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Abstract

A deep study about the computational models of the auditory peripheral
system from three different research groups: Carney, Meddis and Hemmert,
is presented here. The aim is to find out which model fits the data best and
which properties of the models are relevant for speech recognition. To get a
first approximation, different tests with tones have been performed with seven
models. Then we have evaluated the results of these models in the presence
of speech. Therefore, two models were studied deeply through an automatic
speech recognition (ASR) system, in clean and noisy background and for a
diversity of sound levels. The post stimulus time histogram help us to see how
the models that improved the offset adaptation present the “dead time”. For
its part, the synchronization evaluation for tones and modulated signals, have
highlighted the better result from the models with offset adaptation. Finally,
tuning curves and Q10dB (added to ASR results) on contrary have indicated
that the selectivity is not a property needed for speech recognition. Besides
the evaluation of the models with ASR have demonstrated the outperforming
of models with offset adaptation and the triviality of using cat or human
tuning for speech recognition. With this results, we conclude that mostly
the model that better fits the data is the one described by Zilany et al.
(2009) and the property unquestionable for speech recognition would be a
good offset adaptation that offers a better synchronization and a better ASR
result. For ASR system it makes no big difference if offset adaptation comes
from a shift of the auditory nerve response or from a power law adaptation
in the synapse.
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Nomenclature

AM Amplitude modulated signals

AN Auditory nerve

AN-IHCS Synapse between uditory nerve and inner hair cell

APS Auditory periphery system

AS Auditory system

ASR Automatic speech recognition

BF Best frequency

BM Basilar membrane

bw Bandwidth

CA Cochlear amplifier

CF Center frequency

DCT Digital cosine transform

DRNL Dual resonance non linear

Eq. Equation

fc Carrier frequency

Fig. Figure

fm Modulation frequency

HSR High spontaneous rate

Hz Hertz
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IE Inner ear

IHC Inner hair cell

IHCRP Inner hair cell receptor potential

ISIH Inter-spike interval histogram

LSR Low spontaneous rate

ME Middle ear

MOC Medial olivocochlear system

MSR Medium spontaneous rate

MTF Modulation transfer function

OA Offset adaptation

OE Outer ear

OHC Outer hair cell

PLA Power law adaptation

PSTH Post stimulus time histogram

r Vector strength

SNR Signal to noise ratio

sp/sec Spikes per second

SPL Sound pressure level

Meddis group models’ parameters

τc Filter time constant to convert BM velocity to cilia displacement

τm Calcium current time constant

τCaHSR Calcium diffusion time constant for HSR fibers

τCaLSR Calcium diffusion time constant for LSR fibers

τCaMSR Calcium diffusion time constant for MSR fibers

Cm IHC capacitance
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Ccilia Cilia/BM coupling gain

Ca2+
thr Calcium concentration threshold

CFLin Center frequency of linear path

CFNL Center frequency of non linear path

ECa Reversal potential

Ek Potassium equilibrium potential

Et Endocochlear potential

Gmax
Ca Maximum calcium conductance

G0 Resting conductance

Gk Potassium conductance

GLin Gain of the linear path

Mmax Maximum Free transmitter quanta

Rpc Combined resistances

s0 Displacement sensitivity

s1 Displacement sensitivity

TWdelay Estimate of delay between stimulus and fiber effects

u0 Displacement offset

u1 Displacement offset

Carney group models’ parameters

C1 Component one of BM-simulation

C2 Component two of BM-simulation
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Chapter 1

Introduction

Since the sixties, several research groups have attempted to model the hu-
man ear. The purpose is to establish a clear accurate and precise model of
our auditory system (AS), so that we will be able to provide a better un-
derstanding of the audition. They are an indispensable tool for observing
cochlear processing, these models permit the examination of speech coding
in the auditory periphery system (APS) without the need for animal experi-
mentation. As the cochlea is nonlinear, it is a challenge to assign changes in
auditory nerve (AN) responses to speech, following each injury to the con-
sequences of the damage, like tuning vs compression. Peripheral models are
useful to mimic the cochlear pathology and the responses to noise trauma and
accordingly inform hearing aid development. Besides, they are an obligatory
requirement for the mimicking of in vivo responses in the brain-stem.

Throughout these decades lots of models have been developed. Ones are
bio-physiological and try to simulate the underlying physiological processes.
Others are phenomenological, they try to simulate, rather than the processes,
the result of them. In both cases, each of these models has attempted to
provide a further improvement, something that allows us to get closer to the
real auditory peripheral system. Not all the optimization have yielded the
results that the authors wished. Some have achieved those results, but on
the way, have introduced distortions and inconsistencies. The elder models
were focused on some particular aspect of the AN response, get a better
synchrony, allow two tone suppression, etc, and neglected the rest. Hopefully,
recent models cover wider range of responses and pay attention to diverse
angles. However, to conduct the future directions on the most worthy way, it
is important to compare, rather than the models, the improvements that they
develop. Thus, one could focus on upgrades that truly introduce significant
changes. This is the aim of this thesis: to elucidate which improvement,
among all that have been developed, are worthily for speech.
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Introduction

Figure 1.1: The human ear. The eardrum transforms the sounds into me-
chanical waves, that in turn, pass through the ossicles and arrive to the
cochlea. There, it will be converted into spikes. Modified from Chittka and
Brockmann (2005)

To go further into the topic, it is important to introduce briefly the phys-
iological basis of the APS and the models we want to check. Thereby, we
can understand the complexity of the models, why are they made in the way
they are, and the reasons of some improvement or test.

1.1 Physiology of auditory periphery

The AS is responsible for physiological and psychological process of the au-
dition. The sound is transformed in the ear into electrical impulses that are
sent to the brain through the auditory nerve. The ear is divided in three:

• Outer ear (OE), that channels the acoustic energy.

• Middle ear (ME), that transforms the acoustic energy into mechanic
energy. This energy is then transmitted to the Inner ear.

• Inner ear (IE), where the mechanic energy is transformed into electric
impulses.

2



1.1 Physiology of auditory periphery

1.1.1 Outer ear

Its function is to receive sound and to channel it on the eardrum. The shape
of the OE amplifies the sound with frequencies between 30-100Hz to around
2-5kHz in human. This bandwidth is also where most the human speech lies.

1.1.2 Middle ear

When the sound arrives to the eardrum, it vibrates and transmits this vi-
bration to the ossicles. These are the smallest bones in the human body
and in turn transmit the wave to the fluid in the IE. The ossicles induce
an impedance matching between the sound pressure and the fluid waves of
the IE. Without this impedance matching, the most of the energy would be
reflected and only a small part would be transferred reducing sensitivity. Be-
sides, the ossicles also protect the cochlea from extremely high sound level
by uncoupling each other though the action of tensor tympani and stapedius
muscles. The peak of efficiency of the ME occurs at 1kHz in humans.

1.1.3 Inner ear

The cochlea, the inner ear part dedicated to audition, is a coiled tube which is
composed of three cavities filled with fluids of distinct ionic composition, scala
media, scala vestibuli, and scala tympani. Between the last two, we find the
basilar membrane (BM), on which the organ of Corti and hair cells reside.
When the mechanical energy arrives to the cochlea, a pressure difference
appears between the scala vestibuli and tympani, which leads to a deflection
of the basilar membrane.

Each area of the basilar membrane vibrates preferentially to a particular
sound frequency. For a high frequency the displacement of the BM takes
place in the basal zone. That is because, mechanic wave traveling through a
liquid is quickly dimmed. Therefore, for low frequencies the mechanic wave
travels further and the displacement of the BM happens in the apical zone.
See fig. 1.2. For the human being the bandwidth is from 0.1 to 20 kHz.

Lying on the basilar membrane we can find the organ of Corti. At the
top are situated the hair cells, and at the bottom, the nerve branches of the
auditory nerve. The hair cells collect the vibration of the basilar membrane,
which is not uniform but is a function of the resonant frequency of each point
of the basilar membrane. Thus, the hair cells generate distinct patterns
characteristic for each tone. The human organ of Corti, as mammalian,
contains two classes of hair cells.
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Introduction

Figure 1.2: Sound frequencies in the BM. A) Different sound frequencies
differentially excite different regions of the BM. B), C) and D): varied fre-
quencies and the vibration that they generate.

The outer hair cell (OHC) are responsible for the feedback and are known
as ”the cochlear amplifier”. These cells increase both the amplitude and fre-
quency selectivity through the next mechanism: a deviation of the basilar
membrane causes a movement in OHC’s hair bundle, that in turn generates
a depolarization of the OHC. The depolarization contracts the cells and thus
the BM, connected to them, moves in phase. Consequently the cochlea not
only responds to the stimulus, but also generates energy by itself. Besides,
the OHCs are contacted mainly by efferent nerves, which regulate their elec-
tromotility and influence cochlear sensitivity.

The inner hair cell (IHC) is liable for transforming the mechanic wave into
electric impulses. Each one of the IHCs has a different center frequency (CF)
on which their efficiency is better1. This center frequency matches with the
vibrate frequency of the BM where the IHC lies. As with the OHC cilia, the
IHC cilia displacement causes a depolarization, due to the change in the num-
ber of open ion channels. A change in receptor potential appears and causes
opening of voltage gated calcium channels. Due to calcium ions entering the
cell and accumulating in the vicinity of the synapse, neurotransmitters at
the basal end of the cell are released into the synaptic cleft. In the cleft, the

1Center frequency and best frequency (BF) have different meanings in the different pa-
pers studied here. Usually the BF is the frequency at witch the fiber response is maximum
and the CF at which the fiber threshold is the lowest. Nevertheless, it is better to check
always the meaning that the authors give to both terms
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1.2 The models

Figure 1.3: A) The organ of Corti. A movement in the BM generates a
displacement on the cilia, that in turns produces the depolarization of the
hair cells. B) The figure represents the OHC contraction, due to the depolar-
ization. This contraction moves the BM in phase (Fettiplace and Hackney,
2006).

neurotransmitters disperse and some are lost, some are reuptaked, and some
bind to the receptors and thus trigger action potentials in the nerve.

1.1.4 Auditory nerve

Auditory nerve fibers connect the hair cells of the cochlea and the cochlear
nucleus within the brain-stem. Each hair cell has about ten auditory nerve
fibers (AN) with different thresholds connected to it. AN fibers can be of
three different types: low (LSR), medium (MSR) or high spontaneous rate
(HSR). As the tone amplitude increases, the firing rate of a fiber at CF
increases up to saturation. The HSR fibers, which are the most common,
saturates rapidly and code intensity changes at low levels. On the other
hand, the LSR saturate slowly and code intensity changes at high levels.
After firing, an auditory nerve fiber has a refractory period of around 1 ms.

1.2 The models

I have focused on three different research groups, Carney, Meddis and Hem-
mert, named by their principal researcher. This three groups have been
working on the development of an auditory model for many years and have
had a big international recognition in their field. They are not the only ones,
but from my point of view, they are the most interesting and profitable to
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this study, due to their outstanding track record. Besides, I would like to in-
troduce the one from Seneff (1985), because of the importance of her pioneer
model.

1.2.1 Models of Carney group

Zhang et al., 2001

The importance of this model on the trajectory of the laboratory is unques-
tionable. This flagship was the first on a series of models developed by Carney
Lab that have taken this one as a basis. Regarding the model, the aims are to
provide a more accurate and quantitative description of the responses of the
AN-HSR to complex sounds and to find the way to understand the several
nonlinear response properties. It also provides a tool to comprehend the AN
population response through the study of these nonlinear encoding. All this,
trying to keep the model as simple as possible. The BM was mimicked by
two paths. The control path, through the level dependent gain, bandwidth
and phase properties, manages the signal path filter.

Thanks to the control of bandwidth, the wide frequency range of two-
tone suppression was included. The control path has a level dependent filter
with a frequency higher than the signal path filter. As the result of that,
the researchers could also include in the model the asymmetrical growth of
suppression above and below the characteristic frequency and suppression
tuning curve frequency offset.

The nonlinear tuning, without an increase in the complexity from previous
models (Carney, 1993), is much more accurate. On the other hand the IHC
section consists of a logarithmic saturating function followed by a seventh-
order low-pass filter. The IHC-AN synapse model is a time-varying model
only for HSR.

Heinz et al., 2001

In this paper, they develop a model based on Zhang et al. (2001) to simulate
normal and impaired human peripheral auditory. For the first time in Carney
lab, three different types of AN: HSR, MSR, LSR are included. Besides, the
model offers five different control path to evaluate different AN’s and some
parameters have been changed. However, the most important difference from
the previous model is the fact that they used a human cochlear map. As a
result of this, the model was used subsequently in Tan and Carney (2005) to
study the encoding of vowel-like sounds.
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1.2 The models

Figure 1.4: Carney group’s models
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Introduction

Figure 1.5: Block diagram of the Zhang et al. (2001) AN model
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1.2 The models

Bruce et al., 2003

With the intention of investigating how the IHC impairment affects on the
broadened tuning on responses to speech, the authors modified the model of
Zhang et al. (2001). Specificallys they modified the OHC and IHC sections
to simulate an impaired AN and observe how the threshold and bandwidth
changes and how it affects on model responses. They also include a ME filter
that does not exist before and modify the control path to improve the filter
dynamics. This new control path avoids the distortion products created by
the compression of the signal. Thereby a dynamic filter is used instead of an
static nonlinearity. This model simulates only the low and moderate level
responses in normal and impaired ears. We had to wait to Zilany and Bruce
(2006) to simulate the high level responses.

Tan and Carney, 2003

The aim of this research was the study of peripheral auditory processing
crossing arbitrary sounds inputs through the model. It attempts to simulate
the responses of AN fibers in cat with more complete response features than
previous ones. Besides, they emphasize on mimicking the level-independent
frequency glide and its implication on stimulus encoding. Definitely, they
managed to include in the model the instantaneous frequency glide and com-
pressive nonlinearity. The model inherits the IHC section of Zhang et al.
(2001) and possesses its own signal and control path of the BM and a filter
section for the ME. The signal path corresponds to a varying band-pass filter
and the control path with a nonlinear compression. The model has been
used by Tan and Carney (2005) for the same reason as in section 1.2.1 and
in Tan and Carney (2006) to understand how the AS extract speech signals
in presence of noise.

Zhang and Carney, 2005

Here we can find a comparison between the models of Sumner et al. (2002,
2003a) and Zhang et al. (2001). This comparison is made to study ”the
effects of adaptation characteristics on model parameters and of model pa-

rameters on adaptation characteristics” (Zhang and Carney, 2005). More-
over, they use both model to learn about the offset adaptation (OA) and
how the models structures limit it. Then they modified both with an im-
proved, more realistic OA and ameliorated the modulation gain of model AN
fiber responses to modulated stimuli. However, on the way they introduce
an unexpected variation in the average rate with modulation frequency and
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an undesirable unrealistic steady-state rates of LSR fibers to tones at high
sound levels (Zilany et al., 2009).

Zilany and Bruce, 2006

The aim of this study is to find a better description of the AN response
properties for a large range of CF’s, simulating low, moderate and high level
responses in cats. The input of the models is intended to be complex or
simple stimuli spanning the sound pressure level (SPL) dynamic range of
hearing. The idea is to suggest and test new strategies for hearing-aid signal
processing through accurate high level models, since hearing aids amplify
signals to compensate for hearing loss. To introduce the high level modeling,
it has been necessary to change the previous model. It particularly differs
from the model presented for Bruce et al. (2003) in the use of two modes
of BM excitation. Each of the two parallel models has its own transduction
functions, that later are summed and passed through the IHC low-pass filter
and the IHC-AN synapse of Zhang et al. (2001) with negligible modifications.
In addition, the ME section of the model is simplified from Bruce et al. (2003)
to ensure the stability and the control path remains the same, except for some
parameters.

Zilany and Bruce, 2007

The model of Zilany and Bruce (2006) has been modified to introduce an
slight adjustment in the cochlear amplifier (CA) gain to improve the model
prediction of the vowel data. The CA gain in the CF range must be enlarged
to fit the model result. This modification has a paltry effect over the rest of
the properties of the model response. It is designed to accurately deliver the
response of AN fibers when the input is a steady-state vowel.

Zilany et al., 2009

This study tries to shed light on the mechanism that gives rise to synaptic
adaptation. A previous research work (Zhang and Carney, 2005) has at-
tempted to reproduce the onset and OA with the problems we have seen in
section 1.2.1. Introducing the power law adaptation (PLA) to the previous
model of Zilany and Bruce (2006, 2007), model responses were compared to
physiological data. The PLA synapse model improves the AN responses re-
markably at stimulus offset and also recoveries after stimulus offset. It also
increases synchrony to pure tones.
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1.2 The models

1.2.2 Models of Meddis group

Meddis et al., 2001

Here, an algorithm to simulate the basilar membrane is formulated. It is
implemented as a dual resonance non linear (DRNL) filter. The DRNL is
divided in two parallel paths, linear and nonlinear, with different CF. The
nonlinear path includes a compress of the input signal when it exceeds a
threshold level. This input to the algorithm is stapes motion and the result
of the model is the sum of the two paths and represent basilar membrane
motion.

Sumner et al., 2002

Meddis group has develop their models as a connection of different compo-
nents: middle ear, a simple pass-band filter; basilar membrane, a nonlinear
signal-processing algorithm; inner hair cell receptor potential (IHCRP) and
inner hair cell synapse (AN-IHCS), both a complex algorithm. In this paper,
an algorithm to mimic the IHCRP and the AN-IHCS is presented. The BM
component is taken and briefly modified from a previous publication (Meddis
et al., 2001). However, Sumner et al. (2002) emphasize the development of
the IHC. They theorize that the rate of neurotransmitter release is controlled
and doubtlessly modeled by the presynaptic calcium current. This release
into the cleft determines the action potential rate of the AN.

The model is able to reproduce the rate intensity response of HSR, MSR
or LSR fibers. This fairing rate variation could be managed by the maxi-
mum calcium conductance. Phase-locking characteristics, relative refractory
effects, mean-to-variance ratio and discharge history effects could be also
reproduce by the model.

Sumner et al., 2003a

In this work, the adaptation of the model presented in Sumner et al. (2002) is
depicted. The characteristics of this adaptation depends on the type of fiber
that are determined by the number of calcium channels near the synapse.
Only some changes in the parameters of the model to simulate different
neurons are performed.

Sumner et al., 2003b

Working with almost the same model as Sumner et al. (2002, 2003a) they
attempt to reproduce a wide range of responses to auditory stimulation. The
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Introduction

Figure 1.6: Meddis group’s models
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1.2 The models

Figure 1.7: Block diagram of the Sumner et al. (2002) auditory model
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Introduction

idea is to use it, as an input to a larger model which mimics the auditory
processing in the brain-stem. For that reason they change the ME filter to a
cascade of two linear band pass Butterworth filters and some parameters of
the rest of the components.

Wiegrebe and Meddis, 2004

The role of sustained chopper (Chop-S) in the extraction of pitch, through
the application of an autocorrelation to the temporal discharge patterns of
AN fibers is studied here. To rise their goal, this paper fits the parameters
of previous models (Sumner et al., 2002, 2003a,b) to human data. Thus the
ME filter, the DRNL (from (Lopez-Poveda and Meddis, 2001)), the IHCRP
and IHC parameters are changed.

Meddis and O’Mard, 2005

The aim of this study is to distinguish the role of the AN adaptation in
forward-masking effects. The model includes a coincidence-detection mech-
anism for making threshold decisions depending on the fire of an AN fibers
group. The results of the simulation suggest that ”poststimulatory reductions

in AN activity can make a substantial contribution to the raised threshold”
(Meddis and O’Mard, 2005)

The same model as Sumner et al. (2002, 2003a,b) is used, except for the
parameters that are taken from Sumner et al. (2003b) and the scaling factor
in the ME simulation. This last parameter is changed to increase the ME
gain.

Meddis, 2006

In this paper the authors introduce a new version of AN-IHCS. Since they
wanted to demonstrate that ”auditory-nerve fiber spikes can be predicted to

occur when the running integral of stimulus pressure reaches some critical

value”(Meddis, 2006), they examined two different ”presynaptic calcium” to
explain this effect. The first one, the ”Calcium influx model”, comes from
previous publications (Sumner et al., 2002, 2003a,b; Meddis and O’Mard,
2005). The second one, the ”Calcium clearance hypothesis”, uses the same
model but with changes in the parameters that allow us to simplify the
equations and make the relationship between calcium levels and transmitter
release clearer.

14



1.2 The models

Lopez-Poveda and Eustaquio-Martin, 2006

A new version of the IHCRP component is delivered in this work . Unlike the
IHCRP component from previous models, this one is based on the contribu-
tion of the basolateral potassium currents on the IHC nonlinear input/output
transfer characteristics. The component attributes the responsibility of the
IHC membrane conductance to potassium ions only, ignoring sodium and
chlorine ions.

Ferry and Meddis, 2007

In this model, they adapt the previous computer component of BM (Med-
dis et al., 2001) to simulate the effect of the medial olivocochlear system
(MOC) and his role in auditory processing of complex sound. The purpose
of olivocochlear bundle ”appears to be the regulation of activity in the AN

through modification of OHC electrical and mechanical properties and, more

directly, through post-synaptic contacts on the AN itself ” (Ferry and Meddis,
2007). The MOC, one of the two parts of the olivocochlear bundle, influ-
ences suppressively, via efferents, on the response of the BM (Dallos, 1992).
Furthermore, this suppression enhances the response in adverse background
as noise (Kawase and Liberman, 1993)

Brown et al., 2010

The newest model of Meddis group develops a study to ascertain the role
of the MOC in speech recognition with broadband noise. As said before (in
section 1.2.2), the efferent system can reduce the response to the continuous
noise by reducing the adaptation. This may be the reason of the speech
intelligibility of normal human listeners in the presence of background noise.
Thereby, an auditory model that takes into account this efferent processing
could be a noise-robust front-end for an automatic speech recognition (ASR)
system in adverse acoustic conditions. This hypothesis is supported by the
fact that noise, if any, is the dominant influence on the amount of efferent
activity (Liberman, 1988) and with the results of the present paper. It has
become apparent that, when noise is present, speech recognition accuracy is
improved by simulating the attenuation of the BM response. Furthermore,
the optimum efferent attenuation is proportional to the noise level.
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Figure 1.8: Schematic of the Holmberg et al. (2007) auditory model

1.2.3 Models of Hemmert group

Holmberg et al., 2007

The authors develop a model that mimic significant characteristics of audi-
tory nerve spike trains. They attempt to observe the rate-place coding strat-
egy and an interval-based strategy to speech encoding. They explore the
result of introducing the information that is coded in the auditory pathway
into an ASR. Thereby, the importance of temporal coding result evidenced.
The model is based on Holmberg (2007). The ME is mimicked as a high-pass
function and the BM is simulated with a computational wave-digital filter.
In contrast, the IHC model is extracted and modified from Sumner et al.
(2002). To simplify the model, the pools are quantized instead of continuous
vesicle pools. In the following paper, its degradation of the synchronization
index above 1kHz will be solved with the introduction of an OA process.

Wang et al., 2008

In that study an OA procedure is introduced to the model of Holmberg et al.
(2007). This OA model comes from Zhang and Carney (2005). The purpose
is to make the onset neurons located in the auditory brain-stem responsive to
the frequency bandwidth above 3kHz. As a result of the modifications, they
get the same onset adaptation but a better and realistic OA, more precise
phase locking to amplitude modulated stimuli and improved ASR results.

1.2.4 Seneff

Due to the difficulty in the eighties of designing a worthy computational
speech recognition, the researchers were “deterred from designing a speech

analysis system that is motivated by the human auditory response mecha-

nism”. Swimming against the tide, the thesis of Seneff (1985) developed a
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1.3 Objectives

way to detect synchrony in the response to predictable periodicites. These
might be able to emphasize peaks in the spectrum. Thereby, its application
to the spectral analysis and reckoning to the fundamental voice frequency
would be delivered. For that reason, Seneff designed a model that takes the
incoming speech signal and to process it, uses a system which mimics the
auditory peripheral system. Then, to point up the spectral concept that are
significant of the recognition speech, she employed a synchrony measure.

The implementation of the Seneff’s model was developed by Slaney (1998)
who through Matlab offers a collection of tools to reproduce the APS.

1.3 Objectives

The most important goal of this project is first to find out which model fits
better with the data and which property are relevant for speech recognition.
This information could help the research groups that perform this kind of
models to clarify the next steps to follow. To achieve this goal some sub-goals
are required, such as:

• Implement an interface for all the models which provides with an equal
platform with the same input (simple or complex audio signals) and
output signals (afferent responses of the AN fibers).

• Develop different tests over simple signals (as explained in chapter 3)
to get an overview about the properties of the models.

• Carry out a test with complex signals. The output of the models (af-
ferent responses) is the input of an ASR. The output of the ASR will
be a percentage of recognition to discover how accurate are the models’
responses. This test will be made for different stimulus signals, with
and without noise and for different signal levels.

• A large study with the information compiled to culminate with our
study.

Once the project is completed and all models have been studied among all
the tests proposed, we will be able to select the best improvements from the
results. Contrasting the percentage of speech recognition over a variety of
circumstances, countable differences will be pointed out among the models.
Those will be the primary method of decision. The simple tone stimulation
test will help then to explain these differences found with the ASR. Therefore,
we will be able, not only to offer the best improvements, but also the reason
why.
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Chapter 2

Methods

The models of the APS are similar in its block system. They model every
stage of the audition into blocks that can be usually interchanged by new
ones. This development with blocks allows the improvement of every part
of the APS independently. The first model block is normally the ME, rep-
resented as a filter. Then the BM is simulated as a nonlinear function of
frequency. For the Meddis group, this BM has two paths of filters, linear
and nonlinear. For Carney group the BM is also divided in two paths but
one path controls the other. For Hemmert group, the BM is a cascade of
resonators. The IHC, a nonlinear function, is the next step followed by the
AN-IHCS, both differ mostly from one group to other. But not only they
differ among research groups. The improvements introduced in every new
model have changed one or more of this blocks mentioned and the way they
develop it. In this chapter I will explain this differences in implementation
and development. Besides, in this chapter, I will also mention the partic-
ularities of the test (simple and complex signals) I performed and how is
implemented the ASR block is implemented to get the amount of recognition
percentage.

2.1 Interface

In this thesis I have worked with a motley group of models. Most of them have
their codes available in their website, although others have been requested
personally. Sometimes the code was not completed or the publication had
some mistakes, thus, a new implementation and test of the models have been
compulsory. Besides, this code is developed under different platforms, such
as Matlab, C or Python. There has also been a need to present a common
interface for all the models. Thereby, the input of the system and the output
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2.2 Models

Figure 2.1: Interface: the input and output of the system are the same for
all models.

are independent of the model used, and only depend on the simulation that
is running. The tests of the section 2.4 have been developed in Python and
Matlab.

2.2 Models

Seven different models have been chosen to be analyzed, two models from
Carney group, three from Meddis group and two from Hemmert group. The
implementation and the parameters used are described below.

Model of Heinz et al. (2001)

This model is the same as developed in Zhang et al. (2001) fig. 1.5, with some
modifications. The input to the model is a sound pressure (µPa) signal. The
middle ear is dismissed here and the BM is modeled as a nonlinear filter with
two paths, signal and control. The signal path is a nonlinear, third order,
time-varying narrowband filter and a linear, first-order broadband filter in
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cascade. The control path output varies the gain and bandwidth of the
nonlinear signal filter. Besides, the control path has a nonlinear wideband
filter followed by a nonlinear saturation that represents the properties of the
transduction of OHC. In this model, unlike in Zhang et al. (2001), the human
ear is pretended to be modeled. Thus, the human cochlear map is used. After
this, a third-order low-pass filter fits the dynamics of the cochlear amplifier.
The IHC is described as a logarithmic compressive function and a seventh
order, low-pass filter. This low-pass filter was changed from the previous
model to satisfy the inclusion of different fibers. The parameters used to
get these fibers are, HSR = 60 sp/sec, MSR = 10 sp/sec, LSR = 1sp/sec.
The nonlinear AN synapse is a simplification of the one explained in Carney
(1993), a time-varying three-store diffusion model. The synapse output of
Heinz et al. (2001) is a probability function. However, a spike generator is
also offered.

Model of Sumner et al. (2003b)

The structure of the model is inherited from the model of Sumner et al. (2002)
fig 1.7. The input to the model is the instantaneous pressure waveform of the
stimulus (µPa). The ME filter consisted in a cascade of two linear band-pass
Butterworth filters, a second order filter and a third order filter with [4,25]kHz
and [0.7,30]kHz respectively (Fig. 2.3). Both have unity gain in the pass-
band, although a variable gain Gme and a scaled factor (1.4*10−10 m/s/µPa)
are also introduced here. Then, the signal passes through a DRNL filter
consisting of two parallel pathways (one linear, one nonlinear) as in fig 2.2.
The linear pathway is a gain, a gammatone filter and a low-pass filter. The
nonlinear pathway is a gammatone filter followed by a compression function,
a second gammatone filter and a low-pass filter. The parameters, a, b, the
bandwidth of linear (BWlin) and nonlinear pathways (BWnlin), the gain of
the linear filter (Glin) and the CF of the linear filter (CFlin) vary linearly on
a log-log scale with the following expression:

Parameter(CF ) = 10p0 + m ∗ log10(CF ) (2.1)

where p0 is the parameter value at a BF of 1 Hz and m is the slope of the
parameter with frequency. This parameters are taken from (Sumner et al.,
2003b, Table I). Both outputs summed, linear and nonlinear, are the input for
the next stage, the IHCRP, a biophisical model of the cilia transduction and
receptor potential response, widely explained on Sumner et al. (2002). The
parameters Gmax

Ca and Ca2+
thr for control of calcium levels are the responsible

for the different types of fibers and change from Sumner et al. (2002) as
shown also in (Sumner et al., 2003b, Table I). The last stage, the synapse,
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2.2 Models

Figure 2.2: DRNL filter architecture.(Sumner et al., 2003b) The asterisk are
parameters that have change from Sumner et al. (2002)

is simulated by a uniform random process. The parameters of this part and
the rest of parameters not specified here, remain the same as in previous
publications Sumner et al. (2002, 2003a).

DRNL filter parameters (CFNL) sum2003b wie2004
p0 m p0 m

Bandwidth of non linear path BWNL 0.8 0.58 -0.032 0.774
Compression parameter, a 1.87 0.45 1.4 0.82
Compression parameter, b -5.65 0.875 1.62 -0.82
Center frequency of linear path CFLin 0.339 0.895 0.037 0.79
Bandwidth of linear path BWLin 1.3 0.53 0.037 0.79
Linear path gain GLin 5.68 -0.97 4.2 -0.48
Compression exponent, v 0.1 0.25

Table 2.1: Table of recalculated coefficients m for computing parameters of
the DRNL filters as a function of CFNL. The column sum2003 represents
the values given in Sumner et al. (2003b), and the column wie2004 represents
Wiegrebe and Meddis (2004) values

Model of Wiegrebe and Meddis (2004)

This model uses the same model as explained in Sumner et al. (2002, 2003a,b),
fig 1.7, with the same structure explained above, but with some changes in
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IHC parameters sum2003b wie2004
HSR MSR LSR HSR

Ca2+
thr 0 3.35*10−14 1.4*10−11 4.48*10−11

Mmax 10 10 10 10
Gmax

Ca (S) 7.2*10−9 2.4*10−9 1.6*10−9 8*10−9

Table 2.2: Table of IHC parameters, for three different types of fibers in
sum2003 (Sumner et al., 2003b) and one type in wie2004 (Wiegrebe and
Meddis, 2004)

the parameters explained below. First the ME filter is a four parallel second
order band-pass filters: a) -12 dB gain and a band-pass of [0.1,1.3]kHz; b)
1.5 dB gain and a band-pass of [0.35,6.5]kHz; c) 5 dB gain and a band-pass
of [1.8,5.2]kHz and d)-11 dB gain and [7.5,9.9]kHz of band-pass (Fig. 2.3).
Besides, the stapes scalar factor is 3 ∗ 10−10 m/s/µPa. The parameters val-
ues of the DRNL have been taken from (Lopez-Poveda and Meddis, 2001,
table III), as is explained in the publication, opposite to the rest of the pa-
rameters that have been taken from the appendix of the publication, such
as, the total capacitance (Cm = 15 ∗ 10−12 F ), the cilia/BM time constant
(τc = 2.13 ∗ 10−4 s) and the cilia/BM coupling gain (Ccilia = 0 dB) that vary
in the IHCRP. The modifications in the IHC parameters are presented in
table 2.2 and lastly the reprocessing rate, parameter of the AN-IHCS, have
been modified to x= 90 s−1. Besides the maximum CF that can be used in
this model is 6kHz.

Model of Holmberg et al. (2007)

This model is divided in different parts as shown in fig. 1.8. The middle
ear and eardrum transfer function consists of a high-pass first order filter
of fc=1kHz and an IIR tenth order filter (fig.2.3) respectively. Then, the
model has a transmission-line model consisting of digital filters equivalent
to a series of second order resonators, the electrical equivalent circuit of the
BM. To simulate the next compression stage and the nonlinear amplification,
each of these resonators are followed by another four resonators that are, in
turn, modelated as digital filters. The IHCRP and IHCS are adapted from
the one presented in Sumner et al. (2002) and from there, the parameters to
run the model are taken.
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Figure 2.3: The middle ear filters and eardrum functions (when present) of
the different models normalized at the same gain (0 dB) at 1kHz. The ME
presented in Wang et al. (2008), has the same shape as the one of Holmberg
et al. (2007). Besides, the model described by Heinz et al. (2001) has no
middle ear filter.
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Model of Wang et al. (2008)

The main improvement of the improved model of Hemmert group is the
inclusion of an OA. The pool model described by Holmberg et al. (2007)
uses the same function for offset and onset adaptation, the model recovers
immediately and thus, the model can not reproduce the ”dead time” after
the end of the stimulus. The present model uses an OA based on Zhang and
Carney (2005) that adds a shift value to the synaptic output for negative
values. This values are, in turn, set to 0 that represent the “dead time”.
Thereby, the model will reproduce accurately the onset and offset adaptation.
This model calculates the response of the auditory nerves to an amount of
different frequency channels, from 49Hz to 14kHz (using the frequency map
explained below). For that reason, is needed to select the correct channel
from the output of the model when a simple tone test is pretended.

Model of Zilany et al. (2009)

The newest Carney model has the same structure as the previous models in
their group with some differences. First, the middle ear model changed in
a second revision of code from the original published released1. Now it is
formed by 3 IIR filters with the following formulas.

ME1(z) = 0.997 ∗

1 − z−1

1 − 0.996 ∗ z−1
(2.2)

ME2(z) = 2.3 ∗ 10−11
∗

4.1 ∗ 1010
− 7.8 ∗ 1010

∗ z−1 + 4.0 ∗ 1010
∗ z−2

1 − 7.9 ∗ 1010
∗ z−1 + 3.7 ∗ 1010

∗ z−2
(2.3)

ME3(z) = 2.4 ∗ 10−11
∗

1.1 ∗ 1011
− 1.4 ∗ 108

∗ z−1
− 1.1 ∗ 1011

∗ z−2

1 − 7.8 ∗ 1010
∗ z−1 + 3.9 ∗ 1010

∗ z−2
(2.4)

Second, it inherits the two modes of BM excitation explained in Zilany and
Bruce (2006). This two different and parallel filters component one (C1) and
component two (C2) generate the different parallel modes of the signal path.
C1 is designed to get the low and medium level response, is implemented
as a chirp filter (Tan and Carney, 2003) and is able to reproduce frequency
glides and BF shifts. This C1 has been adapted to produce more realistic
frequency tuning curves, more realistic level-independent frequency glides in
the impulse response and an improved simulation of the phase properties
of the Cochlea. C2 manages the high levels response, is broadly tuned, is
resistant to trauma and is shifted in phase 180o to C1. Consists of a filter

1The values were taken by printing them in the process of the analysis of a 1kHz signal
input in the model
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2.2 Models

Figure 2.4: Schematic diagram of Zilany et al. (2009) model. To A corre-
sponds the basic Carney group model until Zilany and Bruce (2006), with
the single path (C1), parallel path (C2) and control path, followed by the
IHC section and in turn, the synapse. B represents the improvement of the
model, the PLA model and its slow and fast paths.

based on Kiang’s two-factor cancellation hypothesis (Kiang, 1990), the OHC-
impaired version of the C1 filter. Besides the IHC low pass filter was reduced
to 3 kHz to adjust the maximum synchronized response of AN due to the
increase on synchrony to pure tones. Lately, the most important change is
the inclusion of power-law functions. Following the exponential adaptation,
the model presents two paths of PLA, slow and fast power-law adapting com-
ponents that will be summed after (in the slow path, the fractional Gaussian
noise is added to model the distribution of spontaneous rate). The PLA
function represents the convolution of the power law kernel with its previ-
ous response. This kernel can be approximated by sixth and tenth order
IIR filters respectively. This approximation has been made to run the ASR
due to the computational expensiveness of the power law function. Besides,
for ASR tests, the model has used his own frequency map (instead the one
presented below), because it can not work in frequencies under 80Hz.

25



Methods

Model of Brown et al. (2010)

This model is divided in two stages. The first stage does not differ greatly
from the one presented in Ferry and Meddis (2007), the parameters are
changed to simulate human hearing instead of guinea-pig, but the struc-
ture of the model remains the same. To get an anti-masking effect (the best
improvement of this models), an attenuator proportional to the amount of
MOC activity was introduced to the model of Meddis (2006). It is situated
at the beginning of the nonlinear path of the DRNL module used to simulate
the response of the BM. Thereby the model was able to simulate the effect
of the MOC independently of the fiber type. The second stage is completely
new and corresponds with an ASR system that uses statistical word model
to convert AN firing pattern into word sequence.

Develop to work with ASR, this model has nine different modules such as,
acoustic stimulus, stapes, BM motion, IHC stereocilia, IHCRP, IHC trans-
mitter release, HSR-LSR auditory nerve action potentials and two moduls of
brainstem response: the first represent the chopper cell and the second, the
chopper unit. For the tests I used all the moduls but I got the output from
the seventh modul, that gives the AN spike response with efferent effects.
The middle ear filter shown in fig. 2.3 is implemented as a high-pass first
order filter followed by a parallel structure of three different first order linear
Butterworth filters with [1.9,4.2]kHz, [4.5,6.3]kHz and [8,12]kHz band-pass
respectively. The BM is modeled as a DRNL filter with a third order gam-
matone filter in the linear and nonlinear path. The parameters of the model
where chosen as in table 2.3 from the parameters files offered by request by
R. Meddis. The seventh model AN-IHCS output can be “probability” or
“spikes”. However, the spikes output has been used in all the tests due to
the efferent system used.

2.3 Frequency map

The frequencies that have been used to perform the tests fit the human
frequency map described in Holmberg (2007). That is a frequency array that
starts at 49Hz and finishes at 14197Hz following a logarithmic formula as:

fCF (x) = (101.8 ∗ (LBM−x)/LBM
− 0.8) ∗ 238Hz (2.5)

where LBM is the total length of the cochlea (LBM = 0.035m) and x is the
position on the cochlea.
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DRNL
stapes factor 6*10−8 linear path gain factor 3*105

a, nonlinear path gain 4.5*105 b, sets compresion (m/s) 18*10−5

105 50*10−5

compression parameters 0.2

IHC stereocilia
τc 0.0003 Ccilia 0.1
Gmax

Ca (S) 8*10−9 G0 1.97*10−9

u0 40*10−9 u1 7*10−9

s0 1*10−7 s1 20*10−9

IHCRP
Cm (F) 16*10−12 Et (V) 0.09
Gk (S) 1.8*10−8 Ek -0.0705
Rpc 0.04

IHCpreSynapse
ECa 0.066 z 2*1042

βCA 400 γCA 130
τCaHSR 2.1*10−4 τCaMSR 1*10−4

τCaLSR 0.6*10−4 τm 0.0001

AN-IHCS
Mmax 12 y, replacement rate 3
l, loss rate (s−1) 2580 replenishment rate (s−1) 30
r, reuptake rate (s−1) 6580 refractory period 0.00075
TWdelay 0.004

Table 2.3: Table of Brown et al. (2010) parameters
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2.4 Simple tone stimulation

Post-stimulus-time histogram (PSTH)

To visualize the difference in timing between the models, the PSTH has been
conducted. The PSTH is an histogram of the times at which neurons fire.
We used a tone burst of 25 ms with 1 ms of rise and fall time, the same
as the signal used for the data showed, and a frequency of 4.3kHz. Due to
the peak-to-sustained discharge rate increase with SPL Carney (1993), the
sound level was fixed to 30 dB SPL over the threshold at this frequency. The
fibers tested were 1000 HSR fibers with a CF of 4.3kHz. The resolution used
was fit to a bin size of 0.5 ms.

How was got the rate intensity

The three different types of AN fibers, HSR, MSR and LSR, have been tested
here among a large range of intensities. The amount of fibers of each type
was 250 with a high CF. This CF changes between models: while for the
model of Sumner et al. (2003b) and Zilany et al. (2009) was 14kHz for the
model of Heinz et al. (2001), Wiegrebe and Meddis (2004),Holmberg et al.
(2007), Wang et al. (2008) and Brown et al. (2010) was 4.3kHz. The reason
is that, the two first try to simulate guinea-pig and cat AS respectively and
the others human AS. The rate is calculated as the addition of all the spikes
during a sound stimulus, divided by the length (time) of the stimulus and
the amount of fibers.

Obtaining the phase locking

To characterize the phase locking, the synchronization index along the in-
terest frequencies (from section 2.3) have been performed with 30 dB SPL
over threshold at 10kHz and 1000 HSR fibers. The synchronization index (or
vector strength (r)) is the normalized estimation of the neuron’s tendency to
fire at a particular phase in a stimulus cycle, and is formulated as:

r =

√

[
∑K−1

0 Rk cos 2π(k/K)]2 + [
∑K−1

0 Rk sin 2π(k/K)]2

∑K−1
0 Rk

(2.6)

where K is the number of bins in the period histogram, and Rk is the mag-
nitude of the kth bin (Rees and Palmer, 1989).
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2.4 Simple tone stimulation

How to get the modulation gain

To calculate the degree of modulation, 1000 HSR fibers have been used.
The input signal consists of an amplitud modulated (AM) signal of 10 dB
SPL over threshold at 10kHz, with a fc (carrier frequency) of 10kHz and a
modulated frequency that varies from 100Hz to 2kHz (using values of 2.3).
However, it is known that, for human, the modulation at low frequencies is
even more important than at high frequencies. The nature of this low fre-
quencies generate the need of a signal that confirms the duration of at least
one period for a correct result. Therefore, the signal for low fm (modula-
tion frequency), has the slope shown in fig. 2.5. Until T/4, when T is the
period, the signal is a non-modulated toneburst, with a ramped start. The
calculation of the MTF (modulation transfer function) takes just one period,
from 3T/4 til 7T/4 (in the figure, the solid red arrow). The model of Wang
et al. (2008) has not been tested at low frequencies because it computes the
response for diferent CF and it has been impossible to process so long signals.
The MTF (in dB) is calculated as the amount of percent modulation depth
of the histogram divided by the modulation depth of the stimulus.

Modulation gain = 20 ∗ Log10
200 ∗ r

m
(2.7)

Where r is the vector strength as obtained in Eq. 2.6 and m is the modulation
depth of the signal (in this thesis m=0.99) (Rees and Palmer, 1989).

How to obtain the tuning curves

The threshold along the frequency map (section 2.3) for a fixed CF (2kHz)
has been obtained for 1000 HSR fibers. It has been computed as the sound
level needed to obtain 10 spikes per second more than the spontaneous rate
(Zhang et al., 2001; Zilany and Bruce, 2006). The signal used is a tone burst
of the same frecuency as the CF and a variable sound level.

Obtaining the Q10dB values

The Q10dB is defined as the filter BF divided by the bandwidth at 10 dB over
the threshold at BF (Miller et al., 1997).

Q10dB =
BF

BW10 dB

(2.8)

To get the Q10dB along the frequency array (section 2.3), the tuning curves
at these frequencies have had to be obtained. Therefore only 100 HSR fibers
have been used for this test.
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solid arrow shows the amount of signal, one period, used to calculate the
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2.5 Performing the ASR

2.5 Performing the ASR

For the evaluation of the response for speech an ASR has been applied. To use
the ASR, the spike signal from the models had to endure some modifications.
Since the input data is notoriously redundant, it is transformed through
feature extraction, a form of dimensionality reduction, into features vector.
Thus, the input carries the linguistic information and supresses irrelevant
acoustic information. To do that correctly, first a window of 25ms with a
step of 10ms is used to segmentate the signal. Then it is applied a filter bank
and a digital cosine transformation (DCT) to reduce the spectral resolution
and decorrelate the features vector. From this DCT, only 12 components
are used and the first and second order derivatives are added. That is the
procedure of the front-end, one of the two parts of the ASR.

The other part of the ASR, the back-end, discriminates and classifies
between classes through hidden Markow models. The speech recognizer is
built with the Cambridge’s HTK and uses multi-layer perceptrons. As the
source used is the ISOLET database (Cole et al., 1990) and a version of ISO-
LET with noise and both contains the speak of the whole alphabet twice by
75 female and 75 male, the classes to be distinguished will be letters. The
noisy ISOLET includes no noise and 20, 15, 10, 5 and 0 signal to noise ratio
(SNR) (Holmberg et al., 2005). The noisy types comes from the RSG-10
collection (Steneken and Geurtsen, 1988). Both clean and noisy ISOLET
were scaled by the same value to have physically meaningful amplitudes.
Thus, the dynamic range of all the recordings was scaled but not the dif-
ferent sounds. The whole proccess is widely described by Holmberg (2007).
75 HSR fibers and 25 LSR fibers per frequency channel were selected to pre-
pare the AN response which would be the input of the ASR system. The
total of frequency channels were 100, using the total of human frequency
map given in section 2.3. Thus, the total number of fibers across frequency
is 10000 fibers. Taking into account that Holmberg (2007) pointed that in-
creasing the amount of fibers over 1000 has a negligible effect, 10000 is more
than it is necessary to get a good speech recognition, even for noisy stimulus.
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Chapter 3

Results

This chapter discusses the result of testing the different models through a
variety of analysis. The first section reviews the response of the stimulus in
the presence of a tone burst as an input signal. Frequency and time analysis
help us to understand the behavior of the models and give us the opportunity
of compare them with experimental data. The second section examine the
results of using the auditory models as an acoustic front-end processors for
ASR system. Clean an noisy background have been used to evaluate the
accuracy of the models in front of environment diverseness.

3.1 Simple tone stimulation

3.1.1 Temporal analysis with PSTH

Fig. 3.1 shows post stimulus time histogram for a frequency of 4.3kHz. With
the PSTH, the difference in timing of the different model can be system-
atically investigated. Moreover, the rapid and short-term adaptation (two
exponential decay functions) can be calculated. They where characterized by
Westerman and Smith (1984) as two of the addend (the steady state constant
was the third) of the adaptation function.

The PSTH of every model started with spontaneous activity for no signal.
Then at 2 ms the signal starts and the onset-peak occurs at approximately
3ms, depending on models. The value of this peak changes considerately,
from 600 sp/sec of the model of Wang et al. (2008) until more than 1500
sp/sec of the models of Carney’s group. Besides, the model of Zilany et al.
(2009) has a slim onset-peak (also valid for Heinz et al. (2001) model) and
a notch after it, sometimes visible in AN fibers data (Ruggero and Semple,
1991). On the other hand, the models of Meddis’ and Hemmert’s groups have
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3.1 Simple tone stimulation

Figure 3.1: PSTH for 4.3kHz (blue line) and 10kHz (red line) signal input of
25 ms with 1 ms of rise and fall time and 30 dB SPL over threshold. The test
was made for 1000 HSR fibers and a bin size of 0.5ms. The data (guinea-pig)
is obtained from Muller and Robertson (1991). In the upper right corner of
the data plot we find a detail of the notch after the onset peak (from Ruggero
and Semple (1991)).
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a wide peak, which width depend on intensity, that decreases exponentially
(as explained above) to rise the sustained discharge rate. Though, the adap-
tation function given by the model of Holmberg et al. (2007) has a slope less
sharp than the others. The steady state value lies, for almost all the mod-
els, around 300 sp/sec, although the model described by Zilany et al. (2009)
has a lower value (near 200 sp/sec) and the model of Wiegrebe and Meddis
(2004) has a higher one (almost 500). This last model has abnormal peaks at
5, 10 and 20 ms that could be a reaction to the delay of the efferent system
that affects the temporal properties of the model. The signal lasts 25ms, and
then the result has drops more or less pronounced depending on the model.
The time of recovery before the model fires again the spontaneous activity is
known as offset adaptation. This adaptation is a property of the AN-IHCS,
limits some aspects of the temporal coding and produces a greater sensitivity
to transient stimuli. In the model of Sumner et al. (2003b) and Holmberg
et al. (2007) this recovery happens after less than a few miliseconds. This
quick recovery does not fit with the physiological data that present a “dead
time” indeed presented in Wang et al. (2008) model. Nevertheless, for the
model of Zilany et al. (2009), this recuperation (after this “dead time”) takes
more time.

3.1.2 Rate intensity functions of the AN

As said in the introduction, the mammals have three different kind of AN
fibers, high, medium and low spontaneous rate fibers. The HSR has activity
in the absence of any stimulus, requires a small quantity of sound pressure
level to fire above spontaneous activity and a small dynamic range. LSR on
the contrary, has almost no spontaneous activity, a higher threshold and a
slow rise once the threshold is exceeded. These properties can be observed
in Fig. 3.2, where the figure shows us the quantity of spikes per second for
the different models through the different sound level of input signal. It can
be observed that, for the HSR fibers, the models have usually a threshold
between 5 and 20dB SPL; for MSR fibers a threshold between 10 and 30dB
SPL and for LSR fibers between 10 and 40dB SPL. Therefore, the results fit
with the experimental data, the solid gray lines (Winter and Palmer, 1991).

Although the spontaneous rate of the HSR fibers should be high, the
Brown et al. (2010) model gives a result of only 20 spikes/sec. Nevertheles, it
is important to emphasize that, some parameters from the models of Meddis
group (Ca2+

thr, Mmax and Gmax
Ca ) can be changed to fit any guinea-pig rate

intensity data as explained in Sumner et al. (2002).
Other characteristic observable is the dynamic range. While some models

as the ones described in Sumner et al. (2003b), Zilany et al. (2009) and Brown
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Figure 3.2: Rate intensity response for the seven models tested. The three
different kind of fibers are tested separately. 250 fibers of each type have
been used with a CF of 14kHz for the model of Sumner et al. (2003b) and
Zilany et al. (2009), and a CF of 4.3kHz for the models presented in Heinz
et al. (2001), Wiegrebe and Meddis (2004),Holmberg et al. (2007), Wang
et al. (2008) and Brown et al. (2010). The guinea-pig data, in dashed lines,
comes from Winter and Palmer (1991).
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et al. (2010) have really pronounced HSR slopes once the threshold has been
overstepped (15 dB of dynamic range), the rest of the models tested have a
smoother one. In particular the models of Hemmert group have more than
50 dB of dynamic range. That does not happen in MSR fibers, at least it
is not as remarkable as in HSR. In MSR fibers almost all the models, but
the ones presented in Holmberg et al. (2007) and Heinz et al. (2001), have
a dynamic range of 30dB approximately. For LSR fibers, the difference in
dynamic range between models is even less different. However, the model of
Wang et al. (2008) that was showing a really smooth response in HSR and
MSR fibers, shows here the smallest range.

Sumner et al. (2003b); Wiegrebe and Meddis (2004); Zilany et al. (2009);
Brown et al. (2010) models for HSR fibers conform better with the experi-
mental data, that present a small dynamic range and a threshold around 5
dB SPL. However, we must not forget that the models presented in Heinz
et al. (2001); Holmberg et al. (2007); Wang et al. (2008) simulate human
ear and the data to compare are guinea-pig data. On the contrary, for the
MSR and LSR fibers are not as clear as for HSR. The models, mostly, fit the
experimental data of guinea-pig, though the model of Wang et al. (2008) has
too high dynamic range in LSR fibers and a high rate in MSR.

3.1.3 Synchronization index of AN fibers as a function
of CF

The indicant of the phase locking, an esencial temporal property, is the syn-
chronization index. It points if the AN response conserves or not the phase
and time structure of the input stimulus. That can be observed in Fig. 3.3,
where the different behaviour from two different animals, cat and guinea-
pig, and the results of the models are shown. At low frequencies the data
present an index near to 1 (the spikes are synchronizated with the stimulus),
while at higher frequencies this synchronization index falls down to almost
0 (spikes are generated randomly). While the synchronization index in the
guinea pig drops from 1kHz, it drops with a higher frequency for cats. This
low pass behavior of the data is presented (to greater or lesser extent) in the
models. The Sumner et al. (2003b) model that simulates the guinea-pig ear,
fits the data from Palmer and Russel (1986). The results from this model
of Meddis group stays close to the average of the data, however it presents
a non common response between 100Hz and 300Hz. This hill turns into a
valley if a lower sound pressure level is used due to the ME filter. The gain
at this frequencies is really low and therefore a lower sound level would be
under the threshold. Fitting the data from cats (Johnson, 1980), the model
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Figure 3.3: Sinchronization index along frequency for 1000 HSR fibers and
a signal of 30 dB SPL over threshold. The black crosses are guinea-pig data
from Palmer and Russel (1986), the red diamonds are cat data from Johnson
(1980)

37



Results

from Zilany has a good phase-locking response from 400Hz, although it has
a pronounced fall from 1kHz. This shape is mainly the result of the PLA
used that increases the synchronization. It also has a hill up to 400Hz due
to the model is not too realistic at low frequencies.

Without data about human phase-locking, only a comparison between
another animal data can be made. The best result obtained corresponds to
Wang et al. (2008) model, its drop has the highest frequency and besides,
it also has a good synchronization index at low frequencies. It improves the
result of the previous model of Hemmert group, Holmberg et al. (2007), whose
result stays between the cat and guinea-pig data. The models described by
Sumner et al. (2003b) and by Wiegrebe and Meddis (2004) have a similar
synchronization index as expected, since the both models are quite similar.
With reference to the model of Brown et al. (2010), it has the drop at the
lowest frequencies and a good phase locking at low frequencies. Completely
the opposite of Heinz et al. (2001) model, which has a low synchronization
index at low frequencies (less than 0.8) but a high drop frequency.

In general, the models fit the experimental data (cat or guinea-pig) with
varying degrees of success but in any case comply with the physiological
results.

3.1.4 Response to AM tones. The MTF from 0.1Hz
to 2kHz

The MTF offers the synchronization of the AM signals to the fm (Fig. 3.4).
As pointed in Greenwood and Joris (1996), mechanical and temporal filtering
limit the cut-off frequency above which AN spikes response is not modulated
by fm anymore. The mechanical band pass filter is generated by the local
basilar partition motion driving the IHC and the temporal filtering reside
between mechanical motion and the AN spikes and limits the AN synchro-
nization to temporal variation in the IHC input.

Using the CF as fc of the input signal, the sideband components of the
AM is removed by the mechanical filter as fm increases. This effect generates
in turn a reduction in the envelope amplitude variation that influences the
modulation gain cut-off frequency. Therefore a function of CF, sets the
bandwidth of this filter. It has been related that high Q10dB produce lower
cut-off frequencies as happens to the models of Holmberg et al. (2007) and
Wiegrebe and Meddis (2004). But the mechanical filter is not the only one
that affects the shape of the MTF. Fixing the temporal filter with a high cut-
off frequency results in a high cut-off frequency of the modulation gain. That
is the solution of Zilany et al. (2009) to replicate accurately physiological

38



3.1 Simple tone stimulation

10
2

10
3

−25

−20

−15

−10

−5

0

5

10

Frequency (Hz)

G
ai

n

Modulation gain

 

 

Heinz et al.,2001
Sumner et al.,2003b
Wiegrebe & Meddis,2004
Holmberg et al. 2007
Wang et al.,2008
Zilany et al.,2009
Brown et al.,2010
Data

Figure 3.4: MTF for 1000 HSR fibers for the different models. The MTF
is calculated as the amount of percent modulation depth of the histogram
(200*r) divided by the modulation depth of the stimulus. The dashed lines
are data from Joris and Yin (1992)

39



Results

10
−1

10
0

10
1

10
2

−25

−20

−15

−10

−5

0

5

10

Frequency (Hz)

G
ai

n

Modulation gain at low frequencies

 

 

Heinz et al.,2001

Sumner et al.,2003b

Wiegrebe & Meddis,2004

Holmberg et al. 2007

Zilany et al.,2009

Brown et al.,2010

Figure 3.5: MTF at low frequencies for 1000 HSR. The amount of AM signal
used to calculate is fixed to 1 period

40



3.1 Simple tone stimulation

10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

100

Frequency (Hz)

T
hr

es
ho

ld
 (

dB
 S

P
L)

Tuning curves at CF=2019Hz

 

 

Heinz et al.,2001
Sumner et al.,2003b
Wiegrebe & Meddis,2004
Holmberg et al. 2007
Wang et al.,2008
Zilany et al.,2009
Brown et al.,2010
Data

Figure 3.6: Minimum threshold to obtain 10 spikes/sec more than sponta-
neous rate across a range of frequency for a fixed CF=2019Hz and 1000 HSR.
The data comes for cat from Liberman and Kiang (1977)

MTF. On the other hand, the Wang et al. (2008) model that includes an
offset adaptation stage in their model get a higher cut-off frequency due to
the OA properties of the synapse that increase the synchronization. These
two models are the only ones that comply precisely with the data of Joris
and Yin (1992), despite their differences, due to the differences in the same
data. Besides, for speech recognition it is also important to look at very low
frequencies (under 100 Hz). In fig. 3.5 the MTF of the models at very low
frequencies is showed, despite the nonexistence of data at these frequencies.
Therefore, we can only assume the result of the models and compare between
them. The modulation gain slightly increase (3 dB max) from 0.1Hz to 100
Hz and are quite uniform for almost all the models. However, the model of
Brown et al. (2010), with its increase from 2Hz to 40Hz, is the only exception.

41



Results

3.1.5 Frequency threshold tuning curves

The minimum threshold at which the nerve fiber will respond depends on
the frequency of the input stimulus. It is easily visible on plot Fig. 3.6 the
asymmetry of the curve. How the threshold stays over [60–100] dB SPL
(depending on models) for frequencies under CF, how it falls to almost 0
at CF (depending on the ME filter and IHC gain) and increases quickly for
higher frequencies. It also helps to indicate the selectivity and sensitivity of
the model with a simple look.

The bandwidth of the tuning curve is a good indicator of how the frequen-
cies that are not the CF will be attenuated. Due to this reason, to recognize
the model with the best selectivity could be a good start to point out the
best model for ASR. However, into the previous process of the ASR, specifi-
cally in the DCT where only 12 components are used, this selectivity will be
lost. For this reason, it is not relevant that the model of Brown et al. (2010),
particularly designed for ASR shows a wide tuning curve. The models of
Heinz et al. (2001), Zilany et al. (2009) and Sumner et al. (2003b) present
a narrower result, although the narrowest bandwidth goes to the model of
Wiegrebe and Meddis (2004), Holmberg et al. (2007) and Wang et al. (2008).

It is important to mention the singularities of the different models pre-
sented in this plot, such as the peak of Sumner et al. (2003b) model at
1.5kHz and the peak of Zilany et al. (2009) model at 4.3kHz or the valley of
the model of Holmberg et al. (2007) and the one of the model described in
Wang et al. (2008) at 750Hz. Some of these anomalies are due to the mode
of development and programming. However, this is not the case of the result
of the model of Zilany et al. (2009), which anomaly correspond to the ME
notch above 4kHz. As expected, the results of this model are the ones that
fit better with the cat data of Liberman and Kiang (1977) because is the
only model that mimic cat APS. On the other hand, the models that try to
simulate human ear and have achieved a narrow tuning curve (specifically
the ones described in Wiegrebe and Meddis (2004); Holmberg et al. (2007);
Wang et al. (2008)), fit the psychophysical tuning curve data of Carney and
Nelson (1983).

3.1.6 Q10dB, a selectivity measurement

The Fig. 3.7 represents the Q10dB, a measure of the sharpness of tuning,
throughout frequency. With it, it is even easier to point the selectivity of the
model because it represents the BF divided by the bandwidth of the tuning
curve at 10 dB over the minimum threshold. As noted in the section 3.1.5,
this selectivity would become unprofitable after the DCT stage. Although
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Figure 3.7: Q10dB along frequency for 100 HSR fibers. Grey crosses are cat
data from Miller et al. (1997)
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almost all the models present unsurprising results (previous study of the
Fig. 3.6) with a high Q10dB for Wang et al. (2008) and Holmberg et al. (2007)
models, medium for Sumner et al. (2003b), Zilany et al. (2009) and Heinz
et al. (2001) models and low for Brown et al. (2010) model; the Wiegrebe
and Meddis (2004) model shows a low Q10dB up to 2kHz and above 6kHz,
that represent the maximum CF of the model, and a higher Q10dB between
these both frequencies. The cat model of Carney group is the one that fits
more properly the data of Miller et al. (1997). On the other hand, the human
models of Holmberg et al. (2007); Wang et al. (2008), and even the model
of Wiegrebe and Meddis (2004) for certain frequencies, have a Q10dB that
exceed the higher value of cat data. Nevertheless the psychophysical data of
Carney and Nelson (1983) have characterized a narrow tuning curve that in
turn means a higher Q10dB. Therefore, it is easy to point out that they will
fit the human data.

3.2 Automatic speech recognition

Once the models were surveyed for simple tone stimulation, a study about
the results for complex stimuli was conducted. Due to the computational
complexity of this part, I only use the two models that can be more relevant,
the ones described by Wang et al. (2008) and Zilany et al. (2009).1 Here we
will see how the background noise and the sound level of the input signal
affect the recognition percent.

3.2.1 Effects of noise level

In this part of the thesis, speech recognition accuracy was obtained as a
function of SNR. 20,15,10,5 and 0 signal to noise ratio and a clean signal were
used. As seen in fig. 3.8 the result of both models is a monotone decreasing
curve. The two models present a similar response for the best result (40dB
SPL for the model of Zilany et al. (2009) and 70 for the model of Wang et al.
(2008)) amount a variety of input signals. Though Zilany et al. (2009) has
achieved usually a better recognition, the higher difference between the two
models has been less than 5 percent (for a 0 SNR).

1The model of Brown et al. (2010) is indeed the third one that should be tested.
However, the results of this model for ASR have been already conducted in the same
publication and the improvement in recognition also pointed out.
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3.2.2 Effect of sound level

To know how well the models recognition will be in the presence of different
sound levels, it is important that the following experiment is performed. In
fig. 3.9 speech recognition accuracy has been obtained for different configu-
ration of the models in which the sound level pressure of the speech signal
was set to 10,40 and 60 dB over the threshold of this models at 10kHz. For
each sound level, speech recognition accuracy has been evaluated in a range
of noise conditions. The results of the model described by Wang et al. (2008)
show a high difference between the line at 10dB and the 40 and 60 dB for
clean conditions. However, this difference decreases when the noise raises
and since 10 dB of SNR the results deviate about 5 percent. That does not
happen for the results of the model of Zilany et al. (2009), that maintain
more or less the same amount of difference between sound levels for each
signal to noise ratio. For signals of low sound level, the results of this model
have proven to be better with clean conditions or low noise background. On
the other hand, when the noise increases to the same level of the signal, the
model of Wang et al. (2008) has got the best result. However, that is a par-
ticular case. In the fig. 3.10 we can see that the model of Zilany et al. (2009)
in noisy conditions (the average of the result for 20,25,10,5 and 0 SNR) has
a better result for signals with a low sound level up to 60 dB SPL. After
that, the model described by Wang et al. (2008) gets a higher percentage.
This pattern is repeated in the clean condition, but at 70 dB SPL. Once
again, the model of Carney group gets a better result for low sound level
while the model of Hemmert group has a better result for high sound levels.
One might think that this result is the fruit of the different thresholds in the
models that ensues in a displacement in the curves. But after normalizing
the two curves is still observed this behavior, model from Zilany et al. (2009)
performs better for low intensity sounds and model from Wang et al. (2008)
for high intensity sounds.
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Figure 3.8: Speech recognition for different noise background. The sound
level used was the one that got the best results (40dB SPL for the model of
Zilany et al. (2009) and 70 for the model of Wang et al. (2008)).10000 fibers,
75 HSR and 25LSR per frequency channel were used
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Figure 3.9: Percent of recognition for different sound level over threshold at
10kHz and a variety of signal to noise ratio. A total of 10000 fibers (3/4
of HSR and 1/4 of LSR) were used. Left: model of Wang et al. (2008)
(with a threshold of 20dB SPL). Right: model of Zilany et al. (2009) (with
a threshold of 10dB SPL)
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Figure 3.10: Clean (left) and noisy (right) conditions for the models of Wang
et al. (2008) and Zilany et al. (2009) throughout sound pressure level and
100 fibers (HSR and LSR) per channel. The noisy plot represents the mean
of the results under a variety of noise conditions (20,15,10,5 and 0 SNR)
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Chapter 4

Discussion

This study presented a comparison between a variety of auditory periphery
models from three different research groups. The main motivation was to
compare the models against experimental data first and then to use them as
an ASR backend to discover how the different properties and implementa-
tions of those models influence ASR results. Thus, we can conclude which
properties of auditory periphery system are relevant for speech recognition.
To achieve this goal, we have analyzed the models with simple and complex
stimulus. With simple signals, we have explored seven models with different
evaluation, we have analyzed their properties and then we have compared
the results. The timing properties with the PSTH, the dynamic range and
threshold with rate intensity plots, the selectivity with the tuning curves and
Q10dB values and the phase and time structure in presence of tone burst or
AM signals with synchronization index, were the attribute examined. The
complex stimulus were speech signals. The AN fibers output from the mod-
els in presence of speech were used as front end of an ASR system. This is
not exactly new, other publications as Holmberg et al. (2007); Wang et al.
(2008); Brown et al. (2010), referring only to those studied here, have done
it before. Holmberg et al. (2007) tried to test speech encoding strategies
while Wang et al. (2008) and Brown et al. (2010) tried to demonstrate the
worth of using an OA function or efferent activity attenuation through ASR
respectively. The work presented here can not be directly compared with
the work of Brown et al. (2010) because they used a different database of
speech signals. On contrary, the work of Holmberg et al. (2007); Wang et al.
(2008), that use this database, have been a reference. Although the number
of models tested with the simple signals were seven, only two models were
used in this part of the thesis because the large number of speech signals in
the ISOLET database entailed a high consume of time.
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Studying the results

Looking in the post stimulus time histogram, we found the first differences
among models. On the one hand, the result after evaluating the model of
Brown et al. (2010) showed some uncommon peaks probably as a result of
the efferent delay. On the other hand, the onset peak of Wang et al. (2008)
is not as high as the rest of the models even for high sound levels (30 dB SPL
over threshold). This model and the one described by Zilany et al. (2009),
take care over the offset adaptation, they showed a “dead time” after the
stimulus like in experimental data.

In the rate intensity functions of the AN fibers we discovered a high and
unrealistic dynamic range of the model described by Wang et al. (2008) due
to the offset adaptation. There is also a high threshold of Brown et al. (2010),
the shift in the rate intensity response is a consequence of the efferent activity
modeled as an attenuation. However, all the models from Meddis group have
showed a higher threshold in HSR fibers. Generally, the phenomenological
models (as Heinz et al. (2001); Zilany et al. (2009)) have achieved the results
that better fits with the data.

The different animal data used in synchronization index was a helpful tool
to study the structure of AN fibers response. This study has pointed out
the outperforming of models that includes some kind of offset adaptation.
I mean, the models described by Wang et al. (2008); Zilany et al. (2009).
However, the second model has increased its synchronization index in an
fanciful way for low frequencies.

Something similar occurs in the evaluation of MTF. Looking at fig. 3.4 is
easy to see the ameliorated result of models of Wang et al. (2008) and Zilany
et al. (2009) although this last model have a smoother result. On contrary,
the result at very low frequency have not pointed out any difference among
models but the one from Brown et al. (2010). Since there is no experimental
data at these low frequencies, it is difficult to select the correct one.

The tuning curves and the Q10dB values highlight the bad selectivity of
Brown et al. (2010) model. Since the model was intended to work with
an ASR that uses only 14 components of the DCT, is probable that the
authors disdained the selectivity in their model. On contrary, the models of
Holmberg et al. (2007) and Wang et al. (2008) that also uses an ASR with
12 components, have a very narrow tuning curve and therefore high Q10dB

values that would fit the human psychophysical data. It is important to
mention that, the model described by Wiegrebe and Meddis (2004) have a
huge difference in the Q10dB values along frequency without plausible cause.

Concerning the ASR, only the results of Wang et al. (2008) and Zilany
et al. (2009) models were studied here. Both models simulate the offset
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adaptation, the first with the shift described in Zhang and Carney (2005)
and the second as a consequence of its power law adaptation at the synapse.
Perhaps for this reason, the expected difference between the two models
recognition (for the sound level with better results) did not exist at the end.
This would mean that the other implications of using a PLA do not affect
the ASR results for a convenient sound level or the effect is insignificant. Not
so insignificant when you consider low intensities, where the high dynamic
range of the model described by Wang et al. (2008) is not a realistic result.
It could have been the cause of the lower recognition and thus, the model
of Zilany et al. (2009) and their PLA had a better result. With a higher
dynamic range, the amount of spikes produced at low intensities even above
threshold is much lower. However, it is also possible that the different way of
the intrinsic implementation of both models would be the responsible of the
this difference. By the same token, neither be tuned for different animals (the
model of Zilany et al. (2009) mimics cats and the model of Wang et al. (2008)
mimics human ear), nor to have a better or worse selectivity has supposed a
difference for ASR.

In any case, both models have achieved a better result than models with-
out offset adaptation performed, as the model of Holmberg et al. (2007).
Thus, we can conclude that offset adaptation is crucial for speech recogni-
tion in clean and noise environments and the implementation of this offset
adaptation, shift in AN response (Wang et al., 2008) or PLA (Zilany et al.,
2009) does not affect the result. Besides, taking into account all the results
from simple tone stimulation we also conclude that the model that fits better
with the data is the one presented by Zilany et al. (2009). The fail in the
synchronization index at low frequencies and high intensities is only a very
specific situation that does not affect that this model has the best result in
all the test done.

The better improvements

Among all the improvements performed by the different models along the
years, there are some of them that, to this day, are essential. The first indis-
pensable improvement that has been evident is an amelioration in the offset
adaptation. Not only the offset adaptation is thought the responsible of
psychophysical forward masking (Harris and Dallos, 1979), but the models
which consider it (as the model of Wang et al. (2008)) increases the syn-
chronization index and the coding of amplitude modulated signals. Those
improvements with the offset adaptation were expected by Holmberg et al.
(2007) and Zhang and Carney (2005) among others. In the same way we can
find the power law adaptation of Zilany et al. (2009) As pointed in Zhang and
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Carney (2005), adaptation occurs (or it is believed at least) at the level of the
transmitter release process in the AN-IHCS that is exactly the component
changed in this model. With the power law adaptation, the offset adapta-
tion as well as the adaptation to increments and decrements in a ongoing
stimulus, can be simulated. This improvements about the offset adaptation
would be the responsible of the good synchronization’s result of the model of
Zilany et al. (2009) like the model of Wang et al. (2008). Both models have
achieved the best synchronization index (Fig. 3.3) and the best modulation
gain (Fig. 3.3) among the other models evaluated.

Another crucial improvement is the use of ME filter and/or eardrum
transfer function. On the one hand, the results of the model of Heinz et al.
(2001) (without ME filter), have shown that having or not a ME filter does
not affect the results, except for the threshold at which the fibers will fire over
the spontaneous activity. On the other hand, this model has only been stud-
ied with simple signals. ME has demonstrated its significance in modeling
responses to wide-band stimuli, where the difference in gain along frequency
would be relevant. More than an effect of eradicating malicious noise is
intended to approach the model to the physiological process, boosting or re-
ducing the amplitude of the signal depending on the frequency, as does the
ear. Furthermore, the computational complexity and time needed to mimic
the effect of the middle and outer ear is negligible.

By the same token, the models should be able to use high, medium and
low spontaneous fibers. The implication of developing different kind of fibers
might seem not as trivial as the ME filter. The truth is that mostly, it only
involves a change in the parameters used in the part of the model corre-
sponding to AN-IHCS. The main importance of the use of LSR is its role in
encoding high sound levels. As seen in fig. 3.2 at this high levels the other
fibers are saturated. This coincides with the results obtained by Winter
and Palmer (1991). Moreover, LSR seems to be important for vowel coding
(Holmberg, 2007). In this research work the author noticed that LSR fea-
tures surpass HSR ones at normal conversation sound levels in a experiment
with only vowels.

The last improvement that has been compared is the use of efferent ac-
tivity by attenuating the BM response. For simple signals in a clean environ-
ment this improvement has nothing to contribute because its strength is the
antimasking effect in noisy environments (Ferry and Meddis, 2007). Thus,
the phase locking and the MTF of the Brown et al. (2010) model did not show
any improvement. The only appreciable change for this simple stimuli is the
shift in the rate intensity response (fig. 3.2), due to the attenuation that the
efferent activity implies. Moreover, the result of the tuning curve and Q10dB

show an unfortunate surprise: a bad selectivity. However, the selectivity of
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the reproduction of the model presented by Brown et al. (2010) has nothing
to do with the efferent system since the model has the same output when
the use of efferent activity is turned off. It seems pretty clear that, although
the implementation of the efferent activity is quite easy (Ferry and Meddis,
2007), the use of efferent activity is not needed if the model is not intended
to work in a noisy background, at least if this efferent activity is modeled as
a simple attenuation.

In conclusion, the future models that would like to obtain an accurate AN
response in presence of speech signals would have to use a ME filter and/or
eardrum transfer function, different fiber types (at least HSR and LSR), a
correct offset adaptation and an efferent activity feedback if it is intended to
work in noisy environments.

Future work

This study has not considered an important effect: “the forward masking”.
The forward masking occurs when a signal arrives to the auditory system and
it has its responsiveness reduced as a consequence of a previous acoustic stim-
ulation. The OA could be responsible of this phenomenon as pointed above.
The study of forward masking would be important in future comparisons.

The use, implementation and posterior comparison of the model described
by Brown et al. (2010) has not got as good results as expected. The model has
an extensive amount of parameters and is relatively new. Due to the variety
of parameters files offered by the author, different tests to select the correct
one were made. Then the parameters file which fits better with experimental
data was chosen. However, although the model fits the experimental data,
it has not achieved good results compared with the other models studied. In
particular, in the tuning curves and the in the Q10dB tests, it has been the
worst one simulated. The model was intended to be a tool for evaluate the
use of efferent activity, comparing the results of the model with and without
it in presence of noise. It could be that the other aspects of the model have
been despised.

It might be thought that two models are really very few to compare. At
least three models, from the three research groups studied would be required.
After all, no model of Meddis group was studied with speech signals in this
thesis. However, the analysis with simple signals gives us a good basis of
understanding above all the models and the last model from Meddis group
had already been assessed with the use of ASR. Thereby, it can be concluded
that, the comparison of these two models and the results published by Brown
et al. (2010) are more than enough to accomplish the aim of this thesis.
However, for a quantitatively comparison, the study of this model should be
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Discussion

made through an ASR with the same source used with the other models, I
mean with the ISOLET data base.

In some cases there are not human data, at least not physiological ones.
The psychophysical data not only represent the results that we intend to see
but also the underlying superior process that could conduct to an erroneous
clarifications.

The lack on time to evaluate of the models has been the main limitation.
The process of obtaining the speech recognition along 7800 audio files was
a high time consumer. Therefore only two models could be studied with
ASR. In future studies, all the models studied for simple signals should be
evaluated also with ASR to compare the results properly.

Conclusions

After the project is completed and all models have been studied among all
the tests proposed, we are able to select the better improvement from the
results of tests.

• The model of Zilany et al.(2009)is the one that fits better with the data.
Although it has some inadequate temporal response at low frequencies
and high sound level, it is only a very specific situation.

• Offset adaptation has demonstrated to be essential, both as a shift in
the AN fiber response function and as being a result of the inclusion of
power law functions in the synapsis.

• Selectivity and animal tuning are not relevant for speech recognition.
At least if the ASR system uses only a part of DCT components.

• Efferent activity is useless in a clean environment, although the re-
sults of Brown et al. (2010) have demonstrated that is an important
improvement for noisy background.

.

54



List of Figures

1.1 The human ear. The eardrum transforms the sounds into me-
chanical waves, that in turn, pass through the ossicles and
arrive to the cochlea. There, it will be converted into spikes.
Modified from Chittka and Brockmann (2005) . . . . . . . . . 2

1.2 Sound frequencies in the BM. A) Different sound frequencies
differentially excite different regions of the BM. B), C) and
D): varied frequencies and the vibration that they generate. . 4

1.3 A) The organ of Corti. A movement in the BM generates a
displacement on the cilia, that in turns produces the depo-
larization of the hair cells. B) The figure represents the OHC
contraction, due to the depolarization. This contraction moves
the BM in phase (Fettiplace and Hackney, 2006). . . . . . . . 5

1.4 Carney group’s models . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Block diagram of the Zhang et al. (2001) AN model . . . . . . 8

1.6 Meddis group’s models . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Block diagram of the Sumner et al. (2002) auditory model . . 13

1.8 Schematic of the Holmberg et al. (2007) auditory model . . . . 16

2.1 Interface: the input and output of the system are the same for
all models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 DRNL filter architecture.(Sumner et al., 2003b) The asterisk
are parameters that have change from Sumner et al. (2002) . . 21

2.3 The middle ear filters and eardrum functions (when present)
of the different models normalized at the same gain (0 dB) at
1kHz. The ME presented in Wang et al. (2008), has the same
shape as the one of Holmberg et al. (2007). Besides, the model
described by Heinz et al. (2001) has no middle ear filter. . . . 23

55



List of Figures

2.4 Schematic diagram of Zilany et al. (2009) model. To A corre-
sponds the basic Carney group model until Zilany and Bruce
(2006), with the single path (C1), parallel path (C2) and con-
trol path, followed by the IHC section and in turn, the synapse.
B represents the improvement of the model, the PLA model
and its slow and fast paths. . . . . . . . . . . . . . . . . . . . 25

2.5 Example of an AM signal used for MTF. fc=10kHz, fm=500Hz,
m=0.99. In T/4, when T is the period, the modulation start.
The red solid arrow shows the amount of signal, one period,
used to calculate the modulation gain . . . . . . . . . . . . . . 30

3.1 PSTH for 4.3kHz (blue line) and 10kHz (red line) signal input
of 25 ms with 1 ms of rise and fall time and 30 dB SPL over
threshold. The test was made for 1000 HSR fibers and a bin
size of 0.5ms. The data (guinea-pig) is obtained from Muller
and Robertson (1991). In the upper right corner of the data
plot we find a detail of the notch after the onset peak (from
Ruggero and Semple (1991)). . . . . . . . . . . . . . . . . . . 33

3.2 Rate intensity response for the seven models tested. The three
different kind of fibers are tested separately. 250 fibers of each
type have been used with a CF of 14kHz for the model of Sum-
ner et al. (2003b) and Zilany et al. (2009), and a CF of 4.3kHz
for the models presented in Heinz et al. (2001), Wiegrebe and
Meddis (2004),Holmberg et al. (2007), Wang et al. (2008) and
Brown et al. (2010). The guinea-pig data, in dashed lines,
comes from Winter and Palmer (1991). . . . . . . . . . . . . . 35

3.3 Sinchronization index along frequency for 1000 HSR fibers and
a signal of 30 dB SPL over threshold. The black crosses are
guinea-pig data from Palmer and Russel (1986), the red dia-
monds are cat data from Johnson (1980) . . . . . . . . . . . . 37

3.4 MTF for 1000 HSR fibers for the different models. The MTF
is calculated as the amount of percent modulation depth of
the histogram (200*r) divided by the modulation depth of the
stimulus. The dashed lines are data from Joris and Yin (1992) 39

3.5 MTF at low frequencies for 1000 HSR. The amount of AM
signal used to calculate is fixed to 1 period . . . . . . . . . . . 40

3.6 Minimum threshold to obtain 10 spikes/sec more than sponta-
neous rate across a range of frequency for a fixed CF=2019Hz
and 1000 HSR. The data comes for cat from Liberman and
Kiang (1977) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

56



List of Figures

3.7 Q10dB along frequency for 100 HSR fibers. Grey crosses are
cat data from Miller et al. (1997) . . . . . . . . . . . . . . . . 43

3.8 Speech recognition for different noise background. The sound
level used was the one that got the best results (40dB SPL for
the model of Zilany et al. (2009) and 70 for the model of Wang
et al. (2008)).10000 fibers, 75 HSR and 25LSR per frequency
channel were used . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Percent of recognition for different sound level over threshold
at 10kHz and a variety of signal to noise ratio. A total of
10000 fibers (3/4 of HSR and 1/4 of LSR) were used. Left:
model of Wang et al. (2008) (with a threshold of 20dB SPL).
Right: model of Zilany et al. (2009) (with a threshold of 10dB
SPL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 Clean (left) and noisy (right) conditions for the models of
Wang et al. (2008) and Zilany et al. (2009) throughout sound
pressure level and 100 fibers (HSR and LSR) per channel. The
noisy plot represents the mean of the results under a variety
of noise conditions (20,15,10,5 and 0 SNR) . . . . . . . . . . . 48

57



List of Tables

2.1 Table of recalculated coefficients m for computing parame-
ters of the DRNL filters as a function of CFNL. The col-
umn sum2003 represents the values given in Sumner et al.
(2003b), and the column wie2004 represents Wiegrebe and
Meddis (2004) values . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Table of IHC parameters, for three different types of fibers
in sum2003 (Sumner et al., 2003b) and one type in wie2004
(Wiegrebe and Meddis, 2004) . . . . . . . . . . . . . . . . . . 22

2.3 Table of Brown et al. (2010) parameters . . . . . . . . . . . . 27

58



Bibliography

Brown, G., Ferry, R., and Meddis, R. (2010). A computer model of auditory
efferent suppression: Implications for the recognition of speech in noise.
Journal of Acoustical Society of America, 127(2):943–954.

Bruce, I., Sachs, M., and Young, E. (2003). An auditory-periphery model
of the effects of acoustic trauma on auditory nerve responses. Journal of

Acoustical Society of America, 113(1):369–388.

Carney, A. and Nelson, D. (1983). An analysis of psychophysical tuning
curves in normal and pathological ears. Journal of Acoustical Society of

America, 73(1):268–278.

Carney, L. (1993). A model for the responses of low-frequency auditory-nerve
fibers in cat. Journal of Acoustical Society of America, 93:401–417.

Chittka, L. and Brockmann, A. (2005). Perception space. the final frontier.
Public library of science. Biology, 3(4):564–568.

Cole, R., Muthusamy, Y., and Fanty, M. (1990). The isolet spoken letter
database. Cs/e 90–004, Oregon graduate institute.

Dallos, P. (1992). The active cochlea. Journal of Neuroscience, 12:4575–4585.

Ferry, R. and Meddis, R. (2007). A computer model of medial efferent sup-
pression in the mammalian auditory system. Journal of Acoustical Society

of America, 122(6):3519–3526.

Fettiplace, R. and Hackney, C. (2006). The sensory and motor roles of audi-
tory hair cells. Nature Reviews Neuroscience, 7:19–29.

Greenwood, D. and Joris, P. (1996). Mechanical and temporal filtering as
codeterminants of the response by cat primary fibers to the amplitude-
modulated signals. Journal of Acoustical Society of America, 99:1029–
1039.

59



Bibliography

Harris, D. and Dallos, P. (1979). Forward masking of auditory nerve fiber
responses. Journal of Neurophysiology, 42(4):1083–1107.

Heinz, M., Zhang, X., Bruce, I., and Carney, L. (2001). Auditory nerve
model for predicting performance limits of normal and impaired listeners.
Acoustics research letters online. Acoustical Society of America, pages 91–
96.

Holmberg, M. (2007). Speech encoding in the human auditory periphery:

Modeling and quantitative assessment by means of automatic speech recog-

nition. PhD thesis, Technical University Darmstadt, Darmstadt, Germany.

Holmberg, M., Gelbart, D., and Hemmert, W. (2005). Automatic speech
recognition with neuronal spike trains. In Proc. Interspeech’05, pages 1253–
1256.

Holmberg, M., Gelbart, D., and Hemmert, W. (2007). Speech encoding in
a model of peripheral auditory processing: Quantitative assessment by
means of automatic speech recognition. Speech Comunication, 49(12):917–
932.

Johnson, D. (1980). The relationship between spike rate and synchrony in
responses of auditory-nerve fibers to single tones. Journal of Acoustical

Society of America, 68:1115–1122.

Joris, P. and Yin, T. (1992). Responses to amplitud-modulated tones in
the auditory nerve of the cat. Journal of Acoustical Society of America,
91(1):215–232.

Kawase, T. and Liberman, C. (1993). Antimasking effects of the olivocochlear
reflex. i. enhancement of compound action potentials to masked tones.
Journal of Neurophysiology, 70:2519–2532.

Kiang, N. (1990). Curious oddments of auditory-nerve studies. Hear Re-

search, 49:1–16.

Liberman, M. (1988). Response properties of cochlear efferent neurons:
monaural vs. binaural stimulation and the effects of noise. Journal of

Neurophysiology, 60:1779–1798.

Liberman, M. and Kiang, N. (1977). Tuning curves of auditory-nerve fibers.
Journal of Acoustical Society of America, 61.

60



Bibliography

Lopez-Poveda, E. and Eustaquio-Martin, A. (2006). A biophysical model of
the inner hair cell: The contribution of potassium current to peripheral
auditory compression. Journal of the Association for Research in Oto-

laryngology, 7:218–235.

Lopez-Poveda, E. and Meddis, R. (2001). A human nonlinear cochlear filter-
bank. Journal of Acoustical Society of America, 110(6):3107–3118.

Meddis, R. (2006). Auditory-nerve first-spike latency and auditory absolute
threshold: A computer model. Journal of Acoustical Society of America,
119:406–417.

Meddis, R. and O’Mard, L. (2005). A computer model of the auditory-
nerve response to forward-masking stimuli. Journal of Acoustical Society

of America, 117(6):3787–3798.

Meddis, R., O’Mard, L., and Lopez-Poveda, E. (2001). A computational
algorithm for computing nonlinear auditory frequency selectivity. Journal

of Acoustical Society of America, 109(6):2852–2861.

Miller, R., Schilling, J., Franck, K., and Young, E. (1997). Effects of acoustic
trauma on the representation of the vowel /ε/ in cat auditory nerve fibers.
Journal of Acoustical Society of America, 101(6):3602–3616.

Muller, M. and Robertson, D. (1991). Relationship between tone burst dis-
charge pattern and spontaneous firing rate of auditory nerve fibers in the
guinea pig. Hearing Research, 57:63–70.

Palmer, A. and Russel, I. (1986). Phase-locking in the cochlear nerve of
the guinea-pig and its relation to the receptor potential of inner-hair-cells.
Journal of Acoustical Society of America, 24:1–15.

Rees, A. and Palmer, A. (1989). Neuronal responses to amplitude-modulated
and pure-tone stimuli in the guinea pig inferior colliculus, and their mod-
ification by broadband noise. Journal of Acoustical Society of America,
85(5):1978–1994.

Ruggero, M. and Semple, M. (1991). Acoustics, physiological. Encyclopedia

of Applied Physics, 1.

Seneff, S. (1985). Pitch and spectral analysis of speech based on an auditory

synchrony model. PhD thesis, Massachusetts Institute of Technology.

Slaney, M. (1998). Auditory toolbox. Technical report, Interval Research
Corporation.

61



Bibliography

Steneken, H. and Geurtsen, F. (1988). Description of the rsg-10 noise
database. Technical report, TNO Institute of Perception, The Nether-
lands.

Sumner, C., Lopez-Poveda, E., O’Mard, L., and Meddis, R. (2002). A revised
model of the inner cell and auditory-nerve complex. Journal of Acoustical

Society of America, 111(5):2178–2188.

Sumner, C., Lopez-Poveda, E., O’Mard, L., and Meddis, R. (2003a). Adap-
tation in a revised inner-hair cell model. Journal of Acoustical Society of

America, 113:893–901.

Sumner, C., O’Mard, L., Lopez-Poveda, E., and Meddis, R. (2003b). A non-
linear filter-bank model of the guinea pig cochlear nerve: Rate responses.
Journal of Acoustical Society of America, 113:3264–3274.

Tan, Q. and Carney, L. (2003). A phenomenological model for the responses
of auditory-nerve fibers. ii. nonlinear tuning with a frequency glide. Journal

of Acoustical Society of America, 114(4):2007–2020.

Tan, Q. and Carney, L. (2005). Encoding of vowel/like sounds in the audi-
tory nerve: Model predictions of discrimination performance. Journal of

Acoustical Society of America, 117(3):1210–1222.

Tan, Q. and Carney, L. (2006). Predictions of formant-frequency discrimina-
tion in noise based on model auditory-nerve responses. Journal of Acous-

tical Society of America, 120(3):1435–1445.

Wang, H., Gelbart, D., Hirsch, H., and Hemmert, W. (2008). The value of
auditory offset adaptation and appropriate acoustic modeling.

Westerman, L. and Smith, R. (1984). Adaptation and recovery of auditory
nerve response. Hearing Research, 15:249–260.

Wiegrebe, L. and Meddis, R. (2004). The representation of periodic sounds in
simulated sustained chopper units of the ventral cochlear nucleus. Journal

of Acoustical Society of America, 115(3):1207–1208.

Winter, I. and Palmer, A. (1991). Intensity coding in low-frequency auditory
nerve fibers of the guinea-pig. Journal of Acoustical Society of America,
90:1958–1967.

Zhang, X. and Carney, L. (2005). Analysis of models for the synapse between
the inner hair cell and the auditory nerve. Journal of Acoustical Society

of America, 118(3):1540–1553.

62



Bibliography

Zhang, X., Heinz, M., Bruce, I., and Carney, L. (2001). A phenomenological
model for the responses of auditory-nerve fibers: I. nonlinear tuning with
compression and suppression. Journal of Acoustical Society of America,
190(2):648–670.

Zilany, M. and Bruce, I. (2006). Modeling auditory-nerve responses for high
sound pressure levels in the normal and impaired auditory periphery. Jour-

nal of Acoustical Society of America, 120(3):1446–1466.

Zilany, M. and Bruce, I. (2007). Representation of the vowel /ε/ in normal
and impaired auditory nerve fibers: Model predictions of responses in cats.
Journal of Acoustical Society of America, 122(1):402–417.

Zilany, M., Bruce, I., Nelson, P., and Carney, L. (2009). A phenomenological
model of the synapse between the inner hair cell and auditory nerve: Long-
term adaptation with power-law dynamics. Journal of Acoustical Society

of America, 126(5):2390–2412.

63



Bibliography

64



Erklärung der Selbstständigkeit
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