

Fixed point approximations via generalized MR-Kannan mappings in Banach spaces

RAVINDRA K. BISHT a and Jay Singh b

 a Department of Mathematics, National Defence Academy, Khadakwasla, 411023, Pune, India (ravindra.bisht@yahoo.com)

^b Department of Mathematics, Govt. Post Graduate College, Bazpur, 262401, U. S. Nagar, Uttarakhand, India (mathjaysingh840gmail.com)

Communicated by S. Romaguera

Abstract

In this paper, we introduce generalizations of the concept of MR-Kannan type contractions and utilize those conditions to derive new fixed point theorems under both contractive and non-contractive conditions. Our approach enhances various existing results related to enriched mappings.

2020 MSC: 47H10; 54H25.

KEYWORDS: completeness; asymptotic regularity; averaged mapping; fixed point; Ulam-Hyers stability; well-posedness.

1. KNOWN RESULTS

The study of fixed points in general poses two significant problems [8]:

(1) What conditions on the structure of the ambient space and/or on the properties of the mapping must be added to guarantee the existence of at least one fixed point for the mapping?

(2) How can one effectively locate and approximate such a fixed point?

Received 24 August 2023 – Accepted 21 December 2023

In a recent work, Anjum et al. [1] addressed the aforementioned problems by introducing the notion of MR-Kannan type contractions and providing a characterization of normed spaces using MR-Kannan type contractions with a fixed point. Additionally, they studied the Ulam-Hyers stability and well-posedness results for the introduced mappings. It is worth noting that the notion of MR-Kannan type contractions encompasses the concept of enriched Kannan contractions introduced in [5]. The concept of enriched contractive classes. For further insights into enriched contractive, we refer the reader to Berinde [2], [3] Berinde and Păcuar [4] and references therein.

Throughout this paper, $(X, \|\cdot\|)$ denotes the normed space over the field \mathbb{R} , which is the set of all real numbers. In [1], Anjum et al. defined the following:

$$\Omega = \{\lambda : X \to \mathbb{R} \colon \lambda(x) \neq 0 \ \forall \ x \in X\},\$$

and

$$\mho = \{\psi : X \to \mathbb{R} : \psi(x) \neq -1 \ \forall \ x \in X\}.$$

Let $T: X \to X$. For each fixed $\lambda \in \Omega$, an operator $T_{\lambda}: X \to X$ is said to be a generalized averaged mapping if

$$T_{\lambda}(x) = (1 - \lambda(x))x + \lambda(x)Tx, \quad \forall x \in X.$$
(1.1)

It is important to note that the class of generalized averaged mappings was studied in [9]. Indeed, if we choose $\gamma \in (0, 1)$ and set $\lambda(x) = \gamma$ for all $x \in X$, then (1.1) simplifies to an averaged mapping, given by

$$T_{\lambda}(x) = (1 - \gamma)x + \gamma Tx.$$

The following definition is essentially introduced in [1]:

Definition 1.1. A mapping $T : X \to X$ is said to be a (ψ, a) -MR-Kannan type contraction, if there exist $\psi \in \mathcal{O}$ and $a \in [0, \frac{1}{2})$ such that

$$\left\|\frac{x\psi(x) + Tx}{1 + \psi(x)} - \frac{y\psi(y) + Ty}{1 + \psi(y)}\right\| \le a\left(\left|\frac{1}{1 + \psi(x)}\right| \|x - Tx\| + \left|\frac{1}{1 + \psi(y)}\right| \|y - Ty\|\right)\right)$$
holds for all $x, y \in X$

holds for all $x, y \in X$.

In the first step, we generalize the definition of a (ψ, a) -MR-Kannan type contraction by redefining the classes of functions Ω and \mathcal{T} as follows:

$$\Omega^* = \{\lambda : X \to (0,1) \ \forall \ x \in X\},\$$
$$\mho^* = \{\psi : X \to [0,\infty) : \ \forall x \in X\}.$$

and

Appl. Gen. Topol. 25, no. 1 72

© AGT, UPV, 2024

Fixed point approximations via generalized MR-Kannan mappings in Banach spaces

In light of Ω^* and \mathcal{U}^* , we now define a (ψ, a, k) -MRB-Kannan type contraction.

Definition 1.2. A mapping $T: X \to X$ is said to be a (ψ, a, k) -MRB-Kannan type contraction, if there exist $\psi \in \mathcal{U}^*$, $k \in (0, \infty)$ and $a \in [0, \frac{1}{2})$ such that

$$\left\|\frac{x\psi(x)+kTx}{k+\psi(x)}-\frac{y\psi(y)+kTy}{k+\psi(y)}\right\| \le a\left(\left|\frac{k}{k+\psi(x)}\right| \|x-Tx\| + \left|\frac{k}{k+\psi(y)}\right| \|y-Ty\|\right),$$

$$(1.2)$$

holds for all $x, y \in X$.

The next definition is a (ψ, α, a, k) -MRB-Ćirić-Reich-Rus type contraction:

Definition 1.3. A mapping $T : X \to X$ is said to be a (ψ, a, k) -MRB-Ćirić-Reich-Rus type contraction, if there exist $\psi \in \mathcal{O}^*, k \in (0, \infty), \alpha \in (0, 1]$ and $a \in [0, \frac{1}{2})$ such that

$$\left\|\frac{x\psi(x)+kTx}{k+\psi(x)} - \frac{y\psi(y)+kTy}{k+\psi(y)}\right\| \le \alpha(\|x-y\|) + a\left(\left|\frac{k}{k+\psi(x)}\right|\|x-Tx\| + \left|\frac{k}{k+\psi(y)}\right|\|y-Ty\|\right),$$

$$(1.3)$$

holds for all $x, y \in X$.

Remark 1.4. (i) If we put a = 0 in (1.3), then we get a (ψ, k) -MRB-Banach type contraction.

(ii) If we take $\psi(x) = b$ for all $x \in X$ and k = 1 in (1.3), then we get an enriched Ćirić-Reich-Rus type contraction [3].

2. Main results

We begin with the following result:

Theorem 2.1. Let $(X, \|\cdot\|)$ be a Banach space and $T : X \to X$ be a (ψ, a, k) -MRB-Kannan type contraction. Then

- (i) $Fix(T) = \{x^*\};$
- (ii) there exists $\lambda \in \Omega^*$ such that the generalized Krasnoselskii iteration associated to T, that is, the sequence $\{x_n\}_{n=0}^{\infty}$, given by

$$x_{n+1} = (1 - \lambda(x_n))x_n + \lambda(x_n)Tx_n, \quad n \ge 0,$$
(2.1)

converges to x^* for any initial guess $x_0 \in X$.

Appl. Gen. Topol. 25, no. 1 73

© AGT, UPV, 2024

Proof. Let $\lambda(x) = \frac{k}{k+\psi(x)}$ for all $x \in X$. Taking $\psi(x) = 0$, the proof is straightforward. Therefore, considering $\psi(x) > 0$, it is clear that $\lambda \in \Omega^*$. Utilizing (1.2), we have:

$$\begin{aligned} \left\| \frac{\lambda(x)}{k} \left(k \left(\frac{1}{\lambda(x)} - 1 \right) x + kTx \right) - \frac{\lambda(y)}{k} \left(k \left(\frac{1}{\lambda(y)} - 1 \right) y + kTy \right) \right\| \\ &\leq a \left(\left\| \lambda(x)(x - Tx) \right\| + \left\| \lambda(y)(y - Ty) \right\| \right), \end{aligned}$$

which can be expressed equivalently as

$$||T_{\lambda}x - T_{\lambda}y|| \le a \left(||x - T_{\lambda}x|| + ||y - T_{\lambda}y|| \right), \quad \forall x, y \in X,$$

$$(2.2)$$

where T_{λ} is the generalized averaged operator defined in (1.1). Since $a \in [0, \frac{1}{2})$, inequality (2.2) implies that T_{λ} is a Kannan contraction.

The generalized Krasnoselskii iteration process $\{x_n\}_{n=0}^{\infty}$, defined by (2.1), is precisely the Picard iteration associated with T_{λ} (1.1), i.e.,

$$x_{n+1} = T_{\lambda} x_n, \quad n \ge 0.$$

The remaining part of the proof follows a similar approach to the proof of Theorem 2.0.3 in [1]. $\hfill \Box$

The proof for the next fixed point theorem follows the same line of reasoning as presented in the proofs of Theorem 2.1.

Theorem 2.2. Let $(X, \|\cdot\|)$ be a Banach space and $T : X \to X$ be a (ψ, α, a, k) -MRB-Ćirić-Reich-Rus type contraction. Then conclusion of Theorem 2.1 holds.

The local version of Theorem 2.1 can be proven using a similar approach as outlined in Theorem 2.0.5 in [1].

Theorem 2.3. Let $(X, \|\cdot\|)$ be a Banach space and $B(\hat{v}, r) = \{x \in X : \|\hat{v} - x\| \leq r\}$, where $\hat{v} \in X$ and r > 0. Let $T : B(\hat{v}, r) \to X$ be a (ψ, a, k) -MRB-Kannan type contraction mapping. Further, assume that

$$\|\mathring{v} - T\mathring{v}\| \le \left|\frac{k + \psi(\mathring{v})}{k}\right| \left(1 - \frac{3a}{1+a}\right) r.$$

Then T has a unique fixed point in B(v, r).

The characterization of a normed space presented below can be established using a similar approach as outlined in Corollary 3.0.2 of [1] (also see [10]).

Corollary 2.4. Let $(X, \|\cdot\|)$ be a normed space and $T : X \to X$ be a (ψ, a, k) -MRB-Kannan type contraction mapping such that T has a unique fixed point. Then $(X, \|\cdot\|)$ is a Banach space.

Appl. Gen. Topol. 25, no. 1 74

③ AGT, UPV, 2024

Fixed point approximations via generalized MR-Kannan mappings in Banach spaces

3. GENERALIZED (ψ, a, k)-MRB-KANNAN AND (ψ, α, a, k)-MRB-ĆIRIĆ-REICH-RUS MAPPINGS

We now extend the criteria $a \in [0, \frac{1}{2})$ assumed in the (ψ, a, k) -MRB-Kannan type contraction mapping to $0 \le a < \infty$ and introduce the notion of a generalized (ψ, a, k) -MRB-Kannan mapping.

Definition 3.1. A mapping $T: X \to X$ is said to be a generalized (ψ, a, k) -MRB-Kannan mapping, if there exist $\psi \in \mathcal{O}^*, k \in (0, \infty)$ and $a \in [0, \infty)$ such that

$$\left\|\frac{x\psi(x)+kTx}{k+\psi(x)}-\frac{y\psi(y)+kTy}{k+\psi(y)}\right\| \le a\left(\left|\frac{k}{k+\psi(x)}\right| \|x-Tx\|+\left|\frac{k}{k+\psi(y)}\right| \|y-Ty\|\right),\tag{3.1}$$

holds for all $x, y \in X$.

Similarly, we can define generalized (ψ, α, a, k)-MRB-Ćirić-Reich-Rus mapping:

Definition 3.2. A mapping $T: X \to X$ is said to be a generalized (ψ, α, a, k) -MRB-Ćirić-Reich-Rus mapping, if there exist $\psi \in \mathcal{O}^*, k \in (0, \infty), \alpha \in [0, 1)$ and $a \in [0, \infty)$ such that

$$\left\|\frac{x\psi(x)+kTx}{k+\psi(x)}-\frac{y\psi(y)+kTy}{k+\psi(y)}\right\| \leq \alpha(\|x-y\|)+a\left(\left|\frac{k}{k+\psi(x)}\right|\|x-Tx\|\right) + \left|\frac{k}{k+\psi(y)}\right|\|y-Ty\|\right),$$
(3.2)

holds for all $x, y \in X$

In 1966, Browder and Petryshyn [6] introduced the notion of asymptotic regularity.

Definition 3.3. A mapping T is said to be asymptotically regular on X if for each $x \in X$, $T^{n+1}x - T^nx \to 0$ as $n \to \infty$.

Now, we present a new result where T satisfies a generalized (ψ, a, k) -MRB-Kannan mapping under the assumption of asymptotic regularity of the same mapping.

Theorem 3.4. Let $(X, \|\cdot\|)$ be a Banach space and $T : X \to X$ be a generalized (ψ, a, k) -MRB-Kannan continuous mapping. Suppose $T_{\lambda}(x)$ is asymptotically regular mapping. Then

- (i) $Fix(T) = \{x^*\};$
- (ii) for any initial guess $x_0 \in X$, a sequence $\{x_n\}_{n=0}^{\infty}$, given by

$$x_{n+1} = (1 - \lambda(x_n))x_n + \lambda(x_n)Tx_n, \quad n \ge 0$$

converges to x^* .

Proof. Let $\lambda(x) = \frac{k}{k+\psi(x)}$ for all $x \in X$. Taking $\psi(x) = 0$, the proof is straightforward. Therefore, considering $\psi(x) > 0$, it is clear that $\lambda \in \Omega^*$. Utilizing (3.1), we have:

© AGT, UPV, 2024

Appl. Gen. Topol. 25, no. 1 75

R. K. Bisht and J. Singh

$$\begin{split} \left\| \frac{\lambda(x)}{k} \left(k \left(\frac{1}{\lambda(x)} - 1 \right) x + kTx \right) - \frac{\lambda(y)}{k} \left(k \left(\frac{1}{\lambda(y)} - 1 \right) y + kTy \right) \right\| \\ &\leq a \left(\left\| \lambda(x)(x - Tx) \right\| + \left\| \lambda(y)(y - Ty) \right\| \right), \end{split}$$

which can be written in an equivalent form as

$$\|T_{\lambda}x - T_{\lambda}y\| \le a \bigg(\|x - T_{\lambda}x\| + \|y - T_{\lambda}y\| \bigg), \quad \forall x, y \in X.$$
(3.3)

As $a \in [0, \infty)$, by (3.3) T_{λ} turns out to be a generalized Kannan contraction.

The generalized Krasnoselskii iteration process $\{x_n\}_{n=0}^{\infty}$, defined by (ii) is the Picard iteration associated with T_{λ} , that is,

$$x_{n+1} = T_{\lambda} x_n, \quad n \ge 0.$$

The proof up to the establishment of the Cauchy sequence of $\{x_n\}_{n=0}^{\infty}$ follows along similar lines as given in the proof of Theorem 2.6 of Górnicki [7]. Since X is a Banach space, we have $x^* = \lim_{n \to \infty} x_n$. Using the continuity of T_{λ} , we immediately obtain $x^* = T_{\lambda}x^*$, so by Fix(T)= Fix(T_{λ}), we have $Tx^* = x^*$. Uniqueness of the fixed point of the mapping follows easily.

Theorem 3.5. Let $(X, \|\cdot\|)$ be a Banach space and $T : X \to X$ be a generalized (ψ, α, a, k) -MRB-Ćirić-Reich-Rus mapping. Then conclusion of Theorem 3.4 holds.

Proof. The proof is similar to the proof of Theorem 3.4.

Remark 3.6. The Ulam-Hyers stability and well-posedness results for the mappings considered here can be investigated following a similar approach as presented in [1].

4. CONCLUSION

In this paper, we have extended the scope of the study of MR-Kannan type contraction mappings in the context of the generalized averaged operator. Additionally, we have introduced the notion of a generalized MRB-Kannan type mapping, which further extends the concepts of MRB-Kannan type contractions and enriched contractions. Along similar lines, we have defined a generalized MRB-Ćirić-Reich-Rus mapping and proven the existence of a fixed point by incorporating the generalized averaged operator, asymptotic regularity, and continuity of the mapping.

Fixed point approximations via generalized MR-Kannan mappings in Banach spaces

ACKNOWLEDGEMENTS. The authors extend their gratitude to the referee for thoroughly reading the paper and providing helpful suggestions to improve its content.

References

- R. Anjum, M. Abbas and H. Isik, Completeness problem via fixed point theory, Complex Analysis and Operator Theory 17 (2023), Paper no. 85.
- [2] V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskii iteration in Hilbert spaces, Carpathian J. Math. 35, no. 3 (2019), 293–304.
- [3] V. Berinde and M. Păcurar, Fixed point theorems for enriched Ćirić-Reich-Rus contractions in Banach spaces and convex metric spaces, Carpathian J. Math. 37, no. 2 (2021), 173–184.
- [4] V. Berinde and M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl. 22 (2020), Paper no. 38.
- [5] V. Berinde and M. Păcurar, Kannan's fixed point approximation for solving split feasibility and variational inequality problems, J. Comput. Appl. Math. 386 (2021), 113–217.
- [6] F. E. Browder and W. V. Peryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571–575.
- [7] J. Górnicki, Remarks on asymptotic regularity and fixed points, J. Fixed Point Theory Appl. 21 (2019), Paper no. 29.
- [8] J. Górnicki and R. K. Bisht, Around averaged mappings, J. Fixed Point Theory Appl. 23 (2021), Paper no. 48.
- [9] I. A. Rus, An abstract point of view on iterative approximation of fixed points: impact on the theory of fixed point equations, Fixed Point Theory 13, no. 1 (2012), 179–192.
- [10] P. V. Subrahmanyam, Elementary Fixed Point Theorems, Springer, Berlin, Germany (2018).