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A network analysis including relative abundances of all ruminal microbial genera
(archaea, bacteria, fungi, and protists) and their genes was performed to improve
our understanding of how the interactions within the ruminal microbiome affects
methane emissions (CH4). Metagenomics and CH4 data were available from 63 bovines
of a two-breed rotational cross, offered two basal diets. Co-abundance network
analysis revealed 10 clusters of functional niches. The most abundant hydrogenotrophic
Methanobacteriales with key microbial genes involved in methanogenesis occupied
a different functional niche (i.e., “methanogenesis” cluster) than methylotrophic
Methanomassiliicoccales (Candidatus Methanomethylophylus) and acetogens (Blautia).
Fungi and protists clustered together and other plant fiber degraders like Fibrobacter
occupied a seperate cluster. A Partial Least Squares analysis approach to predict CH4

variation in each cluster showed the methanogenesis cluster had the best prediction
ability (57.3%). However, the most important explanatory variables in this cluster
were genes involved in complex carbohydrate degradation, metabolism of sugars and
amino acids and Candidatus Azobacteroides carrying nitrogen fixation genes, but not
methanogenic archaea and their genes. The cluster containing Fibrobacter, isolated
from other microorganisms, was positively associated with CH4 and explained 49.8%
of its variability, showing fermentative advantages compared to other bacteria and fungi
in providing substrates (e.g., formate) for methanogenesis. In other clusters, genes
with enhancing effect on CH4 were related to lactate and butyrate (Butyrivibrio and
Pseudobutyrivibrio) production and simple amino acids metabolism. In comparison,
ruminal genes negatively related to CH4 were involved in carbohydrate degradation via
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lactate and succinate and synthesis of more complex amino acids by γ-Proteobacteria.
When analyzing low- and high-methane emitters data in separate networks, competition
between methanogens in the methanogenesis cluster was uncovered by a broader
diversity of methanogens involved in the three methanogenesis pathways and larger
interactions within and between communities in low compared to high emitters.
Generally, our results suggest that differences in CH4 are mainly explained by other
microbial communities and their activities rather than being only methanogens-driven.
Our study provides insight into the interactions of the rumen microbial communities
and their genes by uncovering functional niches affecting CH4, which will benefit the
development of efficient CH4 mitigation strategies.

Keywords: rumen microbiome, network analysis, methane emissions, functional niches, metagenomics

INTRODUCTION

By 2050, the human population will grow to over 9 billion people,
and in the same time frame, global meat consumption is projected
to increase by 73% (FAO, 2011). Ruminant agriculture plays
a key role in maintaining and enhancing provision of protein
and essential micronutrients to humans. However, intensive
food production affects the environment with the release of
greenhouse gas (GHG) emissions (Johnson and Johnson, 1995).
Ruminants are major emitters of methane (CH4), a GHG being
28-fold more potent than carbon dioxide (IPCC, 2014) and
accounting for 37% of total GHG from agriculture in the
United Kingdom (Cottle et al., 2011).

Future ruminant production systems will need to capitalize
on their ability to utilize human inedible ligno-cellulose material
for animal production, but will also need to select animals
releasing less CH4 as an end product of anaerobic microbial
fermentation in the rumen.

A limited number of archaeal taxa within Euryarchaeota
are responsible for CH4 production in the rumen, using
substrates released from organic matter fermentation.
Methane can be synthesized following three different
pathways (hydrogenotrophy, methylotrophy, and acetoclastic
methanogenesis) and the genes involved in methanogenesis
are well characterized (Thauer et al., 2008; Leahy et al., 2010;
Borrel et al., 2013). However, new methanogens are still being
discovered (Poulsen et al., 2013; Vanwonterghem et al., 2017;
Stewart et al., 2018). In contrast with methanogenesis, microbial
fermentation is conducted by complex and diverse microbial
populations composed of bacteria, protozoa and fungi potentially
sharing similar genes and functions, interacting together,
adapting to different environments (e.g., diet change) and
playing a central role in the ability of ruminants to utilize fibrous
substrates. Bacterial populations interacting with methanogens
that utilize H2 or involved in different metabolic pathways
associated with amino acids, lactate or volatile fatty acids (VFA)
are known to have different effects on CH4 emissions (Moss et al.,
2000; Janssen, 2010; Wanapat et al., 2015; Kamke et al., 2016; Sa
et al., 2016). In addition, several authors revealed the importance
of interactions between bacteria, fungi, protists (protozoa and
micro-algae) and archaea in their effects on CH4 emissions
(Kumar et al., 2015; Wang et al., 2017; Huws et al., 2018).

Several authors have succeeded in using information about
microbial communities or microbial genes to predict CH4
emissions (Roehe et al., 2016; Shabat et al., 2016; Auffret
et al., 2018; Difford et al., 2018) but restricted to archaea and
bacteria communities. However, in order to develop efficient CH4
mitigation strategies using microbiome information, we need
improved knowledge about the rumen microbiome. In particular,
we need to apply microbial ecology principles including
niche occupancy potentially associated with a specific function,
selective pressure, adaptation, and interactions (Weimer, 1998)
that will help explain the relevance of each domain associated
with differences in CH4 emissions.

Recently, the ruminal microbiome was explored using a
combination of culturing and sequencing as in the Hungate 1000
collection (Seshadri et al., 2018). However, the limitations of
culturing techniques need to be alleviated prior to fully represent
the rumen microbiome (Seshadri et al., 2018). Alternatively,
the development of metagenomic binning as a bioinformatics
tool enabled near-complete microbial genomes to be assembled
directly from metagenomic sequencing data. This methodology
was successfully applied in different ecosystems (Parks et al.,
2017) including the bovine (Stewart et al., 2018) and moose
(Svartström et al., 2017) rumen and substantially improved the
coverage of rumen microbial genomes (Stewart et al., 2018, 2019).

Co-abundance network analysis helps to represent the
complexity behind intra- and inter-domain interactions within
the rumen microbiome as a whole, largely overcoming the
limitations of culture based or molecular genetic analysis
to study these interactions, and identify microbial groups
related to function (Janssen and Kirs, 2008; Gruninger
et al., 2014; Henderson et al., 2015; Taxis et al., 2015). Co-
abundance patterns between microbials have been previously
used as a prediction of microbial interactions (Faust and
Raes, 2012). Network-based analytical approaches have
helped disentangle complex polymicrobial and microbe–
host interactions in ruminants, humans and soil (Barberán
et al., 2012; Roehe et al., 2016; Sung et al., 2017; Auffret
et al., 2018) by identifying patterns of microbial interactions
in ecosystems occupied by highly diverse microorganisms.
Within a network, several clusters considered as a single
biological unit may provide information about the local
interaction patterns, the biological contribution of each cluster
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and therefore its function in the microbiome (reviewed in
Faust and Raes, 2012).

In the present study we are combining co-abundances
networks of the microbial communities, not only bacteria and
archaea but also fungi and protists, and their genes. This study
highlights the importance of microbial interactions of different
domains within functional niches compared to variation in
microbial composition or abundances. One highlight of this
analysis is the identification of functional niches within the
rumen microbiome differently explaining variations in methane
emissions and that microbial domains and functions other
than methanogenesis affect mainly the variation in methane
emissions from bovine.

MATERIALS AND METHODS

Animals, Experimental Design, and Diets
Our animal experiment was carried out in 2011 (Rooke
et al., 2014; Wallace et al., 2015; Roehe et al., 2016) and
used a 2 × 2 factorial design of breed types and diets,
with 72 crossbred Aberdeen Angus (AA) and Limousin (LIM)
steers. The animals were offered one of two complete diets
ad libitum consisting (g/kg DM) of 480 forage to 520
concentrate or 80 straw to 920 concentrate – which are
subsequently referred to as forage (FOR) and concentrate
(CONC) diets, respectively. Breed type and diet were balanced
within experiment. The detailed diet composition has been
reported previously by Rooke et al. (2014). Animals were
fed ad libitum and had free access to drinking water
throughout the experiment. The animals had an average age
of 521 ± 30 days and weight of 673 ± 35 kg before entering
individually in the six available respiration chambers. Further
descriptions of animal data and farm conditions [breed, diet,
experimental design, feeding, husbandry over the entire trial
are available in Rooke et al. (2014)]. Methane emissions were
successfully measured from 63 animals individually for 48 h
in respiration chambers (Rooke et al., 2014). The animals
were fed ad libitum until they left the farm and were
slaughtered within 3 h at a commercial abattoir where two
samples of rumen digesta (approximately 50 mL) were taken
immediately after the rumen was opened to be drained. The
main advantage of collecting rumen contents after slaughter
is to obtain samples that are representative of both solid
and liquid phases.

Genomic Analysis
DNA was extracted from the rumen digesta samples following
the protocol from Yu and Morrison (2004) and was based on
repeated bead beating with column filtration. The procedure
is fully described in Rooke et al. (2014). Sixty-three rumen
digesta samples including the eight animals used in Roehe
et al. (2016) selected for extreme CH4 emissions were
prepared for sequencing; the remaining nine animals of the
experiment did not yield rumen samples of sufficient quality for
metagenomics analysis or failed during methane measurements.

Therefore, there were samples from 63 animals left where
we had both methane measurements and high-quality rumen
digesta samples.

Illumina TruSeq libraries were prepared from DNA
from rumen samples and sequenced on an Illumina HiSeq
4000 instrument by Edinburgh Genomics (Edinburgh,
United Kingdom). Paired-end reads (2 × 100 bp) were
generated, resulting in between 8 and 15 GB per sample
(between 40 and 73 million paired sequence reads) with on
average 73% passing quality check and being subsequently
annotated. Bioinformatics analysis followed the same procedure
as previously described in Wallace et al. (2015) and Roehe et al.
(2016). In order to measure the abundance of known microbial
genes in the rumen samples, reads from whole metagenome
sequencing were aligned to the Kyoto Encyclopedia of Genes
and Genomes (KEGG1) database using Novoalign2. Parameters
were adjusted such that all hits reported were equal in quality to
the best hit for each read, and allowing up to a 10% mismatch
across the fragment. The KEGG Ortholog groups (KO) of all
hits that were equal to the best hit were examined. In the case
we were unable to resolve the sequence read to a single KO,
the read was ignored; otherwise, the read was assigned to the
unique KO. Statistical analysis of the metagenomics samples
was based on the complete sample profiles as expressed by
the pattern of metagenomic sequence reads classified within
KEGG ortholog groups with >90% similarity and belonging
to a single KEGG ortholog (KO) groups. The alignment of the
reads generated by whole metagenomic sequencing to the KEGG
genes database resulted in identification of 4,427 microbial genes
for each animal. Microbial genes were expressed in relative
abundance (percentage) within animal and only those with a
relative abundance greater than 0.001% (n = 1,936) were carried
forward for downstream analysis.

For phylogenetic annotation, the sequence reads were
aligned to a custom database using Kraken software combining
several databases including genomes from the Hungate 1000
collection and metagenome-assembled genomes (MAGs)
from beef rumen samples (Wood and Salzberg, 2014;
Stewart et al., 2018). In total, 1,178 genera were identified
and described as the genus having the highest similarity
with the identified microbial genome or MAG, applying
the same cutoff used in previous MAG studies (Parks
et al., 2017; Svartström et al., 2017; Stewart et al., 2018)
(estimated completeness ≥80% and estimated contamination
≤10%). As for microbial genes, microbial genera identified
were normalized between animals expressing them as
relative abundances.

Microbial KEGG genes and genera with zero counts in 3
or more of the 63 animals were removed from the analysis
to avoid statistical limitations due to interferences in the
study of co-abundances (Faust and Raes, 2012). Following
this step, 1,557 genes and 1,160 genera were selected for the
statistical analysis.

1http://www.kegg.jp
2www.novocraft.com
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FIGURE 1 | Functional clusters composed of microbial genera and genes generated using co-abundance network analysis in beef cattle. (A) Distribution of the
clusters in the network. (B) Distribution of genes and microbial genera (bacteria, archaea, fungi, and protist) among the clusters. Nodes represent microbial genera
and genes, and edges illustrate co-abundances between their relative abundances. Networks were clustered using the MCL algorithm, and clusters 1 to 10 are
shown. Only variables with correlation values greater than 0.70 between nodes were kept during the analysis. Cluster 1 containing most abundant methanogenic
archaea (Methanobrevibacter, Methanosphaera, and Methanosarcina), and microbial genes involved in methanogenesis pathway, and also bacteria (Sarcina), fungi
(Tremella) and genes in degradation pathways for amino acids (nitrogen fixation capacity of Candidatus Azobacteroides) and carbohydrates, was referred to as
methanogenesis cluster. Cluster 2 includes only genus Fibrobacter and microbial genes involved in the synthesis of central metabolic enzymes. Cluster 3 is mainly
comprised of bacteria of the phyla Firmicutes, Proteobacteria, and Acidobacteria with low abundant archaea, some of them methanogen. Cluster 4 is a small cluster
containing Butyrivibrio, Pseudobutyrivibrio and few microbial genes related to sugar metabolism. Cluster 5 is also a reduced cluster containing Bacillus, other
bacteria and genes related to sugar degradation. Cluster 6 is dominated by genera of the fungal community, and three hydrogenotrophic and/or acetoclastic
methanogens. Cluster 7 included Bifidobacterium and microbial genes relevant for carbohydrate degradation. Cluster 8 contained Prevotella with genes involved in
nitrogen metabolism and pentose phosphate pathway. Cluster 9 contained the methylotrophic Methanomassiliicoccales Candidatus Methanomethylophilus, the
acetogens Eubacterium, Blautia, and Acetitomaculum and a high diversity of Proteobacteria (mainly γ-Proteobacteria) and microbial genes involved in
carbohydrates, lipids, and aminoacids metabolism. Cluster 10 includes Selenomonas and few microbial genes related to oligosaccharide transport.

The raw sequencing data can be downloaded from
the European Nucleotide Archive under accession
PRJEB10338 and PRJEB31266.

Co-abundance Network Analysis
The interactions among all microbial genes and genera (2,717
variables in total) were investigated from the rumen microbiome
of the 63 animals in a co-abundance network analysis using Miru
software [Kajeka Ltd., Edinburgh, Freeman et al. (2007)]. The
applied procedure to generate the network is fully described in
Freeman et al. (2007). Briefly, the network grouped variables
based on Pearson correlation and a MCL algorithm is applied to
cluster the network according to connectivity and local structure.
The software receives back from MCL algorithm a list of nodes
and their cluster assignments. These cluster assignments are
added to the network as annotation data and provide a basis

for statistical analysis of annotation terms across clusters. In
our study, a positive correlation threshold of 0.70 filtered out
217 variables that were not correlated (r < 0.70) to any other
microbial variables, leaving 2,500 variables that constituted the
network with 43 clusters identified in total. The combination of
previous knowledge on variables associated with CH4 emissions
(Wallace et al., 2015; Roehe et al., 2016; Auffret et al., 2018) and
the results from the network analysis allowed us to identify 10
different functional niches potentially involved in CH4 emissions,
corresponding to different clusters (Supplementary Table S1A
and Figure 1).

Due to the compositional nature of the metagenomics
data, artefactual co-abundances between variables may appear.
Converting data into log ratio coordinates is an adequate
approach to attenuate this problem (Faust and Raes, 2012;
Greenacre, 2018). Then, we compared the network analysis
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results obtained using relative abundance data with those using
log ratio coordinates generated by SPARCC software (Friedman
and Alm, 2012) in order to identify the impact of potential
compositional bias on the results (Supplementary Table S1B and
Supplementary Figure S2).

Influence of Each Cluster in CH4
Emissions
The influence of each of the 10 clusters on CH4 emissions was
studied by Partial Least Squares analysis (PLS), performing a
different PLS model per cluster. Each model was built considering
CH4 emissions as dependent variable, diet and breed as fixed
effects and microbial genes and communities composing each
cluster as explanatory variables [PLS, R 3.4.3 statistical software,
mixOmics package (Le Cao et al., 2016)]. The most influential
variables from each cluster that were important in explaining
CH4 emissions were selected based on the variable importance
for projection (VIP) criterion (Wold, 1995) built on one latent
component whereby microbial parameters with a VIP <0.8
contribute little to the prediction, and on our previous biological
knowledge (Wallace et al., 2015; Roehe et al., 2016; Auffret
et al., 2018). Then, the importance of each cluster explaining the
variability of CH4 emissions was tested by a final PLS with CH4
as dependent variable and the variables selected per cluster as
explanatory variables, without fixed effects. We used the Search
Tool for the Retrieval of Interacting Genes (STRING) database
(Szklarczyk et al., 2017) to get insight about the role of genes
(metabolic pathways) identified as important by the final PLS
and previously detected in the genome of microbial species
within databases.

Microbial variables (genes and genera) selected by PLS were
analyzed with Linear Discriminant Analysis (LDA), performed in
R version 3.6.0 (2019-04-26) package MASS_7.3-51.4, to analyze
the accuracy of discrimination between high (HME) and low
CH4 emitters (LME).

Animal Grouping, Statistical Analysis,
and Separate Co-abundance Networks
Based on methane measurements recorded in respiration
chamber, 31 animals were considered as LME whilst the other
32 animals were classified as HME. Due to a final number of
63 animals studied, this classification based on CH4 emissions is
only partly balanced by breed type and diet with HME composed
of 10 AA and 7 LIM fed CONC and 7 AA and 8 LIM fed FOR
whilst LME comprised 7 AA and 7 LIM fed CONC and 10 AA
and 7 LIM fed FOR. The difference between HME and LME in
CH4 emissions (g/kg DMI), was estimated with a model including
group (HME and LME), breed (AA and LIM) and diet (FOR
and CONC) as fixed effects [GLM analysis, ‘lsmeans’ R package,
R version 3.6.0 (2019-04-26)]. Residuals were assumed to be
normally distributed.

Additionally, data from HME or LME animals were
analyzed in separate networks (correlation threshold of
0.70) to identify any differences in cluster composition and
microbiome interactions (genera and genes) by enrichment
analysis using the option in Miru. Enrichment analysis compared

variables/nodes significantly different (P < 0.05) between LME
and HME animals.

A Venn diagram was generated using Venny software
(Oliveros, 2007-2015) to compare the cluster composition
for the cluster containing most abundant methanogens
and microbial genes involved in methanogenesis between
HME or LME animals.

RESULTS

Systemic Factors Influencing CH4
Emissions
The distribution of CH4 emissions from 63 beef cattle overall
and for groups of high and low CH4 emitters (HME and
LME), forage and concentrate diets (FOR and CONC) and
crossbred Aberdeen Angus (AA) and Limousin (LIM) steers
are illustrated in Supplementary Figures S1A,B, respectively.
Average CH4 emissions were 17.56 g/kg dry matter intake (DMI),
with a coefficient of variation of 12.5%. High methane-emitting
animals had 5.73 g greater CH4/kg DMI than LME (P < 0.001),
which is equivalent to 2.61 standard deviations of this trait.
Methane emissions were also greater in animals fed with forage
in comparison to concentrate, with a difference of 8.48 g CH4/kg
DMI (P < 0.001). Breed type effect was not significant for CH4
emissions per kg DMI.

Composition of the 10 Clusters in the
Rumen Microbiome of 63 Beef Cattle
A co-abundance network analysis was applied on the relative
abundances of 1,557 microbial genes and 1,160 genera identified
by metagenomics sequencing. A positive correlation cutoff of 0.70
was applied (Figures 1A,B). Among the clusters generated by
network analysis, 10 individual clusters (1,565 variables within
these clusters) corresponding to different functional niches and
considered as important to explain differences in CH4 emissions
were selected for further analysis (Supplementary Table S1A). In
parallel, a network analysis was repeated with relative abundance
data transformed in log ratio coordinates using SPARCC. Such
strategy can help to reduce potential compositionality bias
yielding to artefactual correlations. Results obtained showed
a similar correlation structure between variables and similar
composition of larger clusters compared to the network obtained
with relative abundance data (Supplementary Table S1B and
Supplementary Figure S2). Therefore, the following description
of the 10 clusters will be based on results obtained with
relative abundance data.

The largest cluster identified was cluster 1 (Figure 1)
and contained 329 microbial genes, mostly involved in the
CH4 synthesis, degradation pathways for amino acids and
carbohydrates as confirmed using STRING database, as well as
98 genera (69 bacteria, 15 archaea, 13 fungi, and 1 protist).
In terms of abundance, archaea-related genera were the most
abundant in this cluster (5.81% of the total abundance of
microbes), represented the three methanogenic pathways and
were dominated by Methanobrevibacter (5.69%). The next most

Frontiers in Microbiology | www.frontiersin.org 5 April 2020 | Volume 11 | Article 659

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00659 April 16, 2020 Time: 18:0 # 6

Martínez-Álvaro et al. Microbiome Network Explains Methane Emissions

abundant genera belonged to bacteria (3.56%), mostly composed
of Sarcina (2.70%). Fungi and protist were less abundant (0.05
and 0.007%, respectively) in cluster 1. Cluster 1 is subsequently
referred to as “methanogenesis cluster”.

Others clusters (2–6) were highly connected with
cluster 1 in the network (Figure 1). These clusters were
associated with particular bacteria and functions. For
example, the small cluster 4 contained Butyrivibrio (2.51%)
and Pseudobutyrivibrio (0.49%), two Firmicutes producing
butyrate, and few genes related to sugar metabolism (glucose,
K05350; rhamnose, K05989; galactosamine, K02474 and
multiple sugar transport system, K10546) whilst small
cluster 5 comprised Bacillus (0.18%), as well as other
bacteria and genes related to sugar degradation (such as
K00163 and K00627).

Cluster 2 (Figure 1) included only one genus Fibrobacter
(1.74% of relative abundance), and 146 genes mainly involved
in the synthesis of central metabolic enzymes (for instance,
malate dehydrogenase K00029, alcohol dehydrogenase K00001,
glutamate-5-semialdehyde dehydrogenase K00147 or aldehyde
dehydrogenase K00128).

Furthermore, clusters 3 and 6 (composed of 409 and
143 nodes, respectively) mainly comprised microbial genera
accounting for 8.19 and 6.27%, respectively, of the total microbial
abundance in the rumen, and only few genes. In cluster 3, the
main genera were from α, β, δ, and γ Proteobacteria (181),
Actinobacteria (88) and Firmicutes (39) phyla, also interacting
with 31 different genera of archaea, some of them identified
as methanogens (such as Methanosphaerula, Methanocella,
Methanoculleus, or Methanolaicina). In contrast, cluster 6 was
dominated by genera of the fungal community (93) followed
by 20 protist genera, eight Cyanobacteria, five Proteobacteria
(γ and β) and three methanogen archaea (Methanococcus,
Methanocaldococcus, and Methanothermococcus). Methanogen
archaea in clusters 3 and 6 are capable of hydrogenotrophic
and/or acetoclastic methanogenesis.

Whereas clusters 1–6 were closely connected, clusters 7–
10 contained different microbial genera and were not directly
connected with cluster 1 (Figure 1). Within this group of
clusters, cluster 9 was the larger cluster combining 111
microbial genera (4.82% of the total microbial abundance in
the rumen), with 140 genes. Most of the genera identified in
these clusters belong to bacteria, within different phyla but
dominated by γ-Proteobacteria (41/111) such as Enterobacter
or Methylomonas, by other Proteobacteria (20/111), and by
Firmicutes (25/111) such as Lactobacillus or Eubacterium.
Genes in this cluster were involved in carbohydrate and
amino acid degradation and in lipid metabolism. This cluster
contained the genus Candidatus Methanomethylophilus following
the methylotrophic methanogenic pathway and the acetogenes
such as Eubacterium, Blautia, and Acetitomaculum. In cluster
10, Selenomonas genus (2.58%) was connected with 6 genes,
some of which are involved in oligosaccharide transport
(K10108 and K10110). Cluster 7 included Bifidobacterium
(1.64% of relative abundance), a main lactate producer and
oligosaccharide degrader, as well as 143 genes, some relevant
for carbohydrate degradation (such as K00873 or K01193).

The most abundant microbial genus in the rumen Prevotella
(38.6%) was classified in a small cluster 8 (Figure 1)
associated with 7 genes, some of which related to nitrogen
metabolism (K02600 and K13043) and the pentose phosphate
pathway (K01786).

Identification of the Main Clusters and
Variables Explaining Variability in CH4
Emissions
Partial Least Squares analysis models were performed per cluster
to compare them together and determine their importance
within the network at explaining variability in CH4 emissions
monitored over the 63 animals. A maximum of 5 variables
per cluster with the highest VIP values (>0.8) were selected.
These variables explained most of the variability in CH4
emissions (Tables 1, 2).

Variables selected from Clusters 1 to 6 showed positive
regression coefficients with CH4 emissions (Table 1). Most
of the variability observed in CH4 emissions was explained
by the 5 variables in cluster 1 (57.3%) including genera and
genes associated with nitrogen fixation capacity (Candidatus
Azobacteroides and K02585), lignin degradation (Tremella), or
genes involved in amino acid (glycine, K00639) or sugar (K00091)
metabolism. Although the most abundant methanogens (e.g.,
Methanobrevibacter or Methanosphaera) or the genes involved in
the CH4 synthesis pathway (e.g., K00399 for mcrA) composed
cluster 1, these variables were not identified by PLS with the
highest VIP values.

Within fiber degraders (clusters 2 and 6), Fibrobacter
and a gene encoding for xylan degradation (K01181)
explained more variability in CH4 emissions (49.8%) than
fungi and protists (38.3%). In clusters 3, 4, and 5, the most
important bacterial populations included the two butyrate
producers Butyrivibrio and Pseudobutyrivibrio (cluster
4), salt resistant bacteria (cluster 3) and Bacillus (cluster
5). Genes associated with glycine metabolism (K00281)
or sugar metabolism like glucose and rhamnose (K05350
and K05989) were also important. However, the ability of
these clusters to predict CH4 emissions was equivalent to
or below 36.0%.

Variables selected from clusters 7 to 10, not directly connected
to cluster 1 in the network, showed negative regression
coefficients (Table 2), indicating that their higher relative
abundance will result in a reduction in CH4 emissions. The
variability in CH4 emissions explained by these clusters ranges
between 14.9 and 31.8%, with cluster 9 showing the largest
effect. The results in cluster 9 are due to the presence of 3
relatively abundant γ-Proteobacteria (between 0.0036 and
0.0103%) including Leclercia, Moraxella, and Tolumonas,
the methylotrophic Methanomassiliicoccales Candidatus
Methanomethylophilus (average abundance of 0.0491%) and a
gene associated with lactate metabolism (K00016).

In cluster 7, the variables with high VIP values were
mostly genes encoding for amino acid metabolism activities
(K00651, K01995, K01998, and K14260). In cluster 10,
Selenomonas genus and genes involved in polysaccharide
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TABLE 1 | Microbial genera and genes that mainly explain the variability of methane (CH4) emissions within each cluster positively related to the trait.

Description of genus or functional genes identified PLS results1

Cluster 1: Variables explained 57.3% of the variation in CH4 emissions

Phylum/Class//gene Genus/KEGG gene id VIP Reg. Coef.

Bacteroidetes (Bacteria) Candidatus Azobacteroides 1.03 0.177

Basidiomycota (Fungi) Tremella 1.01 0.174

Nitrogen fixation protein NifB K02585 0.99 0.171

Glycine C-acetyltransferase K00639 0.99 0.17

Dihydroflavonol-4-reductase K00091 0.98 0.169

Cluster 2: Variables explained 49.8% of the variation in CH4 emissions

Phylum/gene Genus/KEGG gene id VIP Reg. Coef.

Endo-1,4-beta-xylanase K01181 1.02 0.154

Sulfonate/nitrate/taurine transport system ATP-binding protein K02049 1.01 0.153

Hypothetical protein K09702 1 0.151

Nitrogenase iron protein NifH K02588 0.99 0.151

Fibrobacteres (Bacteria) Fibrobacter 0.98 0.148

Cluster 3: Variables explained 36.0% of the variation in CH4 emissions

Phylum/gene Genus/KEGG gene id VIP Reg. Coef.

Bacteroidetes (Bacteria) Niastella 1.05 0.138

β-Proteobacteria (Bacteria) Polaromonas 1.04 0.136

Bacteroidetes (Bacteria) Salinibacter 1.02 0.134

Acidobacteria (Bacteria) Acidobacterium 0.99 0.129

Actinobacteria (Bacteria) Alloactinosynnema 0.88 0.116

Cluster 4: Variables explained 26.9% of the variation in CH4 emissions

Phylum/gene Genus/KEGG gene id VIP Reg. Coef.

Firmicutes (Bacteria) Butyrivibrio 1.25 0.152

Beta-glucosidase K05350 1.02 0.123

Alpha-L-rhamnosidase K05989 0.93 0.113

Firmicutes (Bacteria) Pseudobutyrivibrio 0.89 0.108

Aquificae (Bacteria) Hydrogenobacter 0.87 0.106

Cluster 5: Variables explained 13.2% of the variation in CH4 emissions

Phylum/gene Genus/KEGG gene id VIP Reg. Coef.

Spirochaetes (Bacteria) Sediminispirochaeta 1.23 0.175

2-oxoglutarate dehydrogenase E1 component K00164 1.23 0.175

Glycine dehydrogenase K00281 0.85 0.12

Actinobacteria (Bacteria) Saccharomonospora 0.81 0.115

Firmicutes (Bacteria) Bacillus 0.79 0.112

Cluster 6: Variables explained 38.3% of the variation in CH4 emissions

Phylum/gene Genus/KEGG gene id VIP Reg. Coef.

Heterokonta (Protist) Aphanomyces 1.06 0.159

Basidiomycota (Fungi) Tsuchiyaea 1.03 0.153

Ascomycota (Fungi) Pochonia 1.03 0.153

Euryarchaeota (Archaea) Methanocaldococcus 0.96 0.143

Basidiomycota (Fungi) Fomitiporia 0.92 0.138

VIP, variable importance for projection; Reg. Coef., Regression Coefficient. 1 In the PLS analysis CH4 emissions were fitted as dependent variable and microbial populations
and genes as independent variables and separately analyzed for each cluster. Only the first factor was considered in the PLS analysis.

transport (K10108 and K10110) and ammonia production
(K03735) were identified as the main variables resulting
in reduced CH4 emissions. The most dominant bacteria

in ruminant, Prevotella and two genes (K06950 and
K02600) in cluster 8 explained only 14.9% of variability in
CH4 emissions.
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TABLE 2 | Microbial genera and genes that mainly explain the variability of methane (CH4) emissions within each cluster negatively related to the trait.

Description of genus or functional genes identified PLS results1

Cluster 7: Variables explained 27.1% of the variation in CH4 emissions

Phylum/Class/gene Genus/KEGG gene id VIP Reg. Coef.

Pyruvate kinase K00873 1.16 −0.13

Homoserine O-succinyltransferase K00651 1.01 −0.112

Branched-chain amino acid transport system permease protein K01998 0.96 −0.107

Alanine-synthesizing transaminase K14260 0.93 −0.104

Branched-chain amino acid transport system ATP-binding protein K01995 0.92 −0.102

Cluster 8: Variables explained 14.9% of the variation in CH4 emissions

Phylum/gene Genus/KEGG gene id VIP Reg. Coef.

Uncharacterized protein K06950 1.19 −0.174

Bacteroidetes (Bacteria) Prevotella 0.97 −0.143

N utilization substance protein A K02600 0.8 −0.118

Cluster 9: Variables explained 31.8% of the variation in CH4 emissions

Phylum/gene Genus/KEGG gene id VIP Reg. Coef.

γ-Proteobacteria (Bacteria) Leclercia 1.05 −0.133

γ-Proteobacteria (Bacteria) Tolumonas 1.02 −0.129

Euryarchaeota (Archaea) Candidatus Methanomethylophilus 0.98 −0.125

γ-Proteobacteria (Bacteria) Moraxella 0.98 −0.125

L-lactate dehydrogenase K00016 0.97 −0.123

Cluster 10: Variables explained 24.6% of the variation in CH4 emissions

Phylum/gene Genus/KEGG gene id VIP Reg. Coef.

Maltose/maltodextrin transport system permease protein K10110 1.06 −0.12

Maltose/maltodextrin transport system substrate-binding protein K10108 1.04 −0.118

Firmicutes (Bacteria) Selenomonas 1.04 −0.118

Peroxiredoxin Q/BCP K03564 1 −0.114

Ethanolamine ammonia-lyase large subunit K03735 0.84 −0.096

VIP, variable importance for projection; Reg. Coef., Regression Coefficient. 1 In the PLS analysis CH4 emissions were fitted as dependent variable and microbial populations
and genes as independent variables and separately analyzed for each cluster. Only the first factor was considered in the PLS analysis.

A Linear Discriminant Analysis using all microbial genes and
genera selected by PLS within the 10 clusters confirmed the
capacity to discriminate between HME and LME animals with
a prediction accuracy of 100% (Figure 2).

Changes in Methanogenesis Cluster
Between HME and LME
Two network analyses were performed in parallel with HME
or LME data to compare the differences in the co-abundance
structure and variables (Figures 3A,B). The composition of
clusters between HME and LME networks was compared
by enrichment analysis, in both directions, using Miru
(Supplementary Tables S2A,B). The main differences (P < 0.01)
were explained by the cluster containing the most abundant
methanogens (Methanobrevibacter, Methanosarcina, and
Methanosphaera) and their genes involved in CH4 synthesis
(e.g., K00203, K00400, or K14128), corresponding to the
methanogenesis cluster 1 in Figure 1.

The methanogenesis cluster in LME contained more nodes and
edges than in HME (see Figure 3 and Supplementary Table S3).

This can be explained by the addition of nodes within this
cluster in LME related to other bacterial and archaeal genera
identified within the methanogenesis cluster and other clusters in
HME. Genes classified in the methanogenesis cluster and shared
between HME and LME animals were involved in amino acid
(e.g., K00186, K00187, and K00188) or carbohydrate degradation
(e.g., K01959 and K01622), nitrogen fixation capacity (e.g.,
K02585), and biosynthesis of cofactors and vitamins (e.g.,
K03750, K03752, or K03753; Supplementary Table S3A).

As a main result, only fourteen bacterial genera (e.g.,
Candidatus Azotobacteroides and Sarcina) and three fungal
genera (e.g., Tremella) clustered with the main methanogens
in HME (Figure 3A and Supplementary Tables S3A,B)
whilst a higher number of bacteria (n = 271), fungi
(n = 19), and other archaea (n = 37) including other
methanogens such as Methanomicrobium or Methanosaeta
were identified in LME (Figure 3B and Supplementary
Tables S3A,C). These additional populations in LME mostly
belonged to the phyla Proteobacteria (e.g., Gluconobacter),
Firmicutes (e.g., Butyrivibrio) and Actinobacteria (e.g.,
Pseudopropionibacterium), also carrying genes (n = 29)
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FIGURE 2 | Linear Discriminant Analysis (LDA) density plot performed with
microbial genera and functional genes previously selected by PLS showing
their ability to discriminate between high (HME) and low (LME) methane
emitters. HME, high methane emitters (light red color); LME, low methane
emitters (light blue color). *LDA showed an accuracy value on prediction of
100%, all animals correctly assigned as HME or LME.

identified in their genome and highly correlated to
methanogens in LME. For example, genes encoding for multiple
carbohydrate degradation like starch and sucrose (K05350
and K05989) were identified in the genome of Butyrivibrio or
Gluconobacter (K02474).

Other clusters showed limited changes between LME and
HME networks based on enrichment analysis.

DISCUSSION

Functional Niches in the Rumen
Microbiome
The novelty of this study lies in the capacity to unprecedently
identify 10 microbial functional niches associated with different
functions in the rumen. In addition of quantifying their impact
on CH4 emissions, our results highlight the importance of
microbial interaction and their change explaining variability
in CH4 emissions. Previous studies focused on change in
microbial community structure, taxa or genes directly involved
in methanogenesis and showing conflicting associations
with CH4 emissions (Mosoni et al., 2011; Morgavi et al.,
2012; Auffret et al., 2018). Moreover, most of these studies
did not address inter-domain microbial interactions (Roehe
et al., 2016). Identification of functional niches and complex
microbial interactions in the rumen microbiome was possible
using co-abundance network analysis. This approach was
successfully applied for the study of the gut microbiome and
other ecosystems (Coutinho et al., 2015; Xiao et al., 2017;
Bauer et al., 2018).

Importance of Methanogens Explaining
Differences in CH4 Emissions Between
HME and LME
When comparing the cluster for methanogenesis between
HME and LME, several mechanisms could explain changes in
CH4 emissions.

As previous studies only focusing on methanogenesis have
shown, most of the genes involved in the three methanogenic
pathways (hydrogenotrophic, methylotrophic, and acetoclastic)
grouped together in the methanogenesis cluster with the
most abundant methanogens including the hydrogenotrophic
Methanobrevibacter (Roehe et al., 2016; Auffret et al., 2018).
In this study, one main novelty is that a lower number of
hydrogenotrophic methanogenic genera with limited interaction
dominated in HME whilst LME animals had more diverse
methanogens involved in the three methanogenic pathways
and interacting more with other communities. Competition for,
e.g., substrates (mainly H2) and space (Morgavi et al., 2010)
combined with thermodynamics differences for the synthesis of
methane (Hydrogenotrophy > Methylotrophy > Acetoclasty;
Sprenger et al., 2007; Molenaar et al., 2017) seemed to reduce
the importance of Methanobrevibacter explaining CH4 emissions
in LME. For example, the hydrogenotrophic Methanobacterium
could directly compete for substrates with Methanobrevibacter.

Methylotrophic Methanomassiliicoccales Candidatus
Methanomethylophilus known to occupy a different functional
niche (cluster 9) than other methanogens (Poulsen et al., 2013)
was negatively correlated with CH4 emissions. In addition,
its relative abundance seemed to be favored (e.g., substrate
and thermodynamics) in LME animals (Auffret et al., 2018).
Candidatus Methanomethylophilus was previously identified as
metabolically active in ruminants (Wang et al., 2017; Mann et al.,
2018). In the same cluster as Candidatus Methanomethylophilus
are the acetogens Eubacterium, Blautia, and Acetitomaculum,
which are highly active H2 sinks as recently shown in sheep
(Greening et al., 2019).

Change in relative abundance of most of the methanogens or
genes involved in CH4 production did not seem important to
explain differences between HME and LME. Similar results were
previously shown in cattle and sheep (Béra-Maillet et al., 2004;
Pandit et al., 2018) and also showed a lack of co-abundances
between methanogenic populations, genes and CH4 emissions
(Zhou et al., 2011; Danielsson et al., 2012; Shi et al., 2014;
Wallace et al., 2014; Tapio et al., 2017; Zheng et al., 2018). One
explanation for this is the identification of different clades of
Methanobrevibacter known to differ in their production of CH4
(Tapio et al., 2017).

Alternative new CH4 synthesis pathway has recently been
described in bacteria carrying genes encoding for iron-only
nitrogenase (Zheng et al., 2018). Interestingly, Candidatus
Azobacteroides carrying in its genome the nitrifying gene
K02588 had both a strong and positive relationship with CH4
emissions. Moreover, this genus was shown to be highly active by
metatranscriptomics in the rumen of Bos indicus across different
dietary treatments confirming its importance in the rumen
microbiome (Pandit et al., 2018). Such new result confirmed the
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FIGURE 3 | Focus on the “methanogenesis” cluster in co-abundance networks (correlation threshold of 0.70) in (A) high (HME) and (B) low (LME) methane emitters
of beef cattle. This cluster contains the main methanogens and genes involved in methane synthesis. Larger nodes represent microbial genera whilst smaller ones
represent microbial genes. Edges represent the correlation between their abundances. (C) Venn diagram showing 329 genera and genes present in both groups,
whereas 22 and 347 are exclusively in HME or LME, respectively.

diversity of ruminal CH4 synthesis pathways and further work
on nitrogen-fixing bacteria that also produce CH4 is needed to
validate these results.

Importance of the Network Structuring
Organic Matter Metabolic Pathways
Contrasting with the general idea, the main variables
explaining variability in CH4 emissions were bacterial genus
(Candidatus Azobacteroides) and fungal genus (Tremella) or
genes involved in specific and limited metabolic pathways
(e.g., xylan degradation) but not directly associated with
methanogenesis. A more complex microbial network composed
of more diverse bacterial and fungal genera and genes were
detected in the methanogenesis cluster in LME compared
to HME. These results reinforce the hypothesis that CH4
production in the rumen is also driven by other microbial
communities and their metabolism than methanogens
(Vanwonterghem et al., 2017).

In our study, ruminal fiber degraders were identified in
different functional niches. For example, Fibrobacter (cluster 2)
one of the main plant fiber degraders in the rumen (Rychlik
and May, 2000), carried genes encoding for xylan degradation
(e.g., K01181), and explaining more variability in CH4 emissions
(49.8%) than other fiber digesting microbes (e.g., fungi or
protists). Ruminococcus, which is also a well-known bacterial
plant fiber degrader in the rumen (Danielsson et al., 2017),
was not detected in the network. Such result can be explained
by Fibrobacter showing fermentation advantages compared
to Ruminococcus (Danielsson et al., 2017) during diculture
experiment with Methanobrevibacter and enhancing CH4
emissions (Rychlik and May, 2000).

Most of fungi and protist genera were highly correlated
with each other (cluster 6), suggesting a close interdependence,
in agreement with other studies (Tokura et al., 1997; Miltko
et al., 2016). This interaction can be explained by the effect of
protist impacting on pH in rumen, enhancing CH4 emissions
(Eugène et al., 2004; Newbold et al., 2015) as well as their
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capacity to create anaerobic conditions that favor fungal
zoospores development (Ellis et al., 1989). The fungi identified
positively correlated with CH4 emissions (Aydin et al., 2017)
were phylogenetically distant from previously identified fungi
within Chytridiomycota (Gruninger et al., 2014). This result
and the limited number of genes found associated with fungi
or protists can be partly explained by the current limitation
when sequencing genome with low GC content (<20%) like
in some fungi and protists (Chen et al., 2013) supporting
the need for methodological improvement in the study of
eukaryotes in the rumen.

Importance of Clusters Involved in
Metabolite Pathways Impacting on CH4
Emissions
It is known that microbial metabolites released after the
degradation of plant fiber can differently impact CH4 emissions
(Janssen, 2010; Kamke et al., 2016). For example, Butyrivibrio
and Pseudobutyrivibrio (cluster 4) previously identified as
biomarkers of CH4 emissions (Auffret et al., 2018) played
an important role in the release of substrates (lactate or
butyrate) enhancing CH4 emissions (Kamke et al., 2016). In
contrast, the lactic acid producer Bifidobacterium in cluster 7
was negatively correlated (PLS) with CH4 emissions (Kamke
et al., 2016). Furthermore, Butyrivibrio and Pseudobutyrivibrio
are also formate producers (Tokura et al., 1997; Tapio et al.,
2017) as Fibrobacter. The importance of formate metabolism
associated with changes in CH4 emissions need further
work (Tapio et al., 2017), especially when the quantity of
formate produced seems to be several times greater than H2
(Rychlik and May, 2000).

This study refined the importance of Proteobacteria (Tapio
et al., 2017), by focusing on γ-Proteobacteria genera (mostly
grouping in cluster 9) that showed negative impact on CH4
emissions (Wallace et al., 2015; Danielsson et al., 2017).
Moreover, some mechanistic explanations for LME involved
the presence of some γ-Proteobacteria producing succinate
as intermediate of propionate or carrying gene for lactate
degradation (K00016), releasing less H2 in comparison to other
VFA, which may explain a lower synthesis of CH4 (Janssen, 2010).
In addition, some other γ-Proteobacteria and genes involved in
branched chain or aromatic amino acid biosynthesis (shikimate
pathway) were previously considered as strong indicator of LME
in sheep (Kamke et al., 2016).

Another explanation is the possible impact of H2-consuming
bacteria like Selenomonas in cluster 10 or genes involved in
ammonia metabolism; these are all negatively correlated with
CH4 emissions (PLS) and known to reduce CH4 emissions
(Olijhoek et al., 2015; Kamke et al., 2016; Sa et al., 2016).

Our study characterizes functional niches in the rumen
microbiome by applying network analysis and identifying
potential mechanisms having an impact on CH4 emissions.
Methane emissions variability was mainly explained by
variables involved in organic matter degradation pathways,
like Fibrobacter, or alternative CH4 emission pathway. A more
complex microbiome involving more interaction between

communities or methanogens and involving more metabolic
pathways reduced CH4 emissions. New CH4 mitigation strategies
can be developed based on the microbial ecology information
obtained in this study, like enhancing populations within
γ-Proteobacteria through nutrition intervention, without
impacting on animal feed conversion efficiency.
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