
put it simply, pseudosamples should not be outliers concerning the model.
If pseudosamples are built with variations outside the range of the variables,
the pseudo-sample-matrix would not be reliable anymore since it would not
represent the X matrix used to train the model. When scaled up to the
multivariate perspective, this case, in terms of the univariate range, is what
happens with univariate pseudosamples.

Just varying one variable and keeping the rest of the predictors constant as-
sumes orthogonality between all the dataset variables. This, in the real world,
is highly unlikely. In the presence of highly correlated predictors, which is
a prevalent scenario, samples that do not report this joint variation will be
outlying, not representing the reality neither within X nor between X and
Y . Thus, it seems reasonable that a proper pseudosampling approach designs
pseudosamples as realistic as possible, and this requires redefining pseudosam-
ples in terms of a multivariate framework.

Considering the facts described in the previous section, in this chapter, we
propose a pseudosampling approach that embraces the multivariate nature of
the data while keeping traceability on the independent sources of variation of
variables. The key idea is making variations not directly in the real space but
in a latent space of reduced dimensionality based on a PCA model built with
the training dataset. Afterwards, there are different ways to explore the latent
space.

• Linear spacing on the scores. This approach can be regarded as the
immediate multivariate version of the approach from [220]. A PCA is
built with the observations of each class separately. Later, a linear spacing
is carried out on each PC, setting the rest to their low or high level. These
combinations between low and high levels are done pairwise between all
PCs. The supervised take on the PCA models is done to ensure that the
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pseudosamples capture all classes. Otherwise, with unbalanced datasets,
there could be an under-representation of minorities. Then, the latent
pseudosamples can be back-projected to the original space. Finally, all
these pseudosamples expressed in the original space can be projected onto
a global PCA, built with all classes together.

• Full Design Of Experiments on the scores. In this scheme, a PCA is built
as in the previous approach. Later, a full 2A (being A the latent dimension
of the PCA model) DOE is used to simulate the latent pseudosamples.
The maximum and minimum values of each ta vector are used as high
and low levels for each PC and class. The next steps follow the previous
approach, back-projecting the resulting pseudosamples to the original
space.

• Spacing on the Hotelling’s T 2. This strategy contemplates pseudosamples
as extreme outliers that still follow the correlation pattern of the reference
dataset. In other words, pseudosamples can be built by generating a
gradient on Hotelling’s T 2 by increasing one PC at a time while keeping
the Squared Prediction Error (SPE) constant. To do so, the SCOUTer
algorithm to simulate controlled outliers presented in Chapter 5 was used.

To illustrate the results yielded by each approach, we compared the inference
obtained with toy examples of simulated datasets. In all cases, we know a
priori the importance of the predictors and the relationship with the response.
We included two non-linear modelling approaches: kernel PLSDA and Random
Forest. For the kernel-PLSDA, the kernel with the radial basis function was
used in all cases, as it can adapt to different degrees of non-linearity by tuning
the hyperparameter σ. Further information about the kernel-PLSDA models
can be found in Section 3.4.2.

The first case is the Triangle dataset (Figure 11.7) presents a binary classi-
fication problem. As it can be seen, this is a linearly separable problem by
using two PCs. The loading plot indicates that belonging to class 2 positively
correlates with variables 16 to 20 (variables with positive loadings on 1st PC)
and negatively correlated with variables from 6 to 15 (variables with negative
loadings on 2nd PC).

Figure 11.8 illustrates the three procedures to simulate the multivariate pseu-
dosamples mentioned above. Pseudosamples for each class were simulated us-
ing a PCA model fitted with the observations of each class. Afterwards, these
pseudosamples were projected onto a PCA model fitted with all observations,
and these are the score plots shown in Figure 11.8.
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Figure 11.7: Class profiles of the triangle dataset in the score plot (left plot), loading plot
(centre) and distance plot (right).

Figure 11.8: Score plots of the triangle dataset with the reference observations and the
pseudosamples simulated for each class with the linearly spaced scores (left), following a 2k

latent DOE (centre) and an T 2 spacing (right). Blue dots and red triangles represent the
points of classes “1” and “2”, respectively. Black squares and black triangles represent the
pseudosamples generated by fitting a PCA model on each one of the classes and exploring
the generated latent space by each one of the three approaches.

One of the first aspects to check and compare between univariate and multi-
variate pseudosamples is their faithfulness to the latent structure of the original
samples. Figure 11.9 shows the distance plots for the SPE and Hotelling’s T 2
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of the pseudosamples, using the global PCA model fitted with all the observa-
tions from the triangle dataset.

Figure 11.9: Distance plots of the triangle dataset with the pseudosamples simulated via
the classical univariate method and the multivariate proposals mentioned in this section.
Red dashed lines represent the 95% Upper Control Limits for both the SPE and the T 2,
calculated using the PCA model fitted with all the observations of the triangle dataset.

As it can be seen, all multivariate pseudosamples respect the Upper Control
Limits for the SPE and the T 2 of the reference PCA model. Yet, this is not
the case for univariately generated pseudosamples, which present values within
the normal range (distances below the T 2 UCL) but which do not fit the mul-
tivariate structure of the PCA model, showing SPE values far above the UCL.
This means that these univariate pseudosamples would be outliers concerning
the model. Therefore, using pseudosamples with models fitted with the orig-
inal observations could be conceptually arguable, mainly if predictive models
use the captured correlation between variables to calculate the response.

The second scenario, the Chess dataset (Figure 11.10), presents a binary clas-
sification problem but with a separation of classes that relies on the interaction
between groups of variables. As seen in Figure 11.10, observations of class “2”
have non-null values for the range of variables between the 6th and the 20th
one. On the contrary, class “1” observations are related to having non-null
values for the rest of the variables.

Figure 11.11 illustrates the pseudosamples obtained when the three simulation
procedures are used, and their distances are shown in Figure 11.12. This
second case study shows that only multivariate pseudosamples are within the
control limits for the SPE and the T 2.
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Figure 11.10: Class profiles of the chess dataset in the score plot (left plot), loading plot
(centre) and distance plot (right). More information in caption from Figure 11.7.

Figure 11.11: Score plots of the chess dataset with the reference observations and the
pseudosamples simulated for each class with the linearly spaced scores (left), following a 2k

latent DOE (centre) and an T 2 spacing (right).

Finally, the Circle dataset presents the last toy example of a binary classifi-
cation problem. In this case, the class separation is non-linear, as shown by
the radial disposition of observations in the score plot from Figure 11.13. The
loading plot shows that belonging to class 2 correlates with big values in mag-
nitude in all variables with non-null loadings either on the 1st or the 2nd PC
(i.e., for variables between the 1st and the 20th one).

Figure 11.14 illustrates the pseudosamples obtained when the three simula-
tion procedures are used. Distance plots in Figure 11.15 confirm that only
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Figure 11.12: Distance plots of the chess dataset with the pseudosamples simulated via the
classical univariate method and the multivariate proposals mentioned in this section. More
information in caption from Figure 11.9.

Figure 11.13: Class profiles of the circle dataset in the score plot (left plot), loading plot
(centre) and distance plot (right). More information in the caption from Figure 11.7.

multivariate pseudosamples are within the control limits for the SPE and the
T 2.

Although Figures 11.9 , 11.12 and 11.15 illustrate the point of pseudosamples’
likelihood concerning the original dataset, there is still a question that needs
to be addressed. Pseudosamples are used for interpretability purposes, and
multivariate pseudosamples should also embrace this aspect. Future steps in-
clude proposing parameters or metrics that materialise the relationships seen
by the pseudosamples’ variations and the variations in the response values.
This last aspect also concerns univariate pseudosamples, mainly used only as
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Figure 11.14: Score plots of the circle dataset with the reference observations and the
pseudosamples simulated for each class with the linearly spaced scores (left), following a 2k

latent DOE (centre) and an T 2 spacing (right).

Figure 11.15: Distance plots of the circle dataset with the pseudosamples simulated via
the classical univariate method and the multivariate proposals mentioned in this section.
More information in caption from Figure 11.15.

an exploratory tool assessing the X − Y mentioned above dependency by vi-
sualising the pseudosamples’ trajectories.
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