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Abstract: Content-Based Histopathological Image Retrieval (CBHIR) is a search technique based on
the visual content and histopathological features of whole-slide images (WSIs). CBHIR tools assist
pathologists to obtain a faster and more accurate cancer diagnosis. Stain variation between hospitals
hampers the performance of CBHIR tools. This paper explores the effects of color normalization
(CN) in a recently proposed CBHIR approach to tackle this issue. In this paper, three different CN
techniques were used on the CAMELYON17 (CAM17) data set, which is a breast cancer data set.
CAM17 consists of images taken using different staining protocols and scanners in five hospitals. Our
experiments reveal that a proper CN technique, which can transfer the color version into the most
similar median values, has a positive impact on the retrieval performance of the proposed CBHIR
framework. According to the obtained results, using CN as a pre-processing step can improve the
accuracy of the proposed CBHIR framework to 97% (a 14% increase), compared to working with the
original images.

Keywords: color normalization; computer-aided diagnosis (CAD); content-based image retrieval
(CBIR); histopathological images; whole-slide images (WSIs)

1. Introduction

Breast cancer is one of the most prevalent cancer types, with 2.3 million women
diagnosed with this cancer and 685,000 deaths globally in 2020 [1]. For this large amount
of patients, medication should be accurate with little to zero margin for error; otherwise,
the consequences of a wrong diagnosis could be fatal [2]. Also, since breast cancer is one
of the leading causes of death for women globally, precise detection and timely treatment
can enhance the chances of recovery [3]. Computer-aided diagnosis (CAD) provides some
deep learning (DL)-based techniques in digital pathology that can assist pathologists to
make more accurate cancer diagnoses [4]. These techniques need to be trained by medical
images such as those from magnetic resonance imaging (MRI) [5] and histopathological
images [6]. A unique feature of histopathological images is that they are typically much
larger than other medical images [7].

Histopathological images play a crucial role in the realm of medical image processing,
allowing the integration of image information and pathologists’ expertise to improve
diagnosis [8]. Medical images have witnessed a rapid expansion in quantity, content, and
dimensions [9]. Due to an enormous increase in the number of diverse clinical exams
and the availability of a wide range of image modalities, the demand for efficient medical
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image data retrieval and management has increased [10]. Current approaches to medical
image retrieval often rely on alphanumeric keywords assigned by human experts, enabling
retrieval at a conceptual level. However, this text-based search methodology falls short in
capturing the intricate visual features inherent in image content [11].

Recent Content-Based Histopathological Image Retrieval (CBHIR) methods support
full retrieval via visual content and histopathological patterns of the tissue [12]. These
advanced CBHIR tools facilitate searching at a perceptual level [13]. It is noteworthy to
mention that a single pathology image may contain just basic patterns of tissue such as the
epithelium and connective tissue. However, the actual number of patterns in the DL-based
technique’s point of view is almost infinite.

CBHIR explores a database to find visually similar images to provide clinicians with
comparable lesions. In the diagnostic workflow, pathologists utilize this search engine to
reach top K similar to their queries to determine if a histological feature is malignant or
benign [14].

Mainly, CBHIR tools work on the extracted features of the images, including color,
texture, shape, etc. Color is a visual feature that plays an important role in CBHIR tech-
niques due to its invariance with respect to image scaling, translation, and rotation [15].
The use of color improves the capturing of distinctive histopathological features. This
provides valuable information about the distribution and arrangement of different tissue
components in histopathology [16].

In histopathology, tissues must be stained using various dyes, including hematoxylin
and eosin (H&E), in order to be readable for pathologists [9,17]. In digital pathology,
these tissues must be scanned as whole-slide images (WSIs) [18]. In addition to the use of
different scanners and staining manufacturers, lab conditions and temperatures may cause
color variation in WSIs [19]. Color variation in WSIs can arise from both inter- or/and
intra-laboratory factors in the acquisition procedure [16]. Figure 1 shows the color variation
across five different collaborating hospitals involved in the collection of the CAMELYON17
challenge (CAM17) data set [20]. This diverse color variation misleads the model and
potentially deceives the feature extractors (FEs) into extracting erroneous features. Also, the
performance of CAD tools may be significantly influenced by these variations in WSIs [21].

In this paper, we propose a CBHIR framework that includes color normalization (CN)
as a pre-processing step to address this issue. CN methods have been developed with
the aim of transferring the color interval of the WSIs in a data set to a common color
range [19,22,23].

Figure 1. Image examples from five hospitals that collaborated to collect images into a single data set
(CAM17).

2. Related Work
2.1. Content-Based Image Retrieval

There are different approaches to Content-Based Histopathological/Medical Image
Retrieval techniques in histopathology [24], which we briefly review here. Ref. [25] pro-
posed a framework for size-scalable query regions of interest (ROIs), including epithelial
breast tumors in the Motic data set. This work reached 96% precision in retrieving the
top 20 similar images. In [25], the authors applied the proposed technique on the Motic
database (Motic (Xiamen) Medical Diagnostic Systems Co. Ltd., Xiamen, China) with
the original color of 145 stained WSIs. The authors of [26] applied a supervised kernel
hashing technique on several thousand histopathological images from breast microscopic



Appl. Sci. 2024, 14, 2063 3 of 15

tissue. The precision result for the top 30 retrieved images was reported to be 77.0%. In
this study, they considered the gradient of the pixels around the detected regions to make
the model robust to subtle changes in the color of patches. A combination of unsupervised
feature learning (UFL) with the classical bag of features (BOF) was introduced in [27]. This
proposed method was evaluated in particular histopathological images to show that the
learned representation has a positive impact on the retrieval performance. CBHIR based on
multi-scale, multichannel decoded local ternary pattern features and VLAD coding was
presented in [28]. The authors evaluated their method on the KIMIA Path960 data set [29]
by retrieving the top 10 matching images from the data set. The authors of [15] presented a
modified convolutional auto encoder (CAE) to extract features of patches from SICAPv2 as
the largest pixel-annotated prostate data set [30]. The experimental results of this paper
demonstrated 85% and 78% accuracy for the top 7 and top 5, respectively. However, one of
the challenges that the authors had with SICAPv2 was the color variation of the images in
the data set. To deal with this variation, they applied a simple histogram equalization to
the patches, but still, this issue affected the results.

Among the previously mentioned studies, only refs. [15,26] applied CN techniques
to tackle color variation, while the rest did not address this issue. Another challenge in
CBHIR is the lack of annotated images, which the papers mentioned above struggled with.

2.2. Color Normalization

CN is the most used technique to deal with color variation [19]. CN can standardize
images by referencing an image and simulating a chosen staining procedure. CN methods
normalize images with different techniques, including histogram matching, color transfer,
and spectral matching [19]. Histogram matching disregards stain separation, color transfer
modifies colors based on statistical correspondences between histological regions, and
spectral matching estimates stain concentrations and color properties [31].

Among a variety of CN techniques, some are more popular, such as those proposed
in [32,33]. Macenko et al. [32] introduced the Mac technique (the proposed method in [32]
is named Mac in this paper) in 2009, assuming that the amount of protein or nucleic acids
is a random variable. Mac utilizes Singular Value Decomposition (SVD) to separate H&E
channels. Within this technique, the concentration intensity of both the source and target
images is scaled using the 99th percentile to achieve a robust estimation of the maximum.

Vahadane et al. [33] published the Vah technique (the proposed method in [33] is
named Vah in this paper) in 2016 to model the physical phenomena that define tissue
structures. In this technique, there is a preferable stain color, based on pathologists’ opinion,
and a stain density map. Using an unsupervised approach, this method decomposes
images into stain density maps. When Vah is applied to a specific image, it combines the
relevant stain density maps based on a pathologist’s preference for stain color. This process
selectively modifies the color while preserving the underlying structure as described by
the maps.

The most recent techniques in CN are the auto encoders (AEs), generative adversar-
ial networks (GANs), and Bayesian K-Singular Value Decomposition (BKSVD) [34–36].
Bentaieb et al. [34] applied a GAN to combine color normalization and the classification
of WSIs. In this method, a generator is employed as a stain transfer network, while a
discriminator separates the classes and the original and normalized images. In order to
map unpaired images between two scanners, the cycleGAN was used by StainGAN [31].
In [35], the authors used three different convolutional neural network (CNN) models for
CN purposes: the variational auto encoder (VAE), a GAN, and the deep convolutional
Gaussian mixture model (DCGMM). In [37], a CN network is fed by a heavily augmented
data set and trained to reconstruct the original appearance of WSIs. The Pix2pix conditional
GAN framework and CycleGAN are other notable CNN architectures.

BKSVD [36], a cutting-edge technique that was proposed in 2022, utilizes an unsu-
pervised estimation of the stain concentration that preserves histological structures with
variational and empirical Bayes.
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In this paper, we provide a deep understanding of the effects of CN on the extracted
features in the proposed CBHIR tool. Our experiments were conducted by applying
three CN techniques in the pre-processing step in order to explore how CN influences the
extracted features within the CBHIR tool. Among the CN techniques, Mac [32] and Vah [33]
were selected as the two most used CN techniques and BKSVD was applied as a recent CN
technique. Furthermore, in this work, we applied an unsupervised FE to tackle the need
for a pool of histopathological images to train the deep learning model.

The main contributions of this paper are as follows:

1. Proposal of a new CBHIR framework with an unsupervised feature extractor that
includes color normalization as a pre-processing step;

2. Analysis of CBHIR’s performance when using normalized images in comparison with
original images;

3. We draw attention to the relevance of color variation and its impact on CBHIR;
4. We provide a comprehensive performance assessment of the proposed method. This

evaluation employs a large breast cancer database scored from five distinct labora-
tories. This evaluation has a more restrictive K-top accuracy assessment compared
to recent state-of-the-art studies and also involves an in-depth analysis of retrieving
patches with the same cancer label.

3. Methodology

This section introduces the three levels of the proposed CBHIR tool in detail. Figure 2
provides an overview of the proposed CBHIR tool, comprising three levels: pre-processing,
training, and searching.

Figure 2. Three main stages of CBHIR, including pre-processing, training, and searching. The
pre-processing was performed following [32,33,36]. The training stage consists of CAE training. Here,
each layer of the CAE is presented in a different color. Conv2D, Dropout, Dense, and Flatten are
shown in green, pink, blue, and black, respectively. The searching stage consists of extracting features,
indexing, searching, and displaying the top K similar retrieved images.

3.1. Pre-Processing

In this paper, Mac [32], Vah [33], and BKSVD [36] are the three CN techniques, span-
ning from 2009 to 2022, that were investigated to normalize the data set. These three CN
techniques were applied to the original images of the CAM17 data set, and the results were
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collected as a separate data set. The aim is to gain insight into the effectiveness of these CN
techniques in tackling the effects of color variation on the results of the CBHIR tool.

It is important to establish and maintain uniformity in color normalization throughout
the whole framework. As can be seen in Figure 2, the input query needs to pass through
a pre-processing step before being fed to the FE. Furthermore, a crucial consideration is
that the CN technique which is applied to the data set in the pre-processing step should
match the CN technique employed in the query. Ensuring consistency in the CN technique
is imperative for accurate processing and analysis.

3.2. Feature Extractor

In this paper, a CAE is utilized to extract the representative histopathological features
of the patches. The CAE aims to solve the back-propagation problem in an unsupervised
manner by only relying on the input image as a teacher by itself [38]. It has the in-built
ability to compress the data efficiently by extracting the important features and removing
noise in the data [39]. These features bring benefits to CBHIR, such as ignoring the noise in
WSIs that might be noticeable due to the scanners. Also, they can reduce the demand for
annotated images for training an FE, which is expensive and time-consuming [40,41].

Figures 2 and 3 illustrate the structure of the proposed custom-built CAE. In this CAE,
a skip connection between a layer in the encoder and its corresponding layer in the decoder
can improve the gradient propagation and increase the performance in capturing complex
patterns of WSIs. The proposed CAE comprises an encoder with three convolutional layers
[16, 32, 64]. Moving to the bottleneck, an attention block with a filter size of [32, 16, 1, 64] is
introduced to enhance the feature vectors by robustness to noise or occlusions. The decoder
is made up of three Conv2DTranspose with [32, 16, 3]. The kernel size in this structure was
fixed to 3 in all the layers.

The primary objective of the CAE is to reconstruct input images in the output by
minimizing the mean squared error (MSE). The CAE workflow involves feeding an input
image (X) to the encoder, which compresses the input. Subsequently, the bottleneck
compresses the output of the encoder to obtain a feature vector with 200 meaningful
features (F). Finally, the decoder reconstructs the output by receiving the feature vector
(Y = Decoder(F)). In an ideal CAE, the output is identical to the input (ideal, X = Y). To
achieve this ideal goal, the model endeavors to minimize the MSE by comparing the input
(X) and the output (Y) [42].

In this paper, the model was trained on a GPU with the NVIDIA GeForce RTX 3090
over 10 epochs, utilizing a batch size of 32 and a learning rate of 0.000001. By discarding
the decoder from the CAE, the well-trained FE can be utilized for further experiments.

Figure 3. The customized CAE which was utilized as an FE.

3.3. Searching

The search process in CBMIR involves three key steps: similarity calculation, ranking
and retrieval, and visualization and presentation. In this paper, at this stage, the well-
trained CAE extracts the features of the images of the validation and training sets. These
feature vectors are subsequently indexed and saved as the features of the database for the
searching process [41].

Upon receiving an input query, the proposed CBHIR technique passes it to the same
CN technique, normalizing the whole database. For each query input, a feature vector is
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required, encompassing representative features of the query. The feature vector’s size is
fixed at 200 features, aligning with the number of elements in the feature vectors associated
with the database.

After extracting the query’s features, the next step involves measuring the similarity
between the query feature vector and the indexed feature vectors of the database. To
achieve this, a distance function is required. In this paper, the Euclidean distance was
selected as one of the most used distance functions in CBHIR [17]. In this context, the
distance is inversely related to similarity. Therefore, the most similar images have the
smallest distance [15]. Consequently, the top K images with the smallest distance are
retrieved and displayed to pathologists for further analysis.

4. Material

CAMELYON17 challenge (CAM17) [20] is a breast cancer metastasis data set in the
lymph node sections. It contains WSIs from five different hospitals. Each hospital con-
tributed images from 20 patients, with five slides per patient. The tissues were stained
with H&E. Following [36], only the training set of CAM17 was used in the conducted
experiments since the WSIs in the test set are not labeled yet.

For the experiments conducted in this paper, images from the first four hospitals
that contributed to CAM17 were used as the training and validation set, while images
from the fifth hospital, exhibiting a more significant color difference, were used as the test
set [36]. The total number of images for training and validating the FE was 48,000 and
12,000, respectively. Then, in the search part, there were 25,406 query images in the test
set. Following [43], the experiments in this paper were performed on non-overlapping
patches extracted from CAM17, each with a size of 224 × 224 pixels in the RGB color space.
The images were sampled from WSIs containing at least 70% tissue to ensure sufficient
histopathological patterns.

5. Experiments and Results

In this section, the procedure is applied for each color version of the data set to report
and evaluate the performance of the proposed CBHIR framework.

5.1. Pre-Processing

Figure 4 shows the normalized median intensity (NMI) information for each hospital
and method, which is plotted as a violin plot. The NMI is used to assess the effectiveness of
each CN technique in normalizing the data set. It involves calculating the median intensity
value of pixel values within an image and then normalizing this value. NMI values were
computed for individual images within the data set, and metrics such as the standard
deviation (NMI SD) and coefficient of variation (NMI CV) were employed. Lower NMI SD
and NMI CV values suggest a more consistent normalization across the data set. Ref. [36]
presented numerical results for BKSVD, Mac, and Vah across individual clinical centers as
well as the entire CAM 17 data set. In this study, Figure 4 visually displays the distribution,
variability, and potential outliers of values across different groups, facilitating comparisons
between these groups.
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Figure 4. Violin plots of NMI values for each center. The histogram of NMI values for each plot is
represented by the blue shadow. Bars mark the maximum, median, and minimum NMI values for
each plot. The x-axis corresponds to the hospital numbers.
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In refs. [32,33], the color of images for each hospital could be transferred to a similar
distribution, but with a larger inter/intra-center than the original images’ distribution.
Among these three CN methods, BKSVD exhibited the best performance in approximately
normalizing the images of all five centers to the same NMI interval. This means that BKSVD
transforms the images from each hospital with the lowest intra-center variance and most
similar median values, which makes its outputs more interpretable and reliable. To provide
a more detailed statistical analysis to strengthen the evidence for the effectiveness of BKSVD
compared with Vah and Mac, a quantitative comparison was conducted, Table 1 [36], based
on the peak signal to noise ratio (PSNR). The table shows that BKSVD outperforms the
rest of the methods, obtaining a higher mean PSNR while requiring a similar time to that
required by the Vah method.

Table 1. PSNR for the normalized CAM17 data set.

CN Techniques BKSVD [36] Vah [33] Mac [32]

PSNR 19.54 12.74 13.80

Figure 5 provides visual information about the impact of each CN technique on
the color distribution of five random images. Randomly chosen images from all five
centers exhibit noticeable color variations, as depicted in the initial line showing the
original images. Notably, BKSVD effectively mitigated this color variation, achieving a
harmonized and consistent color version that surpassed the performance of Vah and Mac
as the classical methods.

Figure 5. Line 1 illustrates the original color version of CAM17. Lines 2–4 contain five random images
of CAM17 as a result of the CN techniques BKSVD, Vah, and Mac. These images correspond to
all hospitals.

5.2. CBMIR Results

The most usable strategy to measure the performance of the CBHIR tool is the “top K
accuracy”. In this strategy, the CBHIR tool displays the top K-matched patches. If there are
one or more correct retrieved images among them, the CBHIR tool performs well [7].{

ACC = 1, If any of the K-top retrieved images match with the query,
ACC = 0, Otherwise
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It is noteworthy to mention that in this paper, the results are reported using the top 3, 5,
while in recent papers [25,44,45], K was 20, 100, 200, or 400. While the amount of K in this
paper is notably lower compared to the other studies, it still shows the model achieved
an impressive accuracy. This highlights the model’s reliability for pathologists, as it can
retrieve similar patches even with a smaller set of retrieved images.

Table 2 reports the results when K = 3 and 5 for CAM17 in the four color versions.
After comparing Table 2 and Figure 4, a lower intra-center variance can improve the search
performance. According to Table 2, CN as a pre-processing technique might have a negative
impact on the final results. The obtained accuracy for the top 3 and 5 in the experiment on
the original images is higher than the accuracy of the experiments with the Vah and Mac
versions of CAM17. This means that utilizing a insufficient CN technique not only does not
improve the final results, but can also decrease the performance of the main model. Figure 6
illustrates four confusion matrices for the four color versions of CAM17 for the top 5.

Table 2. The achieved top K accuracy in the proposed CBIR method on color-normalized images
from the CAM17 data set. K = 3 and 5.

K Original BKSVD Vah [33] Mac [32]

3 0.73 0.91 0.66 0.68

5 0.83 0.97 0.79 0.81

Figure 6. Confusion matrices show the effects of BKSVD, Vah, and Mac on the performance of
CBHIR in retrieving the patches with the most similarity. “C” and “NC” stand for cancerous and
non-cancerous tissue.

According to the obtained results, thanks to CN techniques, by reducing the negative
impacts of color variation, the texture, shape, and histologic features of each patch are
highlighted. Therefore, the Euclidean function ranks the images which are more similar in
the sense of relevant features.

5.3. Visual Evaluation

A visual evaluation with some sample queries and their retrieved patches provides
transparency and insight into the functioning of the CBMIR system. This allows patholo-
gists to understand how the CBMIR framework responds to different queries. The results
of feeding the proposed framework with the original and normalized images are presented
in the four figures below.

Figure 7 illustrates four random queries in their original color space and the top five
retrieved images. As can be seen, for each of the queries, the retrieved images have different
colors, not only to the corresponding query, but also among themselves. This highlights the
need for color normalization as a pre-processing step for the searching framework.

Figures 8 and 9 show the same random queries as Figure 7, but they were normalized
by Mac and Vah, respectively. These figures clarify the numerically reported results and
confirm that the effects of Vah as a CN technique can decrease the accuracy of retrieval.

Figure 10 corresponds to the same four queries as Figure 9 and their top five retrieved
patches from the data set. In this figure, images were normalized using BKSVD. As can
be understood from the figure, normalizing the images using BKSVD can enhance the
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performance of the search engine in finding similar histopathological patterns without the
negative impact of color variation.

Figure 7. For each random query, the five top similar patches are presented. The red lines show the
miss-retrieved patches. The patches are in their original colors.

Figure 8. Four random patches of breast cancer data set with their corresponding top five retrieved
images. The images were normalized by Macenko and the red boxes show the non-similar patches
based on their labels.
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Figure 9. Four random breast queries with their five top retrieved images. The images were
normalized by Vahadane. The miss-retrieved images are marked in red.

Figure 10. Four random queries from the normalized data set by BKSVD with their five top re-
trieved images.
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In these figures, the images were compared with their queries based on the labels
provided by expert pathologists in the ground truth of the data set. The returned patches
with the same label as the query were considered as the correct retrieved patches. However,
images with different labels to the query were highlighted by a red square in order to clarify
the miss-retrieved patches based on their labels.

5.4. Comparing the Results of CBHIR with a Classifier

CBHIR and classification are two different CAD tools for pathologists. CBHIR provides
similar patches for pathologists based on the content features of the query and the database.
However, the main objective of classification is categorizing images into pre-defined labels.
In CBHIR, in addition to the corresponding label of the query, the top K similar patches
are shown to the pathologists. This enhances the reliability of CBHIR for pathologists
as it avoids being a completely black box. CBHIR gives pathologists an opportunity to
compare the histological patterns of the query with similar patches in addition to knowing
the corresponding label.

Table 3 reports the area under the curve (AUC) of the unsupervised CBHIR as a result
of applying all CN techniques. These results were compared with the results of applying
VGG19 on CAM17 as a classifier, which is reported in [36]. Following [46], the main
objective of this comparison with the supervised classifier is to evaluate the unsupervised
CBHIR performance in terms of retrieving images belonging to the same cancer grade [46].
According to Table 3, BKSVD-VGG19, with a 98.17% AUC, had the highest performance
among (Vah, Mac, Original)-VGG19. The unsupervised BKSVD-CBHIR method, with a
96.31% AUC, has a comparable performance to the fully supervised method.

Table 3. Comparison of the performance of VGG19 as a classifier and the unsupervised CBHIR
regarding the top 5. The reported metric is AUC.

Original BKSVD Vah [33] Mac [32]

VGG19
(supervised) 0.941 0.9817 0.7985 0.9499

CBHIR
(unsupervised) 0.9631 0.9754 0.9429 0.9632

6. Conclusions

In this paper, we have proposed a novel CBHIR framework for histopathological
images based on an unsupervised feature extractor and color normalization. We utilized a
custom-built convolutional auto encoder (CAE) to extract the features in an unsupervised
manner to tackle the challenges of a lack of annotated data sets. In this feature extractor, a
skip connection between a layer in the encoder, its corresponding layer in the decoder, and
a residual block in the bottleneck provided the meaningful features of the data set for the
search engine.

The proposed framework is designed to work with data sets with intra- or inter-
laboratory color variations since it solves the problem of the dependency of CBHIR on the
color variation of the data set. We analyzed the effect of using color-normalized images to
feed a CBHIR tool. We observed that as the effectiveness of color normalization techniques
in reducing intra-center variance improved, the CBHIR results were better.

In this paper, we provided a visual evaluation in order to illustrate the results of the
proposed framework visually. With this type of assessment, users can visually evaluate the
quality of the retrieved patches, which might help identify potential areas for improvement.
Furthermore, reporting these figures can be valuable for educational purposes, enabling
users to grasp the functionality and the potential applications. It also facilitates communica-
tion between developers, researchers, and end-users, fostering collaboration and improving
CBMIR technologies.

Finally, we compared the results of the proposed unsupervised CBHIR framework
with VGG19 classifiers to evaluate the performance of the proposed unsupervised CBHIR
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framework in order to retrieve images of the same cancer type. The proposed framework
was found to be highly effective in discriminating between the grades of tissues. This obser-
vation clarifies the success of the proposed unsupervised CBHIR framework in identifying
the correct histopathological features in images.

7. Future Work

CBMIR, a recent framework in digital pathology linked to CAD, plays a vital role in
reducing the incidence of human errors and provides an inclusive worldwide platform for
pathologists with varying levels of expertise. Acting as a bridge between medicine and
engineering, CBMIR fills the gaps between these two fields, offering future opportunities in
both realms. From an engineering perspective, despite achieving a high predictive accuracy,
this method has its limitations. DL-based FEs should be trained on an extensive database,
prompting the need for future work with more data using a prospective approach.

On the medical front, the entire framework can be tested in various hospitals and
integrated into traditional cancer diagnosis workflows to analyze its pros and cons in real-
world practice. These tests can provide a clearer understanding of the CBMIR framework
and serve as a guide for subsequent steps in training DL-based methods.
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