
Citation: Manderna, A.; Kumar, S.;

Dohare, U.; Aljaidi, M.; Kaiwartya,

O.; Lloret, J. Vehicular Network

Intrusion Detection Using a

Cascaded Deep Learning Approach

with Multi-Variant Metaheuristic.

Sensors 2023, 23, 8772. https://

doi.org/10.3390/s23218772

Academic Editor: Mikael Gidlund

Received: 12 September 2023

Revised: 16 October 2023

Accepted: 23 October 2023

Published: 27 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Vehicular Network Intrusion Detection Using a Cascaded Deep
Learning Approach with Multi-Variant Metaheuristic
Ankit Manderna 1, Sushil Kumar 1 , Upasana Dohare 2 , Mohammad Aljaidi 3 , Omprakash Kaiwartya 4,5,*
and Jaime Lloret 6

1 School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
ankit97_scs@jnu.ac.in (A.M.); skdohare@mail.jnu.ac.in (S.K.)

2 School of Computing Science & Engineering, Galgotias University, Greater Noida 203201, India;
upasana.dohare@galgotiasuniversity.edu.in

3 Computer Science Department, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan;
mjaidi@zu.edu.jo

4 Department of Computer Science, Nottingham Trent University, Nottingham NG11 8NS, UK
5 Computing and Informatics Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
6 Instituto de Investigación para la gestión Integrada de Zonas Costeras, Universitat Politécnica de Valencia,

Camino Vera s/n, 46022 Valencia, Spain; jlloret@dcom.upv.es
* Correspondence: omprakash.kaiwartya@ntu.ac.uk

Abstract: Vehicle malfunctions have a direct impact on both human and road safety, making vehicle
network security an important and critical challenge. Vehicular ad hoc networks (VANETs) have
grown to be indispensable in recent years for enabling intelligent transport systems, guaranteeing
traffic safety, and averting collisions. However, because of numerous types of assaults, such as
Distributed Denial of Service (DDoS) and Denial of Service (DoS), VANETs have significant difficulties.
A powerful Network Intrusion Detection System (NIDS) powered by Artificial Intelligence (AI) is
required to overcome these security issues. This research presents an innovative method for creating
an AI-based NIDS that uses Deep Learning methods. The suggested model specifically incorporates
the Self Attention-Based Bidirectional Long Short-Term Memory (SA-BiLSTM) for classification
and the Cascaded Convolution Neural Network (CCNN) for learning high-level features. The
Multi-variant Gradient-Based Optimization algorithm (MV-GBO) is applied to improve CCNN and
SA-BiLSTM further to enhance the model’s performance. Additionally, information gained using
MV-GBO-based feature extraction is employed to enhance feature learning. The effectiveness of
the proposed model is evaluated on reliable datasets such as KDD-CUP99, ToN-IoT, and VeReMi,
which are utilized on the MATLAB platform. The proposed model achieved 99% accuracy on all
the datasets.

Keywords: VANET; intrusion detection; deep learning; long short-term memory; convolution
neural network

1. Introduction

The security and safety of the VANET depend on an intrusion detection system (IDS).
Vehicles with On-Board Units (OBU) and Road-Side Units (RSU) can broadcast vital infor-
mation, such as traffic conditions, road dangers, and safety alerts, using Mobile Ad-hoc
Networks (MANETs) [1,2]. While VANET has many advantages for intelligent transporta-
tion systems, its open and dynamic nature also leaves them subject to several security risks,
such as malicious attacks, breaches in data integrity, and unauthorized access [3,4]. In
VANETs, an IDS’s main objective is to quickly identify and address such security risks, mini-
mizing their potential influence on network operations and ensuring vehicle and passenger
safety [5,6]. In order to be effective, an IDS must handle the particular difficulties provided
by VANET, such as the high vehicle mobility, the constrained computational capacity of

Sensors 2023, 23, 8772. https://doi.org/10.3390/s23218772 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23218772
https://doi.org/10.3390/s23218772
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9113-2890
https://orcid.org/0000-0003-1610-064X
https://orcid.org/0000-0001-9486-3533
https://orcid.org/0000-0001-9669-8244
https://orcid.org/0000-0002-0862-0533
https://doi.org/10.3390/s23218772
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23218772?type=check_update&version=2

Sensors 2023, 23, 8772 2 of 24

OBU and RSU, and the dynamic network topology [7,8]. IDS that are based on misuse and
IDS that are based on anomalies are the two major types used most frequently in VANET.
The former is dependent on predetermined patterns or known attack signatures. The IDS
sounds an alarm when these patterns are present in network traffic. Misuse-based IDS are
effective at spotting well-known attacks, but they may struggle to deal with brand-new or
unidentified attack patterns [9]. Furthermore, it can be resource-intensive to maintain and
update the signature database.

However, anomaly-based IDS do not rely on pre-established patterns. Instead, based
on past data, they construct a model of typical network behavior [10,11]. An anomaly
is indicated when observed behavior departs significantly from the model. This method
is helpful in identifying new attacks, but it can also produce false positives due to valid
differences in network behavior [12]. Several important factors need to be taken into
account in order to improve IDSs performance in VANET. IDS must, above all, be able to
detect security risks in real time in order to act quickly. Particularly in safety-critical settings,
delays in attack detection and mitigation might have serious repercussions. Second, given
the constrained computational capabilities of OBU and RSU, IDS should be as light and
resource-efficient as possible to reduce the impact on vehicle performance [13]. Data
privacy is yet another crucial factor to take into account. IDS must respect user privacy
and refrain from gathering personal data in order to detect intrusions [14,15]. In order
to maintain their integrity and efficiency, IDS must also be shielded from attacks. The
dependability of IDS in VANET must be maintained through secure communication routes.
The use of collaborative detection can improve IDSs functionality in VANET. Collaborative
IDSs can more efficiently identify threats by allowing numerous cars and RSUs to share
information. Deep Learning, in particular, has shown promise in improving IDS in VANET
using machine learning (ML) approaches [16]. IDSs based on ML may learn from network
dynamics and adapt to changing attack patterns, making them more resistant to new
threats. Additionally, ML-based IDS automates feature extraction and selection, requiring
less human involvement and exposing confidential data. The growing significance of
VANET in enabling intelligent transport systems and improving traffic safety is the driving
force behind this study. VANET has demonstrated significant promise for enhancing
communication between vehicles and infrastructure, preventing collisions, and effectively
managing traffic flow.

In VANET, the major concern is the presence of various types of attacks, including
DoS and DDoS. The effectiveness and safety of intelligent transportation systems may
be harmed by these attacks, which could prevent the network from operating normally.
Because VANETs operate in a dynamic, decentralized way and rely on wireless communi-
cation among vehicles, they are distinct and difficult environments for maintaining security.
This wireless nature exposes them to potential eavesdropping, data tampering, and unau-
thorized access. Moreover, the rapid and unpredictable changes in network topology due
to vehicle movement make it essential to establish secure and stable communication chan-
nels. Figure 1 represents the VANET Architecture. These security issues seriously threaten
the dependability and security of VANET because any communication breakdown might
have detrimental effects on traffic safety and the entire transportation network. There is a
critical requirement for a strong and high-level security system to handle these problems
and guarantee the ongoing growth of intelligent transportation systems. To address this
issue, an AI-based NIDS is proposed, leveraging deep learning techniques for effectively
detecting and preventing attacks. The proposed NIDS seeks to provide increased capabili-
ties for detecting and mitigating various types of assaults in the VANET environment by
integrating AI and deep learning techniques, thereby enabling intelligent transportation
systems with improved traffic safety and collision prevention capabilities.

Sensors 2023, 23, 8772 3 of 24Sensors 2023, 23, x FOR PEER REVIEW 3 of 24

Figure 1. VANET Architecture.

(1) To enhance the NIDSʹs capability to detect sophisticated attack patterns, this paper
proposes using the CCNN model. By leveraging CCNN, the NIDS effectively extracts
high-level features from VANET data, enabling better identification of intricate net-
work behaviors and potential anomalies.

(2) To achieve more precise classification results, this paper introduces SA-BiLSTM. SA-
BiLSTM considers long-range dependencies in sequential data crucial for VANETs
with extended temporal patterns, leading to reduced false positives and more reliable
intrusion detection.

(3) To further enhance the NIDS’s efficiency, this paper utilizes MV-GBO to fine-tune the
CCNN and SA-BiLSTM components. This optimization leads to better convergence
during training, resulting in a more effective and accurate intrusion detection system
for VANETs.
The rest of this paper is organized as follows: The literature studies conducted for

VANET-NIDS are discussed in Section 2. The proposed methodology is discussed in Sec-
tion 3. In Section 4, the results obtained using the projected model are discussed, and this
paper is concluded in Section 5.

2. Related Work
For Vehicle Ad Hoc Networks (VANET) in 2020, Zhou et al. [17] suggested a distrib-

uted collaborative intrusion detection system, DCDIV, to address security vulnerabilities
brought on by malicious attacks. To create stable and dependable communication linkages
between vehicles, DCDIV used a reputation-based cooperative communication mecha-
nism. Dynamic behavior analysis was then used to find malicious behaviors based on in-
variants that had been mined. Simulation results show that DCDIV performs better than
existing techniques with greater detection rates, lower false alarm rates, and faster attack
detection, maintaining system security throughout the detection process. Using a hidden
generalized mixture transition distribution model (HgMTD) for VANET, Liang et al. [18]
used FM-HgMTD in 2020. With the use of the multi-objective optimization (NSGA-II) al-
gorithm and the expectation-maximization (EM) method, FM-HgMTD efficiently filtered
messages from nearby cars to cut down on overhead and detection time. It also accurately
predicted and detected malicious communications. GaDQN-IDS was a brand-new Bayes-
ian game theory and Deep Q-learning NIDS for VANETs, which Liang et al. [19] intro-
duced in 2022. In order to balance efficiency and accuracy, GaDQN-IDS modeled the

Figure 1. VANET Architecture.

(1) To enhance the NIDS’s capability to detect sophisticated attack patterns, this paper
proposes using the CCNN model. By leveraging CCNN, the NIDS effectively ex-
tracts high-level features from VANET data, enabling better identification of intricate
network behaviors and potential anomalies.

(2) To achieve more precise classification results, this paper introduces SA-BiLSTM. SA-
BiLSTM considers long-range dependencies in sequential data crucial for VANETs
with extended temporal patterns, leading to reduced false positives and more reliable
intrusion detection.

(3) To further enhance the NIDS’s efficiency, this paper utilizes MV-GBO to fine-tune the
CCNN and SA-BiLSTM components. This optimization leads to better convergence
during training, resulting in a more effective and accurate intrusion detection system
for VANETs.

The rest of this paper is organized as follows: The literature studies conducted for
VANET-NIDS are discussed in Section 2. The proposed methodology is discussed in
Section 3. In Section 4, the results obtained using the projected model are discussed, and
this paper is concluded in Section 5.

2. Related Work

For Vehicle Ad Hoc Networks (VANET) in 2020, Zhou et al. [17] suggested a distributed
collaborative intrusion detection system, DCDIV, to address security vulnerabilities brought
on by malicious attacks. To create stable and dependable communication linkages between
vehicles, DCDIV used a reputation-based cooperative communication mechanism. Dy-
namic behavior analysis was then used to find malicious behaviors based on invariants
that had been mined. Simulation results show that DCDIV performs better than existing
techniques with greater detection rates, lower false alarm rates, and faster attack detection,
maintaining system security throughout the detection process. Using a hidden general-
ized mixture transition distribution model (HgMTD) for VANET, Liang et al. [18] used
FM-HgMTD in 2020. With the use of the multi-objective optimization (NSGA-II) algorithm
and the expectation-maximization (EM) method, FM-HgMTD efficiently filtered messages
from nearby cars to cut down on overhead and detection time. It also accurately predicted
and detected malicious communications. GaDQN-IDS was a brand-new Bayesian game
theory and Deep Q-learning NIDS for VANETs, which Liang et al. [19] introduced in 2022.
In order to balance efficiency and accuracy, GaDQN-IDS modeled the interactions between
the IDS and attackers as a dynamic intrusion detection game. Through Deep Q-learning

Sensors 2023, 23, 8772 4 of 24

Network (DQN) Adjustment and Error Priority Learning (EPL), the IDS could change the
tradeoff or undergo retraining based on detection performance and driving conditions. The
works discussed were performed in a simulated environment using tools like NS2, SUMO,
and OpenStreetMap, and the authors were skeptical about how they would perform in a
real-life environment.

Deep neural network (DNN)-based anomaly detection system for VANET was pre-
sented by Alladi et al. in 2021 [20]. The framework was made to deal with the growing
number of linked vehicles as well as the many kinds of anomalies that could happen in the
network. On RSU, DNN architectures were used to categorize communication sequences
as aberrant or real. Using Cooperative Intelligent Transport Systems (C-ITS) over VANET,
Ercan et al. [21] offered a novel Machine Learning (ML) mechanism for Intrusion Detection
Systems (IDS) in 2022. To better detect position falsification attacks, a serious security risk
in C-ITS, the technique made use of three new features connected to the sender position.
The work employed Ensemble Learning (EL) further to enhance detection performance
and compared two ML techniques for classification, k-Nearest Neighbour (kNN) and
Random Forest (RF). The dataset considered for this work was a public dataset, but we
did not use another dataset to validate the work. A collaborative IDS for VANET based
on machine learning and privacy preservation was presented by Zhang and Zhu [22] in
2018. The suggested algorithm used the dual-variable perturbation technique with the
alternating direction method of multipliers to train a classifier for intrusion detection while
preserving privacy through dynamic differential privacy. The work fails to discuss the need
for evolving threat resolution, as the frequent update and adapt method is the requirement
for IDS in VANETs. This paper also struggles to find the balance between security and
privacy. In 2021 [23], Raja et al. suggested Secure and Private-Collaborative IDS (SP-CIDS)
for VANET. In order to improve the storage efficiency, accuracy, and scalability of the IDS,
SP-CIDS used distributed machine learning based on the Alternating Direction Method
of Multipliers (ADMM) in conjunction with vehicle-to-vehicle cooperation. The system
employed Differential Privacy (DP) techniques to protect confidential information while
collaborating to satisfy privacy concerns. Singh et al. [24] research on the Industrial Internet
of Things (IIoT) in 2021 focused on the crucial security issue in VANET. Increasing VANET
security is essential due to the possible threats to life and the smooth operation of the
network. A novel approach that combines conventional IDS and honeypots is offered
to meet the issues of intrusion detection. This approach aims at identifying both known
and unexpected threats while optimizing resource utilization. The work demonstrated
honeypot-based IDS solutions but did not validate them with a real-world dataset. In
order to address the vulnerability of Inter-Vehicle Communications (IVC) in the intelligent
routing of Electric Vehicles (EVs) [25] for dynamic wireless charging, Kosmanos et al. [26]
offered a probabilistic cross-layer IDS based on ML approaches in 2020. In order to maintain
the security and dependability of EV communication networks during intelligent routing
and dynamic charging situations, the suggested IDS attempts to identify and mitigate cyber
assaults, such as spoofing. An automated, secure framework for continuous cloud service
availability in smart connected vehicles was introduced in 2019 by Aloqaily et al. [27].
It combined an intrusion detection system with high-quality service delivery to prevent
security assaults. Trusted third-party organizations arbitrate communication between
requesters and providers, and smart vehicles are grouped into groups that specialize in
particular services. For intrusion detection, machine learning and data traffic analysis
were used. The suggested remedy was to improve the effectiveness and security of cloud
services for smart cars in smart cities. To tackle the issue of IDS, a Deep learning-based
NIDS approach is proposed for the detection and prevention of attacks, using two public
datasets to work on and validate.

3. Proposed Methodology

This study developed an innovative AI-based NIDS for VANET. The system lever-
ages deep learning techniques, such as CCNN for feature learning and SA-BiLSTM for

Sensors 2023, 23, 8772 5 of 24

classification. The aim is to effectively detect and counteract various attacks, ensuring the
security and reliability of intelligent transportation systems on VANETs. Table 1 represents
the abbreviations used in the following sections:

Table 1. Abbreviations.

Symbol Abbreviations

Cli Class i
H(B) Entropy of random variable B
P(Cli) Probability of Class i

Ij Feature (j is an index)

H
(

B
∣∣∣Ij

)
Entropy of random variable B, given Ij

xn nth initial vector of D dimensional space
xmin Decision variable lower bound
xmax Decision variable upper bound
gsr Global search radius
rn Random Number
ε Constant to ensure numerical stability
α Control parameter
β Probability rate to balance GBO Algorithm
r Random number
ra Random number within [0, 1]
rb Random number within [0, 1]
ρ2 Parameter to modify phase size of vector
vn Average of two vectors
dm Directional movement to converge
→
a Generation rate

xc
n A solution space for current iteration c

The workflow depicted in Figure 2 illustrates our data processing pipeline. It starts
with the initial input data, which goes through the preprocessing phase, including data
cleaning, normalization, and standardization. The next step involves feature extraction us-
ing a cascaded convolutional neural network (CCNN), feature selection using multi-variate
gradient-based optimization (MV-GBO), and information gain, and then the optimized data
enters the SA-BiLSTM classifier, resulting in the final execution, as shown in Algorithm 1.

Algorithm 1: Functioning of the overall model

1. Input

a. Receive raw data as vector input.

2. Pre-processing

a. Data Cleaning: Remove noise and irrelevant information.
b. Normalization: Scale numerical features to a standard range.
c. Standardization: Shifting the distribution of each feature to have a mean of zero and a

standard deviation of one.

3. Feature Extraction using CCNN (Convolutional Complex Neural Network):

a. Apply CCNN to extract essential features from the pre-processed data.

4. Feature Selection using MV-GBO Based Information Gain:

a. Apply Multi-Variate Gradient-Based Optimization (MV-GBO) to select the most
informative features.

5. Classification using SA-BiLSTM (Self-Attention Bidirectional Long Short-Term Memory):

a. Use the selected features and apply SA-BiLSTM for classification.

6. Output

a. Generate the results with class labels.

Sensors 2023, 23, 8772 6 of 24

Sensors 2023, 23, x FOR PEER REVIEW 5 of 24

3. Proposed Methodology
This study developed an innovative AI-based NIDS for VANET. The system lever-

ages deep learning techniques, such as CCNN for feature learning and SA-BiLSTM for
classification. The aim is to effectively detect and counteract various attacks, ensuring the
security and reliability of intelligent transportation systems on VANETs. Table 1 repre-
sents the abbreviations used in the following sections:

Table 1. Abbreviations.

Symbol Abbreviations 𝐶𝑙 Class i 𝐻(𝐵) Entropy of random variable B 𝑃(𝐶𝑙) Probability of Class i 𝐼 Feature (j is an index) 𝐻 𝐵|𝐼 Entropy of random variable B, given 𝐼 𝑥 nth initial vector of D dimensional space 𝑥 Decision variable lower bound 𝑥 Decision variable upper bound 𝑔𝑠𝑟 Global search radius 𝑟𝑛 Random Number 𝜀 Constant to ensure numerical stability 𝛼 Control parameter 𝛽 Probability rate to balance GBO Algorithm 𝑟 Random number 𝑟𝑎 Random number within [0, 1] 𝑟𝑏 Random number within [0, 1] 𝜌2 Parameter to modify phase size of vector 𝑣 Average of two vectors 𝑑𝑚 Directional movement to converge �⃗� Generation rate 𝑥 A solution space for current iteration c

The workflow depicted in Figure 2 illustrates our data processing pipeline. It starts
with the initial input data, which goes through the preprocessing phase, including data
cleaning, normalization, and standardization. The next step involves feature extraction
using a cascaded convolutional neural network (CCNN), feature selection using multi-
variate gradient-based optimization (MV-GBO), and information gain, and then the opti-
mized data enters the SA-BiLSTM classifier, resulting in the final execution, as shown in
Algorithm 1.

Figure 2. Proposed Classification Model for IDS. Figure 2. Proposed Classification Model for IDS.

3.1. Pre-Processing

In this study, the pre-processing stage is applied to the initial data. To improve
the quality and diversity of the data, pre-processing is conducted by performing data
cleaning, normalization, and standardization. The collected data are passed as input to the
pre-processing phase.

3.1.1. Data Cleaning

Before being analyzed by the intrusion detection system in VANETs, data cleaning is
a crucial pre-processing technique used to improve the quality and reliability of the data.
This procedure involves locating and fixing errors, addressing missing data, reducing noise,
and ensuring data consistency. The aim is to guarantee that the data utilized for intrusion
detection are of a high standard and free from errors or inaccuracies that can result in false
positives or false negatives. Due to imperfect sensor data collection, transmission problems,
and other considerations, data acquired in VANETs may contain errors. To increase the
correctness of the dataset, data cleaning involves locating and fixing these flaws. Due to
delays in connectivity or malfunctioning sensors, some data points in VANETs could be
lost. Data cleaning involves managing these missing values by removing incomplete data
or employing attribution, among other methods. Random changes or errors that might
not be relevant to intrusion operations are called noise in the data. Data points that stand
out from the rest are known as outliers. For intrusion detection, data cleaning removes
noise and controls outliers so that it may concentrate on important trends. The data in
VANETs may originate from several sources, resulting in differences in formats or units of
measurement. Data standardization promotes data uniformity and makes the data suitable
for intrusion detection analysis.

3.1.2. Normalization

Data normalization is a crucial technique used in intrusion detection for VANET. It
involves transforming data into a standardized format, typically by scaling it to a specific
range or distribution. This process ensures consistency and comparability across different
features, enhancing the performance of machine learning models and other detection
methods. In the context of VANETs, where security is paramount, normalization aids in
identifying patterns and anomalies that may indicate potential attacks. Normalization
improves feature comparisons and convergence during model training by making the
data consistent and removing biases due to varying scales. Additionally, it enhances the

Sensors 2023, 23, 8772 7 of 24

system’s ability to handle outliers and sets consistent detection thresholds, resulting in
more effective and accurate intrusion detection in VANETs.

3.1.3. Standardization

In intrusion detection for VANET, data standardization is a crucial technique. The data
undergoes a transformation process to a value of zero and a standard deviation of one, thus
standardizing the dataset and facilitating consistent and uniform comparisons amongst
features. By standardizing the data, machine learning models can better discern patterns
and anomalies associated with potential intrusions into VANET. This preprocessing step
allows the models to learn from uniform data, leading to improved detection accuracy.
Data standardization is beneficial in VANETs, where security is essential, as it aids in
identifying outliers and abnormal behavior that may indicate malicious activities. Data
standardization enhances the effectiveness of intrusion detection systems, contributing to a
safer and more secure vehicular communication environment. The preprocessed data are
given as input to CCNN for high-level feature learning.

3.2. Feature Extraction

A Deep Learning architecture called a Cascaded Convolutional Neural Network
(CCNN) is made up of several CNNs [28] connected in succession. A hierarchical structure
is created when the output of one CNN is used as the input for the following CNN. The
numerous layers of characteristics that each CNN layer learns and extracts from the input
data enable the network to recognize increasingly intricate and esoteric patterns. When
learning hierarchical representations is required for the job, a cascaded CNN is required.
A shared hidden layer segment of the network that extracts common traits required by
succeeding subnetworks is divided into a global atmospheric light estimate subnetwork
that uses the outputs of the shared hidden layer to map the global atmospheric light. Our
cascaded CNN architecture allows it to predict both the global atmospheric light and
the medium transmission at the same time. The common hidden layer consists of four
convolutional layers with ReLU nonlinearity and a 3 × 3 × 16 filter size.

Input Layer: The input to the first CNN is denoted as X.
First CNN Layer: The first CNN layer consists of convolutional operations, followed

by a non-linear activation function. It learns basic features from the input data:

Output1 = ReLU(w1× X + b1) (1)

where w1 is the weight matrix of the convolutional filters in the first CNN layer, X is the
input data, and b1 is the bias term of the first CNN layer.

Second CNN Layer: The output of the first CNN is passed as input to the second CNN
layer, which learns more complex features:

Output2 = ReLU(w2×Output1 + b2) (2)

where w2 is the weight matrix of the convolutional filters in the second CNN layer, and b2
is the bias term of the second CNN layer. By stacking multiple CNN layers in a cascade, the
cascaded CNN can learn hierarchical representations of the input data. After extracting the
relevant features, the MV-GBO-based IG technique performs feature selection, enhancing
classification performance for intrusion detection in VANETs.

3.3. Information Gain Computation via Entropy Analysis

The statistical distribution of feature weights in information gain is based on correla-
tions between features and classifications. Assume that A (a1, a2, , ap

)
is a collection

of p features, F (f1, f2, , fn) is a group of n data points, and B (b1, b2, , bm) is

Sensors 2023, 23, 8772 8 of 24

a group of m type labels. The proportion of classes in F with the label “Pi” is shown by the
number P(Cli) (where i = 1, 2, . . . , m). Entropy is given as per Equation (3).

H(B) = −∑m
i=1 P(Cli)log2P(Cli) (3)

Now, for each feature Ij in the dataset (where j is an index running from 1 to p),
the associated conditional entropy, considering its values (I1

j , I2
j , , Ik

j), is shown in
Equation (4).

H
(

B
∣∣Ij
)
= −∑k

q=1 P
(

Iq
j

)
∑m

i=1 P
(

Cli

∣∣∣Iq
j

)
log2P

(
Cli

∣∣∣Iq
j

)
(4)

Here, Iq
j represents the qth distinct value the jth feature can assume, and k is the total

number of such distinct values. P(Iq
j) signifies the prior probability of category variable Cl

for that value. The conditional probability of variable Cl after considering the attribute Ij is
given by P(Cli|I

q
j). Since the difference between H(B), H(B|Ij), which is determined by

Equation (4), is what determines the value of the information obtained from the attribute Ij,
it can be inferred from the formula shown in Equation (5).

IG
(

Ij
)
= H(B)− H

(
B
∣∣Ij
)

(5)

3.3.1. MV-GBO

A brand-new metaheuristic optimization tool called the GBO algorithm combines
population-based and gradient-based approaches. It efficiently explores the full search
space using a collection of vectors and two operators. GBO seeks to discover the best
answers for a given set of search metrics by imitating population-based, gradient-based,
and Newtonian approaches.

Initialization Phase

During optimization, the GBO algorithm uses the control parameters (α) and probabil-
ity rate (β) to balance between exploitation and exploration. The number of iterations and
the size of the population are adapted according to the complexity of the problem being
solved. In GBO, the solution space is represented by a vector of N vectors in D-dimensional
space. These initial vectors are generated randomly within the D-dimensional search space,
as per Equation (6).

xn = xmin + r(0, 1)× (xmax − xmin) (6)

where r (0, 1) denotes a random number within the range [0, 1], and xmin and xmax denote
the decision variable x lower and upper bounds, respectively.

Gradient Search Rule (GSR)

The GBO method uses a key component to achieve a balanced exploration of important
search space regions while getting close to global and near-optimal spots. The use of ρ is
described in terms of Equations (7)–(9).

ρ1 = 2× r× α− α (7)

α = |β× sin(3π/2) + sin(β× 3π/2) | (8)

β = βmin + (βmax − βmin)× ((1− c/T)3)2 (9)

where, βmin and βmax are constant values of 0.2 and 1.2, respectively. T is the total number
of iterations, while the variable c stands for the current iteration’s number. Based on the
sine function, the parameter ρ1 is in charge of balancing exploration and exploitation. It
fluctuates dynamically throughout the optimization process, beginning with a high value
to promote a wide range of solutions and progressively falling over iterations to hasten

Sensors 2023, 23, 8772 9 of 24

convergence. The method effectively investigates a wide range of alternative solutions by
increasing the parameter value through specified iterations within a range. This approach
enhances the GBO algorithm’s ability to efficiently search and find optimal solutions while
maintaining a balance between exploitation and exploration. GSR (Global Search Radius)
can be calculated using Equation (10).

gsr = r× ρ1× 2∆x× xn / (xworst − xbest + ε) (10)

Random behavior is employed to create a randomized exploration mechanism, facili-
tating the discovery of local optima. The variable ∆x changes with iterations, as shown in
Equations (11) and (13). A random number (r) is introduced to enable exploration.

∆x = r(1 : N)×|step| (11)

step = (xbest − xc
r1) / 2 + δ / 2 (12)

δ = 2× r× |xc
r1 + xc

r2 + xc
r3 + xc

r4 / 4− xc
n| (13)

where, r(1 : N) represents a random vector in the range [0, 1]. The GSR calculation
incorporates these random factors to support a well-rounded exploration process, allowing
the GBO algorithm to effectively explore potential solutions, including local optima, in
the search space. Four independent integers (r1, r2, r3, and r4) are randomly chosen in
the GBO algorithm so that (r1 6= r2 6= r3 6= r4 6= n). The difference between xbest and xc

r1
serves as a measure of the phase scale that the step represents, as shown in Equation (12).
Directional movement is used to drive the vectors (xn) towards convergence throughout
the solution field in order to obtain convergence. dm is introduced to move xn in direction
of the best vector (xbest − xn) and computed as per Equation (14).

dm = r× ρ2× (xbest − xn) (14)

where, ρ2 is a random parameter that is utilized to modify the phase size of each vector
agent. r is a uniformly distributed value in the range [0, 1]. ρ2 is calculated as per
Equation (15).

ρ2 = 2× r× α− α (15)

Equations (16) and (17) are adjusted with GSR and DM, considering the current
vector xc

n.
x1c

n = xc
n − gsr + dm (16)

where, x1c
n represents the modified vector resulting from the adjustments made to x1c

n. The
transformation of x1c

n can be expressed as per Equation (17).

x1c
n = xc

n − r× ρ1× 2∆x× xc
n

(vp c
n − vqc

n + ε
) + r× ρ2× (xbest − xc

n) (17)

where, vpc
n , vqc

n correspond to vn + ∆x and vn − ∆x, respectively. The vector vn is the
average of two vectors, xn and Zn+1.

Zn+1 = xn − r× (2∆x× xn) / xworst − xbest + ε) (18)

Equation (19) is used to improve both local search exploitation and global search
during the discovery process. By substituting the current solution vector xc

n with the new
solution vector xbest, the current solution vector x2c

n is obtained:

x2c
n = xbest − r× ρ1× 2∆x× xc

n
(vp c

n − vqc
n + ε

) + r× ρ2× (xc
r1 − xc

r2) (19)

Sensors 2023, 23, 8772 10 of 24

Subsequently, a new version of the solution xc+1
n , is computed as per Equation (20).

xc+1
n = ra× (rb× x1c

n + (1− rb)× x2c
n) + (1− ra)× x3c

n (20)

where ra and rb are random numbers within the range [0, 1], and x3c
n is defined as per

Equation (21).
x3c

n = xc+1
n − ρ1× (x2c

n − x1c
n) (21)

The Local Escaping Operator (LEO) process is a technique used in optimization
algorithms to overcome local optima and enhance convergence. LEO helps algorithms
swiftly move away from suboptimal solutions and explore new regions of the search space.
By incorporating LEO, optimization algorithms gain the ability to find better and more
efficient solutions. This operator plays a crucial role in improving the performance and
effectiveness of optimization algorithms, making them more robust for solving complex
optimization tasks.

3.3.2. Improved Gradient-Based Optimizer Algorithm

When applying population-based metaheuristic algorithms for optimization, the time-
varying inertia weight method is crucial. It improves the performance of the algorithm by
providing a balanced approach between local search and global search capabilities. The
value of the inertia weight is established in this study using an inertia weight technique.
Researchers have taken this approach frequently, and it has produced encouraging results
in terms of enhancing the algorithms’ ability to fine-tune. The weight parameter w is
calculated using a mathematical equation, which helps in adjusting the algorithm’s behavior
throughout the optimization process, promoting better exploration and exploitation of the
search space given by Equation (22).

w = 0.5 +
r()
2

(22)

In the equation provided, the function r() represents a random function that generates
values within the range [0, 1]. The inertia weight plays a significant role in the optimization
process by allowing control over early evolution’s premature convergence. In many test
suites, the use of an adequate inertia weight can result in the identification of better
solutions. The algorithm can more effectively explore the search space and possibly avoid
becoming stuck in local optima by dynamically modifying the inertia weight during the
optimization phase to find a balance between exploration and exploitation. The proposed
Equation (23) updates the inertia weight.

xc+1
n = w× ra× (rb× x1c

n + (1− rb)× x2c
n) + (1− ra)× x3c

n (23)

This strategy aims to increase initial exploration and enhance local search ability as
optimization progresses.

3.3.3. HGEO—Hybrid Gradient Equilibrium Optimization

By iteratively increasing a parameter value within a defined range, the GBO algorithm
enhances its exploration of potential solutions, leading to diversified solutions. This
approach improves the algorithm’s efficiency in searching for optimal solutions while
maintaining a balance between exploitation and exploration. The search space surrounding
the best solution (xbest) is calculated using GSR using Equation (5). By including random
behavior, the GBO algorithm incorporates a randomized exploration mechanism. This
randomization increases search process diversity and makes it easier to find local optima.
The best answer (xbest) and a randomly chosen solution are taken into account via a
random offset in Equation (19), which aids in the algorithm’s exploration of various areas
of the search space. Meanwhile, the Equilibrium optimizer (EO) algorithm focuses on
enhancing the exploitation phase to deliver precise solutions. The generation rate (

→
a),

Sensors 2023, 23, 8772 11 of 24

an essential parameter in the EO algorithm, controls the rate at which new solutions are
generated. Equation (19) defines the generation rate using a first-order exponential decay
process. This gradual reduction in the generation rate over time allows the EO algorithm to
converge toward more accurate solutions as the optimization progresses. By hybridizing
these strategies, the GBO and EO algorithms complement each other’s strengths. The GBO
algorithm explores the search space effectively through parameter adjustments and random
exploration, while the EO algorithm fine-tunes the search by controlling the generation
rate, leading to the discovery of precise solutions. The proposed HGEO is given as per
Equation (24).

gsr = r× ρ1× 2∆x× xn

(xworst − xbest + ε)
×→a (24)

Where
→
a =

→
a 0e−

→
k (I−I0) (25)

3.4. SA-BiLSTM

To address the challenges posed by BiLSTM, a multi-head self-attention based deep
neural network is proposed, incorporating LSTM cells. This architecture efficiently pro-
cesses sequential data, identifies important features, and handles variable-length sequences.
By leveraging self-attention, the model focuses on relevant parts of the input while dis-
regarding irrelevant ones. The multi-head attention mechanism further enhances this
capability by enabling parallel processing of different parts of the sequence. Figure 3
depicts the SA-BiLSTM.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 24

generation rate, leading to the discovery of precise solutions. The proposed HGEO is
given as per Equation (24). 𝑔𝑠𝑟 = 𝑟 × 𝜌1 × ∆ × () × �⃗� (24)

Where �⃗� = �⃗� 𝑒 ⃗() (25)

3.4. SA-BiLSTM
To address the challenges posed by BiLSTM, a multi-head self-attention based deep

neural network is proposed, incorporating LSTM cells. This architecture efficiently pro-
cesses sequential data, identifies important features, and handles variable-length se-
quences. By leveraging self-attention, the model focuses on relevant parts of the input
while disregarding irrelevant ones. The multi-head attention mechanism further enhances
this capability by enabling parallel processing of different parts of the sequence. Figure 3
depicts the SA-BiLSTM.

LSTM’s ability to learn and remember long-term dependencies and overcome van-
ishing gradient problems makes it a powerful tool for sequential data processing. The
proposed architecture offers advantages over BiLSTM, requiring fewer computations and
providing interpretability for better understanding of predictions. A cell memory state
and three gates are also present. According to Equations (26)– (31), each LSTM cell’s com-
putation is conducted. The processes inside the LSTM cell are expressed as 𝐴 , represent-
ing the current input vector, ℎ representing the most recent hidden state and 𝑐 rep-
resenting the most recent memory cell state.

Figure 3. SA-Bi-LSTM.

The input sequence 𝐴 undergoes processing through a Bidirectional LSTM, where
it is examined both from left-to-right (Forward LSTM) and right-to-left (Backward LSTM).
The outputs from these two orientations are subsequently concatenated to form a unified
sequence of hidden states. Following this, a multi-head attention mechanism is employed.
The unified hidden states are segmented into multiple “heads”, and attention weights are
independently determined for each head. These weights are then used to compute a
weighted sum of the hidden states, represented by 𝑦 . Finally, the attention-informed hid-
den states pass through fully connected layers, resulting in the model’s classification out-
put, as shown in Algorithm 2.

Figure 3. SA-Bi-LSTM.

LSTM’s ability to learn and remember long-term dependencies and overcome van-
ishing gradient problems makes it a powerful tool for sequential data processing. The
proposed architecture offers advantages over BiLSTM, requiring fewer computations and
providing interpretability for better understanding of predictions. A cell memory state and
three gates are also present. According to Equations (26)–(31), each LSTM cell’s computa-
tion is conducted. The processes inside the LSTM cell are expressed as At, representing the
current input vector, ht−1 representing the most recent hidden state and ct−1 representing
the most recent memory cell state.

The input sequence At undergoes processing through a Bidirectional LSTM, where it
is examined both from left-to-right (Forward LSTM) and right-to-left (Backward LSTM).
The outputs from these two orientations are subsequently concatenated to form a unified
sequence of hidden states. Following this, a multi-head attention mechanism is employed.
The unified hidden states are segmented into multiple “heads”, and attention weights

Sensors 2023, 23, 8772 12 of 24

are independently determined for each head. These weights are then used to compute
a weighted sum of the hidden states, represented by yt. Finally, the attention-informed
hidden states pass through fully connected layers, resulting in the model’s classification
output, as shown in Algorithm 2.

Algorithm 2: Proposed Model (SA-BiLSTM)

1. Input

a. Sequence of vectors At (a1, a2, . . ., aT)

2. Bidirectional LSTM Processing

a. For_LSTM: Processing input sequence from left to right.
b. Back_LSTM: Processing input sequence from right to left.
c. Concatenate Outputs: Form a single sequence of hidden states.

3. LSTM Cell Computation:

a. The Input Gate is computed via Equation (26)
b. Forget gate is calculated via Equation (27)
c. The output gate and Input Modulation gate are calculated via Equations (28) and (29)
d. Memory cell is updated via Equation (30)
e. The Hidden state is updated via Equation (31)

4. Multi-Head Attention Mechanism

a. Hidden States are divided into multiple “heads”.
b. Attention Weights calculated Individually for each head, and weighted sum is

calculated.
c. Weighted Sum yt = Σ(αt ∗ ht), where Σ represents the elementwise multiplication

and sum of attention weights and hidden states.

5. Fully Connected Layers

a. Process the attention-weighted hidden states through one or more fully connected
layers.

6. Output

a. Classification, including attention-weighted hidden states.

inpt = Sa(IA.Inp At + Rh.inpht−1 + bv(inp) (26)

f gt = Sa(IA.Fg At + Rh.Fght−1 + bv(Fg) (27)

outt = Sa(IA.Out At + Rh.Outht−1 + bv(Out) (28)

mt = B(IAt At + Rhcht−1 + bv(c) (29)

ct = Fgtct−1 + mt.Inpt (30)

ht = Outt.B(ct) (31)

At time t, the symbols where inpt, f gt, outt, and mt are used to denote the input,
forget, output, and input modulation gates, respectively. The input weights are symbolized
by IA, the recursive weights by R, and the bias vector by bv. The sigmoid activation
function is given by Sa(A) =

(
1 + e−A)−1, and B(A) =

(
eA − e−A)/(eA + e−A) represent

the hyperbolic tangent function. The vector f gt which supplies potential values for the
memory cell’s update, is derived from the current input and preceding state through the
application of the tanh activation function. Forget gate f gt plays a role in discarding the
data that were previously communicated. The output gate outt holds the information
for subsequent operations that govern the cell’s output at time t. The hidden state ht is

Sensors 2023, 23, 8772 13 of 24

calculated using the elementwise multiplication of the output gate vector outt and the
current memory cell state outt, after being projected by the tanh function. Following this,
the memory cell referred to as ct, is updated.

Bidirectional LSTMs and multi-head attention are two potent deep learning ap-
proaches that are combined in the Multi-Head Attention-based Bidirectional LSTM (MHA-
BiLSTM) architecture. Recurrent neural networks with the ability to process sequences
both forward and backward are known as bidirectional LSTMs. This capability enables the
network to collect both past and future data. Contrarily, a technique known as multi-head
attention enables the network to concentrate on various elements of the input sequence at
once, enhancing its capacity to model long-distance dependencies. A bidirectional LSTM
layer processes the input sequence in the MHA-BiLSTM architecture first in order to capture
the temporal dependencies in the data. After that, a single sequence of hidden states is
created by concatenating the outputs from the forward and backward directions. The
network is then given multi-head attention to the hidden states to enable it to concentrate
on various sections of the sequence. This is accomplished by dividing the hidden states into
many “heads” and computing attention weights for each head individually. The weighted
sum of the hidden states created by combining the attention weights is then used as the
input for the network’s next layer. The ultimate output of the network is generated by
feeding the output of the attention layer into one or more fully connected layers. The final
output of the SA-BiLSTM is obtained by combining the attention-weighted hidden states,
as in Equation (32):

yt = Σ(αt × ht) (32)

where, Σ represents the sum of the elementwise multiplication of the attention weights αt
and the corresponding hidden states (ht).

4. Result and Discussion
4.1. Dataset Description

The datasets that are used in the model for evaluation are the KDD-CUP99 and
TON_IoT datasets. KDD-CUP99 [29] is considered a benchmark in the field of Intrusion
Detection developed by DARPA. It has a wide range of intrusions mixed with regular
connections. It still finds its way into modern intrusion detection applications because of
the significance of the dataset. DoS is one of the main targets for this research through this
dataset that will be focused on primarily. Researchers use this dataset to develop and eval-
uate machine learning algorithms for effective intrusion detection in computer networks.
More such new datasets have come up, which not only have recent data collection but also
have data collection on the Internet of Things (IoT) and the Industrial Internet of Things
(IIoT). The TON_IoT dataset [30] is a new-generation dataset of such things, designed for
evaluating cybersecurity applications based on AI and Machine/Deep Learning algorithms.
These datasets encompass heterogeneous data from IoT and IIoT telemetry datasets, Win-
dows and Linux operating system datasets, and network traffic datasets. Gathered from
a realistic and large-scale network environment at UNSW Canberra, the datasets feature
a testbed network with IoT and IIoT networks, along with simulated cyber-attacks like
DoS, DDoS, and ransomware. Data sets are available for researchers to discuss and analyze
cybersecurity projects. These include intrusion detection, malicious software detection,
privacy protection, digital and criminal activity detection, and tracking potential security
threats. The VeReMi dataset [31] is a dataset that suits a VANET architecture and simulates
it perfectly for a vehicular attack scenario. The benchmark dataset is a standard dataset
that consists of various attacks, but for our use, we have combined all attacks into one class.
The purpose of combining all attacks is to create an environment that has two classes: the
attack class and the normal class.

It is clarified that the KDD-CUP99 is an older dataset, and the nature of the network has
evolved since then. Our intention behind using it was to check our algorithm’s performance
on diverse datasets, including legacy data. Similarly, the TON_IoT dataset was used as a
more recent dataset to see how our algorithm performs with contemporary network traffic.

Sensors 2023, 23, 8772 14 of 24

It has been clarified that two of the datasets are not directly representative of the VANET
environment. However, our aim was to show that our method’s applicability is not limited
to a specific type or era of network traffic. To emulate the VANET environment, we have
used the VeReMi dataset.

4.2. Experiment Setup

Our experimental setup is backed by a robust Intel (R) Core (TM) i7-8700 CPU (IBM
India, Delhi, India) clocked at 3.20 GHz. The system boasted 16 GB of RAM, ensuring
efficient multitasking and data handling. Furthermore, the presence of a 256-GB SSD is used
for faster data access. The experiments were performed on a Windows 11 operating system
using MATLAB 2019a. ReLU is used as an activation function. For training the model, we
adopted a learning rate of 0.001 and tested with different epochs, i.e., 100, 200, 300, 400, and
500. All calculations were batch-processed in blocks of 512 for better convergence.

4.3. Performance Analysis

The performance of the CCNN-SA-BiLSTM is analyzed, and its results are compared to
those of internal adaptations and variations of our proposed algorithm, i.e., CCNN-BiLSTM,
CCNN-LSTM, and other established algorithms, CNN-LSTM, CNN-GRU (Gated recurrent
unit), and 3-LSTM. Evaluation of the suggested model’s efficacy is carried out in terms of
NPV, FPR, FNR, and MCC, as well as Accuracy, Precision, Recall, Sensitivity, and Specificity.
Performance is evaluated using a Confusion Matrix, which includes metrics such as ACC
(Accuracy), PRE (Precision), SEN (Sensitivity), SPE (Specificity), F_M (F-measure), NPV
(Negative Predictive Value), FPR (False Positive Rate), FNR (False Negative Rate), and
MCC (Matthew’s correlation coefficient). With the help of individual metrics, a confusion
matrix is leveraged at the end to provide a consolidated view of the model’s performance.
The methodology for calculating these metrics is described in detail in this section.

1. Accuracy

The percentage of accurately predicted cases in all examples is used to measure accuracy.

ACC =
Tp + Tn

Tp + Fp + Fn + Tn

2. Precision

Precision is a helpful indicator of how precisely the positive chemicals are expected
because it indicates the percentage of correctly anticipated positive cases in all test findings.

PRE =
Tp

Tp + Fp

3. Sensitivity

By dividing the total positives by the percentage of genuine positive forecasts, one
may determine the sensitivity number, also referred to as Recall.

SEN =
Tp

Tp + Fn

4. Specificity

The percentage of successfully predicted negative outcomes over all negative out-
comes is known as specificity.

SPE =
Tn

Tn + Fp

5. F-Measure

Sensors 2023, 23, 8772 15 of 24

In order to ensure that each class only contains a single sort of data item, the F-Measure
number strikes a compromise between fully identifying all data bits and doing so.

F_M =
PRE. SEN

PRE + SEN

6. Matthew’s correlation coefficient (MCC)

A binary two-by-two variable association measure is the MCC, also called the
Phi Coefficient.

MCC =
(Tp× Tn− Fp× Fn)√

(Tp + Fn)(Tn + Fp)(Tn + Fn)(Tp + Fp)

7. Negative Prediction Value (NPV)

The performance of a diagnostic test or similar quantitative metric is described
by NPV.

NPV =
Tn

Tn + Fn

8. False Positive Ratio (FPR)

The false positive rate is derived by dividing the total number of negative events
by the total number of negative events that were incorrectly labeled as positive
(false positives).

FPR =
Fp

Fp + Tn

9. False Negative Ratio (FNR)

The “false-negative rate,” sometimes known as the “miss rate,” is the probability that
the test will fail to identify a real positive.

FNR =
Fn

Fn + Tp

The results in Table 2 show that the proposed CCNN-SA-BiLSTM model outperforms
all other models on the KDD’99 dataset. It achieves a high sensitivity of 99% and a high
specificity of 100%, indicating its ability to accurately detect both true positive and true
negative instances. The overall accuracy of the proposed model is 99%, demonstrating
its capability to correctly classify intrusion and non-intrusion instances. Furthermore, the
precision of CCNN-SA-BiLSTM is 99%, indicating that the model is effective at identifying
positive instances while minimizing false positives. The F-measure of 99% confirms the
model’s balanced performance between precision and sensitivity. Additionally, the NPV of
99% suggests that the model accurately identifies non-intrusion instances. The proposed
model also exhibits an exceptional MCC of 98%, indicating a strong correlation between
predicted and true values. Moreover, the FPR and FNR values are impressively low at 0%
and 1%, respectively, signifying minimal misclassifications of positive and negative cases.

Table 2. Proposed and existing models’ performance comparison: KDD’99.

Methods SEN SPE ACC PRE F_M NPV FPR FNR MCC

Proposed CCNN-SA-BiLSTM 0.99 1.00 0.99 1.00 0.99 0.99 0.00 0.01 0.98
CCNN-BiLSTM 0.98 0.98 0.98 0.98 0.98 0.98 0.02 0.02 0.96
CCNN-LSTM 0.98 0.97 0.97 0.97 0.97 0.98 0.03 0.02 0.95
CNN-BiLSTM 0.97 0.98 0.97 0.98 0.97 0.97 0.02 0.03 0.95

CNN-LSTM [32] 0.98 0.96 0.97 0.97 0.97 0.97 0.04 0.02 0.94
CNN-GRU [33] 0.97 0.96 0.97 0.96 0.97 0.97 0.04 0.03 0.94

Sensors 2023, 23, 8772 16 of 24

Table 3 presents the performance comparison of intrusion detection models on the
TON_IoT dataset. The results demonstrate that the proposed CCNN-SA-BiLSTM model
maintains a high level of performance on the TON_IoT dataset. It achieves a sensitivity of
99% and a specificity of 99%, indicating its ability to accurately detect both positive and
negative instances of intrusion. The overall accuracy of the model is 99%, showcasing its
capability to correctly classify instances in the dataset. Moreover, the precision of CCNN-
SA-BiLSTM is 99%, highlighting its effectiveness in identifying positive instances while
minimizing false positives. The F-measure of 99% further corroborates the model’s balanced
performance between precision and sensitivity. Additionally, the NPV of 99% indicates its
proficiency in accurately identifying non-intrusion instances. Furthermore, the MCC value
of 98% suggests a strong correlation between the predicted and true values, indicating
the model’s reliability in making accurate predictions. The FPR and FNR values are both
low at 1%, indicating a minimal rate of misclassification for both positive and negative
instances. Among the existing models, CCNN-BiLSTM shows the closest performance to
the proposed model, with high sensitivity, specificity, and accuracy scores. However, the
proposed CCNN-SA-BiLSTM model outperforms all other models across most metrics,
demonstrating its superior intrusion detection capability on the TON_IoT dataset.

Table 3. Proposed and existing models’ performance comparison: TON_IoT.

Methods SEN SPE ACC PRE F_M NPV FPR FNR MCC

Proposed CCNN-SA-BiLSTM 0.99 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.98
CCNN-BiLSTM 0.98 0.99 0.98 0.98 0.98 0.99 0.01 0.02 0.96
CCNN-LSTM 0.97 0.98 0.98 0.97 0.97 0.98 0.02 0.03 0.95
CNN-BiLSTM 0.97 0.98 0.98 0.97 0.97 0.98 0.02 0.03 0.95

CNN-LSTM [34] 0.95 0.98 0.97 0.95 0.95 0.98 0.02 0.05 0.93
CNN-GRU [33] 0.94 0.97 0.96 0.94 0.94 0.97 0.03 0.06 0.91

Table 4 presents the performance comparison of various algorithms; the Proposed
Algorithm exhibited an accuracy of 98.6%. Its precision and sensitivity stood at 97.8%, with
an F-measure of 96.1% [35]. While CNN-LSTM [36] registered a high precision of 99.6%,
its sensitivity was slightly lower at 95.6%, resulting in an F-measure of 97.6%. The CCNN-
BiLSTM method followed closely, with metrics showing 97.2% accuracy, 96.3% precision
and sensitivity, and a 93.4% F-measure. The CCNN-LSTM showed a similar performance,
with 97.1% accuracy and an F-measure of 92.1%. Among the methods, 3-LSTM [36] had the
lowest metrics, with 95% accuracy and an F-measure equal to its sensitivity of 94.95%.

Table 4. Proposed and existing models’ performance comparison: VeReMi.

Methods ACC PRE SEN F_M

Proposed
CCNN-SA-BiLSTM 0.986 0.978 0.978 0.961

CNN-LSTM [36] 0.98 0.996 0.956 0.976
CCNN-BiLSTM 0.972 0.963 0.963 0.934
CCNN-LSTM 0.971 0.963 0.961 0.921
3-LSTM [37] 0.95 0.951 0.9495 0.9495

It is evident that while the Proposed Algorithm and CNN-LSTM [36] perform closely,
the former provides a more balanced performance across all metrics.

4.4. Graphical Representation

The performance comparison between the current models and the suggested model
for KDD’99, TON_IoT, and VeReMi datasets are shown graphically in Figures 4–12. The
y-axis displays the values of the performance metrics, while the x-axis indicates the various
models. Each statistic is represented by two subplots in the graph, one for KDD’99 and the
other for the TON_IoT dataset. The graph shows that the suggested model performs better

Sensors 2023, 23, 8772 17 of 24

than the current models across all performance criteria for the two datasets. The suggested
model’s accuracy is superior to the current models for both datasets. For both datasets, the
suggested model’s FNR and FPR are lower than those of the current models. For KDD’99,
the suggested model outperforms the current models in terms of MCC and NPV, but for
the TON_IoT dataset, the proposed model outperforms the existing models in terms of
MCC and NPV. The suggested model has better Precision, Sensitivity, and Specificity than
the current models for both datasets. The VeReMi dataset is considered in Figure 9.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 24

and the other for the TON_IoT dataset. The graph shows that the suggested model per-
forms better than the current models across all performance criteria for the two datasets.
The suggested model’s accuracy is superior to the current models for both datasets. For
both datasets, the suggested model’s FNR and FPR are lower than those of the current
models. For KDD’99, the suggested model outperforms the current models in terms of
MCC and NPV, but for the TON_IoT dataset, the proposed model outperforms the exist-
ing models in terms of MCC and NPV. The suggested model has better Precision, Sensi-
tivity, and Specificity than the current models for both datasets. The VeReMi dataset is
considered in Figure 9.

(a) (b)

Figure 4. Sensitivity and Specificity (a) KDD’99; (b) TON_IoT.

(a) (b)

Figure 5. Accuracy and Precision (a) KDD’99; (b) TON_IoT.

Figure 4a, b represents the sensitivity and specificity of the KDD’99 and TON_IoT
Datasets. The balance between true positive and true negative is shown using this graph,
wherein the proposed model (CCNN-SA-BiLSTM) performed better than others. Figure
5a, b represents the accuracy and precision of the different models on different datasets.
It shows the overall classification of the model. The accuracy of the proposed model is the
best among all the models, which is attributed to the Bidirectional nature of the model,
which considers both past and future data and results in good predictions.

Figure 4. Sensitivity and Specificity (a) KDD’99; (b) TON_IoT.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 24

and the other for the TON_IoT dataset. The graph shows that the suggested model per-
forms better than the current models across all performance criteria for the two datasets.
The suggested model’s accuracy is superior to the current models for both datasets. For
both datasets, the suggested model’s FNR and FPR are lower than those of the current
models. For KDD’99, the suggested model outperforms the current models in terms of
MCC and NPV, but for the TON_IoT dataset, the proposed model outperforms the exist-
ing models in terms of MCC and NPV. The suggested model has better Precision, Sensi-
tivity, and Specificity than the current models for both datasets. The VeReMi dataset is
considered in Figure 9.

(a) (b)

Figure 4. Sensitivity and Specificity (a) KDD’99; (b) TON_IoT.

(a) (b)

Figure 5. Accuracy and Precision (a) KDD’99; (b) TON_IoT.

Figure 4a, b represents the sensitivity and specificity of the KDD’99 and TON_IoT
Datasets. The balance between true positive and true negative is shown using this graph,
wherein the proposed model (CCNN-SA-BiLSTM) performed better than others. Figure
5a, b represents the accuracy and precision of the different models on different datasets.
It shows the overall classification of the model. The accuracy of the proposed model is the
best among all the models, which is attributed to the Bidirectional nature of the model,
which considers both past and future data and results in good predictions.

Figure 5. Accuracy and Precision (a) KDD’99; (b) TON_IoT.

Sensors 2023, 23, 8772 18 of 24Sensors 2023, 23, x FOR PEER REVIEW 18 of 24

(a) (b)

Figure 6. Recall and NPV (a) KDD’99; (b) TON_IoT.

Figure 6a, b represents the Recall and NPV results, indicating the importance of iden-
tifying True Positives and True negatives. The high result indicates the extent to which
the model was able to identify both factors. CCCN-SA-BiLSTM outperforms the other
models by a margin of 1%. The identification of mistakes made by the classifier is equally
important, as it helps in tuning the model’s threshold for classification. Figure 7a, b are
used for this purpose, and the metrics used here are False Positive Rate and False Negative
Rate.

(a) (b)

Figure 7. FPR and FNR (a) KDD’99; (b) TON_IoT.

The overall holistic view of the model is finally represented by F_Measure and MCC,
which are represented in Figure 8a, b. The overall balance between precision, Recall, and
correlation is shown, and the model (CCNN-SA-BiLSTM) performed better than the oth-
ers. The classes are balanced, which is one of the factors that leads to low FPR and FNR
for our proposed work, which can be seen in Figure 11 as well. The cascaded CNN cap-
tures the hierarchical features effectively, reducing the FPV and FNV significantly. The
self-attention mechanism in our work enhances the long-term dependencies, which leads
to better results when compared with other existing models.

Figure 6. Recall and NPV (a) KDD’99; (b) TON_IoT.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 24

(a) (b)

Figure 6. Recall and NPV (a) KDD’99; (b) TON_IoT.

Figure 6a, b represents the Recall and NPV results, indicating the importance of iden-
tifying True Positives and True negatives. The high result indicates the extent to which
the model was able to identify both factors. CCCN-SA-BiLSTM outperforms the other
models by a margin of 1%. The identification of mistakes made by the classifier is equally
important, as it helps in tuning the model’s threshold for classification. Figure 7a, b are
used for this purpose, and the metrics used here are False Positive Rate and False Negative
Rate.

(a) (b)

Figure 7. FPR and FNR (a) KDD’99; (b) TON_IoT.

The overall holistic view of the model is finally represented by F_Measure and MCC,
which are represented in Figure 8a, b. The overall balance between precision, Recall, and
correlation is shown, and the model (CCNN-SA-BiLSTM) performed better than the oth-
ers. The classes are balanced, which is one of the factors that leads to low FPR and FNR
for our proposed work, which can be seen in Figure 11 as well. The cascaded CNN cap-
tures the hierarchical features effectively, reducing the FPV and FNV significantly. The
self-attention mechanism in our work enhances the long-term dependencies, which leads
to better results when compared with other existing models.

Figure 7. FPR and FNR (a) KDD’99; (b) TON_IoT.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

(a) (b)

Figure 8. F_Measure and MCC (a) KDD’99; (b) TON_IoT.

Figure 9a represents the accuracy and precision of proposed and existing models.
The accuracy of our model stands at 98.6%, which slightly outperformed the CNN-LSTM
model by less than 1%. The LSTM model surely improves the accuracy of the model in the
VANET architecture, as can be seen in Figure 9. The addition of the Self- attention Layer
has given some edge to our model in terms of accuracy, but when compared with preci-
sion metrics, CNN-LSTM has an advantage over the proposed model. Figure 9b talks
about the sensitivity and F_Measure of the models. The stacked 3-LSTM performs the
lowest among all the models. The cascaded way of using LSTM does not improve the
result as much as cascaded CNN, which is evident in the graph when sensitivity is taken
into consideration.

(a) (b)

Figure 9. VeReMi Dataset (a) Accuracy and Precision; (b) Sensitivity and F_Measure.

A performance comparison of accuracy between the proposed and existing models
is presented in Tables 5 and 6.

Figure 8. F_Measure and MCC (a) KDD’99; (b) TON_IoT.

Sensors 2023, 23, 8772 19 of 24

Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

(a) (b)

Figure 8. F_Measure and MCC (a) KDD’99; (b) TON_IoT.

Figure 9a represents the accuracy and precision of proposed and existing models.
The accuracy of our model stands at 98.6%, which slightly outperformed the CNN-LSTM
model by less than 1%. The LSTM model surely improves the accuracy of the model in the
VANET architecture, as can be seen in Figure 9. The addition of the Self- attention Layer
has given some edge to our model in terms of accuracy, but when compared with preci-
sion metrics, CNN-LSTM has an advantage over the proposed model. Figure 9b talks
about the sensitivity and F_Measure of the models. The stacked 3-LSTM performs the
lowest among all the models. The cascaded way of using LSTM does not improve the
result as much as cascaded CNN, which is evident in the graph when sensitivity is taken
into consideration.

(a) (b)

Figure 9. VeReMi Dataset (a) Accuracy and Precision; (b) Sensitivity and F_Measure.

A performance comparison of accuracy between the proposed and existing models
is presented in Tables 5 and 6.

Figure 9. VeReMi Dataset (a) Accuracy and Precision; (b) Sensitivity and F_Measure.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

Table 5. Proposed and existing models’ performance comparison by varying Epochs: KDD’99.

Number of Epochs 100 200 300 400 500
Proposed CCNN-SA-BiLSTM 0.991149 0.991218 0.993498 0.994139 0.997091

CCNN-BiLSTM 0.979207 0.979353 0.979585 0.979748 0.979765
CCNN-LSTM 0.973448 0.973573 0.975947 0.976786 0.977019
CNN-BiLSTM 0.973555 0.974021 0.974493 0.974956 0.975111
CNN-LSTM 0.970036 0.970311 0.972446 0.975023 0.975630
CNN-GRU 0.968650 0.969053 0.969457 0.969892 0.969947

The model runs for five different Epoch values, and the result pertaining to that is
mentioned above. The result with a 500-epoch value showed promising results in both
datasets. These tables illustrate the variations in performance (accuracy) across different
epochs for the KDD’99 and TON_IoT datasets, respectively. The accuracy improved as the
epochs were increased, which helped the model converge at a better local minimum value.
Further, an increase in epoch would have resulted in overfitting of the dataset.

Table 6. Proposed and existing models’ performance comparison by varying Epochs: TON_IoT.

Number of Epochs 100 200 300 400 500
Proposed CCNN-SA-BiLSTM 0.990159 0.990293 0.991935 0.994126 0.994933

CCNN-BiLSTM 0.984323 0.98446 0.984845 0.985076 0.985405
CCNN-LSTM 0.979761 0.980202 0.981626 0.981631 0.983011
CNN-BiLSTM 0.979234 0.979386 0.979723 0.979737 0.979812
CNN-LSTM 0.967857 0.967945 0.969606 0.969872 0.971189
CNN-GRU 0.960096 0.96026 0.960357 0.960643 0.96086

The heatmap shown in Figure 10, extracted from Tables 5 and 6, shows the accuracy
with five different epochs, where (a) represents KDD’99 and (b) represents the TON_IoT
dataset. The accuracy of the DoS class in the KDD’99 dataset as per the confusion matrix
is 99.6%, whereas that of the normal class is 98.6%, as represented in Figure 10a.

(a) (b)

Figure 10. Epochs (a) KDD’99; (b) TON_IoT.

Likewise, for the TON_IoT Dataset, the accuracy of the Normal class is 99.4%, and
that of the DoS and DDoS classes is 88.5% and 96.4%, as represented in Figure 11b. The
low values of False Positive and False negative help achieve good performance in the

Figure 10. Epochs (a) KDD’99; (b) TON_IoT.

Figure 4a, b represents the sensitivity and specificity of the KDD’99 and TON_IoT
Datasets. The balance between true positive and true negative is shown using this graph,
wherein the proposed model (CCNN-SA-BiLSTM) performed better than others. Figure 5a,
b represents the accuracy and precision of the different models on different datasets. It
shows the overall classification of the model. The accuracy of the proposed model is the
best among all the models, which is attributed to the Bidirectional nature of the model,
which considers both past and future data and results in good predictions.

Figure 6a, b represents the Recall and NPV results, indicating the importance of
identifying True Positives and True negatives. The high result indicates the extent to which
the model was able to identify both factors. CCCN-SA-BiLSTM outperforms the other
models by a margin of 1%. The identification of mistakes made by the classifier is equally
important, as it helps in tuning the model’s threshold for classification. Figure 7a, b are used
for this purpose, and the metrics used here are False Positive Rate and False Negative Rate.

Sensors 2023, 23, 8772 20 of 24

Sensors 2023, 23, x FOR PEER REVIEW 21 of 24

model. The class imbalance factor is also taken into consideration, as can be seen in the
table, where a roughly equal distribution of all the classes is present in the model. Thus,
the proposed model exhibits robust performance on the given datasets.

(a) (b)

Figure 11. Confusion Matrix: (a) KDD’99; (b) TON_IoT.

Additionally, Figure 12 illustrates the RoC curve, with (a) denoting KDD’99 and (b)
representing TON_IoT. The RoC plots the true positive rate against the false positive rate at
various thresholds. In KDD’99, the AUC value is nearing 1, representing the classifier is good
at differentiating among both the classes, whereas in TON_IoT, one vs. all analysis is used,
wherein the first normal class is taken as positive and the rest as negative, the next being DoS
vs. all, and finally DDoS vs. all. The AUC of 0.98, 0.975, and 0.965 represent that the model is
able to clearly distinguish between the classes and represents good model performance.

(a) (b)

Figure 12. RoC Curve (a) KDD’99; (b) TON_IoT.

Figure 11. Confusion Matrix: (a) KDD’99; (b) TON_IoT.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 24

model. The class imbalance factor is also taken into consideration, as can be seen in the
table, where a roughly equal distribution of all the classes is present in the model. Thus,
the proposed model exhibits robust performance on the given datasets.

(a) (b)

Figure 11. Confusion Matrix: (a) KDD’99; (b) TON_IoT.

Additionally, Figure 12 illustrates the RoC curve, with (a) denoting KDD’99 and (b)
representing TON_IoT. The RoC plots the true positive rate against the false positive rate at
various thresholds. In KDD’99, the AUC value is nearing 1, representing the classifier is good
at differentiating among both the classes, whereas in TON_IoT, one vs. all analysis is used,
wherein the first normal class is taken as positive and the rest as negative, the next being DoS
vs. all, and finally DDoS vs. all. The AUC of 0.98, 0.975, and 0.965 represent that the model is
able to clearly distinguish between the classes and represents good model performance.

(a) (b)

Figure 12. RoC Curve (a) KDD’99; (b) TON_IoT. Figure 12. RoC Curve (a) KDD’99; (b) TON_IoT.

The overall holistic view of the model is finally represented by F_Measure and MCC,
which are represented in Figure 8a, b. The overall balance between precision, Recall, and
correlation is shown, and the model (CCNN-SA-BiLSTM) performed better than the others.
The classes are balanced, which is one of the factors that leads to low FPR and FNR for our
proposed work, which can be seen in Figure 11 as well. The cascaded CNN captures the
hierarchical features effectively, reducing the FPV and FNV significantly. The self-attention
mechanism in our work enhances the long-term dependencies, which leads to better results
when compared with other existing models.

Figure 9a represents the accuracy and precision of proposed and existing models.
The accuracy of our model stands at 98.6%, which slightly outperformed the CNN-LSTM
model by less than 1%. The LSTM model surely improves the accuracy of the model in the
VANET architecture, as can be seen in Figure 9. The addition of the Self- attention Layer

Sensors 2023, 23, 8772 21 of 24

has given some edge to our model in terms of accuracy, but when compared with precision
metrics, CNN-LSTM has an advantage over the proposed model. Figure 9b talks about the
sensitivity and F_Measure of the models. The stacked 3-LSTM performs the lowest among
all the models. The cascaded way of using LSTM does not improve the result as much as
cascaded CNN, which is evident in the graph when sensitivity is taken into consideration.

A performance comparison of accuracy between the proposed and existing models is
presented in Tables 5 and 6.

Table 5. Proposed and existing models’ performance comparison by varying Epochs: KDD’99.

Number of Epochs 100 200 300 400 500

Proposed CCNN-SA-BiLSTM 0.991149 0.991218 0.993498 0.994139 0.997091
CCNN-BiLSTM 0.979207 0.979353 0.979585 0.979748 0.979765
CCNN-LSTM 0.973448 0.973573 0.975947 0.976786 0.977019
CNN-BiLSTM 0.973555 0.974021 0.974493 0.974956 0.975111
CNN-LSTM 0.970036 0.970311 0.972446 0.975023 0.975630
CNN-GRU 0.968650 0.969053 0.969457 0.969892 0.969947

Table 6. Proposed and existing models’ performance comparison by varying Epochs: TON_IoT.

Number of Epochs 100 200 300 400 500

Proposed CCNN-SA-BiLSTM 0.990159 0.990293 0.991935 0.994126 0.994933
CCNN-BiLSTM 0.984323 0.98446 0.984845 0.985076 0.985405
CCNN-LSTM 0.979761 0.980202 0.981626 0.981631 0.983011
CNN-BiLSTM 0.979234 0.979386 0.979723 0.979737 0.979812
CNN-LSTM 0.967857 0.967945 0.969606 0.969872 0.971189
CNN-GRU 0.960096 0.96026 0.960357 0.960643 0.96086

The model runs for five different Epoch values, and the result pertaining to that is
mentioned above. The result with a 500-epoch value showed promising results in both
datasets. These tables illustrate the variations in performance (accuracy) across different
epochs for the KDD’99 and TON_IoT datasets, respectively. The accuracy improved as the
epochs were increased, which helped the model converge at a better local minimum value.
Further, an increase in epoch would have resulted in overfitting of the dataset.

The heatmap shown in Figure 10, extracted from Tables 5 and 6, shows the accuracy
with five different epochs, where (a) represents KDD’99 and (b) represents the TON_IoT
dataset. The accuracy of the DoS class in the KDD’99 dataset as per the confusion matrix is
99.6%, whereas that of the normal class is 98.6%, as represented in Figure 10a.

Likewise, for the TON_IoT Dataset, the accuracy of the Normal class is 99.4%, and
that of the DoS and DDoS classes is 88.5% and 96.4%, as represented in Figure 11b. The low
values of False Positive and False negative help achieve good performance in the model.
The class imbalance factor is also taken into consideration, as can be seen in the table, where
a roughly equal distribution of all the classes is present in the model. Thus, the proposed
model exhibits robust performance on the given datasets.

Additionally, Figure 12 illustrates the RoC curve, with (a) denoting KDD’99 and (b)
representing TON_IoT. The RoC plots the true positive rate against the false positive rate at
various thresholds. In KDD’99, the AUC value is nearing 1, representing the classifier is
good at differentiating among both the classes, whereas in TON_IoT, one vs. all analysis is
used, wherein the first normal class is taken as positive and the rest as negative, the next
being DoS vs. all, and finally DDoS vs. all. The AUC of 0.98, 0.975, and 0.965 represent
that the model is able to clearly distinguish between the classes and represents good
model performance.

The performance of the CCNN-SA-BiLSTM is attributed to the integration of the SA
mechanism with the BiLSTM. The self-attention mechanism enables the model to focus on
the most relevant features, while the bidirectional nature of the LSTM captures patterns

Sensors 2023, 23, 8772 22 of 24

from both past and future time steps. This combination allows for a more comprehensive
feature understanding, leading to better classification performance as compared to other
methods. The result is supported by the different metrics discussed above, and the results
for the same are depicted via graphs.

5. Conclusions and Future Work

Vehicle problems directly affect both human and traffic safety, making the security
of the vehicle network a significant and important issue. Recent years have seen the
importance of VANET grow for enabling intelligent transport systems, ensuring traffic
safety, and avoiding collisions. VANETs, however, encountered serious difficulties as a
result of several attacks, such as DoS and DDoS. A strong AI-based NIDS was required to
overcome these security issues. This research presents an innovative method for creating
an AI-based NIDS that makes use of deep learning techniques. The proposed model
specifically included SA-BiLSTM for classification and CCNN for learning high-level
features. CCNN and SA-BiLSTM performance was improved using the Multi-variant of
Gradient optimization algorithm (MV-GBO). Additionally, feature learning was improved
by using information gained using MV-GBO-based feature extraction. On the MATLAB
platform, trustworthy datasets like KDD-CUP99, ToN-IoT, and VeReMi were used to assess
the effectiveness of the suggested model. In future work, the model will be tested on more
VANET network beds to check the robustness of the model and its adaptability, as well
as on more attacks and faults. Integrating the model with edge computing to reduce the
latency in decision-making and processing will further enhance the work. The model’s
scalability to handle large network traffic without compromising the model’s accuracy will
also be explored in the future by the team.

Author Contributions: Conceptualization, A.M.; Formal analysis, A.M.; Investigation, A.M.; Method-
ology, A.M.; Supervision, S.K., U.D. and O.K.; Validation, A.M. and U.D.; Writing, A.M.; Review and
Editing, S.K., U.D., O.K., M.A. and J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is supported by the B11 unit of assessment, Centre for Computing and
Informatics Research Centre, Department of Computer Science, Nottingham Trent University, UK.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Research data will be available on individual requests to the corre-
sponding author considering collaboration possibilities with the researcher or research team and with
restrictions that the data will be used only for further research in the related literature progress.

Acknowledgments: This work is supported by the SC&SS, Jawaharlal Nehru University, New
Delhi, India.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bangui, H.; Ge, M.; Buhnova, B. A hybrid machine learning model for intrusion detection in VANET. Computing 2021, 104,

503–531. [CrossRef]
2. Kumar, S.; Dohare, U.; Kumar, K.; Dora, D.P.; Qureshi, K.N.; Kharel, R. Cybersecurity Measures for Geocasting in Vehicular Cyber

Physical System Environments. IEEE Internet Things J. 2018, 6, 5916–5926. [CrossRef]
3. Bhawana; Kumar, S.; Rathore, R.S.; Dohare, U.; Kaiwartya, O.; Lloret, J.; Kumar, N. BEET: Blockchain Enabled Energy Trading for

E-Mobility Oriented Electric Vehicles. IEEE Trans. Mob. Comput. 2023, 1–17. [CrossRef]
4. Kumar, S.; Singh, K.; Kumar, S.; Kaiwartya, O.; Cao, Y.; Zhou, H. Delimitated Anti Jammer Scheme for Internet of Vehicle:

Machine Learning Based Security Approach. IEEE Access 2019, 7, 113311–113323. [CrossRef]
5. Rani, R.; Kumar, S.; Kaiwartya, O.; Khasawneh, A.M.; Lloret, J.; Al-Khasawneh, M.A.; Mahmoud, M.; Alarood, A.A. Towards

Green Computing Oriented Security: A Lightweight Postquantum Signature for IoE. Sensors 2021, 21, 1883. [CrossRef]
6. Yu, Y.; Zeng, X.; Xue, X.; Ma, J. LSTM-Based Intrusion Detection System for VANETs: A Time Series Classification Approach to

False Message Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 23906–23918. [CrossRef]

https://doi.org/10.1007/s00607-021-01001-0
https://doi.org/10.1109/JIOT.2018.2872474
https://doi.org/10.1109/TMC.2023.3267565
https://doi.org/10.1109/ACCESS.2019.2934632
https://doi.org/10.3390/s21051883
https://doi.org/10.1109/TITS.2022.3190432

Sensors 2023, 23, 8772 23 of 24

7. Liang, J.; Chen, J.; Zhu, Y.; Yu, R. A novel Intrusion Detection System for Vehicular Ad Hoc Networks (VANETs) based on
differences of traffic flow and position. Appl. Soft Comput. 2018, 75, 712–727. [CrossRef]

8. Gad, A.R.; Nashat, A.A.; Barkat, T.M. Intrusion Detection System Using Machine Learning for Vehicular Ad Hoc Networks Based
on ToN-IoT Dataset. IEEE Access 2021, 9, 142206–142217. [CrossRef]

9. Ben Rabah, N.; Idoudi, H. A Machine Learning Framework for Intrusion Detection in VANET Communications. In Emerging
Trends in Cybersecurity Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 209–227.

10. Gao, Y.; Wu, H.; Song, B.; Jin, Y.; Luo, X.; Zeng, X. A Distributed Network Intrusion Detection System for Distributed Denial of
Service Attacks in Vehicular Ad Hoc Network. IEEE Access 2019, 7, 154560–154571. [CrossRef]

11. Alsarhan, A.; Alauthman, M.; Alshdaifat, E.; Al-Ghuwairi, A.-R.; Al-Dubai, A. Machine Learning-driven optimization for
SVM-based intrusion detection system in vehicular ad hoc networks. J. Ambient. Intell. Humaniz. Comput. 2021, 14, 6113–6122.
[CrossRef]

12. Chougule, A.; Kohli, V.; Chamola, V.; Yu, F.R. Multibranch Reconstruction Error (MbRE) Intrusion Detection Architecture for
Intelligent Edge-Based Policing in Vehicular Ad-Hoc Networks. IEEE Trans. Intell. Transp. Syst. 2022, 1–10. [CrossRef]

13. Kaiwartya, O.; Cao, Y.; Lloret, J.; Kumar, S.; Aslam, N.; Kharel, R.; Abdullah, A.H.; Shah, R.R. Geometry-Based Localization for
GPS Outage in Vehicular Cyber Physical Systems. IEEE Trans. Veh. Technol. 2018, 67, 3800–3812. [CrossRef]

14. Liang, J.; Ma, M.; Sadiq, M.; Yeung, K.-H. A filter model for intrusion detection system in Vehicle Ad Hoc Networks: A hidden
Markov methodology. Knowl.-Based Syst. 2018, 163, 611–623. [CrossRef]

15. Alsarhan, A.; Al-Ghuwairi, A.-R.; Almalkawi, I.T.; Alauthman, M.; Al-Dubai, A. Machine Learning-Driven Optimization for
Intrusion Detection in Smart Vehicular Networks. Wirel. Pers. Commun. 2020, 117, 3129–3152. [CrossRef]

16. Schmidt, D.A.; Khan, M.S.; Bennett, B.T. Spline Based Intrusion Detection in Vehicular Ad Hoc Networks (VANET). In Proceedings
of the SoutheastCon 2019, Huntsville, AL, USA, 11–14 April 2019; pp. 1–5.

17. Zhou, M.; Han, L.; Lu, H.; Fu, C. Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on
invariant. Comput. Netw. 2020, 172, 107174. [CrossRef]

18. Liang, J.; Lin, Q.; Chen, J.; Zhu, Y. A Filter Model Based on Hidden Generalized Mixture Transition Distribution Model for
Intrusion Detection System in Vehicle Ad Hoc Networks. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2707–2722. [CrossRef]

19. Liang, J.; Ma, M.; Tan, X. GaDQN-IDS: A Novel Self-Adaptive IDS for VANETs Based on Bayesian Game Theory and Deep
Reinforcement Learning. IEEE Trans. Intell. Transp. Syst. 2022, 23, 12724–12737. [CrossRef]

20. Alladi, T.; Gera, B.; Agrawal, A.; Chamola, V.; Yu, F.R. DeepADV: A Deep Neural Network Framework for Anomaly Detection in
VANETs. IEEE Trans. Veh. Technol. 2021, 70, 12013–12023. [CrossRef]

21. Ercan, S.; Ayaida, M.; Messai, N. Misbehavior Detection for Position Falsification Attacks in VANETs Using Machine Learning.
IEEE Access 2021, 10, 1893–1904. [CrossRef]

22. Zhang, T.; Zhu, Q. Distributed Privacy-Preserving Collaborative Intrusion Detection Systems for VANETs. IEEE Trans. Signal Inf.
Process. Netw. 2018, 4, 148–161. [CrossRef]

23. Raja, G.; Anbalagan, S.; Vijayaraghavan, G.; Theerthagiri, S.; Suryanarayan, S.V.; Wu, X.-W. SP-CIDS: Secure and Private
Collaborative IDS for VANETs. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4385–4393. [CrossRef]

24. Singh, S.; Sharma, S.; Sharma, S.; Alfarraj, O.; Yoon, B.; Tolba, A. Intrusion Detection System-Based Security Mechanism for
Vehicular Ad-Hoc Networks for Industrial IoT. IEEE Consum. Electron. Mag. 2021, 11, 83–92. [CrossRef]

25. Kumar, M.; Dohare, U.; Kumar, S.; Kumar, N. Blockchain Based Optimized Energy Trading for E-Mobility Using Quantum
Reinforcement Learning. IEEE Trans. Veh. Technol. 2023, 72, 5167–5180. [CrossRef]

26. Kosmanos, D.; Pappas, A.; Maglaras, L.; Moschoyiannis, S.; Aparicio-Navarro, F.J.; Argyriou, A.; Janicke, H. A novel Intrusion
Detection System against spoofing attacks in connected Electric Vehicles. Array 2019, 5, 100013. [CrossRef]

27. Aloqaily, M.; Otoum, S.; Al Ridhawi, I.; Jararweh, Y. An intrusion detection system for connected vehicles in smart cities. Ad Hoc
Netw. 2019, 90, 101842. [CrossRef]

28. Sudhakar; Kumar, S. MCFT-CNN: Malware classification with fine-tune convolution neural networks using traditional and
transfer learning in Internet of Things. Futur. Gener. Comput. Syst. 2021, 125, 334–351. [CrossRef]

29. Dataset1. Available online: https://www.kaggle.com/datasets/galaxyh/kdd-cup-1999-data (accessed on 10 July 2023).
30. Dataset2. Available online: https://research.unsw.edu.au/projects/toniot-datasets (accessed on 10 July 2023).
31. Dataset3. Available online: https://github.com/josephkamel/VeReMi-Dataset (accessed on 29 September 2023).
32. Jiawei, D.; Kai, Y.; Zhentao, H.; Lingjie, J.; Lei, H.; Haixia, Y. Research on Intrusion Detection Algorithm Based on Optimized

CNN-LSTM. In Proceedings of the 2022 International Conference on Networking and Network Applications (NaNA), Urumqi,
China, 3—5 December 2022; pp. 96–101.

33. Henry, A.; Gautam, S.; Khanna, S.; Rabie, K.; Shongwe, T.; Bhattacharya, P.; Sharma, B.; Chowdhury, S. Composition of hybrid
deep learning model and feature optimization for intrusion detection system. Sensors 2023, 23, 890. [CrossRef] [PubMed]

34. Lilhore, U.K.; Manoharan, P.; Simaiya, S.; Alroobaea, R.; Alsafyani, M.; Baqasah, A.M.; Dalal, S.; Sharma, A.; Raahemifar, K.
HIDM: Hybrid Intrusion Detection Model for Industry 4.0 Networks Using an Optimized CNN-LSTM with Transfer Learning.
Sensors 2023, 23, 7856. [CrossRef] [PubMed]

35. Kaiwartya, O.; Kumar, S. Cache agent-based geocasting in VANETs. Int. J. Inf. Commun. Technol. 2015, 7, 562–584. [CrossRef]

https://doi.org/10.1016/j.asoc.2018.12.001
https://doi.org/10.1109/ACCESS.2021.3120626
https://doi.org/10.1109/ACCESS.2019.2948382
https://doi.org/10.1007/s12652-021-02963-x
https://doi.org/10.1109/TITS.2022.3201548
https://doi.org/10.1109/TVT.2018.2796242
https://doi.org/10.1016/j.knosys.2018.09.022
https://doi.org/10.1007/s11277-020-07797-y
https://doi.org/10.1016/j.comnet.2020.107174
https://doi.org/10.1109/TITS.2019.2905415
https://doi.org/10.1109/TITS.2021.3117028
https://doi.org/10.1109/TVT.2021.3113807
https://doi.org/10.1109/ACCESS.2021.3136706
https://doi.org/10.1109/TSIPN.2018.2801622
https://doi.org/10.1109/TITS.2020.3036071
https://doi.org/10.1109/MCE.2021.3138703
https://doi.org/10.1109/TVT.2022.3225524
https://doi.org/10.1016/j.array.2019.100013
https://doi.org/10.1016/j.adhoc.2019.02.001
https://doi.org/10.1016/j.future.2021.06.029
https://www.kaggle.com/datasets/galaxyh/kdd-cup-1999-data
https://research.unsw.edu.au/projects/toniot-datasets
https://github.com/josephkamel/VeReMi-Dataset
https://doi.org/10.3390/s23020890
https://www.ncbi.nlm.nih.gov/pubmed/36679684
https://doi.org/10.3390/s23187856
https://www.ncbi.nlm.nih.gov/pubmed/37765912
https://doi.org/10.1504/IJICT.2015.072038

Sensors 2023, 23, 8772 24 of 24

36. Alladi, T.; Agrawal, A.; Gera, B.; Chamola, V.; Sikdar, B.; Guizani, M. Deep Neural Networks for Securing IoT Enabled Vehicular
Ad-Hoc Networks. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada,
14–23 June 2021; pp. 1–6.

37. Alladi, T.; Kohli, V.; Chamola, V.; Yu, F.R. Securing the Internet of vehicles: A deep learning-based classification framework. IEEE
Netw. Lett. 2021, 3, 94–97. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LNET.2021.3058292

	Introduction
	Related Work
	Proposed Methodology
	Pre-Processing
	Data Cleaning
	Normalization
	Standardization

	Feature Extraction
	Information Gain Computation via Entropy Analysis
	MV-GBO
	Improved Gradient-Based Optimizer Algorithm
	HGEO—Hybrid Gradient Equilibrium Optimization

	SA-BiLSTM

	Result and Discussion
	Dataset Description
	Experiment Setup
	Performance Analysis
	Graphical Representation

	Conclusions and Future Work
	References

