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ABSTRACT

The investigation of expansive homeomorphisms in metric spaces began
with Utz in 1950. Thereafter, several authors have extensively stud-
ied this concept for different motivations. In this current article, we
study expansive homeomorphism in the context of quasi-pseudometric
spaces. This is motivated by the fact that any expansive homeomor-
phism on quasi-pseudometric space is again expansive homeomorphism
on its induced pseudometric space but the converse is not true in gen-
eral. Moreover, the study of orbit structures has been taken to con-
sideration in this article. For instance, we investigate the denseness of
orbits in the context of quasi-metric spaces.
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1. INTRODUCTION

The phenomenon of expansivity occurs when the orbits of nearby points are
separated by the dynamical system. A homeomorphism of a compact metric
space is expansive if it does in the complement of finitely many orbits. The
study of expansive homeomorphisms using generators has proved that every ex-
pansive homeomorphism of a compact metric space has a nonnecessarily unique
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measure of maximal entropy. The notion of expansive homeomorphisms in met-
ric spaces was initiated by Utz [15] in 1950. Since then many other authors (for
instance [2, 3, 4, 6, 11, 12, 13, 15]) got motivated and started to develop the
concept of expansive homeomorphism. Expansive homeomorphisms have lots
of applications in topology, ergodic theory etc. Utz defined a homeomorphism
f of a metric space (X,d) to be unstable on X provided there is a number
0 > 0 (called an instability constant) such that for each pair of distinct points
x,y of X then d(f™(z), f"(y)) > ¢ for n € Z.

An unstable homeomorphism followed by an unstable homeomorphism is not
necessarily unstable. However, under some conditions a combination of homeo-
morphisms is always unstable. Many authors extended the notion of expansiv-
ity in the sense of Utz, for instance Bryant [6] studied or investigated expansive
self-homeomorphisms of compact metric spaces. He discussed some of the spe-
cial properties of the set of expansive self-homeomorphisms considered as a
subset of group of all self-homeomorphisms of compact metric space. Bryant
showed that an arc cannot carry an expansive self-homeomorphism, and he
used this fact to show that the possession of an expansive self-homeomorphism
is not a topological property. He also disclosed that there is a certain unifor-
mity associated with an expansive homeomorphism.

In [13] William Reddy studied expansiveness by looking into expansive canon-
ical coordinates which are hyperbolic. In particular, he proved that for an ex-
pansive homeomorphism of compact metric space with canonical coordinates
there exists a metric compatible with the topology of X with respect to which
the canonical coordinates are hyperbolic. William Reddy also generalized the
notions of source, sink and saddle to any point in the phase space of an expan-
sive homeomorphism which has canonical coordinates. Canonical coordinates
were introduced by R. Bowen [2]. He used expansive homeomorphisms having
canonical coordinates to study Axiom A diffeomorphisms. This notion was and
still fruitful for ergodic theory, entropy and topological dynamics.

Furthermore, Morales and Sirvent [11] studied expansiveness of Borel mea-
sures in metric spaces. Morales and Sirvent proved the existence of expansive
invariant measures for homeomorphisms of compact metric spaces. Indeed,
every homeomorphism of a compact metric space carries invariant measures,
but not necessarily expansive. More precisely, the authors in [11] showed every
homeomorphism exhibiting expansive probability measures of compact metric
space also exhibit expansive invariant probability measures. In [12], Morales
and Sirvent continue to extend the notion of expansivity for measures on uni-
form spaces. They show that such measures can exist for measurable and
bimeasurable maps on compact non-Hausdorff uniform space. Morales and
Sirvent considered a notion of expansiveness, located between sensitivity and
expansivity, in which Borel probability measures p will play a fundamental role.
Indeed p is an expansive measure of a homeomorphism if the probability of two
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orbits remain closed to each other up to a prefixed radius which is zero. Anal-
ogously, for continuous maps, the authors define positively expansive measure
by considering positive orbits instead.

It is noted that for a quasi-metric space (X,q), if ¥ : (X,q) — (X,q) is
expansive homeomorphism, then ¢ : (X,¢°) — (X,¢®) is expansive homeo-
morphism, but the converse is not true in general (see Example 3.3 below).
As might be expected these have led to possibilities of studying the notion of
expansive homeomorphisms in quasi-metric space.

Since the notion of expansive homeomorphism of join-compact quasi-metric
space has not yet been studied, this motivated us to study the concept of an
expansive homeomorphism of a quasi-metric space (X, q). In this paper, we
generalize some results from metric point of view to quasi-metric settings. For
instance, we prove that if an expansive homeomorphism on a quasi-metric space
that has canonical coordinates, then the canonical coordinates are hyperbolic
(see Theorem 5.9). Moreover, we study expansive measures on the Borel struc-
ture generated by 7(q) U 7(¢") on quasi-metric space (X,¢q). In addition, we
extend the notion of orbit structures obtained in [1]. It is noted that a self-
homeomorphism of a quasi-metric space (X, ¢) is minimal if for all z € X, the
-orbit set Oy(x) of z is doubly dense in X. Furthermore, we show that the
homeomorphisms ¢ : (X,q) — (X,q) and ¢ : (X,¢°) — (X, ¢°) have the
same minimal set (see Proposition 6.6).

2. PRELIMINARIES

We start by recalling some useful concepts that we are going to use in the
sequel.

Definition 2.1. Let X be a nonempty set and ¢ : X x X — [0,00) be a map.
Then ¢ is a quasi-pseudometric on X if

(a) ¢(x,x) = 0 whenever x € X, and

(b) gz, ) < a(z,) + q(y, 2) whenever z,y, 2 € X.

If ¢ is a quasi-pseudometric on a set X, then the pair (X, q) is called a
quasi-pseudometric space. Moreover, we say that ¢ is a Ty-quasi-metric (quasi-
metric) provided that it satisfies the additional condition that for any x,y € X,
q(z,y) = 0 = ¢(y,x) implies that x = y. The set together with a Ty-quasi-
metric on X is a quasi-metric space.

Furthermore, if ¢ is a quasi-pseudometric on X, then the function ¢’ :
X x X — [0,00) defined by ¢'(z,y) = q(y,z), for all z,y € X is also an ultra-
quasi-pseudometric on X and it is called the conjugate quasi-pseudometric of
q. Note that for any ¢ quasi-pseudometric on X, the function ¢° defined by
¢*(z,y) := max{q(z,y), ¢" (x,y)} is a pseudometric on X.
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Let (X, q) be a quasi-pseudometric space and € X and r € [0,00). Then
the g-closed ball Cy(z,r) with the centre x € X and radius r > 0 defined by
Cylz,r) =:{y € X : q(x,y) < r}is7(¢")-closed ball but not g-closed in general.
Furthermore, the open ball B,(z,r) with the centre x € X and radius r > 0
which is represented by By(z,r) = {y € X : ¢(z,y) < r}, is g-open. The open
ball and the closed ball with respect to ¢* are defined by duality.

A quasi-pseudometric space (X, q) is called join-compact if the 7(¢°) is com-
pact.

Let us recall the following important definition that one can find in [10].

Definition 2.2 (compare [10, Definition 7]). Let (X, q) be a quasi-pseudometric
space and G C X. The set cl, ()G Ncl.(4)G is called the double closure of G.
We say that G is doubly closed if G = cl; ()G Ncly ()G

Moreover, we say that G is doubly dense in X if cl. ()G Ncly (G = X.

It is noted that for any G subset of a quasi-metric space (X, ¢), we have
CIT(qs)G - Cl.,.(q)G (2.1)

and

ClT(qs)G - ClT(qt)G. (22)

A map ¢ : (X,q) — (Y, p) is called uniformly continuous if for any n > 0,

there exists u > 0 such that if ¢(z,2’) < p with z, 2" € X, then p(¢(z), ¢ (")) <
7.

The following observation can be obtained in [8, p.3].

Lemma 2.3. Let (Uy,)nen be a sequence of reflexive relations on X such that
for each n € N,
Un+1 o Un+1 © Un+1 - Un

Then there is a quasi-pseudometric q for X such that

Unt1 CHlz,y) € X x X : q(z,y) <27} CU, forall neN.

3. EXPANSIVE HOMEOMORPHISMS

Definition 3.1. Let (X, ¢) be a quasi-metric space and ¢ : (X, q) — (X, ¢q) be
a homeomorphism. We say that v is expansive if there is 6 > 0 such that for
any z,y € X with z # y, there exists n € Z such that q(¢"(z),¥"(y)) > 4.
The constant ¢ is called an expansive constant for .

The following observations are crucial.

Remark 3.2. For any quasi-pseudometric space (X, q), it is easy to see that:

(1) amap ¢ : (X,q) — (X, q) is an expansive homeomorphism if and only
if ¢ : (X, q') = (X, q?) is an expansive homeomorphism.
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(2) if a map ¥ : (X,q) — (X,q) is an expansive homeomorphism, then
Y (X,¢°) = (X,¢°) is an expansive homeomorphism too but the
converse is not true in general (see Example 3.3).

Example 3.3. Let us equip X = R with its standard quasi-metric u(z,y) =
max{0,z — y} whenever z,y € X. Then it turned out that the map ¢ :
(X,u®) — (X,u®) defined by ¢(z) = 2z for all x € X is expansive with
expansive constant any number in X (see [6, Example 2]). But we observe that
the map v : (X,u) — (X, u) is not expansive because for any z,y € X with
x # y, let us say © < y and for any n € N we have

u(¥"™ (), ¥" (y)) = w(2"z,2"y) = 2"u(z,y) = 0.
Therefore, we cannot find a 6 > 0 such that u(y"(z),¥"(y)) > 4.

In the sequel we assume that (X, ¢) is a join-compact quasi-metric space and
¥ (X,q) — (X, q) is an expansive homeomorphism.

Definition 3.4 (compare [13, p.205]). Let 6 > 0 and x € X. A d-stable set of
x with respect to ¢ and ¢ noted Sy(z, 6, ) is defined by

Sq(x,6,9) :={y € X : q(4"(x),¥"(y)) <6, for n € N}.
Similarly, one can define d-stable set with respect to ¥ and ¢* and ¢°.

Remark 3.5. It is easy to see that

Sge (,0,1)) € Sq(,6,¢) (3.1)
and
qu ($,5, 1;[}) - Sqt (x,é, '(/}) (32)
Moreover,
qu(]"vd?w):S‘Z(J"?éaw)m‘s’qt($75aw)' (33)

Definition 3.6 (compare [13, p.205]). Let § > 0 and z € X. A d-unstable set
of x with respect to ¢ and ¢ noted Uy(z, d,v) is defined by

Ug(x,0,9) :=={y € X : q(¢p""(2),9""(y)) < 6, for n € N}.

Similarly, one can define §-unstable set with respect to ¢ and ¢ and ¢°.
Note that inclusions (3.1), (3.2) and (3.3) in Remark 3.5 for -stable sets are
also satisfied for d-unstable sets.

Example 3.7. Let X = R. If we equip X with the Ty-quasi-metric (Sorgenfrey
line)

rT—y T2y
e ={ 770 T2

and 9 (z) = 2x. Then for x > y and n € N, we have
v(¥"(2),¥"(y)) = 2"v(z,y)
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and for x < y, we have v(¢"(x),¥™(y)) = 2". Thus ¢ is expansive and any real
number smaller than 2" is an expansive constant for ). Moreover, for § > 0,
we have

So(x,0,¢) ={y € R:v(¥"(2),¢"(y)) = 2"v(z,y) < 0} = {=}.

The following observation is a consequence of Remark 3.2 and [2, Remark
1.2].

Remark 3.8. If (X,q) is a quasi-metric space and ¢ : (X,q) — (X,q) is a
homeomorphism, then ¢ is expansive if and only if Sys(z, d, 1) = {z} whenever
x € X and some § > 0.

Example 3.9. Let us equip R with the Ty-quasi-metric u(z,y) = max{x —
y,0}. Then the homeomorphism identity map Idx : (X,u) — (X,u) is not
expansive. Indeed, for § > 0 and « € X we have S, (z,d,Idx) = [z — J,0) and
Syt (x,0,1dx) = (—o0,x + §], thus Sy=(x,0,Idx) =[x — 0,z + 0] # {z}.

The following result holds in the case of metric spaces “see [6, Theorem 1]”.

Theorem 3.10. Let (X, q) and (Y, p) be join compact quasi-metric spaces and
Y (X,q9) — (X,q) be an expansive homeomorphism with & the expansive
constant. If p : (X,q) — (Y, p) is a homeomorphism such that o= : (Y,p) —
(X, q) is uniformly continuous, then popop=1 : (Y,p) — (Y, p) is an expansive
homeomorphism with § its expansive constant.

Proof. Suppose that ¢ : (X, q) — (X, q) is an expansive homeomorphism with
§ > 0 the expansive constant. Let z,2' € X. Since ¢~ : (Y,p) — (X, q) is
uniformly continuous, then there exists e > 0 such that if p(¢(z), p(z’)) < e,
then
a(z,2') = qlp(p™ (@), (e~ () < 6.

Thus

q(z,x") > & implies that p(p(z), p(z")) > €. (3.4)
Moreover, for any y,y’ € Y with y # 3/, then o *(y),¢ (3/) € X, so by
expansiveness of 1) it follows that there exists n € N such that

aW" (e~ (Y)Y (7 (Y)) > 0. (3.5)
By combining (3.4) and (3.5) we have that

ple(W™ (e (W), ez (01 (Y)))) > €.

Therefore, the homeomorphism ¢ o ¢ o ¢! is an expansive homeomorphism

with € the expansive constant. (I

4. EXPANSIVE MEASURES

We start this section with the following observation. If (X,q) is a quasi-
metric space, the two topologies 7(q) and 7(¢') are associated to X. It is
appropriate to use the Borel structure By: (X) generated by 7(¢) UT(q") so that
any countable union, intersection or difference of any 7(q)-open or 7(q*)-open
sets is measurable. Furthermore, the Borel structure generated by 7(q) UT(¢")
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is equivalent to the Borel structure generated by 7(¢*) (see [14]). In the sequel,
we are going to use Bys (X) as Borel structure on (X, q).

Definition 4.1. Let (X, ¢) be a quasi-metric space. A finite Borel measure on
X is amap p: By (X) — [0,00) such that

(a) (@) =0,

(b) if Ay, Ay, A3, ..., Ay € By (X) are mutually disjoint, then

M(L_JA> =§M<Ai>7

(c) u(X) > 0.
Furthermore, a finite Borel measure 1 on a quasi-metric space (X, q) is called
probability if 4(X) =1 and non-atomic if p({x}) = 0 whenever z € X.

The following definition is motivated by Remark 3.8.

Definition 4.2 (compare [2, definition 1.3]). Let (X, ¢) be a quasi-metric space
and ¢ : (X, q) — (X, q) be a homeomorphism. Then we say that the finite Borel
measure p on By (X) is an expansive measure of ¢ if there exists § > 0 such
that (1(Sg=(x,d,9)) = 0 whenever z € X. In this case the constant § is called
expansivity constant of .

Example 4.3. Every expansive measure is non-atomic. Therefore, every quasi-
metric space carrying homeomorphisms with expansive (probability) measures
also carries a non-atomic Borel (probability) measure.

Definition 4.4. If (X, q) is a quasi-metric space and ¢ : (X, q) — (X, q) is a
homeomorphism, the map ¥ is a called countably-expansive if there exists § > 0
such that Sgs(x,0,1) is countable whenever « € X.

De Brecht [5] introduced the concept of quasi-Polish spaces as follows. A
topological space is quasi-Polish if and only if it is countably based and com-
pletely quasi-metrisable. He proved that a metrisable space is quasi-Polish if
and only if it is Polish (see [5]).

Proposition 4.5 ([2, Proposition 1,7]). Let (X,q) be a quasi-metric space
which is quasi-Polish and ¢ : (X,q) — (X,q) be a homeomorphism. Then
the following are equivalent.

(a) ¥ is countably-expansive.

(b) All non-atomic Borel probability measures on X (if they exist) are ex-
pansive with common expansivity constant.

Proof. (a) = (b) Let ¢ be countably-expansive. Suppose that there exists a
non-atomic Borel probability measure p on X. For any © € X. There exists
& > 0 such that
Sgs(z,6,¢) ={a1,a2,-- ,a;,--- }.
Then
p(Sye (2,6,9)) = p(Mien{ai}) = > p({ai}) = 0.

ieN

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 7



O. Olela Otafudu, D. P. Matladi and M. S. Zweni

So p is non-atomic with the expansivity constant d.

(b) = (a) If there are non-atomic Borel probability measure on X which are
expansive with common expansivity constant. Suppose that v is not countably-
expansive. It follows that ¢ : (X, ¢®) — (X, ¢®) is a homeomorphism by Remark
3.2. From the fact that (X, q) is Polish metric space. Then, we obtained the
result from [12, Proposition 1.7]. O

Definition 4.6. Let (X, q) and (Y, p) be quasi-metric spaces. If p is a Borel
measure on (X, q) and ¢ : (X, q) — (Y,p) is a homeomorphism, then we define
the pullback ¢, (p) of u by

¢. (1) (A) = p(¢~'(A)) whenever A € By (X).

We recall that a quasi-metric space (X, q) is join-compact if the topological
space (X, 7(q®)) is compact.

Lemma 4.7. Let (X, q) and (Y, p) be join-compact quasi-metric space and p be
an expansive measure of a homeomorphism ¢ : (X,q) = (X,q). If ¢ : (X,q) —
(Y, p) is a homeomorphism, then ¢, (1) is an expansive measure of popo ¢t

Proof. Suppose that ¢ : (X, q) — (Y, p) is a homeomorphism of a join-compact
quasi-metric spaces. It follows that ¢ is a uniformly continuous map. Let § > 0.
Then for any z, z € X, there exists € > 0 such that p(¢(x), ¢(z)) < 6 whenever
q(z,z) <e.
We first prove that
Sys(y,e,001 00 ) C d(Sys (07 (y),d,¢))) whenever y € X. (4.1)
If t € Sy=(y,e,001 00~ 1), then i =1 € Z we have

P (pood™l(y),pohop (1) <e
whenever
(oo™ y),woo (1) <0
It follows that ¢=1(¢) € Sy=(¢7'(y),d,v). Hence t € ¢(Sy= (¢~ (y),6,1))).
Moreover, from 4.1 we have
D (1) (Sqs (6,00 0071)) < du(w)Bl(Sqs (9™ (y),6,9))]]
1o+ [6(Sg= (¢~ (1), 6,9))]]
= u[Se(07 (y), 8, 9))-
Since p is an expansive measure of a homeomorphism 1, we have that
u[Sq: (67 (y), ,9)] = 0,

Thus p has § as expansivity constant.
Hence,

(b*(qu (yv g, (b o ’L/) o ¢_1)) =0.
Therefore, ¢,(u) is an expansive measure of ¢ o1 o ¢~! and ¢, () has ¢ as
expansivity constant. O
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Definition 4.8. Let (X, ¢) be a quasi-metric space and ¢ : (X, q) — (X, q) be
a continuous mapping. Then we say that a Borel measure p of X is invariant

if ¢y op=p.

Lemma 4.9 (compare [2, Lemma 1.15]). Let ¢ : (X,q) — (X, q) be a home-
omorphism of a quasi-metric space (X,q). If u is an expansive measure with
expansivity constant § of 1, then so does P, .

Proof. Assume that v is a bijective map, in other words

P(Sq(,6,9)) = Sq(¥(2), 6,9)

then,
1/)*M(5q(13,5, 1@ = N(w_l(sq($75aw)))
= pu(Sq(¥~(2),6,9))
= 0
whenever z € X. O

Theorem 4.10. Let (X, q) be a join-compact quasi-pseudometric space and let
¥ (X, q) — (X, q) be a homeomorphism. Then 1) has an expansive probability
measure if and only if v has an expansive invariant probability measure.

Proof. Let ¢ : (X,q) — (X,q) be a homeomorphism. From Lemma 3.2
we know that ¢ : (X,¢°) — (X,¢°) is a homeomorphism. Furthermore,
from [11, Theorem 1.18] and by the join-compactness of (X, q) we have that
Y (X,¢°) — (X, ¢®) has an expansive probability measure if and only if
¥ (X, ¢°) — (X, ¢°) has an expansive invariant probability measure. a

5. CANONICAL COORDINATES

Definition 5.1. Let (X, ¢) be a quasi-pseudometric space and ¢ : (X, q) —
(X, ¢) be an expansive homeomorphism. We say that v has canonical coordi-
nates if for any ¢ > 0, there exists € > 0 such that g(x,y) < ¢, then

Sq(ma(S?w) m Uq(y757w) 7é .

Definition 5.2 (compare [13, p. 206]). We say that the canonical coordinates
of ¥ : (X,q) — (X, q) are hyperbolic if there exists 4 > 0,0 < A< land ¢ >1
such that the following two conditions hold:

(a) If y € Sg(x,0,9), then q(¢"(x),¥"(y)) < cA"q(z,y) for n = 0.

(b) If y € Ug(x,0,1), then q(¢"(x),9"(y)) < cA™"q(z,y) for n < 0.

Suppose that ¢ : (X,q) — (X,q) is an expansive homeomorphism with
the expansive constant ¢ > 0 and v has canonical coordinates. We define the
sequence (W, )n>0 of 7(¢*)-closed neighborhoods of the diagonal Ax = {(z,z) :
x € X} as follows: Wy = X x X and for any n > 1, W, is defined by

Wy = {(z,y) € X x X : q(¢*(2),9'()) < ¢ for |i| <n}.

The following lemma can be compared with [13, Lemma 1].

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 9
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Lemma 5.3. The sequence of (Wy)n>0 is a nested sequence of 7(q")-closed
neighborhoods of the diagonal Ax such that m W, = Ax.
n=0

Proof. 1t is easy to see that the sequence (W,,),>¢ is a nested sequence of 7(q*)-
closed neighborhoods of the diagonal Ax. Then Ax C ﬂzozo W,.

Now we show that Ax D (7", W,. Suppose that (z,y) ¢ Ax.
Then = # y, it follows that q(¢¥™(x),¥™(y)) > ¢ for some n € Z since ¥ is
expansive. Thus (z,y) ¢ W, for some n € Z. O

Note that from Lemma 5.3 there exists € > 0 and N > 1 such that

Wiyn C ]Veq/3 C Nf C Wy,

where
N :={(z,y) € X x X : q(z,y) < €}
and for W C X x X and z € X, the set W[z] is defined by
Wizl ={y: (z,y) e W}.

Furthermore, we define a sequence (V)r>o of 7(¢*)-closed neighborhoods of
the diagonal Ax by:

(a) Vb = W07

(b) Vk = W1+(1€71)N for & > 0.
Lemma 5.4. The sequence (Vi)k>o is a nested sequence of 7(q")-closed neigh-
borhoods of the diagonal Ax such that

Voit1oVag10Vai1 CV,  for each n.

Remark 5.5. From Lemma 5.4 and Lemma 2.3, we observe that there exists a
quasi-pseudometric p on X such that

N§_<n+1) cV,CNP! = for n>1.

Proposition 5.6. Let (X,q) be a join-compact quasi-metric space and 1) :
(X,q) — (X, q) be an expansive homeomorphism with expansive constant ¢ >
0. Then

Y(Sq(x, c,1p) N Whlz]) = Sq(v(x), ¢,9) N Wiga[(z)].
Proof. Let t € ¥(Sy(z, ¢, ) "W, [z]) if and only if there exists y € Sy(z, c,¥)N
W [z] such that ¢(y) = t.

Equivalently for n > 0, ¢(¥"(z),¥™(y)) < ¢ and (z,y) € W, such that
Uy) =t.

Moreover, for n > 0, q(¢"(2),¥"(y)) < ¢ and ¢(¢'(2),¢'(y)) < ¢ with
li| < n such that ¥(y) = t.

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 10
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Thus for m = n—1 > 0, (¥ (¥(2)), " (¥(t))) < cand ¢(¥* (¥()), ¥* (¥(1)))

¢ with k| < m.
Thus ¢ € Sq(w(x)a va) N Wn+1[¢($)] O

Proposition 5.7. Let (X,q) be a join-compact quasi-metric space and v :
(X,q) — (X, q) be an expansive homeomorphism with expansive constant ¢ >
0. Then

w_l(Uq(anc, Y)W, [z]) = Sq(w_l(x),c,w) n Wn-HW_l(x)]'

<

Corollary 5.8. Let (X, q) be a join-compact quasi-metric space and ) : (X, q) —

(X,q) be an expansive homeomorphism with expansive constant ¢ > 0. Then
for any m,n € N, we have:

(a) Y™ (Sy(x,¢,9) NValz]) = Sg(¢™ (), ¢, ) N Vi [ ().
(b) =™ (Ug(, ¢, 90) N Vala]) = Sq( ™™ (), ¢,40) O Varga [ ™™ ()]

Theorem 5.9. Let (X, q) be a join-compact quasi-metric space and ¢ : (X, q) —

(X, q) be an expansive homeomorphism with expansive constant ¢ > 0. More-
over, if 1 has canonical coordinates, then the canonical coordinates are hyper-
bolic with respect to the quasi-pseudometric p from Remark 5.5.

Proof. Suppose that 1 has canonical coordinates with respect to p. Then there
exists n > 0 such that p(z,y) <. Then whenever z,y € X we have q(z,y) < c.

Moreover, we have S,(x,n,v¢) C S;(z,¢,). Let p = min{n,1/4}. Let y €
Sp(x, ,1). Then there exists n > 0 such that (x,y) € V,, \ Vot1. It follows
that

(x,y) ¢ Vn+1 ) Ng—(n+l)?
then

1/2" < p(z,y) < 1/4.
Since y € Sq(z, ¢,¢) N Vy,[z], then we have

N (y) € S(*N (), ¢,9) N Vags (™) C Ny [0°N].
Thus
PN (@), 0™ (y)) < 1/2"F° = (1/2)(1/2"2) < (1/2)p(z, y).
If we let M = 3N, then we have
P (2), ™ (y)) < (1/2)p(z, y).
By induction for k > 0, we have
p(*M (@), v (y)) < (1/2)"p(z,y). (5.1)

Let a be chosen such that o™ = 1/2 it follows that 0 < a < 1. For
y € Sp(z, 1, ) NUp(x, pu, ), we claim that:

p(™ (), ™ (y)) < 8a"p(z,y) for m >0 (5.2)
and
p(¥™(x), ¥ (y)) < 8a""p(z,y) for m <0 (5.3)
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We first prove the claim (5.2). Let m = kM + i with 0 < i < M — 1 and
suppose y € Sp(z, 1, ).
Since (YEM (z),*M (y)) € V,, \ Vyuy1 for some n > 1, it follows that
VM (y) € Sp (™Y (@), €,9) N Wi uonyw (0 (2)).
Thus
PFMF () € Sy T (), ¢, ) N W1+(n—1)N+i(1/)kM+i($))~

Moreover, we have

(WP ), "M (y) € Wiy noi)nts © Wigonn = Va C NS (5.4)
and since
(¢kM+i(x)7¢kM+i(y)) ¢ Vo1 D N§—<n+2)
it follows that
p(*M (), oM (y)) > 1/27F2. (5.5)
Furthermore, from (5.4) and (5.5) we have
P (), R (y)) < 1/2" < ap(u*H (2), M (). (5.6)

Hence, from inequalities (5.1) and (5.6) we have

p(FMH (@), M () < Ap(ptM (@), M (y) < 4(1/2)"p(x,y)
= 4a"™p(z,y)
< 8aFMFip(z,y).
Therefore, since m = kM + i we have
p("™ (), " (y)) < 8 p(z,y).
Now let y € Up(z, p, 7). Then claim (5.3) follows by similar arguments as
in the proof of claim (5.2) by replacing ¢ by ¢ ~1. O
6. ORBIT

In this section, we attempt to study dynamical phenomena of a self-homeomor-
phism of a quasi-metric space.

Let (X,q) be a quasi-metric space and ¥ : (X,q) — (X,q) be a homeo-
morphism. For any zy € X, the ¢-orbit of ¢ denoted Oy (z) is defined by
Oy (o) := {¢P(x0) : p € Z}.

We introduce the following definition.

Definition 6.1. Let (X, ¢) be a quasi-metric space and ¢ : (X, q) — (X, q) be
a homeomorphism. We say that the 1-orbit of ¢ € X is doubly dense in X if

ClT(q)(Ow (w())) N ClT(qt)(Ow (xo)) = X.
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Proposition 6.2. Let (X,q) be a join-compact quasi-metric space and ¢ :
(X,q) = (X, q) be a homeomorphism. If xg € X, then we have:
(1) ¥ : (X,q) — (X, q) has the Y-orbit of xy doubly dense in X if and only
if ¥ (X, q") = (X,q") has the 1-orbit of xo doubly dense in X.
(2) If ¢ : (X,¢°) — (X,q°) has the -orbit of xg 7(¢°)-dense in X, then
Y (X,q) — (X, q) has the Y-orbit of xg doubly dense in X and v :
(X,q") = (X, q") has the y-orbit of xo doubly dense in X.

Proof. (1) Follows from Definition 6.1.

(2) Suppose that ¢ : (X, ¢°) — (X, ¢°) has the ¢-orbit of z¢ 7(¢°)-dense in
X. Then

X = CIT(qs)(Ow(l‘o)) - Cl,r(q)(od,(xo)) N ClT(qt)(Ow(.’L‘o)) C X.

Therefore, we have

ClT(q)(O¢ (1’0)) n ClT(qt)(Ow (1’0)) = X.
Thus ¥ : (X, q) = (X, q) has the ¢-orbit of xg doubly dense in X.

By similar arguments and by definition of double closure, we have that
¥ (X,q") — (X, ¢") has the ¢-orbit of xy doubly dense in X. O

Definition 6.3 (compare [1, Definition 1.1]). Let (X, ¢) be a quasi-metric space
and ¢ : (X,q) — (X, ¢) be a homeomorphism. We say that ¢ is minimal if
for all z € X, the set Oy(z) is doubly dense in X.

The following lemma is our version of [1, Remark 1.2].

Lemma 6.4. Let (X, q) be a quasi-metric space and ¢ : (X, q) — (X, q) be a
homeomorphism. Then v is minimal if and only if Y(G) = G and G is doubly
closed, then G = & or G = X.

Proof. = Suppose that ¢ is minimal and G = cl. ()G Ncl
we suppose that ¥(G) = G # @. We show that G = X.
Let z € G. Since ¥(G) = G we have Oy (z) C G. It follows that

X = Cl.,.(q) (Oy(z0)) N Cl.,-(qt)((’)w(l‘o))
c G= ClT(q)G N Cl.,.(qt)G C X.

r(¢t)G- Moreover,

Thus G = X.

<= We show that X = cl;(4)(Oy(20)) N cly(g+)(Oy(0)). It is sufficient to
show that X C clT(q)(O¢(x0)) N ClT(qt)(Ow (z9))-
Let 2z € X. Since cl.(4)(Oy(20))Ncly (1) (Oy (70)) is doubly closed and nonempty
and -invariant, hence

ClT(q)(Ow (z0)) N ClT(qt)(Ow (x9)) = X.

Therefore, ¢ is minimal. |
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Definition 6.5. Let (X, q) be a quasi-metric space and ¢ : (X,q) — (X, q)
be a homeomorphism. A subset A of X which is ¢-invariant (that is ¢p(A4) = A)
is called a minimal set with respect to ¢ if ¥|4 is minimal.

The following proposition elaborates on the fact that the self-homeomorphism
of a quasi-metric space and its induced metric self-homeomorphism have the
same minimal set.

Proposition 6.6. Let (X, q) be a quasi-metric space and ¢ : (X, q) — (X, q)
be a homeomorphism. Then both @ : (X,q) — (X,q) and ¥ : (X,q¢°) —
(X, q%) have the same minimal set.

Proof. Since the map ¢ : (X, ¢°) — (X, ¢°) is a self-homeomorphism on a met-
ric space (X, ¢%), it follows that ¥ : (X, ¢°) — (X, ¢®) has a minimal set G by
[1, Remark 1.4]. We now show that G is a minimal set of ¢ : (X, ¢*) — (X, ¢%).

Since G is a minimal set of ¢ : (X, q) — (X, q), then G is 7(¢*)-closed subset
of X and t-invariant. Furthermore, for any € X we have cl,(4+)(Oy|, () =
X.

Moreover, from inclusions (2.1) and (2.2) we have

X = g (Oye(x))
S clr(g) Oy (2))) Nelr(gr) (Oy (2) € X
Thus

ClT(q) (Owg(x)) N ClT(q‘)(Ow\G (:13)) = X.
Therefore, the set G is a minimal set of ¢ : (X, q) — (X, q). O
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