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Simple Summary: Quantitative genetics theory postulates that genetic variance in closed popula-
tions under directional selection can considerably decrease. As genetic variance directly influences
selection response, animal breeders are actively monitoring its changes over time to ensure the
sustainability of their breeding programmes. Here, we evaluated three different approaches to com-
puting variance components over a period of twenty-three years in a commercial broiler (meat-type
chicken) population undergoing multi-trait selection. Our results showed that the trajectory of
variance components fluctuated, but no overall decline trend was detected. In light of these findings,
we discuss the implications for the long-term sustainability of broiler breeding programmes.

Abstract: Monitoring the genetic variance of traits is a key priority to ensure the sustainability of
breeding programmes in populations under directional selection, since directional selection can
decrease genetic variation over time. Studies monitoring changes in genetic variation have typically
used long-term data from small experimental populations selected for a handful of traits. Here, we
used a large dataset from a commercial breeding line spread over a period of twenty-three years.
A total of 2,059,869 records and 2,062,112 animals in the pedigree were used for the estimations
of variance components for the traits: body weight (BWT; 2,059,869 records) and hen-housed egg
production (HHP; 45,939 records). Data were analysed with three estimation approaches: sliding
overlapping windows, under frequentist (restricted maximum likelihood (REML)) and Bayesian
(Gibbs sampling) methods; expected variances using coefficients of the full relationship matrix; and
a “double trait covariances” analysis by computing correlations and covariances between the same
trait in two distinct consecutive windows. The genetic variance showed marginal fluctuations in its
estimation over time. Whereas genetic, maternal permanent environmental, and residual variances
were similar for BWT in both the REML and Gibbs methods, variance components when using the
Gibbs method for HHP were smaller than the variances estimated when using REML. Large data
amounts were needed to estimate variance components and detect their changes. For Gibbs (REML),
the changes in genetic variance from 1999–2001 to 2020–2022 were 82.29 to 93.75 (82.84 to 93.68)
for BWT and 76.68 to 95.67 (98.42 to 109.04) for HHP. Heritability presented a similar pattern as
the genetic variance estimation, changing from 0.32 to 0.36 (0.32 to 0.36) for BWT and 0.16 to 0.15
(0.21 to 0.18) for HHP. On the whole, genetic parameters tended slightly to increase over time. The
expected variance estimates were lower than the estimates when using overlapping windows. That
indicates the low effect of the drift-selection process on the genetic variance, or likely, the presence of
genetic variation sources compensating for the loss. Double trait covariance analysis confirmed the
maintenance of variances over time, presenting genetic correlations >0.86 for BWT and >0.82 for HHP.
Monitoring genetic variance in broiler breeding programmes is important to sustain genetic progress.
Although the genetic variances of both traits fluctuated over time, in some windows, particularly
between 2003 and 2020, increasing trends were observed, which warrants further research on the
impact of other factors, such as novel mutations, operating on the dynamics of genetic variance.
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1. Introduction

Breeding programmes strive for sustainable genetic progress across the traits that
are part of the breeding goal. This progress depends on the parameters in the breeder’s
equation, namely the selection intensity, accuracy, genetic variation, and generational inter-
val [1]. Considerable attention has been given to the accuracy of breeding values and the
prediction models used to obtain them, using either traditional (mass and pedigree-enabled)
or genomic selection, when assuming that genetic parameters are stable. Conversely, stud-
ies examining the dynamics of genetic variance over long periods of time in commercial
breeding programs are scarce in the research literature.

Theory postulates that genetic variation decreases under intense directional selec-
tion [1,2]. Bulmer effect build-up is expected, creating a negative linkage disequilib-
rium between loci and thus reducing genetic variance, and, consequently, selection re-
sponse [3,4]. Genetic drift and accumulation of inbreeding in closed and finite populations
also contribute to the reduction in the genetic variation. Conversely, migration, muta-
tion, and recombination are key factors contributing to creation and shuffling of novel
genetic variation [1,2,4]. The balance between the newly created variance through mu-
tation/recombination and that lost through selection is usually unknown, while genetic
variation is subject to fluctuations under constant selection [2,5]. Accounting for the dy-
namics of genetic variation is important since using out-of-date variances in breeding value
estimation could bias the reliability of breeding values and hinder genetic gains due to the
reduced additive genetic variance among selection candidates [6,7].

Computing genetic variances over time was proposed by Sorensen et al. (2001) [8].
They estimated genetic variances in cohorts consisting of distinct subsequent individuals
in each cohort (distinct non-overlapping window) using a Bayesian statistical approach
and a pedigree-based prediction method, the best linear unbiased prediction (BLUP). The
novelty of that method was to estimate genetic parameters of a subset of data whose marginal
posterior distributions were conditional on the entire data and pedigree, reducing biases from
those estimations using truncated data. However, the method is computationally intensive
for large datasets. Another approach is to estimate the expected variances at any time (of
selection history) using the coefficient values of numerator relationship matrix A [9,10]. When
estimating genetic variances using a pedigree-enabled relationship matrix, the estimated
genetic variance refers to the variance in the base population (reference population); i.e.,
this estimate refers to the unrelated genetic population, not to the whole population or
specific individuals in the last generation of the analysis [9]. Thus, using distinct non-
overlapping windows of data and pedigree only captures part of the selection history and
fragmented genetic variance changes, while consecutive, overlapping and sliding windows
can provide a continuous analysis of changes in genetic variance over time. This approach
requires that windows have enough data to avoid or mitigate biases of estimation [11].
Furthermore, computing the weight of factors like drift and selection causing the changes in
genetic variances has been proposed, using a Bayesian approach in a dairy sheep breeding
programme [12].

The estimation of genetic parameters is sensitive to sample size (number of individuals
with phenotype), and large datasets are needed to ensure the accuracy of the estimation and
to accurately identify changes in the genetic parameters. Datasets from chicken breeding
populations have a sufficiently large size to monitor long-term genetic variances. For broiler
(meat-type) chickens, body weight (BWT) and hen-housed egg production (HHP) are part
of a broad and balanced breeding goal and represent the typical antagonism between
growth and reproduction through a negative genetic correlation between them [6,13]. In
an attempt to detect changes in the genetic variances of these two key traits, we assessed
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three approaches using a large broiler pedigree dataset: (a) sliding overlapping windows,
(b) expected variances using coefficient values from the full pedigree in each overlapping
window, and (c) a novel straightforward, practical approach that we term “double trait
covariance” in the current article.

2. Materials and Methods
2.1. Dataset

The population analysed in this research comes from a maternal grandsire broiler line
that has not undergone any introgression process, standing for a closed population. BWT
and HHP records were provided by Aviagen Ltd. (Newbridge, UK) from a pedigreed line
spanning 23 years (from 1999 to 2022). The selection was performed from overlapping
generations (a total of 39 generations). BWT was recorded at 35 days of age, whilst
HHP consisted of the total number of eggs collected between the 28th and 54th weeks
of age. The final dataset included 2,059,869 animals with phenotype information and
2,062,112 animals in the pedigree. The data were divided into sliding overlapping windows,
with a period of 3 years and an overlap of 2 years between subsequent windows. The
descriptive statistics are outlined in Table 1.

Table 1. Descriptive statistics of the dataset included in the analysis per window (BWT: body weight
at 35 days; HHP: hen-housed egg production).

Overlapping
Window Pedigree 1 Number of

Generations 5

BWT 2 HHP 4

Number 3 Mean SD Number 3 Mean SD

1999–2001 209,977 9 207,734 178.11 22.62 4711 108 22.46
2000–2002 221,795 9 219,618 179.10 22.34 4544 111 21.43
2001–2003 231,672 10 224,297 178.80 22.26 4908 113 21.17
2002–2004 229,175 11 226,534 179.90 23.06 5126 115 21.42
2003–2005 232,122 10 230,104 185.58 24.62 5166 117 21.04
2004–2006 233,058 11 230,458 192.90 24.93 4841 116 21.48
2005–2007 218,953 10 211,600 199.45 24.17 4983 115 21.01
2006–2008 203,089 11 200,852 200.77 21.13 4694 118 22.66
2007–2009 203,461 11 201,163 202.50 24.06 4732 121 24.05
2008–2010 213,624 11 211,513 203.85 24.13 4964 125 25.17
2009–2011 207,383 10 205,448 205.21 23.93 5199 125 25.30
2010–2012 214,657 11 212,462 207.21 23.77 5445 125 27.42
2011–2013 224,160 11 221,943 205.99 23.88 5652 116 31.09
2012–2014 234,220 10 231,895 205.87 24.17 6027 118 31.28
2013–2015 243,054 9 240,617 205.03 24.41 6412 119 29.55
2014–2016 288,859 10 286,084 206.12 24.37 7490 122 25.54
2015–2017 329,530 10 326,546 205.71 24.34 7465 122 24.99
2016–2018 362,340 10 359,044 205.26 23.98 7624 121 24.79
2017–2019 380,101 10 376,786 204.79 23.51 7971 123 25.03
2018–2020 361,019 9 357,614 205.41 22.86 8115 125 27.26
2019–2021 340,604 9 336,671 205.48 23.74 7159 127 28.18
2020–2022 355,976 10 351,908 210.48 25.17 5876 126 28.65

1 Number of animals in the pedigree file for the overlapping window. 2 Body weight trait in decagrams. 3 Number
of animals with records in the phenotype file for the overlapping window. 4 Hen-housed egg production in egg
unity. 5 Number of overlapping generations that are included in each overlapping window.

2.2. Multivariate Model and Computation of Variances

A bivariate model was used in the analysis to estimate all variance components, as
follows: [

y1
y2

]
=

[
X1 0
0 X2

][
b1
b2

]
+

[
Z1 0
0 Z2

][
u1
u2

]
+

[
W1 0
0 W2

][
c1
c2

]
+

[
e1
e2

]
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where the subscripts 1 and 2 represent the BW and HHP traits, respectively; y is the
vector of observations; b1 is one systematic effect, only for BW, consisting of hatch, week-
contemporary group, season, sex, pen; b2 is one systematic effect, only for HHP, consisting
of hatch effect (pen–group–season); u is the vector of genetic effects (additive); c is the
vector of maternal permanent environmental (MPE) effects; and e is the vector of residual
effects. X, Z, and W represent the incidence matrices for systematic effects, genetic effects,
and MPE effects, respectively.

Data were assumed to be conditionally distributed as[
y1
y2

]
| b1 , b2, u1, u2, c1, c2,R = N

(
X
[

b1
b2

]
+ Z

[
u1
u2

]
+ W

[
c1
c2

]
, R
)

where R is the residual (co)variance matrix between the two traits.
The (co)variances were assumed to be

V = Var

u
c
e

 =

A⊗G0 0 0
0 Im ⊗ C0 0
0 0 In ⊗R0


where A is the relationship matrix of the same order as the number of animals in the
pedigree; Im is an identity matrix of the same order as the number of levels of MPE effects;
and In is an identity matrix of the same order as the number of records. G0, C0, and R0 are
the 2 × 2 additive genetic, MPE, and residual (co)variance matrices between the two traits.
All random effects were assumed to be independent.

2.3. Sliding Overlapping Windows

The estimation procedure, under a frequentist method, was implemented in AS-
Reml [14] and convergence was assessed after maximum of 30 iterations. Parameters of a
total of 22 sliding overlapping windows were estimated. To perform a Bayesian analysis,
the programs RENUMF90, GIBBS2F90, and POSTGIBBSF90 from the BLUPF90 family
programs [15] were used to obtain the marginal posterior distributions using the Gibbs
sampling algorithm. One sample every 80 iterations was saved to avoid the high cor-
relation between consecutive samples, from a chain length of 670,000 and a burn-in of
30,000 iterations.

2.4. Expected Variance Components

The estimations of (co)variance components of a closed population, under directional
selection, pertain to the base population or the first population before the selection process
starts. The same method used in the sliding overlapping windows was carried out, but
under a chain length of 112,400. Expected variances were computed according to the
procedure described by Legarra (2016) [9], in which all genetic variance components of
a specific population can be computed at t time by partitioning the elements of an entire
relationship matrix A into a set of individuals belonging to the population at t time. In
a nutshell, variance components come from individuals that pertain to each overlapping
window in the current study. Let Var(a) = Aσ2

a and t be the time for an overlapping
window; then, the expected variances are obtained from the following equation:

V̂at =
(

diag( At)−At

)
∗ σ̂2

a

in which V̂at is the expected genetic variance of an overlapping window, diag( At) is the
average value of the diagonal of matrix A from only animals of the overlapping window,
At is the average value of all coefficients, in matrix A, from only animals of the overlapping
window, and σ̂2

a is the genetic variance estimate using all animals from the full period
(1999–2022). The differences between the variance from the base population and the ex-
pected variance are deemed the loss of genetic variance due to drift (coancestry). Differences
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between the expected variance and estimates from the overlapping window procedure
are also expected. These differences turn into the reduction in genetic variances due to
the selection process; specifically, they are because of the Bulmer effect and the preselec-
tion of animals [12]. The inbreeding coefficients were computed using the “PedModule”
of JWAS Software v.1.2.1 [16] and the average of matrix A was computed using Colleau’s
Algorithm, programmed in a custom Julia script (see Appendix A). Colleau’s Algorithm is
an indirect method allowing for the computation of the average relationship (a) of each
member pertaining to each overlapping window, as a = x’Ax. Here, A stands for the full
relationship matrix and x stands for a vector containing 1 in the positions of each member
in the window and 0 for the rest of the individuals in the pedigree [17]. By decomposing the
matrix A, as a = x’TDT’x (where T stands for a lower triangular matrix and D represents
an inbreeding-diagonal matrix [17,18]), the computation is made more straightforward than
creating a dense matrix A by using a direct method, with the latter highly time-consuming.

2.5. Doubling Traits to Assess Covariances and Correlations

As an alternative approach to assess the changes in genetic variance over time, we
evaluated two consecutive non-overlapping windows (of 3 years) while assuming the traits
of the second window to be different and computing the covariance and genetic correlation
among the four traits (i.e., a four-trait model or quadrivariate analysis). A total of 19 such
analyses were carried out to examine the changes in the genetic parameters and particularly
the genetic correlations between BWT1 and BWT2 and between HHP1 and HHP2. For
instance, when we compared the window “2006” vs. “2009”, we were using the years 2006,
2007, and 2008 in “2006” (for BWT1 and HHP1), and the years 2009, 2010, and 2011 in “2009”
(for BWT2 and HHP2). The only link between the two windows was their relationship
(pedigree). In the current study, we used the correlation for the same trait to indirectly infer
likely changes in its genetic variance in an empirical approach, given the number of data,
and generations [19]. We deemed that a correlation greater than or equal to 0.90 indicated
no relevant changes in the additive variance (steady), from 0.89 to 0.75 was a high level of
steadiness, 0.74 to 0.50 was a moderate level, and less than 0.50 pointed to a strong change
in the variance components between the two subsequent overlapping windows.

3. Results

Herein, the main results are shown graphically to reveal the trends of each variance
component (Figures 1–6).

3.1. Genetic (Co)variances, Heritability, and Correlation Genetics

In the current study, genetic variances and parameters were estimated using two
methods: frequentist and Bayesian statistics, under the overlapping window approach.
Figure 1 shows the results of genetic variance estimations, that is, the Bayesian posterior
means and the highest posterior density region at 95% (HPD95%), and the mean and
confidence intervals at 95% from using REML (frequentist). The estimates of genetic
variance from REML, for the first (1999–2001), half (2009–2011), and end (2020–2022) year
intervals, were 82.84, 109.85, and 93.68 decagrams squared for BWT and 98.42, 152.39,
and 109.04 eggs squared for HHP, respectively. The Bayesian estimates were 82.29, 109.87,
and 93.75 decagrams squared for BWT, and 76.68, 129.58, and 95.67 eggs squared for
HHP, respectively. Genetic (co)variances between BWT and HHP were −48.77, −79.20,
and −81.52 when using REML, and −17.86, −31.69, and −43.33 in the Bayesian analysis,
respectively. Note that (co)variance estimates were almost double in REML those in the
Bayesian analysis; in fact, HPD95% was wider for the estimates involving HHP. Despite
that, the effective size of the sample, autocorrelation lag, and Geweke diagnostic ensured
the convergence of chains.

The heritability estimates of BWT were practically the same when using REML and
Bayesian analysis (Figure 2a). The estimates of the first (1999–2001), half (2009–2011),
and end (2020–2022) year intervals were 0.32, 0.42, and 0.36, respectively. Conversely, the
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heritabilities for HHP were 0.21, 0.24, and 0.18 when using REML, and 0.17, 0.20, and 0.15 in
the Bayesian analysis, respectively (Figure 2b). The heritability of BWT tended to increase
slightly, but it dropped again for the last overlapping window (2020–2022). However,
bearing in mind the three above-mentioned periods, the changes in the heritabilities
seemed to be small, especially for HHP. Moreover, over the whole 23-year period, the
genetic variance for both traits tended to increase and there was no evidence of reductions
in heritability irrespective of the estimation method (Figures 1 and 2). Genetic correlation
between BWT and HHP fluctuated over time; when using REML, its estimates were
−0.24, −0.28, and −0.45, and in the Bayesian analysis, they were −0.14, −0.22, and −0.45,
respectively (Figure 3). The HPD95% of the latter results was wide, in accordance with most
HHP estimates.
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Figure 1. Genetic (co)variance estimates for body weight trait (BWT) and hen-housed egg production
(HHP) over time. The estimates of BWT variance (solid line), BWT-HHP covariance (dashed line),
and HHP variance (long-dashed line) were computed by using the following methods: (a) Bayesian
analysis: BWT (orange), BWT-HHP (green), and HHP (red). The shaded area stands for the highest
posterior density region at 95% (HPD95%). (b) Restricted maximum likelihood (REML): BWT (purple),
BWT-HHP (yellow), and HHP (light blue). The shaded area stands for the confidence interval at 95%.
Every dot represents an estimated mean for a window encompassing 3 years of data, overlapping
2 years with the flanking windows, from 1999 to 2022.
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Figure 2. Heritability estimates for body weight trait (BWT) and hen-housed egg production (HHP)
over time. The estimates of BWT heritability (solid line), and HHP heritability (dashed line) were
computed by using the following methods: (a) Bayesian analysis: BWT (orange) and HHP (red).
The shaded area stands for the highest posterior density region at 95% (HPD95%). (b) REML: BWT
(purple) and HHP (light blue). The shaded area stands for the confidence interval at 95%. Every dot
represents an estimated mean for a window encompassing 3 years of data, overlapping 2 years with
the flanking windows, from 1999 to 2022.
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Figure 3. Genetic correlation estimates between body weight trait (BWT) and hen-housed egg production
(HHP) over time. The estimates of genetic correlation between the two traits were computed by using
the following methods: (a) Bayesian analysis, in green colour. The shaded area stands for the highest
posterior density region at 95% (HPD95%). (b) REML in yellow colour. The shaded area stands for the
confidence interval at 95%. Every dot represents an estimated mean for a window encompassing 3 years
of data, overlapping 2 years with the flanking windows, from 1999 to 2022.

3.2. Maternal Permanent Environmental Effects

The variance component provided by MPE effects was also analysed. Its estimates
for the first (1999–2001), half (2009–2011), and end (2020–2022) year intervals when using
REML were 9.52, 11.27, and 6.05 for BWT, and 3.81, 23.08, and 6.53 for HHP, respectively.
With the Bayesian approach, the estimates were 9.63, 11.36, and 6.53 for BWT, and 15.88,
32.74, and 12.64 for HHP, respectively. After 2017, the MPE variance dropped, registering
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lower values (Figure 4). This agreed with the low proportion of phenotypic variance
explained by MPE in the last overlapping window (2020–2022), 0.02 for BWT, and 0.01
(REML) and 0.02 (Gibbs) for HHP. Moreover, the MPE (co)variance between the two traits
tended to be zero, and thus, it could have been excluded from the model. Figures S1 and S2
in the Supplementary Material files show the estimation of the MPE correlation, and the
ratio of MPE that accounts for its contribution to the phenotypic variance, respectively.
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Figure 4. Maternal permanent environmental (MPE) (co)variance estimates for body weight trait
(BWT) and hen-housed egg production (HHP) over time. The estimates of BWT variance (solid line),
BWT-HHP covariance (dashed line), and HHP variance (long-dashed line) were computed by using
the following methods: (a) Bayesian method: BWT (orange), BWT-HHP (green), and HHP (red).
The shaded area stands for the highest posterior density region at 95% (HPD95%). (b) REML: BWT
(purple) and HHP (light blue). The shaded area stands for the confidence interval at 95%. Most
estimates of MPE covariance were around zero when using REML; hence, this component could have
been fixed to zero. Every dot represents an estimated mean for a window encompassing 3 years
of data, overlapping 2 years with the flanking windows, from 1999 to 2022. Note that BWT-HHP
covariance when using REML is not shown.
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3.3. Residual and Phenotypic Variances

The residual and phenotypic variances presented the same pattern in both REML and
the Bayesian analysis. The Bayesian posterior means of residual variances were 163.29,
142.10, and 157.92 for BWT in the first (1999–2001), half (2009–2011), and end (2020–2022)
year intervals. The residual variances for BWT were steadier, whilst they tend to increase
over time for HHP with values of 375.03, 470.05, and 510.62, respectively (see Figures S3
and S4 for more details of residual and phenotypic variance estimations).

3.4. Inbreeding Effect on the Computation of Variance Components

Inbreeding effects were analysed by comparing the genetic variance results using
the pedigree within each window versus an in-depth pedigree, namely an accumulated
pedigree from the specific overlapping window to the base population. The results were
similar in the two approaches, as is shown in Table 2. However, the last overlapping win-
dows showed higher values when using the in-depth pedigree than the specific window
pedigree due mainly to the accumulated inbreeding. For example, the 2020–2022 window
presented an average inbreeding mean of 0.03 under a 3 yr pedigree, whereas the value
was 0.22 under an accumulated pedigree (23 yr). Although that turned into a difference of
11 units of genetic variance in the last window (2020–2022), the results showed that
HPD95%s for both approaches was overlapped and presented the same pattern, an in-
crease in the genetic variance after 23 years of selection.

Table 2. Estimates of genetic variances under pedigree within sliding overlapping window and
accumulated pedigree for body weight trait.

Overlapping
Window

Pedigree within Window 1 Accumulated Pedigree 4

Mean HPD95%
Interval 2 IChS 3 Mean HPD95%

Interval 2 IChS 3

2000–2002 91.91 [81.42, 102.30] 182 90.43 [80.81, 99.30] 92
2001–2003 90.89 [81.33, 100.70] 142 90.53 [81.98, 100.30] 20
2002–2004 90.51 [81.07, 100.00] 64 91.89 [82.66, 101.10] 32
2003–2005 97.52 [87.55, 107.40] 228 97.45 [88.28, 106.70] 156
2004–2006 95.12 [84.76, 104.90] 114 96.50 [84.36, 107.20] 286
2005–2007 99.39 [89.51, 109.70] 114 95.81 [86.53, 106.10] 68
2006–2008 94.02 [84.37, 104.60] 50 92.27 [79.32, 106.10] 214
2007–2009 97.73 [86.29, 109.90] 224 92.56 [83.16, 103.30] 60
2008–2010 95.70 [84.03, 107.30] 544 94.26 [83.93, 104.10] 120
2009–2011 109.87 [99.20, 121.60] 332 103.76 [90.31, 115.60] 60
2010–2012 106.49 [96.84, 116.60] 110 110.25 [99.45, 121.00] 46
2011–2013 97.58 [88.42, 107.00] 174 103.63 [89.92, 113.40] 256
2012–2014 92.15 [82.18, 102.10] 134 97.67 [86.74, 108.40] 256
2013–2015 96.93 [87.42, 108.30] 272 101.40 [89.96, 114.20] 258
2014–2016 98.68 [88.99, 108.10] 36 98.44 [84.85, 114.40] 334
2015–2017 101.74 [92.68, 110.00] 32 109.19 [98.05, 123.50] 342
2016–2018 101.18 [93.42, 109.00] 40 112.57 [98.33, 122.20] 254
2017–2019 106.75 [98.62, 114.80] 482 119.45 [110.40, 129.10] 334
2018–2020 108.63 [100.90, 116.40] 68 123.41 [107.00, 137.50] 322
2019–2021 96.71 [88.71, 104.60] 482 108.18 [97.88, 119.10] 370
2020–2022 93.75 [86.42, 100.90] 206 105.07 [94.59, 113.70] 288

1 Pedigree comprises only animals for the 3-year window. 2 Interval of the highest posterior density region at
95%. 3 Independent chain size. 4 In-depth pedigree including animals from the overlapping window to the
base population.

3.5. Expected Variances and the Broiler Selection Effect on Genetic Variances

In the base population, the Bayesian variance components for BWT were 82.63 ± 2.84
(±PSD (posterior standard deviation) in decagrams squared) of genetic variance, 11.91 ± 0.39
of MPE variance, and 165.31 ± 1.25 of residual variance. For HHP, the estimated genetic
variance was 100.89 ± 23.56 (in eggs squared), the MPE variance was 26.75 ± 4.49, and the
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residual variance was 425.24 ± 11.06. The estimated covariances between the two traits
were −44.44 ± 2.81 (genetic), 1.06 ± 0.67 (MPE), and −24.40 ± 2.31 (residual). According
to expected variance method, the expected reduction after 23 years of selection was at most
20% of the genetic variance of the base population (Figure 5a). The inbreeding accumulated
with an annual rate below 1% (Figure 5b). Due to this increase in relationship coefficients
(consanguinity) over time, it was expected that we would observe some loss of genetic
variance. However, overall, there was no evident loss of genetic variance due to coancestry
or selection, as the estimated genetic variances from the overlapping window approach
were greater than the expected genetic variance and the variance of the base population.
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Figure 5. Expected variances based on average inbreeding and relationship for body weight trait
(BWT) and hen-housed egg production (HHP) over time. (a) Expected genetic variances for BWT (red)
and HHP (orange) compared to estimated genetic variances for BWT (dark green) and HHP (light
blue) from overlapping window approach. (b) Average inbreeding for each window encompassing
3 years of data, overlapping 2 years with the flanking windows, from 1999 to 2022. The inbreeding
increased progressively over time, but its increase rate was very small between windows.
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3.6. Changes Examined by Using Double Trait Covariance Analysis

A high correlation was found between the comparisons of overlapping windows using
the same trait doubled as two correlated traits. For BWT, the minimum correlation was
0.86 in the comparison of 2007 vs. 2010. Indeed, no drastic changes in BWT were detected
when using double trait covariance analysis (Figure 6). For HHP, most of the estimates of
genetic correlations were greater than 0.82. Nevertheless, two comparisons presented low
correlation (strong change): 2003 vs. 2006 (0.33) and 2013 vs. 2016 (0.52).
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Figure 6. Genetic (co)variances and genetic correlations relating to the same trait for body weight
trait (BWT) and hen-housed egg production (HHP) over time. The double trait covariance analysis
consisted of clustering two consecutive windows without overlapping to calculate the genetic param-
eter for the same trait. Four traits were use in the model—BWT_1 and HHP_1 from data of the first
window, and BWT_2 and HHP_2 from data of the next consecutive window—so that overlapping
windows were clustered for our 19 analyses. (a) Results of genetic (co)variances for BWT_1: BWT_2,
and HHP_1: HHP_2. (b) Results of genetic correlations for BWT_1: BWT_2, and HHP_1: HHP_2.
The legend of the x-axis (Year) stands for the year of the first window. The analysis included six years
(three years per window).
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4. Discussion
4.1. Genetic, Inbreeding, Coancestry, and Drift Parameters

In animal breeding, accurate and unbiased estimates of variance components are
essential for the prediction of breeding values. These estimates are transient and can
fluctuate over time. Therefore, monitoring them and obtaining up-to-date estimations are
important steps to ensure long-term genetic improvement [20].

The heritability estimate for BWT in this study (0.32) is similar to those found in
commercial broiler populations at 5 weeks, of 0.320 and 0.329 in males and females [21].
These results are also consistent with previous studies in broiler lines reporting heritabil-
ities ranging from 0.19 to 0.40 for BWT at 35 days [22–25] Heritabilities for BWT differ
according to the age at recording. For instance, Chu et al. (2020) [21] reported values
from 0.28 to 0.33 between the first and the sixth weeks, while other studies showed val-
ues between 0.29 and 0.40 at weeks three to six [26,27], 0.19 at six weeks in Dahlem Red
chicken [28], and 0.29 at six weeks in juvenile body weight from eight overlapping gen-
erations of a broiler-type female line [29]. In some studies, sexual dimorphism for BWT
was found to be significant. In commercial broiler lines, heritabilities at three different ages
ranged between 0.33 and 0.40, with males (0.29–0.37) having a different range to females
(0.38–0.40) [27]. When studying inter-crossed populations, BWT heritability was reported
as 0.34 in F2 chickens [30] and 0.46 in an inter-cross population from two chicken lines
selected divergently for BWT at 8 weeks [31].

To our knowledge, no estimations of variance components over time for antagonistic
traits have been reported in commercial broiler breeding programmes, though, to date,
only one study has focused on the dynamics of genetic variance of BWT over time [32]. In
that research, data were used from a commercial broiler breeding population for 54 cycles
of selection, but the trait definition changed over time. For the first 39 generations, BWT
was recorded to a specific time of (t) days, which changed to a time of (t)-4 days for the
next 7 generations, and then to a time of (t)-7 days for the last 8 generations. A Bayesian
bivariate random regression model with segmented linear splines and heterogeneous
residual variance was used. In the first 39 cycles of selection, the genetic variance of BWT
increased, similar to our findings. In the subsequent periods, the genetic variance declined,
likely due to the change in the trait definition. Unlike those results, we did not observe a
reduction in BWT heritability as a result of the scaling effect [32].

The heritability estimates for HHP tended to be lower than those for growth traits.
Our estimate, using all data available, was similar to those of other studies, where egg
production was recorded at 40 weeks (0.11) [28], until 48 weeks of age (0.13) [29], between
1 and 17 weeks of laying (0.15) [33], and from the 3rd to the 8th month (0.125–0.184) [34,35].
In our findings, the HHP estimates were lower for the Bayesian methods when using a
bivariate model than the estimates when using REML. This is primarily because Gibbs
sampling is more prone to sample size effects impacting the ability to reach convergence
of chains, which is particularly difficult when records are distributed unevenly [36]. In
the current study, the sample size affected the accuracy of HHP estimates that showed
wide HPD95%, given the small number of data samples and the large number of missing
values compared to the records of the BWT dataset. The HHP heritabilities over time,
ranging from 0.176 to 0.351 for REML and 0.154 to 0.325 for the Bayesian approach, were
in agreement with those in the literature found for cumulative egg production from 3 to
6 months of laying (0.28) [37] and at 40 weeks of age in a synthetic broiler female line
(0.31) [38]. Likewise, when using broiler lines with the same trait definition as in the current
study, the heritability estimates were 0.24 under an additive and dominance parameters
kernel [39] and 0.31 under a trivariate model [24]. None of those studies showed estimations
over time for HHP. Overall, the HHP heritability estimate in this study showed a more
widely fluctuating trajectory when compared with the BWT estimate (Figure 2).

Regarding the genetic covariance between BWT and HHP, its trajectory over time
fluctuated; it seemed to be more stable until 2015, when it dropped, becoming more nega-
tive (Figure 1). The same trend was found for the genetic correlation (Figure 3). The last
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two overlapping windows showed a more unfavourable genetic correlation, which partly
accounted for the reduction in genetic variance in those windows. One might expect slightly
more negative correlations over time because of possible fixations of pleiotropic alleles with
favourable effects on both BWT and HHP, meaning the remaining segregating alleles have
more negative pleiotropism between the traits. The estimates of the first overlapping win-
dows were near those found in other studies, between −0.18 and −0.192 [24,29], whereas
the correlation was more antagonistic (−0.55) between the total number of eggs (until
17 weeks) and BWT in Thai native chickens [33], as in the last overlapping windows of the
current study.

The trajectories of genetic variance for both traits fluctuated, as expected, but no
overall decreasing trend was detected. The heritabilities presented a similar pattern to the
genetic variance trajectories, especially for BWT (Figure 3).

The results of variances estimated with pedigree spreading over the whole period
revealed a slight increase in genetic variance, which became relevant in the last five over-
lapping windows. That was a peculiar result since the quantitative genetic view is typically
that the amount of genetic variance will be reduced by inbreeding [1,2]. However, in
practice, it is still debatable whether cumulative depression effects are everlasting [10,40,41].
Furthermore, a study using maternal rabbit lines showed that inbreeding has an apparent
positive effect on litter size [42], and the contribution of the dominance effect to variance
increased with the inclusion of inbreeding in that model [10].

When using the overlapping windows, the changes in the variance components
over time were shown. However, this approach does not identify the main causes of the
changes. Estimating expected variance is a way to find out how inbreeding influences
the fluctuations in genetic variance. In our dataset, annual inbreeding accumulation was
lower than 1% (or 0.006 per generation), i.e., below the threshold set by the FAO [43].
Theoretically, some factors, such as drift and selection, contribute to the reduction in genetic
variance in breeding programmes. For instance, the genetic variance reduction resulting
from coancestry (drift) in a dairy sheep breeding program was only 3% over a period
of 39 years owing to its low average relationship coefficient (about 0.002 increase per
year) [12]. Therefore, a small reduction in the genetic variance coming from drift can be
expected based on that study. Furthermore, the magnitude of genetic variance reduction is
expected to be more significant with higher selection intensity and greater heritability [1].
For instance, in one study, growth traits with a heritability of about 0.30 experienced
greater losses of genetic variances compared to fitness traits with a heritability of ≤0.11
in a commercial pig population [11]. Another factor influencing genetic variance is the
presence of non-random linkage disequilibrium, also known as the Bulmer effect. It is
expected to reduce genetic variance and the selection response, regardless of the magnitude
of heritability, and it depends on the intensity of selection [40]. However, whilst the number
of loci and population size influence long-term selection, changes in genetic parameters
due to the Bulmer effect occur in early generations [44,45]. The loss of genetic variance
due to drift can be computed by subtracting the genetic variance in the base population
from the expected variance, while the difference between the expected variance and the
estimated variance (via the sliding overlapping window method) is attributable to the loss
of genetic variance due to selection. This latter effect includes both the Bulmer effect and
the preselection of animals at birth based on the parent average (candidates). Figure 5
illustrates that a maximum reduction of 20% is expected due to coancestry coefficients.
Nevertheless, apart from the HHP variance of the first window, all expected variances are
lower than the estimated genetic variance and the variance of the base population. Reports
of genetic variance reduction have been observed in commercial pigs [11], Czech Fleckvieh
dual-purpose cattle [46] for growth traits, and in dairy sheep for milk production [12]. In
the case of the sheep program, estimates indicated a 10% loss of genetic variance due to the
Bulmer effect and preselection pressure at birth (selection) [12]. Contrary to these findings,
research on variance component estimations using random regression revealed a significant
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increase in genetic variance for milk production in dairy cattle [19,47]. Similarly, a study in
a commercial broiler population exhibited an upward heritability for BWT [32].

In practice, breeding companies control the inbreeding effect by implementing optimal
contribution selection or by straightforward ad hoc restrictions on the inbreeding rate in
truncation selection, e.g., no cousin mating [41] or avoiding full- and half-sibling mating.
These measures can mitigate the impact of inbreeding on the genetic variance and, indirectly,
the selection effect over time by maintaining a suitable effective population size (Ne) [20].
That restriction of mating between animals with high relationship coefficients and the large
effective population size could account for the lack of significant reductions in genetic
variance in the current study.

4.2. Monitoring the Dynamics of Genetic Variance

Theory postulates that the genetic (co)variance, heritability, genetic correlation, and
selection response of a trait under direct selection are reduced, especially when one or a
limited number of traits are considered. However, genetic variances could be less influenced
when the selection is performed for multiple traits, and the selected population undergoes
different selection pressures depending on each trait [12,45]. Moreover, the trait definition
is updated as a response to requirements [23,32,48]. For example, BWT was recorded at
6 weeks from 1987 to 1998, and from then on, it started to be recorded at 5 weeks [23]. This
kind of change could introduce a disruption in favour of or against the genetic variance of
the new trait [32].

In practice, nucleus populations are continuously under selection for fitness, while
family sizes are regulated to reduce variation and maintain Ne. Commercial poultry breed-
ing goals have broadened since the 1970s, typically including 40 to 50 traits now [41]. Even,
the well-known Virginia body weight lines, an experimental population of White Plymouth
Rock chickens selected divergently for only BWT at 8 weeks, showed a progressive re-
sponse to selection, and later on, suitable genetic variance after 60 years of selection. In that
case, a strong standing genetic variance brings about the maintenance of genetic variance
over time [49,50]. The standing variance is also highly linked to mutational variance [51].
Due to computational complexities, obtaining estimates for the contribution of mutational
variance in large chicken datasets is challenging; however, evidence from other species
suggests that de novo mutations can have an important role in the maintenance of genetic
variation over time [5,52].

In multi-trait breeding programmes, several traits may have an antagonistic relation-
ship that can affect the long-term selection response if not appropriately managed. For
instance, a negative high correlation (−0.92) between the number born alive and body
weight at weaning in rabbits does not enable breeders to establish a feasible line selected
for both traits (instead of creating independent lines) [53]. However, in our study, the mag-
nitude of genetic, MPE, residual, and phenotypic correlations between BWT and HHP was
moderate, thus allowing for selection in the desired direction for both traits simultaneously.
The persistency of antagonistic correlations relies on the genetic architecture between traits,
expressed as pleiotropy with tight or loose linkages amongst QTLs [54].

Although adverse negative genetic correlation hinders responses to selection, poultry
breeding schemes using broad and balanced breeding goals (multi-trait selection) have
shown that favourable selection responses in antagonistic traits can be achieved [41]. A
plausible explanation could be the simultaneous fixation of favourable haplotypes or QTLs
for the traits involved in the antagonism [54]. This explanation could match the high
apparent correlation in the last overlapping windows, becoming more negative, in the
current study. In fact, we found that the genetic variance slightly dropped, likely due
to a stronger selection in the last overlapping windows (from 2018), showing a higher
antagonistic genetic correlation as a result of a better phenotypic response in BWT (Table 1).
In pigs, remarkable reductions in genetic variance and heritability were found due to
antagonistic genetic relationships between fitness and growth traits [11]. Thus, monitoring
the correlation between traits is important for poultry breeding programmes. Selection
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for leg health traits is an important example in broiler breeding programmes. Despite
moderately unfavourable genetic correlations between leg health traits and BWT, these
traits can be improved simultaneously when balanced breeding goals are implemented [23].

The three proposed approaches (overlapping window estimations, expected variances,
and double trait covariance analysis) are feasible strategies to monitor the dynamics of
genetic variance. Estimates from overlapping windows use both phenotypic and pedigree
data, rendering the approach more accurate since the expected variance method and double
trait covariance analysis are based mainly on the pedigree information. The latter method
enables us to corroborate the magnitude of changes in the genetic variance over time. In
dairy cattle, the concern about genetic variance estimations brought about a method to
approach trends in genetic variances over time and their tolerance values in the breeding
programme, based on the estimates within strata using breeding values and prediction error
variance (PEV) of Mendelian sampling deviations [55,56]. This method helped to recognize
estimates outside the tolerance interval for milk yield, and fat yield between 1998 and 2006,
and consequently they supported suitable decision-making in further genetic evaluations [57].
Furthermore, a study in Australian Holstein cattle revealed that the genetic correlations of the
same trait, such as protein yield, fat yield, or some type traits, measured in different years were
less than 1.0 [19], which was likely to be due to selection or changes in trait definitions [19,36].
The correlations between consecutive periods were high overall in that study, which agrees
with our findings. However, some traits showed a low correlation in consecutive periods, e.g.,
the survival trait, with 0.21 ± 0.63 (mean ± SE). In our study, the comparison between the
consecutive windows 2013 and 2016 showed the lowest correlation (0.33) for HHP. This
change, apparently positive, in HHP genetic variance could have multiple explanations but
those are beyond the scope of this study. The double trait covariance method seems to be
practical only in non-overlapping consecutive windows since comparing distinct windows
(non-consecutive) can bring about convergence issues [19].

On the other hand, large datasets and bias are key factors to consider when estimating
variance components, and estimates seem more susceptible when the selection includes
further genomic information [58,59]. In previous research, the heritabilities in pigs were
smaller and genetic correlations were greater by using genomic data than when using
estimates with only pedigrees and phenotypes [11]. In broilers, the genetic correlation
estimates changed gradually from a negative value when using only the pedigree (−0.192)
to a value close to zero with a full genomic kinship matrix for BWT and HHP [24]. Ignoring
the previous selection process for each window could also increase the bias. However,
recent studies demonstrated that tracing back three generations in the pedigree and re-
moving animals not contributing own or progeny phenotypes increases computational
efficiency without changing the ability to predict breeding values, thus reducing bias [60].
This depends on the number of years or generations used to estimate variance components.
In practice, in poultry breeding companies, the variance components are usually estimated
in a cohort of three years, as in the current study. The windows included an average of
10 generations to attain computational efficiency, as the size of the data window creates a
trade-off between modelling fast changes and bias due to the use of truncated data [11,40].
Thus, we expected that the level of bias would not dramatically affect the result of the
sliding overlapping window method.

Monitoring the genetic variance is a key factor to be considered in poultry breeding
programmes to assess breeding sustainability. The three approaches shown in the current
study can highlight changes or loss in genetic variances. Overall, the results, in agreement
with other studies, suggested that little variation was lost, implying that rates of genetic
improvement can be sustained in the future [20].
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5. Conclusions

Monitoring genetic variance in the broiler breeding industry is an excellent strategy
to ensure positive levels of genetic progress. The methods presented in this study can be
extended to other traits in the breeding goal, provided datasets are large enough. Although
genetic variances fluctuate over time, they may sometimes strikingly increase. In the
current study, we found this happened particularly between 2003 and 2020, indicating
suitable levels of maintenance of genetic variance. A suggestion is that other factors, such
as a sufficiently high rate of de novo variation (i.e., mutations), can counterbalance the loss
of variation, which warrants further studies to elucidate these factors contributing to novel
genetic variance.
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trait (BWT) and hen-housed egg production (HHP) over time; Figure S3: Residual (co)variance esti-
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Appendix A

The below Julia code was used to compute the average relationship using
Colleau’s Algorithm:
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