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Abstract: Many real-life applications of the vehicle routing problem (VRP) occur in scenarios subject to
uncertainty or dynamic conditions. Thus, for instance, traveling times or customers’ demands might
be better modeled as random variables than as deterministic values. Likewise, traffic conditions could
evolve over time, synchronization issues should need to be considered, or a real-time re-optimization
of the routing plan can be required as new data become available in a highly dynamic environment.
Clearly, different solving approaches are needed to efficiently cope with such a diversity of scenarios.
After providing an overview of current trends in VRPs, this paper reviews a set of heuristic-based
algorithms that have been designed and employed to solve VRPs with the aforementioned properties.
These include simheuristics for stochastic VRPs, learnheuristics and discrete-event heuristics for
dynamic VRPs, and agile optimization heuristics for VRPs with real-time requirements.

Keywords: vehicle routing problem; heuristics; uncertainty; dynamic environments; real-time
optimization

1. Introduction

Due to its practical applications, the VRP is one of the most popular combinatorial
optimization problems in the operations research, computer science, and industrial engi-
neering communities [1]. In a nutshell, the basic version of the VRP can be described as
follows: A fleet of vehicles, each of them with a limited capacity, is employed to serve a
set of customers’ demands; initially, all vehicles are located at a central depot, and there
is a cost associated with traveling from one node (customer or depot) to another; hence,
the traditional goal is to find the solution that services all customers while minimizing the
total traveling cost without exceeding the capacity of the vehicles. From this basic version
of the VRP, a huge number of variants have been introduced in the scientific literature in
order to consider richer and more realistic scenarios [2,3], stochastic scenarios [4], dynamic
scenarios [5], environmental criteria [6], synchronization issues [7], multi-objective scenar-
ios [8], scenarios involving electric fleets [9], scenarios in which decisions are made over
time [10], etc. In this paper, we focus mainly on VRPs under uncertainty and in dynamic
scenarios, which also include synchronization issues and the need for providing solutions
in real time, since these variants have increasing relevance in the context of smart cities,
inter-connected vehicles, electric vehicles, and self-driving vehicles. In addition, this article
is biased towards large-scale scenarios (with hundreds or even thousands of nodes), which
are frequent in many real-life applications. For this reason, most of the solving approaches
discussed here are based on approximated (heuristic or meta-heuristic) methods and do
not consider exact approaches, despite their indubitable theoretical and practical relevance.

Appl. Sci. 2023, 13, 101. https://doi.org/10.3390/app13010101 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010101
https://doi.org/10.3390/app13010101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6118-0389
https://orcid.org/0000-0001-9905-2203
https://orcid.org/0000-0002-4507-4789
https://orcid.org/0000-0003-1392-1776
https://orcid.org/0000-0002-2613-6155
https://doi.org/10.3390/app13010101
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010101?type=check_update&version=2


Appl. Sci. 2023, 13, 101 2 of 15

Using the Scopus scientific database, we searched for articles containing the terms “(ve-
hicle routing problem) AND (uncertainty OR stochastic)” in the title, abstract, or keywords.
A total of 1025 document results were obtained. Similarly, we searched for articles with
the terms “(vehicle routing problem) AND dynamic”, obtaining a total of 1195 documents.
Figure 1 shows the time evolution of both the VRP in uncertainty/stochastic scenarios
and the VRP in dynamic scenarios. One should notice that despite some seminal works
appearing during the 1980s, it was not until the mid-2000s that the interest in both versions
of the VRP started to rise in a noticeable way. We can also observe that both versions are
currently receiving a similar amount of interest from the scientific community.

Figure 1. Evolution of Scopus-indexed papers on VRPs with uncertainty or dynamic conditions.

Figure 2 displays the main journals that published articles on the VRP under uncer-
tainty/stochastic or dynamic scenarios. Notice that the journals with a larger number
of publications on these two topics were the European Journal of Operational Research,
Transportation Science, Computers, and Operations Research, Computers and Industrial
Engineering, Transportation Research Part E, Operations Research, Experts Systems with
Applications, Networks, Annals of Operations Research, and Transportation Research Part
B. In addition, some other journals published articles covering either VRPs under uncer-
tainty or VRPs under dynamic conditions. The researchers in these articles explored and
investigated different approaches ranging from exact algorithms to advanced techniques to
handle uncertainty and dynamic scenarios. For example, Hu et al. [11] developed an algo-
rithm based on a modified adaptive variable neighborhood search heuristic to tackle the
demand and travel time uncertainty, and Pessoa et al. [12] utilized the branch-cut-and-price
algorithm to solve the capacitated VRP. In addition, approaches to solving newly defined
variants of the VRP were introduced, such as Yu et al. [13], who studied the heterogeneous
fleet green VRP with time windows, and Lee [14], who considered nonlinear charging time
in the electric vehicle routing problem. This paper reviews some of these works and the
solution approaches for handling uncertainty or dynamic scenarios in VRPs.
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Figure 2. List of journals that published articles on VRPs under uncertainty or in dynamic scenarios.

The remainder of this paper is structured as follows: Section 2 offers a short overview
of trending topics on VRPs, which include rich and real-life versions of the problem that
consider the sustainability and social dimensions. Section 3 provides a review on the use of
simulation–optimization approaches—and simheuritics in particular—to solve VRPs in
uncertain scenarios. Similarly, Section 4 analyzes VRPs in dynamic scenarios and several
approaches that can be used to deal with these. Among these approaches, the combination
of machine learning methods with heuristics is considered. Section 5 performs a similar
study, this time focusing on VRPs with synchronization issues and time-dependent events.
Section 6 introduces the concept of agile optimization in the context of VRPs that need to
be solved in real time, mainly in the context of self-driving vehicles in smart cities, where
new data are continuously provided by Internet of Things (IoT) devices. Finally, Section 7
highlights the main conclusions of this work.

2. Recent Trends in VRPs

Knowing the importance of the VRP in the real world as it was depicted in the
Introduction section, it is possible to highlight a long list of recent applications of routing
models in many practical arenas. Some of the practical contributions of the VRP were
historically presented by Laporte [15] and, more recently, by Caceres-Cruz et al. [2]; this
last reference envisioned the would-be VRP applications and models for the following
years. In a parallel way, Lin et al. [16] presented the green vehicle routing problem as
a rich new paradigm that presented new challenges for supply chain management and
transportation. Later, the general overview written by Braekers et al. [17] highlighted the
importance of dynamic models in uncertain scenarios as the key problem for transportation
and distribution problems in the near future. Furthermore, Rios et al. [18] offered a detailed
description of the current taxonomy of dynamic VRPs and their relationship with applied
problems in the real world. Apart from the previous dynamic scenarios, the novel paradigm
of urban mobility based on non-internal-combustion vehicles (mainly electric vehicles) has
suggested the need for the design of dynamic VRP models adapted to city logistics [19].
Hence, we can currently consider the following great topics as critical in the design and use
of dynamic VRP models:

• Minimization of pollutant emissions: The problem of minimizing pollutant emissions
in routing, which is included in the green vehicle routing problem, was profiled in
the period of 2005–2010. Even though the complete analysis is still in progress, this
represents an essential challenge in current mobility paradigms [20]. This topic lies
on the basis of the three typical sustainability dimensions of the VRP—the economic,
environmental, and social dimensions—which are now omnipresent in the transporta-
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tion and routing literature [21]. Usually, the environmental and social dimensions are
considered key externalities associated with transportation [22].

• Consideration of social issues related to transportation: In the last decade, the so-
cial externalities due to transportation—e.g., congestion, pollutant emissions, noise,
infrastructure wearing, etc.—have been revealed as critical in the way of designing sus-
tainable modes of mobility [21–23]. These traits also assume a very dynamic behavior
in mobility problems, which should be contemplated in VRP modeling.

• Greater importance of the urban scenarios: Knowing the importance of the previously
mentioned sustainability dimensions, in recent years, it has become clear that the urban
arena is the key location in which those dimensions present their critical facets [24].
Urban mobility problems need the support of agile procedures more and more [25].

• Increase in scenarios based on accidents and catastrophes: Due to the higher demand
for transportation and mobility, along with an increase in requests for logistic support
in disaster scenarios [26], the quicker responses and solutions have been revealed as
essential [27].

• Greater importance of energetic objectives and constraints in the transportation pro-
grams: It is clear that most of the new challenges that transportation is going to face
are going to be related to energy, not only for the use of more sustainable means of
mobility, but also for the need to optimize consumption and production [28].

• Necessity of collaboration as a way of facing complex distribution processes: Col-
laborative and cooperative approaches are becoming quite common in goods and
merchandise distribution [29]. They allow for good performance in the sustainability
dimensions, as presented by Muñoz-Villamizar et al. [30]. Finally, the dynamic VRP
was contemplated by Basso et al. [31].

• Greater occurrence of disruptions in urban and interurban mobility processes: This
type of mobility incident is becoming extraordinarily common in real transportation,
and there is a demand for quick answers, which represents the basis of the concept of
‘agile optimization’ [25].

Therefore, the popularity of these emerging VRP paradigms—which involve more
uncertainty, more complexity, and quicker decisions—has spurred a thorough study of
dynamic routing problems.

3. VRPs under Uncertainty

Real-life VRPs involve demand, travel distance, or time uncertainty. This uncertainty
could be of a stochastic or fuzzy nature. Thus, the traditional heuristics that solve determin-
istic VRPs cannot be used to solve the uncertain versions of these problems. Uncertainty
requires other components in the solution approach, such as simulations. Simulations can
be used to evaluate different systems, including those of vehicle routing under stochastic
conditions, but they cannot be used to solve problems. To overcome this challenge, re-
searchers have combined simulation and optimization methods [32]. For example, Galvan
et al. [33] combined evolutionary particle swarm optimization and Monte Carlo simulation
(MCS) to find a solution to a VRP. The optimization method could be metaheuristics, math-
ematical programming, or machine learning. Accordingly, several simulation–optimization
approaches could be identified based on the utilized optimization method and the func-
tion of the simulation in the hybridized approach. For more details on these approaches,
the reader is directed to Figueira and Almada-Lobo [34]. One simulation–optimization
approach integrates a metaheuristic algorithm and a simulation. This integration is called
simheuristics, and it has become a popular approach among researchers for solving stochas-
tic problems [35]. According to Figueira and Almada-Lobo [34], the metaheuristic algorithm
generates solutions that are evaluated by using a simulation in simheuristics. Thus, the
simulation in this hybridization approach assigns values to each solution with respect to the
objective function(s). This approach could be considered as a “first resource” methodology
when handling NP-hard problems and large-scale instances under stochastic uncertainty.
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Figure 3 demonstrates the flow of a simheuristic approach. First, a deterministic
version of the considered problem is defined. This definition might be achieved by replac-
ing the stochastic random variables with their estimated values, e.g., means. Then, the
metaheuristic algorithm generates solutions for the deterministic version of the problem.
If the generated deterministic solution is promising, it is examined with a small number
of simulations run under stochastic conditions. This process of generating and evaluating
solutions continues until a pre-specified time has elapsed or a number of iterations has
been reached. At this stage, an elite list of solutions is defined. These solutions are further
examined with a more intense simulation process and a larger number of simulation runs
in order to rank them.

Figure 3. Simheuristic approach.

Researchers have utilized different simulation approaches that have integrated into
simheuristics, such as MCS and Petri nets. Calvet et al. [36] used MCS integrated into
a metaheuristic algorithm to solve a multi-depot VRP. Another example of simheuristic
utilization is found in the work of Guimarans et al. [37]. These authors considered two-
dimensional VRPs. This type of problem appears in real-world cases when transported
items cannot be stacked on top of each other. Guimarans et al. [37] integrated MCS into
an iterated local search framework. Their problem considered stochastic travel times, and
it triggered the integration of a simulation into their solution approach. [38] proposed an
intertwined protocol for integrating Petri nets into simheuristics to solve stochastic VRPs
with the correlated demand. It was noticed that simulations integrated into metaheuristic
algorithms have formed solution approaches for different versions of VRPs.

In addition, electric vehicles have been considered in VRPs, and this combination
constitutes a new class of problems. These problems raise additional constraints related
to the limited driving range, making the resolution even more challenging. Hence, Reyes-
Rubiano et al. [39] solved a version of this problem with stochastic travel times. They used
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MCS and a multi-start approach. In their approach, biased randomization techniques were
utilized to generate solutions in every re-start of a heuristic.

The vehicle routing problem finds its applications in different real-world problems.
For example, Gruler et al. [40] formulated a waste collection problem as a multi-depot
VRP. They used a simheuristic approach to solve the stochastic demand version of the
problem. The solution approach was based on a variable neighborhood search framework
with a simulation. A similar application was considered by Yazdani et al. [41] in Sydney
(Australia). Gruler et al. [42] solved a single-period inventory routing problem with
stochastic demands, Their solution approach was based on simheuristics. In another
extension of the VRP, Raba et al. [43] studied agri-food supply chains with stochastic
demands. They proposed solution approaches for solving a real-world case. In a similar
work, Onggo et al. [44] addressed this problem by using benchmark instances, which
included perishable products.

The uncertainty in real-world problems is not limited to being of a stochastic nature.
Fuzzy uncertainty is encountered in different aspects of problems as either demand or
travel time. Thus, this uncertainty was considered by Tordecilla et al. [45]. They extended
the concept of simheuristics by adding a fuzzy component to the simheuristic approach so
that it could include non-stochastic uncertainty while solving VRPs.

4. VRPs in Dynamic Environments

In real life, there are plenty of unpredictable factors. In these cases, making decisions
is not trivial, since every choice needs to be based on partially unknown aspects. A typical
unpredictable factor that concerns the VRP is the travel time. As a matter of fact, even
though it is usual to consider static traveling times, they may actually be affected by
several factors, such as traffic jams, accidents, road work, or weather conditions. Other
aspects that are hard to predict may be customers’ demands or the cost of a delivery
delay in the case of VRPs with time windows. As previously discussed, solving VRPs
under such dynamic factors may be difficult. Even predicting the actual quality of a given
solution is not easy. Fortunately, machine learning (ML) methods can help us to develop
predictive models [46]. In addition, with the support of new hardware solutions [47],
once trained, most machine learning models can be executed on multiple small processors,
providing a response in milliseconds. This allows for their integration with heuristics, thus
bringing up the concept of learnheuristics [48]. Learnheuristics refer to the combination
of metaheuristics with machine learning methods. This approach is proposed to solve
combinatorial optimization problems in dynamic scenarios. Dynamic scenarios are defined
by elements in the objective function or constraints. These elements might change while
the solution is being constructed (they cannot be fixed in advance). For example, customers’
demands might change depending on the vehicle arrival time or a pre-specified time
window; thus, the demand could depend on the constructed solution, which would involve
the vehicle type, number of customers that have visited, vehicle travel time, etc. Another
dynamic element might be the travel time, which is affected by traffic jams; thus, it is
affected by the definition of the route in a solution, especially for routes in big cities.
Accordingly, the solution approach should facilitate updates of the input models used
by the metaheuristic algorithm at each iteration; this solution approach can coordinate
learning mechanisms that update the input models and metaheuristics (Figure 4).

A learnheuristic-based approach was proposed by Arnau et al. [49] to solve the VRP in
dynamic scenarios. In their problem, they considered a dynamic travel time that depended
on the routing plan. Thus, the travel times changed and were updated while the solution
was being constructed. In another work, Calvet et al. [50] studied a multi-depot VRP
with heterogeneous depots in terms of their commercial offers. Customers’ demands and
willingness to consume depended on whether the depot assignment fit their preferences or
not. Accordingly, the solution approach should consider market-segmentation strategies
and distribution costs; considering market-segmentation strategies increases sales and,
hence, the total income. In the proposed learnheuristic algorithm, the customer demand
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was estimated based on the assigned depot. The objective function was enriched by the
estimated customer expenditures. This enrichment guided a local search in the utilized
metaheuristics. Similarly, Bayliss et al. [51] proposed a learnheuristic approach to solving
an aerial drone surveillance problem. In the aerial drone surveillance problem, the aerial
drones collected rewards by gathering information and observing a set of targets during a
specified time. This collected reward was to be maximized by the objective function. The
travel time between the targets was dynamic and was influenced by several factors. For
example, the angle of ascent and air resistance affected the drone’s acceleration, and sharp
turns decreased the drone’s speed. Hence, the prediction of travel times was outsourced to
a machine learning algorithm.

Figure 4. Flowchart of a learnheuristic for the VRP.

5. VRPs with Synchronization Issues

Modern transportation systems are not only of a large scale, but are also characterized
by a high level of dynamism—i.e., unexpected events may occur at any time, thus requiring
a change in the schedule or routing—and synchronization—i.e., the observable and quan-
tifiable phenomenon resulting from direct or indirect interactions between system elements
or processes [52]. Exact approaches, as well as classic heuristics and meta-heuristics, are not
usually designed for such dynamic scenarios. On the other hand, discrete-event heuristics
(DEH) combine a fast heuristic algorithm with a discrete-event simulation [53]. As repre-
sented in Figure 5, while the heuristic is responsible for making decisions, the simulation
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updates the state of the system event by event in order to evaluate how the decisions
made by the heuristic affect the overall system with all of its parallelisms, dynamism, and
synchronization. In this way, every decision can be made by considering the exact state
of the system at that time. A DEH is also more flexible and relatively easy to maintain,
since a change in the system can usually be tackled with a slight change in the simulation
component without affecting the heuristic. Furthermore, the simulation and heuristic
components shown in Figure 5 might be intended as two distinct elements, which would
allow us to implement them in two different workstations or endpoints. In this way, the
same simulation may be used by different heuristics.

Figure 5. Flowchart of a discrete-event heuristic for the VRP.

A typical set of problems in which DEHs might be beneficial are multi-tier vehicle
routing problems and multi-vehicle routing problems, where different types of vehicles
contribute to shipments. Belonging to this category are all multimodal supply chain
scenarios [54], where a shipment might involve different transportation modes, such as
planes, trains, ships, cargo ships, trucks, and vans. Bredström and Rönnqvist [55] might
be considered some of the pioneers, since they first highlighted the need for combining
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heuristics with simulations. In greater detail, they approached the VRP with time windows
and synchronized visits (VRPTWSyn) when applied to home healthcare services for elders.
In their model, it might be necessary for more than one staff member to be present simulta-
neously or in a given order. They emphasized the importance of temporal synchronization
and precedence constraints by suggesting a mixed integer programming formulation of
the problem and employing a heuristic approach. However, in the concluding remarks,
they mentioned the need for a more efficient model for larger instances. Years later,
Afifi et al. [56] proposed a new approach based on simulated annealing with dedicated
local searches for solving the VRPTWSyn. They tested it on instances from Bredström
and Rönnqvist [55], showing that, in some cases, their solution was able to improve the
best-known solutions.

Two further applications that might benefit from these solutions that are capable
of dealing with high dynamism and synchronization are car-sharing and ride-sharing
operations [57,58]. Car-sharing and ride-sharing are rapidly spreading, especially in big
cities, and they are becoming part of our everyday life. Nowadays, customers require
increasingly efficient service with fewer waits and delays. Both problems are marked by a
rigid time dependency, the necessity of synchronizing the involved agents, and unexpected
occurrences that arrive once the solution has already been computed—e.g., a driver that
receives an unexpected request for a ride when they are already on their way. A solution
that is able to consider all of these aspects was recently proposed by Fikar et al. [59], whose
algorithm dealt with dynamic routing and scheduling scenarios and used combined trip
sharing and walking.

A recently born and futuristic scenario is also that considered, for instance, by
Boysen et al. [60], Das et al. [61], and Yetis and Karakose [62], where a last-mile deliv-
ery was fulfilled through collaborative truck–drone routing optimization. In this case,
trucks were designed to transport both products and drones, and, along their paths, they
were allowed to release drones and rejoin them afterward in a different location. This
currently hard-to-implement scenario could speed up the delivery process and sidestep
the short battery life in drones at the same time. Another solution belonging to the same
research stream is that proposed by Deng et al. [63], where the authors tried to find the
optimal route for a set of delivery vans with drones or sidewalk robots, i.e., in a system in
which there was an independent vehicle that could move on its own and a special vehicle
that assisted it. A similar problem was tackled by Grangier et al. [64], who approached
the two-echelon VRP (2E-VRP)—i.e., two distinct fleets of vehicles were used to carry
out deliveries—by considering time windows and synchronization constraints as well.
The authors approached the problem by means of an adaptive large neighborhood search
(ALNS) and found good solutions in a reasonable time.

Another interesting scenario characterized by high synchronization and dynamism
was that faced by Arnau et al. [65], who analyzed a realistic and novel VRP variant. Their
problem considered container transportation throughout a spoke–hub network. These
containers were to be relocated from their original location to their destination, and the
relocation of the containers was to be performed before a pre-specified deadline. The
containers could be transported by different trucks and could be temporarily stored in
network hubs before being delivered to their destinations. A truck could transport only
one container at a time, and truck drivers were to return to their starting point by the given
time. To solve this problem, a DEH was proposed to address the intrinsic dynamism of this
time-evolving system.

Finally, as proved by Hashemi Doulabi et al. [66], healthcare applications may also
benefit from algorithms that are able to deal with synchronization issues. In this case, the
authors studied a VRP with synchronized visits and stochastic travel and service times,
which was formulated as two-stage stochastic integer programming, and they applied
the L-shaped algorithm and its branch-and-cut implementation to solve the problem. In
addition, an operating room scheduling problem with stochastic durations was formulated
and solved.
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6. VRPs under Real-Time Constraints

At this point, we have seen how taking factors such as uncertainty (simheuristics),
integration with ML models (learnheuristics), and synchronization issues (discrete-event
heuristics) into account is crucial in dynamic systems. The next category aims to cover
real-time constraints. Nowadays, we count on many devices and technologies that can
provide data, such as current fleet locations, new customer requests, or the state of the
traffic, which are useful for performing real-time decisions. The main applications for
VRPs with these constraints are dynamic fleet management (real-time dispatching of
vehicles), vendor-managed distribution systems (replenishing inventory to avoid stock-
out), couriers (collecting parcels and sending them), rescue and repair service companies,
dial-a-ride systems (services for transporting people between two nodes), emergency
services (relocating idle vehicles, optimizing routes), and taxi cab services [67].

When it comes to VRPs with real-time constraints, some of the approaches in the
literature can be summarized as shown in Table 1.

Table 1. Approaches to solving VRPs with real-time constraints in the literature.

Article Problem Real-Time Consideration Objective Approach

Haghani and Jung [68]
Pick-up or delivery
Capacitated VRP with
soft time windows.

Real-time service requests
and real-time variations in
travel times.

To minimize the total
cost. Genetic Algorithm.

Hong [69] Dynamic VRP with hard
time windows. Real-time service requests.

To minimize the travel
distance and number
of vehicles.

Large
Neighborhood
Search.

Chen et al. [70] Real-time time-dependent
VRP with time windows.

Real-time travel times and
service requests.

To determine optimal routes
and departure times. Heuristic.

Ferrucci et al. [71]
Dynamic VRP with soft
time windows and
urgent delivery of goods.

Real-time service requests. To minimize the total
customer inconveniences. Tabu Search.

Barkaoui and Gendreau [72] Dynamic VRP with time
windows. Real-time service requests.

To minimize the number
of routes and the total
traveled distance.

Evolutionary
Genetic Algorithm.

Azi et al. [73] Dynamic VRP with time
windows. Real-time service requests. To maximize the total

profit.

Adaptive Large
Neighborhood
Search.

Cardoso et al. [74] Capacitated VRP with
time windows. Real-time service requests.

To minimize the number
of vehicles and the total
traveled distance.

Heuristic.

As can be concluded from Table 1, the most common real-time constraint is that related
to customer requests, although variations in travel times are also tackled, but with less
frequency. On the other hand, the methodologies used to solve these problems are various,
but all of them agree on the most critical point: It is necessary for the implemented solution
to be extremely fast and effective. The family of agile optimization (AO) algorithms [75]
is a good choice for real-time decision making, since they are able to obtain extremely
fast execution times. The main idea behind these algorithms is the parallelization of
heuristics that are usually easy to implement, randomized, and count with a small number
of parameters, thus easing the parameter fine-tuning process. The effectiveness of these
algorithms has been shown in the literature, as they are able to provide quality solutions
to complex problems of different natures, including large-scale dynamic or uncertain
conditions that are present in the real world, such as those involving traffic, vehicle location,
unexpected demands, disruptions, etc. Work regarding AO includes Martins et al. [25],
where a fleet of homogeneous vehicles had to satisfy customers’ demands in a two-echelon
network. This paper extended a constructive heuristic to a biased–randomized algorithm
with parallelized runs. It was shown that this approach could improve upon the original
version by about 10% without increasing the required wall clock time. In Li et al. [76],
the authors tackled the integration of IoT analytics into AO problems. By employing
an AO biased–randomized heuristic, the goal was to solve a waste collection problem,
which was modeled as a dynamic team orienteering problem with mandatory visits. It
was shown that this approach outperformed the solutions provided by its original version.
Similarly, Peyman et al. [77] provided a comprehensive review of the state of the art of the
Internet of Things in intelligent transportation systems (ITSs). In this context, challenges
were identified for cloud computing, fog computing, and edge computing. An AO-based
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methodology was introduced and used to solve a case study regarding the dynamic ride-
sharing problem (DRSP) to illustrate these concepts. Their results outperformed those of
traditional methods in terms of costs with instances of different sizes. Martins et al. [75]
proposed an agile optimization algorithm to solve the uncapacitated facility location
problem (UFLP), where the mapping of vehicles to roadside units (RSUs) needed to be
re-optimized periodically over time while taking matters such as energy consumption of
the RSUs, the service capabilities, and the required quality of service into account. Figure 6
presents the main idea behind the AO framework, in which n concurrent executions of a
biased–randomized heuristic are run in parallel. The first execution, in which β = 1, refers
to the deterministic heuristic. The remaining ones are smoothed by applying 0 < β < 1.
In the end, the best solution among those that were simultaneously generated is found
and returned.

Figure 6. General schema of an agile optimization framework.

7. Conclusions

In this paper, we discussed different general strategies for solving vehicle routing
problems in dynamic and uncertain scenarios, as well as those in which real-time solutions
are required. In connection with these scenarios, this paper also identifies some of the
emerging topics in the area of VRPs, among which we can mention the following: the
minimization of pollutant emissions and energy consumption, the inclusion of the social
dimension in the design of routes, a focus on urban and peri-urban scenarios, the need for
providing quick answers to catastrophic events and accidents, horizontal cooperation, and
disruption management in vehicle routing plans.

Regarding VRPs under uncertainty, we discussed the concept of the simheuristic and
how it has been already employed to solve different VRP variants with stochastic demands
and/or stochastic random times. Extensions of this concept to include fuzzy uncertainty
were also commented on. One of the main characteristics of these simheuristic algorithms
is the flexibility that they offer when modeling random elements; because they are based
on a simulation, any best-fit probability distribution can be utilized. Regarding VRPs under
dynamic conditions, we analyzed the concept of learnheuristics and their application to
VRPs with dynamic elements. In these scenarios, the incorporation of machine learning
models into a metaheuristic can constitute a necessary step in order to successfully predict
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the evolution of dynamic inputs, such as travel times or penalty costs associated with the
violation of a soft constraint. In relation to VRPs with synchronization issues and time
dependencies, this paper commented on the concept of discrete-event heuristics. These
special heuristics include a list of discrete events that are traversed in a similar way to that in
any discrete-event simulation. As each new event is realized, a biased-randomized heuristic
can make a rational decision, thus activating new events that are properly scheduled for the
future and included in the list. This original strategy has started to provide relevant results
for different VRPs in which the synchronization of agents has to be considered. Likewise,
we have discussed the need for agile optimization algorithms, which must be capable of
providing real-time solutions of good quality for complex and large-scale VRP instances.

As future research lines, it is natural to consider combinations of these families of
algorithms to cope with more complex scenarios that combine uncertainty, dynamic, and
real-time conditions. Hence, it seems relatively easy to integrate learnheuristics with
simheuristics and simheuristics with discrete-event heuristics. Notice, however, that agile
optimization algorithms are a little bit different due to the real-time requirement. Having
said that, however, one can notice that agile algorithms for VRPs are also intrinsically
related to scenarios under dynamic conditions; thus, they can significantly benefit from
their combination with machine learning predictive models.
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