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Abstract: Synthetic fuels significantly reduce pollutant emissions and the carbon footprint of ICE
applications. Among these fuels, oxymethylene dimethyl ethers (OMEX) are an excellent candidate
to entirely or partially replace conventional fuels in compression ignition (CI) engines due to their
attractive properties. The very low soot particle formation tendency allows the decoupling of the
soot-NOX trade-off in CI engines. In addition, innovative piston geometries have the potential to
reduce soot formation inside the cylinder in the late combustion stage. This work aims to analyze
the potential of combining OMEX with an innovative piston geometry to reduce soot formation
inside the cylinder. In this way, several blends of OMEX-Diesel were tested using a radial-lips bowl
geometry and a conventional reentrant bowl. Tests were conducted in an optically accessible engine
under simulated EGR conditions, reducing the in-cylinder oxygen content. For this purpose, 2-colour
pyrometry and high-speed excited state hydroxyl chemiluminescence techniques were applied to
trace the in-cylinder soot formation and oxidation processes. The results confirm that increasing
OMEX in Diesel improves the in-cylinder soot reduction under low oxygen conditions for both piston
geometries. Moreover, using radial lips bowl geometry significantly improves the soot reduction,
from 17% using neat Diesel to 70% less at the highest OMEX quantity studied in this paper.

Keywords: E-fuels; soot reduction; radial lips; piston geometry; emission reduction

1. Introduction

The tight pollution regulation and ongoing rise in energy consumption have pushed
the car industry to look for new and more effective internal combustion engine technologies
to achieve the zero pollution target. It sets out the vision that by 2050, the European Union
(EU) should have reduced pollution to the extent that it no longer harms human health and
natural ecosystems. This vision is translated into crucial 2030 targets to reduce pollution at
source. Although the transport sector has made good progress toward reducing harmful
emissions, further efforts will be needed to eliminate all its negative impacts [1]. However,
this sector has difficulties reducing the soot-NOX trade-off and achieving a neutral carbon
footprint in compression ignition (CI) engines [2].

Using renewable, low carbon non-fossil based fuels for ICE applications is a promising
option to reduce pollutant emissions and carbon footprint [3,4]. Several studies showed
the potential of these fuels to achieve emission reduction objectives in different facilities,
such as engines [5–8] and optical vessels [9,10]. Among these fuels, oxymethylene dimethyl
ethers (OMEn) are attractive due to their physicochemical properties [11]. Their molecular
structure is CH3-O-(CH2-O)n-CH3, where n explicitly the chain length (n = 1–6) directly
affects the physicochemical properties of the fuel. The lack of C-C bonds and the presence
of oxygen have shown a high potential of these fuels to reduce or even avoid soot formation
inside the combustion chamber [12]. These fuels are usually presented as a blend of OMEn
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molecules (known as OMEX), which allows for achieving more similar properties to those
of conventional Diesel than using only OMEn single-component molecules. In addition to
their molecular structure characteristics, properties such as a high cetane number compared
to Diesel improve autoignition performance. For these reasons, OMEX is a good candidate
to replace fossil fuels in ICE [13].

However, using neat OMEX as a fuel in ICE still needs to face several challenges
related to compatibility with the engine infrastructure, such as filters and other fuel system
parts [14] due to their low lubricity and swelling corrosion effect on rubber and plastics. To
overcome this limitation, OMEX blended with conventional Diesel has also been proposed
in several studies, reporting that these blends can avoid the infrastructure problem while
still offering the benefits of OMEX in terms of soot reduction [15]. García et al. [16] reported
decreased unburned hydrocarbons (HC) at the engine exhaust using these blends. However,
other authors reported slightly higher NOX emissions [17]. For this reason, strategies to
reduce the combustion chamber temperature, and thus NOX formation, are mandatory. In
this way, the use of exhaust gas recirculation (EGR) schemes are typically used in CI [18]
and spark ignition (SI) [19] engines. However, these strategies, based on reducing the
oxygen content inside the combustion chamber by adding burnt gases from the exhaust,
promote soot particle formation and an increase of HC emissions [20], showing the existing
soot-NOX trade-off.

Another option to reduce pollutant emissions in ICE applications is using innovative
hardware designs [21,22]. In this regard, significant focus has been placed on studying new
piston geometries for CI engines, with many designs created and tested over the previous
years. The aim has been to modify the turbulent flow structure in-cylinder air-fuel mixing,
soot production, and thermal efficiency [23]. One proposal is redirecting the flames toward
the piston center using innovative bowl geometries. The aim is to use available oxygen
in this zone to oxidize the soot. In addition, this geometry could reduce (or avoid) the
direct flame-to-flame interaction [24]. In this way, the reentrant bowl design allows the
flames to be redirected towards the piston center after wall impingement, being fed with
the oxygen still available in this region during the late stages of the combustion process.
This increases late soot oxidation [25]. An evolution of this piston design includes a stepped
lip at the upper part of the reentrant bowl to split the sprays, driving some fuel toward
the squish region and taking advantage of the oxygen usage there [26,27]. The most recent
modification of the piston geometry includes protrusions at the piston periphery. Volvo
Group initially presented the design of these protrusions for heavy-duty engines [25,28].
Studies reported an improvement in soot reduction and efficiency compared to the previous
piston designs [24]. However, an increase in HC emissions has also been reported using
this geometry [29], mainly at higher loads. This effect has been related to promoting lean
mixture regions and spray impingement on the piston and liner surface.

Considering all the above, there is a literature gap related to the study of possible syn-
ergies between these two approaches (oxygenated fuels and improved piston geometries)
to reach low-soot combustions. Therefore, the current study aims to evaluate the potential
of using oxygenated fuels, like OMEX, in combination with novel bowl designs, like radial
lips, to reduce in-cylinder soot formation.

For this purpose, several blends of OMEX and Diesel (0%, 30%, and 50% of OMEX)
have been tested combined with a radial-lips bowl piston and a reentrant bowl piston.
In addition, the reduction of oxygen content inside the combustion chamber (15% O2)
was evaluated to simulate EGR conditions, typically to reduce NOX formation. The work
applied 2-colour pyrometry and high-speed excited state hydroxyl (OH*) techniques in
an optical single-cylinder CI engine to trace the soot formation and oxidation processes.
The main result shows that at low in-cylinder oxygen conditions, the radial-lips piston
combined with the OMEX blend significantly improves the soot reduction inside the
combustion chamber for the whole event. Moreover, this effect is more noticeable with the
increase of OMEX.
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2. Experimental Methodology
2.1. Optical Engine Facility

The tests were carried out in a Bowditch optical engine design, as can be seen in
Figure 1, based on a medium-duty CI platform. This engine has the typical overhead
valve design, where the camshaft is located at the engine block and connected to the
crankshaft via a gear. Push rods are used for opening and closing the valves. In this facility,
a specific box was installed just on the cylinder side to allocate the camshaft, as the distance
between the head and block is increased due to the optical access design. Due to this
adaptation, there are no lateral optical accesses to the combustion chamber, allowing just
the visualization through the piston bottom. The optical engine uses the same original
cylinder head as the conventional version. It has four valves and a centered solenoid
injector per cylinder. In Table 1, the main geometric parameters of the optical engine
are summarized.
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Table 1. Optical engine characteristics.

Parameter Value

Number of cylinders [-] 1
Number of valves [-] 4
Compression ratio 13.3
Stroke/Bore ~1
Displacement [L] ~0.8

The fuel was delivered to the injector using a high-pressure pump (Bosch CP3,
Gerlingen, Germany) and a conventional common rail. A Controlled Diffusive Spray
(CDS) injector with eight holes was employed for the current work. This injector allows
an improving the distribution of the spray inside the chamber. The result is a shorter
penetration of the spray and a wider cone angle. The result is a closer combustion reaction
to the center of the piston bowl, as opposed to the traditional nozzles, that the combustion
reactions appear close to the walls [30]. Several numerical [31] and experimental [23,32,33]
studies have shown a significant reduction in pollutant emissions, particularly in particulate
matter and hydrocarbon emissions. Thermodynamic analysis was performed thanks to a
fully instrumented engine. The instantaneous intake and exhaust pressures were measured
using a piezoresistive transducer (Kistler 4049A5 Switzerland). A piezoelectric transducer
(Kistler 6124A, Switzerland) was used for registering the in-cylinder pressure. The pressure
signals were synchronized with a crankshaft encoder with a 0.5 crank angle degree (CAD)
resolution. In addition, intake and exhaust temperatures and oil and coolant temperatures
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were measured with K-type thermocouples. The first thermodynamic law calculates
the apparent heat release rate (aRoHR). A screw compressor provides the intake air at
the required pressure, and a valve at the exhaust system simulates the back pressure of
0.2 bar. An air heater was located just before the intake port to set the intake air temperature
required for each test. The engine was run in skip-fire mode to reduce thermal stress,
window fouling, and thermal transients [34]. As a result, just one combustion cycle occurred
each 20 motored cycles.

2.2. Piston Geometries

Figure 2 presents the two bowl designs employed in this investigation: a conventional
piston (left side) and a radial-lips piston (right side). The conventional piston, commonly
used in light and medium-duty engines, shows a typical reentrant bowl geometry. The
radial-lips piston combines two features: a stepped lip at the bowl top edge and radial
lips distributed around the bowl circumference. The stepped lip is expected to promote
combustion at the squish zone, while the radial lips improve oxygen utilization in the
bowl center. In addition, they reduce the flame-to-flame interaction at the periphery. The
two pistons provide the same compression ratio, guaranteeing the same in-cylinder ambient
conditions, allowing a direct comparison between them.
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2.3. Optical Techniques and Methodology

This study used 2-color pyrometry (2C) and OH* high-speed imaging to analyze
the evolution of soot formation and oxidation processes in the combustion chamber. The
optical setup is shown in Figure 3. The flame radiation from the combustion chamber
passes through the quartz piston, and the 45◦ elliptical mirror reflects it. This mirror has
an enhanced aluminium coating to obtain a good reflection efficiency in the ultraviolet
(UV) and visible spectra (above 85% between 250 nm and 700 nm). Then, using a dichroic
mirror (DMSP805L), the incident radiation is split: visible light is transmitted while a
small range of UV spectrum, around 310 nm, is reflected. A high-speed intensified camera
with a narrowband interference filter detects the reflected UV radiation. In addition, the
transmitted visible light goes to a beam splitter, reflecting 50% and transmitting the other
50% of the total incident light. Both radiations are collected using two high-speed cameras
equipped with specific bandpass filters to detect the light at a particular wavelength for
applying the 2-color pyrometry algorithm. The same start of energizing (SOE) electric pulse
used for the injector serves as a trigger for all the cameras. Thus, time-synchronized images
from all cameras are obtained. This allows a direct comparison between the frames of each
camera, which is critical for the 2C technique.
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2.3.1. OH* Chemiluminescence Radiation

The OH* chemiluminescence radiation is an excellent high-temperature reaction tracer
in diffusive flames [35,36]. Thus, high-speed OH* chemiluminescence was performed to
trace the oxidation reactions inside the combustion chamber during the combustion process
in this study. It is essential to consider that this is a line-of-sight integrated technique.

The optical setup (Figure 3) is composed of a high-speed CMOS camera (Photron
SA5) coupled with a high-speed intensifier (Hamamatsu C10880-03F) with 1:1 relay optics.
The intensifier photocathode is a multi-alkali (S-20), which allows detection from UV to
near-infrared radiation (spectral response: 185–900 nm). A UV-Nikor Rayfact lens with a
focal length of 105 mm and a maximum f-aperture of 4.5 is used. To collect the OH* peak
emission, a narrowband interference filter centered at 310 nm with a full width at half
maximum (FWHM) of 10 nm was used in front of the camera lens. Using this filter helps to
avoid other radiation sources that can interfere with the OH* signal. The acquisition rate
was set at 25 kfps with a resolution of 4.4 pixels/mm. The same exposure time used in the
high-speed camera, which is 39.75 µs, was set in the gating of the intensifier. In addition,
the intensifier gain was fixed to 900 (ranging from 600 to 999).

2.3.2. 2-Color Pyrometry Technique

The in-cylinder soot concentration evolution (KL factor) can be analyzed using the
2-Color pyrometry technique by collecting the soot thermal radiation at two differ-
ent wavelengths. More details about the method and the radiation analysis can be
found in [37].

The setup comprises two identical high-speed cameras (Photron NOVA S9) with dif-
ferent bandpass filters (see Figure 3). One of the cameras is equipped with a filter centered
at 660 nm, while the other is centered at 560 nm. Both filters have a 10 nm FWHM. Most
of the dynamic range of both cameras was ensured by adjusting the exposure time of
them, depending on the operating condition: 0.5 µs (660 nm camera) and 5 µs (560 nm
camera) at 21% O2, and 0.7 µs (660 nm camera) and 20 µs (560 nm camera) at 15% O2.
Furthermore, both cameras were coupled with a Karl-Zeiss Makroplanar lens with a 100 mm
focal length and a maximum f-aperture of 2. The frame rate was fixed at 25 kfps, corre-
sponding to the same frame rate used for the OH* chemiluminescence imaging, with a
resolution of 4.6 pixels/mm.

For accurate implementation of the 2C algorithm, it is essential to ensure temporal and
spatial matching between the signal of two wavelengths. As mentioned earlier, temporal
matching is achieved by synchronizing the acquisition of both cameras. Regarding spatial
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alignment, it can be accomplished by employing a preprocessing routine that utilizes
the reference wavelength to transform the signal at the other wavelength. This routine
involves a transformation matrix encompassing translation, rotation, and scaling. Applying
a scale-invariant method [38], a set of feature points is extracted from the images of both
wavelengths. Subsequently, the matching between the feature points from both lists is
calculated to derive the spatial transformation matrix. Finally, this transformation matrix is
applied to one of the wavelengths to achieve spatial alignment. It is important to note that
the spatial matrix transformation is computed for each iteration.

Once the transformation matrix has been applied, the 2C algorithm obtains the spatial
distribution of KL inside the combustion chamber. It is calculated for each repetition
and averaged pixel by pixel (10 repetitions) to avoid the combustion stochastic behavior
hindering the analysis. This procedure is applied for the whole combustion event to
obtain the temporal evolution of the spatial KL distribution inside the combustion chamber.
Furthermore, average time evolution curves are obtained by calculating the ensemble
average of KL along the whole field of view. A circular mask (a matrix composed of ones
and zeros) is applied to the raw images to consider only the radiation inside the combustion
chamber and reject radiation from outside (see Figure 4). The KL distributions reported in
this paper are represented using the same intensity range and a 16-color Look Up Table.
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2.3.3. Post-Processing: Evolution Maps

A procedure has been followed to represent the evolution of KL values and OH*
spatial distribution inside the combustion chamber during the whole combustion process
in a single map. It divides the combustion chamber into concentrical rings, for which the
average KL or OH* intensity value is calculated. This way, an average intensity value is
obtained for different radii from the center of the piston. This procedure is carried out
for each frame, corresponding to a different CAD. The result is a 2D matrix where each
column represents a different CAD while the row is the radial distance to the center of the
piston. An example of the result from this methodology is illustrated in Figure 5. The green
and red lines indicate the minimum and maximum radial distances shown on the map,
respectively. In this study, the analysis does not consider the squish zone (the area between
red and white lines in the left image). The average KL values of the different rings at a
specific CAD are represented between the two white lines in the right image. The value
of a particular ring, represented in purple in the left image, has been highlighted with the
same color in the 2D map. The same methodology is followed for OH* chemiluminescence.

2.4. Operating Conditions

All the tests were performed at a fixed engine speed of 1400 rpm, reaching 6 bar
of brake mean effective pressure (BMEP). For each piston geometry, three fuels were
investigated: pure Diesel (0 Ox), a blend of 70% Diesel and 30% OMEX by mass (30 Ox),



Appl. Sci. 2023, 13, 8560 7 of 16

and a mixture of 50% Diesel and 50% OMEX by mass (50 Ox). The different percentages
used in this study have shown good miscibility in previous studies [16]. Two different
oxygen concentrations in the combustion chamber were tested for each fuel: 21% and 15%.
The 15% of oxygen simulated the optical engine operating under EGR conditions. A total
of 12 different operating points were investigated. The operating conditions selected for
this work are summarized in Table 2. In addition, the main fuel properties studied are
summarized in Table 3.
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Table 2. Engine operating conditions.

Operating Conditions

Piston bowl Conventional/Radial-lips
Engine speed [rpm] 1400
Injector CDS
BMEP [bar] 6
Inj. Scheduling & Rail Pressure Multiple @ 1182 bar
Intake pressure [bar] 1.34
Exhaust pressure [bar] 1.54

Table 3. Main fuel properties used in this study.

EN 590 Diesel OMEX

Density [kg/m3] (T = 15 ◦C) 829.20 1057.10
Viscosity [mm2/s] (T = 40 ◦C) 2.59 1.08
Lubricity [µm] 386 320
Cetane number [-] 52.0 68.6
Carbon content [% m/m] 86.2 44.2
Hydrogen content [% m/m] 13.8 8.8
Oxygen content [% m/m] 0 45
Lower heating value [MJ/kg] 41.92 19.21

An injection strategy consisting of 2 pilots, 1 main and 1 post-injection, was used.
The main injection pulse was adjusted to keep the same energy released between fuels
(@21% O2), compensating for the lower OMEx’s lower heating value (LHV). This adjust-
ment allows us to keep the same engine load for all cases. The dwell time between the end
of the main injection and the start of the post-injection was kept constant by appropriately
shifting the last pulse. Figure 6 shows the electric injection signals adopted for each fuel
and the duration in µs of the main injection.
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3. Results and Discussion
3.1. Conventional Piston

As reported in the scientific literature [6], using OMEX improves the reduction of
in-cylinder soot formation during the combustion process. Furthermore, the combustion
speed event increases, reducing its duration when using this fuel.

The first part of the analysis aims to describe the behavior of the different blends and
the benefits of increasing OMEx content with the conventional piston (CP). The upper
part of Figure 7 shows the distribution of KL values at different CADs for three different
OMEX percentages in the fuel: 0 Ox (top), 30 Ox (middle), and 50 Ox (bottom), at 21% O2
to illustrate the temporal evolution during the combustion process inside the combustion
chamber. The bottom part of the figure shows the apparent rate of heat release (aRoHR)
profiles and the average KL curves for the selected fuels from the top dead center (TDC) to
28 CAD aTDC. As color rectangles, the aRoHR plots highlight the duration of the main and
post injections (retrieved from high-speed images).
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The main injection starts at ~2.5 CAD aTDC, and, as stated previously, its duration
depends on the OMEX percentage in the blend. During the main injection (frame@5 CAD),
producing soot allows for identifying a diffusive flame’s characteristic structure. A few
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CADs later, the sprays impinge on the piston bowl wall, and the burning jets expand
tangentially, interacting between them and merging, forming a crown. For 50 Ox, the
liquid fuel sprays are still visible around the nozzle at 7.5 CAD aTDC because of the longer
injection duration compared to 0 Ox and 30 Ox. For all mixtures, at this stage, the soot
production is more relevant than the oxidation process (increase in area and intensity) until
around 10 CAD aTDC. After this instant, the reduction in intensity and area of the KL
distribution indicates that the soot oxidation processes dominate overproduction.

The peak of aRoHR corresponding to the main injection shows clearer staged combus-
tion when increasing the OMEx percentage in the blend. The first stage, which corresponds
to the first peak, is related to the premixed combustion phase. The second stage, which
corresponds to the diffusive combustion stage, is more intense for 30 Ox and 50 Ox due
to the longer duration of the main injection when increasing OMEx content. When the
post-injection starts, the KL curve for 30 Ox and 50 Ox suggests that a big part of the soot
produced has already been oxidized. Therefore, the expected benefits of post-injection
(increasing late oxidation) are not so evident.

In contrast, a significant increase of soot is observed. However, with Diesel, the KL
curve suggests higher soot levels at this stage. In this scenario, the contribution of pilot
injection has more potential to improve oxidation, and it causes a minor increase in the KL
curve. However, the soot remaining from the combustion of the main injection is added
to the soot produced during the combustion of the post-injection, resulting in soot levels
higher than for the other blends. The fact that the post-injection peak of aRoHR is reduced
when increasing OMEx percentage in the blend indicates that the oxygenated fuel allowed
a complete main injection combustion resulting in less fuel partially or not oxidized.

With all discussed above, a clear in-cylinder soot reduction and faster combustion
event are reported when increasing the quantity of OMEX in the fuel, consistent with what
can be found in the literature. Thanks to this, OMEX seems promising to maintain low
levels of soot formation when applying other strategies to reduce the temperature chamber
(like EGR), to reduce the NOX formation. This strategy increases the soot formation due
to the reduction of fresh oxygen inside the cylinder, leading to the well-known trade-off
between soot and NOX.

To evaluate this, EGR was simulated by reducing the oxygen concentration at the
intake by up to 15%. A comparison of KL distribution inside the combustion chamber,
the KL evolution curves, and the aRoHR for 50 Ox at 21% O2 and 15% O2 are shown in
Figure 8. At the first CAD represented in this figure, for 15% O2, no KL values can be
observed due to the later start of combustion typical of EGR conditions. This is consistent
with the aRoHR shown. Until approximately 10 CAD, lower KL values and a smaller area
can be observed for 15% compared to 21% O2. After that, the trend is reversed. When
the post-injection occurs (~15 CAD), the 21% O2 case shows much lower KL values than
the 15% O2 case. This highlights the difficulty of this operating condition to oxidize soot.
Besides, it confirms the importance of ambient oxygen for oxidation and the reduction of
soot levels inside the cylinder, even using 50% OMEX in the fuel.

The reduction of oxygen concentration has a similar effect over all the fuels considered
in this study. In summary, the KL evolution curves for all fuels are reported in Figure 9 for
21% and 15% O2. The curves show that even 50 Ox at 15% O2 forms more soot than any
other blends at 21% O2.

The results show that the O2 contained in the molecule of OMEX is insufficient at
high EGR conditions to keep the same soot levels as without EGR. Using neat OMEX
would indeed be able to improve the soot reduction further. However, the incompatibility
with elements of the injection system and the increased fuel injected to achieve the same
energy released by the fuel make that not a good option to consider. For these reasons, it is
necessary to implement additional strategies to improve soot reduction without increasing
OMEX content in the fuel.
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3.2. Radial-Lips Piston

As previously discussed, this study tested a second bowl geometry (RP) containing a
stepped lip at the bowl edge and radial lips.

KL distribution and the KL/OH* radial maps are presented in Figures 10 and 11,
respectively, to show the temporal and spatial evolution for both pistons using 50 Ox
at 15% O2. The first thing that can be observed is a different aRoHR evolution. The RP
piston provides a faster ignition and a much more intense heat release than the CP. This is
relevant as it compensates for the delay caused by the oxygen reduction that was previously
mentioned. Regarding soot production, higher KL values are reported for the conventional
piston during the whole combustion event. The first KL values appear close to the bowl
periphery at 7.5 CAD, probably due to the flame-to-flame interaction after impacting the
bowl wall, as seen in Figure 12. After this, the high KL cloud evolves toward the center of
the bowl until 20 CAD (before the post-injection combustion). The movement of the KL
cloud and OH* reactions can be seen clearly in radial maps (left images from Figure 11).
During the same interval, the low values of OH* in the radial map confirm that the soot
is hardly oxidized, resulting in the high KL cloud mentioned previously. The lack of
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oxygen available due to its low concentration difficulties the soot cloud oxidation, even for
this blend.
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In contrast, the RP piston shows several differences, which lead to lower KL values.
The first KL values also appear at the bowl periphery and evolve toward the center of the
bowl, as in the conventional piston case. However, the intensity of KL values is signifi-
cantly lower for this piston, and the OH* radial map (see the right image from Figure 11)
confirms a higher oxidation activity from the periphery to a 15 mm radius during the main
injection combustion event. This suggests that less soot is formed but is also significantly
oxidized before the beginning of the post-injection combustion event, as seen in Figure 10 at
17.5 CAD. This fact is also visible in the KL radial map of Figure 11. Here, two different
KL clouds separated by a dark gap around 20 CAD can be observed, indicating that the
oxidation process during the main injection combustion event is sufficient to oxidize a big
part of the soot formed. The results report an improvement in oxidizing the in-cylinder soot
formation using radial lip geometry with low oxygen concentration inside the combustion
chamber compared to the conventional piston.

From the sequence of images shown in Figure 10, it is possible to see that, in contrast
with CP, the RP geometry reduces the interaction between flames at the periphery of the
bowl. As shown in Figure 12, the presence of radial lips prevents the flames from spreading
tangentially, creating a backward movement instead. This reduces the flame-to-flame
interaction, reducing the formation of high equivalence ratio regions and promoting the use
of fresh oxygen close to the center of the bowl [24]. In addition, the stepped lip improves
the oxidation of part of the fuel at the squish region compared to the CP geometry.

To summarize the performance of the RP in combination with the fuel, KL evolution
curves for all fuels tested in this study at two oxygen concentrations (21% and 15%) are
reported in Figure 13. The results show the same behavior discussed previously for all
the cases. The RP reduces soot formation and improves its oxidation during combustion,
independently of the oxygen concentration. However, its effect is more prominent at
15% O2. This indicates that RP is more effective than CP under low oxygen concentrations.
To quantify the reduction in terms of KL achieved with RP for each fuel, the relative
reduction of KL values at 15% O2 has been calculated according to Equation (1):

Rel. KL =
Avg.KLCP − Avg.KLRP

Avg.KLCP
(1)
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The Rel. KL evolution for the three fuels considered in this study is shown in Figure 14.
Between 0 and 20 CAD aTDC, the KL reduction achieved with the RP with 0 Ox varies
from 10% to 45%. In the same interval, a much higher reduction is achieved when increased
the OMEX content in the blend. For 30 Ox, it varies between 40% and 75%, while for 50 Ox,
it reaches from 30% to 80%, depending on the combustion stage. During the late stages of
combustion, the KL reduction using the RP is 17%, 70%, and 70% for 0 Ox, 30 Ox, and 50 Ox,
respectively. Therefore, the trend shows a clear improvement in soot reduction when
combining the radial-lips design with OMEX content in the fuel, especially at low ambient
oxygen concentrations, which are representative of low NOX operating conditions. When
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comparing 21% and 15% O2, it is possible to see that the RP can keep the same KL values
with 30 Ox and 50 Ox. The level reached with both oxygen concentrations is similar when
looking at the two peaks. However, when looking at the interval between peaks and the
late oxidation stage, it is possible to see that KL decreases much faster with 21% O2. This
behavior suggests that the oxygen in the fuel strongly impacts the soot formation (and the
maximum KL reached) with RP. In contrast, the ambient oxygen controls the oxidation
(and the velocity with which the KL decreases). However, this is not observable with 0 Ox.
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To summarize the differences between piston geometries and all fuels tested, the area
below the KL evolution curves from Figure 13 is plotted in Figure 15. The aim is to represent
the accumulation of KL reached along the combustion process. The curves corresponding
to CP at 21% O2 for all fuels are plotted with solid lines for reference. The 15% O2 cases
show a higher accumulation of KL when using CP compared to the RP one. The use of this
piston achieves a reduction of 37%, 70%, and 78% using 0%, 30%, and 50% of OMEx in the
fuel, respectively. It is true that without OMEX in the fuel (0 Ox), the CP (red-solid line)
reaches a 48% lower value for 21% O2 than RP at the lowest oxygen concentration condition
using the same fuel (red-dashed line). However, when combined with OMEX in the blend,
the RP achieves similar values as the cases using the CP at 21% O2. Even with 50 Ox, the
values reported are below the ones corresponding to the reference case. On the one hand,
this indicates that using only the piston geometry with low oxygen concentration inside
the combustion chamber is insufficient to achieve or improve the soot levels significantly
compared to using a CP geometry with no EGR. On the other hand, it confirms a synergy
when combining oxygenated fuels (blended with Diesel) with the RP geometry, as the effect
of reducing ambient oxygen concentration over soot is almost negligible.
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4. Summary and Conclusions

The main results of this study are summarized below in bullet points.
Regarding the conventional piston:

• At no-EGR condition (21% O2), the reduction of KL is more prominent when increasing
the OMEX quantity in the blend, which agrees with what can be found in the literature.

• The OMEX content in the blend reduces the amount of soot formed, even at 15% O2.
However, results confirm that only OMEX (up to 50%) is insufficient to avoid the
increase because of the reduction of ambient oxygen.

Regarding the radial-lips piston:

• The avoidance of flame-to-flame interaction achieved by the radial-lips feature results
in lower soot formation close to the bowl wall. In addition, the redirection of flames to-
ward the center of the piston takes advantage of the oxygen available and significantly
improves soot oxidation.

• The addition of OMEX improves the radial-lips piston geometry benefits. In the most
unfavorable condition (15% O2), the addition of OMEX can extend the KL reduction
achieved by the novel piston geometry from 17% (0 Ox) up to 70% (50 Ox) during the
late stage of combustion.

• Results show that 30% and 50% OMEX in the blend, in combination with the radial-
lips piston, can provide similar soot levels with 15% and 21% O2. This confirms the
potential of this combined solution to reduce soot levels when using EGR significantly.

The reported synergy between OMEX and the radial-lips concept represents a promis-
ing solution to mitigate the existing soot-NOX trade-off-. It opens a path to using temper-
ature reduction strategies like EGR to minimize NOX formation without compromising
soot emissions.

This study has analyzed the potential of different OMEX-Diesel blends (0%, 30%,
and 50%) in combination with a novel radial-lips piston geometry under high EGR rate
condition (15% O2). However, this work presents some limitations that future works
should overcome. As previously mentioned, only the duration of the main injection was
modified to compensate for the lower LHV of OMEX to reach the same engine load for
all cases. Future studies should explore further improvement and optimization of the
injection strategy for the blends by modifying other parameters, such as the number of
injections, the injection pressure, or the delay between pulses. In addition, the study
analyzed the combustion behavior in an optical engine, which has certain limitations in
terms of operating conditions compared to more conventional engines. Therefore, to extend
the application of the results presented here, a similar study in a full-metal version of a
single-cylinder engine would be beneficial to analyze the exhaust emissions and corroborate
what has been observed inside the cylinder and has been reported in this work.
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Abbreviations

EU European Union.
GHG Greenhouse gas.
ICE Internal combustion engine.
CI Compression ignition.
SI Spark ignition.
FCVs Fuel cell vehicles.
WTW Well-to-wheels.
OMEn Oxymethylene dimethyl ether
CDS Controlled diffusive spray.
UV Ultraviolet.
CMOS Complementary metal oxide semiconductor.
OH* Excited state hydroxyl radical.
2C 2-Color pyrometry.
CP Conventional piston.
RP Radial-lips piston.
CAD Crank angle degree.
aRoHR The apparent rate of heat release.
BMEP Break mean effective pressure.
Tint Intake temperature.
Pinj Injection pressure.
Pint Intake pressure.
Pexh Exhaust pressure.
SOE Start of energizing.
% O2 Oxygen concentration (volume)
EGR Exhaust gas recirculation.
FWHM Full width half maximum.
KL Soot optical thickness.
LHV Lower heating value.
aTDC After the top dead center.
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