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The ratio of forage to concentrate in cattle feeding has a major influence on

the composition of the microbiota in the rumen and on the mass of methane

produced. Using methane measurements and microbiota data from 26 cattle we

aimed to investigate the relationships between microbial relative abundances and

methane emissions, and identify potential biomarkers, in animals fed two extreme

diets - a poor quality fresh cut grass diet (GRASS) or a high concentrate total mixed

ration (TMR). Direct comparisons of the effects of such extreme diets on the

composition of rumen microbiota have rarely been studied. Data were analyzed

considering their multivariate and compositional nature. Diet had a relevant effect

on methane yield of +10.6 g of methane/kg of dry matter intake for GRASS

with respect to TMR, and on the centered log-ratio transformed abundance of

22 microbial genera. When predicting methane yield based on the abundance

of 28 and 25 selected microbial genera in GRASS and TMR, respectively, we

achieved cross-validation prediction accuracies of 66.5 ± 9% and 85 ± 8%. Only

the abundance of Fibrobacter had a consistent negative association with methane

yield in both diets, whereas most microbial genera were associated with methane

yield in only one of the two diets. This study highlights the stark contrast in the

microbiota controlling methane yield between animals fed a high concentrate

diet, such as that found on intensive finishing units, and a low-quality grass forage

that is often found in extensive grazing systems. This contrast must be taken

into consideration when developing strategies to reduce methane emissions by

manipulation of the rumen microbial composition.

KEYWORDS

enteric methane emissions, beef cattle, concentrate-based diets, zero-grazed grass diet,
microbiota by diet interaction

Introduction

In 2019, methane levels in the atmosphere reached record levels, about 2.5 times
higher than in the pre-industrial era. Ruminants account for 16% of global methane
(CH4) emissions, of which 35% and 30% correspond to beef and dairy industries (Tseten
et al., 2022). Methane is an unnecessary by-product of microbial fermentation of mainly
complex carbohydrates in the rumen, synthesized by methanogenic archaea and released
into the environment through the animal’s mouth and nose. Eructated methane from
ruminal microbial fermentation not only contributes to global warming, but also results
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in unnecessary loss of energy, compromising feed efficiency
(Manzanilla-Pech et al., 2022). Because the microbiome plays a
key role in the synthesis of methane, most methane mitigation
strategies in ruminants rely on altering the rumen conditions
and microbial ecology. Desired changes include promoting
the growth of microorganisms able to reduce hydrogen (H2)
production through propionate fermentation, re-partition H2
to other products by acetogenesis, inhibiting methanogens or
promoting methane oxidation (Cottle et al., 2011). To this end,
both short-term, e.g., use of feed-additives (Dijkstra et al., 2018;
Tseten et al., 2022), and long-term strategies, e.g., microbiome-
driven breeding (Martínez-Álvaro et al., 2022), have been proposed.
A combination of these strategies adapted to specific production
systems could be the most cost-effective solution.

In addition, implementation of strategies to reduce enteric
methane emissions depends on the collection of quality methane
emission data on a large-scale. Respiration chambers are the
gold-standard method for measuring methane emissions from
ruminants but has low throughput. Alternatives include the use
of tracer gases (sulfur hexafluoride) which require boluses and
attachment of equipment to the animal, and collection of multiple
short-term point measurements over longer time periods (van
Breukelen et al., 2022). Over the past decade, genetic sequencing
costs have decreased and efficiencies have increased, resulting in
rising attention to the rumen microbiome as a potential proxy
measurement (Shi et al., 2014; Wallace et al., 2015; Auffret et al.,
2018; Martínez-Álvaro et al., 2020). Targeted amplification of
specific regions of 16S rRNA loci (16S) is a robust and cost-effective
method for characterizing bacterial and archaeal community
composition. Compared to whole-metagenome sequencing, it is
less costly and does not require the same depth of sequencing,
although it has limitations in identifying taxa at high resolution
and does not provide functional information (Rubiola et al.,
2022). The main statistical challenges in analyzing microbial
composition data are sparsity (especially when using 16S) and
their compositional nature (Gloor et al., 2017), which can lead
to misleading conclusions if not addressed properly (Martínez-
Álvaro et al., 2021). To circumvent these problems, appropriate
techniques to exclude sparse non-informative taxa (Roesch et al.,
2020) and the use of log-ratio transformations, e.g., centered log-
ratio (clr), (Greenacre et al., 2021) have been proposed. However,
these methods have only recently been utilized in microbiome
studies.

Finishing diets for beef production in the UK and around the
world vary in their composition, from high in concentrate (e.g.,
barley beef systems), to forage and grass-based diets, depending on
variables such as breeding system, forage stocks, grass availability
and quality, breed type, or market requirements (Agriculture and
Horticulture Development Board, 2020). Both rumen microbiome
composition and methane yield are highly sensitive to the diet of
the animal, which determines the inputs available for microbial
fermentation and the corresponding H2 production. Numerous
studies report that the microbiome structure and methane traits
are significantly altered by the forage to concentrate ratio, and
by type of forage and forage quality (Janssen, 2010; Troy et al.,
2015; Duthie et al., 2017; Gruninger et al., 2019; Li et al., 2019).
Diet could not only cause changes in the magnitude of microbial
abundances, but also alter their microbial interactions and their
effects on methane emissions. Under this hypothesis, mitigation

strategies or predictive equations developed for one specific diet
might not be suitable for other diets.

The objectives of this study were (i) to evaluate the effects
of two extreme contrasting diets (either high concentrate or
low quality fresh cut grass) on methane emissions and rumen
microbiota composition; and (ii) to explore the relationships
between microbial abundances and methane yield and identify
potential biomarkers in these two extreme feeding systems.

Materials and methods

Experimental design, animals, and diets

A total of 36 beef steers, 18 Limousin cross (LIMx) and 18
Aberdeen Angus cross (AAx), were selected for this trial. The cattle
were paired based on breed, sire, and body weight, with one of
each pair being randomly allocated to either a low quality fresh
cut grass diet (GRASS) or a high concentrate total mixed ration
(TMR). The 36 cattle were housed in two pens (one per treatment)
and bedded on sawdust. The GRASS group had an average body
weight of 499 ± 7.9 kg and the TMR group 510 ± 7.8 kg at the
beginning of the trial.

All cattle had ad libitum access to feed and water throughout
the trial. For the GRASS group, a mixed ryegrass and clover sward
was mowed each morning and fed directly to the cattle top dressed
with Downland Intensive Beef minerals (Downland Marketing,
Carlisle, UK; 0.8% of diet dry matter). The TMR diet was mixed
in a feeder wagon and had a forage to concentrate ratio of 136:864,
the ingredients and nutritional composition of the diets are given
in Table 1. The animals were adapted to these diets over a 2-week
period, over which the proportion of concentrate or grass in the diet
was gradually increased.

To measure methane emissions, animals were allocated to six
indirect open-circuit respiration chambers over a 6-week period
so that three of each treatment and three from each breed were
assigned to each chamber, and paired animals were measured in
the same week. Before entering the respiration chambers, animals
were individually housed in training pens, which are identical in
construct to the ones inside the chambers, for 6 days. After this
training period, animals were isolated in the respiration chambers
for 3 days, during which time they were fed once daily. Dry matter
intake was recorded daily and averaged over the 3 days.

Respiration chamber measurements

Methane measurements were undertaken in six indirect open-
circuit respiration chambers and concentrations of CH4 in air
samples exhausted from the respiration chambers were measured
by infra-red absorption spectroscopy (MGA3000; Analytical
Development Company Limited, Amersham, UK). The method of
measurement in the respiration chambers is described in detail
in Troy et al. (2015). Methane production (ppm) was determined
by calculating the concentration difference between inlet and
exhaust air multiplied by volumetric dry air flow and corrected to
standard temperature and pressure (25◦C and 101,300 Pa). Daily
gas production was calculated as the average of all recorded values
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TABLE 1 Ingredients and chemical composition of two extreme offered
diets fresh cut grass (Grass) and high concentrate (TMR) based.

TMR Grass

Ingredient composition (g/kg DM)1

Barley 851 –

Maize dark grains 890 –

Barley Straw 865 –

Molasses nd –

Minerals2 8.1 8.0

Grass – 210

Chemical composition (g/kg DM)3

Dry matter (g/kg) 833 211.7

Ash 43 76

Crude protein 83.7 84.9

Neutral detergent fiber 339 557

Starch 356 <5

Metabolizable energy (MJ/kg DM) 11.7 9.0

Gross energy (MJ/kg DM) 17.9 18.1

1Ingredient composition is the mean of the daily diets received by the animals across the
experimental period.
2Contained (mg/kg): Fe, 500; Mn, 3,000; Zn, 2,000; Iodine, 100; Co, 30; Cu, 800; Se, 35.
Vitamins (µg/kg): vitamin A, 400,000: vitamin D3, 100,000; vitamin E, 1,500.
3Chemical composition is the mean of 3 analyses per treatment.

per chamber per day and expressed on a mass basis (g/day). The
values reported in this paper are from the final 48 h of the 72-h
period. Due to a technical failure of one of the respiration chambers,
only 26 out of the 36 animals could be used to investigate the effects
of diet type on methane yield. The remaining 26 animals were still
balanced for diet treatment and breed.

Collection of rumen samples and 16S
rRNA gene analysis

There were only 26 animals with adequate rumen samples
available to investigate the impact of diet on the rumen
microbiome, of which 24 had methane emissions measurement,
these were also still balanced for breed and diet. Rumen fluid
samples were collected from each animal within 2 h of exiting the
respiration chambers using a naso-gastric tube (16- by 2,700-mm
Equivet stomach tube; JørgenKruuse A/S, Langeskov, Denmark)
and aspirating manually. For each animal approximately 50 ml
of rumen fluid was filtered through two layers of muslin and
samples were stored in a −80◦C freezer until sent for 16S
rRNA gene analysis.

DNA was extracted from the rumen samples following the
protocol of Yu and Morrison (2004) combining chemical lysis
and bead beating, followed by purification on column using the
QIAamp DNA Mini Kit (Qiagen, Manchester, UK). Genomic DNA
was quantified using Nanodrop. Illumina TruSeq DNA libraries
(Illumina Inc., San Diego, CA, USA) were prepared from genomic
DNA following Illumina protocol. The V4 region of the 16S
rRNA gene was amplified by PCR using Q5

R©

High-Fidelity DNA
Polymerase (NEB, Hitchin, UK) and the primers 16SMiFwd and

16SMiRev, recommended by Illumina. The full sequence of the
primers used were 515F = 5′-TCG TCG GCA GCG TCA GAT
GTG TAT AAG AGA CAG GTG YCA GCM GCC GCG GTA
A-3′ for 16SMiFwd and 806R = 5′-GTC TCG TGG GCT CGG
AGA TGT GTA TAA GAG ACA GGG ACT CAN VGG GTW
TCT AAT-3′ for 16SMiRev. Amplicons were purified using the
ProNex

R©

Size-Selective Purification System kit (Promega, Madison,
WI, USA), quantified using Qubit

R©

dsDNA HS Assay Kits (Life
Technologies, Paisley, UK) prior to be pooled and sequenced on
a Miseq Illumina instrument (Illumina Inc., San Diego, CA, USA)
by Edinburgh Genomics (Edinburgh, UK). Sequencing provided a
yield of average of 153.5± 47.4 Mb per sample and 5.06± 1.6× 105

reads per sample. The 16S rRNA amplicon sequences obtained were
analyzed with the pipeline MGRAST to generate comprehensive
taxonomic profiles using the standard reference database, excluding
host reference genome. One table of hit counts was created for each
taxonomic level, resulting in 203 genera, 115 families and 21 phyla
identified.

The analysis of the taxonomic composition of the rumen
microbiome was focused on (i) the natural log ratio between
archaea and bacteria (A:B) and (ii) microbial composition at
the genus level. The abundance of each microbial genus was
normalized by the total sum of counts per sample. The microbial
composition at the genus level contained a large proportion of 0
counts per sample, with an average percentage of 0 counts per
sample of 78 ± 8.7% (Supplementary Figure 1). To maximize
microbial information per sample, we discarded microbial genera
with a high count of 0 across all samples only if they did not
contribute to the discrimination of samples within diets. To achieve
this, we used the Prevalence Interval for Microbiome Evaluation
(PIME) workflow from the R package PIME (Roesch et al., 2020)
to establish the minimum % of samples that a microbial genera
should contain in order to be kept, i.e., minimum prevalence.
Briefly, PIME uses a machine learning algorithm to find which is
the optimal prevalence threshold to maximize the discrimination
ability between GRASS/TMR diets. In our analysis, a minimum
prevalence threshold of 20% maximized discriminatory ability
between diets. After removing microbial genera present in less
than 20% of samples, we retained 103 microbial genera for further
analysis. The remaining 0 genera were imputed using a Bayesian
multivariate composition approach implemented in the R package
zcompositions (Palarea-Albaladejo and Martín-Fernández, 2015).
The descriptive analysis of the rumen microbiome composition
was presented in relative abundances to help their interpretability
(Supplementary Figure 2). For remaining statistical analysis,
the compositional nature of microbiome data was taken into
account (Gloor et al., 2017) by applying a centered log-ratio
(clr) transformation to the genera abundances, as described in
Greenacre (2019) using the zcompositions R package.

Data analysis

Effect of diet on dry matter intake, methane
intensity, methane yield, and archaea: bacteria
ratio (A:B)

To investigate the diet effect on DMI (kg/day), methane
production (g/day), methane yield (g/kg DMI) and A:B, we fitted
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three different linear models including these traits as dependent
variables; diet, breed, chamber, and week as fixed effects and the
body weight of the animal when entering the chamber (ranging
from 438 to 656 kg) as a covariate. Bayesian inference was used
with bounded flat priors for all unknowns. Analyses were run
with the R function runRabbit developed by the Institute for
Animal Science and Technology from Universitat Politècnica de
València.1 After some exploratory analyses, results were based
on marginal posterior distributions of 60,000 iterations, with a
burning period of 10,000 and only 1 of every 10 samples were
saved for inferences. In all analyses, convergence was tested using
the Z criterion of Geweke and Monte Carlo sampling errors were
computed using time-series procedures (Sorensen and Gianola,
2002). The parameters obtained from the marginal posterior
distributions of the differences between diets were: the mean; the
highest posterior density region at 95% probability (HPD95%); the
probability of the difference being greater than 0 when the mean
is positive or lower than 0 when the mean is negative (P0); and
the probability of the difference being greater than r or lower
than -r if the mean is positive or negative (Pr), being r a relevant
amount having economical or biological significance. In our case,
we took as r one-third of the phenotypic standard deviation (Blasco,
2017).

The linear relationship between methane production or
methane yield and A:B within each diet was also computed. After
some exploratory analysis, methane traits were analyzed within diet
separately, with a model including the fixed effect of breed and
the covariates body weight and A:B. In this case, we computed the
mean, HPD95%, and P0 of the marginal posterior distribution of
the regression coefficient between the clr-transformed abundance
of the microbial genera and methane yield.

Effect of diet on the ruminal microbiome
composition

A multivariate approach was used to identify which microbial
genera showed different abundances due of different diets offered,
using 26 samples (13 per diet group). A discriminant analysis
based on projection to latent structures (DA-PLS) computed using
R package mixOmics was fitted, considering GRASS/TMR diet
treatments as dependent variables, and the 103 clr transformed
microbial genera abundances as explanatory variables. The number
of components in the model was selected based on a cross-
validation procedure with 4 cross validation groups repeated 20
times, following the procedure described in Lê Cao and Welham
(2022). First, we computed the Residual Sum of Squares (RSS) in
the complete dataset for a given dimension h, using all the samples
(n = 26):

RSSh =

n∑
i = 1

(y(h)
i − ŷi)

2

where y(h)
i is the predicted value of sample i according to

dimension h and ŷi is its “reconstructed” value, i.e., the product
between the latent component and the vector of regression
coefficients for a given dimension h. Under each repetition, we
computed the Predicted Sum of Squares (PRESS) as the sum of

1 https://github.com/VLabUPV/runRabbit

squares of the residuals of the testing set in each cross-validation
fold:

PRESSh =
∑

i ∈ test

(y(h)
i − ŷi)

2

And averaged PRESSh across repetitions. The Q2 criterion was
computed to assess the gain in prediction accuracy when one more
dimension was added to the model. For each dimension:

Q2
h = 1−

PRESSh

RSSh−1

We stop adding dimensions when Q2
h ≤ 0.0975 as proposed

by Lê Cao and Welham (2022). The most influential variables
discriminating between the two diets were selected based on their
variable importance for projection (VIP) criterion >0.8 and based
on their Jack Knife interval of regression coefficients not containing
zero, as described in Martínez-Álvaro et al. (2021). An iterative
process was followed and stopped when the removal of one more
microbial genus did not improve the discrimination ability of the
model. Authors are aware of the high propensity of DA-PLS models
in overfitting (Westerhuis et al., 2008). We attempted to overcome
this statistical issue by validating the discrimination ability of the
final DA-PLS model with two different strategies. First, the final
DA-PLS model was tested under a new fourfold cross validation
repeated 20 times. In each fold, a DA-PLS model was re-fitted
for the given set of selected variables and number of components
with 3/4 of the data (training) and then used to predict to the
diet of the samples in the remaining testing set (1/4 of the data).
The final misclassification rate (%) was obtained by averaging the
misclassification rate (%) obtained across the fourfolds in each
of the 20 replicates. Second, we integrated a permutation test
(randomization of diet labels in the testing set) in the currently
described validation procedure as recommended by Westerhuis
et al. (2008) and computed the misclassification rate (%) after
permutation. It has to be realized that the same individuals in the
validation set were also used to optimize the final PLS-DA model
parameters (e.g., number of selected components and selected
variables), and thus they are not completely independent as is
requested for a proper cross validation. However, the short sample
size of our study did not allowed to properly performed an external
validation.

Additionally, we aimed to quantify the magnitude of the
divergences between diets on the abundance of the DA-PLS selected
microbial genera. To this aim, we fitted one univariate linear
model for each selected microbial genera, including the fixed
effects of diet and breed and body weight as a covariate. Analyses
were run with the R function runRabbit as already described.
As previously, we computed the mean, HPD95%, P0 and Pr the
marginal posterior distributions of the differences between diets.
To help interpretability, their magnitude of the differences was
expressed not only as units of clr-transformed abundances, but also
as effect size, defined as the median of the ratio of the between the
difference and the variance of the traits after correction for breed,
diet and body weight.

Associations between rumen microbiota
composition and methane yield among different
diets

To investigate the relationship between rumen microbiota
composition and methane yield in different diets, we fitted
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TABLE 2 Means and differences between diets [fresh cut grass (GRASS)
and high concentrate (TMR)] in daily dry matter intake (kg/day), methane
traits and natural log archaea to bacteria ratio.

1Mean
TMR

1Mean
GRASS

2TMR-
GRASS

3P0
4r 5Pr

Daily dry matter
intake (kg/day)

9.16
[8.18, 10.2]

5.95
[4.69, 7.48]

3.25
[1.04, 5.19]

1.00 0.49 0.99

Methane
production
(g/day)

160
[141, 181]

146
[128, 165]

14.5
[17.8, 53.4]

0.80 4.9 0.71

Methane yield
(g/kg DMI)

14.4
[9.70, 19.5]

25.0
[20.7, 28.9]

−10.6
[−18.2,
−1.27]

0.99 0.98 0.98

Ln (Archaea:
Bacteria)

−4.72
[−5.69,
−3.75]

−0.43
[−1.59,

0.58]

−4.30
[−6.17,
−2.49]

1.00 0.3 1.00

1Means and highest posterior density intervals at 95% probability of the marginal posterior
distributions of the means of TMR and GRASS.
2Median of the marginal posterior distribution of the difference between TMR and GRASS
andighest posterior density interval at 95% probability.
3Probability of the marginal posterior distribution of the differences of being greater than 0
when the mean is positive or lower than 0 when the mean is negative.
4Relevant value considered as the minimum value with economic importance.
5Probability of the marginal posterior distribution of the differences of being greater than r
when the mean is positive or lower than r when the mean is negative.

two (one per diet group) linear projections to latent structures
regression (PLS) analysis to determine the abundances of
microbial genera that best explained methane yield (g/kg DMI)
within each diet (n = 12 animals per group). Methane yield
was considered as the dependent variable and the 103 clr-
transformed abundances of microbial genera as explanatory
variables. The number of components and the selection of
explanatory variables in the model were chosen as explained
at PLS-DA. After the final PLS model was built, its predictive
ability was tested by threefold cross-validation, which was
repeated 20 times. The final predictive ability of the model
was calculated as the square of the correlation between the
predicted and observed values in the training set, averaged over the
threefolds and then over the replicates. As before, we integrated a
permutation test (randomization of diet labels in the testing set)
in the validation procedure and computed the predictive ability
after permutation.

In addition, we aimed to study the linear regression between
each PLS-selected clr-transformed microbial genera in each diet
group and methane yield in a univariate context, to show
whether a linear relationship existed between specific microbial
genera and the environmental trait. To this aim, we used the
data divided within diet group to fit one univariate linear
model for each selected microbial genera, including methane
yield as dependent variable and the fixed effect of breed and
covariates of clr-transformed abundance of the microbial genera
and body weight as covariates. Analyses were run with the
R function runRabbit as already described. We computed the
mean, HPD95%, and P0 of the marginal posterior distribution of
the regression coefficient between the clr-transformed abundance
of the microbial genera and methane yield. We additionally
computed the Pearson correlation between each selected microbial
genera and methane yield after correcting the data by breed
and body weight.

Results

Effect of the diet on dry matter intake,
methane traits, and A:B traits

Table 2 shows the descriptive statistics and the differences
in DMI, methane traits, and A:B ratio among the diets. On
average, individual animal DMI varied by ± 0.4 kg between days
for GRASS animals (ranging from 0.1 to 1.3), and ± 0.7 kg
for TMR animals (ranging from 0.0 to 1.5 kg). Repeatability of
methane measurements between the second and third day was
high, with ± 1.9 ppm average variation between days (ranging
from 0.1 to 6.4 ppm). Daily dry matter intake was higher in the
TMR group than in the GRASS group by 3.25 [1.04, 5.19] kg/day
(P0 = 1.00). However, the TMR group had lower methane yield
(−10.6 [−18.2, −1.27] g CH4/kg DMI) and also lower A:B (−4.30
[−6.17, −2.49]) than GRASS with P0 ≥ 0.99, and, in all cases,
differences were relevant (Pr ≥ 0.98). Diet groups did not show
relevant different in methane production (g/day). Breed effect did
not present strong evidence of being different from zero (P0 ≤ 0.88)
or relevant (Pr ≤ 0.72) for any trait.

Effect of diet type on the composition of
the rumen microbiota at the genera level

To further examine the effects of the two extreme diets on
the taxonomic composition of the rumen microbiota, we used
a multivariate DA-PLS to determine which microbial genera
abundances were discriminatory between the two diet groups
(Supplementary Table 1; Figure 1A). We identified 28 microbial
genera that, combined in a single DA-PLS component, were
able to discriminate between the GRASS and TMR diets with a
misclassification rate of 0% after fourfold cross-validation and 20
replicates. When the model was used to predict a randomized
vector of the diet labels, it the misclassification rate increased
up to 46%. Once we identified the 28 microbial genera with
discrimination ability between the diets, we fitted a linear model
for each microbial genus to quantify differences between diets
in the clr-transformed abundances. Of the 28 microbial genera
tested, 22 microbial genera had different abundances between
the two diets (P0 ≥ 0.95, Supplementary Table 1; Figure 1B)
and the differences were relevant, i.e., larger than 1/3 their
standard deviation (Pr ≥ 0.90). Whilst we do not have enough
power to detect differences between diets in the most ubiquitous
methanogenic genera Methanobrevibacter and Methanobacterium
(i.e., the HPD95% were very wide [−1.93, 2.32] and [−3.19, 5.74],
both including the relevant values 0.48 and 1.00), unclassified
Archaea were much more abundant in the GRASS animals,
with difference being 9.42 [6.27, 12.7] (relevant value was 0.74
and Pr = 1.00), having an effect size of 4.25. The major fiber
degraders Fibrobacter and Bacillus were also more abundant in the
GRASS group, as were unclassified Actinobacteria, Microbacterium,
Chryseobacterium, Lactococcus, and three microbial genera from
the Proteobacteria phylum (Pseudomonas, Stenotrophomonas, and
Rhizobium), with effect sizes ranging from 1.44 to 2.63 (Pr ≥ 0.93).
In contrast, Desulfovibrio, Lactobacillus, and unclassified Bacteria
were much more abundant in the TMR group with effect
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sizes of −5.31, −3.64, and −3.93 (Pr = 1.00). Bifidobacterium,
Succinimonas, Aerococcus, and Dialister, and Rothia amongst
others, were also relevantly more abundant in TMR (Pr ≥ 0.93),
with effect sizes ranging from −1.40 to −2.78 (see Supplementary
Table 1).

Multivariate prediction of methane yield
based on abundance of microbial genera
and investigation of linear
microbiota-methane relationships in
different diets

A strong positive linear relationship between methane yield and
A:B was observed in the GRASS animals, with a positive regression
coefficient of +3.91 [0.28, 7.38] g CH4/kg DMI gain per unit A:B
(P0 = 0.98). This linear relationship was also positive in animals fed
TMR, although the regression coefficient was lower (0.93 [−0.45,
2.43], P0 = 0.91). When methane emission is expressed in g/day,
we did not had enough evidence to stablish the sign of relationship
with A:B (P0 = 0.69 in GRASS and 0.83 in TMR). Figure 2 shows
the distribution of methane production (A) and methane yield (B)
with A:B, after correcting the data for breed and body weight. As
expected, the greatest R2 was obtained for methane yield and A:B in
GRASS (R2 = 0.34) and TMR (R2 = 0.27), with Pearson correlations
of 0.58± 0.21 and 0.52± 0.23. Based on this result, we concentrated
on relationships between methane yield and rumen microbiota
composition at lower taxonomic levels.

We fitted two multivariate PLS models (one with the GRASS
animals and one with TMR-fed animals) with methane yield as the
dependent variable and the 103 clr-transformed microbial genera
as explanatory variables. In GRASS animals, a one-component PLS
model built with the clr-transformed abundance of 28 microbial
genera showed 85 ± 8% predictive ability for methane yield after
20 repetitions of 3-fold cross-validation (Supplementary Table 2;
Figure 3). When the model was used to predict a randomized
vector of methane yield in GRASS animals, the prediction ability
decreased down to 36%. In animals fed a TMR diet, a single-
component PLS model constructed with the clr-transformed
abundance of 25 microbial genera showed 66.5 ± 9% predictive
ability; and when methane yield was randomized, the prediction
ability decreased down to 37%.

We next examined whether there was a linear relationship
between the clr-transformed abundance of these microbial genera
and methane yield in a univariate approach (Supplementary
Table 2). Of the 28 and 25 clr-transformed microbial genera
selected in the PLS, only six genera were selected by the
PLS algorithm as part of the model in both diets, indicating
large differences in the microbiota compositions associated with
methane yield in animals fed extremely different diets. Of the 6
clr-transformed microbial genera showing PLS predictive ability
for methane yield under both diets, only the microbial genus
Fibrobacter had a similar (negative) association with this trait
(Figure 4A; Supplementary Table 2). Its clr- abundance showed
a negative Pearson correlation with methane yield under both
GRASS (−0.41 ± 0.26) and TMR (−0.53 ± 0.22) and a negative
regression coefficient of −0.25 [−0.67, 0.15] (P0 = 0.89) and
−0.75 [−1.63, 0.17] (P0 = 0.95), respectively. Although our PLS

analysis did not select Methanobrevibacter as an optimal predictor
of methane yield, we wanted to pay particular attention to it
because its role in rumen methanogenesis is well known (Evans
et al., 2019). The clr-abundance of Methanobrevibacter genus
was positively associated with methane yield in both diets, but
the s.e. of Pearson correlations were very large (0.25 ± 0.30
in GRASS and 0.41 ± 0.26 in TMR) and the probability of
the linear regression coefficients of being positive were only
moderate (in TMR it was 1.10 [−0.69, 2.88] P0 = 0.89 and in
GRASS it was 0.65 [−1.12, 2.60] P0 = 0.77). Interestingly, the
other five microbial genera expressing PLS predictive ability of
methane yield in both diets were bacterial genera (Weissella,
Kurthia, Raoultella, Herminiimonas, and Micrococcus) that suggests
a changing association with methane yield depending on the
diet. Their clr-transformed abundance was associated with a
decrease in methane yield under TMR diet, with Raoultella, Kurthia
and Weissella showing the strongest correlations with methane
yield of −0.60 ± 0.20, −0.52 ± 0.23 and −0.52 ± 0.23, and
regression coefficients of −4.74 [−9.58, −0.17] P0 = 0.98; −4.30
[−9.58, 1.18] P0 = 0.95 and −1.340 [−3.06, 0.22] P0 = 0.95,
respectively. In contrast, their abundance was associated with an
increase in methane yield within the GRASS diet, Kurthia, and
Herminiimonas showing the strongest correlations with methane
yield of 0.69 ± 0.17 and 0.49 ± 0.24 and regression coefficients
of 1.71 [0.33, 3.09] P0 = 0.99 and 0.85 [−0.31, 2.01] P0 = 0.93,
respectively (Figure 4A). These results suggest that the effect of
abundance of a particular microorganism on methane yield may
depend on diet-induced rumen environmental conditions.

The majority of the microbial genera showing predictive ability
in PLS were different between diets (19/25 and 22/28 in TMR
and GRASS, respectively). Of these, 12 and 5 showed a linear
regression coefficient with methane yield that was different from
0 with a P0 ≥ 0.95 (Figures 4B, C). Under TMR conditions
(Figure 4B; Supplementary Table 2), clr-transformed abundance
of 12 bacterial genera, including five Proteobacteria (Comamonas,
Variovorax, Acidovorax, Corallococcus, and Methylobacterium)
and unclassified Bacteria, had a mitigation effect on methane
yield (Pearson correlation of −0.58 ± 0.21 to −0.64 ± 0.19
and regression coefficient from −1.08 [−2.21, 0.10] to −5.75
[−11.4, −0.25], P0 ≥ 0.96), while abundance of the four
bacterial genera (Dialister, Rothia, Succinimonas, and Oerskovia)
was associated with an increase in emissions (Pearson correlation
from 0.54 ± 0.22 to 0.67 ± 0.17 and regression coefficient from
0.46 [−0.13, 0.99] to 1.90 [−0.13, 3.65], P0 ≥ 0.95). Under GRASS
conditions (Figure 4C; Supplementary Table 2), methane yield was
positively correlated with the bacterial genus Pseudobutyrivibrio
and the archaea Unclassified Euryarchaeota (Pearson correlation of
0.64± 0.19 and 0.57± 0.22 and regression coefficient of 0.89 [0.07,
1.74] and 0.34 [−0.01, 0.74] P0 ≥ 0.97), whereas the Proteobacterial
genera Stenotrophomonas and Rhizobium and Actinobacterial
genera Kineococcus were negatively associated (Pearson correlation
from−0.54± 0.22 to−0.66± 0.18 and regression coefficient from
−1.00 [−1.96, 0.01] to−1.41 [−2.66,−0.11], P0 ≥ 0.95).

Discussion

Because of the large contribution of ruminants to total
greenhouse gas emissions from livestock (Gerber et al., 2013),
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FIGURE 1

(A) Sample plot from a Discriminant by projection of latent structures analysis (DA-PLS) fitted to discriminate amongst the fresh cut grass (Grass) and
high concentrate (TMR) fed animals based on 28 clr-transformed microbial genera abundances. The model was built with a single component and
presented a miss-classification rate of 0%. For visualization purposes, sample plot is based on two components. (B) Microbial genera identified by
DA-PLS which presented differential abundances between grass and TMR (probability of the difference of being different from 0 ≥ 0.95). Differences
are expressed in units of clr-transformed abundances. Full details of the PLS analysis and linear models can be found in Supplementary Table 1.

FIGURE 2

Data distribution of methane emissions [expressed as (A) methane production (g/day) or (B) methane yield (g/kg DMI)] and the natural log-ratio
between archaea and bacteria abundances within animals offered two contrasting diets, high concentrate (TMR) or fresh cut grass (Grass). Methane
and natural log-ratio between archaea and bacteria abundances was pre-corrected by fixed effects of breed, and body weight as a covariate.

there is urgent interest in reducing enteric methane emissions and
minimizing the environmental impact of beef and dairy farming.
Beef cattle are raised worldwide under a variety of different
conditions and feeding systems that need to be considered when
developing methane mitigation strategies, especially if they are
based on microbiome measurements, in which diet has a major
impact. In this study, we provide insight into how microbial genera
abundances associated with methane emissions differ between
extreme diets, and therefore which pose the best proxies for
predicting the trait under specific diet types. The influence of these
extreme diets (high concentrate and fresh cut grass) on microbial

biota have rarely been directly compared (McGovern et al., 2020),
and never, as far as we are aware, with a low-quality grass.

As a target for mitigation, methane emissions can be expressed
as daily production (g/day) or relative to inputs (e.g., methane
yield, g/kg DMI) or outputs (e.g., methane intensity, g/kg of
meat), among others (de Haas et al., 2017). The obvious issue
with targeting methane production is that it is correlated with
feed intake. Our study showed that methane yield was more
closely related to microbiota parameters (A:B) than methane
production (g/day), especially on the poor quality grass diet, and
therefore it might be more appropriate to consider it as a methane
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FIGURE 3

Results from linear projection of latent structures regression (PLS) models aiming to predict methane yield (g/kg DMI) based on 28 or 25
clr-transformed microbial genera in fresh cut grass (Grass) or high concentrate (TMR) fed animals. Full details of the PLS models can be found in
Supplementary Table 2. (A) Sample plots (both PLS models were built with one single component, but two components were fitted only for
visualization purposes). (B) After a threefold cross-validation procedure repeated 20 times, methane yield was predicted with 85 ± 8% (Grass) and
66.5 ± 9% prediction accuracy.

measurement when searching for microbiome proxies targeting
methane mitigation.

As expected, diet had a strong effect on methane yield (Lovett
et al., 2003; Aguerre et al., 2011; Troy et al., 2015; Olijhoek
et al., 2018). Animals fed low quality fresh cut grass had 10.6 g
of methane/kg of dry matter intake (73%) higher methane yield
than those fed a high concentrate TMR. This is well explained
in the literature by the passage rate of grain solids being faster
than those of forage, and concentrate diets being richer in starch
and proteins. Higher passage rate, together with fermentation
of starch, are associated with fermentation pathways that lead
to more propionate and less hydrogen available for archaea to
reduce carbon dioxide to methane, in comparison to slower
passage rates and fermentation of fiber in forage diets (Wolin,
1979; Janssen, 2010). Diet composition is also a critical factor
in microbial ecology (Gruninger et al., 2014), as it determines
the rumen conditions that favor the adaptation and growth of
specific microbial species. Our extreme diets altered the ratio
between the abundance of archaea and bacteria, with the poor
quality fresh cut grass having a detrimental impact on the bacterial
community.

Diet had a strong influence on the composition of the
microbiota, even when analyzed at lower taxonomic levels,
with 28 genera perfectly discriminating between the two
extreme diets. However, the observed changes in methane
yield and microbiota composition caused by the diet were not
necessarily related. For example, we found that animals fed a
poor quality fresh cut grass had significantly increased relative
abundance of Bacillus, Lactococcus, Pseudomonas, Microbacterium,
and unclassified Actinobacteria and a significant decrease in
Mitsuokella, Planococcus, Lactobacillus, Desulfovibrio, and
Aerococcus compared with TMR-fed animals. However, none of
these abundances were selected in a PLS model to predict methane
yield in each diet group. This can be explained by the fact that
diet alters rumen conditions, which affects the microbial genera
associated with methane emissions, but also other non-related
microbial genera. It should be noted that these results may reflect
an actual lack of methane-microbe associations, or a minor effect
not captured in this study due to lack of power (loss of data points
due to mechanical chamber failure).

The lack of a strong correlation of methane yield and
Methanobrevibacter abundance could be due to the fact
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FIGURE 4

Visualization of linear associations between clr-transformed abundances of microbial genera identified with PLS analysis and methane yield in fresh
cut grass (Grass, in blue) or high concentrate (TMR, in orange) fed animals. Full details of the analysis can be found in Supplementary Table 2. (A) Six
microbial genera were selected in the PLS model in both diet groups, although only Fibrobacter was associated with methane yield in the same
direction. (B,C) Microbial genera presenting a linear regression coefficient with a probability of being different from 0 ≤ 0.95 on methane yield only
under TMR (B) or grass (C) diets.

that different Methanobrevibacter strains classified within
Methanobrevibacter genera are functionally versatile and therefore
have different effects on methane yield, as observed in Kittelmann
et al. (2013) and Martínez-Álvaro et al. (2022). In other cases, diet
significantly altered the abundance of certain microbial genera
that were associated with methane yield (selected in PLS) and
therefore could help explain the 73% difference between diets
in methane yield. For example, the abundance of Unclassified
Bacteria was relevantly increased in the high concentrate diet
and had a significant mitigation effect on methane yield on this
diet group. On the other hand, Bifidobacterium was increased in
the high concentrate diet but had a positive effect on methane
emissions under a poor quality fresh cut grass diet, although the
regression coefficient was different from zero with only a moderate
probability. Bifidobacterium species produce lactic acid and acetic
acid, fermentation products usually associated with increased
hydrogen production, which potentially increases the synthesis
of methane (Moss et al., 2000; Danielsson et al., 2017). Another
example is the abundance of the dominant cellulolytic genus
Fibrobacter, which was increased in animals fed the low-quality
grass diet and showed predictive ability and a negative correlation

with methane yield in both diet groups, with stronger effect in
the high concentrate diet. In their study, Kittelmann et al. (2013)
inferred a co-occurrence of bacteria from the Fibrobacteaceae
family, including the major cellulolytic bacterium Fibrobacter
succinogenes, which produces only formate and no H2 (Rychlik
and May, 2000), and hydrogenotrophic- methanogenesis was
reduced (Smith and Hungate, 1958; Leahy et al., 2013). In contrast,
bacteria from the Ruminococcaceae family, some of which produce
large amounts of H2 (e.g., Ruminococcus sp.), co-occurred with
M. gottschalkii, which is capable of producing methane from H2

and CO2 but not from formate (Miller and Lin, 2002). Later, the
same authors associated greater abundance of Fibrobacter sp. with
a low methane emitting ruminotype and greater abundance of sp.
from Ruminococcus genus and other Ruminococcaceae with a high
methane emitting ruminotype (Kittelmann et al., 2014). These
studies may explain our negative association between Fibrobacter
and methane yield observed in both diets; although Ruminococcus
genus abundance was not associated with methane yield in any
case (data not shown).

Except for Fibrobacter, the few microbial genera that were
predictive of methane yield under both diets had different effects
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on methane yield. In addition, most microbial genera that were
predictive of methane yield differed between diets, suggesting
that the main microbial drivers of methane yield depend on
the products available for substrates microbial fermentation. On
the high concentrate diet, several genera from the Proteobacteria
phylum (Acidovorax, Comamonas, Corallococcus, Variovorax,
and Methylobacterium) were negatively associated with methane
yield along with other unclassified Bacteria. In the low-quality
fresh cut grass group, some Proteobacteria were also negatively
associated with methane yield, but they belonged to other genera
(Stenotrophomonas and Rhizobium). The abundance of some of
these genera from the Proteobacteria phylum has been negatively
associated with methane in the literature (Wallace et al., 2015;
Danielsson et al., 2017; Auffret et al., 2018; Martínez-Álvaro et al.,
2020). The explanation might be based on the fact that these
Proteobacteria genera are methanotrophic in the rumen (e.g.,
Methylobacterium); or capable of fixing nitrogen (e.g., Rhizobium),
at least in the host plant (Munoz Aguilar et al., 1988). In the
rumen, N2 reduction to ammonia may act as an alternative
H2 consuming sink competing with ruminal methanogenesis
(Bulen and LeComte, 1966). On a low-quality fresh cut grass
diet, unclassified Euryarchaeota, Pseudobutyrivibrio and Kurthia
had a strong effect increasing methane emissions, which we did
not observe in the high concentrate diet. Instead, Succinimonas,
Oerskovia, Rothia and Dialister had the positive and strongest
effect increasing methane yield. Methanogenic archaea belong
to the Euryarchaeota phylum, while Pseudobutyrivibrio plays an
important role in the release of formate (Tapio et al., 2017) and
other by-products such as butyrate, known to be associated with
an increase in methane emissions (Kamke et al., 2016). Only in a
few cases did we observed a changing effect of the abundance of a
particular microbe under different diets (e.g., Kurthia or Weissella,
see Figure 4A); but only for Kurthia the regression coefficients
were different from 0 in both diets and allows to confirm a diet-
microbiota cross-over interaction.

In this study, we found that different microbes drive emissions
when hosts are fed with diets extreme in their forage to concentrate
ratio; therefore, different mitigation strategies targeting specific
microbial mechanisms must be adequate to each feeding system.
To date, targeted sequencing of specific regions of the 16S gene
is the most cost-effective method, although it may not provide
high taxonomic resolution compared to metagenomic sequencing.
Nevertheless, in our study, we achieved high accuracy in predicting
methane yield for both the poor-quality grass and high concentrate
TMR dietary scenarios, with a PLS algorithm using almost all
different microbial abundances. Our results are most relevant to
the development of strategies to reduce methane emissions based
on changes in the microbiome, as different diets determine which
microbial taxa have the greatest impact on methane yield, and
diet-specific strategies should be considered. Our study is a small-
scale study with the main goal of identifying the difference in
microbiota compositions between two extreme diets and its use
for prediction of methane emissions. This study draws attention to
the need for different mitigation strategies adapted to different diet
types, but further larger scale studies are required to understand
diet-microbiome interactions that influence methane emissions.
Also, microbiome based methane predictions need to ben locally
validated the ensure factors such as local dietary factors are not
skewing the results.

Conclusion

The divergent impacts on the rumen microbial composition
of extreme diets, in this case high concentrate and low-quality
grass, have rarely been directly compared. These differences
in microbial composition can be used to predict methane
yield of individual animals. Using two groups of beef cattle
fed with two extreme diets on their forage to concentrate
ratio, we found a reduced set of microbial genera with a
high predictive accuracy for methane yield of 85 and 66% in
the forage or concentrate-based diets. Among the microbial
genera that predicted methane yield, there was little overlap
between diets, and most microbial genera were diet specific.
This finding is critical for the development of mitigation
strategies based on the microbiome, where, according to this
study, diet-specific strategies should be considered at least at
phenotypic level.
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