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Abstract

In the present paper we define the degree of nondensifiability (DND
for short) of a bounded linear operator T on a Banach space and an-
alyze its properties and relations with the Hausdorff measure of non-
compactness (MNC for short) of T . As an application of our results,
we have obtained a formula to find the essential spectral radius of a
bounded operator T on a Banach space as well as we have provided the
best possible lower bound for the Hyers-Ulam stability constant of T
in terms of the aforementioned DND.
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1. Introduction

Given two real Banach spaces X, Y , we designate by B(X,Y ) and K(X,Y )
the space of all bounded, or continuous, linear operators and the space of all
compact linear operators from X into Y , respectively. When X = Y , we will
write B(X) and K(X). We assume the domain of the operators is the whole
space X. For a Banach space (X, ‖·‖), UX denotes its closed unit ball and BX
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the class of all non-empty bounded subsets of X. For a subset B of X, B and
Conv(B) denote the closure and the convex hull of B, respectively.

It is a well known fact that the topological concept of compactness is crucial
in Mathematics. Likewise, such a concept plays a crucial role in the develop-
ment of distinct branches of Mathematical Analysis such as Fixed Point Theory,
Approximation Theory, Operator Theory, etc. For a more detailed exposition
and concrete results about the importance of the compactness notion, we refer
to [3].

The notion of a measure of non-compactness (MNC for short) of operators [3]
have been successfully applied, for instance, in the characterizations of compact
operators between Banach spaces (see, for instance, [10]). For concrete results
see [9, 36]. Hence, the first part of this section is devoted to recall some known
facts related with MNCs.

The theory of α-dense curves [29] appeared in 1997. This theory has been
developed and applied in many different directions such as optimization by
reduction of variables and fixed point theory, among others. An important
notion deduced from such theory is that of degree of non-densifiability (DND
for short) of a bounded set providing an intrinsic quantification of its non-
compactness by means of the Hausdorff distance [24] from the set to the nearest
Peano continuum [22, 40] that it contains. Therefore the DND becomes an
alternative to MNCs. Recently several mathematical questions (see for instance
[19]) have been addressed by using the concept of DND. On a general survey
on that theory and its applications we suggest to see [11, 13, 14, 15, 16, 17, 19,
27, 30, 31].

Since the definition of a MNC in a Banach space may vary slightly according
to the author (see, for instance, [2, 6]), below we will use the following definition
of MNC which is taken from [17]:

Definition 1.1. Let (X, ‖ · ‖) be a real Banach space and BX the class of all
non-empty bounded subsets of X. A mapping µ : BX −→ [0,+∞) is said to
be a MNC if it satisfies the following properties:

(i) Regularity: µ(B) = 0 if, and only if, B is a precompact set.
(ii) Invariant under closure: µ(B) = µ(B) for all B ∈ BX .

(iii) Semi-additivity: µ(A ∪B) = max {µ(A), µ(B)} for all A, B ∈ BX .
(iv) Semi-homogeneity: µ(λB) = |λ|µ(B) for all λ ∈ R and B ∈ BX .
(v) Invariant under translations: µ(x+B) = µ(B) for all x ∈ X and B ∈ BX .

For instance, two well known MNCs are those of Hausdorff and Kuratowski
defined as (see, for instance, [2, 6])

χ(B) := inf {ε > 0 : B covered by a finite number of balls of radii ≤ ε}

and

κ(B) := inf {ε > 0 : B covered by a finite number of subsets of diameters ≤ ε} ,

respectively.
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Definition 1.2. Let µ be a MNC, k ≥ 0 and X, Y Banach spaces. A con-
tinuous mapping T : X −→ Y such that T (B) ∈ BY if B ∈ BX is said to be
k − µ-contractive if µ(T (B)) ≤ kµ(B) for all B ∈ BX .

Although is remarkable the importance of k-µ-contractive operators on a
Banach space when k ∈ [0, 1) for the fixed point theory, here we focus on the
notion of MNC of an operator T ∈ B(X,Y ).

Definition 1.3. Given an operator T ∈ B(X,Y ) and a MNC µ, we define the
MNC of T as the number

µ̃(T ) := inf {k ≥ 0 : T is k − µ contractive} .

Some relevant results related with the MNC of a linear operator can be
found for instance in [2, Chapter 2], [5], [12, Chapter 1] and [36]. To facilitate
the reading of the manuscript we state the following result [36, Lemma 5.3]:

Proposition 1.4. Let X, Y , Z be Banach spaces, T , S ∈ B(X,Y ), R ∈
B(Y,Z) and χ the Hausdorff MNC. Then:

(1) χ̃(T ) = 0 if and only if T ∈ K(X,Y ).
(2) χ̃(T ) = χ

(
T (UX)

)
.

(3) χ̃(T + S) ≤ χ̃(T ) + χ̃(S).
(4) χ̃(R ◦ T ) ≤ χ̃(R)χ̃(T ).

2. The degree of non-densifiability of a bounded set

The initial idea of the α-dense theory [29] was to approximate, in the Haus-
dorff metric [24], a non-empty and bounded set B of a metric space by means
of a special class of compact sets, namely, the Peano continua [40] contained
in B. Therefore, we consider it convenient to recall the notion that gave rise
to such theory, namely, the notion of α-dense curve in a metric space [29].

Definition 2.1. Let B be a non-empty bounded subset of a metric space (E, d)
and α ≥ 0. A continuous mapping γ : [0, 1] −→ E is said to be an α-dense
curve in B if:

(1) γ([0, 1]) ⊂ B.
(2) For any x ∈ B there exists t ∈ [0, 1] such that d

(
x, γ(t)

)
≤ α.

Definition 2.2. A non-empty subset B of a metric space (E, d) is said to be
densifiable if for an arbitrary α > 0 there exists an α-dense curve in B.

Given α ≥ 0 and a non-empty bounded subset B of a metric space (E, d),
we define the class

Γα,B := {γ : [0, 1] −→ E such that γ is α-dense in B} . (2.1)

The class Γα,B is well defined, i.e. Γα,B 6= ∅. Indeed, as B 6= ∅, consider
a point x0 ∈ B and define the constant mapping γ(t) := x0 for all t ∈ [0, 1].
Then, since B is bounded, by taking α ≥ Diam(B), the diameter of B, it is
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obvious that γ is an α-dense curve in B. Therefore γ ∈ Γα,B and consequently
Γα,B 6= ∅. Now we can define the degree of non-densifiability of a bounded set
[17].

Definition 2.3. Let (E, d) be a metric space and B ⊂ E non-empty and
bounded. We define the degree of non-densifiability of B as the number

Φ(B) := inf {α ≥ 0 : Γα,B 6= ∅} . (2.2)

From above, given a non-empty and bounded set B of a metric space (E, d)
there is always an α ≥ 0 such that Γα,B 6= ∅. Therefore Φ(B) is well defined.

In [30] we can find a result on the role of the DND as an indicator of the
dimension of the space.

Proposition 2.4. Let (X, ‖·‖) be a Banach space. Then

Φ(UX) =

 0, if X has finite dimension

1, if X has infinite dimension
.

We need to use some properties of the DND that we can find in [16, 17]:

Proposition 2.5. In a metric space (E, d), let Φ be defined on the class BE
by formula (2.2) and let Barc,E be the subclass of all arc-connected sets of BE.
Then:

(i) If B ∈ Barc,E, Φ(B) = 0 if and only if B is precompact.

(ii) Φ(B) = Φ(B) for all B ∈ BE.
(iii) Φ(λB) = |λ|Φ(B) for all λ ∈ R and all B ∈ BE.
(iv) Φ(x+B) = Φ(B) for all x ∈ X and all B ∈ BE.
(v) Φ

(
Conv(B1∪B2)

)
≤ max

{
Φ
(
Conv(B1)

)
,Φ
(
Conv(B2)

)}
for all B1, B2 ∈

BE.
(vi) Φ(B1 +B2) ≤ Φ(B1) + Φ(B2) for all B1, B2 ∈ BE.

Definition 2.6. Let f : X −→ Y be a continuous mapping such that f(B) ∈
BY for all B ∈ BX , and k ≥ 0. Then, f is said to be k-DND-contractive if

Φ
(
f(B)

)
≤ kΦ(B) for all convex B ∈ BX . (2.3)

Lemma 2.7. Any T ∈ B(X,Y ) is a k-DND-contractive mapping for any k ≥
‖T‖.

Proof. Let B ∈ BX be a convex set of X. Since T is linear and bounded, or

equivalently continuous, its norm is given by the formula ‖T‖ = supx6=0
‖T (x)‖
‖x‖ .

Therefore ‖T (x)‖ ≤ ‖T‖ ‖x‖ for all x ∈ X. Furthermore, noticing that B is
convex, T (B) is a bounded and convex set of Y . Let γ : [0, 1] −→ X be an
α-dense curve in B for some α ≥ 0. Then T ◦ γ : [0, 1] −→ Y is clearly an
α ‖T‖-dense curve in T (B). Hence, by (2.2), Φ(T (B)) ≤ α ‖T‖. Given an
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arbitrary α > Φ(B), from (2.2), there exists an α-dense curve in B. Therefore
Φ(T (B)) ≤ ‖T‖Φ(B). Consequently (2.3) is fulfilled for all k ≥ ‖T‖ and for
all convex B ∈ BX . This completes the proof. �

3. The degree of nondensifiability of a bounded operator

Let us note that Lemma 2.7 allows us to justify the next definition is well
done.

Definition 3.1. For every T ∈ B(X,Y ) we define the DND of T as the number

Φ̃(T ) := inf {k ≥ 0 : T is k-DND- contractive} . (3.1)

Some properties of the DND of an operator are given in the next result.

Proposition 3.2. Let X, Y , Z be Banach spaces, T , S ∈ B(X,Y ) and R ∈
B(Y,Z). Then:

(1) Φ
(
T (UX)

)
≤ Φ̃(T ) ≤ ‖T‖.

(2) Φ̃(T ) = 0 if, and only if, T ∈ K(X,Y ).

(3) Φ̃(R ◦ S) ≤ Φ̃(R)Φ̃(S).

(4) Φ̃(λT ) = |λ| Φ̃(T ) for all λ ∈ R.

Proof. (1) Firstly assume X has finite dimension, then UX is compact. Since
T is continuous, T (UX) is compact, so precompact. On the other hand, since
UX is convex and T linear, then T (UX) is convex, so, in particular, arc-
connected. Therefore T (UX) is an arc-connected and precompact set of Y .
Then, by property (1) of Proposition 2.5, Φ(T (UX)) = 0. Hence the inequality

Φ(T (UX)) ≤ Φ̃(T ) follows. Regarding the inequality Φ̃(T ) ≤ ‖T‖, by applying

Lemma 2.7, T is ‖T‖-DND-contractive. Then by (3.1), Φ̃(T ) ≤ ‖T‖. Conse-
quently (1) is true when X has finite dimension.

If X has infinite dimension, by Proposition 2.4, Φ(UX) = 1. Under the

assumption Φ(T (UX)) > Φ̃(T ), determineK such that Φ̃(T ) < K < Φ(T (UX)).

Then, by (3.1), T is k-contractive for some k such that Φ̃(T ) ≤ k < K. Hence,
by (2.3), Φ(T (B)) ≤ kΦ(B) for all convex B ∈ BX . Therefore, by taking
B = UX , we have Φ(T (UX)) ≤ k. Then, we get

Φ
(
T (UX)

)
≤ k < K < Φ

(
T (UX)

)
,

which is a contradiction. Finally, the inequality Φ̃(T ) ≤ ‖T‖ follows from
Lemma 2.7, so (1) is proved.

(2) If T ∈ K(X,Y ), T (B) is precompact for all bounded set B. Then, by
applying property (1) of Proposition 2.5, Φ(T (B)) = 0 for all convex B ∈ BX .
Therefore, from (2.3), T is k-DND-contractive for all k ≥ 0. Hence, by (3.1),

Φ̃(T ) = 0. Reciprocally, assume Φ̃(T ) = 0, then T is k-DND-contractive for
all k ≥ 0. Therefore, from (2.3), Φ(T (B)) = 0 for all convex B ∈ BX . Since
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T is linear and continuous, T (B) is convex, so in particular T (B) is an arc-
connected and bounded set of X. Then, by using property (1) of Proposition
2.5, T (B) is precompact. This means that T ∈ K(X,Y ).

(3) Put kR := Φ̃(R) and kS := Φ̃(S). Given ε > 0, by (3.1), R and S are
kR + ε and (kS + ε)-DND-contractive, respectively. Therefore, we have

Φ
(
S(B)

)
≤ (kS + ε)Φ(B), for all convex B ∈ BX (3.2)

and

Φ
(
R(C)

)
≤ (kR + ε)Φ(C), for all convex C ∈ BY . (3.3)

Then, by taking C = S(B) with B an arbitrary convex set belonging to BX ,
from (3.2), we get

Φ
(
R(S(B))

)
≤ (kR + ε)Φ

(
S(B)

)
. (3.4)

Hence, from (3.4) and by using (3.2), we obtain

Φ
(
(R ◦ S)(B) ≤ (kR + ε

)
Φ
(
S(B)

)
≤ (kR + ε)(kS + ε)Φ(B), (3.5)

for all convex B ∈ BX . Since ε is arbitrary, the inequality (3.5) means that
R ◦ S is kRkS-DND-contractive. Therefore, from (3.1), we have

Φ̃(R ◦ S) ≤ kRkS = Φ̃(R)Φ̃(S),

and (3) follows.

(4) If λ = 0, then the equality Φ̃(λT ) = |λ| Φ̃(T ) is trivial, so assume λ 6= 0.

Put kT := Φ̃(T ). Given ε > 0, by (3.1), T is (kT + ε)-DND-contractive. Hence,
Φ(T (B)) ≤ (kT + ε)Φ(B) for all convex B ∈ BX . Therefore, since T is linear,
we have

Φ
(
λT (B)

)
= Φ

(
T (λB)

)
≤ (kT + ε)Φ(λB), for all convex B ∈ BX . (3.6)

Now, by applying property (3) of Proposition 2.5 to the last term of (3.6), we
get

(kT + ε)Φ(λB) = (kT + ε) |λ|Φ(B).

Therefore

Φ
(
λT (B)

)
≤ (kT + ε) |λ|Φ(B), for all convex B ∈ BX .

This means that the operator λT is (kT+ε) |λ|-DND-contractive and then, since
ε is arbitrary, λT is kT |λ|-DND-contractive. Therefore, from (3.1), it follows

that Φ̃(λT ) ≤ |λ| kT = |λ| Φ̃(T ) for all λ ∈ R. Assume Φ̃(λT ) < |λ| Φ̃(T ) for

some λ 6= 0. Take k > 0 such that Φ̃(λT ) < k < |λ| Φ̃(T ), so k/ |λ| < Φ̃(T ).
This means that T is not k/ |λ|-DND-contractive. Hence there is some convex
C ∈ BX such that Φ(T (C)) > (k/ |λ|)Φ(C). Then |λ|Φ(T (C)) > kΦ(C).
But by property (3) of Proposition 2.5, |λ|Φ(T (C)) = Φ(λT (C)) and then
Φ(λT (C)) > kΦ(C), which implies that λT is not k-DND-contractive. This is

a contradiction because Φ̃(λT ) < k. Consequently, Φ̃(λT ) = |λ| Φ̃(T ). �
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The inequality Φ̃(T ) ≤ ‖T‖ of property (1) of Proposition 3.2 is the best
possible. Indeed, firstly we point out that by virtue of (2) of Proposition 3.2,

if T ∈ K(X,Y ) and T 6= 0, then Φ̃(T ) = 0 but ‖T‖ > 0. Therefore, in this

case the inequality Φ̃(T ) ≤ ‖T‖ is strict for T 6= 0 and becomes an equality for
T = 0. Less trivial is the following example.

Example 3.3. Let `1 be the Bancah space of absolute value summable real
sequences, endowed with its usual norm ‖x‖ :=

∑∞
n=1 |xn|, for each x = (xn)n ∈

`1. Define the operator T : `1 −→ `1 by

T (x) :=
(3

4
x1,

1

4
x1,

1

4
x2 . . . ,

1

4
xn, . . .

)
, for all x = (xn)n ∈ `1.

Then Φ(T (U`1)) < ‖T‖.
It is obvious that T is linear. On the other hand, T is bounded on U`1

because

‖T (x)‖ =
3

4
|x1|+

1

4

∞∑
n=1

|xn| =
3

4
|x1|+

1

4
‖x‖ ≤ 3

4
‖x‖+

1

4
‖x‖ = ‖x‖ ≤ 1

for all x ∈ U`1 . Therefore T is continuous or equivalently bounded. Moreover,
for x0 = (1, 0, . . . , 0 . . .) ∈ U`1 , T (x0) = (3/4, 1/4, . . . , 0 . . .), so ‖T (x0)‖ = 1
an then ‖T‖ = 1. Consider y0 := T (x0) with x0 = (1, 0, . . . , 0 . . .) ∈ U`1 and
define the set

A := {(1− λ)y0 + λ(−y0) : λ ∈ [0, 1]} = {(1− 2λ)y0 : λ ∈ [0, 1]} .

Since T (U`1) is convex and y0 = T (x0), −y0 = T (−x0) ∈ T (U`1), we have
A ⊂ T (U`1). Define γ : [0, 1] −→ `1 as γ(λ) := (1 − 2λ)y0. Then it is obvious
that γ is continuous and γ([0, 1]) = A ⊂ T (U`1). Let x = (xn)n be an arbitrary
point of U`1 , then |x1| ≤ ‖x‖ ≤ 1. Take λx = 1−x1

2 , then

‖T (x)− γ(λx)‖ = ‖
(3

4
x1,

1

4
x1,

1

4
x2, . . .

)
−
(3

4
x1,

1

4
x1, 0, . . .

)
‖ =

∥∥(0, 0, 1

4
x2, . . .

)
‖ =

1

4
|x2|+ . . . ≤ 1

4
.

This means that γ is 1
4 -dense in T (U`1), so Φ(T (U`1)) ≤ 1/4. Then, noticing

‖T‖ = 1, it follows that Φ(T (U`1)) < ‖T‖.

Now, we show an example where the inequality Φ̃(T ) ≤ ‖T‖ is an equality.

Example 3.4. Let C(I) be the space of continuous real functions on I = [0, 1]
endowed with the supremum norm. Define the operator T : C(I) −→ C(I) by

T (x(t)) = tx(t), t ∈ I. Then Φ̃(T ) = ‖T‖.
It is obvious that T is linear. Also T is bounded on UC(I) because∥∥T (x(t)

)∥∥ =
∥∥t(x(t)

)∥∥ = sup
t∈I
|tx(t)| = sup

t∈I
|x(t)| = ‖x(t)‖ ≤ 1

for all x(t) ∈ UC(I). Therefore T is a continuous or, equivalently, a bounded
operator. Moreover, for the function x(t) := t that belongs to UC(I), one has
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‖T (x)‖ =
∥∥t2∥∥ = 1 and then ‖T‖ = 1. Hence, by property (1) of Proposition

3.2, Φ̃(T ) ≤ 1. Define the set

C :=
{
x(t) ∈ C(I) : 0 = x(0) ≤ x(t) ≤ x(1) = 1, t ∈ I

}
.

It is immediate that C is a bounded and convex set of C(I). In [13, Example
3.4] it was proved that Φ(C) = 1 and by using the same technique it can be

also proved that Φ(T (C)) = 1. Then Φ̃(T ) = 1 and consequently Φ̃(T ) = ‖T‖.

In the next example we demonstrate that the inequality Φ(T (UX)) ≤ Φ̃(T )
that appears in (1) of Proposition 3.2 can be strict. Furthermore, such example
shows that Φ is distinct from the MNC of Hausdorff χ.

Example 3.5. Let `1 be the Banach space of Example 3.3 and c the space
of convergent real sequences y = (yn)n≥1 endowed with the supremum norm
‖y‖∞ := supn |yn|. Consider the product space X := `1 × c with the norm

‖(x, y)‖2 = ‖x‖21 + ‖y‖2∞ and define the operator T : X −→ X as T ((x, y)) :=

(0, x). Then Φ(T (UX)) < Φ̃(T ). Furthermore χ̃(T ) < Φ̃(T ).
Indeed, it is obvious that T is linear. T is bounded on UX because∥∥T ((x, y)

)∥∥ = ‖(0, x)‖ = ‖x‖∞ ≤ 1

for all (x, y) ∈ UX . Therefore T is a continuous or, equivalently, a bounded
operator. Moreover, by taking x0 = (1, 0, . . .) and y0 = (0, 0, . . .), so (x0, y0) ∈
UX , we have ‖T ((x0, y0))‖ = ‖(0, x0))‖ = ‖x0‖∞ = 1 and then ‖T‖ = 1.
Consider the bounded and convex set C := U`1 × Uc and define the curve
γ : [0, 1] −→ X as γ(t) := (0, 0) for all t ∈ [0, 1]. Then it is immediate

that γ is
√

2-dense in C and 1-dense in T (C). Therefore, Φ(C) ≤
√

2 and
Φ(T (C)) ≤ 1. Take 0 < ε < 1, then there exists a (Φ(T (C)) + ε)-dense
curve in T (C), Γ : [0, 1] −→ X. Noticing the definition of T , Γ(t) = (0, η(t))
for some curve η : [0, 1] −→ `1 with η([0, 1]) ⊂ U`1 . Taking into account
that η([0, 1]) is compact, given ε, there exists an integer N > 1 such that if
x = (xn)n ∈ η([0, 1]), then |xn| ≤ ε for all n ≥ N (see [6, Theorem II.4.1]). For
that N , define the vector xN := (xN,n)n of `1 as

xN,n :=

 0, , if n 6= N

1, if n = N
.

Then (xN , xN ) ∈ C, so T ((xN , xN )) = (0, xN ) ∈ T (C). Hence there exists
some t ∈ [0, 1] such ‖(0, xN )− Γ(t)‖ ≤ Φ(T (C)) + ε. But Γ(t) = (0, η(t)) with
η(t) = (xt,n)n and then

Φ
(
T (C)

)
+ ε ≥ ‖(0, xN )− Γ(t)‖ =

∥∥(0, xN )− (0, η(t)
)∥∥ =∥∥(0, xN − η(t))

)∥∥ = ‖xN − η(t)‖∞ ≥ |1− xt,N | ≥ 1− ε

Since ε is arbitrary, the above inequality proves that Φ(T (C)) ≥ 1 and then,
taking into account that Φ(T (C)) ≤ 1, it implies that Φ(T (C)) = 1. Now we
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claim that

Φ̃(T ) ≥ 1/
√

2. (3.7)

Indeed, if Φ̃(T ) < 1/
√

2, determine k such that Φ̃(T ) < k < 1/
√

2 and then
T is k-DND-contractive, i.e. Φ(T (B)) ≤ kΦ(B) for all convex and bounded
non-empty set B. By taking B = C we get the following contradiction

1 = Φ(T (C) ≤ kΦ(C) ≤ k
√

2 < 1.

On the other hand, it was proved in [2, Example 2.4.11] (see also [5, Example
3.1]) that T (UX) has a compact that is a 1

2 -net. That is, there exists a compact
K ⊂ T (UX) such that

T (UX) ⊂ K +
1

2
UX . (3.8)

Then by taking ε > 0, because of the compactness of K, there is a finite set
{yi : i = 1, . . . ,m} ⊂ K such that

K ⊂ {yi : i = 1, . . . ,m}+ εUX . (3.9)

Since {yi : i = 1, . . . ,m} ⊂ K ⊂ T (UX), and T (UX) is convex, the polygonal
obtained by joining the points {yi : i = 1, . . . ,m} defines a curve γ : I −→ X
with γ(I) ⊂ T (UX) satisfying, by virtue of (3.8) and (3.9), the following:

(i) Given y ∈ T (UX) there exists yK ∈ K such that ‖y − yK‖ ≤ 1
2 .

(ii) Given yK ∈ K, for some yi with i = 1, . . . ,m is ‖yK − yi‖ ≤ ε.
(iii) For each i = 1, . . . ,m there exists ti ∈ I such that yi = γ(ti) .

Then, given y ∈ T (UX), (i), (ii) and (iii) imply the existence of some ti ∈ I
such that

‖y − γ(ti)‖ ≤ ‖y − yK‖+ ‖yK − γ(ti)‖ ≤
1

2
+ ε.

This means that γ is a curve ( 1
2 + ε)-dense in T (UX). Since ε is arbitrary, γ is

a curve 1
2 -dense in T (UX) and then Φ(T (UX)) ≤ 1

2 . Hence, from (3.7), we get

Φ
(
T (UX)

)
≤ 1

2
<

1√
2
≤ Φ̃(T ).

Consequently the first part of the example follows. Regarding the second part,
in [2, Example 2.4.11] it was proved that χ̃(T ) ≤ 1

2 and then, since we have

previously demonstrated that Φ̃(T ) ≥ 1√
2
, it follows χ̃(T ) < Φ̃(T ).

In the next result, given an operator T ∈ B(X,Y ), we relate the numbers

Φ̃(T ) and χ̃(T ), where χ is the Hausdorff MNC.

Theorem 3.6. Let X,Y be Banach spaces and T ∈ B(X,Y ). Then

χ̃(T ) ≤ Φ̃(T ) ≤ 2χ̃(T ). (3.10)

Proof. Given ε > 0, by using (3.1), T is (χ̃(T )+ε)-χ-contractive. Then for any
bounded and convex B of X it follows

χ
(
T (B)

)
≤
(
χ̃(T ) + ε

)
χ(B). (3.11)
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From [17, Theorem 2.5] we have χ(B) ≤ Φ(B) ≤ 2χ(B), so from (3.11), we get

Φ
(
T (B)

)
≤ 2(χ

(
T (B)

)
≤ 2
(
χ̃(T ) + ε

)
χ(B) ≤ 2

(
χ̃(T ) + ε

)
Φ(B)

which means that T is 2(χ̃(T )+ε)-DND-contractive and then Φ̃(T ) ≤ 2(χ̃(T )+
ε). Since ε > 0 is arbitrary, we deduce

Φ̃(T ) ≤ 2χ̃(T ). (3.12)

On the other hand, by (2) of Proposition 1.4, one has χ̃(T ) = χ(T (UX)). Again
by using [17, Theorem 2.5] and property (1) of Proposition 3.2, we get

χ̃(T ) = χ
(
T (UX)

)
≤ Φ

(
T (UX)

)
≤ Φ̃(T ),

that jointly with (3.12) prove the inequalities (3.10). �

As an application of above theorem and the Proposition 1.4, we obtain a

result on the properties of Φ̃(T ) that completes the Proposition 3.2.

Proposition 3.7. Let X,Y be Banach spaces and T, S ∈ B(X,Y ). Then

Φ̃(T + S) ≤ 2
(
Φ̃(T ) + Φ̃(S)

)
. (3.13)

Proof. From (3.10), Φ̃(T + S) ≤ 2χ̃(T + S). Then, by using property (3) of
Proposition 1.4 and again (3.10), we have

Φ̃(T + S) ≤ 2χ̃(T + S) ≤ 2
(
χ̃(T ) + χ̃(S)

)
≤ 2
(
Φ̃(T ) + Φ̃(S)

)
.

�

The above inequalities (3.13) allow us to complete Example 3.3.

Example 3.8. Let `1 be the Banach space of Example 3.3. Define the operator

T : `1 −→ `1 by T (x) :=
(

3
4x1,

1
4x1,

1
4x2 . . . ,

1
4xn, . . .

)
. Then Φ̃(T ) < ‖T‖.

Indeed, in Example 3.3 it was proved that ‖T‖ = 1. Observe that the
operator T can be written as T = R + S where R(x) := ( 3

4x1, 0, . . .) and

S(x) := (0, 1
4x1,

1
4x2, . . .). It is immediate that R is a compact operator because

R(`1) is a finite dimensional subspace of `1, so from (2) of Proposition 3.2,

Φ̃(R) = 0. On the other hand, we easily can check that ‖S‖ = 1
4 , so S is 1

4 -

DND-contractive, i.e. it satisfies Φ(S(B)) ≤ 1
4Φ(B) for all convex and bounded

non-empty set B of `1. Therefore, from (3.1), Φ̃(S) ≤ 1
4 . Then, by applying

(3.13), we have

Φ̃(T ) = Φ̃(R+ S) ≤ 2
(
Φ̃(R) + Φ̃(S)

)
≤ 1

2
.

Noticing ‖T‖ = 1, the inequality Φ̃(T ) < ‖T‖ follows.

Another application of Theorem 3.6 gives us an example of an operator T
for which its DND is distinct from its MNC of Kuratowski κ̃(T ).
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Example 3.9. Let C(I) be the space of continuous real functions defined on
I = [0, 1] endowed with the supremum norm. Define the operator T : C(I) −→
C(I) by

T
(
x(t)

)
=


1
2x(2t) + 1

2x(0) if 0 ≤ t ≤ 1
2

1
2x(2t− 1) + 1

2x(1) if 1
2 < t ≤ 1

, x(t) ∈ C(I).

Then κ̃(T ) < Φ̃(T ). Indeed, in [6, Example X.2] was proved that κ̃(T ) = 1
2 and

χ̃(T ) = 1. Now by applying the first inequality of (3.10), i.e. χ̃(T ) ≤ Φ̃(T ), we

deduce that Φ̃(T ) ≥ 1 and then, since κ̃(T ) = 1
2 , we have that κ̃(T ) < Φ̃(T ).

As an application of Theorem 3.6 we obtain a new formula to find the es-
sential spectral radius re(T ) of a bounded operator T on a Banach space (see
[12, 36]) in terms of the DND of T .

Proposition 3.10. Let T be a bounded operator on a Banach space (X, ‖ · ‖),
then

re(T ) = lim
n−→∞

[
Φ̃(Tn)

]1/n
, (3.14)

where Tn denotes the composition of T itself n-times.

Proof. We know (see [12, 36]) that re(T ) = limn−→∞ [χ̃(Tn)]
1/n

, where χ is the
Hausdorff MNC. Then, from (3.10) and taken into account that limn 21/n = 1,
the formula (3.14) follows. �

4. A lower bound for the Hyers-Ulam stability constant of an
operator

In 1940, Ulam [39] raised the problem that, for an approximate solution of
a given functional equation, there is a solution of that equation that is close to
the approximated given one. This problem was solved, in the context of Banach
spaces, by Hyers [21] one year later. Thereafter this result was improved by
Aoki [4], Bourgin [7] and Rassias [35] and many others authors. For a detailed
exposition on that topic, we refer to the monograph [23].

Firstly we recall the notion of Hyers-Ulam stability of an operator (see for
instance [38]).

Definition 4.1. An operator T ∈ B(X,Y ) is said to have the Hyers-Ulam
stability if there exists a constant K > 0, called a Hyers-Ulam stability constant
(an HUS constant for T for short ), such that for any g ∈ T (X), f ∈ X and
ε > 0 satisfying ‖T (f)− g‖ ≤ ε, there exists f0 ∈ X with T (f0) = g and
‖f − f0‖ ≤ Kε.

Definition 4.2. Given an operator T ∈ B(X,Y ), the number

KT := inf {K : K is an HUS constant for T}

is called the Hyers-Ulam stability constant of T .
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It is worth to stress that in general KT is not necessarily a HUS constant
for T such as it was demonstrated in [20].

For a detailed exposition of the Hyers-Ulam stability of a linear operator, see
[8] and references therein. The Hyers-Ulam stability has been studied for the
so called positive linear operators [32, 33, 34] for linear integral [41], differential
[25, 26], difference [9, 33] and real and complex functional equations (on this last
topic see for instance [18, 28]), among others. Hence, this topic is interesting
by its many applications. In this section our goal is to relate, under suitable

conditions, the numbers KT and Φ̃(T ). To set the notation, for a given operator
T ∈ B(X,Y ) we write

T̂ : X/ kerT −→ Y

for the one-to-one linear operator defined as T̂ (x̂) := T (x), where x is a repre-
sentative of the equivalence class x̂.

The result [38, Theorem 2] is crucial for our goal:

Theorem 4.3. Let X,Y be Banach spaces and T ∈ B(X,Y ). The following
statements are equivalent:

(1) T has the Hyers-Ulam stability.
(2) T has closed range.

(3) (T̂ )−1 is bounded.

Moreover, if one of (hence all of) the conditions (1), (2) and (3) is true, then

we have KT = ‖(T̂ )−1‖ .

Assume X and Y Banach spaces. Then if T ∈ B(X,Y ) has the Hyers-

Ulam stability it is immediate that 1 ≤ ‖T̂‖‖(T̂ )−1‖. Therefore by the above

theorem, 1 ≤ ‖T̂‖KT . Hence

1

‖T̂‖
≤ KT .

In the next result we obtain a sharp lower bound for KT .

Theorem 4.4. Let X,Y be Banach spaces and T ∈ B(X,Y ) having the Hyers-
Ulam stability. If T (X) is a subspace of Y of infinite dimension, then

1

Φ̃(T̂ )
≤ KT . (4.1)

Moreover, the above inequality is the best possible.

Proof. By (2) of Theorem 4.3, T (X) is a closed subspace of Y , so T (X) is a
Banach space. Since T (X) is a subspace of Y of infinite dimension, then we

claim that Φ̃(T ) > 0. Indeed, if Φ̃(T ) = 0, from (2) of Proposition 3.2, T would
be a compact operator. Then by applying [37, Theorem 4.18], dimT (X) <∞.

This contradicts the fact that T (X) has infinite dimension. Therefore Φ̃(T ) >
0, as claimed. By using properties (3) and (1) of Proposition 3.2 and taking
into account Theorem 4.3, we get

1 = Φ̃((T̂ )−1 ◦ T̂ ) ≤ Φ̃((T̂ )−1)Φ̃(T̂ ) ≤ ‖(T̂ )−1‖Φ̃(T̂ ) = KT Φ̃(T̂ )
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and then inequality (4.1) follows.
Assume X = Y and T : X −→ X is the identity IX . Then it is immediate

to check that T has the Hyers-Ulam stability and the constant KT = 1. Since

in this case T̂ = (T̂ )−1 = T = IX , we have Φ̃(T̂ ) = 1 and then inequality (4.1)
becomes an equality. Therefore it only remains to give an operator T for which
inequality (4.1) to be strict. Indeed, let X = C(I) be as in Example 3.9. Define
the bounded operator T : X −→ X by

T
(
x(t)

)
:=
(
(t− 1

2
)2 + 1

)
x
(
ϕ(t)

)
, x(t) ∈ X, t ∈ I,

where

ϕ(t) :=

 0, if 0 ≤ t ≤ 1
2

2t− 1, if 1
2 < t ≤ 1

.

In [38] was proved that KT = 1. On the other hand, since T is injective, T̂ = T .

So it is enough to prove that Φ̃(T ) ≥ 5/4 to show that inequality (4.1) is strict.
Consider the set

C := Conv {xn(t) := tn, n ≥ 1, t ∈ I}

and put x0(t) := (t − 1/2)2 + 1, t ∈ I. In a Banach space, for any subset
A one has Diam(A) = Diam(Conv(A)) ( see for instance [6, Remark II.2.2]).
Then, since Diam({xn(t) := tn, n ≥ 1, t ∈ I}) ≤ 1 it follows that Diam(C) ≤ 1.
Hence, noticing ‖x0(t)‖ = 5/4, for arbitrary functions x(t), y(t) ∈ C, we have∥∥T (x(t)

)
− T

(
y(t)

)∥∥ =
∥∥x0(t)

[
x
(
ϕ(t)

)
− y
(
ϕ(t)

)]∥∥ ≤
‖x0(t)‖

∥∥x(ϕ(t)
)
− y
(
ϕ(t)

)∥∥ ≤ 5

4
.

This means that Diam(T (C)) ≤ 5/4, so Φ(T (C)) ≤ 5/4 (see (2.1) and (2.2)).
Now we claim that Φ(T (C)) = 5/4. Indeed, assume Φ(T (C)) < 5/4. Then
there exists some curve α-dense γ : I −→ X in T (C) with 0 ≤ α < 5/4. Take
0 < ε < 5/8 such that 2ε < 5/4−α. Since γ(I) is a compact in T (C), by Ascoli
theorem [37, p. 394], there exists δ > 0 such that for all y(t) ∈ γ(I) one has

|y(t)− y(t′)| ≤ ε provided that |t− t′| ≤ δ. (4.2)

Noticing y(t) ∈ γ(I) ⊂ T (C), y(t) = T (x(t)) for some x(t) ∈ C. But for any
x(t) ∈ C, one has x(1) = 1 and then

y(1) = T
(
x(1)

)
=

5

4
x
(
ϕ(1)

)
=

5

4
x(1) =

5

4
.

Therefore, by taking t′ = 1 in (4.2), for all y(t) ∈ γ(I) we get∣∣y(t)− 5

4

∣∣ ≤ ε, provided that 1− t ≤ δ

and this implies that

y(t) ≥ 5

4
− ε, for all t ∈ I, with 1− t ≤ δ. (4.3)
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Pick t0 > 1/2 a point of I such that 1− t0 ≤ δ. Determine n sufficiently large
such that

T
(
xn(t0)

)
= x0(t0)

(
ϕ(t0)

)n
= ((t0 −

1

2
)2 + 1)(2t0 − 1)n ≤ ε. (4.4)

For this n, consider the function xn(t) = tn ∈ C, so T (xn(t)) ∈ T (C). By α-
density of γ, there exists y(t) ∈ γ(I) such that ‖y(t)− T (xn(t))‖ ≤ α. However,
from (4.4) and (4.3) and taking into account the choice of ε, we are led to the
following contradiction

α ≥
∥∥y(t)− T

(
xn(t)

)∥∥ ≥ ∣∣y(t0)− T
(
xn(t0)

)∣∣ = y(t0)−T
(
xn(t0)

)
≥ 5

4
−2ε > α.

Then the claim is true. Noticing Φ(C) = 1 (see [13, Example 3.4]), we have

Φ
(
T (C)

)
=

5

4
Φ(C). (4.5)

This means that T is k-DND-contractive for k ≥ 5
4 . Otherwise, for some k < 5

4 ,
we have Φ(T (B)) ≤ kΦ(B) for all convex B ∈ BX which contradicts (4.5). By

using (3.1), we obtain Φ̃(T ) ≥ 5
4 that is the desired inequality. This proves the

theorem. �
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Económica, Paris, 2005.

[12] D. E. Edmuns and W. D. Evans, Spectral Theory and Differential Operators, Oxford
University Press, 1987.

[13] G. Garćıa, A quantitative version of the Arzelá-Ascoli theorem based on the degree of

nondensifiability and applications, Appl. Gen. Topol. 10 (2019), 265–279.
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G. Garćıa and G. Mora

[39] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York (1960).

[40] S. Willard, General Topology, Dover Inc. Pubs., New York 1970.

[41] A. Zada, U. Riaz and F. Khan, Hyers-Ulam stability of impulsive integral equations,
Bollettino dell Unione Matematica Italiana 12 (2019), 453–467.

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 228


