
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(4): 8478–8503.
DOI: 10.3934/math.2023427
Received: 24 October 2022
Revised: 30 January 2023
Accepted: 01 February 2023
Published: 06 February 2023

Research article

An optimal eighth order derivative free multiple root finding scheme and its
dynamics

Fiza Zafar1, Alicia Cordero2, Dua-E-Zahra Rizvi1 and Juan Ramon Torregrosa2,*

1 Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University,
Multan 60800, Pakistan
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Abstract: The problem of solving a nonlinear equation is considered to be one of the significant
domain. Motivated by the requirement to achieve more optimal derivative-free schemes, we present
an eighth-order optimal derivative-free method to find multiple zeros of the nonlinear equation by
weight function approach in this paper. This family of methods requires four functional evaluations.
The technique is based on a three-step method including the first step as a Traub-Steffensen iteration
and the next two as Traub-Steffensen-like iterations. Our proposed scheme is optimal in the sense
of Kung-Traub conjecture. The applicability of the proposed schemes is shown by using different
nonlinear functions that verify the robust convergence behavior. Convergence of the presented family
of methods is demonstrated through the graphical regions by drawing basins of attraction.
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1. Introduction

Many practical problems are nonlinear in nature, therefore, the problem of solving a nonlinear
equation is considered to be one of the significant domain. In addition, the construction of higher
order optimal iterative methods for multiple roots having prior knowledge of multiplicity (σ > 1) has
remained one of the most important and challenging tasks in computational mathematics.

Modified Newton’s method is a one-point scheme used to find multiple roots ω of a nonlinear
equation f (x) = 0, with known multiplicity σ. Its iterative expression is

θk+1 = θk − σ
f (θk)
f ′(θk)

, k = 0, 1, 2 . . . ,
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where f is an analytic function in a neighborhood of the zeroω. Sometimes, the derivative f ′(x) may be
expensive to calculate or may indeed be unavailable. To overcome this problem, Traub–Steffensen [18]
replaced the derivative of the function in the modified Newton’s method by the divided difference

f ′(x) ≈ f [µk, θk] =
f (µk) − f (θk)
µk − θk

,

where µk = θk + γ f (θk). Therefore, the modified Newton’s method becomes

θk+1 = θk − σ
f (θk)

f [µk, θk]
k = 0, 1, 2 . . .

In the literature, there exist many iterative procedures to find the multiple roots of f (x) = 0 with
derivatives (see, for example [2–4, 12, 13, 15]). The motivation for constructing high-order methods
is closely related to the Kung–Traub conjecture [10]. It establishes an upper bound for the order
of convergence ρ ≤ 2d−1, where ρ is the order of convergence and d is the number of functional
evaluations. Any iterative method without memory attaining the maximum bound of the Kung-Traub
conjecture is called optimal method. However, there are few optimal derivative-free schemes [1, 14,
16, 17], the iterative expression of some of them will be used in the numerical section and are shown
below.

In 2019, Sharma et al. [16] proposed multiple root finding method with known multiplicity σ > 1
given as

µk = θk + γ f (θk) , where γ ∈ R− {0} ,

υk = θk − σ
f (θk)

f
[
θk, µk

] ,
ξk = υk − σrkV (rk)

f (θk)
f
[
θk, µk

] ,
θk+1 = ξk − σskL (rk, tk)

f (θk)
f
[
θk, µk

] , k = 0, 1, 2, . . . (1.1)

being

rk =

(
f (υk)
f (θk)

) 1
σ

,

sk =

(
f (ξk)
f (θk)

) 1
σ

,

tk =

(
f (ξk)
f (υk)

) 1
σ

,

where θ0 is the initial estimation and V : C→ C and L : C2 → C are analytic in the neighborhood of 0
and (0, 0) respectively such that, conditions on V and L are as follows:

V (0) = 1, V
′

(0) = 2, V
′′

(0) = −2, and
∣∣∣V ′′′

(0)
∣∣∣ < ∞

L (0, 0) = 1, L10 (0, 0) = 2, L01 (0, 0) = 1, L20 (0, 0) = 0
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and |L11 (0, 0)| < ∞ , where Li j(0, 0) =
∂i+ j

∂rit j L(r, t)

∣∣∣∣∣∣
(0,0),

for i, j ∈ N.

Furthermore in 2019, Sharma et al. designed in [17] an optimal eighth order scheme to find the
multiple root of the nonlinear equation with known multiplicity σ > 1:

µk = θk + γ f (θk) , where γ ∈ R− {0} ,

υk = θk − σ
f (θk)

f
[
θk, µk

] ,
ξk = υk − σhk (α1 + α2hk)

f (θk)
f
[
θk, µk

] ,
θk+1 = ξk − σrkskL (hk, sk)

f (θk)
f
[
θk, µk

] , k = 0, 1, 2, . . . (1.2)

where

rk =

(
f (υk)
f (θk)

) 1
σ

,

sk =

(
f (ξk)
f (υk)

) 1
σ

,

hk =
rk

1 + rk
,

and L : C2 → C is analytic in the neighborhood of (0, 0) such that, conditions on α1, α2 and L are given
as:

α1 = 1, α2 = 3, L00 = 1,
L01 = 1, L10 = 2, L20 = −4, L11 = 4,
L30 = −72, | L02 |< ∞ and | L21 |< ∞,

where Li j =
∂i+ j

∂hi∂s j L (hk, sk)

∣∣∣∣∣∣
(0,0)

, i, j ∈ {0, 1, 2, 3, 4}.

Recently, Sharma and Kumar [14] presented another eighth order derivative-free multiple root
finding scheme with multiplicity σ > 1. This three-step iterative scheme is described as follows:

µk = θk + γ f (θk) , where γ ∈ R− {0} ,

υk = θk − σ
f (θk)

f [θk, µk]
,

ξk = υk −G(rk, sk)
f (θk)

f [θk, µk]
,

θk+1 = ξk − ukH(rk, sk, tk)
f (θk)

f [θk, µk]
,

where, G : C2 → C and H : C3 → C are holomorphic in the neighborhood of (0, 0) and (0, 0, 0)
respectively. Here,

rk =

(
f (υk)
f (θk)

) 1
σ

,
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sk =

(
f (µk)
f (θk)

) 1
σ

,

tk =

(
f (ξk)
f (υk)

) 1
σ

,

uk =

(
f (ξk)
f (θk)

) 1
σ

.

A drawback of this scheme is that the conditions on weight functions G and H varies with the changing
value of multiplicity σ.

Based on the requirement to develop efficient derivative-free multiple root schemes, we give a
derivative-free optimal eighth order convergent scheme to find the repeated roots with multiplicity
σ > 1 (Section 2). This proposed scheme has four functional evaluations and is based on the first-order
divided differences and involvement of two weight functions. We compare our methods in Section 3
with two of the recent derivative free methods of seventh [16] and eighth order [17] using physical
problems of chemistry, physics and biology [6, 8]. The performance of our family of methods along
with the demonstration of their basins of attraction is also discussed in Section 4.

2. Construction of optimal eighth-order scheme

Let us give a three-step derivative free scheme to find multiple zeros of the nonlinear equations,
having a positive integer multiplicity σ > 1. If this multiplicity is unknown, it can be estimated by
different techniques that appear in [11].

µk = θk + γ f (θk) , where γ ∈ R− {0} ,

υk = θk − σ
f (θk)

f [θk, µk]
,

ξk = υk − σrkV(rk)
f (θk)

f [θk, µk]
,

θk+1 = ξk − σskP(rk, sk, tk)
f (θk)

f [θk, µk]
, k = 0, 1, 2, . . . (2.1)

where rk =
(

f (υk)
f (θk)

) 1
σ , sk =

(
f (ξk)
f (θk)

) 1
σ and tk =

(
f (ξk)
f (υk)

) 1
σ . Let V : C → C and P : C3 → C be analytic

functions in the neighborhood of 0 and (0, 0, 0) respectively.
The investigation on the convergence analysis of the proposed family (2.1) and the conditions on

weight functions V(rk) and P(rk, sk, tk) are apparent from the following result.

2.1. Convergence analysis

Theorem 1. Let function f : C→ C be analytic in a region that contains the multiple root ω of f with
known multiplicity σ. Let θ0 be an initial guess which is sufficiently close to the repeated root. Then,
scheme (2.1) possess eighth order of convergence in case it satisfies the following conditions:

V(0) = 1, V
′

(0) = 2, V
′′

(0) = −2 and V ′′′(0) = 36,
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P000 = 1, P100 = 2, P001 = 1, P101 = 4 − P010,

|P110| < ∞, |P002| < ∞,

where, Pi jl =
∂i+ j+l

∂ri∂s j∂tl P (r, s, t)

∣∣∣∣∣∣
(0,0,0)

. (2.2)

The error equation of the proposed scheme is given by:

ek+1 = −
1

48σ7 (c1((11 + σ)c2
1 − 2σc2)(−24(1 + σ)2c3

1 +

(3P002(11 + σ)2 + 2(−665 − 84σ + 5σ2 + 6P110(11 + σ)))c4
1

−12σ(P002(11 + σ) + 2(−10 + P110 + 4σ))c2
1c2 + 12(−2 + P002)σ2c2

2

+120σ2c1c3))e8
k + O

(
e9

k

)
, (2.3)

where

ci =
σ!

(σ + i)!
f (σ+i) (ω)
f (σ) (ω)

, i ∈ N.

Proof. Let ω be the multiple root of f (x) = 0 and ek = θk −ω be error in the kth iteration. Considering
that f (m) (ω) = 0, m = 0, 1, 2, ..., σ − 1 and f (σ)(ω) , 0, the Taylor’s expansion of f around ω, gives:

f (θk) =
f (σ) (ω)
σ!

eσk +
f (σ+1)(ω)
(σ + 1)!

eσ+1
k +

f (σ+2) (ω)
(σ + 2)!

eσ+2
k +

f (σ+3) (ω)
(σ + 3)!

eσ+3
k

+
f (σ+4) (ω)
(σ + 4)!

eσ+4
k +

f (σ+5) (ω)
(σ + 5)!

eσ+5
k +

f (σ+6) (ω)
(σ + 6)!

eσ+6
k +

f (σ+7) (ω)
(σ + 7)!

eσ+7
k

+
f (σ+8) (ω)
(σ + 8)!

eσ+8
k + O(eσ+9

k ), (2.4)

which can be written as:

f (θk) =
f (σ) (ω)
σ!

eσk
(
1 + c1ek + c2e2

k + . . . + c7e7
k + c8e8

k + O
(
e9

k

))
, (2.5)

where,

ci =
σ!

(σ + i)!
f (σ+i) (ω)
f (σ) (ω)

,

for i ∈ N.
Next let us consider µk = θk + γ f (θk) and ek = θk − ω, given as:

µk − ω = θk − ω + γ f (θk) ,

µk − ω = ek + γ f (θk), (2.6)

such that from (2.5),

µk = ek +
γ f (σ) (ω)

σ!
eσk

(
1 + c1ek + c2e2

k + . . . + c7e7
k + c8e8

k + O
(
ek

9
))
. (2.7)

AIMS Mathematics Volume 8, Issue 4, 8478–8503.



8483

Expanding f (µk) around ω, we have

f (µk) =
f (σ) (ω)
σ!

(µk − ω)σ
(
1 + c1 (µk − ω) + c2 (µk − ω)2 + . . .

+c7 (µk − ω)7 + c8 (µk − ω)8
)
. (2.8)

Upon substituting the values from (2.5) and (2.7) in the first step of (2.1) and simplifying yields:

υk =
c1

σ
e2

k +
2σc2 − (σ + 1) c2

1

σ2 e3
k

+
1
σ3

(
(σ + 1)2c2

1 + σ (4 + 3σ) c1c2 − 3σ2c3

)
e4

k +

4∑
i=1

aiei+4
k + O

(
e9

k

)
, (2.9)

where, ai = ai(σ, c1, . . . , c8).
Next, the expansion of f (υk) around ω is:

f (υk) =

(
e2

k
c1

σ

)σ (
1
σ!

+
2σc2 − (1 + σ) c2

1

σ!c1

)
ek +

1
2σσ!c2

1

(2 (1 + σ)2 c3
1

+
(
σ3 + σ2 − σ + 1

)
c4

1 + 2σ
(
6 + 3σ − 2σ2

)
c2

1c2 + 4 (σ − 1)σ2c2
2

−6σ2c1c3)e2
k +

6∑
i=1

diei+2
k + O

(
e9

k

)
,

which can also be written as,

f (υk) =
f (σ) (ω)
σ!

(
c1

σ
)σe2σ

k

(
1 +

2c2σ − c2
1 (σ + 1)

c1
ek +

1
2σc2

1

((3 + 3σ + 3σ2 + σ3)c4
1 − 2σ(2 + 3σ + 2σ2)c2

1c2

+4 (−1 + σ)σ2c2
2 + 6σ2c1c3)e2

k +

6∑
i=1

diei+2
k + O

(
e9

k

) , (2.10)

where, di = di (σ, c1, . . . , c8).

Using (2.5) and (2.10) in rk =
(

f (υk)
f (θk)

) 1
σ ,

rk =
c1

σ
ek +

(2σc2 − (2 + σ)c2
1)

σ2 e2
k +

1
2σ3 (2(1 + σ)2c2

1 +

(5 + 3σ)c3
1 + 2σ(1 + 3σ)c1c2 − 6σ2c3)e3

k +

5∑
i=1

hiei+3
k + O

(
e9

k

)
, (2.11)

where, hi = hi (σ, c1, . . . , c8) are given in the terms of σ and c′js, j = 1, . . . , 8.
Developing the expansion of the weight function V (rk) in the neighbourhood of 0 implies,

V (rk) ≈ V (0) + rkV ′ (0) +
1
2

r2
kV ′′ (0) +

1
6

r3
kV ′′′ (0) + .... (2.12)
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So, using (2.9)–(2.12) in the second step of the method,

ξk = −
(V (0) − 1)c1e2

k

σ
−

(1 + V ′ (0) + σ − V (0) (3 + σ))c2
1 + 2(V (0) − 1)σc2)e3

k

σ2

+
1

2σ3 (−2(V (0) − 1)(1 + σ)2c2
1 − (V ′′ (0) − 2V ′ (0) (5 + 2σ)

+V (0) (11 + 7σ)c3
1 + 2σ(4 − 4V ′ (0) − 3V (0) (σ − 1) + 3σ)c1c2

+6(V (0) − 1)σ2c3)e4
k +

4∑
i=1

wiei+4
k + O

(
e9

k

)
, (2.13)

where, wi = wi (σ, c1, . . . , c8) . If we choose the values of V (0) and V ′ (0) , given as:

V (0) = 1, V ′ (0) = 2, (2.14)

then we achieve fourth order for the second step as:

ξk =
((9 − V

′′ (0) + σ)c3
1 − 2σc1c2)e4

k

2σ3

−
1

6σ4 (6(1 + σ)2c3
1 + (119 + V ′′′ (0) + 72σ

+σ2 − 3V
′′

(0) (7 + 3σ))c4
1 + 12σ2c2

2 − 24σ2c1c3 (2.15)

+6(−20 + 3V
′′

(0) + 2σ)σc2
1c2)e5

k +

3∑
i=1

w′ie
5+i
k + O

(
e9

k

)
, (2.16)

where, w′i = w′i (σ, c1, . . . , c8) . Subsequently, f (ξk) around ω results in:

f (ξk) = e4σ
k

2−σ

σ!

(
(11 + σ) c3

1 − 2σc1c2

σ3

)σ
−

1
3(σ3σ!)

(2−σ
(
(11 + σ) c3

1 − 2σc1c2

σ3

)−1+σ

(6(1 + σ)2c3
1

+(161 + V ′′′ (0) + 90σ + σ2)c4
1 + 12(σ − 13)σc2

1c2

+12σ2c2
2 − 24σ2c1c3))ek

)
+

7∑
i=1

uie1+i
k + O

(
e9

k

)
, (2.17)

where, ui = ui (σ, c1, . . . , c8) . By using (2.5) and (2.17), sk =
(

f (ξk)
f (θk)

) 1
σ it becomes:

sk =

(
(9 − V ′′(0) + σ) c3

1 − 2σc1c2

)
e3

k

2σ3 −
1

6σ4 (6(1 + σ)2c3
1

+(194 + V ′′′ (0) + 93σ + σ2)c4
1 + 6σ (−27 + 2σ) c2

1c2 + 12σ2c2
2

−24σ2c1c3)e4
k +

4∑
i=1

u′ie
4+i
k + O

(
ek

9
)
, (2.18)

AIMS Mathematics Volume 8, Issue 4, 8478–8503.



8485

where u′i = u′i (σ, c1, . . . , c8) and from (2.10) and (2.17) tk =
(

f (ξk)
f (υk)

) 1
σ , implies:

tk =

(
(9 − V ′′(0) + σ) c2

1 − 2σc2

)
e2

k

2σ2 +
1

6σ3 (−6 (1 + σ)2 c2
1

−(128 + V ′′′ (0) + 54σ − 2σ2)c3
1 + 12 (7 − 2σ)σc1c2

+24σ2c3)e3
k +

5∑
i=1

vie3+i
k + O

(
ek

9
)
, (2.19)

where, vi = vi (σ, c1, . . . , c8) . The expansion of the weight function P (r, s, t) in the neighborhood of
(0, 0, 0) is given by,

ek+1 = ξk − sk(P000 + rkP100 + tkP001 + skP010 + rktkP101

+rkskP110 + sktkP011 +
t2
k

2
P002)(ek − υk). (2.20)

Applying the values of rk, sk and tk from (2.11), (2.18) and (2.19) in (2.20), we obtain:

ek+1 = −
1

2σ3

(
(−1 + P000) c1

((
9 − V ′′(0) + σ

)
c2

1 − 2σc2

))
e4

k

+
1

6σ4 (6 (1 + σ)2 (−1 + P000) c3
1 + (−161 + V ′′′ (0) (−1 + P000)

+σ2 (−1 + P000) + 227P000 + σ (−90 + 96P000 − 3P100) − 33P100)c4
1

+6σ (26 + 2σ (−1 + P000) − 28P000 + P100) c2
1c2 + 12σ2 (−1 + P000) c2

2

−24σ2 (−1 + P000) c1c3)e5
k +

3∑
i=1

v′ie
5+i
k + O

(
ek

9
)
, (2.21)

where, v′i = v′i (σ, c1, . . . , c8) . To remove the lower order terms, we use the values of V ′′ (0) , P000, P100,

P001, P101 as:

V ′′ (0) = −2, (2.22)
P000 = 1, P100 = 2, (2.23)
P001 = 1, P101 = 4 − P010, (2.24)

so that (2.22) and (2.23) yields:

ek+1 = −
1

4σ5

(
(−1 + P001) c1

(
(11 + σ) c2

1 − 2σc2

)2
)

e6
k

−
1

12σ6

((
(11 + σ) c2

1 − 2σc2

)
(−12 (1 + σ)2 (−1 + P001) c3

1

+(259 + V ′′′ (0) + σ2 (−1 + P001) − 355P001 − 2V ′′′ (0) P001 + 33P010

+33P101 + 3σ (46 − 50P001 + P010 + P101))c4
1 − 6σ(38

+6σ (−1 + P001) − 42P001 + P010 + P101)c2
1c2 − 12σ2 (−1 + P001) c2

2

+48σ2 (−1 + P001) c1c3)
)

e7
k +

2∑
i=1

kie7+i
k + O

(
ek

9
)
, (2.25)
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where, ki = ki (σ, c1, . . . , c8) . and (2.24) gives:

ek+1 =
1

12σ6

(
−36 + V ′′′ (0)

)
c4

1

(
(11 + σ) c2

1 − 2σc2

)
e7

k

−
1

144σ7 (c1(24 (1 + σ)2 (
V ′′′ (0) − 3 (23 + σ)

)
c5

1 + (4(V ′′′ (0))2

+4V ′′′ (0)
(
323 + 207σ + 10σ2

)
+ 3(−31862 + 3993P002 + σ3 (10 + 3P002)

+1452P110 + σ2 (−538 + 99P002 + 12P110) + σ (−13114 + 1089P002 + 264P110)))c6
1

−6σ(−12010 + 4V ′′′ (0) (65 + 4σ) + 1089P002 + σ2 (58 + 9P002) + 264P110

+6σ (−56 + 33P002 + 4P110))c4
1c2)) + O

(
ek

8
)
. (2.26)

If V ′′′ (0) = 36 in (2.26), the required eighth order of convergence is achieved and the error equation
is:

ek+1 = −
1

48σ7 (c1((11 + σ)c2
1 − 2σc2)(−24(1 + σ)2c3

1

+(3P002(11 + σ)2 + 2(−665 − 84σ + 5σ2 + 6P110(11 + σ)))c4
1

−12σ(P002(11 + σ) + 2(−10 + P110 + 4σ))c2
1c2 + 12(−2 + P002)σ2c2

2

+120σ2c1c3))e8
k + O

(
e9

k

)
. (2.27)

�

We can observe that from Theorem 1, several repeated root-finding schemes can be obtained by
merely changing the cases of V(rk) and P(rk, sk, tk) according to the condition set (2.2). It is noteworthy
that the selection of specific values of parameter γ can be made under the point of view of improvement
in the stability of the scheme and a widening of the set of converging initial estimations.

2.2. Particular cases of weight functions

As mentioned earlier, we can generate many cases of scheme (2.1) by using different kind of weight
functions V (r) and P(r, s, t) that satisfy the conditions stated in Theorem 1. The discussion of some of
these special cases is given as follows:

Case 1. Let the weight function be the polynomial of degree three satisfying the condition set (2.2)
and is defined as,

V(r) = a + br + cr2 + dr3.

From the described conditions on V , the expression for V(r) is:

V(r) = 1 + 2r − r2 + 6r3.

Let us take another weight function P(r, s, t), to be a linear polynomial:

P(r, s, t) = a + br + cs + dt.

Upon applying the conditions described in Theorem 1, we get,

P(r, s, t) = 1 + 2r + 4s + t.

AIMS Mathematics Volume 8, Issue 4, 8478–8503.
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Therefore,

µk = θk + γ f (θk) , where γ ∈ R− {0} ,

υk = θk − σ
f (θk)

f [θk, µk]
,

ξk = υk − σrk(1 + 2rk − r2
k + 6r3

k )
f (θk)

f [θk, µk]
,

θk+1 = ξk − σsk(1 + 2rk + 4sk + tk)
f (θk)

f [θk, µk]
.

Case 2. Here, we take V(r) as an improper rational function as:

V (r) =
1 − 9r2

1 − 2r − 4r2

and taking P(r, s, t) as a polynomial function:

P(r, s, t) = 1 + 2r + t + 4rt

where both of them are satisfying the conditions of Theorem 1. Consequently, we get the following:

µk = θk + γ f (θk) , where γ ∈ R− {0} ,

υk = θk − σ
f (θk)

f [θk, µk]
,

ξk = υk − σrk

(
1 − 9r2

k

1 − 2rk − 4r2
k

)
f (θk)

f [θk, µk]
,

θk+1 = ξk − σsk(1 + 2rk + tk + 4rktk)
f (θk)

f [θk, µk]
.

Case 3. Further, let V(r) has the improper rational form as,

V(r) =
1 + ar + br2 + cr3

1 + dr
.

Applying the conditions to this function results in:

V(r) =
1 + 3r + r2 + 5r3

1 + r

and P(r, s, t) is same as that of Case 1,

P(r, s, t) = 1 + 2r + 4s + t,

so that, the family of methods presented in (2.1) becomes:

µk = θk + γ f (θk) , where γ ∈ R− {0} ,

υk = θk − σ
f (θk)

f [θk, µk]
,
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ξk = υk − σrk

(
1 + 3rk + r2

k + 5r3
k

1 + rk

)
f (θk)

f [θk, µk]
,

θk+1 = ξk − σsk(1 + 2rk + 4sk + tk)
f (θk)

f [θk, µk]
.

Case 4. Similarly, let V be given by,

V (r) =
1 + 8r + 11r2

1 + 6r
,

where the weight function P is the same as that of Case 2,

P(r, s, t) = 1 + 2r + t + 4rt.

Then, it results in the following new scheme:

µk = θk + γ f (θk) , where γ ∈ R− {0} ,

υk = θk − σ
f (θk)

f [θk, µk]
,

ξk = υk − σrk

(
1 + 8rk + 11r2

k

1 + 6rk

)
f (θk)

f [θk, µk]
,

θk+1 = ξk − σsk(1 + 2rk + tk + 4rktk)
f (θk)

f [θk, µk]
.

3. Numerical results

We investigate the performance and convergence behavior of our proposed eighth order methods
given by Cases 1–4, we denote the cases as DZ1, DZ2, DZ3, and DZ4, respectively. Our test functions
involve some physical problems of physics, chemistry and biology. We compare the methods with the
recent derivative-free methods of seventh order of Sharma et al. [16] (Case I(a), Case I(b), Case II(c))
denoted by S H1, S H2 and eighth order schemes of Sharma et al. [17] (M-1, M-4) denoted as S H3,
S H4. We take the value of γ = 0.001.

For numerical tests, all computations have been performed in computer algebra software Maple 16
using 300 significant digits of precision. Tables show per step numerical errors of approximating real
root |θk − θk−1| of the first three iterations, the absolute residual error of the test function at the third
iteration and the computational order of convergence [9] defined as:

COC ≈
ln | f (θk+2)/ f (θk+1) |
ln | f (θk+1) / f (θk) |

, k = 1, 2, ...

Let us explicitly give the schemes S H1, S H2, S H3 and S H4. First consider the seventh order
scheme of Sharma et al. [16] as stated in (1.1). The special cases of the scheme denoted by S H1 and
S H2, are given as,

S H1 : µk = θk + γ f (θk) , where γ ∈ R− {0} ,

υk = θk − σ
f (θk)

f
[
θk, µk

] ,
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ξk = υk − σrk

(
1 + 2rk − r2

k

) f (θk)
f
[
θk, µk

] ,
θk+1 = ξk − σsk

(
1 + 2rk + tk + t2

k

) f (θk)
f
[
θk, µk

] ,
and

S H2 : µk = θk + γ f (θk) , where γ ∈ R− {0} ,

υk = θk − σ
f (θk)

f
[
θk, µk

] ,
ξk = υk − σrk

(
2 + 5rk

2 + rk

)
f (θk)

f
[
θk, µk

] ,
θk+1 = ξk − σsk

(
1 + 2rk + tk + t2

k

) f (θk)
f
[
θk, µk

] ,
The performance of this newly presented optimal eighth order family of methods can also be

compared with the eighth order methods (see [17], M-1, M-4) given by (1.2) The special cases denoted
by S H3 and S H4 are:

S H3 : µk = θk + γ f (θk) , where γ ∈ R− {0} ,

υk = θk − σ
f (θk)

f
[
θk, µk

] ,
ξk = υk − σhk (1 + 3hk)

f (θk)
f
[
θk, µk

] ,
θk+1 = ξk − σrksk

(
1 + 2hk + tk − 2h2

k + 4hktk − 12h3
k

) f (θk)
f
[
θk, µk

] ,
and

S H4 : µk = θk + γ f (θk) , where γ ∈ R− {0} ,

υk = θk − σ
f (θk)

f
[
θk, µk

] ,
ξk = υk − σhk (1 + 3hk)

f (θk)
f
[
θk, µk

] ,
θk+1 = ξk − σrksk

(
1 + 3hk + 2tk + 8hktk − 14h3

k

(1 + hk) (1 + tk)

)
f (θk)

f
[
θk, µk

] .
Next, we have considered the following physical problems.
Example 1. Continuous stirred tank reactor.
Consider an isothermal CST reactor. Let U and Γ be the components taken in the reactor then the

following reaction scheme develops in the reactor (see [5]):

U + Γ → W.

W + Γ → X.

X + Γ → Y.
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Y + Γ → Z.

Douglas (see [6]) described this phenomena as a simple feedback control system. For the transfer
function of the reactor, the following equation was considered:

κc ×
2.98(θ + 2.25)

(θ4 + 11.50θ3 + 47.49θ2 + 83.06325θ + 51.23266875)
= −1,

where κc is the gain of proportional controller. For the stability of the control system, we have to take
the values of κc that result in the zeros of the transfer function possessing a negative real part. Let us
consider that κc = 0, then the roots of the nonlinear equation are obtained from the singularities of the
open-loop transfer function:

f1(θ) = (θ4 + 11.50θ3 + 47.49θ2 + 83.06325θ + 51.23266875),

where, ω = −1.45, ω = −2.85, ω = −2.85 and ω = −4.35. We take ω = −2.85 with multiplicity σ = 2.
Taking the initial guess θ0 = −3.13 gives the numerical calculations presented in Table 1.

Table 1. Comparison of multiple root finding methods for f1 (θ).

S cheme |θ1 − θ0| |θ2 − θ1| |θ3 − θ2| | f1 (θ) | COC

S H1 0.4506 0.22799 5.7457 × 10−2 3.4471 × 10−8 5.65
S H2 0.4506 0.22800 5.7461 × 10−2 3.4527 × 10−8 5.65
S H3 0.3670 0.09130 4.2327 × 10−3 9.9881 × 10−27 8.22
S H4 0.3351 0.05596 8.4514 × 10−4 1.3030 × 10−27 5.80
DZ1 0.3676 0.09191 4.3049 × 10−3 3.5910 × 10−27 8.43
DZ2 0.3676 0.09191 4.3050 × 10−3 3.5772 × 10−27 8.43
DZ3 0.3676 0.09191 4.3048 × 10−3 3.5996 × 10−27 8.43
DZ4 0.3676 0.09191 4.3046 × 10−27 3.6355 × 10−27 8.42

Example 2. Isentropic supersonic flow.
Hoffman and Zucrow [17] derived a relation between the Mach number, before and after the corner,

represented by m1 and m2 respectively. Then along a sharp extension corner, the isentropic supersonic
flow is given by .

φ = a
1
2

tan−1
(
m2

2 − 1
a

) 1
2

− tan−1
(
m2

1 − 1
a

) 1
2
 − ((tan−1

(
m2

2 − 1
) 1

2 ) − (tan−1
(
m2

1 − 1
) 1

2 )),

a =
β + 1
β − 1

,

where β is the specific heat ratio of the gas. For specific values of β = 1.4, m1 = 1.5 and φ = 100, we
solve the equation for m2 = θ and get,

f2(θ) = tan−1

 √5
2

 − tan−1
(√
θ2 − 1

)
+
√

6

tan−1

 √θ2 − 1
6

 − tan−1

1
2

√
5
6

 − 11
63
.
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This yields the simple root ω = −1.8411 with multiplicity σ = 1. Taking the initial guess θ0 = −0.315
gives the computational results as shown in Table 2.

Table 2. Comparison of multiple root finding methods for f2 (θ).

S cheme |θ1 − θ0| |θ2 − θ1| |θ3 − θ2| | f2 (θ) | COC

S H1 4.3699 39.13936 3.7074 × 103 1.8937 0.14
S H2 3.8452 18.03197 6.5655 × 102 1.8932 0.75
S H3 3.8043 16.11592 5.3614 × 102 1.8858 −0.46
S H4 1.8896 1.77053 0.8179 1.1978 × 10−4 4.23
DZ1 1.8607 1.84020 0.0707 1.6545 × 10−13 7.06
DZ2 2.7685 0.98545 4.1725 × 10−3 2.0833 × 10−22 8.07
DZ3 1.2552 1.05743 1.3499 × 10−2 3.8592 × 10−19 8.31
DZ4 2.9098 0.92201 2.0697 × 10−3 3.0161 × 10−24 7.87

Example 3. Van Der Waals equation of state.
The Van Der Waals equation of state [19], is defined as:

p =
RT

v − b
−

a
v2 ,

where p is the pressure, v is the volume, R is the gas constant, T is the temperature, a is the force of
attraction between the molecules and b is the molecular size. The alternate form the Van Der Waals
equation of state is given as, (

p +
an2

v2

)
(v − nb) = nRT,

that explains the behavior of a real gas, by introducing two parameters, a and b specific for each gas in
the ideal gas equation, where n is the number of moles. Determination of the volume V of the gas in
terms of the remaining parameters requires the solution of the nonlinear equation in terms of V .

pv3 − (nbp + nRT )v2 + an2v = abn3.

Let us suppose that n = 0.1807 mole of gas has a pressure of 1 atmospheres and a temperature of 313K.
For this gas, a = 278.3atm · L2/mol2 and b = 3.2104L/mol. The universal gas constant has the value
R = 0.08206atm · L/mol · K. Hence, we obtain following equation, which is cubic in v:

f3(θ) = θ3 − 5.22θ2 + 9.0825θ − 5.2675,

where θ = v, yielding the multiple roots ω = 1.75 with multiplicity σ = 2. Taking the initial guess
θ0 = 2.05 implies the analytical results of Table 3.
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Table 3. Comparison of multiple root finding methods for f3 (θ).

S cheme |θ1 − θ0| |θ2 − θ1| |θ3 − θ2| | f3 (θ) | COC

S H1 0.2828 1.7129 × 10−2 1.8135 × 10−5 9.5468 × 10−50 6.18
S H2 0.2828 1.7124 × 10−2 1.8216 × 10−5 1.0675 × 10−49 6.18
S H3 0.2820 1.7951 × 10−2 2.0742 × 10−5 8.1167 × 10−54 6.94
S H4 0.2795 2.0368 × 10−2 5.3306 × 10−5 1.1791 × 10−46 6.65
DZ1 0.2847 1.5319 × 10−2 5.7302 × 10−6 6.6723 × 10−63 7.13
DZ2 0.2847 1.5293 × 10−2 6.1453 × 10−6 1.9309 × 10−62 7.13
DZ3 0.2847 1.5319 × 10−2 5.5644 × 10−6 4.1702 × 10−63 7.13
DZ4 0.2847 1.5311 × 10−2 5.0567 × 10−6 8.2275 × 10−64 7.13

Example 4. Kepler’s equation.
In celestial mechanics, Kepler’s equation possesses a fundamental importance. As it is a

transcendental equation, it cannot be inverted directly into simpler form of the function to determine
the position of the planet at a certain time. Therefore, considering its importance, many algorithms
were generated to solve this equation. The relation between the polar coordinates of the celestial
body and the time taken from the initial point is described by the Kepler’s equation. Here, for an
orbiting body about an ellipse having eccentricity E, θ represents the “eccentric anomaly” (polar angle
parametrization) and M represents the mean anomaly (time parametrization). Let us consider the
conventional form of the Kepler’s equation, given as f (θ) = θ − E sin(θ) − M. In [7], Danby et al.
described the behaviour of this equation on many specific values of the parameters E and M. In
particular, let the value of E = 1

4 and M = π
5 , that gives f (θ) = θ − sin(θ)

4 − π
5 . Taking four times the

Kepler’s equation on the same values of the parameters, implies,

f4(θ) =

(
θ −

sin(θ)
4
−
π

5

)4

.

This gives us the multiple root ω ≈ 1.833 with multiplicity σ = 4 and taking the initial guess θ0 = 1,
results in the numerical computations that are presented in Table 4.

Table 4. Comparison of multiple root finding methods for f4 (θ).

S cheme |θ1 − θ0| |θ2 − θ1| |θ3 − θ2| | f4 (θ) | COC

S H1 0.2879 7.8645 × 10−2 8.7165 × 10−13 1.2881 × 10−356 7.01
S H2 0.2879 7.8645 × 10−2 9.2896 × 10−13 1.0363 × 10−355 7.01
S H3 0.2488 3.9591 × 10−2 2.6372 × 10−16 2.5232 × 10−517 8.00
S H4 0.2346 2.5389 × 10−2 2.3460 × 10−17 8.0997 × 10−549 8.00
DZ1 0.2489 3.9693 × 10−2 4.6641 × 10−17 1.2535 × 10−544 8.00
DZ2 0.2489 3.9693 × 10−2 7.9380 × 10−17 3.2987 × 10−536 8.00
DZ3 0.2489 3.9693 × 10−2 2.2725 × 10−17 3.0380 × 10−556 8.01
DZ4 0.2489 3.9693 × 10−2 9.3809 × 10−17 1.6458 × 10−129 1.09
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Example 5. Predator prey model.
Let us consider the predator-prey model with ladybugs as predators and aphids as prey. Let θ be the

number of aphids eaten by the ladybugs per unit time per unit area, called the predation rate denoted
by J(θ) (see [20]). Usually, prey density is the factor on which the predation rate relies:

J(θ) = K
(

θn

θn + an

)
for a,K > 0 where K is the predation constant. Let the growth of the aphids is controlled by Malthusian
Model; therefore, the growth rate G of the aphids per hour is:

G(θ) = θs

for s > 0 where s is the growth constant per hour. The problem is to find aphid density θ for which
J(θ) = G(θ) gives,

−sθn+1 + Kθn − sanθ = 0.

Let for n = 2, s = 0.5 per hour, K = 20 aphids eaten per hour and a = 20 aphids, we get

f5(θ) = −0.5θ3 + 20θ2 − 200θ.

This gives us the roots {0, 20, 20}. We take the multiple roots ω = 20 with multiplicity σ = 2 and the
initial approximation θ0 = 20.07, that yields the computations presented in Table 5.

Table 5. Comparison of multiple root finding methods for f5 (θ).

S cheme |θ1 − θ0| |θ2 − θ1| |θ3 − θ2| | f5 (θ) | COC

S H1 0.0699 5.4694 × 10−14 − 2.1561 × 10−147 5.00

S H2 0.0699 5.4741 × 10−14 − 2.1747 × 10−147 5.00

S H3 0.0700 1.2586 × 10−14 2.5346 × 10−29 2 × 10−296 8.14

S H4 0.0700 7.3348 × 10−15 5.7386 × 10−30 1 × 10−296 7.89

DZ1 0.0700 1.2530 × 10−14 2.5121 × 10−29 1 × 10−296 8.15

DZ2 0.0700 1.2529 × 10−14 2.5116 × 10−29 2 × 10−296 8.14

DZ3 0.0700 1.2530 × 10−14 2.5124 × 10−29 1 × 10−296 8.15

DZ4 0.0700 1.2534 × 10−14 2.5139 × 10−29 2 × 10−296 8.14

4. Dynamical analysis

The complex dynamical analysis of the presented eighth order family of methods to solve the
multiple zeros of the nonlinear equations, is discussed in this section. The analysis entirely depends
on the graphical representations called basins of attraction. Here, we elaborate that to which intensity
the functional convergence towards the exact root depends on the choice of the initial estimate. The
basic idea about the convergence and divergence region of the iterative schemes is presented by this
dynamical behavior of the function.
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4.1. Attraction basins

Consider a function fk (θ) such that θ ∈ C and the root of the function is ωk. The schemes DZ1–
DZ4 and the existing methods named S H1–S H4 are compared in terms of the attraction basins of
the test functions on which the corresponding methods are applied. The attraction basins are drawn
in MATLAB. Considering the parameter β = 0.001, grid points of 1000 × 1000 in the complex plane
[a, b] × [c, d] where the values of a, b, c and d are selected based on the zero of the function. The
maximum value of the number of iterations is taken as 15 with tolerance value 10−5. ‘Hot’ is the
selected color-map and black color is allocated to the divergence region. The hues are interpreted
based on the number of iterations taken by the family of iterative methods.

In this example, we assume the function

f1 (θ) = (θ4 + 11.50θ3 + 47.49θ2 + 83.06325θ + 51.23266875)

having zeros at {−2.85,−1.45,−4.35}. We observe the root −2.85 having multiplicity two. The basins
of attraction obtained for the methods S H1–S H4 and DZ1–DZ4 are shown in Figures 1 and 2. Upon
observing the dynamical view for the region [−4, 0]×[−1, 1], we notice that S H1–S H4 take a minimum
of 2 iterations to converge to the root and use a maximum of 15 iterations, DZ1–DZ4 take a minimum
of 2 iterations and use a maximum 10 iterations to converge to the root. Furthermore, if we compare
Figures 1 and 2 of S H4 and DZ4 respectively, the convergence regions for S H4 are as follows:

[−3.93,−1.85] × [0.359, 1], [−3.65,−2.09] × [−0.247, 0.359], [−3.78,−1.93] × [−0.351,−0.247],

[−4,−1.84] × [−1,−0.351], [−1.76,−0.89] × [−1,−0.236].

Similarly, the convergence regions for DZ4 are:

[−0.40,−0.394] × [0.452, 1], [−3.74,−2.14] × [0.24, 0.452], [−1.41,−1.26] × [0.24, 0.452],

[−1.03,−0.042]×[0.24, 0.452], [−1.48,−0.855]×[−0.24, 0.24], [−0.508,−0.0991]×[−0.247, 0.247].

In this example, we assume the function

f2 (θ) = tan−1

√
5

2
− tan−1

√
θ2 − 1 +

√
6

tan−1

√
θ2 − 1

6
− tan−1

1
2

√
5
6


having a zero at ω ≈ −1.8411 of multiplicity one. The basins of attraction obtained for the methods
SH1–SH4 and DZ1–DZ4 are shown in Figures 3 and 4. For the region [−4, 0]× [−1, 1], we notice that
SH1–SH4 take a minimum of 1 iteration to converge to the root and use a maximum of 6 iterations,
while DZ1–DZ4 take a minimum of 1 iteration and use a maximum 6 iterations to converge to the root.
Also, we compare Figures 3 and 4 of S H3 and DZ3 respectively, to locate the convergence regions for
S H3 which are as follows:

[−2.89,−1.12] × [−1, 1], [−3.23,−2.89] × [0.459, 0.697], [−3.23,−2.89] × [−0.459,−0.697],

[−3.05,−2.89] × [−0.459,−0.0911], [−3.19,−2.89] × [−0.0911, 0.0911].

The convergence regions for DZ3 are as follows:

[−3.09,−1.09] × [−1, 1], [−3.23,−3.09] × [0.723, 0.898], [−3.35,−3.09] × [0.723, 0.541],
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[−3.25,−3.09] × [0.541, 0.0911], [−3.34,−3.09] × [−0.0911, 0.0911],

[−3.25,−3.09] × [−0.541,−0.0911].

In this example, we assume function

f3 (θ) = θ3 − 5.22θ2 + 9.0825θ − 5.2675

possessing the multiple root ω = 1.75 having multiplicity two. The basins of attraction obtained for
the methods SH1–SH4 and DZ1–DZ4 are shown in Figures 5 and 6. By drawing the attraction basins
in the region [1, 3] × [−0.5, 0.5], we notice that SH1–SH4 take a minimum of 1 iteration to converge
to the root and use a maximum of 7 iterations. On the other hand, DZ1–DZ4 take a minimum of 1
iteration and use a maximum of 6 iterations with darker hues to converge to the root. To further check
the performance of our newly proposed method, we compare the convergence regions. Let us compare
Figures 5 and 6 of S H3 and DZ3 respectively, the convergence regions for S H3 are:

[1, 1.74] × [−0.5, 0.5], [1.73, 3] × [−0.5, 0.5],

[1.73, 1.74] × [−0.5,−0.00418], [1.73, 1.74] × [0.5, 0.00418]

and the regions of convergence of DZ3 are:

[1, 1.72] × [−0.5, 0.5], [1.74, 3] × [−0.5, 0.5],

[1.72, 1.74] × [−0.5,−0.0079], [1.72, 1.74] × [0.5, 0.0079].

Figure 1. Attraction basins of SH1–SH4 of f1 (θ).
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Figure 2. Attraction basins of DZ1–DZ4 of f1 (θ).

Figure 3. Attraction basins of SH1–SH4 of f2 (θ).
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Figure 4. Attraction basins of DZ1–DZ4 of f2 (θ).

Figure 5. Attraction Basins of SH1–SH4 of f3 (θ).
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Figure 6. Attraction basins of DZ1–DZ4 of f3 (θ).

Let us consider the nonlinear function

f4 (θ) =

(
θ −

sin(θ)
4
−
π

5

)4

which has a multiple root ω ≈ 1.833 with multiplicity four. The basins of attraction for the methods
SH1–SH4 and DZ1–DZ4 are shown in Figures 7 and 8. On observing the dynamical view in the region
[0, 2] × [−1, 1], we notice that H1–SH4 take a minimum of 1 iteration to converge to the root and
use a maximum of 11 iterations, DZ1–DZ4 take a minimum of 1 iteration and use a maximum of 10
iterations to converge to the root. To check further, we compare the convergence regions. Let us take
Figures 7 and 8 of S H4 and DZ3, the convergence regions for S H4 are as follows:

[0.561, 2] × [−1, 1], [0.43, 0.561] × [−0.946, 0.946], [0, 0.43] × [−0.794, 0.794],

[0, 0.225] × [−0.794,−1], [0, 0.225] × [0.794, 1].

The regions of convergence of DZ3 are as follows:

[1.26, 2]×[−1, 1], [0.96, 1.26]×[−0.872, 0.872], [0.842, 0.96]×[−1, 1], [0.79, 0.842]×[−0.831, 0.831],

[0.7, 0.79] × [−0.92, 0.92], [0.45, 0.7] × [−0.857, 0.857], [0.381, 0.45] × [−1,−0.757].

In this example we take the function

f5 (θ) = −0.5θ3 + 20θ2 − 200θ
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yielding the roots {20, 20, 0}. We take the root ω = 20 having multiplicity two. The basins of attraction
obtained for the methods SH1–SH4 and DZ1–DZ4 are shown in Figures 9 and 10. Observing the
dynamical view in the region [10, 30] × [−10, 10], we notice that SH1–SH4 take a minimum of 1
iteration to converge to the root and use a maximum of 15 iterations, DZ1–DZ4 take a minimum of 1
iteration and use a maximum of 11 iterations to converge to the root. To further check the performance
of our newly proposed method, we compare the convergence regions. Let us take Figures 9 and 10 of
S H3 and DZ1 respectively. The convergence regions for S H3 are as follows:

[17, 30] × [−10, 10], [12.8, 17] × [−10,−4.63], [11.5, 12.8] × [−8.16,−5.63],

[10, 12.8] × [−8.35,−10], [15.2, 17] × [−3.1, 3.1], [13, 15.2] × [0.836, 2.29].

and the convergence regions for DZ1 are as follows:

[17, 30] × [−10, 10], [10, 17] × [−10,−4.55], [13.8, 17] × [−3.18,−4.55],

[12.6, 13.8] × [−4,−1.84], [15.7, 17] × [−3.84, 3.84],

[14.7, 15.7] × [−0.502,−2.62], [14.7, 15.7] × [0.502, 2.62].

Figure 7. Attraction basins of SH1–SH4 of f4 (θ).
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Figure 8. Attraction basins of DZ1–DZ4 of f4 (θ).

Figure 9. Attraction basins of SH1–SH4 of f5 (θ).
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Figure 10. Attraction basins of DZ1–DZ4 of f5 (θ).

5. Conclusions

There are many high order numerical root-solvers established in the past, which are used to compute
multiple roots, and evaluations of the derivative are mandatory in them. But, the high order derivative-
free root-finders for multiple roots are hard to accomplish. These kinds of methods are infrequent and
therefore, it is necessary to explore them. The current paper describes the newly introduced derivative-
free approximate iterative methods having eighth order of convergence to find multiple zeros with a
known multiplicity of the nonlinear equations. It includes two weighted functions, one of which is
univariate, and the other is multivariate. The basins of attractions present the dynamical behaviour of
the schemes.
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13. M. S. Petković, L. D. Petković, Construction and efficiency of multipoint root-ratio
methods for finding multiple zeros, J. Comput. Appl. Math., 351 (2019), 54–65.
https://doi.org/10.1016/j.cam.2018.10.042

14. J. R. Sharma, S. Kumar, An excellent derivative-free multiple-zero finding numerical
technique of optimal eighth order convergence, Ann. Univ. Ferrara, 68 (2022), 161–186.
https://doi.org/10.1007/s11565-022-00394-w

15. J. R. Sharma, S. Kumar, L. Jäntschi, On a class of optimal fourth order multiple root solvers without
using derivatives, Symmetry, 11 (2019), 1452. https://doi.org/10.3390/sym11121452

16. J. R. Sharma, D. Kumar, I. K. Argyros, An efficient class of Traub-Steffensen-
like seventh order multiple-root solvers with applications, Symmetry, 11 (2019), 518.
https://doi.org/10.3390/sym11040518

AIMS Mathematics Volume 8, Issue 4, 8478–8503.

http://dx.doi.org/https://doi.org/10.3390/math10091530
http://dx.doi.org/https://doi.org/10.1007/s11075-017-0361-6
http://dx.doi.org/https://doi.org/10.1007/s11075-017-0361-6
http://dx.doi.org/https://doi.org/10.1142/S0219876218430028
http://dx.doi.org/https://doi.org/10.4134/JKMS.j210607
http://dx.doi.org/https://doi.org/10.1007/BF01686811
http://dx.doi.org/https://doi.org/10.1023/A:1021902825707
http://dx.doi.org/https://doi.org/10.1145/321850.321860
http://dx.doi.org/https://doi.org/10.1145/290590.290592
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.10.042
http://dx.doi.org/https://doi.org/10.1007/s11565-022-00394-w
http://dx.doi.org/https://doi.org/10.3390/sym11121452
http://dx.doi.org/https://doi.org/10.3390/sym11040518


8503

17. J. R. Sharma, S. Kumar, I. K. Argyros, Development of optimal eighth order derivative-
free methods for multiple roots of nonlinear equations, Symmetry, 11 (2019), 766.
https://doi.org/10.3390/sym11060766

18. J. F. Traub, Iterative methods for the solution of equations, Englewood Cliffs: Prentice-Hall, 1964.

19. G. W. Vera, J. H. Vera, Understanding cubic equation of state: a search for the hidden clue of their
success, AIChE J., 61 (2015), 2824–2831. https://doi.org/10.1002/aic.14741

20. F. Zafar, A. Cordero, J. R. Torregrosa, An efficient family of optimal eighth-order multiple root
finders, Mathematics, 6 (2018), 310. https://doi.org/10.3390/math6120310

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 4, 8478–8503.

http://dx.doi.org/https://doi.org/10.3390/sym11060766
http://dx.doi.org/https://doi.org/10.1002/aic.14741
http://dx.doi.org/https://doi.org/10.3390/math6120310
http://creativecommons.org/licenses/by/4.0

	Introduction
	Construction of optimal eighth-order scheme
	Convergence analysis
	Particular cases of weight functions

	Numerical results
	Dynamical analysis
	Attraction basins

	Conclusions

