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Advances in synthetic biology and genetic engineering are bringing into the spotlight
a wide range of bio-based applications that demand better sensing and control of
biological behaviours. Transcription factor (TF)-based biosensors are promising tools
that can be used to detect several types of chemical compounds and elicit a
response according to the desired application. However, the wider use of this
type of device is still hindered by several challenges, which can be addressed by
increasing the current metabolite-activated transcription factor knowledge base,
developing better methods to identify new transcription factors, and improving the
overall workflow for the design of novel biosensor circuits. These improvements are
particularly important in the bioproduction field, where researchers need better
biosensor-based approaches for screening production-strains and precise dynamic
regulation strategies. In this work, we summarize what is currently known about
transcription factor-based biosensors, discuss recent experimental and
computational approaches targeted at their modification and improvement, and
suggest possible future research directions based on two applications:
bioproduction screening and dynamic regulation of genetic circuits.
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1 Introduction

Biosensors are biological devices combining two essential components: a sensing
component that detects a particular input—typically the presence of a chemical—and a
reporter that produces a measurable output after receiving the signal transduced
by the sensing component. Whole-cell biosensors use biochemical
transformations inside living cells to detect and react to different inputs (Fernandez-
López et al., 2015).

One important class of whole-cell biosensors are those based on transcription factors
(TF). TFs are proteins that can control the expression of genes by binding to specific DNA
sequences. Some TFs are triggered after binding to a metabolite or external compound
(known as allosteric transcription factors, aTFs). Once activated, a conformational change
in the TF makes itself release from or attach to the DNA sequence upstream of the target
gene, thereby activating or repressing its expression. TFs can be assembled together with
other DNA parts commonly used in synthetic biology, such as promoters, ribosome
binding sites (RBSs), terminators and reporter genes, to create TF-based biosensor
circuits. These genetic devices can thus be used to sense and react to a range of
intracellular or environmental ligand concentrations (De Paepe et al., 2018). Even
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though allosteric transcription factors are suitable building blocks
for the design of biosensors, they might require prior optimization
or changes to their ligand specificity. The literature contains several
examples in which sophisticated directed-evolution strategies were
applied to this end (Wu et al., 2017; Machado et al., 2019; Berepiki
et al., 2020; Snoek et al., 2020), and we will discuss this approach in
more detail in Sections 2, 3.

aTFs can present several architectures. The relationship
between the effector molecule and the aTF defines their mode of
action: repression of activator aTF, activation of repressor aTF,
repression of repressor aTF, or activation of activator aTF (Mannan
et al., 2017). A sizable number of aTFs have been found for each
category, allowing one to build biological circuits with a large
variety of complex functions. However, the use of TF-based
biosensors in complex applications such as the industrial scale-
up of bioproduction processes or intricate biocomputing circuits
has been stalled. This is mainly due to the fact that the number of
metabolite-activated TFs which have been described in the

literature (Koch et al., 2018) is rather small compared to the
large number of compounds potentially amenable to
biomanufacturing. Additionally, biosensing circuits often
perform poorly due, for example, to non-specific activity, cross-
talk with native biochemical reactions, leaky expression and
problematic or impossible heterologous expression. It is
therefore becoming increasingly clear that the number of
engineered TF-biosensors and the means for their optimisation
need to keep up with the growing demands of the synthetic biology
community.

Here, we provide a roadmap for the design of new biosensor
circuits based on aTFs that leads from gathering data and theoretical
prediction to experimental validation. We also provide guidelines for
the rapid prototyping of biosensor circuits with improved features
using computational tools and discuss experimental validation
methods best suited for this task. Additionally, we focus on two
crucial applications of biosensors for current synthetic biology
targets, namely production screening and dynamic regulation.

TABLE 1 Name, description, bibliographic reference, and web link to some of themost important TF databases. The description information was directly taken from the
website.

Databases

Name and description References

P2TF (Predicted Prokaryotic Transcription Factors): an integrated and comprehensive database of TF proteins, which contains a
compilation of the TF genes within completely sequenced genomes and metagenomes

Ortet et al. (2012)

JASPAR: an open-access database of curated, non-redundant transcription factor (TF) binding profiles stored as position frequency
matrices (PFMs) and TF flexible models (TFFMs) for TFs across multiple species in six taxonomic groups

Castro-Mondragon et al. (2022)

TF2DNA: database provides comprehensive information about transcription factor binding motifs and their regulated genes for five
model organisms and humans

Pujato et al. (2014)

GRASSIUS: Divided in GrassTFDB which provides a comprehensive collection of transcription factors from maize, sugarcane,
sorghum and rice and GrassCoRegDB which provides a collection of proteins that are transcriptional regulatory factors but do not bind
DNA in a sequence specific fashion

Yilmaz et al. (2009)

RegulonDB: the primary database on transcriptional regulation in Escherichia coli K-12 Santos-Zavaleta et al. (2019)

SM-TF database: collects available 3D structures of small molecule-transcription factor complexes from Protein Data Bank (PDB) Xu et al. (2016)

CollecTF: a database of transcription factor binding sites (TFBS) in the Bacteria domain Kılıç et al. (2014)

AnimalTFDB3: a comprehensive database including classification and annotation of genome-wide transcription factors (TFs), and
transcription cofactors in 97 animal genomes

Hu et al. (2019)

PlantTFDB: Plant Transcription Factor Database Jin et al. (2017)

RegPrecise: a database for capturing, visualisation and analysis of transcription factor regulons that were reconstructed by the
comparative genomic approach in a wide variety of prokaryotic genomes

Novichkov et al. (2013)

SigMol: a repertoire of Quorum Sensing Signalling Molecules in Prokaryotes Rajput et al. (2016)

Bionemo: stores manually curated information about proteins and genes directly implicated in the Biodegradation metabolism Carbajosa et al. (2009)

PRODORIC: a comprehensive database about gene regulation and gene expression in prokaryotes. It includes a manually curated and
unique collection of transcription factor binding sites

Dudek and Jahn (2022)

Tools

footprintDB: predicts transcription factors which bind a specific DNA site or motif and DNAmotifs or sites likely to be recognized by
a specific DNA-binding protein

Sebastian and Contreras-Moreira (2014)

CiiDER: a user-friendly tool for predicting and analysing transcription factor binding sites, designed with biologists in mind Gearing et al. (2019)

BART (Binding Analysis for Regulation of Transcription): a bioinformatics tool for predicting functional transcriptional
regulators (TRs)

Wang et al. (2018)

PROMO: a virtual laboratory for the identification of putative transcription factor binding sites (TFBS) in DNA sequences from a
species or groups of species of interest

Messeguer et al. (2002)

DeepTFactor: a deep learning-based tool for the prediction of transcription factors Kim et al. (2021)
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2 Determining the design space of
detectable compounds and aTFs

2.1 Exploring the current knowledge of the
biosensor space

For years, researchers have studied the regulatory networks of different
cells and organisms to understand, among other things, how they react to
environmental changes by controlling essential cellular activities through
the expression or repression of their genes. With the advent of genetic
engineering and synthetic biology, this information can nowadays be used
to re-engineer and create fine-tuned genetic circuits for various purposes,
notably biosensors. However, the data is often scattered and incomplete,
and gathering efforts have to bemade to organize andmake easily available
the current knowledge on the topic. Through literature and database
mining, it is possible to build a dataset of transcription factors triggered
by the binding of molecules as well as other types of inputs (temperature,
light, pH. . .). This valuable dataset can be used to determine the known
detectable input space (Koch et al., 2018), i.e., the set of molecules that can
be detected by TF-based biosensors. Table 1 describes the main databases
that can be used to generate this space. Note that the databasesmight gather

different types of data: TF gene sequence, binding sites, ligands, TF
regulated genes and/or structure, thus restricting data integration.

The databases in Table 1 can be considered as good starting points when
compiling the list of known ligand-responsive TFs. However, somemay not
have been recently updated, and thus some important bits of information
may be missing. In order to expand the initial set, Natural Language
Processing (NLP) may be used to mine additional information from the
literature helping to fill in the knowledge gap of the metabolite detectable
space, i.e., the set of metabolites that can be detected through TFs-based
biosensors. Bibliographic databases such as NCBI are ideal sources of input
data for this type of textmining algorithm.NLPhas successfully been used in
other biotechnology applications, as, for example, in the context of predicting
protein-protein interactions and establishing gene-disease relationships
(Zeng et al., 2015), and could also be used to find aTF-ligand interactions.

2.2 Homology-based prediction to enlarge
the aTFs dataset

The body of experimental data on aTFs, which is currently
available in a curated form, can also be extended through

FIGURE 1
Broad phylogenetic classification of the ten most common bacterial aTF families. Family name and representative UniProt IDs are used as tree labels.
Structure images were obtained using Mol* Viewer (Sehnal et al., 2021) via RCSB PDB. The text boxes detail, in order, the most common aTF-controlled
pathway, the species name of the specific aTF, the representative effector molecule and the PDB identifier of the structure.
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homology-based prediction of TF sequences in other species
(Figure 1). Using protein sequence information of well-known
transcriptional regulator families (e.g., LysR, TetR, AraC, etc.)
(Fernandez-López et al., 2015) as a reference, annotation
experiments can be made on target genomes that are publicly
available (Deplancke and Gheldof, 2012). Similarly, metagenomes
can be mined (Oliveira Monteiro et al., 2021) to find more
information about, for example, non-culturable species. Some of
the databases described in Table 1 were built, either in their
entirety or in part, by using genomic or metagenomic data.

Protein structure information can also be used to discover and
engineer new biosensors. However, despite the rather large number of
protein structures available for certain aTFs (e.g., TetR, TrpR, AraC),
many candidates still await structural characterization, a problem that
negatively impacts the development of biosensors tailored to recognize
arbitrary compounds of interest. Although many aTFs do show
sufficient homology with existing structures and might therefore be
targeted with homology modeling, the quality of these models can at
times be lacking—especially in the twilight zone of sequence
homology. This, in turn, limits the accuracy with which residues
that are crucial for the binding of effector candidates can be predicted
by docking calculations. Based on the current knowledge of aTF-
ligands (Koch et al., 2018), we calculated that not more than 45% of the
TFs in this dataset share more than 50% of identical residues with
experimentally solved protein structures.

2.3 AI-based prediction of new aTFs

Traditional homology and structural-based methods are not the
only approaches that can be used to predict novel TFs. In recent years,
as in other biotechnology fields, AI-based applications have been
widely adopted (Volk et al., 2020). The predictive power of AI can be
exploited by combining the information available in the
aforementioned databases with reference genomic databases such
as NCBI, to train the algorithms for predicting new TFs. In 2021,
Kim and others presented DeepTFactor (Kim et al., 2021), which was
able to predict over 300 TFs in the well-studied Escherichia coli K-12
genome, including TFs not previously reported in databases, and
which the authors were able to validate using TF and non-TF protein
sequences as training data. This tool can be used to identify new TF
sequences from known and new genomic and metagenomic
information, in combination with sequence-based annotation tools.
Other AI-based methods that identify DNA binding protein domains
(Eichner et al., 2013; Mishra et al., 2019; Li et al., 2021) from sequences
may also be considered for this purpose. The recent progress in the
application of deep learning to the de-novo prediction of nucleic acid/
protein complex structures, such as RoseTTAFold2NA (Baek et al.,
2022) and DeepFoldRNA (Pearce et al., 2022), might make it possible
to structurally validate TF/DNA complex formation and binding for
those TF candidates that show no or only poor homology with known
protein structures.

Protein structures open an extra layer of useful data for researchers
trying to complete the atlas of aTFs. In a milestone research article,
AlphaFold was published in 2021 as a Machine Learning prediction
tool, able to predict protein structure using only the protein amino
acid sequence as input (Jumper et al., 2021). This tool is expected to
provide reliable and fast structure information that would otherwise
take years to be resolved through experimental methods.

Once a putative TF has been identified, determining the TF
binding site (TFBS) (i.e., the DNA region where the TF attaches
to/detaches from) is the next step. Sequence homology among
TFBSs of the same aTF can be used together with AI (Koo and
Ploenzke, 2020; Chen et al., 2021) to predict new TFBSs. Some of
the databases in Table 1 (Santos-Zavaleta et al., 2019; Castro-
Mondragon et al., 2022) provide this information for each of
their entries. To that end, a structural component that
determines the activity of an aTF is its ligand binding domain
(LBD). The practical applicability of TF-based biosensors is
limited by the relatively small pool of known ligand binding
domains. Designing and experimentally validating new binding
domains has been a long-standing challenge. Thanks to
continued work and recently introduced algorithms (Lucas
and Kortemme, 2020; Polizzi and DeGrado, 2020), a viable
solution seems now within reach but not yet at hand. In
addition to high ligand affinity and specificity, the receptor
system must be activated once bound to the effector molecule,
going through some form of conformational change in order to
trigger the biosensor response (Su and Hammond, 2020). This
activation can be hard to engineer for new molecules and protein
domains. AI might also be able to address this challenge, as it can
be used not only to identify new putative TFs, but also to predict
the pockets (i.e., sites) of allosteric interaction (Figure 2A) with
the ligand in the LBD (Panjkovich and Daura, 2014; Greener and
Sternberg, 2015; Xiao et al., 2021).

Once novel TFs and their TFBSs have been found, it is necessary to
determine their most likely effector molecules. To do this, Hanko and
others (Hanko et al., 2020) described an approach to identify whole
metabolite-inducible systems (i.e., TF, inducible promoter and its
corresponding effector). The method looks at the operon next to
the predicted TF and assigns the effector molecule as the primary
substrate metabolized by the operon-encoded enzymes. A structure-
based solution was also made available in (Huang et al., 2018) where
Huang et al. presented a computer tool that finds allosteric sites inside
a structure and calculates a docking score for each molecule in a
database (Figure 2B).

Allosteric sites can be good candidates for AI-mediated site-
directed mutagenesis experiments (Cadet et al., 2018; Saito et al.,
2018; Wu et al., 2019) (Figure 2C) trying to improve the specificity of
the TF towards the ligand or adapting its affinity towards novel
molecules. Machine Learning-centered structural approaches such
as AlphaFold might soon lead to a breakthrough in the field of
transcription factor design, in particular because the most recent
iteration, AlphaFold-Multimer (Evans et al., 2021), is able to
produce multimeric solutions. These can be especially relevant for
the effector binding domains (EBDs) of homodimeric aTFs and are a
prerequisite for predicting binding modes of effector molecules
accurately. Of note are also very recent language-model-based
approaches that appear to be computationally more efficient and
are able to predict multimeric states even though they have not
explicitly been trained on protein complexes (Lin et al., 2022).

The design process of bespoke binding domains for non-cognate
ligands would also benefit from the development of faster and more
reliable in silico docking algorithms. Recent ML-based advances, such
as DiffDock (Corso et al., 2022), might provide a crucial advantage
over classic methods in this context. The computational speed-up
promised by these approaches might also make it possible to explicitly
model water molecules and thereby further increase the predictive
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quality of the docking process, because water-mediated interactions
often play a crucial role in ligand binding sites. The prediction of
binding modes for possible effector molecules is necessary but not
sufficient for the reliable computational design of biosensors due to the
delicately tuned allosteric properties of aTFs. These can make protein
engineering attempts to alter ligand-binding specificity quite
challenging, given the possibility of negatively impacting signal
transduction.

Unfortunately, predicting the dynamic properties of an aTF
upon ligand binding and/or mutation is significantly more
challenging than calculating binding modes and usually involves
long time-scale molecular dynamics simulations. This problem
could, in principle, be addressed with coarse-grained molecular
dynamics methods that approximate fully atomistic simulations,
such as the latest iteration of the Martini model, which has
successfully been applied to ligand binding (Souza et al., 2020).
Crucial for its applicability, however, is the availability of parameters
for the ligands to be studied. For the Martini model, this issue is
being addressed by the creation of a curated ligand database and the
development of automated tools for the generation of coarse-grained
models (Souza et al., 2020; Hilpert et al., 2022). It is, however,
conceivable that the problem of predicting ligand-induced
conformational changes in aTFs can be addressed with deep-
learning approaches as well, which could constitute a
breakthrough for the in silico component of biosensor-engineering.

2.4 Experimental validation of predicted
biosensors

Once a putative new aTF has been identified, experimental
validation is necessary to check its DNA binding site, affinity
towards different ligands, and performance. For each of these tasks,
some validation procedures have been defined. Some of the tools
described in previous sections and in Table 1 can be used to predict TF
DNA binding sites. However, for the subsequent development of a
functioning biosensor circuit, it is crucial to experimentally confirm
that the TF actually binds to the effector molecule and to its target
DNA sequence.

For instance, chromatin immunoprecipitation (ChIP) is
commonly used to assess the binding sites of the aTF anywhere in
the genome, effectively assessing the regulated genes (Figure 2D). To
this end, the cells are lysed, the genome is fragmented and TF-DNA
complexes are isolated thanks to TF-specific antibodies (van Werven,
2006; Grainger et al., 2007). In a further step, the DNA in the complex
can be sequenced to determine the TFBS.

The Electrophoretic mobility shift assay (EMSA) is a standard
procedure that can be used to confirm the DNA binding site of newly
discovered TFs (Alves et al., 2021; Modrzejewska et al., 2021)
(Figure 2E). Basically, the purified TF is mixed with a labelled
DNA probe of the putative binding sequence and ran in an
agarose gel. The TF-DNA complex runs slower compared to the

FIGURE 2
The full stack biosensor development toolbox. (A) Computational tools can be used to determine the allosteric pockets of interaction between ligands
and aTF. (B) Using these pockets as reference, docking computations can be carried out to assess the affinity of the aTF towards a library of putative ligand
compounds. (C) The allosteric site computation can be validated using directedmutagenesis to evaluate changes in affinity or specificity. (D)ChIP technology
allows researchers to determine the TFBSs of a newly discovered aTF. (E) Similarly, EMSA can be used to individually validate single TFBS. (F) SELEX can be
used to artificially obtain new TFBS to the aTF. (G) Cell-free assays are a quick prototyping technology to test biosensor circuits once assembled. (H)Whole-
cell biosensor experiments allow the characterisation of the biosensor circuit in conditions closer to in vivo applications.
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free DNA sequence (Gurevich et al., 2010). EMSA, however, is not
scalable. Other procedures have been used to determine, using high-
throughput technologies, the DNA binding sequences of hundreds of
TFs annotated in a species. Wang and others (Wang et al., 2021), for
example, determined the binding specificities of 182 TFs of
Pseudomonas aeruginosa. To do this, they purified 371 putative
TFs, mixed them with randomised DNA sequences and ran high-
throughput systematic evolution of ligands by exponential enrichment
(HT-SELEX) (Figure 2F) for four cycles. Both EMSA and the HT-
SELEX require the TF to be previously purified. This can quickly
become a bottleneck. For this reason, a bacterial one-hybrid system
was described in 2005 (Meng et al., 2005). In a nutshell, this procedure
allows researchers to assess the binding specificities of TFs against
random DNA sequences in vivo by linking the TF-DNA binding with
the expression of positive and negative selection markers. This method
does not require proteins to be purified or the availability of antibodies
and provides a low-tech scalable method of finding DNA binding
sequences.

2.5 Extending the biosensor space through
bioretrosynthesis

In the cases where no aTFs are known to be triggered by the target
compound, alternative approaches may be considered. One possibility
is to enlarge the biosensor space is through retrosynthesis approaches
(Delépine et al., 2016). The approach enables modulation of the
specificity and dynamic range of the biosensor by introducing
metabolic conversions as part of the sensing process. In this way,
the number of targets that can be detected can be substantially
increased since any chemical target that can be converted into a
molecule for which an aTF exists becomes potentially detectable. In
order to compute the metabolic pathways that can connect the target
to existing aTFs, bioretrosynthesis-based approaches are used (Lin
et al., 2019). Such algorithms generate a tree-like graph of biochemical
conversions connecting the target to those molecules that can be
detected. SensiPath (Delépine et al., 2016) is an online server that can
compute the alternative extended aTF-based biosensors for any given
target.

This approach has been used for instance to analyse the biosensing
of the production of naringenin that is used for dynamic regulation
through its conversion into kaempferol (Boada et al., 2020). The study
showed how the dynamic range of the resulting biosensor could be
adjusted up to industrial levels of 1 g/L in a bioreactor, in a way that
would have been more challenging by using direct biosensing of
naringenin.

The approach has also been used systematically in order to develop
a protocol for the development of cell-free biosensors through
metabolic and genetic layers (Soudier et al., 2022). The authors
proposed a standard methodology based on computer-aided design
(CAD) that combined the design of a perceptron-like genetic device
(Pandi et al., 2019a) with the automated selection of enzymes for the
metabolic pathway through the Selenzyme algorithm, an online tool
that suggests best candidate enzyme sequences based on the
biochemical conversions in the pathway (Carbonell et al., 2018a).

Other engineering efforts have been showcased which focus on
different areas. Biocomputing, for instance, would also benefit from a
wider range of TF-based biosensors. To that end, Rondon and others
(Rondon et al., 2019) created 27 new synthetic TFs starting from 6 core

TF domains, 7 DNA recognition domains and 7 operator regions that
are able to detect 5 different ligands.

3 Biosensor design

3.1 Biosensor library characterization and
fine-tuning

The predictions and the in vitro and in vivo validation experiments
provide essential information to biosensor designers. An intermediate
step between prediction and experimental validation and actual
whole-cell biosensor construction can be achieved by cell-free
assays. The technique relies on cell extracts containing all the
necessary cellular components for protein expression. It removes
cellular maintenance, growth, other native processes and all cellular
unknowns from the equation, allowing the experiment to be
essentially focused on the synthetic circuit and behavior designed
by the researchers (Hodgman and Jewett, 2012). Cell-free assays
(Figure 2G) provide a simple and standardizable approach to
quickly test biosensor genetic circuits (aTF, aTF promoter, reporter,
operator. . .) in vitro. Examples of successful cell-free biosensors have
been described, that detect chemicals such as quorum sensing
molecules (Wen et al., 2017), rare sugars such as D-psicose (Pandi
et al., 2019b) and water contaminants (Jung et al., 2020), among
others.

However, building a biosensor circuit that works inside the cell
(Figure 2H) and that provides a measurable output is the litmus test of
the successful functionality of the new aTF. In its most basic form, a
biosensor circuit will express the aTF and a reporter (e.g., a fluorescent
protein). The latter is under the control of a promoter containing the
DNA-binding sequence recognized by the TF. The binding of the
effector molecule with the aTF regulates gene expression of the
reporter gene. Some considerations to bear in mind during the
design of such metabolite-responsive biosensors, specifically for the
aTFs, can be found in (Liu et al., 2017).

Once a circuit has been designed and built, the next step is to
determine how well it works under a range of conditions; that is, to
characterise the biosensor. Characterisation experiments determine,
among other parameters, the dynamic range, the operational range
and the dynamic response of the biosensor (Mannan et al., 2017). It is
likely, however, that the initial biosensor design is not fit for its
intended purpose and tweaks need to be done in the circuit for the
biosensor’s performance to meet the designer’s criteria (e.g., dynamic
range, operational range, specificity, speed of response. . .). The
dynamic and operational range of the biosensor can be engineered
by changing the expression levels of both the TF and the reporter gene
through RBS (De Paepe et al., 2018) or promoter (Sonntag et al., 2020)
engineering. The number and position of the aTF operator region(s)
can also be used to modulate the dynamic range of the biosensor (Xu
et al., 2020). On the other hand, the generation of chimeric aTFs,
obtained by merging the DNA binding domains and ligand binding
domains from different genetic sources has also been successfully
tested to modulate the specificity towards other ligands (De Paepe
et al., 2019). A similar approach based on the high-throughput fusion
of periplasmic binding proteins and DNA binding domains was
presented in Juárez et al. (2018). A complete overview of the
different approaches that can be used to fine-tune the initial
biosensor was provided by De Paepe et al. (2017).
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Apart from poor inherent behaviour of the aTF, the compatibility
of the heterologous host with the transcription factor is often the main
culprit when the performance of the newly generated biosensor is
inadequate. The portability of genetic circuits between species has
been challenging synthetic biology since its early stages. In
bioproduction projects, it may be possible that the best host for the
production of the target compound is not suitable for the expression of
the biosensor circuit. In the native species, transcriptional regulation
often implies a complex regulatory system composed of several
membrane transporters, inhibitors, activators and cofactors
(Carpenter et al., 2018). For well characterised regulators, these
may be known but newly found aTFs may have unknown
necessary components. The challenge is bigger when the aTF
system is transferred from phylogenetically distant species (e.g.,
from plants to bacteria). Steps that can be taken to improve the
performance of biosensor circuits include: optimization of gene
expression, selection of an adequate reporter system (see next
Section) and the incorporation of additional genetic modules which
may entail the addition of compound importers, exporters, leak
dampeners and other types of signal modulation devices (e.g.
amplifiers, inverters. . .) (Miller et al., 2022).

3.2 Biosensor reporter selection

An important and often overlooked factor in designing and building
new biosensor circuits is the selection of the reporter gene. Fluorescent
reporters are the most common choice. Classic fluorescent proteins (FPs)
such as GFP and RFP are simple to assemble in genetic circuits, easy to
measure and do not rely on any metabolic substrate (other than oxygen)
to work. Most of the experimental references detailed in this work use FPs
as reporter systems and this type of biosensor is predominantly used in the
field. Different FPs offer different characteristics to the biosensor designer.
One should consider, among other factors, the excitation and emission
wavelength, the maturation time (Shaner et al., 2005) and the half-life of
the matured protein [as the FP can sometimes be too stable and rendered
useless in real-time applications such as biosensing (Andersen et al.,
1998)]. Bioluminescent proteins are other alternative reporters
(Nourmohammadi et al., 2020; Hansen et al., 2021) that rely on
biochemical reactions emitting photons as products. Compared to
fluorescent proteins, bioluminescent reporters do not rely on the
measuring equipment to excite a fluorophore, which leads to less
background emission and higher sensitivity.

Nevertheless, there are other alternative reporters that offer different
features that may be more appropriate for specific purposes. Before
fluorescent and luminescent signal detection equipment became
ubiquitous in molecular biology laboratories, colorimetry was often the
most efficient way to detect biological processes using the naked eye or
simple absorbancemeasurements. Biosensors have been developed using the
colorimetric reporters lacZ (Choi et al., 2013; Li et al., 2017; Hansen et al.,
2021) and the carotenoid pathway (Yoshida et al., 2008; Watstein et al.,
2015). In recent years, the violacein pathway has gained popularity as a
tunable route where each intermediate compound can act as a measurable
reporter (Watstein et al., 2015; Hui et al., 2020; Guo et al., 2021). Reporters
that utilize electrical signals have also been proposed and are derived from
electrogenic bacteria (Golitsch et al., 2013; Webster et al., 2014; Zhou et al.,
2017) or are obtained via a synthetic electron transport chain (Atkinson et al.,
2022), where the generation of an electric current allows for faster responses
and actuation than can be achieved with protein expression-based systems.

A thorough consideration of the features and issues of each
reporter category should be taken into account before committing
to a reporter. A comparison of 8 different reporters of three categories
can be found in (Lopreside et al., 2019). In short, enzymatic reporters
(LacZ and bioluminescent reporters) can have the fastest response and
the lowest detection limit for the target metabolite which is perfect for
biosensors requiring precise and quick measurements. However, these
advantages require the cells to be lysed and the enzymatic substrate to
be added to trigger the reporter reaction which does not allow the users
to perform continuous quantification experiments. On the other hand,
fluorescent proteins can present high media- and cellular
autofluorescence and a slower response. Nevertheless, FPs have
managed to become the first choice of many researchers thanks to,
among other things, the possibility to simultaneously use multiple
reporters with different emission patterns (green, red, blue. . .), the
ease of use and the stability of the proteins.

3.3 Directed evolution of aTFs

Using smart design and predictions can be a good way to
consolidate the design of the biosensor. However, when trying to,
for instance, increase the sensitivity of the aTF towards new ligands, it
may be necessary to apply directed evolution techniques on the gene
sequence. An example can be found in the work of Rottinghaus and
others, where new variants were engineered from promiscuous amino
acid-specific TFs to specifically detect similar amino acids and
neurotransmitters (Rottinghaus et al., 2022). A review on the
evolvability of TF-based biosensors can be found in (Umeno et al.,
2021). This may produce several hundreds of variants, and most of
them may show equal or poorer performance, which requires a faster
and simpler approach that quickly identifies and isolates good
performers and discards variants that do not meet the designer’s
criteria. Several methods have been described for this task.

Fluorescence-activated cell sorting (FACS) isolates cells based on
fluorescence emission detected by a flow cytometer. This technique
allows researchers to select, from a cell population, the individuals that
perform best. FACS has previously been used to reduce the affinity
space of an aTF library, thereby creating a sensor for L-histidine and
L-arginine which is unable to detect L-lysine (Della Corte et al., 2020).
Machado and others changed the specificity of a protocatechuic acid
(PCA) biosensor to instead detect vanillin and 3,4-
dihydroxybenzaldehyde using this technique (Machado et al., 2019).

The promoter under control of the effector molecule can be put in
front of other types of markers. In Collins et al. (2006), the researchers
managed after several rounds of directed evolution with error-prone
PCR, to select variants of the aTF LuxR by isolating cells that survive
on chloramphenicol and discarding variants that survive on
carbenicillin by controlling the expression of cat gene and the bli
gene (β-lactamase inhibitory protein, inhibits the bla gene) using the
aTF binding site. The new variant managed to respond to new ligands,
but no longer responded to the original effector.

Less common techniques have also been used to evolve aTFs to
recognise new ligands. One example is a method called
compartmentalised partnered replication (CPR) (Ellefson et al.,
2014). In 2018, researchers generated a synthetic phylogeny from
the aTF TrpR using this approach (Ellefson et al., 2018). Very briefly,
CPR can be used to evolve DNA parts via coupling the allosteric
effector activity to the expression of Taq polymerase in vivo. The
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variants that manage to produce larger concentrations of Taq will then
be amplified using emulsion PCR.

Apart from the methods described so far, also phages have
successfully been applied to evolve TFs. Phage-assisted continuous
evolution (PACE), described in 2011 (Esvelt et al., 2011), can be used
to continuously evolve any gene that can be coupled to pIII production
in E. coli. pIII protein is required for phage infection. After
mutagenesis, only the gene variants able to induce enough pIII
production will propagate and enter the next cycle. A modification
of this system was applied to the evolution of a TF (Brödel et al., 2020)
that regulated the expression of another gene essential to phage
propagation.

3.4 Automating the design of new biosensors

As we have described, building a new biosensor circuit using a
new aTF requires many experimental steps from ligand and DNA
affinity validation, to parametric characterisation, to fine tuning

inside the heterologous host. All these steps can quickly become a
bottleneck, especially if several ligands and aTFs are tested at the
same time for different purposes. For this reason, high-throughput
automated construction must be considered by the biosensor
circuit designer. An application is showcased in (Tenhaef et al.,
2021) where researchers rationally designed and characterised a
library of aTF biosensors based on the Lrp regulator. The parts
(promoters, RBS. . .) can also be engineered using automation,
generating thousands of variants and combinations (Hossain
et al., 2020). To that end, rapid prototyping strategies through
automated Design-Buid-Test-Learn pipelines (Carbonell et al.,
2018b) such as those implemented in biofoundry facilities
(Tellechea-Luzardo et al., 2022) should alleviate current
bottlenecks in the design of new biosensor circuits.

The discussion above focuses on general principles related to
biosensor design. In the following section we will explore
instructive examples from the literature that highlight
practical aspects and possible limitations in current biosensor
projects.

FIGURE 3
Biosensor development by directed evolution of the aTF. (A) Biosensor construct on one plasmid, composed of the sensor component, which, in turn,
contains the transcription factor (TF) gene with a ribosome binding site (RBS) and a consecutively active promoter (Pc), and the reporter component,
comprised of a TF-inducible promoter (PTF) and a reporter gene (green fluorescent protein, GFP). (B) Biosensor mutagenesis strategies. Depending on the
availability of structural information, a domain of interest of the TF (e.g., the effector binding domain, EBD, or the dimerisation domain, DD) are inspected
ormodeled and residues or sequence stretches formutagenesis are selected. To guidemutagenesis, ligands can be placed into the EBDwith in silico-docking
and side chains can be designed and repacked (e.g., in the DD). (C) Directed evolution strategies. Based on the residues or sequence stretches selected, the
domain of interest is addressed (EBD or DD in the current examples) by rational approaches, i.e., site-directed mutagenesis or random/error-prone PCR.
Alternatively, the complete aTF gene is targeted with random mutagenesis in the absence of structural information, or if non-intuitive effects should be
probed (e.g., those affecting allostery or DNA binding). During site-directed mutagenesis, combinations of amino acids are generated for selected, fixed
sequence positions (this is represented in the picture by different colors at identical sequence positions). (D) The library of sensor constructs obtained by
directed evolution is transformed into cells, which are then subjected to (usually) multiple rounds of negative selection (non-induced sensor in the absence of
effector) and positive selection (induced sensor in the presence of effector), facilitated by fluorescence-activated cell sorting (FACS) [after (Machado and
Dixon, 2022)]. The best candidates are further optimised with respect to other genetic elements determining the fidelity of the bio-sensor, such as RBS and
promoter sequences.
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3.5 Three examples of biosensor design and
optimization

Exemplarily, we will discuss here three biosensors that were
successfully developed by employing current experimental and
computational approaches and which also underline the relevance
of structural insights into the aTF.

3.5.1 Directed evolution strategy for biosensor
engineering

As alluded to above, in order to alter the properties of an aTF (e.g.,
its ligand specificity, dynamic range, etc.) directed-evolution
approaches have proved to be indispensable (see Figure 3 for a
general overview). Directed evolution can include rational
approaches which, informed by structural insight into the effector
binding domain (or any other domain of interest), apply error-prone
PCR within the whole region, or saturation mutagenesis to residues
identified as crucial for ligand binding or other properties (Figures
3A–C). In the absence of structural or homology information, the
entire protein can be subjected to random mutagenesis as well. This,
however, leads to much larger strain libraries that are still unable to
sample efficiently the larger sequence space, despite the higher
experimental burden. An advantage of this approach is that it can
reveal beneficial mutations that are less obvious than those directly
affecting ligand binding, and might, among other effects, induce subtle
changes in the allostery of the TF. In general, however, it is prudent to
limit the size of the search space with the help of structural
information, not least of all because the development of a complete
bio-circuit requires the optimization of additional genetic elements,
which further increases the combinatorial complexity of the design
problem. This, for example, includes selecting RBS and operator
sequences that perfectly harmonize with the engineered aTF.

3.5.2 Development of biosensors for polyphenols
Machado et al. (2019) describe the development of a biosensor for

detecting protocatechuic acid (3,4-Dihydroxybenzoic acid, PCA) by using
the aTF PcaV from Streptomyces coelicolor. Their setup uses a two-
plasmid approach, with which the expression of a GFP reporter gene is
under the control of the (constitutively) expressed PcaV repressor protein.
In its initial form, the biosensor was responsive to a narrow range of
hydroxyl-substituted benzoate derivatives and displayed only a modest
dynamic range for these effector molecules, which is commonly observed
with aTFs. By applying directed evolution, Machado et al. (2019) were
able to change the selectivity of PcaV so that it was able to recognize the
phenolic aldehyde vanillin (4-Hydroxy-3-methoxybenzaldehyde) instead
of its cognate effectors, which is quite remarkable, given the high chemical
similarity between this compound and the original group of ligands.
Crucial to this approach was the availability of crystal structures for PcaV,
which permitted the authors to restrict the directed-evolution procedure
to seven side chains that, in the PcaV protein, are in close contact with the
effector PCA. To screen the strain libraries for functional mutants, the
researchers developed a fluorescence-activated-cell-sorting (FACS)
counter-selection protocol. This applied several rounds of negative
selection (for variants that remain uninduced in the absence of the
effector) and positive selection (for candidates that are also strongly
inducible by the proper ligand) (see Figure 3D). Further analysis of the
most promising variants revealed that a total of only three mutations
sufficed to change effector recognition from PCA to vanillin and related
aromatic aldehydes.

This example, in which the specificity of an aTF was successfully
engineered, demonstrates the effectiveness of structure-based,
directed-evolution approaches. But, as noted above, the properties
of a complete aTF-based biosensor are affected by multiple variables,
such as the sequences of operator and ribosome binding sites, which
can turn the optimization of the complete system into a daunting task.
This particular problem was addressed by Berepiki et al.( 2020) while
revisiting the PcaV system just described. To this end, they merged the
constitutively active pcaV gene with a GFP-reporter-gene construct on
a single plasmid in order to facilitate the optimization process, which
involved the systematic variation of the genetic components of the
sensor, i.e., the constitutively active promoter for the expression of
PcaV, the repressible PcaV-regulated promoter of the reporter gene
(GFP), and the ribosome binding site for the translation of the GFP
transcript. By randomizing selected positions in these genetic
elements, the authors obtained three distinct sequence libraries,
whose simultaneous exploration and optimization would have
resulted in more than ten thousand combinations to test. In order
to tame this combinatorial complexity, the researchers applied a
design-of-experiments (DoE) approach which determines the ideal
combination of experiments that most efficiently probe the possibility
space while reducing the experimental effort. With this strategy, the
authors were able to reduce the experimental setup to just thirteen
distinct combinations of the genetic elements.

With the DoE approach employed, the authors assessed the
impact of each variable (constitutive promoter strength of the aTF;
ribosome binding site of the reporter gene; and promoter strength of
the reporter gene) in a semi-quantitative way via statistical modeling,
which even revealed non-linear effects among the parameters, and
derived general design rules for repression-based aTF biosensor
systems. According to the authors, the first step should be to
identify the strongest combination of promoter-operator and RBS;
Then, the regulator (aTF) expression should be fine-tuned by testing a
wide range of expression levels. As a last step, if the dynamic range of
the sensor is still not satisfactory, the RBS, which drives signal output,
should be weakened.

The authors further demonstrated the generalizability of the DoE
approach by optimizing a biosensor for ferulic acid that they had
previously developed. With just twelve experiments, they were able to
improve the maximal output signal of this biosensor by a factor of
32 and the dynamic range by a factor of five.

3.5.3 Biosensor development for monitoring
L-cysteine levels in cells

As discussed, structural or homology information about the aTF
can be crucial for limiting the experimental effort in biosensor-design,
which is also highlighted by the recent work of Gao et al.( 2022). They
present the development of a novel biosensor for L-cysteine, starting
from the L-cysteine-responsive transcriptional regulator CcdR. With
this sensor, the authors wanted to efficiently detect and analyze
cysteine-overproducing strains obtained from rational or random
mutagenesis libraries. One bottleneck in directed-evolution
strategies is the screening stage, for which the authors devised a
high-throughput screening (HTS) method. Like the PCA biosensor
discussed above, Gao et al.( 2022) developed a construct that
constitutively expresses the aTF (CcdR), which, in turn, acts upon
a GFP reporter gene under the control of the CcdR-specific operator
ccdA. The initial construct showed proper dose-response behavior and
specificity with respect to the effector L-cysteine, but low sensitivity
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and a narrow dynamic range, which rendered it unsuitable for the
screening of large microbial variant libraries. In order to improve the
initial design, the authors optimized the genetic components of the
sensor system by directed evolution of CcdR, and by combinatorially
optimizing promoter and RBS sequences for its expression.

For improving the properties of CcdR, the authors applied a semi-
rational design strategy, made possible by the high homology of CcdR
with other, structurally resolved, members of the FFRP-like (feast/
famine regulatory protein) aTF family.

Because cysteine is already the cognate ligand for CcdR, the
authors focused not on the effector binding but rather on the
dimerization domain of the aTF, arguing that improving the
dimerization properties of the repressor would increase its
biological activity. Based on homology, the researchers selected
eight sites in the putative dimerization interface of CcdR for
saturation mutagenesis, followed by FACS-based selection, similar
to the strategy described above for the PcaV-based sensor. This
approach eventually led to the identification of a single-point
mutant with significantly increased responsiveness to L-cysteine
and a higher signal-to-noise ratio than the wild type protein. With
the help of an AlphaFold-generated model (Evans et al., 2021), the
authors suggest that these findings are due to improved hydrophobic
interactions in the dimerization interface of the mutant.

Next, the authors tested the ideal combination from two promoter
and two RBS sequence variants in order to further improve the
switching dynamics and the sensitivity of the biosensor, and thus
faced much less combinatorial complexity than was encountered with
the approach discussed above for the PCA biosensor.

In order to facilitate the screening for L-cysteine-overproducing
strains in directed evolution experiments, Gao et al.( 2022)
incorporated their novel L-cysteine biosensor in an HTS platform
that includes the transformation of mutagenesis libraries in cells
containing the biosensor, followed by FACS-screening, colony plate
screening, microplate reader analysis and finally fermentation of
promising candidate clones. The effectiveness of the biosensor was
demonstrated by utilizing this HTS platform in the directed evolution
of L-serine-acetyltransferase, the key enzyme in the biosynthesis of
L-cysteine which catalyzes its rate-determining step. By using this
approach, the authors were able to directly correlate enzymatic activity
with the L-cysteine levels in the cells, thereby circumventing the
normal time-consuming, low-throughput sorting process. Starting
from a mutant CysE library that they produced via error-prone
PCR, they succeeded in identifying a CysE double mutant with a
7-fold increased activity, and a single mutant, whose L-cysteine
producing capability was 2.7-fold higher than wild-type levels.

After demonstrating that the sensor system can in principle be applied
for the screening of strains, the authors assessed its ability to handle large
mutant libraries. To this end, they subjected the biosensor-containing
strain to ARTP (atmospheric and room temperature plasma)mutagenesis
and applied the HTS protocol, which reduced an initial amount of ten
million cells to ten strains that all featured higher production levels for
L-cysteine than the control.

3.5.4 Development of biosensors for
benzylisoquinoline alkaloids: Improving negative
selection with the SELIS procedure

The previous examples relied on FACS for the selection of
biosensor candidates. However, screening for strongly repressing
variants by negative selection can be challenging. d’Oelsnitz et al.

(2022) describe how this step can be significantly improved by
suppressing the presence of dead or inactive cells, which can
corrupt the cell sorting procedure. This is accomplished by making
cell survival directly dependent on the repression activity of the
biosensor with a method they call SELIS (seamless enrichment of
ligand-inducible sensors). The approach also enables counter-
selection against variants that are activated by non-target ligands,
i.e., screening for repressor specificity and selectivity.

The idea behind SELIS is to add to the regular
construct—consisting of the consecutive expression system for the
repressor and the repressor-regulated reporter gene (see Figure 3)—
One additional regulatory circuit that prevents cellular growth if the
repressor only incompletely prevents gene expression in the absence of
the effector. This is accomplished by growing cells in the presence of
zeocin during the negative selection step, while resistance against
zeocin is provided by Sh Ble in a way that depends on the full
repression capabilities of the biosensor-candidate. To this end, the
expression of Sh Ble is repressed by λ cI, which, in turn, is regulated by
the same repressor-sensitive operator sequence as the reporter gene. If
the repressor is fully active in the absence of an effector (or in the
presence of a non-target ligand), λ cI cannot be formed and Sh Ble will
be expressed, which ensures zeocin resistance and cell survival.
Surviving cells can then be positively selected by plating them on
zeocin-free agar plates in the presence of the effector and screening for
strongly fluorescent colonies.

The authors demonstrated the effectiveness of their SELIS
approach by designing sensitive and selective biosensors for a
group of pharmacologically relevant benzylisoquinoline alkaloids
(BIAs), namely tetrahydropapaverine, papaverine, glaucine,
rotundine, and noscapine. As a starting point for biosensor
development, the approach focussed on multidrug-resistance
regulators that control the expression of multidrug-efflux pumps,
specifically RamR from S. typhimurium.

The authors were able to devise an efficient mutagenesis strategy
due to the availability of a crystal structure of RamR bound to the
alkaloid berberine, which is structurally similar to the BIAs selected for
the study. Based on this structural information, they targeted five
helices surrounding the effector-binding region by creating five
distinct libraries. In each library, three residues were chosen for
site-saturated mutagenesis. In independent experiments, the
authors also applied error-prone mutagenesis to the entire RamR
gene, resulting in libraries with two mutations per gene, on average.

Starting with wild-type RamR, which displays an inherently high
promiscuity for structurally diverse compounds, the authors were able
with just four rounds of directed evolution, to produce highly specific
biosensors that each showed >100-fold preference in binding for their
cognate ligands. At the same time, each biosensor also displayed high
sensitivity (<30 mM) for its target compound.

Having demonstrated the advantages of the SELIS procedure over
the more traditional and purely fluorescence-based selection approach
to biosensor engineering, the researchers showed how their newly
evolved biosensors can be applied to the engineering of metabolic
pathways. They chose the biosynthesis of tetrahydropapaverine (THP)
as an example, which, in plants, involves a complicated multistep
process catalysed by an oxidase and four O-methyltransferases.

Using the previously evolved THP-specific biosensor to screen for
THP-producing strain variants, the authors aimed to evolve a
methyltransferase from Glaucium flavum (GfOMT1) into an
enzyme that is capable of methylating all four phenolic hydroxy
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groups of the substrate norlaudanosoline (NOR) in a single step to
directly yield THP, thereby circumventing its complex biosynthesis
and allowing for the efficient production of this pharmacologically
relevant compound. To this end, they used error-prone PCR to
generate mutagenesis libraries of the GfOMT1 gene, which resulted
in enzyme variants with two mutations on average. After
cotransforming plasmids with the THP-specific biosensor and
GfOMT1 into E. coli cells, the researchers then selected strains
based on high fluorescence in the presence of the substrate NOR,
indicating the production of THP. Strikingly, after only three rounds
of directed evolution, variants could be identified that completely
converted the precursor NOR to THP, thus demonstrating the
effectiveness of the biosensor for metabolic engineering projects.

3.5.5 Prerequisites for the successful directed
evolution of aTFs

These examples highlight the significant progress that the
combination of directed evolution and high-throughput
fluorescence-based selection methods have created in the
development of biosensors, but also show, as a recurring theme,
the importance of reliable structural information about the aTF
needed to accelerate the development process or even render the
experimental effort feasible. This is especially true if an aTF needs to be
engineered to recognize a non-cognate ligand for which there is no
natural counterpart.

For the foreseeable future, experimental structure elucidation will
progress at a much slower pace than the discovery of new sequence
information, which emphasizes the need for structure-prediction
methods that are reliable even in the absence of sufficient
homology with solved structures.

Ideally, these efforts will lead to an automated protocol that hides
the details of the modeling process from the synthetic biologist and
automatically proposes mutagenesis libraries for a given objective.

4 Improving bioproduction using
biosensors

aTF-based biosensors have a range of applications (e.g.
diagnostics, environmental pollutant detection, biomaterials,
health wearables. . .) (Moraskie et al., 2021). Arguably one of the
most important applications is the use of biosensors in
bioproduction. The world’s current production of chemicals is
expected to double by 2030 (Nijman and Halpaap, 2019).
Nevertheless, the production of materials, fuels,
pharmaceuticals, fertilisers, foods, and other types of chemicals
is still heavily reliant on traditional chemical synthesis based on
unrenewable, polluting, fossil fuels (Naidu et al., 2021). Using
microorganisms to substitute the chemical synthesis and move
to greener, bio-based processes is a thriving field known as
bioproduction (Zhang et al., 2017). The goal here is to improve
the efficiency with which products are produced in comparison to
traditional chemical approaches and to provide pathways for the
production of novel compounds for which no synthetic routes
exist. Bioproduction of chemicals and materials provides a
renewable and economically viable alternative, easing the
transition towards a circular “bioeconomy” (Cann, 2016). Next
we detail two applications of biosensors that aim to improve
bioproduction: screening and dynamic regulation.

4.1 aTF-based biosensors for screening

One challenge preventing the broader adoption of current
bioproduction strains is that they often perform poorly (low yield,
slow production rate. . .) in industrial settings. Screening through
hundreds of constructs and selecting the best performers is one of
the most important bottlenecks. Thanks to advances in genetic
engineering and automation, researchers can nowadays create
hundreds of production strain variants in a short period of time.
However, the next step involves screening those strains for production
and yield. This can become a barrier since traditional methods like
HPLC or LC-MS do not scale up easily. Biosensors can provide a
simple, fast and affordable solution to the screening process of
production strains by linking the biosensor output to the synthesis
of the desired molecule (Kaczmarek and Prather, 2021). Biosensor-
based screening can be used to screen for improved enzyme
performance in a newly discovered or an engineered enzyme pool
(Figure 4A) or for the screening of engineered genetic circuits of those
enzymes and DNA parts (Figure 4B).

In order to identify biosensors with the appropriate sensitivity and
dynamic range, several screening assays based on biosensors have been
described. One of the simpler approaches involves the use of well
plates and fluorescence detection to determine the production level of
each variant (Yang et al., 2018; Zheng et al., 2018). Automation can
increase the throughput of this assay by handling the library
preparation, transformation and fluorescence measurement in each
of the wells of the assay. Other approaches based on more advanced
equipment [e.g. FACS (Liu et al., 2015), droplet-based screening
(Siedler et al., 2017)] have also been tested. Tuning the dynamic
range of biosensors via the modification of the promoter driving the
expression of the reporter gene regulated by the aTF has also been
proven possible (Chen et al., 2018). Biosensor mediated screening has
also been described for large, multi-level CRISPRi experiments to fast-
track genomic-level down-regulations that redirect the carbon flux
towards the target metabolic route (Wang et al., 2023).

4.2 aTF-based biosensors for dynamic
regulation

Engineered microorganisms often adapt poorly outside laboratory
conditions, due to external factors originating from the conditions of
production (e.g., large-scale bioreactors), such as pressure, acidity
changes, accumulation of toxic metabolites, agitation, nutrient
availability and heat transfer, among others (Wehrs et al., 2019).
The strains are often unresponsive to external stimuli that may be
present during industrial fermentation. This stress can cause
undesired effects; for instance, the strain might stop producing the
target compound by mutating or expelling the heterologous pathway
(Wu et al., 2016). These adverse effects will lead to production
processes that perform poorly when tested during the scale-up
phase, thereby preventing the translation of many bioproduction
projects into economically feasible industrial processes (Hartline
et al., 2021).

Different approaches have been proposed to overcome those
issues and increase the viability of large-scale cell-factory projects.
Dynamic regulation is one of these strategies for controlling the
production of key molecules, often found in nature and finely
optimised through evolution. Similarly, biosensor-based dynamic
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regulation of microbial production pathways is a strategy that can be
used to control genetic circuits based on a feedback loop that regulates
the production of a target metabolite to keep its concentration at
desired levels (Teng et al., 2022). The biosensor detects the presence of
the metabolite and triggers the activation or inhibition of certain genes
in the metabolic pathway (Figure 4C), making the system more
responsive to possible detrimental conditions (Stevens and
Carothers, 2015; Liu and Zhang, 2018; Hartline et al., 2021). To
obtain the level of precise regulation required for some
applications, simple single TF biosensors may not be enough. In
this case, more complex circuits can be built, adding extra layers of
complexity. For example, a plausible iteration would be to add another
input molecule needed to trigger the desired reaction. This type of
mechanism has been tested successfully with standard genetic
regulator parts and inducers (Bordoy et al., 2019). Much more
complex architectures are possible, mixing other common DNA
parts (Nielsen et al., 2016). These approaches can be combined
with native chromosomal gene regulation through direct control
(Figure 4D) or by using CRISPRi (Huang et al., 2016; Wu et al.,
2020) or antisense RNAs (Kim and Cha, 2003; Yang et al., 2018) that
bind and repress native genetic pathways.

Growth-coupled production ties the target molecule (or one of its
intermediate compounds) to the production/consumption of some
essential cellular metabolite (Orsi et al., 2021). An example can be

found in Wang et al. (2019) where the biosynthesis of pyruvate was
limited to the heterologous pathway introduced into the cells. To
accomplish this, the researchers deleted the native biosynthesis routes
known to produce pyruvate. This essentially means that pyruvate will
only be available as a byproduct of the heterologous pathway
producing the target compound. In another example, Zhou and
others (Zhou et al., 2021) built a 3-layer system that produces
(2S)-naringenin, by regulating the essential compound malonyl-
CoA. They used the TF FdeR, which is activated by the presence of
(2S)-naringenin, and PadR TF, which is activated by p-coumaric acid,
as feedback regulators of the (2S)-naringenin pathway. Initial low
concentrations of (2S)-naringenin allow malonyl-CoA to be used in
fatty acid (FA) biosynthesis pathways, favouring cell growth. Higher
concentrations of naringenin, represses these FA synthesis routes,
slowing cell growth and increasing the availability of malonyl-CoA for
the production of more (2S)-naringenin. Through several rounds of
optimization, including directed evolution of biosensors and
optimization of fermentation conditions, titers above 500 mg/L
from glucose were obtained in 5-L bioreactors using an E. coli
chassis. Other strategies decouple the production phase from the
growth phase of the microbial culture. For example, to improve the
production of glucaric acid (GA), the glycolysis pathway can be
repressed using the accumulation of N-Acyl homoserine lactone
(AHL) in E. coli (Doong et al., 2018). Pyruvate-responsive circuits

FIGURE 4
Bioproduction biosensor-based screening and dynamic regulation for bioproduction. New (A) enzyme variants and (B) genetic circuits can easily be
screened for production by linking the production levels of the target metabolite to the output of the biosensor reporter. Dynamically regulated strains can be
built using biosensors to control the production of the compound by regulating (C) the metabolic pathway and (D) native genes of the host.
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were also built in Bacillus subtilis for the regulation of glucaric acid
production (Xu et al., 2020). Pyruvate induces the expression of the
GA pathway and suppresses glycolysis. Finally, malonyl-CoA, another
essential cellular metabolite, can be used as the key regulator. In (Xu
et al., 2014), Xu et al. built a regulation circuit that activates the
synthesis of malonyl-CoA and represses the fatty acid synthesis
pathway that consumes it when the compound is in low
concentrations and vice versa.

Even though the aforementioned examples show that successful
dynamic regulation is possible, true industrial utilisation of dynamic
regulation circuits and scale-up is still rare in bioproduction projects.
Tested under homogeneous laboratory conditions, dynamic regulation
bioproduction circuits are not normally designed to react to environmental
changes and, therefore, the resulting strains adapt poorly to the different
conditions during the scale-up process (Neubauer and Junne, 2010).
Among other reasons we can include the lack of functional and well-
characterised biosensor circuits against a wider range of target molecules
and the inherent difficulty of dynamically controlling complex cellular,
enzymatic, genetic and molecular networks which can show unwanted
crosstalk between different components. In order to address these
shortcomings, a different type of regulation relies on automatically
reacting to these conditions and controlling the production accordingly
(Boada et al., 2020).

5 Conclusions and future perspectives

In this work we reviewed recent advances in the prediction, design
and validation of biosensor circuits focused on aTFs and whole-cell
implementations. This type of biosensor can be used to detect a wide
range of molecules (e.g., ions, sugars, drugs, hormones. . .) for different
uses, including environmental, medical and industrial applications. We
showcased the role of biosensors in the development of new-generation
bioproduction devices, driving forward important steps for bioproduction
advancement such as screening and dynamic regulation of producer
strains. aTF biosensors, however, suffer from certain shortcomings that
will need addressing in future research endeavours. To that end, we detail
some of the possible routes towards better biosensors.

As described in this article, several methodologies can be used to reveal
as-yet-undiscovered aTFs that may behave closely to what a biosensor
designer might expect. However, associated tools and databases only offer
fragmented information and it is up to the designer to gather and trust the
results from different sources. Therefore, a single computational tool that
takes this burden from the researcher and provides confidence metrics is
needed. Even though directed mutagenesis has shown great potential to
improve the performance of a given aTF, it is still not possible to accurately
predict the impact of a mutagenesis experiment on the biosensor
characteristics (dynamic range, operational range. . .). Structural
approaches are probably the key to this issue and the recent
development of structural prediction and docking programs may soon
provide researchers with this type of tool (Mullard, 2021). Until recently,
structure-based design was simply impossible in the absence of any
relevant homology. With the advent of AI-based approaches to
protein-structure prediction [e.g., AlphaFold (Jumper et al., 2021)]—
The success stories of which suggest that in silico models at almost
atomic resolution might be within reach—It might be possible to take
the computational design of bespoke binding sites frommerely instructing
mutagenesis experiments on an, at best, semi-quantitative basis, to
predictive reliability.

As shown for several applications in this review, biosensor circuits can
be used to screen for the best performers in a bioproduction experiment
by linking the reporter expression to the production level. High-
throughput FACS or the less-scalable but more affordable plate-
reader-based approach can be used to select the cells with higher
reporter expression levels. However, this can become a problem if so-
called cheaters come into play (Trivedi et al., 2022), giving high reporter
signals without showing high production rates of the target compound.
More methods that address this issue are needed. Finally, the most
important future milestone for the field would be to develop a toolbox
that can predict and model—Within the accuracy levels required for the
application—The behaviour of a biosensor for a given design and target
molecule, while taking process conditions and possible environmental
perturbations into account that may appear during the experiment.
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