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Abstract: The increasing complexity of Multi-Agent Systems (MASs), coupled with the emergence of
Artificial Intelligence (AI) and Large Language Models (LLMs), have highlighted significant gaps in
our understanding of the behavior and interactions of diverse entities within dynamic environments.
Traditional game theory approaches have often been employed in this context, but their utility is
limited by the static and homogenous nature of their models. With the transformative influence of AI
and LLMs on business and society, a more dynamic and nuanced theoretical framework is necessary
to guide the design and management of MASs. In response to this pressing need, we propose an
Extended Coevolutionary (EC) Theory in this paper. This alternative framework incorporates key
aspects of coevolutionary dynamics, adaptive learning, and LLM-based strategy recommendations to
model and analyze the strategic interactions among heterogeneous agents in MASs. It goes beyond
game theory by acknowledging and addressing the diverse interactions (economic transactions,
social relationships, information exchange) and the variability in risk aversion, social preferences,
and learning capabilities among entities. To validate the effectiveness of the EC framework, we
developed a simulation environment that enabled us to explore the emergence of cooperation and
defection patterns in MASs. The results demonstrated the potential of our framework to promote
cooperative behavior and maintain robustness in the face of disruptions. The dynamics and evolution
of the Multi-Agent System over time were also visualized using advanced techniques. Our findings
underscore the potential of harnessing LLMs to facilitate cooperation, enhance social welfare, and
promote resilient strategies in multi-agent environments. Moreover, the proposed EC framework
offers valuable insights into the interplay between strategic decision making, adaptive learning,
and LLM-informed guidance in complex, evolving systems. This research not only responds to the
current challenges faced in modeling MASs, but also paves the way for future research in this rapidly
developing field.

Keywords: multi-agent systems; human–computer interaction; large language models; cooperative
games; game theory

1. Introduction

The modern world is increasingly characterized by complex systems and interactions.
These systems often involve a multitude of diverse entities, ranging from individuals and
organizations to autonomous agents in Artificial Intelligence (AI)-driven environments. At
the heart of understanding these complex interactions is strategic decision making, which
is a vital aspect in economics, sociology, biology, and, more recently, in AI.

The study of strategic decision making has long been an essential aspect of understand-
ing interactions among diverse entities in various domains, such as economics, sociology,
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and biology. Classical game theory, which was pioneered by John von Neumann and fur-
ther developed by John Nash [1,2], has provided a foundational framework for analyzing
these interactions and predicting the outcomes of strategic choices. However, with the
rapid advancements in AI and the emergence of Large Language Models (LLMs), there is a
growing need to develop new theoretical frameworks that can better capture the dynamics
of Multi-Agent Systems (MASs) in the presence of these disruptive forces [3–6].

One of the key challenges in modeling strategic interactions is the inherent complexity
of the environments and agents involved. In real-world scenarios, entities often have
diverse characteristics, such as different risk aversions, social preferences, and learning
capabilities, that can significantly influence their decision-making processes [7]. Moreover,
these entities interact through various channels, including economic transactions, social
relationships, and information exchange, which can further complicate the analysis of their
strategic behaviors [8].

Human–Computer Interaction (HCI) is a multidisciplinary field that focuses on the
design, implementation, and evaluation of interactions between humans and computers. It
encompasses a wide range of topics, including the joint performance of tasks by humans
and computers; the structure of communication between humans and computers; human
capabilities to use computers; algorithms and programming of the interface itself; engineer-
ing concerns that arise in designing and building interfaces; the process of specification,
design, and implementation of interfaces; and design trade offs.

Multi-Agent Systems (MASs) represent a paradigm in AI that models complex systems
as a collection of autonomous agents that are each capable of reactive, proactive, and social
behavior. These agents, which can be software programs or physical entities, interact
with one another and their environment to achieve individual or shared objectives. Key
concepts in MASs include coordination and control; reasoning and planning; and learning
and adaptation.

In this study, we explored the intersection of HCI and MASs by integrating the EC
framework with Large Language Models (LLMs) [9,10] to model and simulate the dynamics
of cooperation and defection in MASs. The EC framework combines elements from game
theory, coevolutionary algorithms, and MASs to analyze and predict the behavior of agents
in various interaction scenarios. By incorporating LLMs as AI agents that can provide
strategic recommendations and influence human decision making, we aim to create a more
comprehensive model of HCI in the context of MASs.

The core of our proposal lies in the use of intelligent sensors and sensor networks
as a means to facilitate the communication and cooperation between human and intelli-
gent agents. These sensors enable the collection of valuable data and allow for real-time
adaptation and learning in response to changing environmental conditions or agent interac-
tions. By integrating MASs and HCI, we hope to develop novel technologies and solutions
centered around the use of intelligent sensors in various applications, thereby ultimately
enhancing the effectiveness and efficiency of MASs in diverse HCI contexts.

HCI plays a critical role in understanding and facilitating effective cooperation be-
tween humans and intelligent agents within MASs. While HCI encompasses a wide range
of topics, in this paper, we emphasize the societal and economic perspectives of interactions
between humans and AI-driven entities, such as LLMs. These perspectives involve the
exchange of information, the joint performance of tasks, and the influence of AI-based
strategic recommendations on human decision-making processes. By integrating HCI
and MASs, we aim to create a comprehensive model that captures the evolving nature
of interactions in complex systems, thereby ultimately offering insights into promoting
cooperation, enhancing social welfare, and building resilience in multi-agent environments.

At the core of our proposal, we regard LLMs as intelligent sensors or AI agents that
interact with human counterparts within MASs. These LLMs, which can be conceived as
advanced AI-driven entities or even embodied as robots, provide strategic recommenda-
tions, process information, and influence human decision-making processes. By integrating
LLMs as intelligent sensors within MASs, we facilitate the collection of valuable data that
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enables real-time adaptation and learning in response to changing environmental condi-
tions or agent interactions. Our approach aims to develop novel technologies and solutions
that center on the use of intelligent sensors and robots in various applications, thereby
ultimately enhancing the effectiveness and efficiency of MASs across diverse HCI contexts.

Traditional approaches have largely relied on game theory. However, as the digital
era progresses, disruptive forces such as AI and LLMs are transforming the landscape
of strategic decision making. These advancements underline the pressing need for new
theoretical frameworks that are capable of capturing the nuanced dynamics of MASs amidst
this transformative wave.

To this end, we introduce an Extended Coevolutionary (EC) Theory as an alternative
to traditional game theory approaches for modeling and analyzing strategic interactions
among heterogeneous agents. Our EC framework aims to capture the evolving nature of
MASs and incorporate the potentially disruptive influence of LLMs on business and society.
The main contributions of this study are:

1. The development of a comprehensive theoretical framework that integrates coevolu-
tionary dynamics, adaptive learning, and LLM-based strategy recommendations for
understanding the emergence of cooperation and defection patterns in MASs.

2. The design of a simulation environment that allows for the exploration of the EC
framework, thus incorporating heterogeneous agents and multi-layer networks to
model diverse interactions among entities.

3. The evaluation of the effectiveness of the EC framework in promoting cooperative
behavior and robustness in the face of disruptions by using various performance
metrics and advanced visualization techniques.

By achieving these objectives, we hope to provide valuable insights into the interplay
between strategic decision making, adaptive learning, and LLM-informed guidance in
complex, evolving systems. Our findings have the potential to inform the development of
novel strategies and interventions for harnessing the power of AI and LLMs in promoting
cooperation, enhancing social welfare, and building resilience in multi-agent environments.

The remainder of this paper is organized as follows: In Section 2, we provide a
comprehensive review of the related work that covers topics such as game theory and
NASH equilibrium, coevolutionary algorithms, MASs, and AI. Section 3 presents the EC
framework and discusses its key components, such as coevolutionary dynamics, adaptive
learning, and the role of LLMs in strategy formation. Section 3.4 introduces the concept
of LLMs in the EC framework and explains how they can be used to generate strategy
recommendations and influence agent interactions. In Section 4, we present the methodol-
ogy, which provides proofs of the EC framework to establish its mathematical foundations.
Section 5 details the simulation environment used in our experiments, including imple-
mentation details, performance metrics, and visualization techniques. Section 6 presents
the results and analysis of our experiments by examining the emergence of cooperation
and defection patterns, the influence of LLM-based strategy recommendations, and the
overall system robustness and resilience. Section 7 discusses the broader implications of our
findings for business and society, as well as the limitations of our current framework and
potential avenues for future work. Finally, Section 8 concludes the paper by summarizing
our key findings and contributions to the field of MASs and HCI.

2. Related Work and Theoretical Context

Game theory is a mathematical framework for studying strategic interactions among
rational agents [11]. A central concept in game theory is the NASH equilibrium, which is a
state in which no player can improve their utility by unilaterally changing their strategy,
given the strategies of the other players [1]. The concept of NASH equilibrium has been
widely applied to model and analyze a variety of strategic situations, including economic
transactions, social dilemmas, and political negotiations [12]. Recent research has explored
the extensions of classical game theory to incorporate more realistic assumptions about
agent behavior and the dynamics of strategic interactions, such as bounded rationality,



Electronics 2023, 12, 2722 4 of 19

learning, and adaptation [13,14]. These extensions have led to the development of new
solution concepts and methods for predicting and influencing the outcomes of strategic
interactions in complex, evolving environments.

Coevolutionary algorithms are a class of evolutionary algorithms that model the
adaptive processes of learning and optimization in populations of interacting agents [15].
In coevolutionary algorithms, agents adapt their strategies over time in response to the
strategies of other agents in the population, thereby leading to the emergence of complex
patterns of cooperation, competition, and specialization [16–18]. These algorithms have
been used to study a wide range of problems in AI, optimization, and MASs, including
the evolution of cooperation in social dilemmas [19–21], the development of efficient
algorithms for hard optimization problems [22,23], and the emergence of communication
and coordination in MASs [24,25].

MASs [26] are part of a subfield of AI that focuses on the development of computational
models and algorithms for simulating and controlling the interactions among multiple
autonomous agents [27–29]. MAS research aims to understand the underlying principles
that govern the behavior of complex, distributed systems, and to develop methods for
coordinating the actions of individual agents to achieve global objectives [30,31].

Recent advances in AI, particularly in the areas of machine learning and Large Lan-
guage Models (LLMs) [32–34], have opened up new possibilities for modeling and ana-
lyzing strategic interactions in MASs [35]. While there is limited research on the direct
integration of LLMs in this specific setting, our work aims to bridge this gap and explore the
potential impacts of AI on the dynamics of cooperation, competition, and social welfare in
evolving multi-agent environments. The infusion of LLM-based advice into agent decision
making opens up promising avenues for investigation, particularly regarding the potential
benefits and challenges posed by AI-driven guidance in MASs. Notably, LLMs, such as
GPT-3.5-turbo, are capable of generating human-like natural language text, thereby allow-
ing them to provide strategic guidance and recommendations to agents in a Multi-Agent
System [36]. By incorporating LLM-based advice into the decision-making processes of
agents, researchers have begun investigating the potential benefits and challenges that may
arise from AI-driven guidance in MASs.

For instance, recent studies have shown that LLMs can enhance the performance
of agents in various tasks, such as negotiation [37] and coordination [38], by providing
real-time strategic recommendations based on the current state of the environment and
agent interactions. These initial findings suggest that LLMs can play a significant role in
shaping the dynamics of multi-agent systems and, ultimately, the outcomes of strategic
interactions.

In summary, while the direct integration of LLMs in the context of strategic inter-
actions and MASs is still an emerging area of research, our work aims to contribute to
the understanding of the potential benefits and challenges associated with incorporating
AI-driven guidance in complex, evolving environments. By extending existing theories
and methodologies, such as coevolutionary algorithms and game theory, our proposed
Extended Coevolutionary (EC) framework seeks to capture the unique characteristics of
LLMs and their potential impact on the dynamics of cooperation, competition, and social
welfare in Multi-Agent Systems.

3. EC Theory

In this section, we present the Extended Coevolutionary (EC) Theory framework,
which is the main contribution of our work. Our EC framework integrates concepts from
game theory, coevolutionary algorithms, and AI to study the emergence and evolution of
cooperation and defection in Multi-Agent Systems (MASs). Specifically, the EC framework
extends classical game-theoretic models [17,39] by incorporating adaptive learning, hetero-
geneous agents, and multi-layer network structures. Moreover, we introduce the use of
LLMs, such as GPT-3.5-turbo, to assist agents in forming their strategies, thereby enabling
a more comprehensive understanding of the dynamics of strategic interactions in complex
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environments. In the following subsections, we detail the key components and theoretical
tools used in the development of the EC framework.

3.1. Coevolutionary Dynamics and Adaptive Learning

Coevolutionary dynamics are central to our proposed EC framework, as they capture
the process by which agents adapt their strategies in response to the strategies of others
in the population. The EC framework employs adaptive learning mechanisms in which
agents update their strategies based on the utilities they receive from interacting with
other agents.

Let sz denote the strategy of agent z, and let Uz(sz, s−z) represent the utility of agent z
given its own strategy sz and the strategies of all other agents s−z. The adaptive learning
process can be described by the following update rule:

sz(t + 1) = sz(t) + α∇Uz(sz(t), s−z(t)), (1)

where α is the learning rate, and ∇Uz is the gradient of the utility function with respect to
the strategy sz. This update rule captures the process by which agents adjust their strategies
to maximize their utilities based on the current state of the population.

3.2. Large Language Models in Strategy Formation

In our EC framework, we also incorporated the use of LLMs, such as GPT-3.5-turbo, to
assist agents in forming their strategies. These AI agents can provide valuable insights and
recommendations based on the current state of the game and the strategies of neighboring
agents. By integrating LLMs into the adaptive learning process, we can explore how the
introduction of AI agents influences the dynamics of cooperation and defection in MASs;
an illustrative diagram can be seen in Figure 1.

Game Theory Coevolutionary Algorithms AI (LLM)

Multi-Agent Systems Adaptive Learning

strategy models

agent behavior

learning models

evolution dynamics strategy advice learning feedback

performance feedback

interaction feedback adaptation feedback

Figure 1. A detailed schematic representation of the Extended Coevolutionary (EC) Theory frame-
work emphasizing the integration of Large Language Models (LLMs). The diagram not only illustrates
the primary components of the framework—game theory, coevolutionary algorithms, AI (LLM),
Multi-Agent Systems, and adaptive learning—but also explicates their dynamic interconnections.
Feedback loops are introduced to signify ongoing adaptation and learning processes, while labeled
arrows illuminate the nature of interactions, such as strategy modeling, agent behavior, learning
models, evolution dynamics, strategy advice, learning feedback, and performance feedback. This
comprehensive portrayal seeks to foster a deeper understanding of the intricate dynamics within the
EC framework.

Indeed, the feedback process in adaptive learning extends beyond modifying inter-
action strategies. Adaptive learning involves an iterative process of adjusting the model
parameters based on the feedback received, thereby continuously improving the perfor-
mance of the model. In our EC framework, adaptive learning not only informs the strategies
adopted by agents, but also refines the underlying models that drive agent behavior. Specif-
ically, the “learning feedback” from the LLM to the adaptive learning component of the
system captures this process of continuous improvement. When the LLM provides strategic
advice to the agents, it includes not only immediate actions, but also feedback on the current
strategies. This feedback is then used to adjust the models that inform agent behavior,
thereby enabling them to learn and adapt over time. Moreover, the “adaptation feedback”
from the adaptive learning component back to the LLM signifies the updates in model
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parameters based on the performance and interaction feedback. This continuous feedback
loop ensures that the LLM, and, thus, the strategies it recommends, evolves over time to
better support agent interactions.

3.3. Heterogeneous Agents and Multi-Layer Network Model

The EC framework acknowledges the importance of agent heterogeneity and complex
network structures in shaping the dynamics of strategic interactions. We modeled agents
with varying characteristics, such as different levels of risk aversion, social preferences,
and learning capabilities. Furthermore, we introduced a multi-layer network model that
captures multiple types of interactions between agents, such as economic transactions,
social relationships, and information exchange.

The multi-layer network is represented by a tuple G = (V, E1, E2, . . . , Ek), where V is
the set of nodes (agents), and Ez is the set of edges (interactions) in layer z. The multi-layer
network allows us to study the interdependencies between different types of interactions
and their effects on cooperation and defection dynamics in the population.

3.4. Large Language Models in EC

LLMs, such as GPT-3.5-turbo, play a significant role in the EC framework, especially
in the context of strategic formation and adaptive learning. These AI agents can analyze the
current state of the game, the strategies employed by neighboring agents, and can provide
valuable insights and recommendations for the agents’ next actions. The incorporation
of LLMs within the EC framework enables a deeper understanding of the dynamics of
cooperation and defection, as well as the influence of AI agents on the overall system.

3.4.1. LLM-Based Adaptive Learning

In the EC framework, LLMs are used to support agents during the adaptive learning
process. At certain intervals, agents consult the LLM for advice on their next strategic move
while considering the strategies of their neighbors. To formalize this interaction, let Qz,t be
the LLM’s recommendation for agent z at time t. We can express the recommendation as a
function of the neighboring agents’ strategies s−z(t):

Qz,t = f (s−z(t)), (2)

where f (·) is the function representing the LLM’s recommendation process.
In the context of real-time applications, the function f (·) needs to be efficient and

robust. Efficiency is required to ensure that the recommendation process does not introduce
significant latency into the system, which is especially critical in real-time applications
where timely response is often necessary. Robustness, on the other hand, is needed to
ensure that the recommendation process can handle a wide range of possible inputs and
still produce meaningful outputs. This is crucial in a dynamic Multi-Agent System where
the strategies of neighboring agents can vary significantly over time. In the context of
LLMs, the function f (·) is implemented by the LLM’s underlying ML model. The model is
trained on a large corpus of data and is capable of generating strategic recommendations
based on the input it receives. The specifics of this process depend on the architecture and
training of the LLM. In the case of GPT-3.5-turbo, for example, the model takes the current
context, including the strategies of neighboring agents, and generates a recommendation
based on patterns it has learned during its training.

The agent’s strategy update can then be modeled as a combination of its original
adaptive learning process and the LLM’s recommendation:

sz(t + 1) = (1− β)(sz(t) + α∇Uz(sz(t), s−z(t))) + βQz,t, (3)

where β ∈ [0, 1] represents the influence rate of the LLM on the agent’s strategy. When
β = 0, the agent relies solely on its original adaptive learning process; when β = 1, the
agent fully adopts the LLM’s recommendation.



Electronics 2023, 12, 2722 7 of 19

3.4.2. Incorporating LLM Uncertainty

Given the probabilistic nature of LLM-generated recommendations, it is essential to con-
sider the uncertainty associated with the LLM’s advice. One way to account for this uncertainty
is to introduce a confidence measure cz,t that is associated with the LLM’s recommendation:

cz,t = g(Qz,t), (4)

where g(·) is a function that maps the LLM’s recommendation to a confidence value in the
range [0, 1].

By incorporating the confidence measure, we can adjust the agent’s strategy update
rule as follows:

sz(t + 1) = (1− βcz,t)(sz(t) + α∇Uz(sz(t), s−z(t))) + βcz,tQz,t. (5)

This modified update rule allows agents to weigh the LLM’s advice based on the confi-
dence associated with the recommendation, thereby leading to a more nuanced adaptive
learning process.

In summary, our EC Theory framework provides a powerful and flexible approach
for studying the emergence and evolution of cooperation and defection in MASs. By
incorporating adaptive learning, heterogeneous agents, multi-layer network structures,
and LLMs, the EC framework can offer novel insights into the complex dynamics of
strategic interactions in diverse settings. Futhermore, the integration of LLMs within the
EC framework provides a novel perspective on the dynamics of cooperation and defection
in MASs. The LLM-assisted adaptive learning process, along with the consideration of LLM
uncertainty, contributes to a more comprehensive understanding of the complex strategic
interactions in diverse settings.

4. Methodology

Let us assume that our EC framework can be reduced to a simple two-player game
with finite strategy sets and that the utility functions incorporate only the immediate payoffs
without the adaptive learning mechanisms or LLM-based strategy recommendations. The
proof below demonstrates the existence of a NASH equilibrium for this simplified game
using Brouwer’s fixed-point theorem.

Theorem 1. Given a two-player game in the EC framework with each player having a finite set of
strategies and where the utility functions are based only on immediate payoffs, without any adaptive
learning mechanisms or Large Language Model (LLM) based strategy recommendations, there exists
a NASH equilibrium.

Proof. Let us consider a two-player game represented by the EC framework, with each
player o having a finite set of strategies So, where o ∈ {1, 2}. Let s = (s1, s2) denote a
strategy profile, where so ∈ So for both players.

1. Define the utility functions uo(s) for each player o as the immediate payoffs from the
chosen strategy profile s.

2. Define the best response correspondence Bo : S−o → So for each player o, which maps
a strategy of the opponent to the set of best responses for player o. Since So is finite,
the best response correspondence is nonempty and upper hemicontinuous.

3. Define the correspondence G : S1 × S2 → S1 × S2 as G(s1, s2) = (B1(s2), B2(s1)). This
maps a strategy profile s to the set of best response profiles for both players. Since
Bo is nonempty and upper hemicontinuous for both players, G is also nonempty and
upper hemicontinuous.

4. Define the strategy space S = S1 × S2 and assume it is a compact and convex set.
Compactness follows from the finiteness of the strategy sets, and convexity follows,
since we can treat the strategies as probability distributions over the pure strategies.
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5. Apply Brouwer’s fixed-point theorem, which states that every continuous function
from a compact, convex set to itself has a fixed point. Since G is nonempty, upper
hemicontinuous, and maps S to itself, it has a fixed point s∗ = (s∗1 , s∗2) ∈ S.

6. At this fixed point s∗, we have s∗1 ∈ B1(s∗2) and s∗2 ∈ B2(s∗1). This means that, given
the strategy of the opponent, each player is choosing their best response, thus making
s∗ a NASH equilibrium.

By following these steps and applying Brouwer’s fixed-point theorem, we have proven
the existence of a NASH equilibrium for a simplified two-player game within the EC
framework.

An interesting point to note here is that the convex combination in (4) is proposed
under the assumption that the weightings of the adaptive learning mechanism and the
LLM’s recommendation sum to one, which is often a mathematical convenience that helps
to maintain the strategy within a defined strategy space. This is particularly important when
strategies are represented as probability distributions over a finite set of pure strategies,
where the sum of probabilities must equal to one. A convex combination ensures that
the resulting strategy is a valid probability distribution. However, considering an affine
combination could also bring an interesting perspective. An affine combination could
potentially allow for a greater range of weightings and, thus, may offer more flexibility. It
could provide a richer representation of how the agent might incorporate the advice from
the LLM or the learning mechanism in its decision-making process. But it is important to
note that using an affine combination could lead to situations where the strategy might fall
outside the original strategy space, especially if the strategies are represented as probability
distributions. We could indeed modify the model to allow for affine combinations of the
adaptive learning mechanism and the LLM’s recommendation, provided that we adjust the
strategy space and the interpretation of the strategies accordingly. We could also explore
different mechanisms to determine the relative weightings of the two components, beyond
a simple fixed weight. For instance, the weightings could depend on the agent’s confidence
in the LLM’s recommendation or on the performance of the adaptive learning mechanism.

Another important issue to consider is that the existing formulation does not char-
acterize the LLM-related uncertainty and seems to be more related to the sensitivity of
the agents’ strategies to the LLM’s recommendations. To address this point, we could
propose to revise the model to explicitly consider the uncertainty in the LLM’s recommen-
dation. The LLM’s recommendation Qz,t could be modeled as a random variable instead
of a deterministic function of the neighboring agents’ strategies s−z(t). This could better
represent the inherent uncertainty of AI systems. We could also explore ways to quantify
this uncertainty. For instance, we could explore this by incorporating a measure of the
variance or entropy associated with the LLM’s recommendation. We might also consider
modifying the utility functions to reflect the agents’ risk attitudes towards the LLM-related
uncertainty. For example, risk-averse agents might prefer strategies that minimize the
potential negative impact of an inaccurate LLM recommendation, while risk-neutral agents
might be indifferent to this uncertainty. However, it is important to note that introducing
uncertainty into the model may complicate the analysis. The existence of a NASH equilib-
rium, as demonstrated in the proof using Brouwer’s fixed-point theorem, may no longer be
guaranteed. This is because the fixed-point theorem assumes that the function (in this case,
the correspondence G) is deterministic, whereas introducing uncertainty into the LLM’s
recommendation might render G stochastic.

Given the complexity of LLMs and the inherent difficulties in mathematically formal-
izing their properties, proving a specific aspect of the EC framework that incorporates
LLM-based strategy recommendations is challenging. However, we can attempt to pro-
vide a simple proof that demonstrates the potential improvement in utility for an agent
following LLM-based strategy recommendations.
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The assumptions and simplifications include the following:

1. Consider a two-player game represented by the EC framework, with each player o
having a finite set of strategies So, where o ∈ {1, 2}.

2. Assume that the LLM provides strategy recommendations for player 1.
3. Let the true utility functions uo(s) for each player o be known and fixed.
4. Assume that the LLM’s recommendations are based on the true utility functions of

both players and that the LLM generates recommendations that maximize player 1’s
expected utility, given player 2’s strategy.

The proof indeed builds on several strong assumptions and simplifications, especially
the third one, where we assume that the true utility functions are known and fixed. This
is, of course, an oversimplification; in real-world scenarios, utility functions might be
unknown or dynamically changing. This assumption is made primarily to make the
proof tractable, thereby providing a simplified demonstration of the potential benefits
of incorporating LLM-based strategy recommendations. The third assumption can be
interpreted as a “perfect information” assumption. We are assuming that the LLM is
omniscient and has complete information about the utility functions of both players.

Theorem 2. Consider a two-player game represented by the EC framework, where each player o
has a finite set of strategies So (o ∈ {1, 2}), and the true utility functions uo(s) for each player o
are known and fixed. Assume that the LLM provides strategy recommendations for player 1 and
that these recommendations are based on the true utility functions of both players. If the LLM’s
recommendations aim to maximize player 1’s expected utility given player 2’s strategy, then player
1’s expected utility following the LLM’s recommendations will be at least as high as when choosing
any other strategy from their strategy set.

Proof. Let s = (s1, s2) denote a strategy profile, where so ∈ So for both players. Define
sR

1 as the strategy recommendation provided by the LLM for player 1, given player 2’s
strategy s2.

1. Define the expected utility for player 1 when following the LLM’s recommendation
as E[u1(sR

1 , s2)].
2. Since the LLM generates recommendations based on the true utility functions of both

players and aims to maximize player 1’s expected utility, we have E[u1(sR
1 , s2)] ≥

E[u1(s1, s2)] for any s1 ∈ S1.
3. If player 1 chooses to follow the LLM’s strategy recommendation sR

1 , their expected utility
will be at least as high as when choosing any other strategy from their strategy set.

In this simplified proof, we have shown that following LLM-based strategy recommen-
dations can potentially improve the expected utility for player 1. However, it is important
to note that this proof is built on several assumptions and simplifications that may not
hold in more complex scenarios or when considering adaptive learning mechanisms and
heterogeneous agents.

These proofs provide a strong foundation for understanding the theoretical aspects
of the EC framework and the potential benefits of incorporating LLM-based strategy
recommendations in Multi-Agent Systems.

5. Simulation Environment

The EC framework was implemented as a simulation environment to explore the
interactions between heterogeneous agents in a multi-layer network. The simulation
consists of a discrete-time system with the following steps:

1. Initialization: Create a set of N heterogeneous agents with varying characteristics such
as risk aversion, social preferences, and learning capabilities. Generate a multi-layer
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network representing various types of interactions between agents, such as economic
transactions, social relationships, and information exchange.

2. Iteration: For each time step t ∈ {1, 2, . . . , T}, where T is the total number of simula-
tion rounds:

(a) Simulate interactions between agents based on their current strategies and
update their utilities.

(b) Apply adaptive learning to update the agents’ strategies, with LLM consulta-
tions at specified intervals.

(c) Update the network structure based on the evolving strategies and utilities
of agents.

3. Analysis: Evaluate the system’s performance using various metrics and visualize the
network’s evolution to gain insights into the dynamics of cooperation and defection.

The multi-layer network structure we use in the simulation is not only a complex sys-
tem composed of three interconnected layers—economic’, social’, and ‘information’—but
it is also a reflection of real-world multi-agent systems. Each layer represents a distinct
type of interaction among the agents. These interactions are not isolated; instead, they
collectively influence the decision-making process of the agents in a holistic manner. For
example, an agent’s economic decisions may be influenced by their social interactions and
the information they receive. Moreover, these interactions and their consequences can
feedback into each layer, thereby causing changes that can further influence the decision-
making process. In addition to interacting within and across layers, the agents themselves
are characterized by their strategies and attributes that were previously presented. For
instance, the strategies formulated in the context of the EC framework are implemented by
the agents as they interact within and across the layers of the multi-layer network.

Formally, the multi-layer network can be defined as a tuple G = (V, E1, E2, E3), where:

• V is the set of nodes (entities) in the network, each characterized by a strategy, risk
aversion, social preference, learning capability, and utility.

• E1 represents the set of edges in the ‘economic’ layer indicating economic interactions
between the entities.

• E2 represents the set of edges in the ‘social’ layer indicating social interactions between
the entities.

• E3 represents the set of edges in the ‘information’ layer indicating information ex-
change between the entities.

The multi-layer network was constructed as a multi-graph in order to allow for
multiple edges between a pair of nodes that are each associated with a different layer. The
edges within each layer were generated using a random graph model with a specified edge
probability. This model ensured that the network structure exhibited a random distribution
of edges, thus capturing the inherent uncertainty and complexity of real-world interaction
patterns among agents. The multi-layer network structure served as a robust and versatile
framework for simulating the interplay of various interaction types among agents, thereby
facilitating a comprehensive understanding of the system’s dynamics and evolution.

While this multi-layer network structure was used here for simulation purposes, its
design is representative of the type of complex multi-agent systems seen in real-world
situations. By using such a structure, we can capture and study the interplay of various
interaction types among agents, which is crucial for understanding the dynamics and
evolution of Multi-Agent Systems.

5.1. Performance Metrics

To measure the effectiveness of the EC framework, several performance metrics were
introduced, including overall social welfare, the prevalence of cooperation, and the robust-
ness of the system to shocks or disruptions. The selection of these metrics was motivated by
their ubiquity in Multi-Agent Systems literature and their relevance to the specific aspects
we aimed to enhance through the EC framework.
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• Overall social welfare: The sum of all agents’ utilities at time t. This metric is tra-
ditionally used in economics and game theory to measure the total benefit accrued
by all members of a system, thus providing an aggregate measure of system per-
formance. Higher social welfare indicates that more agents are achieving higher
utility, which aligns with the goal of our EC framework to improve individual and
collective outcomes.

W(t) =
N

∑
z=1

Uz(t). (6)

• Prevalence of cooperation: The proportion of agents employing a cooperative strategy
at time t. This metric is particularly relevant for Multi-Agent Systems where coop-
erative behavior can lead to mutual benefit or improved social welfare. As the EC
framework aims to encourage cooperative behavior, monitoring the prevalence of
cooperation provides a direct measure of this aspect of the system’s performance.

Pc(t) =
∑N

z=1 I[sz(t) = cooperate]
N

, (7)

where I[·] is the indicator function, which equals 1 if the condition inside the brackets
is true and equals 0 otherwise.

• Robustness: The ability of the system to maintain cooperation levels in the face of
shocks or disruptions. In Multi-Agent Systems literature, the robustness of a system
is often a critical measure of performance, and it indicates how well the system can
adapt to changes or uncertainties. Given that real-world Multi-Agent Systems often
face dynamic environments and perturbations, we incorporated this metric to evaluate
how well the EC framework could maintain performance under such conditions.

R(t) =
Pc(t)− Pc(t− 1)

Pc(t− 1)
. (8)

5.2. Visualization Techniques

Effective visualization techniques are essential for understanding the complex dynam-
ics of the EC framework. Several approaches can be employed to illustrate the evolution of
the system, including:

1. Time-lapse network visualization: Display the network’s evolution over time in an
animation in order to highlight changes in network structure, agent strategies, and
cooperation levels. This visualization can be created using libraries such as NetworkX
or Gephi, where nodes represent agents, and edges represent relationships. The nodes’
colors and sizes can be adjusted based on the cooperation levels, thereby allowing
observers to track the development of cooperation and defection strategies over time.

2. Interactive visualizations: Develop interactive visualizations that allow users to
explore the relationships between agents, their strategies, and the various types
of interactions in the multi-layer network. This can be achieved using web-based
visualization libraries such as D3.js or Plotly, which enable the creation of dynamic,
responsive visualizations. For example, users could filter agents based on certain
attributes, adjust time scales, or zoom into specific areas of the network to investigate
local dynamics. Tooltips can also be added to display additional information about
individual agents and their strategies by hovering or clicking.

3. Heatmaps: Generate heatmaps to visualize the spatial distribution of cooperation and
defection strategies, thus providing insights into the emergence of clusters or patterns
within the network. This can be done using Python libraries such as Matplotlib or
Seaborn, where the X-axis represents rounds, the Y-axis represents agents, and the
color intensity indicates the cooperation level of each agent. Such heatmaps can help
identify regions of high cooperation or defection, as well as detect sudden shifts in
strategies or the formation of stable cooperation clusters over time.
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These visualization techniques, along with the performance metrics, provide valuable
tools for analyzing the behavior of agents and the overall dynamics of cooperation and
defection within the EC framework.

6. Results and Analysis

In this section, we present the results and analysis of our experiments with the EC
framework, with a focus on the emergence of cooperation and defection patterns among
heterogeneous agents in the Multi-Agent System. We investigated the role of adaptive
learning and the impact of LLM-based strategy recommendations on these patterns, as
well as the network’s overall robustness and resilience. The network’s initial and final
structures, as shown in Figures 2 and 3, provide a visual representation of the evolution of
these patterns over time.

The experiments conducted in this study were executed using a custom-built Multi-
Agent System simulator, which was designed specifically to study the emergence of coop-
eration and defection patterns in complex networks. This simulator allows for the creation
and manipulation of heterogeneous agents by implementing adaptive learning processes
and incorporating LLM-based strategy recommendations. It is capable of simulating dy-
namic, evolving multi-layer networks while tracking and visualizing changes in the system
over time. The simulator provides a comprehensive platform for observing and analyzing
the effects of various hyperparameters and network structures on agent behavior and
overall system performance. The visualizations generated by the simulator facilitate a
deeper understanding of the complex dynamics at play within the Multi-Agent System,
thereby enabling researchers to fine-tune the EC framework and optimize its potential for
fostering cooperation in diverse real-world applications.

Through the implementation of the EC framework, we observed the emergence of
cooperation and defection patterns within the Multi-Agent System. The adaptive learning
process, combined with the varying characteristics of heterogeneous agents, led to the
formation of clusters of cooperators and defectors within the network. These clusters
evolved dynamically over time, having been influenced by the agents’ strategies and
interactions with their neighbors. Next, we will delve deeper into the factors contributing
to these patterns and their significance in the context of the EC framework.

In the simulations conducted, a set of hyperparameters was used to determine the
behavior of the agents and the network. The total number of agents, or entities, in the
network was set to 100. The simulation was run over 500 rounds to observe the evolution
of agent strategies and network properties. The initial cooperation factor was set to 0.5,
meaning that 50% of the agents started with a cooperative strategy. The learning rate was
set at 0.1, which determined the probability of agents adapting their strategies based on
their neighbors’ performance. To model the addition of new connections between agents,
an edge addition probability of 0.05 was used, thereby allowing the network to evolve
over time. Finally, a cooperation threshold of 0.6 was implemented, which represented
the minimum proportion of cooperative neighbors needed for an agent to switch to a
cooperative strategy. These hyperparameters guided the simulation and influenced the
outcomes of social welfare and cooperation prevalence within the network.

The prevalence of cooperation increased when agents were able to learn from their
neighbors’ strategies, particularly in the presence of high levels of trust and reciprocity.
Conversely, when agents were more risk-averse or selfish, defection patterns emerged,
leading to suboptimal outcomes for both the individual agents and the system as a whole.

The incorporation of LLMs into the EC framework significantly impacted the adaptive
learning process and the formation of cooperation and defection patterns, as shown in
Figures 2–5. The LLM consult interval served as an effective mechanism to analyze their
influence on the system. By consulting the LLMs at specific intervals, we could observe the
impact of their recommendations on the agents’ decision making, as well as the resulting
cooperation and defection patterns over time.



Electronics 2023, 12, 2722 13 of 19

When agents consulted LLMs for strategy recommendations, they were more likely to
make informed decisions based on the broader context of their neighbors’ strategies and
the network structure. The LLM-based recommendations promoted cooperation, especially
when the majority of neighbors were already cooperating, as agents sought to maximize
their utilities through mutual cooperation.

The choice of using an LLM consult interval, rather than a direct comparison of
the system with and without LLMs, allowed us to better understand the dynamic in-
terplay between LLM-guided decision making and the agents’ autonomous adaptive
learning. This approach offers insights into the complex, evolving relationships between
agents, their strategies, and the network structure, which might be obscured in a direct
comparison scenario.

Figure 2. Evolution of network structure over time, illustrating the changes in cooperation and
defection patterns among agents. The initial network structure (left) is compared to the final network
structure (right) after running the simulation with adaptive learning, including LLM-based strategy
recommendations every 10,000 rounds. The nodes are colored green if the entity’s strategy is to
cooperate, and red if the entity’s strategy is to defect. We used a preferential attachment rule for edge
creation and an edge removal rule based on a cooperation threshold of 0.6.

Figure 3. Evolution of the network structure and agent strategies, taking into account individual
risk aversion, social preference, and learning capability during the simulation. The initial network
structure (left) and the final network structure (right) are presented after incorporating adaptive
learning and LLM-based strategy recommendations every 10,000 rounds. The nodes are colored
green if the entity’s strategy is to cooperate, and red if the entity’s strategy is to defect. We used
a preferential attachment rule for edge creation and an edge removal rule based on a cooperation
threshold of 0.6. The changes in cooperation and defection patterns among agents, influenced by
their unique risk aversion, social preference, and learning capability, can be observed over the course
of the simulation.
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Moreover, LLMs helped agents to adapt more quickly to changes in their environment,
such as the emergence of defectors or fluctuations in the levels of trust and reciprocity
within the network. This increased adaptability allowed the agents to maintain cooperation
levels and achieve higher overall social welfare. For instance, Figure 4 illustrates the multi-
layer network structures before and after the simulation, where they achieved an overall
social welfare of 2442.3 and a prevalence of cooperation of 63.00%, with an LLM consult
interval of 15,000 rounds.

The EC framework demonstrated robustness and resilience in the face of shocks and
disruptions, such as the introduction of defectors or changes in the network structure. The
adaptive learning process, along with the influence of LLM-based strategy recommenda-
tions, allowed agents to swiftly adjust their strategies in response to these perturbations.

Figure 4. Multi-layer network structures before and after the simulation: These side-by-side plots
show the multi-layer network consisting of economic (red edges), social (blue edges), and information
(green edges) layers. Each layer in the network represents a different type of interaction: economic
transactions, social relationships, and information exchange. The left plot represents the initial
network structure, while the right plot displays the final network structure after the simulation.
Nodes are colored based on their strategies, with blue representing cooperation and red representing
defection. The evolution of strategies can be observed as a result of the agents’ interactions, learning
capabilities, and LLM-based strategy recommendations.

The system’s robustness was further enhanced by the multi-layer network model,
which captured different types of interactions between agents. This multi-layer structure
allowed agents to maintain cooperation levels in one layer, even when facing disruptions in
another layer. For instance, in the multi-layer system studied in Figure 4, the EC achieved
a change in social welfare after a shock of 1819 and a change in cooperation prevalence
after the shock of 5.00%, with an LLM consult interval of 30,000 rounds. Overall, the EC
framework proved to be a resilient approach to modeling and promoting cooperation in
complex MASs.

The visualizations generated during the simulation provided valuable insights into the
dynamics of the EC framework. Time-lapse network visualizations revealed the emergence
of cooperation and defection patterns, as well as the evolution of the network structure over
time. Interactive visualizations allowed for the exploration of agent strategies, network
layers, and the relationships between agents in greater detail.

As shown in Figure 5, the evolution of cooperation in the multi-layer network is
illustrated across representative rounds. Each plot presents the state of the network at
different points in time, with blue nodes representing cooperative entities and red nodes
symbolizing defecting entities. Node numbers represent the unique identifiers for each
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agent. The cooperative prevalence values, indicated in the subcaptions, provide insights
into the percentage of cooperative agents within the network at each round.

Over the course of the simulation, we can observe shifts in the prevalence of coopera-
tion and defection within the network, as well as the formation of clusters of cooperative
and defecting agents. These changes can be attributed to the adaptive learning processes,
the interactions between entities across multiple layers, and the influence of LLM-based
strategy recommendations. The figure provides valuable insights into the dynamics of
cooperation in complex multi-layer networks and highlights the significance of considering
multiple dimensions of interaction when studying the evolution of cooperation.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Evolution of cooperation in a multi-layer network across representative rounds. Each plot
shows the network state at different rounds, with blue nodes representing cooperative entities and
red nodes representing defecting entities. Node numbers represent the unique identifiers for each
agent. We used an LLM consult interval of 33,000. The cooperative prevalence values indicate the
percentage of cooperative agents within the network at each round. As the simulation progressed, we
can observe varying levels of cooperation and the formation of clusters of cooperative and defecting
agents, thus illustrating the dynamic nature of the multi-agent system. (a) cooperative prevalence = 57%;
(b) cooperative prevalence = 49%; (c) cooperative prevalence = 49%; (d) cooperative prevalence = 45%;
(e) cooperative prevalence = 60%; (f) cooperative prevalence = 58%; (g) cooperative prevalence = 57%;
(h) cooperative prevalence = 53%; (i) cooperative prevalence = 55%.

We would like to emphasize that, while the EC framework has been demonstrated
via a simplified simulation, we believe that the principles and mechanisms it encapsulates,
such as adaptive learning, multi-layered interactions, and the use of LLM-based strategy
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recommendations, bear significant relevance to complex real-world scenarios. The ability
of our framework to model and promote cooperation among diverse and adaptive agents
provides a powerful tool to address various challenges in different contexts.

7. Implications for Business and Society

The EC framework, as demonstrated by our simulation, has far-reaching implications
for both businesses and society as a whole. By promoting cooperation and fostering positive
interactions between agents, the EC framework can be applied to a variety of real-world
scenarios to optimize social welfare and enhance cooperation.

In the context of businesses, the EC framework can be used to model and improve
cooperative behavior between employees, teams, or departments, potentially leading to
increased productivity and efficiency within organizations. Moreover, the insights gained
from the LLM-based strategy recommendations can inform decision-making processes and
help organizations adapt to changing environments.

From a societal perspective, the EC framework can be applied to model and address
pressing issues such as climate change, public health, and economic inequality. By encourag-
ing cooperative behavior among individuals, communities, and nations, the EC framework
can facilitate the development of sustainable solutions to these complex challenges.

Despite the promising results obtained from the EC framework, several limitations
should be acknowledged. First, the simulation environment used in this study is a simpli-
fied representation of real-world systems. The assumptions made about agent behavior,
network structure, and interactions may not fully capture the complexity of real-world
situations. Additionally, the choice of LLMs and their implementation within the EC
framework may also influence the outcomes observed in the simulation.

8. Conclusions

In this paper, we have presented a comprehensive framework that integrates EC
Theory, MASs, and LLMs to simulate and analyze the dynamics of cooperation and defec-
tion in complex environments. By incorporating heterogeneous agents, adaptive learning
mechanisms, and LLM-based strategy recommendations, our framework provides a more
realistic and flexible representation of HCI in MASs.

We have also discussed the implementation details of our simulation environment,
including performance metrics, visualization techniques, and the use of intelligent sensors
for data collection and real-time adaptation. Through the analysis of various simulation
results, we have demonstrated the emergence of cooperation and defection patterns, the
influence of LLM-based strategy recommendations, the robustness and resilience of the
system under different conditions, and the utility of our visualization techniques for
understanding multi-agent system dynamics.

Furthermore, we have discussed the broader implications of our findings for business
and society, thereby highlighting the potential benefits and challenges associated with
the integration of LLMs and MASs in various domains. We have also acknowledged
the limitations of our current framework, including the incorporation of additional lay-
ers of interaction, more advanced LLM-based strategy formation mechanisms, and the
development of more sophisticated visualization and analysis tools.

In our proposed framework, we extended the concept of HCI to encompass the
interaction between human agents and AI-driven agents, such as LLMs, in complex Multi-
Agent Systems. This extended interpretation of HCI aims to capture the intricate dynamics
of cooperation and defection that arise when humans and AI collaborate, compete, or
coexist in various domains. By integrating LLMs as a form of human–computer interface,
we created a more adaptive and flexible representation of these interactions, where the LLM
modifies the beliefs and strategies of human agents based on the information provided.
This approach allows for a deeper understanding of the potential benefits and challenges
associated with human–AI collaboration in complex environments and contributes to the
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development of more effective and efficient Human–Computer Interaction strategies in
diverse real-world applications.

In conclusion, our study represents a significant step towards a deeper understanding
of the interplay between humans and computers in cooperative and competitive settings.
By integrating advanced AI technologies, such as LLMs, with well-established theories
from game theory and MASs, we aim to pave the way for more effective and efficient
Human–Computer Interaction and unlock the potential of intelligent agents to address a
wide range of complex problems in various domains.

Future work should focus on refining the EC framework by incorporating more
realistic models of agent behavior, interaction mechanisms, and network structures. This
can be achieved through the integration of empirical data, as well as the application of
advanced modeling techniques. Furthermore, the performance of different LLMs and their
suitability for various contexts should be explored.

Additional areas of future work include the investigation of alternative learning
processes, the development of more sophisticated visualization techniques, and the study of
the EC framework’s applicability to a broader range of real-world scenarios. By addressing
these limitations and expanding upon the current work, the EC framework has the potential
to significantly contribute to our understanding of cooperation and defection in MASs.
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