
@
Appl. Gen. Topol. 25, no. 1 (2024), 97-115

doi:10.4995/agt.2024.20026

© AGT, UPV, 2024

Remarks on fixed point assertions in

digital topology, 7

Laurence Boxer

Department of Computer and Information Sciences, Niagara University, NY 14109, USA and

Department of Computer Science and Engineering, State University of New York at Buffalo,

USA (boxer@niagara.edu)

Communicated by J. Rodŕıguez-López
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1. Introduction

As stated in [6]:

The topic of fixed points in digital topology has drawn much
attention in recent papers. The quality of discussion among
these papers is uneven; while some assertions have been correct
and interesting, others have been incorrect, incorrectly proven,
or reducible to triviality.

Here, we continue the work of [12, 6, 7, 9, 10, 11], discussing many shortcomings
in earlier papers and offering corrections and improvements.

The topic of freezing sets [8] belongs to the fixed point theory of digital
topology and is central to the paper [1]. We show that the latter paper contains
no original results.

Other papers studied herein contain assertions of fixed points in digital met-
ric spaces. Quoting and paraphrasing [10]:
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Authors of many weak papers concerning fixed points in digital
topology seek to obtain results in a “digital metric space” (see
section 2.2 for its definition). This seems to be a bad idea. We
slightly paraphrase [9]:

• Nearly all correct nontrivial published asser-
tions concerning digital metric spaces use the
metric and do not use the adjacency. As a re-
sult, the digital metric space seems to be an
artificial notion, not really concerned with dig-
ital images.

• If X is finite (as in a “real world” digital image)
or the metric d is a common metric such as any
`p metric, then (X, d) is uniformly discrete as
a topological space, hence not very interesting.

• Many published assertions concerning digital
metric spaces mimic analogues for subsets of
Euclidean Rn. Often, the authors neglect im-
portant differences between the topological space
Rn and digital images, resulting in assertions
that are incorrect or incorrectly “proven,” triv-
ial, or trivial when restricted to conditions that
many regard as essential. E.g., in many cases,
functions that satisfy fixed point assertions must
be constant or fail to be digitally continuous [12,
6, 7].

Since acceptance for publication of [11], additional highly flawed papers rooted
in digital metric spaces have come to our attention. These are [15, 20, 21, 25,
28, 31, 32].

2. Preliminaries

Much of the material in this section is quoted or paraphrased from [9].
We use N to represent the natural numbers, Z to represent the integers, R

to represent the reals, and N∗ = N ∪ {0}.
A digital image is a pair (X,κ), where X ⊂ Zn for some positive integer

n, and κ is an adjacency relation on X. Thus, a digital image is a graph. In
order to model the “real world,” we usually take X to be finite, although there
are several papers that consider infinite digital images. The points of X may
be thought of as the “black points” or foreground of a binary, monochrome
“digital picture,” and the points of Zn \X as the “white points” or background
of the digital picture.

2.1. Adjacencies, continuity, fixed point. In a digital image (X,κ), if
x, y ∈ X, we use the notation x ↔κ y to mean x and y are κ-adjacent; we
may write x↔ y when κ can be understood. We write x -κ y, or x - y when
κ can be understood, to mean x↔κ y or x = y.

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 98



Remarks on fixed point assertions in digital topology, 7

The most commonly used adjacencies in the study of digital images are the
cu adjacencies. These are defined as follows.

Definition 2.1. Let X ⊂ Zn. Let u ∈ Z, 1 ≤ u ≤ n. Let x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ X. Then x↔cu y if

• x 6= y,
• for at most u distinct indices i, |xi − yi| = 1, and
• for all indices j such that |xj − yj | 6= 1 we have xj = yj .

Definition 2.2. Let (X,κ) be a digital image. Let x, y ∈ X. Suppose there
is a set P = {xi}ni=0 ⊂ X such that x = x0, xi ↔κ xi+1 for 0 ≤ i < n, and
xn = y. Then P is a κ-path (or just a path when κ is understood) in X from x
to y, and n is the length of this path.

Definition 2.3 ([27]). A digital image (X,κ) is κ-connected, or just connected
when κ is understood, if given x, y ∈ X there is a κ-path in X from x to y.

Definition 2.4 ([27, 4]). Let (X,κ) and (Y, λ) be digital images. A function
f : X → Y is (κ, λ)-continuous, or κ-continuous if (X,κ) = (Y, λ), or digitally
continuous when κ and λ are understood, if for every κ-connected subset X ′

of X, f(X ′) is a λ-connected subset of Y .

Theorem 2.5 ([4]). A function f : X → Y between digital images (X,κ) and
(Y, λ) is (κ, λ)-continuous if and only if for every x, y ∈ X, if x ↔κ y then
f(x) -λ f(y).

Remark 2.6. For x, y ∈ X, P = {xi}ni=0 ⊂ X is a κ-path from x to y if and
only if f : [0, n]Z → X, given by f(i) = xi, is (c1, κ)-continuous. Therefore, we
may also call such a function f a (κ-)path in X from x to y.

We use idX to denote the identity function on X, and C(X,κ) for the set of
functions f : X → X that are κ-continuous.

A fixed point of a function f : X → X is a point x ∈ X such that f(x) = x.
We denote by Fix(f) the set of fixed points of f : X → X.

Let X = Πn
i=1Xi. The projection to the jth coordinate function pj : X → Xj

is the function defined for x = (x1, . . . , xn) ∈ X, xi ∈ Xi, by pj(x) = xj .
As a convenience, if x is a point in the domain of a function f , we will often

abbreviate “f(x)” as “fx”.

2.2. Digital metric spaces. A digital metric space [18] is a triple (X, d, κ),
where (X,κ) is a digital image and d is a metric on X. The metric is usually
taken to be the Euclidean metric or some other `p metric; alternately, d might
be taken to be the shortest path metric. These are defined as follows.

• Given x = (x1, . . . , xn) ∈ Zn, y = (y1, . . . , yn) ∈ Zn, p > 0, d is the `p
metric if

d(x, y) =

(
n∑
i=1

| xi − yi |p
)1/p

.

Note the special cases: if p = 1 we have the Manhattan metric; if p = 2
we have the Euclidean metric.

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 99



L. Boxer

• [13] If (X,κ) is a connected digital image, d is the shortest path metric
if for x, y ∈ X, d(x, y) is the length of a shortest κ-path in X from x
to y.

Remark 2.7. If X is finite or

• [7] d is an `p metric, or
• (X,κ) is connected and d is the shortest path metric,

then (X, d) is uniformly discrete, i.e., there exists ε > 0 such that d(x, y) < ε
implies x = y.

For an example of a digital metric space that is not uniformly discrete, see
Example 2.10 of [9].

We say a sequence {xn}∞n=0 is eventually constant if for some m > 0, n > m
implies xn = xm. The notions of convergent sequence and complete digital
metric space are often trivial, e.g., if the digital image is uniformly discrete, as
noted in the following, a minor generalization of results of [23, 12].

Proposition 2.8 ([9]). Let (X, d) be a metric space. If (X, d) is uniformly
discrete, then any Cauchy sequence in X is eventually constant, and (X, d) is
a complete metric space.

We will use the following.

Theorem 2.9. Let (X, d, κ) be a connected digital metric space in which

• d is the shortest path metric, or
• d is any `p metric and κ = c1.

Let f, g : X → X be such that

d(fx, fy) < d(gx, gy) for all x, y ∈ X.
If g ∈ C(X,κ), then f is a constant function.

Proof. Let x↔κ y in X. Then our choices of d and κ, and the continuity of g,
imply

d(fx, fy) < d(gx, gy) ≤ 1,

so d(fx, fy) = 0, i.e., fx = fy.
Now let a, b ∈ X. Since X is connected, there is a κ-path {xi}ni=0 in X from

a to b. By the above, f(xi) = f(xi+1) for i ∈ {1, . . . , n− 1}. Thus f(a) = f(b).
Hence f is constant. �

Given a bounded metric space (X, d), the diameter of X is

diam(X) = max{ d(x, y) | x, y ∈ X }.

3. [1] and freezing sets

Freezing sets are defined as follows.

Definition 3.1 ([8]). Let (X,κ) be a digital image. We say A ⊂ X is a freezing
set for X if given g ∈ C(X,κ), A ⊂ Fix(g) implies g = idX .
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Several papers subsequent to [8] have further developed our knowledge of
freezing sets. Such a claim cannot be made for [1]. Below, we quote verbatim
(with some corrections noted) each assertion presented as new in [1], with the
assertion it mimics from [8]. Since [8] is cited in [1], the authors of [1] should
have known better.

Note [1] uses “D.I” to abbreviate “digital image”.

3.1. Theorem 2.4 of [1]. Theorem 2.4 of [1] reads as follows (note “V is a
freezing subset” should be “A is a freezing subset”).

If (U, κ) is a D.I and V is a freezing subset for U and f :
(U, κ) → (V, λ) is an isomorphism, then f(A) is a freezing set
for (V, λ).

Compare with Theorem 5.3 of [8]:

Let A be a freezing set for the digital image (X,κ) and let F :
(X,κ) → (Y, λ) be an isomorphism. Then F (A) is a freezing
set for (Y, λ).

3.2. Theorem 2.5 of [1]. Theorem 2.5 of [1] reads as follows.

If (U,CZ) ⊂ Zn is a D.I for z ∈ [1, n], f ∈ C(U, cz}), α, α′ ∈ U :
α ↔cz α′ and pi(f(α)) ≤ pi(α) ≤ pi(α

′), then pi(f(α)) ≤
pi(α

′).

Notes on Theorem 2.5 of [1]:

• “(U,CZ)” should be “(U, cz)”.
• Each instance of “≤” should be “<”. It is easy to construct examples

for which the stated conclusion is not obtained if we allow “≤” instead
of “<”.
• Other errors appear in the “proof” of this assertion.

Compare with Lemma 5.5 of [8]:

Let (X, cu) ⊂ Zn be a digital image, 1 ≤ u ≤ n. Let q, q′ ∈ X
be such that q ↔cu q

′. Let f ∈ C(X, cu).
(1) If pi(f(q)) > pi(q) > pi(q

′) then pi(f(q′)) > pi(q
′).

(2) If pi(f(q)) < pi(q) < pi(q
′) then pi(f(q′)) < pi(q

′).

3.3. Theorem 2.6 of [1]. A digital image (X,κ) is reducible [22] if and only if
idX is homotopic in 1 step to a non-surjective map f , in which case x ∈ X\f(X)
is a reduction point.

Theorem 2.6 of [1] reads as follows (note the “α” in ii. should be “a”).

i. If (U, κ) is a D.I and A ⊂ U is a retract of U , then (A, κ)
has no freezing sets for (U, κ).

ii. If (U, κ) is a reducible digital image and A is a freezing
subset for U , then if a ∈ U is a reduction point of u, α ∈ A.

Since U is a retract of U via the identity function, item i. is incorrect as
stated. If we focus on proper subsets that are retracts, we can compare item
i) with Theorem 5.6 of [8]:
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Let (X,κ) be a digital image. Let X ′ be a proper subset of X
that is a retract of X. Then X ′ does not contain a freezing set
for (X,κ).

Compare item ii. with Corollary 5.7 of [8]:

Let (X,κ) be a reducible digital image. Let x be a reduction
point for X. Let A be a freezing set for X. Then x ∈ A.

3.4. Theorem 3.2 of [1]. The boundary of X ⊂ Zn [26] is

Bd(X) = {x ∈ X | there exists y ∈ Zn \X such that y ↔c1 x}.

Theorem 3.2 of [1] reads as follows (note “∀z ∈ [1, n]” should be “for some
z ∈ [1, n]Z”).

Let U ⊂ Zn be finite, A is a subset of U , f ∈ C(U, cz) ∀z ∈
[1, n]. If Bd(A) ⊂ Fix(f) and Bd(A) is a freezing set for (U, cz),
then A ⊂ Fix(f).

Since a superset of a freezing set is a freezing set, the conclusion of this
assertion as written is immediate.

Proposition 5.12 of [8], which has a stronger hypothesis in not requiring
Bd(A) to be a freezing set, states the following.

Let X ⊂ Zn be finite. Let 1 ≤ u ≤ n. Let A ⊂ X. Let
f ∈ C(X, cu). If Bd(A) ⊂ Fix(f), then A ⊂ Fix(f).

3.5. Theorem 3.3 of [1]. Theorem 3.3 of [1] reads as follows.

If Πn
j=1[0,mj ]Z ⊂ Zn such that mj > 1 ∀j then Bd(U) is a

minimal freezing set for (U, cn).

Presumably, U = Πn
j=1[0,mj ]Z. Also, the authors of [1] fail to prove the claim

of minimality.
Compare with Theorem 5.17 of [8]:

Let X =
∏n
i=1[0,mi]Z ⊂ Zn, where mi > 1 for all i. Then

Bd(X) is a minimal freezing set for (X, cn).

3.6. Theorem 3.4 of [1]. Theorem 3.4 of [1] reads as follows, where “κ1, κ2 ”
should be “κ1, κ2”.

If (Ui, κi) is a set of D.I ∀i ∈ [1, v]Z, U = Πv
i=1Ui and a subset

A of U is a freezing set for (U,NPv(κ
1, κ2, . . . , κv)), then we

have pi(A) is a freezing set for (Ui, κi) ∀i ∈ [1, v]Z.

Compare with Theorem 5.18 of [8]:

Let (Xi, κi) be a digital image, i ∈ [1, v]Z. Let X =
∏v
i=1Xi.

LetA ⊂ X. SupposeA is a freezing set for (X,NPv(κ1, . . . , κv)).
Then for each i ∈ [1, v]Z, pi(A) is a freezing set for (Xi, κi).

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 102



Remarks on fixed point assertions in digital topology, 7

4. [15]’s common fixed point results

S. Dalal is the author or coauthor of three papers with the title “Common
Fixed Point Results for Weakly Compatible Map in Digital Metric Spaces” [15,
16, 17]. We have discussed flaws and improvements of [16] in [7], and those
of [17] in [6]. In this section, we discuss flaws and improvements of [15].

Definition 4.1 ([17]). Suppose S and T are self-maps on a digital metric space
(X, d, κ). Suppose {xn}∞n=1 is a sequence in X such that

limn→∞S(xn) = limn→∞T (xn) = t for some t ∈ X. (4.1)

We have the following.

• S and T are called compatible if limn→∞d(S(T (xn)), T (S(xn))) = 0
for all sequences {xn}∞n=1 ⊂ X that satisfy statement (4.1).
• S and T are called compatible of type (A) if

limn→∞d(S(T (xn)), T (T (xn))) = 0 =

limn→∞d(T (S(xn)), S(S(xn)))

for all sequences {xn}∞n=1 ⊂ X that satisfy statement (4.1).
• S and T are called compatible of type (P) if

limn→∞d(S(S(xn)), T (T (xn))) = 0

for all sequences {xn}∞n=1 ⊂ X that satisfy statement (4.1).

Proposition 4.2 ([17]). Let S and T be compatible maps of type (A) on a
digital metric space (X, d, ρ). If one of S and T is continuous, then S and T
are compatible.

The continuity assumption of Proposition 4.2 is of the ε−δ type of analysis.
It is often unnecessary. Thus, we have the following.

Theorem 4.3 ([6]). Let (X, d, κ) be a digital metric space, where either X is
finite or d is an `p metric. Let S and T be self-maps on X. Then the following
are equivalent.

• S and T are compatible.
• S and T are compatible of type (A).
• S and T are compatible of type (P).

Indeed, other notions defined as variants on compatibility are also equivalent
to compatibility (see Theorem 5.6 of [11]).

Proposition 4.4 ([15]). Let S and T be compatible maps on a digital metric
space (X, d, ρ) into itself. Suppose limn→∞ Sxn = limn→∞ Txn = t for some
t ∈ X. Then

(a) limn→∞ STxn = Tt if T is continuous at t.
(b) limn→∞ TSxn = St if S is continuous at t.

As above, the continuity assumption of Proposition 4.4 is of the ε− δ type
of analysis and is often unnecessary. Thus, we have the following.
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Proposition 4.5. Let S and T be compatible maps on a digital metric space
(X, d, ρ) into itself. Let (X, d) be uniformly discrete. Suppose limn→∞ Sxn =
limn→∞ Txn = t for some t ∈ X. Then

(a) limn→∞ STxn = Tt.
(b) limn→∞ TSxn = St.

Proof. By uniform discreteness, we have, for almost all n, Sxn = Txn = t.
Thus for almost all n,

STxn = (by compatibility) TSxn = Tt,

which proves (a). Assertion (b) follows similarly. �

The following appears as Theorem 3.1 of [15].

Assertion 4.6. Let A, B, S and T be four self-mappings of a complete digital
metric space (X, d, ρ) satisfying the following conditions.

(a) S(X) ⊂ B(X) and T (X) ⊂ A(X);
(b) the pairs (A,S) and (B, T ) are compatible;
(c) one of S, T,A, and B is continuous;
(d) d(Sx, Tx) ≤ φ(max{d(Ax,By), d(Sx,Ax), d(Sx,By)}) for all x, y ∈ X,

where φ : [0,∞)→ [0,∞) is continuous, monotone increasing, and φ(t) < t for
t > 0. Then A,B, S, and T have a unique common fixed point in X.

However, the argument offered as a proof for Assertion 4.6 in [15] is marred
by an error that also appears in [16]: A sequence {yn}∞n=0 ⊂ X of points is
constructed such that limn→∞d(y2n, y2n+1) = 0. It is wrongly concluded that
{yn}∞n=0 is a Cauchy sequence; a counterexample is given at Example 6.2 of [7].

We must conclude that Assertion 4.6 is unproven.

5. [20]’s path-length metric assertions

In this section, we discuss flaws in the paper [20].

5.1. Unoriginal assertions. Several of the assertions presented as original
appear in earlier literature.

Theorems 3.1, 3.2, and 3.3 of [20] duplicate results of [23], a paper cited
in [20]. While [23] uses the Euclidean metric, [20] should have noted that the
proofs of [23] also work for their respective analogs using the shortest-path
metric.

Theorem 3.1 of [20] states the following.

In a digital metric space (Y ∗, d), if a sequence {xn}∞n=1 is a
Cauchy sequence, then xn = xm for all m,n > α, where α ∈ N.

But this duplicates Proposition 3.5 of [23].

Theorem 3.2 of [20] states the following.

In a digital metric space (Y ∗, d), if a sequence {xn}∞n=1 con-
verges to a limit L ∈ Y ∗, then there is an α ∈ N such that for
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all m,n > α, xn = L i.e. xn = xn+1 = xn+2 = · · · = L for
n ≥ α.

But this duplicates Proposition 3.9 of [23].

Theorem 3.3 of [20] states the following.

A digital metric space (Y ∗, d) is complete.

But this duplicates Theorem 3.11 of [23].

5.2. Contractions. The following definition is not attributed to a source in [20].
It appears in [19], which was cited in [20].

Definition 5.1. A self mapping S on a digital metric space (Y, d) is said to be
a digital contraction mapping if and only if there exists a non-negative number
q < 1 such that

d(Sx, Sy) ≤ qd(x, y) ∀ x, y ∈ Y.

The following is stated as Corollary 3.1 of [20].

Assertion 5.2. Let (Y, d) be a digital metric space endowed with graph G,
where d is the path length metric. Let S : Y → Y be a digital contraction map
on Y . Then S has a unique fixed point.

Remark 5.3. Without the assumption of connectedness, the path length metric
is undefined, so Assertion 5.2 as written is, at best, misleading.

Proposition 5.4. If in Assertion 5.2 G is connected, then S must be a constant
map.

Proof. Since d is the path length metric, for x↔ y, we have

d(Sx, Sy) ≤ qd(x, y) = q < 1 = d(idY (x), idY (y)).

The assertion follows from Theorem 2.9. �

5.3. Quasi-contractions.

Definition 5.5 ([14]). A self mapping S on a metric space (Y, d) is said to
be a quasi-contraction if and only if there exists a non-negative number q < 1
such that

d(Sx, Sy) ≤ qmax{d(x, y), d(x, Sx), d(y, Sy), d(x, Sy), d(y, Sx)}
∀ x, y ∈ Y

Theorem 3.4 of [20] is stated as follows.

Theorem 5.6. Let (Y, d, κ) be a digital metric space, where d is the shortest
path metric. Let S : Y → Y be a quasi-contraction. Then
(a) for all x ∈ Y , limi→∞ Six = u1 ∈ Y ;
(b) u1 is the unique fixed point of S, and

(c) d(Six, u1) ≤ qi

1−qd(x, Sx) for all x ∈ Y , i ∈ N, where q is as in Defini-
tion 5.5.
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As noted above, Theorem 5.6 is only valid when (X,κ) is connected. With
the inclusion of such a hypothesis, we show below how Theorem 5.6 can be
strengthened.

Theorem 5.7. Let (Y, d, κ) be a connected digital metric space, where d is the
shortest path metric. Let S : Y → Y be a quasi-contraction. Then there exists
u ∈ Y such that
(a) for every x ∈ Y there exists n0 ∈ N such that i ≥ n0 implies Six = u; and
(b) u is the unique fixed point of S.

Proof. Since (Y, d) is uniformly discrete, (a) of Theorem 5.6 implies Six = u
for almost all i. (b) follows immediately. �

6. θ-contraction assertion of [21]

The following set of functions Θ is defined in [21]. θ ∈ Θ if θ : [0,∞)→ [0,∞)
and

• θ is increasing;
• θ(0) = 0; and
• t > 0 implies 0 < θ(t) <

√
t.

Definition 6.1 ([21]). Let (X, d) be a metric space. Let T : X → X. Let
θ ∈ Θ. If d(Tx, Ty) ≤ θ(d(x, y)) for all x, y ∈ X, T is a digital θ-contraction.

The following is stated as the main result, Theorem 3.1, of [21].

Assertion 6.2. Suppose (X, d, `) is a digital metric space, θ ∈ Θ, and T : X →
X is a digital θ-contraction. Then T has a unique fixed point.

However, the argument offered as a proof of this assertion is flawed as follows.
A sequence {xn}∞n=1 ⊂ X is constructed such that {d(xn+1, xn)}∞n=1 is a strictly
decreasing sequence. The authors conclude that xn = xn+1 for large n. But this
does not follow, since it has not been shown that {d(xn+1, xn)}∞n=1 decreases
to 0.

We must conclude that Assertion 6.2 is unproven.
We note the following case, in which Assertion 6.2 reduces to triviality.

Proposition 6.3. Let (X, d, κ) be a connected digital metric space in which

• d is the shortest path metric, or
• d is any `p metric and κ = c1.

Then every θ-contraction on (X, d) is a constant map.

Proof. Suppose T is a θ-contraction on (X, d). Given κ-adjacent x0, y0 ∈ X,

d(Tx0, Ty0) ≤ θ(d(x0, y0)) <
√
d(x0, y0) = 1.

Hence d(Tx0, T y0) = 0. Since X is κ-connected, the assertion follows. �
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7. [25]’s contractions

We find the following stated as Theorem 3.1 of [25].

Assertion 7.1. Let (X, d, k) be a complete digital metric space with k-adjacency
where d is usual Euclidean metric for Zn and let f and g be self-mappings on
X satisfying the following conditions:

• f(X) ⊆ g(X);
• g is continuous; and
• for some q such that

0 < q < 1, and for every x, y ∈ X, d(fx, fy) ≤ qd(gx, gy). (7.1)

Then f and g have a unique common fixed point in X provided f and g
commute.

Notes:

• There is an error, perhaps a typo, in the argument given as a proof for
this assertion:

“d(yn, ym)→ 1” should be “d(yn, ym)→ 0”.

• The continuity assumed in (3.2) is of the ε−δ variety of analysis. Since
d is the Euclidean metric in Zn, all self-maps on the uniformly discrete
(Zn, d) or any of its subsets have this continuity. Therefore, we can
improve on the assertion of [25] as follows.

Theorem 7.2. Let (X, d) be a uniformly discrete metric space and let f and
g be self-mappings on X such that:

• f(X) ⊆ g(X);
• For some q such that 0 < q < 1 and every x, y ∈ X, d(fx, fy) ≤
qd(gx, gy).
• f and g commute.

Then f and g have a unique common fixed point in X.

Proof. We use ideas from [25]. Let x0 ∈ X. Since f(X) ⊆ g(X), take x1 such
that fx0 = gx1, and inductively, fxn = gxn+1. Then

d(fxn, fxn+1) ≤ qd(gxn, gxn+1) = qd(fxn−1, fxn).

An easy induction yields that

d(fxn, fxn+1) ≤ qnd(fx0, fx1)→n→∞ 0.

Thus, there exists z ∈ X such that for almost all m,n,

gxm+1 = fxm = fxn = gxn+1 = z.

Using the uniformly discrete and commutative properties, for almost all n,

d(gz, z) = d(gfxn, fxn) = d(fgxn, fxn) ≤ qd(ggxn, gxn) = qd(gz, z).

Thus, d(gz, z) = 0, so z is a fixed point of g.
Then

d(fz, z) = d(fz, fxn) ≤ qd(gz, gxn) = qd(gz, z) = 0,
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so z is a common fixed point of f and g.
To show the uniqueness of z, suppose z1 is a common fixed point of f and

g. Then

d(z, z1) = d(fz, fz1) ≤ qd(gz, gz1) = qd(z, z1),

which implies d(z, z1) = 0, i.e., z = z1. �

The following provides important cases in which Theorem 7.2, and therefore
Assertion 7.1, reduce to triviality.

Proposition 7.3. Let (X, d, κ) be a connected digital metric space, where

• d is the shortest path metric, or
• κ = c1 and d is an `p metric.

Suppose f and g are maps satisfying (7.1). If g is κ-continuous, then f is a
constant function.

Proof. Let x↔κ y in X. By (7.1), continuity, and our choices of d and κ,

d(fx, fy) ≤ qd(gx, gy) ≤ q < 1.

Hence fx = fy. Since X is connected, it follows as in the proof of Theorem 2.9
that f is constant. �

8. Weakly compatible mappings in [28]

Several papers, including [28], attribute the following definition to alleged
sources that do not contain it or, by virtue of their own citations, clearly are
not the source.

Definition 8.1. Let (X, d) be a metric space and f, g : X → X. We say f and
g are weakly compatible if they commute at coincidence points, i.e., f(x) = g(x)
implies f(g(x)) = g(f(x)).

The following is stated as Proposition 2.15 of [28].

Assertion 8.2. Let J,K : F → F be weakly compatible maps. If a point η is a
unique point of coincidence of mappings J and K, i.e., J(σ) = K(σ) = η, then
η is the unique common fixed point of J and K.

The argument given to prove Assertion 8.2 claims that J(σ) = K(σ) = η
implies J(σ) = J(K(σ)), and K(J(σ)) = K(σ). No reason is given to support
the latter equations, and there is no obvious reason to accept them. Therefore,
we must regard Assertion 8.2 as unproven.

The following is stated as Theorem 3.1 of [28].

Assertion 8.3. Let (F, d, Y ) be a digital metric space, where Y is an adjacency
and d is the Euclidean metric on Zn. Let J,K : F → F such that

• J(F ) ⊂ K(F ), and
• for some ξ such that 0 < ξ < 1/4,

d(Ju, Jq) ≤ ξ[d(Ju,Kq) + d(Jq,Ku) + d(Ju,Ku) + d(Jq,Kq)] ∀u, q ∈ F.

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 108



Remarks on fixed point assertions in digital topology, 7

If K(F ) is complete and J and F are weakly compatible, then there exists a
unique common fixed point in F for J and K.

The argument offered as proof of Assertion 8.3 depends on Assertion 8.2,
which, we have shown above, is unproven. Thus, we must regard Assertion 8.3
as unproven.

Remark 8.4. Example 3.2 of [28] asks us to consider as a digital metric space
(F, φ, Y ) where F = [0, 1], and the function J : F → F given by J(u) = 1

1+u .
But F clearly is not a subset of any Zn, and J is not integer-valued.

9. [31]’s common fixed point assertions

9.1. [31]’s Theorem 3.1. The following is stated as Theorem 3.1 of [31].

Assertion 9.1. Let (X, `, d) be a digital metric space. Let A,B : X → X with
B(X) ⊂ A(X). Let γ be a right continuous real function such that γ(a) < a
for a > 0. Suppose for all x, y ∈ X we have

d(Bx,By) ≤ γ(d(Ax,Ay)).

Then A and B have a unique common fixed point.

That Assertion 9.1 is incorrect is shown by the following.

Example 9.2. Let X = N and let d(x, y) = | x − y |. Let A(x) = x + 1,
B(x) = 2, γ(x) = x/2 for all x ∈ N. Clearly, the hypotheses of Assertion 9.1
are satisfied, but A has no fixed point.

9.2. [31]’s Theorem 3.2.

Definition 9.3. (Incorrectly attributed in [31] to [26]; found in [2])
Let f, g : X → X be functions. If there is a coincidence point x0 of f and g

at which f and g commute (i.e., f(x0) = g(x0) and f(g(x0)) = g(f(x0)), then
f and g are occasionally weakly compatible.

Let Φ be the set of functions φ : [0,∞) → [0,∞) such that φ is increasing,
φ(t) < t for t > 0, and φ(0) = 0.

Definition 9.4 ([30]). Let (X, d) be a metric space. Let α : X ×X → [0,∞).
Let φ, ψ ∈ Φ. Let T : X → X. If for all x, y ∈ X we have

α(x, y)ψ(d(Tx, Ty)) ≤ ψ(d(Tx, Ty))− φ(d(Tx, Ty))

then T is an α− ψ − φ contractive mapping.

Definition 9.5 ([29]). Let (X, d) be a metric space. Let T : X → X and α :
X×X → [0,∞). We say T is α-admissible if α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1.

The following is stated as Theorem 3.2 of [31].

Assertion 9.6. Let (X, `, d) be a digital metric space. Let S, T,A, and B be
α − ψ − φ contractive mappings of (X, d). Let the pairs (A,S) and (B, T ) be
occasionally weakly compatible. Suppose for all x, y ∈ X,

α(x, y)ψ(d(Ax,By)) ≤ ψ(M(x, y))− γ(M(x, y))
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where

M(x, y) = max

{
d(Sx, Ty), d(By, Sx), d(Sx,Ax), d(By, Ty), d(Ax, Ty),

2d(Sx,Ax)
1+d(By,Ty)

}
Then there is a unique fixed point of S, T,A, and B.

The argument offered as proof of Assertion 9.6 in [31] is marred by the
following flaws.

• The “γ” in the inequality should be “φ”.
• The argument starts:

Since A,B are α-admissible then for all x, y ∈ X, α(x, y) ≥ 1.
Notice it was not hypothesized that A and B are α-admissible. Even if
this is a mere omission, the conclusion would be unsupported; it does
not follow from Definition 9.5. The unproven allegation that α(x, y) ≥
1 is part of the argument that Ax = Sx = By = Ty, which in turn is
an important part of the uniqueness argument.
• No proof is offered for the claim of a fixed point for any of S, T,A, and
B.

We must conclude that Assertion 9.6 is unproven.

9.3. [31]’s Example 3.2. Example 3.2 of [31] wants us to consider the digital
metric space (N, d, 4), where d(x, y) = | x − y |. The paper fails to define
4-adjacency on N; perhaps 2-adjacency was intended.

Further flaws:

• It is claimed that functions A, B, S, and T have a common fixed point,
where

Ax = x+ 1, By = y + 1, Sx = x− 1, T y = y − 1.

But clearly none of these functions has a fixed point.
• We are asked to consider an inequality that uses functions ψ, α, and
ϕ that are not defined.

9.4. [31]’s M6. In [31], M6 is defined as the set of real-valued continuous func-
tions φ : [0, 1]6 → R such that

(A)
∫ φ(u.u.0,0,u,u)

0
ϕ(t)dt ≤ 0 implies u ≥ 0.

(B)
∫ φ(u.u.0,0,u,0)

0
ϕ(t)dt ≤ 0 implies u ≥ 0.

(C)
∫ φ(0,u.u.0,0,u)

0
ϕ(t)dt ≤ 0 implies u ≥ 0.

Notice the use of two different “phi” symbols, “φ” and “ϕ”.

• If this is intended, “ϕ” is undefined.
• If it is intended that “ϕ” should be “φ”, then every continuous function
φ : [0, 1]6 → R belongs to M6, since the domain of such a function
requires u, as a parameter of φ, to be nonnegative.

Example 3.3 of [31] claims a certain function φ satisfies (A) and (B) of the
definition of M6 and therefore belongs to M6, although no claim is made that
φ satisfies (C).
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10. [32]’s common fixed point assertions

The paper [32] presents five assertions concerning pairs of various types of
expansive self-mappings on digital images. Each of these assertions concludes
that the maps of the pair have common fixed points. We show below that all
of these assertions, “usually” or always, reduce to triviality: further, three of
them must be regarded as unproven in full generality due to errors in their
“proofs”.

We note that [32] uses “α-adjacent” for what we have been calling “cα-
adjacent”.

10.1. [32] Theorem 3.1. The assertion labeled in [32] as Theorem 3.3.1 is
clearly intended to be labeled Theorem 3.1. It is stated as follows.

Theorem 10.1 ([32]). Let (X, d, k) be a complete digital metric space and
suppose T1, T2 : X → X are continuous, onto mappings satisfying

d(T1x, T2y) ≥ αd(x, y) + β[d(x, T1x) + d(y, T2y)] (10.1)

for all x, y ∈ X, where α > 0, 1/2 ≤ β ≤ 1, and α + β > 1. Then T1 and T2

have a common fixed point in X.

See section 10.6 for discussion of the triviality of this assertion.

10.2. [32] Theorem 3.2. Theorem 3.2 of [32] is stated as follows.

Theorem 10.2 ([32]). Let (X, d, k) be a complete digital metric space and
suppose T1, T2 : X → X are continuous, onto mappings satisfying

d(T1x, T2y) ≥ αd(x, y) + β[d(x, T2y) + d(y, T1x)] (10.2)

for all x, y ∈ X, where α > 0, 1/2 ≤ β ≤ 1, and α + β > 1. Then T1 and T2

have a common fixed point in X.

See section 10.6 for discussion of the triviality of this assertion.

10.3. [32] “Theorem” 3.3. The following is stated as Theorem 3.3 of [32].

Assertion 10.3 ([32]). Let (X, d, k) be a complete digital metric space and
suppose T1, T2 : X → X are continuous, onto mappings satisfying

d(T1x, T2y) ≥ αd(x, y) + βd(x, T1x) + γd(y, T2y) + η[d(x, T1x) + d(y, T2y)]
(10.3)

for all x, y ∈ X, where

α ≥ −1, β > 0, γ ≤ 1/2, 1/2 < η ≤ 1, and α+ β + γ + η > 1.

Then T1 and T2 have a common fixed point in X.

The argument offered as proof of Assertion 10.3 creates a sequence {xn}∞n=1,
reaches an inequality

[1− (β + η)]d(x2n, x2n+1) ≥ (α+ γ + η)d(x2n+1, x2n+2)
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and claims to derive that

d(x2n, x2n+1) ≥ α+ γ + η

1− (β + η)
d(x2n+1, x2n+2).

This reasoning would be correct if we knew that 1− (β + η) > 0; however, we
don’t have such knowledge, since the hypotheses allow 1− (β + η) ≤ 0.

Thus, we must consider Assertion 10.3, as written, unproven.
See section 10.6 for discussion of the triviality of this assertion.

10.4. [32] “Theorem” 3.4. The following is stated as Theorem 3.4 of [32].

Assertion 10.4 ([32]). Let (X, d, k) be a complete digital metric space and
suppose T1, T2 : X → X are continuous, onto mappings satisfying

d(T1x, T2y) ≥ α[d(x, y)+d(x, T1x)+d(y, T2y)]+[βd(x, T2y)+d(y, T1x)] (10.4)

for all x, y ∈ X, where

α ≥ 0, β < 1, α+ β > 1.

Then T1 and T2 have a common fixed point.

It seems likely that “[βd(x, T2y)” is intended to be “β[d(x, T2y)”.
The “proof” of Assertion 10.4 in [32] contains errors similar to those in the

“proof” of Assertion 10.3. We discuss one of these errors.
The argument creates a sequence {xn}∞n=1, reaches the inequality

[1− (α+ β)]d(x2n, x2n+1) ≥ (2α+ 2β)d(x2n+1, x2n+2)

and claims to derive from it

d(x2n, x2n+1) ≥ 2α+ 2β

1− (α+ β)
d(x2n+1, x2n+2)

which does not follow, since by hypothesis, the denominator of the fraction is
negative.

Thus we must regard Assertion 10.4 as unproven.
See section 10.6 for discussion of the triviality of this assertion.

10.5. [32] “Theorem” 3.5. The following is stated as Theorem 3.5 of [32].

Assertion 10.5. Let (X, d) be a complete metric space and suppose T1, T2 :
X → X are continuous onto mappings satisfying

d(T1x, T2y) ≥

αmax{d(x, y), d(x, T1x), d(y, T2y)}+ βmax{d(x, T2y), d(x, y)}+ γd(x, y)
(10.5)

where

α ≥ 0, β > 0, γ ≤ 1, α+ β + γ > 1.

Then T1 and T2 have a common fixed point.
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The argument given as “proof” of Assertion 10.5 in [32] is flawed as follows.
A sequence {xn}∞n=1 ⊂ X is created and the following inequality is reached:

d(x2n+1, x2n+2) ≤ hd(x2n, x2n+1), where h =
1

α+ β + γ
(10.6)

An implicit induction is then used to claim that (10.5) implies

d(x2n, x2n+1) ≤ h2nd(x0, x1)

However, the reasoning is incorrect, since the left side of (10.6) requires the
smaller index to be odd, and there is no analog for the smaller index being
even.

See section 10.6 for discussion of the triviality of this assertion.

10.6. On triviality of assertions of [32]. We consider conditions under
which the assertions of [32] reduce to triviality. In the following, we require
all of the constants α, β, γ, and η to be positive (perhaps this was intended by
the authors of [32], but as written their assertions occasionally permit negative
values). In other ways, our hypotheses have greater generality, in that we omit
certain hypotheses of [32].

Proposition 10.6. Let (X, d) be a metric space and suppose T1, T2 : X → X
are mappings such that T2 is onto and for all x, y ∈ X, T1 and T2 satisfy
any of (10.1), (10.2), (10.3), (10.4), or (10.5) where all of α, β, γ, and η are
positive. Then T1 = T2 = idX . Further, if α > 1 then X has only one point.

Proof. Given x0 ∈ X, T2 being onto implies there exists y0 ∈ X such that
T1x0 = T2y0. Thus, for the pair (x0, y0), the left side each of (10.1), (10.2),
(10.3), (10.4), or (10.5) is 0, so each term of the right side is 0. Hence

x0 = y0 and d(x0, T1x0) = 0 = d(y0, T2y0).

Since x0 is an arbitrary member of X, it follows that T1 = T2 = idX .
But then each of (10.1), (10.2), (10.3), (10.4), or (10.5) implies

d(x, y) = d(T1x, T2y) ≥ αd(x, y),

which is impossible if x 6= y and α > 1. Thus α > 1 implies X has a single
point. �

11. Further remarks

We have continued the work of [12, 6, 7, 9, 10, 11] in discussing flaws in
some papers claiming fixed point results in digital topology. The literature of
digital topology includes many fixed point assertions that are correct, correctly
proven, and beautiful. However, papers we have considered here have many
errors and assertions that turn out to be trivial.

Although authors are responsible for their errors and other shortcomings, it
is clear that many of the papers studied in the current paper were reviewed
inadequately, and should have been rejected.
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