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Grapevine bunch rot is detrimental to grape and wine quality. Traditionally, detecting and quantifying 
the severity of rot infection is executed visually. This study aimed at defining local, area-specific threshold 
values of rot-associated disease markers. This is a first step towards making informed decisions about 
the quality of grapes delivered at winery intake. Viticulturists visually assessed on-vine rot infection in 
nine white wine grape cultivars. Results showed that severity ratings were consistent between assessors. 
Chemical analyses of the grape must from these assessed samples were done. Multiple factor analysis (MFA) 
showed that rot severity was positively correlated with glycerol, alcohol, gluconic acid and acetic acid 
concentrations. As severity increased, gluconic acid, glycerol, alcohol, Brix, acetic acid and total titratable 
acidity (TA) concentrations also increased. Following the probability chosen for sensitivity and specificity, 
grape rot indicators’ threshold values in white grape must are as follow: Alcohol ≥ 0.10 %v/v; acetic acid 
≥ 0.17 g/L; glycerol ≥ 0.79 g/L; gluconic acid ≥ 0.99 g/L; TA ≥ 8.86 g/L. Statistical determined threshold 
values differentiating between rot-affected and healthy grape must, would eliminate the subjectivity and 
bias associated with visual assessments. 

INTRODUCTION
Rot infection of wine grapes
Grapevine bunches are prone to be attacked by several types 
of rot that pose a serious threat to the quality of the wine 
produced from affected grapes (Steel et al., 2013). Based 
on the dominant microbial pathogens associated with bunch 
rot, three main groups can be distinguished: Botrytis grape-
rotting fungi, non-Botrytis grape-rotting fungi which include 
moulds and yeasts, and bacteria (Barata et al., 2008; Navarro 
et al., 2013; Ciliberti et al., 2015). However, the causes of rot 
can rarely be ascribed to a single microbial pathogen. In the 
natural environment, it is microbial co-habitation that most 
often leads to the berry chemical compositional changes 
associated with bunch rot (Lorenzini et al., 2018). 

The metabolic-induced chemical changes in rot-affected 
grape berries are potential disease markers and could 
be present in the berries, grape must and wine. Glycerol 
formation from grape sugars has previously been shown as 

a key metabolic pathway induced in grapes upon Botrytis 
cinerea (B. cinerea) infection (Ravji et al., 1988). Ethanol 
formation is associated with the presence of yeasts in rot-
affected grapes. Yeasts carry out alcoholic fermentation 
through utilisation of the grape sugars (Goold et al., 2017). In 
addition to ethanol production, oxidative yeasts, for example 
Aureobasidium, Candida, Pichia and Hanseniaspora 
species, can metabolise glucose to gluconic acid (Barata 
et al., 2008; Cañete-Rodríguez et al., 2016). The bacterial 
genera Acetobacter and Gluconobacter can further oxidise 
ethanol to acetaldehyde as an intermediary compound and 
eventually to acetic acid (Qiu et al., 2021). Acetic acid 
bacteria also synthesise acetic acid from glucose (Qiu et al., 
2021) and produce gluconic acid, as well as SO2 binding 
products in botrytis-infected grape must (Barbe et al., 2001; 
Sainz et al., 2016).

Cultivar susceptibility to rot infections is influenced by 
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genetic factors (Molitor et al., 2012; Weiller et al., 2021). For 
example, thin-skinned cultivars like Chardonnay (Winkler 
et al., 1974) and Kövérszőlő (Furdíková et al., 2019), as 
well as tightly clustered cultivars like Chardonnay, Chenin 
blanc and Sauvignon blanc (Tello & Ibáñex, 2018) are 
particularly susceptible to rot infections. However, climate 
and vineyard canopy management practices influence the 
seasonal intensity of rot infections. Vigorous and dense 
canopies are inducive to rot infection (Valdés-Gómez et al., 
2008; VanderWeide et al., 2019). Extended wet periods after 
precipitation create a humid microclimate around bunches, 
which favours rot.
 
Detection of rot infection in wine grapes
Traditionally, rot detection and severity quantification are 
estimated by visual inspection in the vineyard or at intake of 
harvested grape loads at the winery weighbridge (Longbottom 
et al., 2013; Beghi et al., 2017). However, visual assessment 
has several disadvantages. Routine visits by viticulturists to 
examine vineyards for rot infection are not a practically and/
or sustainable solution for large wineries. Latent infections 
could also go unnoticed, even if the chemical composition 
of the grapes has been affected (Versari et al., 2008). 
Furthermore, assessment of grape loads at winery intake 
is complex, especially for mechanically harvested grapes 
(Versari et al., 2008). Mechanical harvesting damage the 
structural integrity of grape berries. Grape loads are delivered 
as shapeless masses consisting of juice, berry skins and pulp, 
which complicates the visual assessment accuracy. 

In contrast to the traditional subjective method of grape 
rot assessment, more recent research explores objective, 
faster, cost-effective, and more sustainable approaches. 
In the limited existent body of published literature on this 
topic, spectroscopic methods feature strongly. Beghi et al. 
(2017) used visible/near-infrared (Vis/NIR) spectroscopy 
to discriminate between healthy and rot-affected bunches at 
winery intake. Dambergs et al. (2018) explored the detection 
of rot infection on individual berries and bunches using 
hyperspectral imaging.

Subjective grape rot assessments lead to mistrust and 

disputes between grape producers and wineries. Standardised 
and objective assessment methods, delivering quantifiable 
and repeatable results, will increase transparency and the 
confidence that assessments are applied fairly (Longbottom 
et al., 2013).

Local data-driven determination of grapevine bunch rot 
infection
An industry-specific challenge relates to determining a 
threshold value above which rot infection has detrimental 
effects on grape quality. The use of must chemical 
composition for evaluating grape quality at harvest was 
explored previously. A so-called global grape sanitary index 
(Foss, 2002) based on Fourier transform infrared (FTIR) 
spectroscopy (WineScan FT 120 instrument, Foss Analytical, 
Denmark) was evaluated on grapes at winery intake (Fischer 
& Berger, 2007; Barata et al., 2011). However, the global and 
generic index could not be modified or adjusted to fit users’ 
local conditions, thereby limiting its applicability. These 
findings underpin the need for a data-driven strategy where 
the ruling climate, specific cultivars, and natural conditions 
under which rot infection develops have been considered.   

 The study aimed to define local, area-specific threshold 
values of rot-associated disease markers as a first step 
towards the informed management of grape quality at winery 
intake. 

MATERIALS AND METHODS
Sample collection and grape rot severity assessment
Grape samples were sourced from 2013 to 2019 from a 
producer winery’s commercial vineyards in the Olifants 
River and Cape Coastal Wine of Origin regions, Western 
Cape, South Africa. Single cultivar vineyard blocks where 
rot occurred naturally were selected, as identified during pre-
harvest visits by the winery’s viticulturists. With the overall 
aim to define area-specific threshold values, grapes from 
various cultivars grown in the area under investigation and 
different berry ripening stages were sampled. 

The main cultivars included in this study were Chenin 
blanc (SN), Colombar (CO), Sauvignon blanc (SB), 

TABLE 1 
Visually assessed severity ratings on the samples (10 bunches per sample) per cultivar collected from 2013 to 2019.
Cultivar Severity (%)(1) Severity (%) (2)

n Min - Max Mean ± SD          n Min - Max Mean ± SD          

Chenin blanc 71 0 - 90 28 ± 21 11 7 - 47 23 ± 12

Colombar 63 0 - 90 25 ± 25 15 3 - 35 18 ± 8

Sauvignon blanc 36 0 - 51 23 ± 17 7 7 - 22 13 ± 4

Chardonnay 18 0 - 70 16 ± 16 6 7 - 33 20 ± 8

Hanepoot (Muscat d’ Alexandrie) 43 0 - 91 36 ± 25 6 1 - 98 32 ± 31

Other(3) 9 0 - 51 18 ± 19 n/a

Total 240 0 - 91 27 ± 22 45
(1)Samples used for the chemical analyses of rot-affected and healthy grape must. (2)Samples used to test consistency in grape rot visual 
assessment between three assessors. (3)Other = Nouvelle, Sémillon and White Muscadel (Muscat d’ Frontignan). n = total number of samples. 
n/a = not assessed.



Disease Markers’ Threshold Values in Rot-affected Wine Grapes

S. Afr. J. Enol. Vitic., Vol. 43, No. 1, 2022 DOI:  https://doi.org/10.21548/43-1-4960

87

Chardonnay (CY) and Hanepoot (Muscat d’ Alexandrie) 
(HP). Samples designated Other (in Table 1) referring to 
other cultivars not specified, were also included, albeit at 
low numbers. The dataset included rot-affected, as well 
as healthy samples which did not display visual disease 
symptoms. Only white wine grape cultivars were selected 
because these cultivars account for approximately 85% of 
the participating regions’ production and 72% of the regions’ 
total hectares (SAWIS, 2019). 

The berry ripening stages were identified according to 
the modified Eichhorn-Lorenz (E-L) system described by 
Coombe (1995). Samples were collected at any of three E-L 
berry developmental stages; 36, 37 or 38. Briefly, Stage 36 
denotes berries with intermediate sugar levels (just after 
véraison), Stage 37 describes berries as not quite ripe, and 
Stage 38, berries are harvest-ready. It is important to note 
that the harvest-readiness of grapes is determined by the 
intended wine style (Poni et al., 2018). For example, for 
low alcohol wines (9 %v/v), grapes could be harvest-ready 
between Stages 36 and 37, or as the grapes reach Stage 37. 
In contrast, a full-bodied cultivar wine is harvest-ready only 
when Stage 38 is reached. Furthermore, early harvesting 
(before Stage 38) is sometimes employed to stop the spread 
of rot to other parts of the vineyard block or adjacent blocks 
(Molitor et al., 2016). Hence, the collection of samples at 
various ripening stages was done in this study to include 
different scenarios encountered under industrial conditions.

One viticulturist randomly selected grape bunches from 
two vineyard rows per block. Grape rot severity appraisal 
was completed in-field by the same viticulturist collecting 
the sample. Visually, botrytis rot is characterised on affected 
bunches by Botrytis mycelium on the berry surface, 
dehydration of berries, and occurrence of so-called slip-
skins on the berries (Hill et al., 2010; Hill et al., 2017). Slip-
skin refers to the berry skin that easily slips from the pulp 
when touched. Sour rot is distinguished by a tan to reddish 
discolouration of rotten berries and juice dripping from 
affected berries onto ones positioned lower in the bunch. 
The presence of fruit flies also indicates sour rot (Hall et al., 
2017). 

Each bunch was assessed as rot-affected or healthy. 
To determine the severity of rot infection, the viticulturist 
inspected the whole bunch, and the percentage area that was 
visually affected was visually estimated and recorded. The 
severity per sample was calculated as described by Hill et al. 
(2010): S = ΣSi/n, where Si = severity for the ith bunch and 
n = the total number of bunches assessed. Viticulturists had 
at least five years of industrial experience assessing grape 
quality, including the assessment of rot infection severity. No 
additional severity assessment training was provided.  

A workflow similar to the internal winery procedures for 
testing sugar concentration per vineyard block was followed. 
One sample consisted of ten pooled grape bunches, hand-
picked from both sides of the canopy, using a secateur. 
Two hundred and eighty-five samples (2 850 individual 
bunches) were collected (Table 1). Industrial datasets 
present challenges. One such challenge was the inconsistent 
participation of viticulturists through the vintages. With this 
in mind, 45 samples with varying degrees of rot infection were 
collected with the specific objective of testing consistency in 

grape rot visual assessment between assessors (Table 1).

Chemical analyses of grape must
Samples were placed in plastic bags, kept below 20ºC and 
transported back to the on-site winery chemical laboratory 
to be processed by a standardised workflow for chemical 
analyses. Upon receipt at the laboratory, the grape samples 
(consisting of 10 bunches each) were immediately pressed 
by hand. The juice, from here referred to as grape must, 
was separated from the skins and pips. Same-day chemical 
analyses were performed to prevent storage-induced 
chemical changes to the grape must (Baiano et al., 2012). 

Maturity parameters
The grape maturity analyses were done according to 
International Organisation of Vine and Wine (OIV) 
standards and included sugar concentration, also known as 
total soluble solids (TSS, measured as ºBrix), pH and total 
titratable acidity (TA), expressed as g/L tartaric acid. 

The digital refractometers used in the laboratory for 
ºBrix determination were Atago® Palette PR-32α (catalogue 
number 3405, Japan) and Bellingham+Stanley Ltd DR-103L 
(code number 44-903, Kent, England). Both refractometers 
had automatic temperature compensation and an accuracy of 
±0.2ºBrix. Daily quality control (QC) checks were performed 
against a 20ºBrix sucrose solution. 

pH and TA were measured with a CRISON compact 
automatic titrator (SN 01714, software version 5.6, CRISON 
Instruments, Barcelona, Spain) equipped with a combination 
electrode (CRISON, catalogue no. 4473624, Lasec, Cape 
Town, South Africa). TA was determined by potentiometric 
titration with standardised 0.33N sodium hydroxide (Wynland 
Laboratories, Wellington, South Africa) to an endpoint of pH 
7.00. Daily QC checks included the calibration of the pH 
electrode with certified pH 4.01 and pH 7.00 buffer solutions 
(CRISON Instruments) and the analysis of 5 g/L, 7 g/L and 
10 g/L standard L(+)tartaric acid solutions (Merck (Pty) 
Ltd., Modderfontein, South Africa). 

Quantification of selected disease markers
Alcohol content
Grape musts were centrifuged for three minutes at 6000 rpm 
(Hermle Z206A compact centrifuge, HERMLE Labortechnik 
GmbH, Wehingen, Germany) and the supernatants (100 ml 
aliquots) distilled (Distillation unit Glasschem, Stellenbosch, 
South Africa). Following cooling to 20ºC in an ice bucket, the 
distillates’ alcohol contents were measured with an Alcolyzer 
Wine M instrument fitted with automatic temperature control 
(Anton Paar GmbH, Graz, Austria). This instrument has 
an accuracy of 0.1%, v/v, and repeatability of 0.01%, v/v. 
Quality control checks included daily measurements of 3 
%v/v and 15 %v/v ethanol/water solutions (Ethanol absolute 
from Merck, Modderfontein, South Africa).

Enzyme-linked spectrophotometric assays
Commercial assay kits (Megazyme International Ireland 
Limited, Wicklow, Ireland) were used for the quantification 
of acetic acid (ACS/CS format) (catalogue no. K-ACET), 
glycerol (catalogue no. K-GCROL), gluconic acid (cata-
logue no. K-GATE), fructose and glucose (catalogue no. 
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K-FRUGL), and PAN (catalogue no. K-PANOPA) (www.
megazyme.com). Non-automated analyses were completed 
in duplicate. Internal standards supplied with the assay kits 
were used as QC checks.

Prior to enzymatic analysis, the grape must supernatants 
were once more centrifuged (6000 rpm for three minutes), 
and if tiny particles were still visible, samples were filtered 
through a glass microfibre 1.6-micron binder-free filter (GF 
50 047) (Hahnemühle, Dassel, Germany). 

Absorbance was measured at 340 nm with a Cecil CE 
1011 spectrophotometer (CECIL Instruments Limited, 
Cambridge, England). The photometric accuracy of the 
instrument is 1 % or 0.005 A, whichever is greater. The 
instrument was zeroed with air and without a cuvette in the 
light path. 

Grape must spectrophotometric readings were entered 
on the online calculator (Mega-CalcTM software tool). 
Calculated results with negative values were recorded as 
zero. A negative result means that the analyte concentration 
is below the limit of detection (LOD) (Megazyme Technical 
support team, Personal communication, 2018). 
   
Statistical analysis
Inter-assessor reliability statistical tests evaluated the 
consistency between assessors’ visual assessments of grape 
rot severity. The “Irr” Package in R version 3.6.1 (The R 
Foundation for Statistical Computing, 2019) was used 
to determine the intraclass correlation coefficient (ICC), 
standard error of measurement (SEM), and least squares 
means (LSM) between the three assessors’ severity (%) 
assessments. The level of significance used for the analyses 
was p < 0.05 with 95% confidence intervals. 

To test the challenge of different viticulturists executing 
assessments between vintages, mixed model ANOVA 
was used (STATISTICA software version 13.3, TIBCO 
Software Inc., 2017). Assessors were used as the random 
effect, assuming that they were randomly selected from a 
population of assessors.

Multiple factor analysis (MFA) simultaneously 
analyses all the variables on each observation with results 
displayed on a correlation plot (“FactoMineR” Package in R 
Version 3.6.1, The R Foundation for Statistical Computing, 
2019). Multiple factor analysis was done to illustrate the 
importance of association of the variables with each other, 
and their contribution to the dataset variance (Abdi et al., 
2013). Positively correlated variables locate together, and 
negatively correlated variables locate on opposite sides of 
the plot. The distance between the variable point and the 
origin provides a measure of the quality of the variable on 
the plot (Pagès, 2004). Variable points that are far away from 
the origin contribute strongly to the specific dimension. 

To elucidate the effect of severity on the chemical 
composition of grape must, Pearson correlations coefficients 
(r) were determined between the rot-associated disease 
markers and severity (%) (STATISTICA software version 
13.3, TIBCO Software Inc., 2017). The degree of correlation 
could be strong or weak, either positive (two variables 
increase of decrease similarly in the same direction) or 
negative (moving in opposite directions). The correlation 
coefficient (r) varies between -1 and 1, with 0 indicating 

no correlation between the two variables (Emerson, 2015). 
Furthermore, the probability value (p-value) (Lakens, 
2021) and correlation coefficient (r) were used to evaluate 
the null hypothesis. With a p-value > 0.05, the result could 
be interpreted as a failure to demonstrate an effect (Smith, 
2020). 

Diagnostic analysis was used to determine the statistical 
threshold value of grape rot-associated disease markers 
differentiating between healthy and rot-affected grape 
musts. Receiver operating curves (ROC) are used in the 
assessment of the performance of a diagnostic test over the 
range of possible values of a predictor variable (Mandrekar, 
2010). The ROC curve shows the sensitivity (true-positive) 
of a test measurement plotted against 1-specificity (false- 
positive) for various cut-off values of the test measurement 
constructed from the results (Peat, 2011). Different cut 
points or chosen thresholds lead to tests with varying levels 
of misclassification rates (Hseih, 2008). Sensitivity (true 
-positive) indicates the proportion of samples in percentage 
(%) of disease positive subjects, that will be correctly 
diagnosed by a positive test (Peat, 2011). On the other hand, 
specificity (true-negative) is a measurement (%) of disease 
negative samples that will be classified by a negative test. An 
increase in sensitivity will be accompanied by a decrease in 
specificity and, conversely, thus influencing the probability 
that a sample belongs to one class rather to the other. The area 
under the curve (AUC) is calculated from the ROC curve 
and is a measure of test accuracy (Hseih, 2008). The larger 
the area under the ROC, the more reliable the measurement 
is for distinguishing between disease and non-disease groups 
(Peat, 2011). An AUC of 1.0 indicates a perfect test. An AUC 
of 0.5 indicates that the diagnostic test has no discriminating 
power (Mandrekar, 2010). AUC upper and lower 95% 
measures the certainty or imprecision of the statistics with a 
95% confidence interval (Peat, 2011). The AUC p-value tests 
the hypothesis whether AUC differs significantly from 0.5 
(Mandrekar, 2010). R Version 3.6.1 “pROC” Package (The 
R Foundation for Statistical Computing, 2019) was used to 
determine the ROC and AUC.

RESULTS AND DISCUSSION
Grape rot severity assessments
In this study, a smaller set of 45 samples were used to 
evaluate the consistency, also referred to as repeatability 
or reliability (Peat, 2011). Each sample consisted of 10 
grape bunches. Each of the three assessors individually and 
separately evaluated each of the bunches. Sample severity 
was calculated as the mean over ten grape bunches. 

The inter-assessor correlations were high, with an ICC 
(absolute agreement) > 0.78 (Table 2). An ICC value of 
1.00 indicates that no variance is present (Peat, 2011). The 
standard error of measurement (SEM) described by Peat 
(2011) was used to assess the absolute range in which a 
subject’s “true” measure was expected to occur. A perfectly 
reliable test has a SEM value = 0. The inter-assessor SEM 
for the viticulturists ranged from 4% to 7%. The high ICC 
(absolute agreement) and low SEM indicated consistency in 
visual severity assessment.

However, several viticulturists participated in grape rot 
assessments during the vintages under investigation, and 
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verification of viticulturists’ consistency was a requirement 
to provide confidence in their assessments. Using the above 
set of three viticulturists as a random sample representing 
the bigger population of assessors, overall mean severities 
between assessors were consistent (p < 0.01) (data not 
shown).

The effect of rot infection on grape must chemical 
composition 
Chemical parameters of rot-affected grape must
Healthy, as well as naturally rot infected grapes were collected 
from vineyards from 2013 to 2019. Sample severities ranged 
from healthy with no visual symptoms of rot infection to 
91% severity (Table 1). Samples were collected at varying 
stages of maturity. The rationale for selected disease markers 
(Table 3) included in this study was based on the published 
literature, as well as those chemical compounds for which 
the on-site winery laboratory had the relevant required 
instrumentation. 

Exploring the variance in the dataset, alcohol > 0.27 
%v/v and acetic acid > 1.51 g/L were found as extreme values 
(Table 3). These high concentrations are associated with sour 
rot infection (Hall et al., 2017). Maximum alcohol of 0.35 
%v/v (Table 3) is lower compared to 0.48 %v/v reported 
by Hall et al. (2017). However, acetic acid is converted to 
ethanol, thus ethanol concentration could vary significantly 
depending on the conversion rate by acetic acid bacteria. 

Maximum glycerol concentrations were analysed in 
rot-affected samples from Chenin blanc and Hanepoot 
samples (Table 3). These glycerol concentrations of 17 
to 18 g/L agree with concentrations reported in noble rot-
affected grape must (Furdíková et al., 2019). However, high 
glycerol could also indicate an extended period of grey rot 
infection (Fischer & Bergh, 2007). Maximum gluconic acid 
of 32.26 g/L (Table 3) were analysed in grape must with a 
severity of 91%. Zoecklein et al. (2000) reported gluconic 
acid of 2.30 g/L in White Riesling grape must with a severity 
of > 25% sour rot infection. 

Seventy-five percent of the samples in the dataset have 
glycerol:gluconic acid ratio of < 0.87. The glycerol:gluconic 
acid ratio is a measure of the quality of rotten berries by 
differentiating between noble rot and grey rot (Hausinger 
et al., 2015). Typically, lower ratios indicate the presence of 
grey rot. Noble rot infection could have glycerol:gluconic 
acid ratios > 8.00 g/L (Hausinger et al., 2015). Interestingly, 
although Chardonnay samples do not have high glycerol 
concentrations compared to Chenin blanc and Hanepoot, 
Chardonnay has the highest glycerol:gluconic acid ratio of 

6.84 g/L (Table 3). Furthermore, visually assessed, only 10% 
severity was observed in this specific Chardonnay sample, 
demonstrating the presence of noble rot infection. 

Rot infections could create a stressful environment for 
yeasts during alcoholic fermentation. Yeast and bacteria 
consume glucose, leading to a decrease in the glucose: fructose 
ratio. Alcoholic fermentation starting with a glucose:fructose 
< 1.00 could lead to problematic fermentations since glucose 
is preferred to fructose as energy source during fermentation 
(Jolly et al., 2015). Furthermore, yeast assimilable nitrogen 
(YAN) is critical in the management of wine fermentations 
(Ugliano et al., 2007). Grape nitrogen is decreased by rot 
infection. The most convenient measurement of YAN 
relates to the free or primary amino acids (PAN), of which 
70 – 140 mg/L is required during fermentation (Ribéreau-
Gayon et al., 2006). Table 3 shows the variance in the 
beforementioned parameters.
 
Relationship between grape must chemical composition 
and grape rot severity
MFA results showed that the first two dimensions explain a 
total of 52.4% of the variability contained in the 14 analysed 
variables (Fig. 1). Grape rot severity, glycerol, alcohol, 
gluconic acid and acetic acid are positively correlated in 
dimension 1. The maturity parameters Brix:TA, pH, glucose, 
and fructose were positively correlated in dimension 2. 
Sugar concentration contributed to variability in dimension 1 
(r = 0.62) and dimension 2 (r = 0.51). TA is the most important 
contributor to variability in dimension 2 (r = -0.77).

Pearson correlation coefficients identified the linear 
statistically relationships between severity and individual 
chemical variables (Table 3). In agreement with Cinquanta 
et al. (2015), gluconic acid and glycerol increased as severity 
increased (r = 0.7, p < 0.01). Alcohol and sugar concentration 
also exhibited strong positive correlations with severity (r 
> 0.5; p < 0.01). The respective correlations of acetic acid 
and TA with severity, were weak (r = 0.3). However, the 
low p-values (p < 0.01) casted doubt on the null hypothesis, 
indicating that acetic acid and TA also increased as severity 
of rot infection increased. Weak positive correlations were 
observed between severity and glucose, and glucose:fructose, 
respectively (r = 0.2; p < 0.05). The beforementioned results 
can be explained by characteristics associated with botrytis 
and sour rot infections. Yeasts convert grape sugar to ethanol, 
which in turn, could be oxidised by bacteria to acetic acid 
(Hall et al., 2018). Acidity is increased by berry dehydration, 
as well as due to production of gluconic acid and acetic acid 
(Barata et al., 2011; Cinquanta et al., 2015). In addition, 

TABLE 2
Visual assessment of grape rot severity by three viticulturists (assessors).

ICC (absolute agreement) SEM (%)

Assessor 1 vs 2 0.90 4

Assessor 1 vs 3 0.78 7

Assessor 2 vs 3 0.81 5
ICC = intraclass correlation coefficient. SEM = standard error of measurement.
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dehydration of berries also leads to the concentration of 
grape sugars (Zoecklein et al., 2000). 

Primary amino nitrogen has a weak negative correlation 
with severity (r = -0.2; p < 0.05). Botrytis rot could deplete 
nitrogen levels in grapes (Jackson, 2014). Increased severity 
did not significantly (p > 0.05) influence fructose, pH and the 
ratios of glycerol:gluconic acid or Brix:TA.

Statistical threshold values of grape rot indicators
Alcohol, acetic acid, glycerol, gluconic acid and TA 
were evaluated as grape rot indicators because of strong 
correlations with severity (Table 3). Although also showing a 
strong positive correlation with severity, sugar concentration 
was excluded. Increased sugar concentration could associate 
with increased final wine alcohol percentage and thus wine 
style, and not necessarily severity of rot infection. 

Identifying grape loads with rot infection is paramount 
to winery quality management. However, an effect in a 
dependent variable will not occur until a certain level 
(threshold) has been reached in an independent variable 
(Vogt, 2005). Hill et al. (2013) reported an industrial 
threshold of 3% to 5% severity for price penalties of botrytis 
rot-affected wine grapes. Steel et al. (2020) quantified 
that severity of 5% botrytis rot infection has a significant 
detrimental influence on wine quality. In this study, ROC’s 
were used to determine grape rot indicator threshold values 
(concentrations), differentiating between healthy and rot-

affected grape must. Using gluconic acid as an example: The 
optimal cut-off point which maximises the rate of sensitivity 
(true-positive) and minimises the rate of 1-specificity (false 
positive) is 0.16 g/L gluconic acid (Figure 2). 

However, threshold values were selected according to 
the probability of a sample belonging to one class rather 
to the other, and not necessarily based on the optimal cut-
off point. As discussed by Beghi et al. (2017), choosing 
to evaluate the presence of grape rot at winery intake with 
low sensitivity and high specificity, only highly infected 
loads will be identified. High specificity percentages tend to 
cancel out the false-positive samples avoiding unnecessary 
downgrades of healthy grapes. In the present study, a 
conservative probability was chosen using lower sensitivity 
(80%) and higher specificity (100%) (Table 4). 

Yeasts produce small amounts of acetic acid during 
fermentation as a byproduct of their metabolism (Albertin 
et al., 2014). Volatile acidity production during alcohol 
fermentation could be as high as 0.50 g/L (Drysdale & Fleet, 
1988). A legal limit of 0.80 g/L volatile acidity is enforced 
for bulk wine export (South African Liquor Products Act 
60 of 1989). A threshold value of 0.17 g/L (Table 4) for 
the contribution of acetic acid from grapes at the start of 
winemaking would ensure that the final wine conforms to 
legal requirements.  

A glycerol concentration of 0.79 g/L would differentiate 
between healthy and rot-affected grape must with 80% 

FIGURE 1 
The correlation plot of 14 variables describing rot-affected grape must. The dotted line (-----) points towards the label of the 

variable point.
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sensitivity (Table 4). The value agrees with glycerol of 0.8 g/L 
at the severity at which botrytis rot infection significantly 
influences wine quality (Steel et al., 2020). As previously 
discussed, noble rot infected samples are not abundant in 
this dataset. Thus, 0.79 g/L glycerol could be considered 
as an indicator of grey rot infection before the progressive 
development of noble rot infection. 

Fischer & Berger (2007) assigned a gluconic acid > 
1.0 g/L as the threshold value indicating botrytis rot-affected 
grape must. Gluconic acid production is primarily associated 
with sour rot infection. The present study’s probability 
threshold value of 1.40 g/L agreed with gluconic acid 

FIGURE 2
The optimal cut-off point (threshold) for gluconic acid differentiating between healthy and rot-affected grape must is indicated 
by the point on the curve that is closest to the top of the y-axis. The dotted line (-----) points towards the optimal cut-off point. 

AUC = area under the curve.

TABLE 4
Statistical threshold values for classification of rot-affected grape must.

Grape rot indicators Sensitivity(1) Specificity(2) Threshold AUC(3) AUC
(lower 95%)

AUC
(upper 95%)

AUC 
p-value

Alcohol (%v/v) 84 100 0.05 %v/v 0.91 0.88 0.95 p < 0.01

Alcohol (%v/v) 47 100 0.10 %v/v 0.91 0.88 0.95 p < 0.01

Acetic acid (g/L) 80 100 0.17 g/L 0.99 0.98 1.00 p < 0.01

Glycerol (g/L) 80 100 0.79 g/L 1.00 1.00 1.00 p < 0.01

Gluconic acid (g/L) 90 100 0.99 g/L   1.00 1.00 1.00 p < 0.01

Gluconic acid (g/L) 80 100 1.40 g/L   1.00 1.00 1.00 p < 0.01

TA (g/L) 80 83 8.86 g/L 0.84 0.73 0.95 p < 0.01
(1)  Sensitivity = Rot-affected: Yes. Sensitivity indicates the proportion of samples in percentage (%) of disease positive subjects that will 
be correctly diagnosed by a positive test, also called the true-positive. (2) Specificity or true-negative = Rot-affected: No (healthy samples). 
Specificity is a measurement (%) of disease negative samples that will be classified by a negative test. (3) AUC = area under curve indicating 
test or classification accuracy with a 95% confidence interval. TA = total titratable acidity.

concentrations obtained from a combination of grey and 
sour rot infections (Hausinger et al., 2015). If the threshold 
value in the present study decreased from 1.40 g/L to 0.99 
g/L, sensitivity increased from 80% to 90% (Table 4). Thus 
90% of rot-affected samples would be classified correctly, 
compared to the previous 80%, which would have a positive 
effect on grape quality. Furthermore, decreasing the threshold 
value would also ensure that botrytis rot-affected grape must 
was identified even if secondary sour rot infection was not 
present. 

The alcohol threshold value of 0.05 %v/v is extremely 
low (Table 4). The reference instrument used for the 
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determination of the alcohol content has an accuracy 
of 0.10 %v/v. Considering the instrument specification, 
specificity must decrease to 47% to increase the threshold 
value to 0.10 %v/v. This would mean that the probability of 
classification would change to only 47% sensitivity. 

According to Hseih’s (2008) AUC classification 
accuracy values, acetic acid, glycerol and gluconic acid 
have excellent classification accuracy (Table 4). By also 
considering the lower AUC (95%) of 0.73, TA has fair to 
good classification accuracy with AUC of 0.84 (p < 0.01) 
(Table 4). Comparing the specificity of alcohol, acetic acid, 
glycerol and D-gluconic acid, TA has a specificity of only 
83%. Ideally, using a combination of grape rot indicators, TA 
will have a lower contribution value in detecting rot infection 
compared to acetic acid, glycerol and gluconic acid. 

CONCLUSIONS
Due to the detrimental effect of botrytis and sour rot 
infections on wine quality, detecting rot infection in grape 
loads at winery intake would be of economic benefit to 
wineries. Data-driven determination differentiating between 
rot-affected and healthy grape must will eliminate the 
subjectivity and bias associated with visual assessments. 
Our results showed that the chemical composition of grape 
must could disclose the presence of rot infection. The grape 
rot-associated disease markers, glycerol, gluconic acid and 
alcohol show strong positive relationships with the severity 
of rot infection. However, only 52.4% of the variability 
contained in the dataset could be explained. A reason for this 
low extraction of information could be that only traditional 
wet chemistry methods were used. Furthermore, as a first 
step towards the assessment of grape quality at winery intake, 
our results provide statistical threshold values of grape 
rot indicators in rot-affected grape must. However, each 
winery needs to validate the statistical threshold values with 
empirical results, upon which an implementation strategy 
could be chosen. Based on the sensitivity and specificity 
(probability) chosen, decision-making could depend either 
on a single grape rot indicator’s threshold value, e.g. with 
both high sensitivity and specificity, or multiple assessment 
incorporating more than one threshold values, following 
a more conservative approach. Furthermore, instrument 
specification also needs to be taken into consideration. 
Although geographically bounded, conditions in the study 
area represent three macroclimatic regions, namely regions 
III, IV and V, according to the Winkler growing degree 
index. To the best of the authors’ knowledge, this is the 
first investigation into the effect of rot infection on the 
chemical composition of grape must under local (South 
African) conditions. The study significantly contributes to 
the existing knowledge by identifying statistical threshold 
values detecting rot-affected grape must. Furthermore, 
naturally infected vineyards (grapes) were used, representing 
industrial conditions and the natural development of rot 
infections in the vineyard. However, since a single generic 
model is being investigated consisting for different cultivars, 
the effect of severity on chemical analyses of grape must 
were tested over the total dataset, and not per individual 
cultivar. Future work could include focusing on individual 
cultivars and investigate if the relationships between severity 

and chemical parameters is close to results obtained with the 
single generic model. Research that will follow this study 
include using spectroscopic methods for rapid quantification 
of the chemical parameters in Table 3.  Furthermore, spectral 
classification to differentiate between healthy and rot-
affected grape must will also be explored.
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