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Abstract

Consider the ring M◦(X,µ) of functions which are discontinuous on
a set of measure zero which is introduced and studied extensively
in [2]. In this paper, we introduce a ring B1(X,µ) of functions
which are pointwise limits of sequences of functions in M◦(X,µ). We
study various properties of zero sets, B1(X,µ)-separated and B1(X,µ)-
embedded subsets of B1(X,µ) and also establish an analogous ver-
sion of Urysohn’s extension theorem. We investigate a connection be-
tween ideals of B1(X,µ) and ZB-filters on X. We study an analogue
of Gelfand-Kolmogoroff theorem in our setting. We define real maxi-
mal ideals of B1(X,µ) and establish the result |RMax(M◦(X,µ))| =
|RMax(B1(X,µ))|, where RMax(M◦(X,µ)) and RMax(B1(X,µ))
are the sets of all real maximal ideals of M◦(X,µ) and B1(X,µ), re-
spectively.
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Introduction

Let (X, τ) be a T1 topological space. Let A be a σ-algebra containing τ ,
which is defined as follows: A is a collection of subsets ofX satisfying (i)X ∈ A,
(ii) A is closed under complementation and (iii) A is closed under countable
union. A mapping µ : A → [0,∞) is called a measure on (X,A) if µ(∅) = 0 and
satisfies the countable additive property i.e., for any countable family {An : n ∈

N} of pairwise disjoint members of A, µ(

∞⋃
n=1

An) =

∞∑
n=1

µ(An). The quadruplet

(X, τ,A, µ) is called a τAµ-space. The collection M◦(X,µ) = {f ∈ RX : the
measure of discontinuity-set Df of f is zero} is a lattice ordered ring, discussed
extensively in [2]. Now we define B1(X,µ) = {f ∈ RX : there exists a sequence
{fn} in M◦(X,µ) such that {fn} converges to f pointwise}. Then B1(X,µ)
is a commutative lattice ordered ring if the relevant operations are defined
pointwise on X and moreover we have M◦(X,µ) ⊆ B1(X,µ) ⊆ M(X,A),
where M(X,A) is the ring of measurable functions, discussed in [1].

It is shown in the paper [2] that the ring C(X) of all real-valued continuous
functions on X is a special case of the ring M◦(X,µ) if we choose A = P(X),
the power set of X and µ is the counting measure on P(X). The ring B1(X)
of all real-valued Baire class one functions on X, which lies between the rings
C(X) and M(X,A) has been investigated extensively in [3, 4, 5]. The goal
of this article is to pursue research on the ring B1(X,µ), a generalization of
B1(X).

In Section 1, we show that B1(X,µ) is a commutative lattice ordered ring
which lies between M◦(X,µ) and M(X,A). For f ∈ B1(X,µ), Z(f) = {x ∈
X : f(x) = 0} is called the zero-set of f . Let Z[B1(X,µ)] = {Z(f) : f ∈
B1(X,µ)} be the collection of all zero-sets induced by elements of B1(X,µ).
It is easily verified that Z[B1(X,µ)] = Z[B∗1(X,µ)], where B∗1(X,µ) = {f ∈
B1(X,µ) : f is bounded on X}. In Theorem 1.7, we establish that B1(X,µ) is
closed under uniform limit and with help of this theorem, we prove Theorem
1.8 which states that Z[B1(X,µ)] is closed under countable intersection. Using
Theorem 2.10 of [2], it can be easily shown that for any τAµ-space (X, τ,A, µ),
there exists a quadruplet (X, τ,A∗, µ∗), where A∗ is a σ-algebra containing τ
and µ∗ is a complete measure defined on A∗ such that B1(X,µ) = B1(X,µ∗)
[Theorem 1.9]. With similar ideas, we establish B1(X,µ) = B1(X,µ|β), for
any τAµ-space (X, τ,A, µ) and for the quadruplet (X, τ, β, µ|β), where β is the
Borel σ-algebra containing τ and µ|β is the restriction of µ on β.

In the next section, we introduce and study the notions ofB1(X,µ)-separated,
B1(X,µ)-embedded and B∗1(X,µ)-embedded subsets of X. We establish an
analogous version of Urysohn’s extension theorem [see Theorem 2.5].

In Section 3, we introduce the notion of filter of zero sets in Z[B1(X,µ)] and
call it ZB-filter. We investigate the correspondence between ideals of B1(X,µ)
and ZB-filters. Also, we define ZB-ideals of B1(X,µ) and in Theorem 3.6,
we provide a characterization of prime ZB-ideals of B1(X,µ). We establish
an analogous version of Gelfnd-Kolmogoroff theorem in our setup (Theorem
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3.10). In Example 3.11, we show that βX, βM◦X and βB1
X are mutually not

homeomorphic, where βX is the Stone-Čech compactification of X, βM◦X is
the index set for the family of all Z-ultrafilters on X, defined in [2] and βB1

X
is the index set for the family of all ZB-ultrafilters on X.

In Section 4, we define positive elements of the residue class of B1(X,µ)
modulo ideals and in Theorem 4.7, we study a complete description of non-
negative elements of B1(X,µ)/I, when I is a ZB-ideal of B1(X,µ). In this
section, we also define and study real maximal ideals of B1(X,µ). Theorem
4.14 is a characterization of infinitely large element of B1(X,µ)/I. We discuss
the characterization of real maximal ideal in B1(X,µ) in Theorem 4.17. Also,
we define real compact spaces, analogous version of 8.1 [7] and provide a char-
acterization of a real compact space via ring homomorphism from B1(X,µ) to
R (Theorem 4.20).

In the next section, we discuss relations between real maximal ideals of
M◦(X,µ) and maximal ideals of B1(X,µ). In this section, we prove that a
maximal ideal M of M◦(X,µ) is real if and only if M = MB ∩ M◦(X,µ),
where MB = {f ∈ RX : there exists a sequence of functions {fn} ⊆ M such
that fn → f pointwise} (Theorem 5.2). We introduce the closed ideals of
B1(X,µ) and establish the result |RMax(M◦(X,µ))| = |RMax(B1(X,µ))|,
where RMax(M◦(X,µ)) and RMax(B1(X,µ)) are sets of all real maximal
ideals of M◦(X,µ) and B1(X,µ), respectively (Theorem 5.10).

Finally, we define a B1(X,µ)-compact space. Also, we show that every
B1(X,µ)-compact space is τAµ-compact (see Theorem 6.3). The converse
need not be true and it is established in Example 6.4. Lastly, we develop a
result (see Theorem 6.8) which is an analogous version of the Stone Weierstrass
Theorem ([12]).

1. Zero set in the ring B1(X,µ)

For any topological space X, we define B1(X,µ) = {f ∈ RX : there exists a
sequence {fn} in M◦(X,µ) such that {fn} converges to f pointwise on X }.

Let {fn} converge to f pointwise on X and {gn} converge to g pointwise on
X. Then

(i) {fn + gn} converges to f + g pointwise on X.
(ii) {−fn} converges to −f pointwise on X.

(iii) {fngn} converges to fg pointwise on X.
(iv) {|fn|} converges to |f | pointwise on X.

Using the above results, and the fact that for any f, g ∈ B1(X,µ), f ∨ g =
1
2 (f + g + |f − g|) and f ∧ g = −(−f ∨ −g) are in B1(X,µ), it is easy to
verify that (B1(X,µ),+, ·) is a commutative lattice ordered ring if the relevant
operations are defined pointwise on X. It is clear that M◦(X,µ) ⊆ B1(X,µ)
and the following example shows thatM◦(X,µ) is a proper subring of the ring
B1(X,µ).

Example 1.1. Let τ be the topology onX = [0, 1] inherited from the Euclidean
topology on the set R of reals, P(X) be the power set of X. For any A ∈ P(X),
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define dirac measure δ1 on P(X) as follows:

δ1(A) =

{
1, if 1 ∈ A
0, if 1 /∈ A.

For each n ∈ N, we define fn : X → R by fn(x) = xn for all x ∈ X. Then each
fn ∈M◦(X, δ1) and fn → f pointwise on X, where

f(x) =

{
1, if x = 1
0, if 0 ≤ x < 1.

Clearly, f ∈ B1(X, δ1) and f /∈M◦(X, δ1). Therefore M◦(X, δ1) $ B1(X, δ1).

Let (X, τ) be a topological space and A be a σ-algebra on X containing
τ . Then (X,A) is called a measurable space. A function f : X → R is
called A-measurable or a measurable function if {x ∈ X : f(x) > α} ∈ A,
for any real number α. Then the set M(X,A) of all real valued measurable
functions is a commutative lattice ordered ring with unity, discussed in [1].
Since M◦(X,µ) $ M(X,A) and pointwise limit of measurable functions is
again a measurable function, we have B1(X,µ) ⊆ M(X,A). Now we want to
show that B1(X,µ) is a proper subring of M(X,A). For this purpose we first
state the following theorem.

Theorem 1.2 ([14]). Let X be a normal topological space and B1(X) denotes
the set of all Baire class one functions from X to the real line R. Then f ∈
B1(X) if and only if f−1(G) is an Fσ-set, for every open set G ⊆ R.

Example 1.3. Consider (R, τu,L, µ∞), where τu is the usual topology on R, L
is the σ-algebra of all Lebesgue measurable subsets of R and µ∞ is a measure
on L, defined as follows: for any A ∈ L,

µ∞(A) =

{
0 if A = ∅
∞ otherwise.

Then M◦(R, µ∞) = C(R). Now consider a function f : R → R defined as
follows:

f(x) =

{
0 if x ∈ Q
1 otherwise.

Clearly, f ∈M(R,L), where the last set is the ring of all measurable functions
from R to R with respect to above mentioned measure and f−1( 1

2 ,
3
2 ) = R \Q

is not a Fσ-set. Therefore f /∈ B1(X,µ∞) by Theorem 1.2.

Now we define zero set of f ∈ B1(X,µ) by Z(f) = {x ∈ X : f(x) = 0}.

Theorem 1.4. Let f, g ∈ B1(X,µ) and r ∈ R. Then

(i) Z(f2 + g2) = Z(f) ∩ Z(g) = Z(|f |+ |g|).
(ii) Z(f · g) = Z(f) ∪ Z(g).

(iii) {x ∈ X : f(x) ≥ r} and {x ∈ X : f(x) ≤ r} are zero sets in X.
(iv) Z(f) = Z(−1∨ f ∧ 1). Thus B1(X,µ) and B∗1(X,µ) produce the same

family of zero sets in X, where B∗1(X,µ) = {f ∈ B1(X,µ) : f is
bounded }.
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Here for f, g ∈ B1(X,µ), the functions f ∨g and f ∧g are in B1(X,µ),
defined in the most obvious manner: (f ∨ g)(x) = Max{f(x), g(x)}
and (f ∧ g)(x) = Min{f(x), g(x)}, x ∈ X.

We denote Z[B1(X,µ)] for the collection {Z(f) : f ∈ B1(X,µ)} = {Z(g) :
g ∈ B∗1(X,µ)} of all zero sets in X. It follows from the Theorem 1.4 that
Z[B1(X,µ)] is closed under finite union and also closed under finite intersec-
tion. Moreover, we will establish that Z[B1(X,µ)] is closed under countable
intersection too. For this, we first prove some results.

Lemma 1.5. If f ∈ B1(X,µ) and |f | ≤ M for some M ∈ R, then there
exists a sequence {gn} ⊆ M◦(X,µ) such that gn → f pointwise and each gn is
bounded by M .

Proof. Let f ∈ B1(X,µ). Then there exists a sequence {fn} inM◦(X,µ) such
that fn → f pointwise. Set gn = (−M ∨ fn) ∧M , then each gn ∈ M◦(X,µ)
and gn → f pointwise. This completes the proof. �

Lemma 1.6. Let {fk} ⊆ B1(X,µ) and |fk(x)| ≤ Mk for all k ∈ N (Mk > 0)

and for all x ∈ X. If
∞∑
k=1

Mk <∞, then f =
∞∑
k=1

fk ∈ B1(X,µ).

Proof. For each fk ∈ B1(X,µ), there exists a sequence {gki} in M◦(X,µ)
such that gki → fk pointwise. By Lemma 1.5, we can choose {gki} such that
|gki| ≤ Mk for all i ∈ N. For each n ∈ N, let hn = g1n + g2n + · · ·+ gnn, then

hn ∈ M◦(X,µ). We will show that hn → f pointwise. Since
∞∑
k=1

Mk <∞, for

any ε > 0 there exists a k′ ∈ N such that
∞∑

k=k′+1

Mk < ε. Now we choose an

integer N > k′ such that |gki(x)− fk(x)| < ε
k′ for 1 ≤ k ≤ k′ and for all i ≥ N .

Again for any n ≥ N , we have |hn(x) − f(x)| = |
n∑
k=1

gkn(x) −
∞∑
k=1

fk(x)| ≤

|
n∑
k=1

(gkn(x)−fk(x))|+|
∞∑

k=n+1

fk(x)| ≤ |
k′∑
k=1

((gkn(x)−fk(x)))+
n∑

k=k′+1

|gkn(x)|+

∞∑
k=k′+1

|fk(x)| ≤
k′∑
k=1

ε
k′ + 2

∞∑
k=k′+1

Mk ≤ 3ε. It follows that {hn} converges

pointwise to f . Thus f(x) =
∞∑
k=1

fk(x) belongs to B1(X,µ) �

Theorem 1.7. Let {fn} be a sequence of functions in B1(X,µ) that converges
to a function f uniformly on X. Then f ∈ B1(X,µ) i.e., B1(X,µ) is closed
under uniform limit.

Proof. Let {fn} be a sequence in B1(X,µ) and fn → f uniformly. We will show
that f ∈ B1(X,µ). By definition of uniform convergence, for each k ∈ N, there
exists a subsequence fnk

such that |fnk
(x)−f(x)| < 1

2k for all x ∈ X. Consider
the sequence {fnk+1

− fnk
}, then |fnk+1

(x) − fnk
(x)| ≤ |fnk+1

(x) − f(x)| +
|fnk

(x)−f(x)| ≤ 1
2k+1 + 1

2k = 3
22−k. Set Mk = 3

22−k, then |fnk+1
(x)−fnk

(x)| ≤
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Mk for all x ∈ X and
∞∑
k=1

Mk <∞. Then by Lemma 1.6, the sum
∞∑
k=1

[fnk+1
−

fnk
] belongs to B1(X,µ). Now

∞∑
k=1

[fnk+1
(x) − fnk

(x)] = lim
N→∞

N∑
k=1

[fnk+1
(x) −

fnk
(x)] = f(x)− fn1(x). Since fn1 ∈ B1(X,µ), f ∈ B1(X,µ). �

Theorem 1.8. Z[B1(X,µ)] is closed under countable intersection.

Proof. Let fn ∈ B1(X,µ) for each n ∈ N. We have to show that
∞⋂
n=1

Z(fn) =

Z(g) for some g ∈ B1(X,µ). In fact, for each x ∈ X, we let g(x) =
∞∑
n=1

( 1
2n

∧
|fn(x)|).

Then by Weierstrass M-test, this series is uniformly convergent over X. Since
for each n ∈ N, 1

2n ∧|fn| ∈ B1(X,µ), then by Theorem 1.7 we have g ∈ B1(X,µ)

and also it is clear that Z(g) =
∞⋂
n=1

Z(fn). �

The following theorem shows that to study the rings B1(X,µ) and B∗1(X,µ),
we can take the measure µ on the σ-algebra containing τ being always complete.

Theorem 1.9. Let (X, τ,A, µ) be a τAµ-space. Then it is possible to construct
another space (X, τ,A?, µ?) of the same type with the following properties: A∗
is a σ-algebra on X containing A; µ∗ : A∗ → [0,∞] is a complete measure,
extending the original measure µ : A → [0,∞] and B1(X,µ) = B1(X,µ?).
Moreover B∗1(X,µ) = B∗1(X,µ?).

Proof. From the Theorem 2.10 [2], we haveM◦(X,µ) =M◦(X,µ∗). Therefore
B1(X,µ) = B1(X,µ∗) and also it is easy to see that B∗1(X,µ) = B∗1(X,µ?). �

Now the notion of subspace of (X, τ,A, µ) is defined as follows:

Definition 1.10 ([2]). Let (X, τ,A, µ) be a τAµ-space. For any E ∈ A,
A|E = {E ∩A : A ∈ A} is a σ-algebra on the set E. Suppose that (E, τ |E) is a
subspace of (X, τ). Let µ|E : (E,A|E) → [0,∞] be defined by µ|E(F ) = µ(F )
for any F ∈ A|E . Then (X, τ,A|E , µ|E) is called a subspace of the τAµ-space
(X, τ,A, µ).

Theorem 1.11. Let (X, τ,A, µ) be a τAµ-space. Take (X, τ, β, µ|β), where β
is a Borel σ-algebra containing τ and µ|β is the restriction of µ on β(⊆ A).
Then B1(X,µ) = B1(X,µ|β).

Proof. To prove this result, it is enough to show thatM◦(X,µ) =M◦(X,µ|β).
Let f ∈ M◦(X,µ). Then µ(Df ) = 0, where Df is the discontinuity set of f .
Since Df is a Fσ-set (see [11]), Df ∈ β. Thus µ|β(Df ) = µ(Df ) = 0, so f ∈
M◦(X,µ|β). Therefore M◦(X,µ) ⊆ M◦(X,µ|β). Next, let f ∈ M◦(X,µ|β),
then µ|β(Df ) = 0. Again Df is a Fσ-set implies Df ∈ β ⊆ A. Thus
µ|β(Df ) = µ(Df ) = 0, so f ∈ M◦(X,µ). Hence M◦(X,µ|β) ⊆ M◦(X,µ).
Thus M◦(X,µ) =M◦(X,µ|β). Therefore B1(X,µ) = B1(X,µ|β). �
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2. B1(X,µ)-separated and B1(X,µ)-embedded subsets of X

It is well known that two subsets A and B of a topological space X are said
to be completely separated [see 1.15,[7]] if there exists a continuous function
f : X → [0, 1] such that f(A) = {0} and f(B) = {1}.

In an analogous manner we call two subsets A and B of a τAµ-space
(X, τ,A, µ), B1(X,µ)-separated (M◦-separated [13]) if there is an element
f ∈ B1(X,µ) (respectively f ∈ M◦(X,µ) ) such that f(X) ⊆ [0, 1] with
f(A) = {1}, f(B) = {0}. Equivalently, for any two real numbers r, s with
r < s, there exists f : X → [r, s], f ∈ B1(X,µ)( respectively f ∈ M◦(X,µ))
such that f(A) = {r} and f(B) = {s}. Since M◦(X,µ) ⊆ B1(X,µ), any
two M◦-separated subsets of X are also B1(X,µ)-separated. The following
example shows that the converse need not be true.

Example 2.1. Let X = [0, 1] with τu, the topology on it inherited from the
usual topology on the set R of reals, P(X) be the power set of X and δ1 be
the dirac measure at 1. Now define fn : X → R by fn(x) = 1− xn for n ∈ N,
then each fn ∈M◦(X, δ1) and fn → f pointwise, where

f(x) =

{
0, if x=1
1, if 0 ≤x< 1.

Thus f ∈ B1(X, δ1) \M◦(X, δ1) and it separates two sets {1} and [0, 1). But
there does not exist any function in M◦(X, δ1) which separates {1} and [0, 1).

Theorem 2.2. Two subsets P,Q of (X, τ,A, µ) are B1(X,µ)-separated in X
if and only if they are contained in two disjoint zero sets in Z[B1(X,µ)].

Proof. Let P and Q be two B1(X,µ)-separated subsets in X. Then there
exists f ∈ B1(X,µ), f : X → [0, 1] such that f(P ) = {0} and f(Q) = {1}. Let
Z1 = {x ∈ X : f(x) ≤ 1

3} and Z2 = {x ∈ X : f(x) ≥ 1
2}. Then Z1, Z2 are two

disjoint zero sets in Z[B1(X,µ)] with P ⊆ Z1, Q ⊆ Z2.
Conversely, let P ⊆ Z(f), Q ⊆ Z(g), where Z(f) ∩ Z(g) = φ, f, g ∈ B1(X,µ).

Take h = f2

f2+g2 : X → [0, 1]. Then Z(f) ∩ Z(g) = Z(f2 + g2) = φ and

so h ∈ B1(X,µ). Again we have h(P ) = {0}, h(Q) = {1}. Hence P,Q are
B1(X,µ)-separated in X. �

Corollary 2.3. Any two disjoint zero sets in Z[B1(X,µ)] are B1(X,µ)-separated
in X.

We recall from [1.16, [7]] that a subset A of a topological space X is said to
be C-embedded (C∗-embedded) in X if each function f ∈ C(A)( respectively
f ∈ C∗(A)) can be extended to a function in C(X). Urysohn’s Extension
Theorem [Theorem 1.17, [7]] in C(X) tells that a subset A of X is C?-embedded
in X if and only if any two completely separated sets in A are also completely
separated in X.

Definition 2.4. A measurable subset E of X ( i.e., E ∈ A) is said to be
B1(X,µ)-embedded (B∗1(X,µ)-embedded) in X if each f ∈ B1(E,µ|E) (re-
spectively f ∈ B∗1(E,µ|E)) has an extension to a g ∈ B1(X,µ).
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It is clear that if E ∈ A is B∗1(X,µ)-embedded in X, then each f ∈
B∗1(E,µ|E) has an extension to a g ∈ B∗1(X,µ).

The following theorem is an analogous version of Urysohn’s Extension The-
orem in our setting.

Theorem 2.5. A measurable subset E of X is B∗1(X,µ)-embedded in X if and
only if any two members of A|E which are B1(X,µ)-separated in E are also
B1(X,µ)-separated in X.

Proof. Let E be B∗1(X,µ)-embedded in X. Let A,B ∈ A|E be two B1(X,µ)-
separated sets in E. Then there exists f ∈ B1(X,µ|E), f : E → [0, 1] such that
f(A) = {0} and f(B) = {1}. Since E is B∗1(X,µ)-embedded in X, f has an
extension g ∈ B1(X,µ) such that g|E = f . Consider h = (0 ∨ g) ∧ 1. Then
h ∈ B∗1(X,µ), h(X) ⊆ [0, 1], h(A) = {0} and h(B) = {1}. Thus A and B are
B1(X,µ)-separated in X.

Conversely, let each pair of B1(X,µ)-separated members of A|E in E be
B1(X,µ)-separated in E are alsoB1(X,µ)-separated inX. Let f1 ∈ B?1(E,µ|E).
Then |f1| ≤ m for some m ∈ N. Take rn = m

2 ( 2
3 )n for all n ∈ N. Then we have

|f1| ≤ 3r1 and thus inductively given fn ∈ M?
◦(E,µ|E) we have |fn| ≤ 3rn.

Consider An = {x ∈ E : fn(x) ≤ −rn} and Bn = {x ∈ E : fn(x) ≥ rn}.
Then An, Bn are disjoint zero sets in Z[B1(E,µ|E)]. Hence, by Theorem 2.2,
An, Bn are B1(X,µ)-separated in E and so by hypothesis, An, Bn are B1(X,µ)-
separated in X. Thus there exists gn ∈ B1(X,µ) such that gn(X) ⊆ [−rn, rn],
gn(An) = {−rn}, gn(Bn) = {rn}. Now set fn+1 = fn − gn|E . Then it is
easy to check that |fn+1| ≤ 2rn = 3rn+1. Therefore the induction step is

completed. For each x ∈ X, let g(x) =
∞∑
n=1

gn(x). Then by Weierstrass’

formula the infinite series is uniformly convergent to g on X and hence by
Theorem 1.7, g ∈ B1(X,µ). Now for all x ∈ E, g(x) = lim

n→∞
{g1(x) + g2(x) +

· · ·+ gn(x)} = lim
n→∞

{f1(x)− f2(x) + f2(x)− f3(x) + · · ·+ fn(x)− fn+1(x)} =

f1(x)− lim
n→∞

fn+1(x) = f1(x). Hence, the proof is complete. �

The following result decides when a B∗1(X,µ)-embedded subset of X become
B1(X,µ)-embedded in X. The proof of this result can be figured out by closely
adapting the arguments in the proof of Theorem 1.18 in [7] and thus, the proof
is omitted.

Theorem 2.6. Let E ∈ A be B∗1(X,µ)-embedded in X. Then E is B1(X,µ)-
embedded in X if and only if it is B1(X,µ)-separated from any zero set in
Z[B1(X,µ)] disjoint from it.

3. ZB-filters and ZB-ideals of B1(X,µ)

Throughout the article, an ideal will always be a proper ideal.
To develop a connection between ideals of B1(X,µ) and ZB-filters on X, we

first prove the following theorem which is a sufficient condition for an element
f of B1(X,µ) to be a unit in B1(X,µ).
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Theorem 3.1. Let f ∈ B1(X,µ) be such that either f(x) > 0 for all x ∈ X
or f(x) < 0 for all x ∈ X. Then 1

f exists and belongs to B1(X,µ).

Proof. We first take f ∈ B1(X,µ) and f(x) > 0 for all x ∈ X. Then there
exists a sequence of functions {fn} ⊆ M◦(X,µ) such that fn → f pointwise on
X. For each x ∈ X, let gn(x) = |fn(x)|+ 1

n for all n ∈ N. Then gn(x) > 0 for
all x ∈ X and for all n ∈ N and also gn → f pointwise on X. Now consider the
function g : R\{0} → R defined by g(x) = 1

x on R\{0}. Then g◦gn ∈M◦(X,µ)
for each n ∈ N. We now show that g◦gn → g◦f pointwise. Using the continuity
of g, for any ε > 0 there exists a δ > 0 such that |g(gn(x)) − g(f(x))| < ε for
|gn(x) − f(x)| < δ. Since gn → f pointwise, there exists a k ∈ N such that
|gn(x) − f(x)| < δ for all n ≥ k. Thus |g(gn(x)) − g(f(x))| < ε for all n ≥ k.
Therefore g ◦ gn → g ◦ f pointwise i.e., g ◦ f ∈ B1(X,µ) and g ◦ f(x) = 1

f(x)

shows 1
f ∈ B1(X,µ).

Similarly, we can prove the result when f(x) < 0 for all x ∈ X. �

Definition 3.2. A non-empty subfamily F of Z[B1(X,µ)] is called a ZB-filter
on X if it satisfies the following conditions:

(i) φ /∈ F ,
(ii) Z1, Z2 ∈ F implies Z1 ∩ Z2 ∈ F and

(iii) If Z ∈ F and Z ′ ∈ Z[B1(X,µ)] such that Z ⊆ Z ′, then Z ′ ∈ F .

A ZB-filter on X which is not properly contained in any ZB-filter on X is
called ZB-ultrafilter. Using Zorn’s lemma, it can be established that a ZB-
filter on X can be extended to a ZB-ultrafilter on X. It is interesting to note
that there is a duality between ideals (maximal ideals) in B1(X,µ) and the
ZB-filters (respectively ZB-ultrafilters) on X and this is emphasized by the
following result.

Theorem 3.3. For the ring B1(X,µ), the following statements are true.

(i) If I is an ideal(proper) of B1(X,µ), then Z[I] = {Z(f) : f ∈ I} is
a ZB-filter on X. Dually for any ZB-filter F on X, Z−1[F ] = {f ∈
B1(X,µ) : Z(f) ∈ F} is an ideal(proper) in B1(X,µ).

(ii) If M is a maximal ideal of B1(X,µ) then Z[M ] is a ZB-ultrafilter on
X. If U is a ZB-ultrafilter on X, then Z−1[U ] is a maximal ideal of
B1(X,µ). Moreover the assignment: M → Z[M ] defines a bijection
on the set of all maximal ideals in B1(X,µ) and the collection of all
ZB-ultrafilters on X.

Proof. (i) We first show that ∅ /∈ Z[I]. If possible, let ∅ ∈ Z[I], then there
exists a f ∈ I such that Z(f) = ∅. Then f2 ∈ I and it is a unit by Theorem
3.1, which contradicts our assumption that I is a proper ideal. Next let Z(f)
and Z(g) ∈ Z[I]. Then Z(f)∩Z(g) = Z(f2 +g2) in Z[I], since f, g ∈ I implies
f2 + g2 ∈ I. Finally, let Z(f) ∈ Z[I] and Z(f) ⊆ Z(h) for some h ∈ B1(X,µ),
then Z(h) = Z(f · h) ∈ Z[I] as f · h ∈ I. Therefore Z[I] is a ZB-filter on X.

Since ∅ /∈ F , 1 /∈ Z−1[F ] as Z(1) = ∅. Thus Z−1[F ] is a proper subset of
B1(X,µ). Let f, g ∈ Z−1[F ]. Then Z(f), Z(g) ∈ F and Z(f) ∩ Z(g) ∈ F as
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F is a ZB-filter. Now Z(f) ∩ Z(g) ⊆ Z(f − g) implies Z(f − g) ∈ F as F is a
ZB-filter. This shows that f − g ∈ Z−1[F ]. If f ∈ Z−1[F ] and h ∈ B1(X,µ),
then Z(f) ∪ Z(h) = Z(f · h) ⊃ Z(f) implies Z(f · h) ∈ F by the property of
filter. Thus f · h ∈ Z−1[F ]. Therefore Z−1[F ] is an ideal of B1(X,µ).

(ii) The proof of this part easily follows from the Theorem 2.5 [7]. �

Definition 3.4. An ideal I of B1(X,µ) is called fixed if ∩Z[I] 6= ∅. Otherwise
it is called a free ideal.

For any p ∈ X, Mp = {f ∈ B1(X,µ) : f(p) = 0} is a fixed maximal
ideal of B1(X,µ) and each fixed maximal ideal of B1(X,µ) is of this form. It
follows from Theorem 3.3 that for any p ∈ X, Z[Mp] = Up, where Up = {Z ∈
Z[B1(X,µ)] : p ∈ Z} is a typical fixed ZB-ultrafilter on X.

Definition 3.5. An ideal I of B1(X,µ) is said to be ZB-ideal if Z−1Z[I] = I
i.e., for f, g ∈ B1(X,µ) with Z(f) = Z(g), and f ∈ I implies g ∈ I.

From the above definition and by Theorem 3.3, we can easily prove that every
maximal ideal of B1(X,µ) is a ZB-ideal. But if we take (R, τu,L, µ) where τu is
the usual topology on R, L is the σ-algebra of all Lebesgue measurable subsets
of R and µ is the Lebesgue measure on L, then the ideal I = {f ∈ B1(R, µ) :
f(2) = f(3) = 0} is a ZB-ideal that is not a maximal ideal.

The following theorem is a characterization of prime ZB-ideals of B1(X,µ).

Theorem 3.6. For a ZB-ideal I of B1(X,µ), the following statements are
equivalent:

(i) I is a prime ideal of B1(X,µ).
(ii) I contains a prime ideal of B1(X,µ).
(iii) If fg = 0 for f, g ∈ B1(X,µ), then either f ∈ I or g ∈ I.
(iii) For any f ∈ B1(X,µ) there exists Z ∈ Z[I] such that f does not change

its sign on Z.

Proof. The proof is analogous to the proof of Theorem 2.9 of [7] and thus, it
is omitted. �

With the help of above theorem and the fact that the intersection of an
arbitrary collection of ZB-deals of B1(X,µ) is a ZB-ideal, we can state the
following theorem which is an analogue version of Theorem 2.11 [7].

Theorem 3.7. Every prime ideal of B1(X,µ) can be extended to a unique
maximal ideal of B1(X,µ) and therefore B1(X,µ) is a Gelfand ring.

Let Max(B1(X,µ)) be the structure space of B1(X,µ) i.e., Max(B1(X,µ))
is the set of all maximal ideals of B1(X,µ) equipped with hull-kernel topology.
Then {Mf : f ∈ B1(X,µ)} form a base for closed sets of this hull-kernel
topology, 7M [7], where Mf = {M ∈ Max(B1(X,µ)) : f ∈ M}. Using
Theorem 1.2 of [10], we have Max(B1(X,µ)) is a Hausdorff compact space. It
is checked that the structure space of B1(X,µ) is the same with the set of all
ZB-ultrafilters on X with Stone topology.
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Let βB1
X be an index set for the family of all ZB-ultrafilters on X i.e., for

each p ∈ βB1X, there exists a ZB-ultrafilter on X, which is denoted by Up.
For any p ∈ X, we can find a fixed ZB-ultrafilter Up and set Up = Up. Then
we can think X as a subset of βB1

X.
Now we want to define a topology on βB1

X. Let β = {Z : Z ∈ Z[B1(X,µ)]},
where Z = {p ∈ βB1

X : Z ∈ Up}. Then β is a base for closed sets for some
topology on βB1

X. Since X belongs to every ZB-ultrafilters on X, X = βB1
X.

Again p ∈ Z ∩ X ⇔ Z ∈ Up ⇔ p ∈ Z. Therefore Z ∩ X = Z. It is easy to
observe that if Z1, Z2 ∈ Z[B1(X,µ)] with Z1 ⊆ Z2, then Z1 ⊆ Z2. This leads
to the following result.

Theorem 3.8. For Z ∈ Z[B1(X,µ)], Z = ClβB1
XZ.

Proof. Let Z ∈ Z[B1(X,µ)] and Z1 ∈ β be such that Z ⊆ Z1. Then Z ⊆
Z1 ∩ X = Z1. This implies Z ⊆ Z1. Therefore Z is the smallest basic closed
set containing Z. Hence Z = ClβB1

XZ. �

Now, we want to show that Max(B1(X,µ)) and βB1X are homeomorphic.

Theorem 3.9. The map φ : Max(B1(X,µ)) → βB1
X, defined by φ(M) = p

is a homeomorphism, where Z[M ] = Up.

Proof. The map φ is bijective by Theorem 3.3 (ii). Basic closed set of
Max(B1(X,µ)) is of the form Mf = {M ∈ Max(B1(X,µ)) : f ∈ M}, for
some f ∈ B1(X,µ). Now M ∈ Mf ⇔ f ∈ M ⇔ Z(f) ∈ Z[M ] (since max-

imal ideal is a ZB-ideal) ⇔ Z(f) ∈ Up ⇔ p ∈ Z(f). Thus φ(Mf ) = Z(f).
Therefore φ interchanges basic closed sets of Max(B1(X,µ)) and βB1

X. Hence
Max(B1(X,µ)) is homeomorphic to βB1

X. �

Now we prove the following theorem which is an analogous version of the
Gelfand-Kolmogoroff Theorem 7.3 [7].

Theorem 3.10. Every maximal ideal of B1(X,µ) is of the form Mp = {f ∈
B1(X,µ) : p ∈ ClβB1

XZ(f)}, for some p ∈ βB1
X.

Proof. Let M be any maximal ideal of B1(X,µ). Then Z[M ] is a ZB-ultrafilter
on X. Thus Z[M ] = Up, for some p ∈ βB1

X. So, f ∈ M ⇔ Z(f) ∈ Z[M ] as

M is a ZB-ideal ⇔ Z(f) ∈ Z[M ] = Up ⇔ p ∈ Z(f) = ClβB1
XZ(f). Hence

M = {f ∈ B1(X,µ) : p ∈ ClβB1
XZ(f)} and so we can write {f ∈ B1(X,µ) :

p ∈ ClβB1
XZ(f)} = Mp, p ∈ βB1

X. This completes the proof. �

It is interesting to note that the Stone-Čech compactification βX of X,
βM◦X (index set for the family of all Z-ultrafilters on X, defined in [2]) and
βB1

X (defined above) are the same if X is equipped with the discrete topology.
The following example shows that these spaces may not be homeomorphic to
each other.

Example 3.11. Let X = (1, 2) ∪ {3}. Consider (X, τu,P(X), δ∞3 ), where τu
is the subspace topology on X of the real line and P(X) be the power set of X
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and for any A ∈ P(X), define a measure δ∞3 on P(X) as follows:

δ∞3 (A) =

{
∞, if 3 ∈ A
0, if 3 /∈ A.

Then we have M◦(X, δ∞3 ) = B1(X, δ∞3 ) = RX . So βM◦X = βB1
X is

equal to the Stone-Čech compactification of X, if X is equipped with discrete
topology. Now clearly βM◦X = βB1X has uncountably many isolated points
(in fact, each point of X). But βX has exactly one isolated point namely at 3.
Hence βM◦X = βB1

X is not homeomorphic to βX.
Again take X = { 1

n : n ∈ N} ∪ {0}. Consider (X, τu,P(X), µc), where τu
is the subspace topology on X of real line and µc, the counting measure on
P(X). Then C(X) = M◦(X,µc). Thus βX = βM◦X. Since X is a perfectly
normal space, by Theorem 2.6 in [9], B1(X) = B1(X,µc) ⊇ C(X)F (ring of
functions which are discontinuous on a finite set [6]). Since X contains only
one non-isolated point, the cardinality of the discontinuity set of any f ∈ RX
is not more than 1 and hence B1(X,µc) = RX = C(X, τd), where C(X, τd)
is rings of continuous functions with discrete topology τd. Hence βB1

X is the
Stone-Čech compactification of X, if X is equipped with discrete topology and
the cardinality of βB1

X is equal to |βN| = 2c, where βN is the Stone-Čech
compactification of the set N of natural numbers. Since (X, τu) is a compact
space, βX is homeomorphic to X. Now the cardinality of βX is ℵ◦ implies
βB1X is not homeomorphic to βX = βM◦X.

Therefore the spaces βX, βM◦X and βB1
X are not homeomorphic to each

other.

4. Residue class of B1(X,µ) modulo ideals and real maximal ideal
of B1(X,µ)

Definition 4.1. For a partial ordered ring R, an ideal I is called convex if
a, b, c ∈ R with a ≤ b ≤ c, and a, c ∈ I implies b ∈ I.

Definition 4.2. For a lattice ordered ring R, an ideal I is called absolutely
convex if a, b ∈ R with |a| ≤ |b|, and b ∈ I implies a ∈ I.

Example 4.3. Let ψ : B1(X,µ) → B1(Y, µ′) be a homomorphism. Then
Kerψ is an absolute convex ideal of B1(X,µ). Indeed, let f, g ∈ B1(X,µ) with
|f | ≤ |g| and g ∈ Kerψ. Then ψ(|g|) = |ψ(g)| = 0. This implies ψ(|f |) =
|ψ(f)| = ψ(f) = 0 as homomorphism preserves order. Thus f ∈ Kerψ and
hence Kerψ is an absolute convex ideal of B1(X,µ).

Example 4.4. Every ZB-ideal I of B1(X,µ) is absolutely convex as |f | ≤ |g|
and g ∈ I, implies Z(g) ⊆ Z(f) and Z(g) ∈ Z[I]. Thus Z(f) ∈ Z[I] and hence
f ∈ I as I is ZB-ideal. Thus every maximal ideal of B1(X,µ) is absolutely
convex.

The following theorem follows from the Theorems 5.2, 5.3 [7].
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Theorem 4.5. Let I be an absolute convex ideal of a lattice ordered ring R.
Then

(i) R/I is a lattice ordered ring according to the definition: I(a) ≥ 0 if
there exists x ∈ R such that x ≥ 0 and I(a) = I(x). Here I(a) denote
the residue class of a in R.

(ii) I(a) ≥ 0 if and only if I(a) = I(|a|).
(iii) I(|a|) = |I(a)| for each a ∈ R.

The following theorem is an immediate consequence of Example 4.4 and
Theorem 4.5.

Theorem 4.6. If I is a ZB-ideal of B1(X,µ), then the quotient ring B1(X,µ)/I
is a lattice ordered ring.

The following theorem gives a description of non-negative elements ofB1(X,µ)/I,
when I is a ZB-ideal of B1(X,µ).

Theorem 4.7. Let I be a ZB-ideal of B1(X,µ) and f ∈ B1(X,µ). Then
I(f) ≥ 0 in B1(X,µ)/I if and only if there exists Z ∈ Z[I] such that f ≥ 0 on
Z.

Proof. First assume that I(f) ≥ 0. Then by Theorem 4.5, I(f) = I(|f |). This
implies f −|f | ∈ I. Let Z ′ = Z(f −|f |) ∈ Z[I]. Then f ≥ 0 on Z ′. Conversely,
assume that there exists Z ∈ Z[I] such that f ≥ 0 on Z. Then f = |f | on
Z =⇒ Z ⊆ Z(f − |f |) and Z ∈ Z[I] =⇒ Z(f − |f |) ∈ Z[I] =⇒ f − |f | ∈ I,
as I is ZB-ideal =⇒ I(f) = I(|f |) ≥ 0. �

The following theorem is a description of the maximal ideal of B1(X,µ) with
the help of zero sets.

Theorem 4.8. Let M be a maximal ideal of B1(X,µ). Then for any f ∈
B1(X,µ), there exists Z ∈ Z[M ] on which f does not change its sign.

Proof. Let f ∈ B1(X,µ) and M be a maximal ideal of B1(X,µ) . Since (f ∨
0) · (f ∧ 0) = 0 and each maximal ideal is prime, f ∨ 0 ∈M or f ∧ 0 ∈M . This
implies Z(f ∨ 0) ∈ Z[M ] or Z(f ∧ 0) ∈ Z[M ]. Also f ≥ 0 on Z(f ∨ 0) and
f ≤ 0 on Z(f ∧ 0). Thus there exists Z ∈ Z[M ] on which f does not change
its sign. �

Corollary 4.9. Let M be a maximal ideal of B1(X,µ). Then the residue class
ring B1(X,µ)/M is totally ordered.

Proof. Let f ∈ B1(X,µ) and M be a maximal ideal of B1(X,µ). Then by
Theorem 4.8, there is a Z ∈ Z[M ] on which f ≥ 0 or f ≤ 0. Thus in view of
Theorem 4.7, M(f) ≥ 0 or M(f) ≤ 0 in B1(X,µ)/M . Hence B1(X,µ)/M is
totally ordered. �

Definition 4.10. A maximal ideal M of B1(X,µ)( or B∗1(X,µ)) is called real
if the canonical map ψ : R→ B1(X,µ)/M(respectively ψ : R→ B∗1(X,µ)/M)
defined by r 7→ M(r) is onto. A maximal ideal M is called hyperreal if it is
not real.
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It is easy to check that ψ is an ordered preserving injective map.

By using Theorem 0.22 [7], we can show that a maximal ideal M of B1(X,µ)
is real if and only if B1(X,µ)/M is isomorphic to R.

A totally ordered field F is called archimedean if for any a ∈ F , there exists
an n ∈ N such that a ≤ n. So, a non-archimedean ordered field F contains
an element a ∈ F such that a > n for all n ∈ N. Such element a is called an
infinitely large element in F .

The following theorem is noted in Theorem 0.21 [7].

Theorem 4.11. An ordered field is archimedean if and only if it is isomorphic
to a subfield of R.

Theorem 4.12. Let M be a maximal ideal of B1(X,µ)(B∗1(X,µ)). Then M
is real maximal of B1(X,µ)(B∗1(X,µ)) if and only if B1(X,µ)/M (respectively
B∗1(X,µ)/M) is archimedean.

Proof. First we assume thatM is real. ThenB1(X,µ)/M ∼= R. ThusB1(X,µ)/M
is archimedean. Conversely, let B1(X,µ)/M be archimedean. Then by The-
orem 0.21 [7], there exists an isomorphism φ from B1(X,µ)/M into R. We
claim that φ(B1(X,µ)/M) = R. If φ(B1(X,µ)/M) $ R. Then φ ◦ ψ is an iso-
morphism from R onto a proper subfield of R, which contradicts the Theorem
0.22 [7]. Thus φ(B1(X,µ)/M) = R. Therefore B1(X,µ)/M isomorphic to R.
Hence M is real.

By using the same arguments, we can show that the result is also true for
B∗1(X,µ). �

The following theorem characterizes all maximal ideals of B∗1(X,µ).

Theorem 4.13. Each maximal ideal M of B∗1(X,µ) is always real.

Proof. Choose f ∈ B∗1(X,µ), then |f | ≤ n for some n ∈ N. This implies
M(f) ≤ M(n). Thus B∗1(X,µ)/M contains no infinitely large element. Hence
M is real by Theorem 4.12. �

The following result shows the relation between the infinitely large elements
in the residue class field B1(X,µ)/M , where M is a maximal ideal of B1(X,µ)
and the unbounded functions of B1(X,µ).

Theorem 4.14. Let f ∈ B1(X,µ) and M be a maximal ideal of B1(X,µ).
Then the following statements are equivalent.

(i) |M(f)| is an infinitely large element of the residue class field B1(X,µ)/M .
(ii) For all Z ∈ Z[M ], f is unbounded on Z.
(iii) For all n ∈ N, Zn = {x ∈ X : |f(x)| ≥ n} ∈ Z[M ].

Proof. (i) ⇔ (ii): Now M(f) ≤ M(n) for some n ∈ N. ⇔ |f | ≤ n on some
Z ∈ Z[M ], as M is ZB-ideal. Thus f is bounded on some Z ∈ Z[M ]. This
proves (i)⇔ (ii).
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(ii) =⇒ (iii): Assume (ii) holds and choose Z ∈ Z[M ]. So f is unbounded
on Z. Hence Z ∩ Zn 6= ∅, for all n ∈ N. Thus each Zn meets each set Z in
Z[M ]. So Zn ∈ Z[M ], for all n ∈ N, as Z[M ] is a ZB-ultrafilter on X.

(iii) =⇒ (ii): Suppose (ii) does not hold. Then there exists a Z ∈ Z[M ]
on which f is bounded i.e., there exists n ∈ N, for which |f | ≤ n on Z. Hence
Zn+1 /∈ Z[M ] as Zn+1 ∩ Z = φ. Hence, (iii) does not hold. �

Theorem 4.15. A function f ∈ B1(X,µ) is unbounded on X if and only if
there exists a maximal ideal M in B1(X,µ), for which |M(f)| is an infinitely
large element of B1(X,µ)/M .

Proof. First we assume that f ∈ B1(X,µ) is unbounded on X. Then Zn =
{x ∈ X : |f(x)| ≥ n} is non-empty for all n ∈ N. In fact, {Zn : n ∈ N} is a
family of zero sets in X with finite intersection property. Hence there exists
a ZB-ultrafilter Z[M ] on X for some maximal ideal M in B1(X,µ) such that
Zn ∈ Z[M ], for all n ∈ N. Then by Theorem 4.14, |M(f)| becomes infinitely
large in B1(X,µ)/M .
Conversely, suppose there exists a maximal ideal M in B1(X,µ) for which
|M(f)| is infinitely large in B1(X,µ)/M . Then by Theorem 4.14, f becomes
unbounded on each Z ∈ Z[M ]. In particular f is unbounded on X. �

From the following theorem we can assert that each hyperreal maximal ideal
must be a free ideal in B1(X,µ).

Theorem 4.16. Every fixed maximal ideal in B1(X,µ) is real.

Proof. Any fixed maximal ideal ofB1(X,µ) is of the formMp = {f ∈ B1(X,µ) :
f(p) = 0} for some p ∈ X. Consider the mapping ψ : B1(X,µ)→ R such that
f 7→ f(p). Then ψ is an onto homomorphism. Therefore B1(X,µ)/Kerψ ∼= R,
by first isomorphism theorem. Now Kerψ = {f ∈ B1(X,µ) : ψ(f) = 0} =
{f ∈ B1(X,µ) : ψ(f) = f(p) = 0} = Mp. Therefore B1(X,µ)/Mp

∼= R. This
shows that Mp is a real maximal ideal of B1(X,µ). �

The following result gives a characterization of real maximal ideal ofB1(X,µ).

Theorem 4.17. For a maximal ideal M of B1(X,µ), the following statements
are equivalent:

(i) M is a real maximal ideal of B1(X,µ).
(ii) The ZB-ultrafilter Z[M ] is closed under countable intersection.
(iii) Z[M ] has countable intersection property.

Proof. (i) =⇒ (ii): Assume that (ii) is false. This means that there exists

a sequence of functions {fn} in M such that
∞⋂
n=1

Z(fn) /∈ Z[M ]. Set f =

∞∑
n=1

(|fn| ∧ 1
2n ), then f ∈ B1(X,µ) and Z(f) =

∞⋂
n=1

Z(fn) /∈ Z[M ] =⇒ f /∈

M =⇒ M(f) > 0. For any k ∈ N, set Z = Z(f1) ∩ Z(f2) ∩ · · · ∩ Z(fk). Now

for all x ∈ Z, f(x) =
∞∑

n=k+1

(|fn(x)| ∧ 1
2n ) =⇒ 0 ≤ f(x) ≤

∞∑
n=k+1

1
2n = 1

2k =⇒
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0 ≤ M(f) ≤ M( 1
2k ), for all k ∈ N. This shows that M(f) is not an infinitely

large element of B1(X,µ)/M . So, B1(X,µ)/M becomes non archimedean i.e.,
M is hyperreal. Thus (i) becomes false.

(ii) =⇒ (iii): Trivial.
(iii) =⇒ (i): Assume (i) is false i.e., M is hyperreal. So, there exists

f ∈ B1(X,µ), for which |M(f)| is an infinitely large in B1(X,µ)/M . Hence by
Theorem 4.14, we can say that each Zn = {x ∈ X : |f(x)| ≥ n} ∈ Z[M ] for all

n ∈ N. We see that
∞⋂
n=1

Zn = φ, which shows that the condition (iii) becomes

false. This completes the proof. �

Definition 4.18. A τAµ-space X is called real compact if every real maximal
ideal of B1(X,µ) is fixed.

Example 4.19. Take (R, τu,L, µ), where τu is the usual topology on R, L is
the set of all Lebesgue measurable subsets of R and µ is Lebesgue measure on
L. Let M be a real maximal ideal of B1(R, µ). Then the identity map i on R
is an element of B1(R, µ). Since M is a real maximal ideal in B1(X,µ), there
exists r ∈ R such that M(i) = M(r). Then i− r ∈M , and so Z(i− r) ∈ Z[M ].
Now Z(i−r) is a singleton set. Thus M is fixed. Therefore it is a real compact
space.

The following theorem characterizes real compact spaces with the help of
ring homomorphisms from B1(X,µ) into R.

Theorem 4.20. A τAµ-space X is real compact if and only if for each non-
zero homomorphism ψ : B1(X,µ) → R, there exists a point x ∈ X such that
ψ(f) = f(x) for all f ∈ B1(X,µ).

Proof. Let X be real compact. Let ψ : B1(X,µ) → R be a non-zero homo-
morphism, then ψ(r) = r for all r ∈ R and B1(X,µ)/Kerψ ∼= R. So Kerψ
is of the form Mx for some x ∈ X. Now we define φ : B1(X,µ)/Kerψ →
B1(X,µ)/Kerψ by φ(f + Kerψ) = f(x) + Kerψ. Then φ is a homomor-
phism. Since the identity map is the only non-zero homomorphism from
B1(X,µ)/Kerψ to B1(X,µ)/Kerψ, thus f + Kerψ = f(x) + Kerψ. This

implies ψ(f − f(x)) = 0. Hence ψ(f) = f(x). Conversely, let M be a real

maximal ideal of B1(X,µ) and φ : B1(X,µ)/M → R be an isomorphism. De-
fine a homomorphism ψ : B1(X,µ) → R by ψ(f) = φ(f + M). Then by the
given hypothesis ψ(f) = f(x) for some x ∈ X and for all f ∈ B1(X,µ). Thus
φ(f + M) = f(x), implies f(x) = 0 if and only if f ∈ M . Therefore M = Mx

is a fixed maximal ideal of B1(X,µ). This completes the proof. �

5. Real maximal ideal of M◦(X,µ) and B1(X,µ)

For an ideal I ofM◦(X,µ), we define IB = {f ∈ RX : there exists a sequence
of functions {fn} ⊆ I such that fn → f pointwise}. We can easily prove that
IB is an ideal of B1(X,µ) and I ⊆ IB ∩M◦(X,µ).

The next theorem states that for any fixed maximal ideal M of M◦(X,µ),
the ideal MB of B1(X,µ) is fixed.
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Theorem 5.1. For any p ∈ X, we have (Mp)B = M̃p, where Mp = {f ∈
M◦(X,µ) : f(p) = 0} and M̃p = {f ∈ B1(X,µ) : f(p) = 0}.

Proof. Let f ∈ (Mp)B . Then there exists a sequence {fn} ⊆ Mp such that
fn → f pointwise on X. Since each fn ∈ Mp, fn(p) = 0 for all n ∈ N. Hence

f(p) = 0 and thus (Mp)B ⊆ M̃p. Next, let f ∈ M̃p. Then f(p) = 0. Since
f ∈ B1(X,µ), there exists {gn} ⊆ M◦(X,µ) such that gn → f pointwise on
X. Set fn = gn− gn(p), then fn(p) = 0 for all n ∈ N and each fn ∈M◦(X,µ).
Also it is clear that fn → f pointwise on X. Hence f ∈ (Mp)B . Therefore

M̃p ⊆ (Mp)B . This completes the proof. �

A maximal ideal M of M◦(X,µ) is called a τAµ-real maximal ideal (see
Definition 9 in [13]) or simply a real maximal ideal ofM◦(X,µ) ifM◦(X,µ)/M
is isomorphic to R.

For any proper ideal I of M◦(X,µ), we always have I ⊆ IB ∩M◦(X,µ).
The following theorem shows when the equality holds.

Theorem 5.2. A maximal ideal M of M◦(X,µ) is real if and only if M =
MB ∩M◦(X,µ).

Proof. Let M be a real maximal ideal of M◦(X,µ) and f ∈ MB ∩M◦(X,µ).
Then there exists {fn} ⊆M such that fn → f pointwise. Since M is real, Z[M ]

is closed under countable intersections (Theorem 18 in [13]). Thus
∞⋂
n=1

Z(fn) ∈

Z[M ]. Also, Z(f) ⊇
∞⋂
n=1

Z(fn) and hence Z(f) ∈ Z[M ]. By maximality of

M , it follows that f ∈ M . Therefore M = MB ∩M◦(X,µ). Conversely, let
M be a maximal ideal of M◦(X,µ) and M = MB ∩M◦(X,µ). Consider a
countable family of zero sets {Z(fn) : n ∈ N} in Z[M ] and by maximality of M

each fn ∈M . We construct a sequence {gn} as follows: gn =
n∑
i=1

( 1
3i ∧ |fi|), for

each n ∈ N. For each i, Z(fi) = Z( 1
3i ∧ |fi|), this implies 1

3i ∧ |fi| ∈ M . Thus
gn ∈ M for all n ∈ N. Then by Weierstrass test gn → g and g ∈ M◦(X,µ) as
M◦(X,µ) is closed under uniform limit (Theorem 2.2 [2]). Since each gn ∈M ,

g ∈ MB ∩M◦(X,µ) = M . Thus Z(g) =
∞⋂
n=1

Z(fn) ∈ Z[M ]. Therefore M is a

real maximal ideal of M◦(X,µ) by Theorem 18 in [13]. �

Next theorem states that if a maximal ideal M of M◦(X,µ) is hyperreal
then MB is not a proper ideal of B1(X,µ).

Theorem 5.3. For a hyperreal maximal ideal M ofM◦(X,µ), MB = B1(X,µ).

Proof. Since M is a hyperreal maximal ideal ofM◦(X,µ), by Theorem 5.2, we
have M $MB∩M◦(X,µ). Since M is maximal, MB∩M◦(X,µ) =M◦(X,µ).
This implies M◦(X,µ) ⊆ MB and 1 ∈ MB . Therefore MB = B1(X,µ), since
MB is an ideal of B1(X,µ). �
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For any proper ideal J of B1(X,µ), J ∩ M◦(X,µ) is a proper ideal of
M◦(X,µ). Also (J ∩M◦(X,µ))B is an ideal of B1(X,µ). Now we want to
investigate when J and (J ∩M◦(X,µ))B coincide.

Definition 5.4. A proper ideal J of B1(X,µ) is called closed if J = (J ∩
M◦(X,µ))B .

Using Theorem 5.1, it can be easily shown that every fixed maximal ideal

M̃p of B1(X,µ) is closed.

Theorem 5.5. If J is any closed ideal of B1(X,µ) containing an ideal I of
M◦(X,µ), then IB ⊆ J .

Proof. Since I ⊆ J ∩M◦(X,µ), IB ⊆ (J ∩M◦(X,µ))B = J as J is closed. �

Let RMax(M◦(X,µ)) be the set of all real maximal ideals of M◦(X,µ),
RMax(B1(X,µ)) be the set of all real maximal ideals of B1(X,µ) and we

denote C(B1(X,µ)) = {M̃ ∈ Max(B1(X,µ)) : (M̃ ∩ M◦(X,µ))B = M̃ and

M̃ ∩M◦(X,µ) ⊆M for some M ∈ RMax(M◦(X,µ))}.
Now we want to discuss the relation betweenRMax(B1(X,µ)) and C(B1(X,µ))

and finally show that |RMax(M◦(X,µ))| = |RMax(B1(X,µ))|, where |P |
stands for the cardinality of P .

Theorem 5.6. If M ∈ RMax(M◦(X,µ)), then MB ∈ C(B1(X,µ)).

Proof. Since M ∈ RMax(M◦(X,µ)), by Theorem 5.2, M = MB ∩M◦(X,µ).
This implies MB = (MB∩M◦(X,µ))B . Now MB is a proper ideal of B1(X,µ),
otherwise M = MB ∩M◦(X,µ) = B1(X,µ) ∩M◦(X,µ) = M◦(X,µ), a con-
tradiction.
We claim that MB is maximal among all closed maximal ideals of B1(X,µ).
Let J be a closed maximal ideal of B1(X,µ) such that MB ⊆ J . Then
M = MB∩M◦(X,µ) ⊆ J∩M◦(X,µ). SinceM is a maximal ideal ofM◦(X,µ),
M = J ∩M◦(X,µ) and MB = (J ∩M◦(X,µ))B = J as J is closed.

Now we show that MB is a maximal ideal in B1(X,µ). If possible, let M̃

be an ideal of B1(X,µ) such that MB $ M̃ . Since MB is maximal among

closed ideals in B1(X,µ), M̃ is not closed in B1(X,µ). So, M̃ must be free.

Now M = MB ∩ M◦(X,µ) ⊆ M̃ ∩ M◦(X,µ) and by maximality of M ,

M = M̃ ∩ M◦(X,µ). Thus M is free, otherwise M̃ ∩ M◦(X,µ) = Mp for

some p ∈ X implies MB = (M̃ ∩M◦(X,µ))B = (Mp)B = M̃p, which contra-
dicts that MB is not a maximal ideal. Since M is any real maximal ideal of
M◦(X,µ) and every fixed maximal ideal of M◦(X,µ) is real ([13]), M cannot
be always free which contradicts that M must be free. Hence MB is a maximal
ideal of B1(X,µ). �

Theorem 5.7. If M̃ ∈ RMax(B1(X,µ)) then M̃ ∩M◦(X,µ) is a member of
RMax(M◦(X,µ)).
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Proof. Let M̃ be a real maximal ideal of B1(X,µ). Then for the canonical

map ψ : B1(X,µ)→ B1(X,µ)/M̃ defined by ψ(f) = M̃(f), there exists r ∈ R
such that M̃(f) = M̃(r) and therefore ψ|M◦(X,µ) : M◦(X,µ) → B1(X,µ)/M̃

such that f 7→ M̃(f) is an onto homomorphism. Now M̃ is real implies

B1(X,µ)/M̃ ∼= R. Then by 1st isomorphism theorem,M◦(X,µ)/Ker(ψ|M◦(X,µ)) ∼=
R. Thus Ker(ψ|M◦(X,µ)) is a real maximal ideal. Now Ker(ψ|M◦(X,µ)) = {f ∈
M◦(X,µ) : M̃(f) = 0} = {f ∈ M◦(X,µ) : f ∈ M̃} =M◦(X,µ) ∩ M̃ . There-

fore M◦(X,µ) ∩ M̃ is a real maximal ideal of M◦(X,µ). This completes the
proof. �

Theorem 5.8. If M̃ ∈ C(B1(X,µ)), then there exists a unique M ∈
RMax(M◦(X,µ)) such that M̃ = MB.

Proof. Since M̃ ∩M◦(X,µ) is a prime ideal of B1(X,µ) and M◦(X,µ) is a
Gelfand ring (Theorem 4.6 [2]), there exists a unique maximal ideal M of

M◦(X,µ) such that M̃ ∩ M◦(X,µ) ⊆ M . Since M̃ ∈ C(B1(X,µ)), M ∈
RMax(M◦(X,µ)). So, (M̃ ∩ M◦(X,µ))B ⊆ MB . But M̃ is closed implies

M̃ = (M̃ ∩M◦(X,µ))B ⊆MB . By maximality of M̃ , we obtain M̃ = MB , for
some M ∈ RMax(M◦(X,µ)). �

Theorem 5.9. For any τAµ-space X, RMax(B1(X,µ)) = C(B1(X,µ)).

Proof. Let M̃ be any real maximal ideal of B1(X,µ) and g ∈ (M̃∩M◦(X,µ))B .

Then there exists {gn} ⊆ M̃∩M◦(X,µ) such that gn → g pointwise. Since M̃ is

real,
∞⋂
n=1

Z(gn) ∈ Z[M̃ ]. This implies Z(g) ∈ Z[M̃ ] as Z(g) ⊇
∞⋂
n=1

Z(gn). Again

M̃ is a ZB-ideal, implies g ∈ M̃ . Thus (M̃ ∩M◦(X,µ))B ⊆ M̃ . By Maximality

of M̃ , (M̃ ∩M◦(X,µ))B = M̃ . Using Theorem 5.7, we have M̃ ∩M◦(X,µ) is

a real maximal ideal of M◦(X,µ) and so (M̃ ∩M◦(X,µ))B ∈ C(B1(X,µ)) by

Theorem 5.6. Thus M̃ ∈ C(B1(X,µ)). HenceRMax(B1(X,µ)) ⊆ C(B1(X,µ)).

Now, let M̃ ∈ C(B1(X,µ)). Then by Theorem 5.8, there exists a unique

M ∈ RMax(M◦(X,µ)) such that M̃ = MB . Let {fn} be a countable subset
of MB . Then each fn ∈MB and so there exists {fni

} ⊆M such that fni
→ fn

pointwise. Since M is a real maximal ideal of M◦(X,µ), for each n ∈ N,
∞⋂
i=1

Z(fni) ∈ Z[M ]. Thus
∞⋂
n=1

∞⋂
i=1

Z(fni) ∈ Z[M ] ⊆ Z[MB ]. Again,
∞⋂
n=1

Z(fn) ⊇
∞⋂
n=1

∞⋂
i=1

Z(fni) and Z[MB ] is a ZB-filter implies
∞⋂
n=1

Z(fn) ∈ Z[MB ]. Thus

Z[MB ] is closed under countable intersection. Hence C(B1(X,µ)) ⊆
RMax(B1(X,µ)). This completes the proof. �

Theorem 5.10. |RMax(M◦(X,µ))| = |RMax(B1(X,µ))|.

Proof. In view of Theorem 5.6 and Theorem 5.9, we define a function φ :
RMax(M◦(X,µ))→ RMax(B1(X,µ)) by φ(M) = MB . By Theorem 5.8, for
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each M̃ ∈ RMax(B1(X,µ)) = C(B1(X,µ)), there existsM ∈ RMax(M◦(X,µ))

such that M̃ = MB i.e., φ maps RMax(M◦(X,µ)) onto RMax(B1(X,µ)).
Now, for any M,S ∈ RMax(M◦(X,µ)) and MB = SB implies that MB ∩
M◦(X,µ) = SB ∩M◦(X,µ). Then by Theorem 5.2, M = S. Therefore φ is
one-one. Hence |RMax(M◦(X,µ))| = |RMax(B1(X,µ))|. �

6. B1(X,µ)-Compact spaces

Definition 6.1. A quadruplet (X, τ,A, µ) or a τAµ-space is called B1(X,µ)-
compact if every family of zero sets in Z[B1(X,µ)] with finite intersection
property has non-empty intersection. In short, we shall say X is B1(X,µ)-
compact.

Clearly, every finite T1-space is a B1(X,µ)-compact space.
The following theorem provides various equivalent conditions of a B1(X,µ)-

compact space.

Theorem 6.2. Consider a τAµ-space X. Then the following are equivalent.

(i) X is B1(X,µ)-compact.
(ii) Every ideal of B1(X,µ) is fixed.
(iii) Every maximal ideal of B1(X,µ) is fixed.
(iv) Every ZB-filter on X is fixed.
(v) Every ZB-ultrafilter on X is fixed.

Proof. (i)⇒ (ii): Assume (i) holds and let I be an ideal of B1(X,µ). Then Z[I]
is a family of zero sets having finite intersection property. Then by definition
of B1(X,µ)-compact space, ∩Z[I] 6= ∅. Hence I is fixed.

(ii)⇒ (iii): Trivial.
(iii) ⇒ (i): Let B be a family of zero sets in Z[B1(X,µ)] having finite

intersection property. By a straightforward use of Zorn’s lemma, B can be
extended to a ZB-ultrafilter Up for some p ∈ βB1

X. Then Up = Z[Mp], where
Mp is a maximal ideal of B1(X,µ) and so, by given hypothesis, ∩Up = Z[Mp] 6=
∅. This implies ∩B 6= ∅ as B ⊆ Up.

(ii) ⇒ (iv): Let U be a ZB-filter on X. Then Z−1[U ] is an ideal I of
B1(X,µ). This implies ∩Z[I] = ∩U 6= ∅ by (ii). Thus U is fixed.

(iv)⇒ (v): Trivial.
(v) ⇒ (iii): Let M be a maximal ideal of B1(X,µ). Then Z[M ] is a ZB-

ultrafilter on X. Thus by the given hypothesis, M is fixed. �

We recall that a τAµ-space X is called τAµ-compact [13] if every family of
zero sets in Z[M◦(X,µ)] with finite intersection property has non-empty inter-
section or equivalently, if every maximal ideal of M◦(X,µ) is fixed. The fol-
lowing theorem gives a relation between τAµ-compact and B1(X,µ)-compact
spaces.

Theorem 6.3. If X is B1(X,µ)-compact, then X is τAµ-compact.

Proof. Let X be B1(X,µ)-compact. Let M be a maximal ideal of M◦(X,µ).
Then the Z-ultrafilter Z[M ] (defined in [2]) has finite intersection property.
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Now B1(X,µ) ⊇ M◦(X,µ) implies Z[M ] ⊆ Z[B1(X,µ)]. Therefore Z[M ] is a
family of zero sets having finite intersection property and so ∩Z[M ] 6= ∅ as X
is B1(X,µ)-compact. This shows that X is τAµ-compact. �

But the converse of the above theorem is false which is shown by the following
example.

Example 6.4. Let X = [0, 1]. Consider (X, τu,P(X), µc), where τu is the
subspace topology of the usual topology of R on X, and µc is the counting
measure on P(X). Clearly C(X) =M◦(X,µ) and hence every maximal ideal
of M◦(X,µ) is fixed. Thus X is a τAµ-compact space. Since X is a perfectly
normal space (A topological space is called perfectly normal if it is normal and
every closed subset of it is a Gδ-subset), by Theorem 3.7 ([4]), each charac-
teristic function {χ{x} : x ∈ X} belongs to B1(X,µc) and the ideal generated
by the family B = {χ{x} : x ∈ X} is free. Thus by Theorem 6.2, X is not
B1(X,µ)-compact.

Now we can establish the following theorem which is a characterization of
B1(X,µ)-compact spaces in terms of co-zero sets.

Theorem 6.5. A space X is B1(X,µ)-compact if and only if every family of
co-zero sets, which covers X, has a finite sub-cover.

Proof. Let X be B1(X,µ)-compact and {Gα}α∈Λ be a family of co-zero sets
such that

⋃
α∈Λ

Gα = X. Thus X \
⋃
α∈Λ

Gα = ∅⇒
⋂
α∈Λ

(X \Gα) = ∅, where each

X \Gα is a zero set of Z[B1(X,µ)]. Since X is B1(X,µ)-compact, there exists a

finite sub-collection {G1, G2, · · · , Gn} such that
n⋂
i=1

(X \Gi) = ∅, which means

that X =
n⋃
i=1

Gi. Therefore {Gα}α∈Λ has a finite sub-cover.

Conversely, let F = {Zα : α ∈ Λ} be a family of zero sets having finite inter-
section property. If possible, let

⋂
α∈Λ

Zα = ∅. Then X = X \
⋂
α∈Λ

Zα =
⋃
α∈Λ

(X \

Zα). By our assumption, there exists a finite sub-collection {Z1, Z2, · · · , Zn}
of F such that X =

n⋃
i=1

(X \ Zi) = X \
n⋂
i=1

Zi. This implies
n⋂
i=1

Zi = ∅, a

contradiction. This completes the proof. �

Now we want to develop a theorem like Stone Weierstrass theorem [12], in
our set up. For this purpose we first prove the two following lemmas.

Lemma 6.6. Let X be a B1(X,µ)-compact space with more than one point and
let L be a closed sub-lattice of B1(X,µ) with the property: if x and y are two
distinct points of X and a, b are any two real numbers, then there exists a real
valued function f in L such that f(x) = a and f(y) = b. Then L = B1(X,µ).

Proof. Let f be an arbitrary function in B1(X,µ). We want to show that
f ∈ L. Choose an arbitrary small real number ε > 0. Since L is closed, it is
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sufficient to construct a function g ∈ L such that f(z) − ε < g(z) < f(z) + ε
for all z ∈ X.

Let x be a fixed point of X and y ∈ X be any point different from x. By
our assumption, there exists a function fy ∈ L such that fy(x) = f(x) and
fy(y) = f(y). Now consider the co-zero set Gy = {z : fy(z) < f(z) + ε}. It is
clear that both x, y ∈ Gy. So the class Gy’s for all points y different from x is a
cover of X. Since X is B1(X,µ)-compact, by Theorem 6.5, there exists a finite
family of co-zero sets {Gy1 , Gy2 , · · · , Gyn} that covers X. If the corresponding
functions in L are denoted by fy1 , fy2 , · · · , fyn then gx = fy1∧fy2∧· · ·∧fyn ∈ L
such that gx(x) = f(x) and gx(z) < f(z) + ε for all z ∈ X.
Now consider the co-zero set Hx = {z : gx(z) > f(z) − ε}. Since x ∈ Hx,
the class Hx’s for all x ∈ X is a cover of X. Again since the space X is
B1(X,µ)-compact, by Theorem 6.5, there exists a finite subfamily of co-zero
sets {Hx1 , Hx2 , · · · , Hxm} that covers X. We denote the corresponding func-
tions in L by gx1

, gx2
, · · · , gxm

and we define g as g = gx1
∨ gx2

∨ · · · ∨ gxm
. It

is clear that g ∈ L with the property that f(z) − ε < g(z) < f(z) + ε for all
z ∈ X. This completes the proof. �

It is routine check to see that B1(X,µ) is a normed algebra if we define the
norm as ||f || = sup

x∈X
|f(x)| for f ∈ B1(X,µ) and we have the following lemma.

Lemma 6.7. Let X be an arbitrary topological space. Then every closed sub-
algebra of B1(X,µ) is also a closed sub-lattice of B1(X,µ).

Proof. Let A be a closed sub-algebra of B1(X,µ). To show that A is a sub-
lattice, it is sufficient to show that if f ∈ A then |f | ∈ A. Let ε > 0 be any
arbitrary real number. Since |t| is a continuous function of real variable t,
by Weierstrass approximation theorem, there exists a polynomial p′ with the
property that ||t|−p′(t)| < ε

2 for every t on the closed interval [−||f ||, ||f ||]. Set
p(t) = p′(t) − p′(0), then p is a polynomial with 0 as its constant term which
has the property that ||t| − p(t)| < ε for every t in [−||f ||, ||f ||]. Since A is an
algebra, p(f) ∈ A. Also ||f(x)| − p(f(x))| < ε for every x in X. This implies
that ||f | − p(f)| < ε. Since A is a closed sub-algebra and the fact that |f | is
approximated by the function p(f) in A , we have |f | ∈ A. �

Now we can easily prove the following theorem by adopting the proof of
Stone Weierstrass theorem.

Theorem 6.8. Let X be a B1(X,µ)-compact space and let A be a closed sub-
algebra of B1(X,µ), which separates points and contains a non-zero constant
function. Then A = B1(X,µ).

Proof. If X has only one point, then B1(X,µ) contains only constant functions.
Since A contains a non-zero constant function and it is an algebra, it contains
all constant functions and thus A = B1(X,µ). We may assume that X has more
than one point. Let x, y be two distinct points of X and a, b two real numbers.
Since A separates points, there exists g ∈ A such that g(x) 6= g(y). Now we
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define f by f(z) = a g(z)−g(y)
g(x)−g(y) +b g(z)−g(x)

g(y)−g(x) . Then f ∈ A and f(x) = a, f(y) = b.

Then by Lemmas 6.6 and 6.7, we have A = B1(X,µ). �
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