
Citation: Launet, L.; Wang, Y.;

Colomer, A.; Igual, J.;

Pulgarín-Ospina, C.; Koulouzis, S.;

Bianchi, R.; Mosquera-Zamudio, A.;

Monteagudo, C.; Naranjo, V.; Zhao, Z.

Federating Medical Deep Learning

Models from Private Jupyter

Notebooks to Distributed Institutions.

Appl. Sci. 2023, 13, 919. https://

doi.org/10.3390/app13020919

Academic Editor: Krzysztof Koszela

Received: 18 November 2022

Revised: 14 December 2022

Accepted: 3 January 2023

Published: 9 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Federating Medical Deep Learning Models from Private Jupyter
Notebooks to Distributed Institutions
Laëtitia Launet 1,†, Yuandou Wang 2,† , Adrián Colomer 1 , Jorge Igual 3 , Cristian Pulgarín-Ospina 1,
Spiros Koulouzis 2,4, Riccardo Bianchi 2,4, Andrés Mosquera-Zamudio 5 , Carlos Monteagudo 5 ,
Valery Naranjo 1 and Zhiming Zhao 2,*

1 CVBLab, Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMAN-Tech),
Universitat Politècnica de València, 46022 Valencia, Spain

2 Multiscale Networked Systems, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
3 Instituto de Telecomunicaciones y Aplicaciones Multimedia (ITEAM), Departamento de Comunicaciones,

Universitat Politècnica de València, 46022 Valencia, Spain
4 LifeWatch ERIC, Virtual Lab. & Innovation Center (VLIC), 1098 XH Amsterdam, The Netherlands
5 Pathology Department, Hospital Clínico Universitario de Valencia, Universidad de Valencia,

46010 Valencia, Spain
* Correspondence: z.zhao@uva.nl
† These authors contributed equally to this work.

Abstract: Deep learning-based algorithms have led to tremendous progress over the last years, but
they face a bottleneck as their optimal development highly relies on access to large datasets. To
mitigate this limitation, cross-silo federated learning has emerged as a way to train collaborative
models among multiple institutions without having to share the raw data used for model training.
However, although artificial intelligence experts have the expertise to develop state-of-the-art models
and actively share their code through notebook environments, implementing a federated learning
system in real-world applications entails significant engineering and deployment efforts. To reduce
the complexity of federation setups and bridge the gap between federated learning and notebook
users, this paper introduces a solution that leverages the Jupyter environment as part of the federated
learning pipeline and simplifies its automation, the Notebook Federator. The feasibility of this
approach is then demonstrated with a collaborative model solving a digital pathology image analysis
task in which the federated model reaches an accuracy of 0.8633 on the test set, as compared to the
centralized configurations for each institution obtaining 0.7881, 0.6514, and 0.8096, respectively. As a
fast and reproducible tool, the proposed solution enables the deployment of a cross-country federated
environment in only a few minutes.

Keywords: federated learning; Jupyter notebook; medical image analysis; collaborative models;
cloud environment; distributed medical applications

1. Introduction

The advent of artificial intelligence (AI) and its application to medical imaging has
opened the way to the reduction of doctors’ workloads and, ultimately, improved patient
care. However, despite the growing expertise in this field, the development of optimal
deep learning (DL) models relies on large quantities of training data, that are too often still
difficult to obtain, especially in the medical field.

Although AI developers do have the expertise needed to develop cutting-edge models
with great potential for optimal automatic diagnosis systems, local learning with limited
local datasets is not sufficient. To mitigate this long-lasting data hurdle, AI experts have
come up with novel methods such as the generation of additional synthetic data [1] and
state-of-the-art techniques for data augmentation [2]. However, synthetic data generation
still raises various concerns and is not optimal yet for developing robust and reliable

Appl. Sci. 2023, 13, 919. https://doi.org/10.3390/app13020919 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13020919
https://doi.org/10.3390/app13020919
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4694-9572
https://orcid.org/0000-0002-7616-6029
https://orcid.org/0000-0003-3408-4014
https://orcid.org/0000-0002-6158-9619
https://orcid.org/0000-0002-9381-9976
https://orcid.org/0000-0002-6717-9418
https://doi.org/10.3390/app13020919
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13020919?type=check_update&version=1

Appl. Sci. 2023, 13, 919 2 of 14

medical models for clinical practice [1]. Alongside the efforts to generate additional data
samples to train DL models, it is noteworthy that the substantial volumes of medical data,
necessary for optimal model training, do actually exist in other institutions.

If given access to these diverse medical institutions’ local data, AI experts would
be able to train optimal models with substantial datasets, thus bringing the promise of
unprecedented research progress in the medical field. However, those medical data are
decentralized by nature due to the privacy legislation they entail, and therefore usually
do not allow for their integration across institutions without raising legal concerns. Al-
though anonymization and /or pseudonymization were long thought to overcome these
limitations and thus eventually allow safe transfers of medical data, it has been shown that
it is unfortunately not sufficient to promise full patient privacy [3].

As a way to guarantee data privacy concerns while gaining access to more substantial
datasets, federated learning (FL) [4,5] was introduced to collaboratively train DL models
over decentralized data and already proved to perform similarly to models exposed to
single-institutional data during training [6]. However, despite the growing interest in im-
plementing FL in the medical field, this paradigm is still in its infancy. Global collaboration
and data sharing among organizations in the federation settings are important requests
but still open issues [7]. Indeed, most of these studies were often limited to simulations
because of the complex deployment of FL settings in real-world medical applications.

Although data scientists actively share their prototype code by means of notebook
environments such as Jupyter, implementing an FL system requires significant engineering
and deployment efforts with the development of models at each source, their aggregation,
and the communication protocols for their integration. This whole process is particularly
demanding, time-consuming, and even burdensome for domain-specific users, such as
pathologists at hospitals, to achieve real goals of using AI at the edge, as it requires the
customization of individual models and the deployment of the remote infrastructure, not
to mention the debugging process to ensure its proper functioning. As a result, Jupyter
users face a set of limiting challenges that clearly highlight the gap between the Jupyter
environment and FL.

Prior work [8] introduced how code fragments in Jupyter Notebooks could be con-
tainerized and reused as workflow building blocks to scale up scientific experiments to
cloud infrastructures through an example of processing massive light detection and ranging
(LiDAR) data. However, it did not support any AI-based code implementations. In this
paper, we extend our previous work and present a reproducible step-by-step guideline that
allows for generating a federated set-up base starting from a centralized Jupyter code for
distributed medical applications. To be specific, our main contributions include:

• Reduce the complexity of implementing a federated learning framework by making
use of a Jupyter notebook code template for artificial intelligence experts;

• Improve the deployment efficiency of cross-silo federated learning systems by auto-
matically containerizing the Jupyter components to provide to distributed users;

• Seamlessly bridge the gap between Jupyter and FL systems by providing a generic
solution that is both easy-to-use and reproducible;

• Give an example tutorial of the proposed solution, the Notebook Federator, by apply-
ing it to a real-world cross-countries computational pathology classification task.

2. Related Work

Although federated learning (FL) was initially developed for mobile and edge device
use cases under a cross-device paradigm [9], cross-silo FL recently gained traction in
various domains, including healthcare [10]. Under this setting, models are trained on
siloed data across organizations, and medical data remains local and decentralized in each
collaborating institution (client) [9]. Only the resulting weights and parameters are shared
and aggregated together before being transferred back to the different clients.

In recent years, these applications have become increasingly popular in the medical
image analysis field, as shown in some successful implementations, including brain imaging

Appl. Sci. 2023, 13, 919 3 of 14

classification and segmentation [6,11,12], EEG signal classification [13], and, more recently,
histopathology [14,15]. Li et al. [6] demonstrated the feasibility of using a client–server
FL system to perform brain tumor segmentation. Roy et al. [11] introduced BrainTorrent,
which is a peer-to-peer serverless FL environment, to perform a whole-brain segmentation.
Lu et al. [15] presented a large-scale computational pathology study to demonstrate
the feasibility and effectiveness of privacy-preserving FL using thousands of gigapixel
whole slide images from multiple institutions. However, due to the complexity of FL
implementation in real-world situations and large-scale deployment, most of these medical
applications of FL still rely on simulations.

To support the different FL scenarios and simplify their deployment and execution
process, some studies proposed easy-to-use open-source FL frameworks, such as PySyft [16],
OpenFL [17], FLOWER [18] or Federated Scope [19]. The majority of these solutions focuses
on the architecture of the FL framework. Whereas FLOWER [18] provides a core framework
architecture with Edge Client Engine and Virtual Client Engine, Federated Scope [19]
proposes an event-driven architecture with an asynchronous training protocol in FL for
heterogeneity. These open-source frameworks have served as a basis to build federated
setups, some of them in the medical field. In [20], Lee et al. leveraged the PySyft framework
to implement a thyroid ultrasound image classifier across six medical institutions and
compared the performance of federated training with that of conventional centralized
model training. In the same vein, Florescu et al. [21] made use of FLOWER to simulate an
FL system for COVID-19 detection on CT images, where the clients were deployed locally
on a single machine. In contrast, in a work on OCT imaging [22], although the authors
did mention the existence of FL frameworks, they chose to simplify their implementation
through an independent development and to simulate the clients’ nodes locally on a single
supercomputer cluster.

Despite these available FL frameworks, there is no explicit pipeline for the FL training
process between the framework and data scientists in these solutions, and most steps have
to be done manually without FL automation. It is thus still time-consuming for domain-
specific users to deploy their FL applications, not only because of the heterogeneous
resources but also because of the complexity of models, such as software dependencies and
parameters to deploy.

Additionally, although many AI researchers make use of Jupyter notebooks to de-
velop DL models, there is a clear gap between the Jupyter environment and FL systems.
Although some specific frameworks do provide a version of the FL code presented in
a Jupyter notebook [19], there is still a need to upload the data to the cloud, and these
notebooks are not fully integrated into the FL pipeline. In fact, they are mostly based on
simulations rather than real-world scenarios running on different clients’ machines.

Despite the many system construction efforts for FL frameworks, there is a clear need
to simplify their deployment process and address the gap between Jupyter users and FL
systems. Far from aiming to replace the available FL frameworks, in this work, we seek
to fill the gap they are not covering by proposing a solution that can be built upon them.
Therefore, we propose a novel FL research asset that leverages the Jupyter environment
and proposes to reduce the complexity of implementing and deploying a reproducible FL
pipeline, the Notebook Federator.

3. Notebook Federator

The Notebook Federator comes as a handy tool that combines resources rather than
aiming to replace them. Therefore, we leverage different previously developed solutions to
provide a generic solution that can adapt to the particular needs of the end users.

One of the groups participating in this study previously developed a tool that embeds
a virtual research environment (VRE) into the Jupyter environment, Notebook-as-a-VRE
(NaaVRE) (https://github.com/QCDIS/NaaVRE, accessed on 2 January 2023) [8], which
comes with a toolbox aiming to provide researchers with a variety of functional components

https://github.com/QCDIS/NaaVRE

Appl. Sci. 2023, 13, 919 4 of 14

(services). In this work, we make use of NaaVRE and its component containerizer service
to Dockerize the components to share with distributed users automatically.

To implement the proposed solution, we selected a commonly used FL framework as
a basis for the Notebook Federator, the FLOWER framework [18]. We chose this particular
framework for its broad community and documentation and the possibility to easily modify
and integrate it for our specific pipeline. However, as a technology, the Notebook Federator
is generic, and could thus be used together with other FL frameworks.

3.1. System Definition and Requirements

For the efficient implementation of a framework that promotes the optimal collabora-
tion of AI scientists, the setup proposed in this work is based on a user-friendly environ-
ment, Jupyter Notebook. However, Jupyter relies on the kernel (engine) for interpreting
the code and is often limited to the capacity of the machine it is running on, thus making
it difficult to support FL. To improve this, we identify a set of requirements. First, users
registered within a federation should be able to develop the model architecture and code
blocks that will be used to train all local models, and the central node should then auto-
matically be able to update the global model’s weights upon completing a communication
round. Finally, the proposed pipeline needs to be reproducible and easily implementable
for other federations.

3.2. Challenges and Assumptions

Implementing an FL ecosystem in a real-world medical environment comes with a
myriad of challenges related to its practical application. First and foremost, not all medical
institutions can count on the necessary hardware resources to train AI models. When
they do, these might vary across sites, as do operating systems and network conditions.
Moreover, different collaborators might store their raw data in varying formats and struc-
tures, thus limiting the automation of the data-loading process. Therefore, to enable the
correct practical implementation of the FL setup, we proceed on the basis that the following
assumptions are valid:

• All the participating institutions are already registered as part of the federation;
• Local data cannot be shipped outside the institution;
• Local data are stored on each client machine following the same—previously defined—

nomenclature for labels and metadata across institutions. As some institutions may
have their own tools or methods to process raw data, we assume the data have passed
the quality check;

• Each medical collaborator either has local machines (e.g., local computers) to run the
code or an agreement with a research group that acts as a local infrastructure (e.g.,
high-performance servers, or computer clusters) and is thus able to train models;

• Each participating entity has a Docker cluster or is able to build Docker images to run
the corresponding code.

To reproduce the FL process, it requires configuring the corresponding software
dependencies, input and/or output parameters, and services. In a traditional way, a user
has to manually install all necessary software, enable services, and feed with suitable inputs,
a process that is burdensome and time-consuming.

3.3. Architecture

The main goal of this work is to simplify the process of federation setup and make it
less burdensome and time-consuming for domain-specific users such as AI experts and
pathologists. In this work, we propose our FL setup solution, as depicted in Figure 1,
illustrating an overview of its architecture. It comprises the following five steps:

1. Model and aggregator definition: Suppose a Jupyter Notebook user, e.g., an AI
expert, develops a cutting-edge model architecture, aggregation function, and other
machine learning-related code fragments for the FL training process.

Appl. Sci. 2023, 13, 919 5 of 14

2. Create FL pipeline building blocks: For flexibility purposes when it comes to han-
dling collaborating institutions and updates, as well as reducing the complexity
of FL deployment and execution, we propose to adopt one Jupyter Notebook ex-
tension named component containerizer on the local experimental environment,
e.g., NaaVRE [8], to encapsulate FL pipeline building blocks as reusable services, such
as model and aggregator.

3. Build and push job automation: Once the model and aggregator are ready, with the
workflow of the GitHub project and docker registry, such components can be auto-
matically built and pushed to the Docker Hub.

4. Deliver FL building blocks to distributed resources: The model can be delivered to
distributed client users worldwide, i.e., geographically distributed clients in institu-
tions A, B, and C, by pulling the model to local sites. At the same time, the aggregator
can be easily delivered to the cloud infrastructure by pulling the aggregator to the
cloud virtual machine.

5. Federation setup: Once the aggregator is assigned to the cloud infrastructure, e.g., a
cloud virtual machine, it is easy to start the Docker container with specific IP and port
number. For geographically distributed users, i.e., clients across wide-area institutions,
the local AI model training process mainly contains (A) feeding with local data, (B)
assigning suitable computation, and (C) starting the model training with specific data
and computation (e.g., GPU resources) on site. By this time, the FL starts.

Specifically, the proposed solution enables a standard centralized AI environment
to a decentralized (e.g., raw data) federated setup, flexibly supporting “using AI at the
edge”. In such a setting, only the models’ general characteristics are shared. The Notebook
Federator provides a Jupyter notebook template that gives the overall structure of the
different functions and classes that will be further integrated into the FL pipeline code
(https://github.com/QCDIS/Notebook-Federator, accessed on 2 January 2023).

Figure 1. An overview of the architecture of Notebook Federator with NaaVRE [8].

3.4. Technology Considerations

To achieve the automation described in the architecture, we consider the follow-
ing technologies.

• Jupyter environment—We build the FL pipeline with Jupyter Notebook. By default,
we suppose that AI experts use a Jupyter environment such as Notebook to design the
architecture of the model and aggregation for FL experiments.

• Component containerizer—We encapsulate the model and aggregator as reusable FL
building blocks based on a Jupyter Notebook. The component containerizer module
is one of the Jupyter extensions in NaaVRE.

https://github.com/QCDIS/Notebook-Federator

Appl. Sci. 2023, 13, 919 6 of 14

• Docker Hub—We share model and aggregator with distributed users around the
world. Docker Hub, i.e., a central repository of containers, is the easiest way to deliver
reusable container applications anywhere.

• Docker Engine—We enhance the automation of the FL deployment and execution.
In this work, we consider the Docker Engine as the critical technology for FL pipeline
automation because of its popularity in the community and flourishing software tools
such as Docker container, docker-nvidia, docker-compose, or even Docker Swarm.
In this paper, we mainly utilize docker-nvidia for local client training with CUDA
GPU resources for automating FL pipelines, as we suppose that client users have their
demands for local autonomy, e.g., controlling their own data and computation for AI
model training, although using Docker Swarm can also achieve large-scale automated
deployment for client users.

All in all, the proposed work leverages the available technology assets presented above
to bring them together for a specific application, the deployment of FL systems. With all
that, the Notebook Federator positions itself as a novel module within the previously
developed NaaVRE toolbox [8], providing a Jupyter notebook structured baseline for data
scientists to easily reproduce the FL pipeline.

4. Case Study: Histological Image Analysis
4.1. Use Case Scenarios

We demonstrate the feasibility of the proposed pipeline on a medical image dataset
of histological whole slide images (WSIs). These types of data come from the digitization
of histological tissue slides into high-resolution images containing several levels of mag-
nification, similar to those of a microscope. More precisely, the WSI dataset used in this
study consists of a spitzoid melanocytic lesions dataset of 84 biopsies provided, labeled,
and annotated by dermatopathologists from the Pathology Laboratory of the University
Clinic Hospital of Valencia. This type of uncommon neoplasm that originates from the
melanocytes is associated with ambiguous histological features and clinical behavior [23],
thus representing a formidable challenge for dermatopathologists.

Due to the nature of WSIs, histological images are particularly vast (e.g., often more
than 100, 000 × 100, 000 pixels) and require a lot of storage space, as a single WSI often
exceeds 1GB, thus leading to heavy computational operations when training models.
For these reasons, a typical method used in WSI analysis involves cutting down these
images into small patches.

In this case study, we perform a patch-level region of interest (ROI) classification, that
is to say, differentiate tumorous patches from non-tumorous ones. To do so, we divide the
WSIs into small patches of 224 × 224 pixels to make the computational needs lighter and
allow the use of well-known model architectures with images of the same size. Figure 2
depicts a few patch examples of the type of histological data fed into the convolutional
neural network in this use case.

Hundreds to thousands of patches can be extracted from a single WSI. Table 1 details
the number of extracted patches per class, i.e., tumorous vs. non-tumorous, for the WSIs
available at each of the three institutions simulated in this case study. To demonstrate the
potential of our method, we use twenty of the available biopsies, four of which are used for
testing purposes to allow a stable comparison of results across institutions. It is important
to highlight the fact that the number of patches is not correlated with the number of WSIs
used, as the size of ROIs might vary depending on the WSI under study.

Appl. Sci. 2023, 13, 919 7 of 14

(a)

(b)

Figure 2. Examples of the type of histological patches used in this case study: (a) tumorous patches
extracted from the annotated region made by dermatopathologists; (b) non-tumorous patches.

Table 1. Details of the histological image data used in this use case. Note that non-tumorous patches
were then randomly undersampled to balance the dataset before training each model.

IA IB IC

WSIs 10 6 8
tumorous patches 1554 2627 1005
non-tumorous patches 5609 4694 3979

4.2. Federation

The use case presented in this work is part of a concrete medical federation, CLARIFY
(http://www.clarify-project.eu/, accessed on 2 January 2023). In this multi-sectorial and
multidisciplinary consortium, nine institutions across five cities in three different countries
are brought together to collaborate on the automatic analysis of specific and challenging
cancer types: triple negative breast cancer, high-risk non-muscle invasive bladder cancer,
and spitzoid melanocytic lesions. In particular, CLARIFY aims to develop an automated
diagnostic environment for digital pathology that leverages artificial intelligence methods
together with cloud computing, to enable knowledge sharing among institutions and
better-informed clinical decisions.

Here, three of the nine collaborators are involved in the different steps of the proposed
pipeline, both from the engineering and medical aspects. The cancer type under study
in this work, spitzoid melanocytic lesions, would strongly benefit from a federation. In-
deed, the few incidences of this lesion type in the population is a considerable limitation
to gathering sufficient WSIs, both for DL models’ training as well as for improving its
clinical interpretation.

4.3. Federated Implementation

To integrate an FL pipeline in the computational pathology use case, we apply the
Notebook Federator solution illustrated in Figure 1. More precisely, to carry out this
implementation on this first use case scenario in realistic conditions, the model was first
trained locally on private data at a single collaborating institution before being adapted
and deployed for the federation by means of the Notebook Federator.

As one of the requirements of the proposed system is for it to be reproducible and
easily implementable for future collaborations, we aim to give a detailed explanation of the
steps undertaken to perform that federated implementation, starting from a centralized
setup; in other words, the inner workings of the proposed solution. These specific steps are
highlighted in Figure 3.

http://www.clarify-project.eu/

Appl. Sci. 2023, 13, 919 8 of 14

Figure 3. Step-by-step implementation of the federated pipeline, the starting point being a local
institution with their corresponding local data, and the result being the federation.

First, we fill the Jupyter template provided on NaaVRE (Figure 3(1)) and define a
standardized and automated data preparation protocol adapted to the specific type of data
under study (Figure 3(2)). As WSI patch extraction was computed beforehand in this use
case, the data loading function in the Jupyter template covers loading the patches along
with their corresponding label, as well as performing an undersampling of the majority
class for each set, as the dataset is clearly unbalanced (see Table 1). Then, we define a
VGG16-based [24] model architecture to perform patch-level binary classification with the
PyTorch 1.12 library under Python 3.6 and train it locally with the available local data at
first to optimize its parameters (Figure 3(3)). To define the aggregation function to update
the global model’s weights when mounting the federation, we leverage the federated
averaging algorithm FedAvg [25] integrated into FLOWER’s strategies [18] (Figure 3(4)).

Regarding the steps involving the federation, the filled template to share with dis-
tributed users is then containerized by means of NaaVRE’s component containerizer, thus
allowing their further use by clients by running the corresponding images. This specific
step is illustrated in Figure 4, which shows how to efficiently containerize reusable model
and aggregator components with the Notebook Federator approach. The containers can
thus be downloaded and set up at each of the collaborating institutions (Figure 3(5)),
and model training can start (Figure 3(6),(7)). The resulting federation (Figure 3(8)) gathers
the steps defined previously and communicates across nodes by means of bidirectional
gRPC streams.

Appl. Sci. 2023, 13, 919 9 of 14

Figure 4. Demonstration of the Notebook Federator method with component containerizer in a
Jupyter Notebook: building reusable FL pipeline blocks, e.g., Client Training container.

4.4. Experimental Results
4.4.1. FL System Setup

Once the code base is ready on the Jupyter Notebook user side, the component
containerizer provided by NaaVRE’s toolbox allows users to automate the process of
building and pushing a reusable FL-based Docker container to the Docker registry in a
matter of minutes. The steps to set up the concrete FL system are quick and simple, as show
the times obtained for each final phase of this case study:

• Automated build–push job for the server-aggregation image container (approx. 1.9 GB):
4 m 57 s;

• Building and pushing client-training image container to the Docker hub (approx.
3.16 GB): 10 m 48 s.

Note that the processing time for the build–push jobs depends on the local network
environment and image size. The server-aggregation container associated to the host IP
address is then deployed on a cloud virtual machine, and distributed users can pull the
client-training image and run it locally (e.g., GPU resources in Spain, the Netherlands,
and even Norway), as well as mount local medical data volumes to feed the AI model
training. For the communication, each client can then join the federation’s training process
by specifying the server IP address and port number when running the corresponding
Docker containers.

4.4.2. AI Training

As depicted in Figure 5, each on-site client used different hardware resources for
model training. As a result, whereas the client at institution A took around 60 seconds for
10 epochs on average, clients at institutions B and C trained each communication round for
540 and 534 seconds, respectively. All in all, the whole federation training took 46 minutes
for the three communication rounds in this use case, as the central node waits for all three
clients to finish training.

To allow for an effective comparison of the prediction performance of models presented
in this case study, several metrics of relevance were selected: sensitivity, specificity, positive
predictive value, negative predictive value, F1-score, and accuracy. A particularly important
metric in pathology is sensitivity, which measures the ability of the model to correctly detect
positive instances.

Appl. Sci. 2023, 13, 919 10 of 14

Federated Learning
(Server node)

Server
Aggregation

Communication rounds=3

weights

Federated Learning (Client #3)

Local Samples

weights

Federated Learning (Client #2)

Local Samples

weights

Federated Learning (Client #1)

NVIDIA A100 SXM4

Local Samples

NVIDIA TESLA T4

Client Training

Epochs = 10 Epochs = 10 Epochs = 10

NVIDIA TITAN V

Valencia, Spain Valencia, Spain Amsterdam, the Netherlands

Amsterdam, the Netherlands

Stavanger, Norway

Remote User

Local computer

Client Training Client Training

Cloud VM

Figure 5. Implementation of the proposed solution, Notebook Federator, in a federation composed of
institutions located in different countries and relying on different hardware resources.

Table 2 shows the metrics on the test set after training for 30 epochs at each institution
with its own local data under a centralized configuration, compared to the results when
training as a federation with all three clients for three communication rounds of ten epochs
each. It is noteworthy to highlight that the scope of this study is not to reach unprecedented
classification results but rather to demonstrate the federation’s improvement compared
to that of individual institutions. In that sense, classification metrics on the test set clearly
show an overall improvement of the model trained collaboratively (federation) in relation
to those trained in a centralized manner. Although IB reaches considerably high specificity
and positive predictive value metrics on the test set when trained under a centralized
setup, it is important to highlight that it is mostly due to its tendency to predict a sample as
positive (i.e., tumorous) even when negative, as depicted in the negative predictive value
results for that model.

Table 2. Classification results reached on the test set for patch-level ROI selection on the spitzoid
melanocytic lesions dataset; IA, IB, and IC: centralized setups at each local institution; Federation:
decentralized federated setup, leveraging all institutions’ data.

IA IB IC Federation

Sensitivity 0.7921 0.5896 0.7887 0.8174
Specificity 0.7842 0.9874 0.8337 0.9247
Positive predictive value 0.7813 0.9961 0.8457 0.9355
Negative predictive value 0.7949 0.3066 0.7734 0.7910
F1-Score 0.7866 0.7407 0.8162 0.8725
Accuracy 0.7881 0.6514 0.8096 0.8633

By and large, the classification results show the potential of the approach, taking into
account that, the more institutions participating in model training, the more robust the
resulting global model will be when exposed to unseen data.

5. Discussion
5.1. Achievements

In the presented use case, we demonstrate the feasibility of the proposed pipeline
to go from a centralized training setup to a federated environment to train collaborative
models. Specifically, the Notebook Federator proposes to considerably reduce the com-

Appl. Sci. 2023, 13, 919 11 of 14

plexity of FL systems’ setup for AI Jupyter users by leveraging the latest technologies and
available assets.

Starting from a Jupyter environment on the end-user side (i.e., the AI expert or data
scientist), we put an emphasis on the reproducibility and scalability of the method for
researchers. The Jupyter user only has to complete the indicated lines of the template
provided as a code base, and that code is then included in the client code. Building and run-
ning the resulting Docker is fast and automatic, thus simplifying the quick implementation
of the code on the client machines.

In contrast to other FL solutions and implementations, in this work, we wish to provide
a real-world use case, with the server and clients located in different cities and countries,
which all have access to different computing resources. Additionally, as our solution aims
to simplify the complexity of FL setups and seeks to be easily reproducible, the provided
use case leverages a commonly used baseline framework with a strong community and
documentation, FLOWER [18]. Although the example we provide is applied to a domain-
specific task in computational pathology, it is important to note that the Notebook Federator,
as a technology, is generic and can easily be adapted to other tasks and baseline frameworks.

5.2. Weaknesses and Future Work

Some FL-related challenges [5] still need to be tackled in future lines of work. In this
study, the GPU and CPU resources used to train the model on the different clients’ machines
were sufficient, but the computing resources may be heterogeneous across institutions
within a federation, and some software or systems may be incompatible if the computing
platform cannot handle Docker.

A typical challenge of FL approaches is client reliability, that is to say, whether a client
will fail or drop out during a round. In this case study, we consider that the server can
only complete a communication round when the three participating institutions finished
training, and thus waits for all the clients to have completed data loading and training
before performing the aggregation. Even if one of the clients ran the model training on a
CPU, the central node waited to receive the weights from all three clients to perform the
aggregation. In further implementations involving more clients, it could be considered to
have a certain percentage of clients only needed to complete a communication round.

Another challenge brought by FL ecosystems is security. Although FL helps to tackle
the data challenge in deep learning and the related major privacy limitation, it is still vulner-
able to a wide range of challenging security issues. For instance, despite the anonymization
process applied to medical data that was long considered sufficient to protect leaks from
patient data when developing AI models, it was shown that, in some cases, sensitive
information can actually be inferred [3]. Future lines will thus consider differential pri-
vacy preservation.

Currently, some security technologies can be adopted to achieve a privacy-preserving
model aggregation for FL [26], such as differential privacy, multi-party computation,
or even blockchain-based solutions. Additionally, Docker images may not be optimally
secure because of the root access they provide to the system they are running on (https:
//researchcomputing.princeton.edu/support/knowledge-base/singularity, accessed on
2 January 2023). An alternative to the containerization toolkit would be singularity. This
method provides the considerable advantage of limiting users’ access and capabilities and
includes a compatibility layer that allows Docker images to be run on the platform. The im-
ages created via our tool could therefore also be used in a singularity-enabled environment.

6. Conclusions

In this work, we propose a federated learning pipeline that allows artificial intelli-
gence experts and medical institutions to join forces in the development of collaborative
deep learning models. The proposed solution, the Notebook Federator, demonstrates the
promising results of an automated federated learning framework built from Jupyter and
Docker ecosystems to simplify its use by bridging the gap between artificial intelligence

https://researchcomputing.princeton.edu/support/knowledge-base/singularity
https://researchcomputing.princeton.edu/support/knowledge-base/singularity

Appl. Sci. 2023, 13, 919 12 of 14

developers and the Jupyter environment, as well as reducing the complexity of FL systems’
deployment. As this first implementation started from an initial scenario based on several
assumptions, our future lines of work will focus on deploying this framework to all col-
laborators of the CLARIFY medical federation presented in this paper while prioritizing
the security aspect by the inclusion of differential privacy and blockchain methods into
the workflow.

Author Contributions: Conceptualization, L.L., Y.W., A.C., V.N. and Z.Z.; methodology, L.L., Y.W.,
C.P.-O. and Z.Z.; medical data recollection and preparation, A.M.-Z. and C.M.; medical data anno-
tation, A.M.-Z.; model preparation and data curation, L.L.; software, L.L. and Y.W.; system, Y.W.;
Jupyter notebook-based toolbox updates and maintenance, S.K. and R.B.; visualization: L.L. and
Y.W.; writing—original draft preparation, L.L. and Y.W.; writing—medical review and editing, C.M.
and A.M.-Z.; writing—review and editing, Z.Z., V.N., A.C. and J.I.; supervision, Z.Z., V.N. and
A.C.; project administration: Z.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been partially funded by the European Union’s Horizon 2020 research
and innovation programme with the project CLARIFY under Marie Sklodowska-Curie (860627),
ENVRI-FAIR (824068), BlueCloud (862409), and ARTICONF (825134). This work is also supported by
LifeWatch ERIC, GVA through projects PROMETEO/2019/109 and INNEST/2021/321 (SAMUEL),
and the Spanish Ministry of Economy and Competitiveness through project PID2019-105142RB-C21
(AI4SKIN). The work of Adrián Colomer has been supported by the ValgrAI – Valencian Graduate
School and Research Network for Artificial Intelligence & Generalitat Valenciana and Universitat
Politècnica de València (PAID-PD-22).

Institutional Review Board Statement: The spitzoid melanocytic lesions dataset was collected at the
Pathology Laboratory of the University Clinic Hospital of Valencia (Valencia, Spain). This study was
carried out in accordance with the Declaration of Helsinki, and approved by the hospital’s Ethics
Committee under the approval number 2020/114.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Acknowledgments: We gratefully acknowledge the support from the Generalitat Valenciana (GVA)
with the donation of the DGX A100 used for this work, action co-financed by the European Union
through the Operational Program of the European Regional Development Fund of the Comunitat
Valenciana 2014–2020 (IDIFEDER/2020/030).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ACC Accuracy
AI Artificial Intelligence
DOAJ Directory of Open Access Journals
F1S F1-score
FL Federated Learning
MDPI Multidisciplinary Digital Publishing Institute
NaaVRE Notebook-as-a-VRE
NPV Negative Predictive Value
PPV Positive Predictive Value
ROI Region of Interest
SN Sensitivity
SPC Specificity
VRE Virtual Research Environment
WSI Whole Slide Image

Appl. Sci. 2023, 13, 919 13 of 14

References
1. Chen, R.J.; Lu, M.Y.; Chen, T.Y.; Williamson, D.F.; Mahmood, F. Synthetic data in machine learning for medicine and healthcare.

Nat. Biomed. Eng. 2021, 5, 493–497. https://doi.org/10.1038/s41551-021-00751-8.
2. Oza, P.; Sharma, P.; Patel, S.; Adedoyin, F.; Bruno, A. Image Augmentation Techniques for Mammogram Analysis. J. Imaging

2022, 8, 141.
3. Rocher, L.; Hendrickx, J.M.; de Montjoye, Y.A. Estimating the success of re-identifications in incomplete datasets using generative

models. Nat. Commun. 2019, 10, 1–9. https://doi.org/10.1038/s41467-019-10933-3.
4. Konecný, J.; McMahan, H.B.; Ramage, D.; Richtárik, P. Federated Optimization: Distributed Machine Learning for On-Device

Intelligence. arXiv 2016, arXiv:abs/1610.02527.
5. Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Process.

Mag. 2020, 37, 50–60. https://doi.org/10.1109/MSP.2020.2975749.
6. Li, W.; Milletarì, F.; Xu, D.; Rieke, N.; Hancox, J.; Zhu, W.; Baust, M.; Cheng, Y.; Ourselin, S.; Cardoso, M.J.; et al. Privacy-

preserving federated brain tumour segmentation. In Proceedings of the International Workshop on Machine Learning in Medical
Imaging; Springer International Publishing: Cham, Switzerland, 2019; pp. 133–141.

7. Sheller, M.J.; Edwards, B.; Reina, G.A.; Martin, J.; Pati, S.; Kotrotsou, A.; Milchenko, M.; Xu, W.; Marcus, D.; Colen, R.R.; et al.
Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 2020,
10, 1–12.

8. Zhao, Z.; Koulouzis, S.; Bianchi, R.; Farshidi, S.; Shi, Z.; Xin, R.; Wang, Y.; Li, N.; Shi, Y.; Timmermans, J.; et al. Notebook-as-a-VRE
(NaaVRE): From private notebooks to a collaborative cloud virtual research environment. Softw. Pract. Exp. 2022, 52, 1947–1966.
https://doi.org/10.1002/SPE.3098.

9. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,
R.; et al. Advances and open problems in federated learning. Found. Trends® Mach. Learn. 2021, 14, 1–210.

10. Rieke, N.; Hancox, J.; Li, W.; Milletari, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; L.; man, B.A.; Maier-Hein, K.; et al.
The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 1–7.

11. Roy, A.G.; Siddiqui, S.; Pölsterl, S.; Navab, N.; Wachinger, C. BrainTorrent: A Peer-to-Peer Environment for Decentralized
Federated Learning. arXiv 2019, arXiv:abs/1905.06731.

12. Li, X.; Gu, Y.; Dvornek, N.; Staib, L.H.; Ventola, P.; Duncan, J.S. Multi-site fMRI analysis using privacy-preserving federated
learning and domain adaptation: ABIDE results. Med. Image Anal. 2020, 65, 101765. https://doi.org/10.1016/j.media.2020.101765.

13. Ju, C.; Gao, D.; Mane, R.; Tan, B.; Liu, Y.; Guan, C. Federated Transfer Learning for EEG Signal Classification. In Proceedings of
the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montreal, QC, Canada, 20–24 July
2020. https://doi.org/10.1109/EMBC44109.2020.9175344.

14. Andreux, M.; du Terrail, J.O.; Beguier, C.; Tramel, E.W. Siloed Federated Learning for Multi-centric Histopathology Datasets. In
Proceedings of the Lecture Notes in Computer Science (Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer International Publishing: Cham, Switzerland, 2020. https://doi.org/10.1007/978-3-030-60548-3_13.

15. Lu, M.Y.; Chen, R.J.; Kong, D.; Lipkova, J.; Singh, R.; Williamson, D.F.; Chen, T.Y.; Mahmood, F. Federated learning for computa-
tional pathology on gigapixel whole slide images. Med. Image Anal. 2022, 76, 102298. https://doi.org/10.1016/j.media.2021.102298.

16. Ziller, A.; Trask, A.; Lopardo, A.; Szymkow, B.; Wagner, B.; Bluemke, E.; Nounahon, J.M.; Passerat-Palmbach, J.; Prakash, K.; Rose,
N.; et al., PySyft: A Library for Easy Federated Learning. In Federated Learning Systems: Towards Next-Generation AI; ur Rehman,
M.H., Gaber, M.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 111–139. https://doi.org/10.1007/978-
3-030-70604-3_5.

17. Reina, G.A.; Gruzdev, A.; Foley, P.; Perepelkina, O.; Sharma, M.; Davidyuk, I.; Trushkin, I.; Radionov, M.; Mokrov,
A.; Agapov, D.; et al. OpenFL: An open-source framework for Federated Learning. arXiv 2021, arXiv:2105.06413.
https://doi.org/10.48550/ARXIV.2105.06413.

18. Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Parcollet, T.; Lane, N.D. Flower: A Friendly Federated Learning Research Framework.
arXiv 2020, arXiv:2007.14390.

19. Xie, Y.; Wang, Z.; Chen, D.; Gao, D.; Yao, L.; Kuang, W.; Li, Y.; Ding, B.; Zhou, J. FederatedScope: A Flexible Federated Learning
Platform for Heterogeneity. arXiv 2022, arXiv:2204.05011.

20. Lee, H.; Chai, Y.J.; Joo, H.; Lee, K.; Hwang, J.Y.; Kim, S.M.; Kim, K.; Nam, I.C.; Choi, J.Y.; Yu, H.W.; et al. Federated learning for
thyroid ultrasound image analysis to protect personal information: Validation study in a real health care environment. JMIR Med.
Inform. 2021, 9, e25869.

21. Florescu, L.M.; Streba, C.T.; Şerbănescu, M.S.; Mămuleanu, M.; Florescu, D.N.; Teică, R.V.; Nica, R.E.; Gheonea, I.A. Federated
Learning Approach with Pre-Trained Deep Learning Models for COVID-19 Detection from Unsegmented CT images. Life 2022,
12, 958.

22. Lo, J.; Timothy, T.Y.; Ma, D.; Zang, P.; Owen, J.P.; Zhang, Q.; Wang, R.K.; Beg, M.F.; Lee, A.Y.; Jia, Y.; et al. Federated learning for
microvasculature segmentation and diabetic retinopathy classification of OCT data. Ophthalmol. Sci. 2021, 1, 100069.

23. Lodha, S.; Saggar, S.; Celebi, J.T.; Silvers, D.N. Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in
the clinical setting. J. Cutan. Pathol. 2008, 35, 349–352. https://doi.org/10.1111/j.1600-0560.2007.00970.x.

Appl. Sci. 2023, 13, 919 14 of 14

24. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May
2015.

25. Brendan McMahan, H.; Moore, E.; Ramage, D.; Hampson, S.; Agüera y Arcas, B. Communication-efficient learning of deep
networks from decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics
(AISTATS 2017), Fort Lauderdale, FL, USA, 20–22 April 2017.

26. Kanagavelu, R.; Li, Z.; Samsudin, J.; Yang, Y.; Yang, F.; Goh, R.S.; Cheah, M.; Wiwatphonthana, P.; Akkarajitsakul, K.; Wang, S.
Two-Phase Multi-Party Computation Enabled Privacy-Preserving Federated Learning. In Proceedings of the 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing (CCGRID 2020), Melbourne, VIC, Australia, 11–14 May
2020; pp. 410–419. https://doi.org/10.1109/CCGrid49817.2020.00-52.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Notebook Federator
	System Definition and Requirements
	Challenges and Assumptions
	Architecture
	Technology Considerations

	Case Study: Histological Image Analysis
	Use Case Scenarios
	Federation
	Federated Implementation
	Experimental Results
	FL System Setup
	AI Training

	Discussion
	Achievements
	Weaknesses and Future Work

	Conclusions
	References

