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Simple Summary: Apart from genetic changes, cancer is characterized by epigenetic alterations,
which indicate modifications in the DNA (such as DNA methylation) and histones (such as methyla-
tion and acetylation), as well as gene expression regulation by non-coding (nc)RNAs. These changes
can be used in biological fluids (liquid biopsies) for diagnosis, prognosis and prediction of cancer
drug response. Although these alterations are not widely used as biomarkers in the clinical practice
yet, increasing number of commercial kits and clinical trials are expected to prove that epigenetic
changes are able to offer valuable information for cancer patients.

Abstract: Early alterations in cancer include the deregulation of epigenetic events such as changes
in DNA methylation and abnormal levels of non-coding (nc)RNAs. Although these changes can
be identified in tumors, alternative sources of samples may offer advantages over tissue biopsies.
Because tumors shed DNA, RNA, and proteins, biological fluids containing these molecules can
accurately reflect alterations found in cancer cells, not only coming from the primary tumor, but also
from metastasis and from the tumor microenvironment (TME). Depending on the type of cancer,
biological fluids encompass blood, urine, cerebrospinal fluid, and saliva, among others. Such samples
are named with the general term “liquid biopsy” (LB). With the advent of ultrasensitive technologies
during the last decade, the identification of actionable genetic alterations (i.e., mutations) in LB is
a common practice to decide whether or not targeted therapy should be applied. Likewise, the
analysis of global or specific epigenetic alterations may also be important as biomarkers for diagnosis,
prognosis, and even for cancer drug response. Several commercial kits that assess the DNA promoter
methylation of single genes or gene sets are available, with some of them being tested as biomarkers
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for diagnosis in clinical trials. From the tumors with highest incidence, we can stress the relevance of
DNA methylation changes in the following genes found in LB: SHOX2 (for lung cancer); RASSF1A,
RARB2, and GSTP1 (for lung, breast, genitourinary and colon cancers); and SEPT9 (for colon cancer).
Moreover, multi-cancer high-throughput methylation-based tests are now commercially available.
Increased levels of the microRNA miR21 and several miRNA- and long ncRNA-signatures can also be
indicative biomarkers in LB. Therefore, epigenetic biomarkers are attractive and may have a clinical
value in cancer. Nonetheless, validation, standardization, and demonstration of an added value over
the common clinical practice are issues needed to be addressed in the transfer of this knowledge
from “bench to bedside”.

Keywords: epigenetic biomarkers; cancer; DNA methylation; micro-RNAs

1. Introduction

Aberrant epigenetic changes are recognized as one of the key events leading to car-
cinogenesis [1]. Cancer cells harbor global epigenetic abnormalities in addition to genetic
alterations. The use of “omic” techniques in recent years has allowed us to get a compre-
hensive view of the extensive reprograming that occurs in the epigenetic machinery of
cancer cells. These epigenetic changes include DNA methylation, histone modifications,
nucleosome positioning, and de-regulation of non-coding RNAs, mainly micro-RNAs
(miRNAs) [2].

The most widely studied epigenetic modification and the one closer to be transferred
to the clinic as a cancer biomarker is DNA methylation. This modification is the result
of the addition of a methyl group at the 5'-carbon of the pyrimidine ring of a cytosine
followed by a guanine (CpG), which impedes gene transcription. Cancer is characterized
by global DNA hypomethylation and focal hypermethylation of certain genes such as
tumor suppressor genes [3] or miRNAs, whose silencing promotes tumor growth [4].
Hypomethylation takes place mainly in repetitive regions of the genome and has been
shown to facilitate genomic instability and DNA damage [5].

Both genetic and epigenetic alterations identified in cancer can be used as biomark-
ers for diagnosis, prognosis, and prediction of drug response. Although assessment of
biomarkers in tumor specimens may offer direct information about genetic and epigenetic
alterations, the amount of tissue obtained from advanced tumors is often insufficient and
may not reflect the whole tumor heterogeneity. To overcome these inconveniences, an
alternative option to tissue samples has emerged in the last years, known as liquid biopsy
(LB). LB is an non-invasive method that allows for the analysis of different biomarkers
in fluids such as blood, saliva, bronchoalveolar lavage (BAL), cerebrospinal fluid (CSF),
urine, or other body fluids [6]. These samples are easily obtained and may pick up
DNA /RNA /proteins coming from both the primary tumor and the different metastatic
sites, representing tumor heterogeneity and clonal evolution. In LB, we can find circulating
tumor DNA (ctDNA), circulating tumor RNA (ctRNA), circulating tumor cells (CTCs), and
extracellular vesicles (EVs) that may contain RNA, proteins, and DNA. Figure 1 graphically
depicts the possible contribution of epigenetic biomarkers (free or vesicle-enclosed methy-
lated DNA and ncRNAs) isolated in LB, in conjunction with clinical data, for patient’s
stratification, prognosis, and prediction of response to therapy [6].
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Figure 1. Scheme representing the utility of epigenetic changes found in liquid biopsies as biomarkers for cancer diagnosis,

patient’s stratification, prognosis, and response to treatments. Changes in DNA methylation of gene promoters and

abnormal levels of non-coding RNAs (ncRNAs) can be found in fluids as free molecules or inside extracellular vesicles

(EVs). Integration of these biological markers with clinical and radiological data may help in the management of cancer

patients, in particular in the field of screening and diagnosis.

The clinical value of identifying actionable genetic mutations in LB (mainly blood)
to treat patients with targeted therapy has been widely proven. However, regarding
epigenetic changes, translation of these potential biomarkers into the clinic still lags far
behind the genetic biomarkers. Although with some exceptions, rather than prediction
of response to drugs, epigenetic biomarkers could be particularly useful as diagnostic
and prognostic indicators, with numerous commercially available tests already developed
to detect changes in DNA methylation levels [7]. The performance of diagnostic test is
commonly evaluated in terms of sensitivity, specificity, and the area under the ROC curve
(AUC). Sensitivity is defined as the percentage of positive cases that is correctly identified
and specificity as the percentage of negative cases that is correctly identified. The AUC,
which takes into account both sensitivity and specificity, defines diagnostic accuracy and
is optimal when values are closer to 1. The fact that epigenetic changes are found early
in carcinogenesis and that DNA methylation is stable in c¢tDNA, makes this epigenetic
modification an excellent potential cancer diagnostic biomarker in LB.

The term “epigenetic”, considered as any change in gene expression that does not
permanently affect the DNA, may also include gene expression regulation by non-coding
(nc)RNAs and histone modifications [8]. The aberrantly expressed ncRNAs may be promis-
ing therapeutic targets as well as cancer biomarkers. ncRNAs are the principal regulators of
key molecular and cellular processes such as RNA splicing, gene regulation, proliferation,
and apoptosis. ncRNAs can be classified into two groups based on their length and their
roles: housekeeping ncRNAs and regulatory ncRNAs, which in turn include small ncRNAs
and long ncRNAs (Figure 2). Circulating RNA species can be found free in fluids or inside
EVs, where they are protected from degradation. EVs can be classified into three main types
according to their size and biogenesis: exosomes, microvesicles, and apoptotic bodies [9].
Approximately 70% of studies have assessed exosomes as the source of choice for ncRNA
when evaluating biomarkers [9]. Yuan et al. analyzed the RNA content in exosomes and
estimated that mature miRNAs spanned 40.4%, piwi-interacting RNAs 40%, pseudo-genes
3.7%, IncRNAs 2.4%, tRNAs 2.1%, and mRNAs 2.1% of the total RNA [10]. From the
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different species of ncRNAs, microRNAs stand out as potential epigenetic markers in
fluids, although implementation in the clinic encounters several difficulties such as RNA in-
stability and variability of the methodologies used [11]. In general, RNA is less stable than
DNA and proteins, and in particular, some regulatory IncRNAs show short half-lives [12].
Besides, there are many factors that may influence RNA stability in body fluids such as
hemolysis in plasma/serum samples, which are a major cause of variation in miRNA
levels [13]. Another possible pitfall when analyzing tumor miRNAs in liquid biopsy is
their unknown cellular origin and the masking effect from ncRNAs released by non-tumor
cells. Several studies postulate that the material contained in exosomes derived from the
tumor microenvironment (TME) can also contribute to the characterization of the tumor,
and as a consequence, TME-derived exosomes could be a good source for biomarkers [14].

Non-coding RNA ,‘9
Q‘b

Length 50-500nt |

Housekeeping ncRNA ‘ Regulatory ncRNA
Length <200nt | Length >200nt
L (RNA - Medium Variable length LA
Small non-coding Long non-coding
> tRNA
miRNA PATs
snRNA exo-siRNA ) )
siRNA—[ eRNA Genomic location DNA effects
snoRNA endo-siRNA .
piRNA circRNA — Intronic RNA

L—» tRF

TERC trans-acting

— Sense RNA

—> Promoter RNA

— Enhancer RNA cis-acting
L—» Antisense RNA

— Intergenic RNA

L—» Bidirectional RNA

Figure 2. Non-coding (nc)RNAs classification into different groups based on their length and their regulatory roles. Small
non coding RNA (sncRNA), long non coding RNA (IncRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear
(snRNA), small nucleolar (snoRNA), telomerase RNA component (TERC), tRNA-Derived Fragments (tRF) and tRNA
halves (tiRNA), microRNA (miRNA), small interfering RNA (siRNA), piwi-interacting RNA (piRNA), promoter-associated
transcripts (PATs), enhancer RNA (eRNA), circular RNA (circRNA), and long non-coding RNA (IncRNA).

Changes in histone modification have also been identified in circulation in cancer pa-
tients and are another source of epigenetic biomarkers. Nonetheless, due to the complexity
of modifications, we will not cover it in our review. Information on this issue has been
comprehensively reviewed in a recent study [15].

In this review, we address the most relevant evidence (according to authors’ criteria)
on epigenetic biomarkers in LB, with special emphasis on tumors with high incidence. We
summarize the data about biomarkers currently registered on the market as well as novel
emerging candidates.

2. Types of Biological Fluids for Epigenetic Analysis

In cancer patients, ctDNA can harbor the same mutational and epigenetic traits as the
corresponding tumor [16]. A common and convenient source of LB is blood, but certain
tumors are characterized by shedding low amounts of DNA into the blood (i.e., brain,
kidney, bladder, prostate, thyroid, or head and neck cancers). In these cases, since their
tumor location allows a direct communication with other body fluids, it could be more
informative to use alternative samples for the analysis of biomarkers [17].

In head and neck cancer, saliva is an attractive non-invasive sample for screening,
diagnosis, and monitoring due to its simple collection and low cost. Salivary nucleic acids
have been used, for example, for the identification and validation of DNA methylation
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and miRNAs, demonstrating their utility in several clinical contexts (recently reviewed
by [18]). Airway-derived fluids such as bronchial aspirates/lavages and sputum samples,
have proven to be accurate tools for the early detection of tumors arising in the respiratory
system [7]. Pleural effusion is also a very informative biological sample for biomarker
assessment in lung cancer (LuCa) patients. It is well established that the EGFR mutational
status can be reliably determined in ctDNA from pleural effusions to predict response to
EGFR-tyrosine kinase inhibitors (TKIs) [19]. In contrast, the information on epigenetic
biomarkers in pleural fluid is more limited and the clinical value of such biomarkers
has to be clearly determined, but recent reports are finding possible association with
prognosis [20].

Urine is a bona-fide source of epigenetic biomarkers in the case of genitourinary
cancers. DNA hypermethylation has been described as one of the earliest and most
frequent aberrations in prostate cancer (PrCa), and the detection of methylation patterns
in urinary ctDNA has shown to be clinically meaningful [21]. In bladder cancer (BdCa),
promising results from urine-based tests that measure DNA methylation patterns have been
described [22]. The potential of miRNAs as biomarkers (individually or in combination)
has also been demonstrated for BdCa, showing high sensitivity and specificity [23].

In the case of central nervous system (CNS) tumors and due to the existence of
the blood-brain barrier, ctDNA in CSF seems to be a better source than blood [24]. A
high concordance between methylation patterns in CSF and matched tumor samples
has been reported, indicating the potential use of this biofluid for epigenetic biomarker
analysis [22,25].

3. Technologies for Epigenetic Assays in Liquid Biopsy

Several techniques have been described for the analysis of epigenetic alterations in
CTCs, free circulating nucleic acids and exosomes [7,26,27]. According to the number of
targets analyzed, these technologies can be divided into (a) single-locus or multiplexed
assays; and (b) genome-wide approaches, which are mainly based on microarrays and
next-generation sequencing (NGS).

3.1. DNA Methylation

The analyses of DNA methylation in ctDNA by single-locus or multiplexed assays
are mainly amplification-based methods such as methylation specific PCR (MSP) or dig-
ital droplet PCR (ddPCR). MSP is a classical method that encompasses Methylight and
MethylQuant assays. MSP detects a small amount of ctDNA among a considerable number
of circulating free DNA (cfDNA) [23]. In Methylight assays, the DNA methylation level
is analyzed by comparing the fluorescence of specific probes between methylated and
unmethylated molecules [28,29]. ddPCR is an ultrasensitive and quantitative method that
is useful for the discovery of clinical biomarkers in samples with a low amount of cfDNA.
This method is based on a PCR that is conducted in water-oil emulsion droplets where a
single DNA molecule can be amplified inside each droplet, thus avoiding the mask effect
of the non-target DNA [26,28]. Moreover, there are other approaches that combine tech-
niques used for ctDNA studies such as BEAming technology, epityper epigenetic analysis,
and methylation sensitive high-resolution technology (MS-HRT). BEAming technology
is a method that combines ddPCR and flow cytometry for the analysis of ctDNA [30,31].
Epityper epigenetic analysis combines specific enzymatic cleavage with mass spectrometry
(MALDI-TOF-MS) [32]. MS-HRT compares the melting profiles of sequences that present
differences in their base compositions [7,26].

Regarding genome-wide assays, the methylation analysis of ctDNA can be performed
by different techniques such as Infinium DNA methylation EPIC array (EPIC). EPIC
is considered the gold standard method for DNA methylation assays due to its cost-
effectiveness and its ability to examine more than 850,000 CpG sites [33].
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3.2. Non-Coding RNAs

The expression of ncRNAs can be evaluated in LB at targeted-specific level using
amplification-based methods such as reverse transcription quantitative PCR (RT-qPCR)
and ddPCR. Of note, the use of ddPCR represents a highly sensitive method to quantify
the expression of specific transcripts in LB [34-36]. In addition, there are other targeted
methods such as peptide nucleic acids (PNAs)-based fluorogenic biosensors [37] and the
NanoString nCounter platform that allow for the detection of ncRNA expression levels
without the need of previous amplification [38]. In particular, the NanoString nCounter
platform is able to analyze a large panel of miRNAs in several types of biological fluids
including plasma and urine [39]. Other targeted approaches have also been developed for
the detection of miRNAs in CTCs such as in situ hybridization (ISH) with locked-nucleic-
acid (LNA) probes [40] and methods based on signal amplification in microfluidic droplets
for single-cell analysis of multiple miRNAs [41].

The expression of ncRNAs can also be detected in LB at transcriptomic level with
the use of NGS (RNA-Seq) or microarrays. Although both technologies allow for the
analysis of ncRNA transcripts in LB [42,43], unlike microarrays, RNA-Seq does not require
prior knowledge of the target transcripts and shows higher sensitivity for the detection
of ncRNAs [42,43]. A summary of the types of technologies, applications, and advan-
tages/disadvantages can be found in Table S1.

4. Epigenetic Biomarkers in Lung Cancer

Lung cancer (LuCa) is currently the second most commonly diagnosed cancer and
the leading cause of cancer-related deaths worldwide among women and men. Globally,
there were an estimated 2.2 million lung cancer cases and 1.8 million deaths in 2018,
accounting for approximately a third of all cancer cases and deaths [44]. LuCa is one of the
most aggressive tumor types, with a 5-year survival rate that varies globally but remains
consistently low, not exceeding 19% [45]. There are two main types of LuCa: non-small cell
lung cancer (NSCLC, ~85% cases) and small cell lung cancer (SCLC, ~15% cases). NSCLC is
subdivided in three main histological subtypes: adenocarcinoma (LUAD) (~40% of NSCLC
cases), squamous cell carcinoma (LUSC) (~30% of NSCLC cases), and large-cell carcinoma
(~10-15% of NSCLC cases).

Despite breakthroughs in LuCa treatments in the last few decades, which have grad-
ually improved patient’s outcome, the mortality rate is still considerably behind that
observed for other prevalent types such as breast or colon cancer. A major factor is the late
diagnosis and, consequently, its late-stage presentation. In recent years, increased interest
has been directed toward the use of imaging techniques and biomarkers for screening
and early detection. In randomized trials, the use of low-dose computed tomography
(LDCT) in populations at risk has shown a significant reduction in lung cancer mortal-
ity [46]. However, there are still several questions regarding LDCT, which require further
research. Examples are clarification of cost-effectiveness in different populations; char-
acterization of detected nodules with indeterminate risk level; the small but significant
percentage of false-positive cases and the potential harms associated with unnecessary
invasive interventions (biopsies or even surgeries) of these cases; and the potential tools to
optimize risk assessment, to recommend for screening only those individuals with higher
risk, not only based on age and smoking exposure [47]. It is then possible that the use of
LB-based molecular biomarkers in screening programs might help LDCTs in identifying
NSCLC. Biological fluids that can be used as a source for biomarkers in LuCa include
blood, bronchial aspirates (BAS), bronchial lavages (BAL), sputum or pleural effusions, for
analysis of ctDNA, exosomes, and CTCs.

4.1. DNA Methylation

Among DNA methylation biomarkers in LuCa diagnosis, SHOX?2 hypermethylation is
clearly the best studied epigenetic alteration. SHOX2 hypermethylation was first described
by Schmidt et al. using bronchial fluid aspirates during bronchoscopy, showing 68%
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sensitivity and 95% specificity [48]. Other studies [49-51] have later validated the diagnostic
potential of SHOX2 methylation status in plasma and pleural effusions. The EpiProLung®
assay is the only commercial test specifically designed for LuCa diagnosis. This test is
based on a PCR assay that analyzes methylation of SHOX2 and PTGER4 in blood, with a
sensitivity of 78% and specificity of 96%, and an area under the ROC curve (AUC) of 0.73.
This gene combination has also been tested in lavage fluid samples.

Other genes have been found to be differentially methylated in plasma samples when
comparing LuCa patients and healthy controls including DCLK1 (49% sensitivity and 91%
specificity) [52], SEPT9 (44% sensitivity and 92% specificity) [53], RASSF1A and RARB2
(87% sensitivity and 75% specificity) [54]. Hulbert et al. demonstrated that analyzing
the DNA methylation status of different genes such as TAC1I (86% sensitivity and 75%
specificity), HOXA7 (63% sensitivity and 92% specificity) and SOX17 (84% sensitivity and
88% specificity) allowed for the detection of LuCa in sputum samples with a global sensi-
tivity of 98% and specificity of 71% [55,56]. Interestingly this group has also published that
methylation analysis of CDO1, TAC1, HOXA9, and SOX17 in urine (as well as in plasma)
can be useful as an adjunct to LDCT screening [57]. Recently, our group has developed
an epigenetic model identified through epigenomic analysis by which the DNA methy-
lation status of four genes (BCAT1, CDO1, TRIMS58, and ZNF177) in BAS/BAL/sputum
samples was able to discriminate between NSCLC patients (even at early stages) and
controls (82% sensitivity and 76% specificity, AUC, ~0.9) [55,58]. We have also described
that TMPRSS4 hypomethylation can be used as a diagnostic tool in early stages, with an
AUC of 0.72 (52% sensitivity and 91% specificity) for BAL and 0.73 (90% sensitivity and
65% specificity) for plasma [59].

Through genome-wide DNA methylation assays, Hsu et al. detected a multiple
epigenetic panel in tumor samples by studying the methylation status of genes CDH13,
BLU, FHIT, RASSF1A, and RARB, whose diagnostic potential was also validated in plasma
samples with a sensitivity of 73% and a specificity of 82% [60]. Similarly, Ostrow et al.
validated in plasma a group of four genes (DCC, Kifla, NISCH, RARB) that was previously
found in tumors, which discriminated between LuCa patients and tumor-free individuals,
with a sensitivity of 73% and specificity of 71% [61]. In addition, Ooki et al. described
a serum-based gene signature, previously identified in tumors from TCGA (MARCH11,
HOXA9, CDO1, UNCX, PTGDR, and AJAP1) that was able to differentiate stage | NSCLC
patients from the controls, with 72.1% sensitivity and 71.4% specificity [62].

Unlike for diagnosis, only a few studies have described the association between DNA
methylation status and outcome or response to drugs using ctDNA [63,64]. Hyperme-
thylation of SHPIP2 in plasma was associated with reduced progression-free survival
(PFS) in advanced NSCLC [65]. DNA methylation of the gene panel SOX17, BMRS1, and
DCLK1 in plasma had a negative impact on survival [52,66,67], whereas SFN methylation
in serum samples was associated with improved survival [68]. Salazar et al. described
that patients with unmethylated CHFR had an improved survival when treated with
second-line EGFR TKIs [69]. Additionally, increased plasma ctDNA methylation levels
of RASSF1A and APC within 24 h after chemotherapy administration was found to be
associated with good response to cisplatin [70]. In addition, using plasma samples, pro-
longed survival has been observed in patients with low SHOX2 promoter methylation after
chemotherapy/radiotherapy [48].

4.2. ncRNAs

ncRNAs are also becoming a valuable tool for the early detection of LuCa. miRNAs,
the most widely studied type of ncRNA, provide promising biomarkers for the diagnosis
and prognosis of LuCa [71]. For instance, miR-1285 was significantly decreased while miR-
324-3p was significantly increased in plasma of stage I LUSC patients in contrast to healthy
donors (AUC 0.85 and 0.79, respectively) [72]. Chen et al. described 10 miRNAs (miR-20a,
miR-222, miR-221, miR-320, miR-152, miR-145, miR-223, miR-199a-5p, miR-24, miR-25)
able to discriminate NSCLC patients from healthy controls, with high sensitivity (92.5%)
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and specificity (90%) rates (AUC 0.97) [73]. miR-21, the most commonly studied miRNA in
LuCa, has been found consistently upregulated in both serum and plasma samples and
may serve as a diagnostic biomarker of early-stage NSCLC. Yu et al. reported that miR-21
was suitable for diagnosis, with 69% sensitivity and 71.9% specificity [74]. A multicenter
study was performed with a total of 3102 participants to investigate the potential use of
circulating miRNAs as diagnostic biomarkers in LuCa. Results reported that a 14-miRNA
signature might be useful to discriminate patients with early-stage lung cancer (stage
I or II) from healthy individuals. Specifically, miR-374b-5p differentiated patients with
early-stage LuCa from those without cancer, with an AUC of 0.83 [75]. Some groups have
studied miRNA precursors as diagnostic biomarkers in LuCa. Powrozek et al. reported
that miRNNA-944 precursors distinguished SCC from ADC with 78.6% sensitivity and
91.7% specificity (AUC = 0.77), and pri-miRNA-3662 discriminated SCC from ADC with
57.1% sensitivity and 90% specificity (AUC = 0.845). Both markers allowed to distinguish
stage I-IIIA NSCLC from healthy individuals with 75.7% sensitivity and 82.3% specificity
(AUC =0.898) [76].

Some ncRNAs have also been proposed as prognostic biomarkers for LuCa. A recent
study using a cohort of 182 patients with resected early-stage NSCLC reported that, among
84 circulating microRNAs, only miR-126-3p had an independent prognostic value in SCC
patients [77]. Moreover, Yanaihara et al. showed that high expression of precursor has-mir-
155 could be an independent poor prognosis biomarker in ADC patients [78]. Increasing
evidence shows that IncRNA can also act as biomarkers for prognosis. Xie et al. reported
in a cohort of 460 patients that low serum levels of SOX20T and ANRIL were associated
with higher overall survival (OS) rate. Multivariate analysis revealed that SOX2OT could
be an independent prognostic factor for NSCLC [79]. Yung-Hung Luo et al. studied the
correlation between clinicopathological characteristics and circRNAs using plasma from a
cohort of 231 LuCa patients (65 had stage I-II and 166 stage III-1V) and 41 healthy donors.
They reported that higher levels of circ_0000190 were correlated with larger primary tumor
size, advanced stage, extrathoracic metastasis, and poor survival [80].

miR-21 has been identified as a key miRNA in the regulation of acquired resistance
to EGFR-TKIs in NSCLC, and high serum levels of this miRNA have been found to be
significantly increased at the time of EGFR-TKI progression when compared to those
observed before treatment [81]. Wang et al. also demonstrated that patients who were
resistant to EGFR-TKIs had higher levels of circulating miR-21, miR-27a, and miR-218
than patients who were sensitive [82]. Jinshuo Fan et al. found that NSCLC patients who
were responsive to ICIs (immune checkpoint inhibitors) had increased levels of a signature
composed of miR-27a, miR-28, miR-34a, miR-93, miR-106b, miR-138-5p, miR-181a, miR-
193a-3p, miR-200, and miR-424 compared to non-responders. Moreover, patients with
high levels of this signature showed improved PFS and OS than those where levels were
low [83]. Recently, expression of circ_0000190 has been found to be correlated with PD-L1
expression and response to immunotherapy in NSCLC [80].

5. Epigenetic Biomarkers in Genitourinary Cancers

The most prevalent tumors of the genitourinary (GU) tract are prostate cancer (PrCa),
bladder cancer (BdCa), and renal cell carcinoma (RCC) [84]. PrCa is the second most
commonly diagnosed cancer and the sixth leading cause of cancer death among men
worldwide [85]. PrCa diagnosis has not evolved significantly since the 1980s, when blood
levels of prostate-specific antigen (PSA) were first introduced as a follow-up marker for
recurrent tumors, and, subsequently, for early detection in combination with digital rectal
examination (DRE) [77,86]. PSA for PrCa screening has low positive predictive value
(~30%), potentially driving to over-diagnosis and over-treatment. This highlights the need
of more accurate biomarkers that are alternative or complementary to PSA for screening
and diagnosis [87]. In the case of BdCa, there was an estimated number of 550,000 cases
and 200,000 deaths (2.1% of all cancer deaths) in 2018 [88]. The 5-year survival rates (~77%)
have remained mostly unchanged since the 90s [89]. Although less frequent, RCC accounts



Cancers 2021, 13, 3016

9 of 24

for ~2% of all diagnosed cancers, but its incidence has more than doubled over the past fifty
years, being the tenth most common neoplasm in men [84,90]. RCC diagnosis is mostly an
accidental finding and represents 1.8% of all cancer deaths worldwide [90]. The therapeutic
options for RCC have increased tremendously in recent years, but biomarkers of response
to these drugs are still lacking.

5.1. DNA Methylation

A common trait of GU tumors is the possibility of using urine as a biological fluid for
the analysis of CTCs and ctDNA [7]. Commercial epigenetic-based kits for the detection of
PrCa and Bdca in both urine and blood samples are currently available [7]. Unfortunately,
epigenetic markers in liquid biopsies from RCC patients are underdeveloped, as this is
one of the tumor types with less ctDNA shedding into biological fluids [91-93]. Among
DNA methylation biomarkers in GU cancers, GSTP1 hypermethylation is by far the most
frequently described epigenetic alteration, especially in PrCa patients [94]. Many authors
have described its utility for PrCa detection [95,96] showing much higher specificity (~90%)
than PSA (~30%), although sensitivity was similar for both PSA levels and GSTP1 methyla-
tion [87,95]. Matched assessment of ctDNA GSTP1 in urine and plasma samples revealed
that urinary analysis outperforms plasma for diagnostic purposes [96,97]. It is worth
mentioning that the DNA methylation analysis of multi-gene panels in serum including
GSTP1, RASSF1A, and RARB have increased the diagnostic coverage of GSTP1 alone [98]
for PrCa. Similar strategies have also been used for BdCa detection (with 100% sensitivity)
in a multi-gene panel that assessed CDKN2A, ARF, MGMT, and GSTP1 [86]. In the case
of RCC, methylation analysis of serum ¢fDNA using GSTP1 alone or in combination with
either APC, p14ARF, p16, RARB, RASSF1, TIMP3, or PTGS2 has been shown to provide a
high accuracy of detection (AUC ranging from 0.73 to 0.75; 95% IC 0.50-0.84) [99]. Inde-
pendently, Hoque et al. measured GSTP1 together with CDH1, APC, MGMT, RASSF1A,
p16, RARB2, and ARF methylation for RCC detection using urine and plasma samples,
showing that at least one gene was hypermethylated in 88% and 67% of the patient’s urine
sediments and plasma, respectively. [100].

Other gene panels that do not include GSTP1 are also under study for PrCa and BdCa
detection. Analysis of MCAM, ERalpha, and ERbeta showed 75% sensitivity and 70% speci-
ficity for early PrCa detection [101]. Similarly, ST6GALNAC3, ZNF660, CCDC181, and
HAPLN3 detected PrCa patients with up to 100% specificity and 67% sensitivity [102]. With
respect to BdCa, methylation status of several genes are reliable alone or in combination
using ctDNA in serum: CDH13 [103], PCDH10 [104], and PCDH17 [105]. Additionally;,
dual combinations such as PCDH17 and POU4F2 (93.96% sensitivity, 90% specificity) [106]
or NID2 and TWIST1 (90% sensitivity and 93% specificity) [107] have been proven to be
accurate for the detection of BdCa patients using urine samples [108]. Several commercial
tests that include epigenetic and non-epigenetic biomarkers are now available for the diag-
nosis of BdCa using urine or blood (AssureMDx®, Bladder CARE®, Bladder EPICHECK®).
In RCC, a panel of genes that act as Wnt antagonists can serve as biomarkers for diag-
nosis, staging, and prognosis using serum ctDNA [109]. Notably, Vitale Nuzzo P et al.
used cell-free methylated DNA immunoprecipitation and high-throughput sequencing
(cfMeDIP-seq) as a highly sensitive assay capable of detecting and discriminating early-
stage RCC from other tumor types and healthy controls in plasma (AUC 0.9) and urine
(AUC 0.86) [110]. Taking into account the different studies related to diagnosis in PrCa,
BdCa, and RCC, hypermethylation of RASSF1A, APC, RARB2, and ARF [111,112] seem to
be the most consolidated biomarkers to use in plasma, serum, and/or urine.

The potential of DNA methylation analysis in LB related to progression and therapy
response is an area of intense study. Sunami et al. reported that methylation of GSTP1,
RASSF1A, and RARB2 associated with PrCa’s Gleason score and serum PSA; in addition,
GSTP1 and RARB2 were associated with the disease’s advanced stage [98]. Likewise, it has
recently been shown that hypermethylation of APC, GSTP1, and RARB2 in urine sediments
correlated with shorter RFS and higher PrCa grade [113]. Additionally, in the case of
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urine, dual assessment of GSTP1 and APC discriminates between low-risk and aggressive
PrCa [114]. Interestingly, Zhao et al. showed that monitoring GSTP1, APC, CRIP3, and
HOXD8 methylation was useful for noninvasive prediction of PrCa aggressive disease in
patients on active surveillance [115]. Indeed, the same group of authors developed a PrCa
urinary epigenetic assay (ProCUTE®) with diagnostic and prognostic purposes based on
the optimized measurement of GSTP1 and HOXD3 gene methylation [116]. In the case of
BdCa, PCDH10 and PCDH17 hypermethylation were independent predictors of cancer
survival and correlated with higher stage and grade [104,105], as described for NID2 and
TWIST1, which were able to discriminate between different patient’s BdCa grades [108].
Finally, a multigene panel useful for BdCa recurrence surveillance has been developed,
which included EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 [117]. A number of
registered clinical trials (in some cases using commercial tests) for screening or recurrence
purposes have been initiated in the case of PrCa and BdCa (https://www.clinicaltrials.gov/
(accessed on 30 December 2020)) (Table S2).

5.2. ncRNAs

In terms of ncRNA, several studies have shown their possible role as biomarkers
in LB. Yu et al. recently designed a 4-IncRNA panel of urinary biomarkers (UCA1-201,
HOTAIR, HYMA1, and MALAT1) for the diagnosis of non-muscle invasive bladder cancer
(NMIBC) [118]. This signature confirmed the presence of tumor in a validation cohort
of 140 NMIBC patients. A different study identified a 7-miRNA panel providing high
diagnostic accuracy in BdCa using urine samples (miR-7-5p, miR-22-3p, miR-29a-3p, miR-
126-5p, miR-200a-3p, miR-375, and miR-423-5p) [119]. Urquidi et al. described a sensitivity
of 87% and a specificity of 100% using a different 25-miRNA urine signature [120]. An
interesting approach integrated the expression of the mRNA HYAL1 together with two
miRNAs (miR-96 and miR-210) and one IncRNA (UCA1) in an urine diagnostic panel
that achieved a sensitivity of 100% and a specificity of 89.5% [121]. Interestingly, the
IncRNA UCAL1 increases cisplatin resistance in BdCa [122]. In the case of PrCa, ncRNA
profiling could be a powerful tool to complement PSA screening. A recent study found
a robust diagnostic model in serum using two different miRNAs (miR-17-3p and miR-
1185-2-3p) with an associated 90% sensitivity and 90% specificity [123]. Serum detection of
PSA in combination with miR-103a-3p and let-7a-5p detected PrCa cases better than PSA
alone [124]. Serum miR-106b, miR-141-3p, miR-21, and miR-375 have also been combined
in a panel with AUC of 0.86 [125].

6. Epigenetic Biomarkers in Breast Cancer

Breast cancer (BrCa) is the most common neoplasm diagnosed in females worldwide,
with an incidence of 11.7% of all women cancer cases [44]. Screening based on imaging
is key for the early detection and better prognosis of this disease, with mammograms
being the most frequent technique recommended. However, the breast cancer nodules do
not always exhibit pathognomonic characteristics, which can prevent the radiologist from
performing a biopsy, or in other cases, generate false positives. Other limitations of this
technique include the possible cumulative radiation exposure and over-diagnosis [126-128].
For these reasons among others, the search for potential non-invasive biomarkers in BrCa
is needed.

6.1. DNA Methylation

Multiple studies have explored epigenetic alterations in ctDNA from BrCa patients
that could serve for diagnosis, prognosis, classification of BrCa subtypes, and prediction
of response to therapies. One of the most frequently studied markers has been the hy-
permethylation of RASSF1A [129-133], which discriminates between healthy individuals
and BrCa patients and acts as a poor prognosis indicator [134]. Moreover, this aberration
predicts the response to tamoxifen or neoadjuvant chemotherapy [135]. Other methy-
lated targets found in plasma from BrCa patients with a diagnostic value encompass
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SOX17, CST6, APC, DAK-K, MASPIN, HIC-1, HIN-1, RARB, RARbeta2, GSTP1, BRCA1,
and KIF1A [32,129-132,136-139]. Among these targets, the hypermethylation of RASSF1A,
BRCA1, RARB, and RARB2, in estrogen receptor+ (ER+) and progesterone receptor (PR+)
breast tumors and plasmas, were validated as indicators of poor prognosis in at least two
independent studies [140]. Furthermore, Fujita et al. showed that the simultaneous detec-
tion of RASSF1A, RARB, and GSTP1 methylation (93% specificity) was strongly correlated
with poor outcome [141]. SOX17 methylation is another independent prognostic factor
(HR: 4.737; 95% CI: 2.088-10.747) and its methylation status in ctDNA from plasma samples
was found to correlate (70.9% concordance) with that observed in CTCs from matched BrCa
patients [142,143]. PITX2 hypermethylation in plasma has also been reported as another
indicator of poor OS (HR: 3.4; 95% CI: 1.2-9.8) [144]. Interestingly, PITX2 hypermethylation
also predicted the response to anthracycline-based therapy [145].

In relation to ER status, Martinez-Galan et al. demonstrated methylation of ER and
ESR1 promoters in plasma from ER- patients [146]. In contrast, PTPRO methylation was
found as a prognostic factor (HR: 3.66; 95% CI: 1.371-9.784) in ER+ positive BrCa patients
but not in ER— [141]. Some gene panels have been designed to simultaneously analyze
several gene methylation patterns in BrCa serum/plasma. For instance, Visvanathan et al.
developed a panel of 10 genes including RASSF1A, whose methylation index predicted
worse PFS (HR: 1.79; CI 95%: 1.23-2.60, and OS (HR: 1.75; 95% CI: 1.21-2.54) in metastatic
BrCa patients [147]. Although evaluation of the methylation status in these genes is promis-
ing, there is currently only one commercial kit available specifically for BrCa, which tests for
PITX2 methylation in paraffin samples (Therascreen®, Qiagen, Frankfurt, Germany) [134].

6.2. ncRNAs

The potential value of ncRNAs as BrCa biomarkers in serum or plasma (either in
exosomes or as cfRNA) has also been reported. Exosomal miR-21 has been widely shown
to be a diagnostic biomarker, with sensitivity and specificity in pooled studies of ~75% and
~85%, respectively, and an AUC of 0.93 [148]. There are hundreds of studies proposing
miRNAs as diagnostic and prognostic biomarkers in BrCa, but they need validation. We
summarize here some recent relevant publications. In BrCa plasma samples, combination
of four miRNAs (miR-1246, miR-206, miR-24, miR-373) distinguished BrCa from healthy
individuals with 98% sensitivity, 96% specificity, and accuracy of 97% [149]. A panel
composed of exosomal miR-142-5p, miR-320a, and miR-4433b-5p isolated from a BrCa pa-
tient’s serum differentiated patients from their control counterparts with 93.33% sensitivity,
68.75% specificity, and AUC of 0.83 [135]. Furthermore, the combination of miR-142-5p
and miR-320a discriminated luminal A subtype from healthy donors with 100% sensitivity,
93.80% specificity, and AUC of 0.94. Interestingly, decreased expression of miR-142-5p and
miR-150-5p were significantly associated with more advanced tumor grades (grade III),
while the decreased expression of miR-142-5p and miR-320a was associated with a larger
tumor size [135]. Additionally, circulating miR-30b-5b has been recently reported to act as
a BrCa prognostic factor [150].

Serum miRNA profiles may be useful for the diagnosis of axillary lymph node metas-
tasis before surgery in a less-invasive manner than sentinel lymph node biopsy. A model
that includes a combination of two miRNAs (miR-629-3p and miR-4710) and three clinico-
pathological factors (T stage, lymphovascular invasion, and ultrasound findings) showed
an optimal diagnostic potential, with 88% sensitivity, 69% specificity, and accuracy of
0.86 [151].

There are also data that correlate ncRNA levels in serum to treatment response. For
example, a set of exosomal miRNAs (miR-185, miR-4283, miR-5008 and miR-3613, miR-
1302, miR-4715, and miR-3144) that target pathways of immune maturation predicted poor
neoadjuvant chemotherapy response prior to surgery [152]. Similarly, IncH19 levels in
the plasma of BrCa patients have also been reported to predict response to neoadjuvant
chemotherapy [153].
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7. Epigenetic Biomarkers in Colorectal Cancer

Colorectal cancer (CRC) is the third most common cancer worldwide. This tumor
represents approximately 10% of all diagnosed cancer cases, with approximately 1.8 million
new cases estimated in 2018. It is important to note that CRC is responsible for approxi-
mately 9% of all cancer deaths, being the second leading cause of cancer mortality [154]. In
CRC, screening strategies have been shown to be effective to detect early CRC and precan-
cerous lesions, and to reduce its morbidity and mortality. Among the detection strategies,
the fecal immunochemical test (FIT) represents a non-invasive and cost-effective assay for
detecting the presence of fecal hemoglobin. This is currently the most commonly used
method for CRC screening, with an overall sensitivity and specificity for detection of 79%
and 94%, respectively. However, the ability of this assay to detect advanced precancerous
lesions is limited, showing 24% sensitivity and 95% specificity [155]. After a positive result
for FIT, colonoscopy is the gold standard diagnostic technique for CRC detection. However,
it is an invasive method that needs bowel preparation and sedation, presenting certain risk
of complications for the patients [156]. In this context, the use of epigenetic biomarkers
such as DNA methylation in stool samples might provide a non-invasive and the most
cost-effective approach in population-based screening for both CRC and precancerous
lesions [157]. Thus, for example, the simultaneous methylation analysis of SEPT9 and
SDC2 (ColoDefense® test) in stool samples was able to obtain a sensitivity of 66.7% for
advanced adenoma (AA) and 92.3% for CRC, with a specificity of 93.2% [158].

7.1. DNA Methylation

Among the most frequently studied epigenetic biomarkers in ctDNA for CRC, the
methylation of SEPTIN9 (SEPTY) stands out for screening and early detection [144,159,160].
The EpiproColon® test was the first commercially available FDA-approved test for the
detection of SEPT9 methylation in plasma by real-time PCR [161,162]. In addition to
blood samples, methylation of this gene has also been analyzed in stool, showing a 35.9%
improvement in detecting pre-tumoral stages (AA) and 7.9% in identifying early CRC
tumors, in comparison with the plasma test [163]. The use of ColoDefense® in blood
enabled the detection of AA and CRC, with an overall sensitivity of 88.9% and a specificity
of 92.8% [164]. Similarly, other studies have proposed the analysis of the methylation of
several genes in plasma as circulating epigenetic biomarkers able to discriminate between
healthy controls and patients with AA or CRC [165,166]. In addition, approaches based
on methylation microarrays [33] and NGS [167] have been used to identify epigenetic
biomarkers in ctDNA for cancer detection.

Regarding prognosis, hypermethylation of the P16 promoter in ctDNA has been asso-
ciated with poor OS [168]. Additionally, hypermethylation of HPP1 and HLTF indicates a
poor prognosis and high mortality [169], and hypermethylation of RARB and RASSF1A was
associated with the aggressiveness of the disease [170] in patients with CRC. Methylation
of ctDNA can also be used to monitor tumor burden and evaluate the therapeutic response
of patients [171,172], correlating better than classical biomarkers such as carcinoembry-
onic antigen (CEA) and carbohydrate antigen (CA)-19-9. For example, the analysis of
the methylation status of the 2-gene panel BCAT1/IKZF1 in plasma showed higher sen-
sitivity for detecting CRC recurrence than CEA, with an odds ratio of 14.4 (95% CI: 5-39)
and 6.9 (95% CI: 2-22), respectively [173]. Similarly, the plasma methylation of SEPT9,
DCC, BOLL, and SRFP2 showed stronger correlation with tumor burden than CEA and
CA-19-9[172].

7.2. ncRNAs

Circulating levels of ncRNAs have also shown utility as biomarkers in the manage-
ment of CRC. Circulating miR-21 levels in blood and saliva allow for the detection of
CRC [174,175]. In addition, miRNA signatures evaluated in fluids can be useful for discrim-
inating between healthy controls, patients with adenomas, and patients with CRC with
high sensitivity and specificity. In particular, the plasma levels of miR-601 and miR-760



Cancers 2021, 13, 3016

13 of 24

showed an AUC of 0.68 with 72.1% sensitivity and 62.1% specificity, which can discrim-
inate between AA and healthy donors. In addition, this panel of miRNAs was able to
differentiate CRC from the control samples with an AUC of 0.79, a sensitivity of 83.3%,
and a specificity of 69.1% [176]. Another study has recently identified a signature of six
miRNAs (miRNA19a, miRNA19b, miRNA15b, miRNA29a, miRNA335, and miRNA18a)
with an AUC of 0.92, a sensitivity of 85%, and a specificity of 90% that is able to detect
CRC and AA in comparison to healthy individuals [157]. Regarding prognosis, high levels
of circulating miR-210 and miR-141 are associated with shorter survival [165,177], while
high levels of miR-23b are associated with longer survival [178]. Besides, levels of different
miRNAs in blood may be useful for the early detection of recurrence [179] and evaluation
of therapy response in CRC patients [180]. High plasma levels of the IncRNA HOTAIR have
shown utility for the detection of CRC and association with a worse prognosis and higher
mortality [181]. Of note, other studies have analyzed different combinations of circulating
IncRNAs as diagnostic biomarkers, which were useful for the detection of adenomas and
CRC [166,182,183].

8. Epigenetic Biomarkers in Other Tumor Types and Multi-Cancer Tests

In addition to common tumor types, epigenetic alterations may also be detected in LB
from other less frequent malignancies, showing clinical utility as tumor biomarkers. In cuta-
neous melanoma, where the use of circulating epigenetic biomarkers has been proposed as
a non-invasive tool for tumor detection, promoter hypermethylation of RASSF1A has been
described in plasma samples as a diagnostic indicator, with the ability of discriminating
between melanoma patients and healthy individuals, showing a good diagnostic accuracy
with an AUC of 0.90 [184]. Besides, the detection of hypermethylated RASSF1A in serum
before treatment was able to predict the prognosis and clinical response to drugs in ad-
vanced melanoma patients [185]. In a recent pilot study using NGS and machine learning,
Bustos et al. were able to identify a circulating miRNA signature (miR-4649-3p, miR-615-3p,
and miR-1234-3p) associated with the response to ICIs in advanced melanoma patients,
suggesting that circulating miRNAs could enable real-time monitoring of patients receiv-
ing this type of treatment [167]. The plasmatic levels of other ncRNAs such as IncRNAs
(IGF2AS, anti-Pegl1, MEG3, Zeb2NAT) were also found to be associated with prognosis
and therapy response in BRAF-mutant advanced melanoma patients treated with the
BRAF inhibitor vemurafenib [186]. Similar to melanoma, the blood-based analysis of DNA
methylation and ncRNAs has shown utility as circulating epigenetic biomarkers for other
tumors including pancreatic cancer [187], ovarian and endometrial carcinomas [188,189],
and brain tumors [190], among others.

In brain tumors such as glioblastoma, promoter hypermethylation of several genes
(MGMT, p16INK4a, TIMP-3, and THBS1) has been detected at high frequencies in serum
and CSE. In glioblastoma, hypermethylation of MGMT is associated with response to
temozolamide [191]. The methylation status of MGMT and THBS1 in CSF was also able
to independently predict PFS of glioblastoma patients [22]. Similar to methylation, the
circulating microRNA profiling of CSF has also been proposed as a good approach for the
non-invasive detection (miR-30e, miR-140, let-7b, mR-10a, and miR-21-3p) and prognosis
(miR-10b and miR-196b) of glioblastoma patients [192]. In other tumor types such as oral
cancer, the analysis of epigenetic biomarkers in saliva has been explored. In this sense, the
promoter hypermethylation of different types of genes (e.g., RASSF1A, p16 INK4a, TIMP3,
and PCQAP/MED15) and the expression levels of miRNAs in saliva have been detected in
association with oral tumors [18,193]. Thus, the study of epigenetic biomarkers in saliva
has been proposed as an easily accessible LB sample for oral cancer detection.

The recent application of NGS has allowed for the development of sensitive epigenetic
assays for the detection of both common and less-frequent tumors. Thus, using NGS
and machine learning, Liu et al., in a very large clinical trial including individuals with
(n = 2482) and without cancer (n = 4207), recently developed a classifier based on the
methylation of cfDNA, assessing >100,000 methylation sites in plasma for the sensitive
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detection of more than 50 tumor types [169]. This multi-cancer approach was useful across
all stages of the disease, and also for the identification of the tissue of origin with high
accuracy, which could be relevant for the treatment and follow-up of the patients. The assay
is going to be commercialized by the Biotech Company GRAIL. PanSeer® is an NGS-based
assay that is able to detect cancer in asymptomatic individuals, years before standard

diagnosis [194].

Table 1 shows a list of the top methylated genes and ncRNAs identified in LB from
cancer patients, with an emerging role as biomarkers. This list has been established based
on the number of studies and robustness of the genes/ncRNAs published and/or inclusion

in commercial tests.

Table 1. Top methylated genes/signatures and ncRNAs identified in liquid biopsies from cancer patients, with an emerging

role as biomarkers. BAL: bronchoalveolar lavage; BAS: bronchoalveolar aspirate; CSF: cerebrospinal fluid.

Epigenetic Alteration Gene Name(s)/Epigenetic Kit Type of Liquid Biopsy Intended Use Reference
LUNG CANCER
_SHOX2/PTGER4 (EpiProLung)® Blood Diagnosis [66]
DNA methylation -Gene sets including RASFF1A and other genes BAL/sputum Diagnosis [54-57,62]
-BCAT1/CDO1/TRIM58/ZNF177 BAS/BAL/sputum Diagnosis 58]
NeRNAs -miR21 Blood Diagnosis [74]
-Several miRNA signatures Blood Diagnosis [72,73]
GENITOURINARY CANCERS
-Gene sets including GSTP1, RASFF1A, APC, ARF Urine, blood Diagnosis [94,96]
. and RARB2
DNA methylation -Several gene sets (AssureMDx®, Bladder CARE®, Urine, blood Diagnosis [103,108]
Bladder EPICHECK®)
-GSTP1 and HOXD3 (ProCUTE, Prostate cancer) Urine Diagnosis [116]
ncRNAs -Several miRNA and IncRNA signatures Blood Diagnosis [118-120]
BREAST CANCER
' -Gene sets including GSTP1, RASFF1A, BRCA1 and Blood Diagnosis [129-133,136-139]
DNA methylation RARB2 Blood P is/ [144.145]
_PITX? 00 rognosis/response ,145
RNA -miR21 Blood Diagnosis [148]
nc s . . .
Several miRNA signatures Blood Diagnosis [149,151]
COLORECTAL CANCER
-SEPT9 (EpiProColon®) Stool, blood, Diagnosis [161,162]
-SEPT9 and SDC2 (ColoDefense®) Stool, blood Diagnosis [158]
DNA methylation : :
-p16, RASFF1A, RARB2 Blood Diagnosis, [168-171]
prognosis
-BCAT1 and IKZF1 Blood Diagnosis [172]
-miR21 Blood, saliva Diagnosis [174,175]
ncRNAs
-Several miRNA signatures Blood Diagnosis [176,177]
OTHER CANCER TYPES AND MULTI-CANCER BIOMARKERS
-RASFF1A (melanoma) Blood Diagnosis [184]
. Response to
-MGMT (glioblastoma) CSF therapy [191]
DNA methylati - -
methylation “RASFF1A, p16, TIMP3 (oral cancer) Blood, saliva Diagnosis, [193]
prognosis
-DNA methylation signature PanSeer® Blood Diagnosis [194]
-DNA methylation signature GRAIL® Blood Diagnosis [169]
ncRNAs -Several miRNA signatures Blood Diagnosis [186-189]
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9. Epigenetic Biomarkers in Cancer: Translation to the Clinic

The use of non-invasive epigenetic biomarkers is considered as a promising option in
oncology. However, these biomarkers (with few exceptions) have not successfully reached
clinical practice yet. Progress in the path to translation will be made provided clinical value
is added to the current management of patients. These are some of the difficulties to take
into consideration for clinical translation [195]:

(1) Clinical value and confirmatory results: confirmed clinical evidence in prospective
trials is critical for medical professionals and regulatory agencies.

(2) Performance and affordability: it is essential to develop a commercial product with
demonstrated good performance, affordable price, and is easy to use.

(3) Pre-analytical issues: preservation of the sample, storage time, and temperature, etc.,
have to be extensively studied.

(4) Technical barriers: when using some of the epigenetic techniques, there may be a
technical barrier, particularly for advanced procedures such as mass spectrometry or
next generation sequencing (NGS).

(6) Training: formation on new epigenetic platforms and interpretation of the results is
needed, especially for the “omic” epigenetic technologies.

(6) Global regulation: establishing a global harmonization of regulation would facilitate
translating an epigenetic assay into the clinic.

Overall, the continuous technological development and commercialization activity of
epigenetic kits would lead to an innovative and competitive environment that will result
in significant benefits for the clinical practice in the near future.

10. Conclusions and Future Perspectives

Evaluation of epigenetic biomarkers in LB is an emerging field in oncology that may
help in cancer screening, diagnosis, identification of tumor subtypes as well as in the
prediction of response to therapy and outcome. LB offers the opportunity of evaluating
tumor markers using non-invasive methods and may represent better tumor heterogeneity
and evolution. While the evaluation of actionable mutations in LB has a demonstrated
clinical value, the use of epigenetic alterations (with few exceptions) has not reached
clinical practice yet. Among the different fields where epigenetic changes may play a
role as biomarkers, we envision that screening and diagnosis are the areas closer to the
clinic. Current screening tests such as mammography, analysis of occult blood in feces and
colonoscopy are routinely performed to detect BrCa and CRC, respectively. Nonetheless,
over-diagnosis and false positives are of concern. In the case of PrCa, blood levels of PSA
lack diagnostic accuracy and for LuCa, LDCT is not a common practice yet. Therefore, epi-
genetic biomarkers in LB could be of great value in screening and diagnosis for these cancer
types. Moreover, the development of platforms that analyze thousands of methylation
alterations in blood has been shown to be highly valuable in screening for multiple cancers.

Some epigenetic commercial tests have been developed and are currently being evalu-
ated in clinical trials. These tests are designed for individual cancer types or as multi-cancer
diagnostic tools; some others include both DNA methylation and mutational assays in
the same kit. With constant information being provided by “omic” techniques for both
DNA methylation and ncRNAs, new potential sources of epigenetic markers will be intro-
duced and tested. However, the path to clinical translation is long and costly and thus the
identified epigenetic biomarkers need to offer an added value over the established clinical
practice and to attract investment for their development.

The discovery of new gene/signature candidates can also face several issues. For
example, in the case of blood, studies show the need to use large amounts of plasma or
serum to evaluate DNA methylation (1-4 mL) in comparison with protein-based techniques
that can use much lower amounts (10-100 pL). This limitation could be solved with the in-
troduction of new ultrasensitive techniques. The discovery of novel aberrantly methylated
genes using “omic” platforms may also need specialized technicians and bioinformaticians
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to analyze the data correctly. In addition, these technologies are expensive and could be
outsourced at reference hospitals.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ cancers13123016/s1, Table S1: Technologies for epigenetic assays in liquid biopsy, Table S2:
Clinical trials using epigenetic biomarkers in PrCa, BdCa and RCC.
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