
Accurate workload design for
web performance evaluation

RAÚL PEÑA ORTIZ

DEPARTAMENT D’INFORMÀTICA DE SISTEMES I

COMPUTADORS

Accurate workload design for web
performance evaluation

Thesis submitted in partial fulfillment of the requirements
for the degree of Ph.D in the subject of Computer Science

Presented by:

Raúl Peña-Ortiz

Supervised by:

Dr. Ana Pont Sanjuán
Dr. José Antonio Gil Salinas
Dr. Julio Sahuquillo Borrás

Valencia, Spain. January, 2013

This editorial is member of the UNE, which guarantees
the diffusion and commercialization of its publications at
national and international level.

© Raúl Peña Ortiz, 2013

© of the present edition:
 Editorial Universitat Politècnica de València
 www.editorial.upv.es

ISBN: 978-84-9048-025-0 (printed version)
Re. editorial: 5613

Any unauthorized copying, distribution, marketing, editing, and in general
any other exploitation, for whatever reason, of this piece of work or any
part thereof, is strictly prohibited without the authors’ expressed and
written permission.

”Education is the passport to the future, for tomorrow
belongs to those who prepare for it today.”

Malcolm X.

”If today were the last day of my life,
would I want to do what I am about to do today?

The only way to do great work is to love what you do.

Don’t settle.

You have to trust that the dots will somehow
connect in your future.”

Steve Jobs,

conference at Stanford University.

”But we’re talking about an objective doctoral thesis.”

Marathon Man, the film.

”Stay Hungry. Stay Foolish.”

The Whole Earth Catalog,

back cover of final issue.

Acknowledgments

These pages are dedicated to those who have given me their unconditional support in
tackling this challenge, especially to my advisors, colleagues, friends and dear family.

Abstract

The new web-based applications and services, which are becoming more and more
popular every day, have completely changed the way users interact with the Web.
In less than half a decade the role of users has changed from passive consumers of
information to active and dynamic contributors to the contents offered. Moreover,
this trend is expected to rise in the incoming Web.

This user’s behavior is a major concern when defining web workloads in order to
precisely estimate system performance for the current Web. However, the intrinsic
difficulty to represent the user’s dynamism in a workload model has led many research
works to still use workloads non representative of the current web navigations.

This dissertation focuses on characterizing and reproducing more realistic work-
load for web performance by mimicking the behavior of the real web users.

The state-of-the-art in modeling and generating workloads for web performance
studies presents several lacks in models and software that represent the different levels
of user’s dynamism. This fact motivates us to propose a more accurate workload
model and to develop a new workload generator based on this model. Both of them
have been validated against a traditional workload generation approach. To this end,
a new testbed with the ability of reproducing traditional and dynamic workloads
has been developed by integrating the proposed generator with a commonly used
benchmark.

In this Ph.D dissertation we also analyze and measure for the first time, to the
best of our knowledge, the impact of using representative dynamic user workloads
on web performance metrics instead of traditional workloads. Experimental results
demonstrate that the use of an accurate workload model that considers user’s dy-
namism when navigating the Web clearly affects system performance metrics as well
as the stress borderline of the server.

Finally, we explore the effect of considering the User-Browser Interaction as a part
of user’s dynamic behavior on web workload characterization. The study proves that
representing user’s dynamic interactions with the provided contents allows users to
achieve their navigation goals sooner thus increasing the productivity of their navi-
gations. In addition results demonstrate that this type of navigations also affects the
stress borderline of the server and system resources utilization.

i

Resumen

Las nuevas aplicaciones y servicios web, cada vez más populares en nuestro d́ıa a
d́ıa, han cambiado completamente la forma en la que los usuarios interactúan con la
Web. En menos de media década, el papel que juegan los usuarios ha evolucionado de
meros consumidores pasivos de información a activos colaboradores en la creación de
contenidos dinámicos, t́ıpicos de la Web actual. Y, además, esta tendencia se espera
que aumente y se consolide con el paso del tiempo.

Este comportamiento dinámico de los usuarios es una de las principales claves en la
definición de cargas de trabajo adecuadas para estimar con precisión el rendimiento
de los sistemas web. No obstante, la dificultad intŕınseca a la caracterización del
dinamismo del usuario y su aplicación en un modelo de carga, propicia que muchos
trabajos de investigación sigan todav́ıa empleando cargas no representativas de las
navegaciones web actuales.

Esta tesis doctoral se centra en la caracterización y reproducción, para estudios
de evaluación de prestaciones, de un tipo de carga web más realista, capaz de imitar
el comportamiento de los usuarios de la Web actual.

El estado del arte en el modelado y generación de cargas para los estudios de
prestaciones de la Web presenta varias carencias en relación a modelos y aplicaciones
software que representen los diferentes niveles de dinamismo del usuario. Este hecho
nos motiva a proponer un modelo más preciso y a desarrollar un nuevo generador
de carga basado en este nuevo modelo. Ambas propuestas han sido validadas en
relación a una aproximación tradicional de generación de carga web. Con este fin, se
ha desarrollado un nuevo entorno de experimentación con la capacidad de reproducir
cargas web tradicionales y dinámicas, mediante la integración del generador propuesto
con un benchmark de uso común.

En esta tesis doctoral también se analiza y evalúa por primera vez, según nuestro
saber y entender, el impacto que tiene el empleo de cargas de trabajo dinámicas
en las métricas de rendimiento de los sistemas web, con respecto al uso de cargas
tradicionales. Los resultados experimentales demuestran que usar modelos de carga
más precisos, en los que se considera el comportamiento dinámico de los usuarios
cuando navegan por la Web, afecta claramente a las métricas de rendimiento de los
sistemas, aśı como a su frontera de estrés.

iii

Finalmente en este trabajo se explora el efecto de considerar la interacción del
usuario con el navegador web como parte de su comportamiento dinámico en la car-
acterización de la carga. El estudio muestra un aumento de la productividad de las
navegaciones del usuario cuando se considera su interacción con los contenidos web a
través de las facilidades que ofrecen los navegadores. Los resultados demuestran que
los usuarios alcanzan antes sus objetivos generando nuevos patrones de navegación,
que a su vez afectan al rendimiento de los sistemas web, tanto a sus fronteras de estrés
como a la utilización de sus recursos.

iv

Resum

Les noves aplicacions i serveis web, cada vegada més populars en el nostre dia a
dia, han canviat completament la forma en què els usuaris interactuen amb la Web.
En menys de mitja dècada, el paper que juguen els usuaris ha evolucionat de mers
consumidors passius d’informació a actius col·laboradors en la creació de continguts
dinàmics, t́ıpics de la Web actual. I, a més, aquesta tendència s’espera que augmente
i es consolide amb el pas del temps.

Aquest comportament dinàmic dels usuaris és una de les principals claus en la
definició de càrregues de treball adequades per a estimar amb precisió el rendiment
dels sistemes web. No obstant això, la dificultat intŕınseca a la caracterització del
dinamisme de l’usuari i la seua aplicació en un model de càrrega, proṕıcia que molts
treballs d’investigació seguisquen encara emprant càrregues no representatives de les
navegacions web actuals.

Aquesta tesi doctoral se centra en la caracterització i reproducció, per a estudis
d’avaluació de prestacions, d’un tipus de càrrega web més realista, capaç d’imitar el
comportament dels usuaris de la Web actual.

L’estat de l’art en el modelatge i generació de càrregues per als estudis de presta-
cions de la Web presenta diverses carències en relació a models i aplicacions programari
que representen els diferents nivells de dinamisme de l’usuari. Aquest fet ens motiva
a proposar un model més prećıs i a desenvolupar un nou generador de càrrega basat
en aquest nou model. Ambdós propostes han sigut validades en relació a una aprox-
imació tradicional de generació de càrrega web. Amb aquest fi, s’ha desenvolupat un
nou entorn d’experimentació amb la capacitat de reproduir càrregues web tradicionals
i dinàmiques, per mitjà de la integració del generador proposat amb un benchmark
d’ús comú.

En aquesta tesi doctoral també s’analitza i avalua per primera vegada, segons el
nostre saber i entendre, l’impacte que té l’ocupació de càrregues de treball dinàmiques
en les mètriques de rendiment dels sistemes web, respecte a l’ús de càrregues tradi-
cionals. Els resultats experimentals demostren que usar models de càrrega més pre-
cisos, en els que es considera el comportament dinàmic dels usuaris quan naveguen
per la Web, afecta clarament les mètriques de rendiment dels sistemes, aix́ı com a la
seua frontera d’estrés.

v

Finalment en aquest treball s’explora l’efecte de considerar la interacció de l’usuari
amb el navegador web com a part del seu comportament dinàmic en la caracterització
de la càrrega. L’estudi mostra un augment de la productivitat de les navegacions
de l’usuari quan es considera la seua interacció amb els continguts web a través de
les facilitats que oferixen els navegadors. Els resultats demostren que els usuaris
aconseguixen abans els seus objectius generant nous patrons de navegació, que al seu
torn afecten el rendiment dels sistemes web, tant a les seues fronteres d’estrés com a
la utilització dels seus recursos.

vi

Contents

1 Introduction 1
1.1 Motivation and main goals . 2
1.2 Contributions of the thesis . 3
1.3 Research context . 3
1.4 Outline . 3

2 Characterizing and generating workload for web performance
evaluation 5
2.1 Workload models and the current Web 5
2.2 Web workload generators overview . 9

2.2.1 Software tools study . 10
2.2.2 A survey on reproducing user’s dynamism 22

2.3 Summary . 26

3 DWEB: modeling user’s dynamism on web workload characteri-
zation 27
3.1 The user’s navigation . 27
3.2 The user’s roles . 31
3.3 Summary . 32

4 GUERNICA: a workload generator for current Web 33
4.1 The application suite . 33
4.2 Testing phases . 35
4.3 Architecture . 38
4.4 Main features . 39
4.5 Case study . 40
4.6 Summary . 44

5 GUERNICA validation: a new testbed for web performance
evaluation 47
5.1 The TPC-W framework . 48
5.2 Testbed architecture . 49

vii

CONTENTS

5.3 Experimental setup . 51
5.4 Performance metrics . 52
5.5 GUERNICA validation . 52
5.6 Summary . 61

6 The impact of dynamic user workloads on web performance 63
6.1 Workload design . 63

6.1.1 Considering dynamism on user’s navigations 64
6.1.2 One step ahead: evolving user’s profile using dynamic roles . . 66

6.2 Impact of the dynamic workloads on web system performance 69
6.3 Summary . 76

7 The impact of User-Browser Interaction on web performance 77
7.1 Workload design . 77

7.1.1 The back button: rapid return to recently visited pages 78
7.1.2 Optimizing user productivity: the parallel tab browsing behavior 79

7.2 Impact of UBI on web performance . 83
7.3 Summary . 90

8 Conclusions and open research lines 93
8.1 Conclusions . 93
8.2 Open research lines . 94
8.3 Publications related to the thesis . 95

A Acronyms 99

B Glossary 101

C Bibliography 103

viii

List of Figures

2.1 Example of a simplified CBMG model 7
2.2 Example of a VBMG model for blurkers 7
2.3 Example of a simplified EFSM model for an e-commerce system . . . 8
2.4 Transition probability in the Clickstream Model for an OSN 9
2.5 WebStone architecture . 10
2.6 Logical components of SPECweb2009 12
2.7 SURGE architecture . 13
2.8 S-Clients design . 15
2.9 TPC-W architecture . 16
2.10 How LoadRunner works . 18
2.11 LoadRunner scripting for Web 2.0 applications 19
2.12 WebLOAD architecture . 20

3.1 Google Search navigation pattern . 30
3.2 User’s roles example: working and leisure behaviors 31

4.1 Main applications of GUERNICA . 34
4.2 Testing phases in GUERNICA . 35
4.3 Distribution of workload generation . 37
4.4 Architecture of GUERNICA . 38
4.5 Web searcher and surfer user’s behaviors 41
4.6 A simple search in Google . 42

5.1 TPC-W reduced website map . 48
5.2 Main software components of TPC-W Java implementation 49
5.3 Testbed architecture . 50
5.4 Experimental setup . 51
5.5 CBMG model for shopping scenario in GUERNICA validation 54
5.6 Client metrics obtained for the shopping scenario in GUERNICA vali-

dation . 55
5.7 Server metrics obtained for the shopping scenario in GUERNICA val-

idation . 56

ix

LIST OF FIGURES

5.8 Client metrics obtained for the browsing scenario in GUERNICA vali-
dation . 57

5.9 Server metrics obtained for the browsing scenario in GUERNICA val-
idation . 58

5.10 Client metrics obtained for the ordering scenario in GUERNICA vali-
dation . 59

5.11 Server metrics obtained for the ordering scenario in GUERNICA vali-
dation . 60

6.1 DWEB workload I - DW1: navigation for loyalty promotion behavior . 65
6.2 DWEB workload II - DW2: characterization based on user’s dynamic

roles . 68
6.3 Main performance client metrics values 70
6.4 Main performance server metrics values 71
6.5 CPU utilization by query cache status 74
6.6 Cummulative distribution for page response time 75

7.1 LOY workload: loyalty promotion behaviors conducted by goals 80
7.2 LOYB workload: LOY workload considering the back button 81
7.3 Example of parallel tab browsing session 82
7.4 LOYT workload: parallel tab browsing behavior in LOY workload . . 84
7.5 User’s productivity evolution . 85
7.6 Total served pages . 86
7.7 Mean served pages by type . 87
7.8 Apache throughput . 88
7.9 CPU utilization . 88
7.10 MySQL Throughput . 90
7.11 Execution time per query type . 91

x

List of Tables

2.1 Main features and disadvantages of WebStone 11
2.2 Main features and disadvantages of SPECweb2009 12
2.3 Main features and disadvantages of SURGE 14
2.4 Main features and disadvantages of S-Clients 15
2.5 Main features and disadvantages of WebJamma 16
2.6 Main features and disadvantages of TPC-W 17
2.7 Main features and disadvantages of Web Polygraph 18
2.8 Main features and disadvantages of LoadRunner 20
2.9 Main features and disadvantages of WebLOAD 21
2.10 Main features and disadvantages of JMeter 22
2.11 Main features and disadvantages of testing scripts and tools 23
2.12 Web workload generators and grade in which main features are fulfilled 25
2.13 Web workload generators and how challenges of user’s dynamism are

fulfilled . 26

3.1 User’s navigation notation . 29

4.1 GUERNICA features . 39
4.2 Challenges of user’s dynamism fulfilled by GUERNICA 40

5.1 Performance metrics classification according to the evaluated resource 53

6.1 Cases of dynamism in the loyalty promotion behavior 64
6.2 Cases of dynamism in the new pre-sales promotion behavior 67
6.3 CPU consumption (in jiffies) foreach application 72

7.1 Cases of dynamism in the loyalty promotion behaviors conducted by
goals . 79

7.2 Extra cases of dynamism in the loyalty promotion behavior conducted
by goals to represent parallel tab browsing 83

7.3 Mean user productivity considering 100 simultaneous users in the system 85
7.4 CPU consumption (in jiffies) for each application 89

xi

LIST OF TABLES

8.1 List of main publications . 96

xii

CHAPTER 1

Introduction

There are few technological success stories as dramatic as that of the Web. Originally
designed to share static contents among a small group of researchers, the Web is
being used today by many millions of people as a part of their daily routines and
social lives. Our society is progressively becoming more densely connected, and the
paradigm where users access the Web from a desktop computer is making way for a
new paradigm dominated by pervasive mobile devices like smart phones and tablets.

This incessant evolution has been possible thanks to the continuous changes in
technology that have introduced new features in the current and incoming Web, both
in its applications, users, and infrastructure [Rod09]. For instance, e-commerce sys-
tems, on-line social networks, blogs, wikis or service oriented architectures are some
examples that manifest how websites are evolving from typical hypermedia informa-
tion repositories of the First Web Generation (Web 1.0) to hypermedia distributed
applications and services representative of the Second Web Generation (Web 2.0).
With the emergence of this kind of applications and services, users are no longer pas-
sive consumers, but they become participative contributors to the dynamic content
accessible on the Web [CK08]. Nowadays, web contents and services are even more
dynamic [Ore07], which consequently increases the number of changes over time in
user’s interactions with the Web [RSD+12]. Therefore, a new user’s dynamic behavior
can be distinguished. Moreover, this user’s behavior is expected to be more relevant
and meaningful in the incoming Web, also referred to as Web 3.0 [Hen09] or Future
Internet [TGG+09].

As a system that is continuously changing, both in the offered applications and
infrastructure, performance evaluation studies are necessary in order to provide sound
proposals when designing new web-related systems [BC98], such as web services, web
servers, proxies or content distribution policies. As in any performance evaluation pro-
cess, accurate and representative workload models must be used in order to guarantee
the validity of the results. Regarding web systems, the user’s dynamic behavior makes
difficult the design of accurate web workload representing realistic users’ navigations.

In general, there are three main challenges that must be addressed when modeling
the user’s dynamic behavior on representative workloads:

1

CHAPTER 1. INTRODUCTION

Challenge I: The dynamism in user’s behavior when surfing the Web must be taken
into account [BC98]. That is, users’ behaviors as they interact with
web contents and services have to be characterized, modeling the dif-
ferent aspects that determine users’ navigation decisions. For instance,
personal preferences, navigation goals, visited resources or connectivity
conditions.

Challenge II: The different user’s roles when navigating a website must be identified
and defined as user’s behaviors [WOHM06]. For instance, searcher
and surfer roles refer to users who start navigations with a query
in a given searcher engine, or navigate the web by following direct
hyperlinks, respectively [PP99].

Challenge III: Continuous changes in these user’s roles during the same navigation
session must be modeled and considered [GBGP10]. That is, changes
in users’ behaviors over the time have to be characterized.

This thesis focuses on modeling and analyzing representative workloads for perfor-
mance studies with the aim of accurately estimating systems performance indexes in
current and incoming Web. To this end, the three main challenges mentioned above
are analyzed and addressed in a progressive way in order to provide a new and more
representative web workload for performance evaluation.

1.1 Motivation and main goals

Although web evolution has introduced significant changes on user’s behavior, many
performance studies still check their approaches with traditional workloads, which are
typical of the early Web 1.0 and do not represent current web trends. Three main
shortcomings can be observed in the open literature about both commercial products
and academic research results:

1. To date, web workload models do not consider user’s dynamism in an appro-
priate and accurate way because they only take partially into account the men-
tioned challenges.

2. There is a lack of web workload generators that can reproduce representative
traffic of Web 2.0 applications and services.

3. The effect of using dynamic workloads on web performance evaluation, instead
of traditional workloads, has not been analyzed and measured yet to the best
of our knowledge.

These shortcomings define the main objectives of this thesis and encouraged us to
propose a new model to cover the main gaps found in current web workload character-
ization research. Based on this model, in this Ph.D dissertation a new web workload
generator and testbed are proposed, validated and used for performance evaluation.

2

1.2. CONTRIBUTIONS OF THE THESIS

1.2 Contributions of the thesis

This thesis presents three main contributions:

• The first contribution is the proposal of a new workload model that permits
to define accurate workloads for performance evaluation studies in current and
incoming Web. This model takes into account the three mentioned challenges by
introducing progressively different levels of dynamism in user’s behavior when
characterizing web workload.

• Based on this model, a web workload generator has been developed in order
to reproduce user’s dynamism in web performance studies, which is the second
contribution of this thesis.

• Finally, the last main contribution is the analysis of using representative dy-
namic workload on the web performance metrics. To this end, we provide a
new testbed for web performance evaluation by integrating our generator with
a commonly used benchmark with the aim of contrasting performance metrics
for traditional and dynamic workloads.

1.3 Research context

Part of this thesis has been developed in the context of the research project GENER-
ICA, which was led by the iSOCO S.L company in collaboration with the Web Ar-
chitecture Research Group (Universitat Politècnica de València) and the Institute of
Computer Technology. This project was partially supported by the Spanish Gov-
ernment Grant (FIT 340000-2004-236) and the Regional Valencian Government and
IMPIVA Grant (IMIDTD 2004/92, and IMIDTD 2005/15).

The global goal of GENERICA was the development of a methodology to evaluate
performance and functionality of web applications typical in Web 2.0, by using a new
workload generator with the ability to generate representative dynamic workload.

GENERICA was managed by the author of this Ph.D dissertation, who worked ac-
tively in the project results, both software development and several technical reports,
and co-authored in some international and national publications.

1.4 Outline

The remainder of this thesis is organized as follows. First, Chapter 2 presents the
current state of the art in characterizing and generating workloads for web perfor-
mance evaluation. It reviews the most relevant perspectives to define web workloads,
and classifies a representative subset of software tools proposed in the open litera-
ture according to their main features and their ability to generate workloads for the
dynamic Web.

3

CHAPTER 1. INTRODUCTION

After that, Chapter 3 proposes a new web workload model with the aim of char-
acterizing a more realistic workload to evaluate the performance of current web appli-
cations. The chapter describes the main concepts of this model and introduces some
examples of user’s dynamism representation.

Next, Chapter 4 propounds a new web workload generator based on the model.
This chapter describes the main features, applications, and architecture of the genera-
tor. It also introduces an example of web performance evaluation using this software,
that has been appropriately validated against a traditional workload generator. Then,
with the aim of providing a more flexible tool to evaluate web performance, a new
testbed with the ability of reproducing dynamic user workloads has been developed.
Chapter 5 presents both testbed design and validation.

Chapters 6 and 7 analyze for the first time, to the best of our knowledge, the impact
of considering user’s dynamism on web workload characterization in performance
studies. Chapter 6 proves that the web user’s dynamic behavior is a crucial point
that must be addressed in web performance in order to accurately estimate system
performance indexes. On the other hand, Chapter 7 measures the effect of modeling
the User-Browser Interaction as a part of user’s dynamic behavior on web workload
characterization.

Finally, Chapter 8 summarizes the main contributions of this thesis, presents some
concluding remarks and the open research lines derived from this dissertation.

4

CHAPTER 2

Characterizing and generating workload for
web performance evaluation

Web workload characterization studies that help us to model and reproduce users’
behaviors grow in importance with the massively use of web applications and services
[BC98]. Moreover, both types of applications are developed using new technologies
that have a strong impact on the system performance. Some previous attempts have
been published to reflect this fact. For instance, Cecchet et al. [CMZ02] investigate
the effect of different J2EE application deployments on the performance scalability of
application servers. Schneider et al. [SAAF08] point out that the use of AJAX and
mashups generates more aggressive and bursty network usage compared to the overall
HTTP traffic. Similar conclusions but considering server performance are presented
in [ONUI09] by Ohara et al. Unfortunately, these studies only consider specific web
paradigms, thus the workload used is not representative enough of current users’
navigations.

This chapter presents the current state of the art in characterizing and generating
workloads for web performance evaluation. First, Section 2.1 reviews a representative
subset of the most relevant perspectives to define web workloads, and analyzes the
main drawbacks that we have to tackle in order to obtain representative workloads
for current web applications. Moreover, we go over different approaches to represent
user’s behavior on web workload characterization. After that, Section 2.2 evaluates
and classifies the most commonly used software tools proposed in the open literature
according to their main features and ability to generate workloads for the dynamic
Web. Finally, Section 2.3 presents some concluding remarks about this work, which
motivate the main contributions of this dissertation.

2.1 Workload models and the current Web

Web workload models are abstractions of the real workload that reproduce users’
behaviors and ensure that a particular web application performs as it would do when

5

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

working with real users. To this end, the model represents a set of users of the web
application and avoids those characteristics that are superfluous for a particular study.
Workload models can be classified into two main groups: trace-based and analytical
models.

Traces log the sequence of HTTP requests and commands received by a web appli-
cation during a certain period of time under given conditions. Traces are obtained for
a particular environment; that is, specific server speed, network bandwidth, browser
cache capacity, etc. This means that if any system parameter varied, the obtained
trace would be different. Therefore, the main challenge of trace-based models is
to achieve a good representativeness, especially when requests received by different
servers exhibit a large variability. Consequently, trace based models are not appro-
priate to model changes in the user’s behavior.

The analytical approach uses mathematical models to simulate the user’s behavior
or the characteristics of specific workloads. These models allow us to consider different
scenarios by setting some input parameters that specify the main characteristics of the
workload to be characterized. Analytical models are a flexible approach for modeling
changes in the user’s behavior.

Some studies [FP01, SCK03] confirm how difficult is to model and generate rep-
resentative web requests, especially when trying to model the characteristics of the
dynamic Web and its users. In this dissertation, the main difficulties when model-
ing the user’s behavior on realistic web workload have been summarized in the three
challenges reported on page 1.

There have been few but interesting efforts to model user’s behavior in order to
obtain more representative users workloads for specific web applications. Menascé et
al. [MA00] introduced the Customer Behavior Model Graph (CBMG) that describes
patterns of user’s behavior in the workloads of e-commerce websites by using an
approach based on Finite State Machines (FSMs). The CBMG model consists of all
pages of an on-line bookstore and the associated transition probability. For illustrative
purposes, Figure 2.1 depicts an example of CBMG for a search process, showing that
users may visit several pages and move among these pages according to the arcs
weight. Numbers in the arcs indicate the probability of taking that transition. For
example, the probability of going to the Product Detail page from the Search Results
page is 60%. This value means that after a search, regardless of whether the search
returns a list of books or a void list, the Product Detail page will be visited 60% of
the times.

Duarte et al. [DMA+08] introduced the Visitor Behavior Model Graph (VBMG)
for workload definition of the blogspace by extending CBMG. Blog visitors can be
grouped into different categories according to their visiting patterns. These categories
are characterized by different VBMGs in terms of the state transition probabilities.
For example, Figure 2.2 shows the typical behavior of blurkers, who tend to read
a lot of blogs but never post any comments. This behavior only considers that a
blurker can start reading a new blog or can continue reading the same blog. Notice

6

2.1. WORKLOAD MODELS AND THE CURRENT WEB

100 // Home
100 // Search

100

��
Product
Detail

100

OO

Search
Results60

oo

35

^^

5

JJ

Figure 2.1: Example of a simplified CBMG model

start reading
a new blog

1%
��

99%

''
continue reading

the same blog

50%
��

7%

gg
43%

��

Figure 2.2: Example of a VBMG model for blurkers

Source [DMA+08]

that, if a blurker reads the same blog at least twice, he can also leave the blog with
a probability of 43% (exit transition).

Shams et al. [SKF06] proposed an application modeling methodology to han-
dle inter-request and data dependencies. The methodology relies on Extended Fi-
nite State Machines (EFSMs) that can model applications with higher-order request
dependencies without encountering the state explosion problem [LY96], typical in
FSM-based approaches. Consequently, EFSM is better suited for modeling web ap-
plications than CBMG and VBMG. Figure 2.3 depicts and example of EFSM for
an e-commerce system, where nodes are states in the user’s navigation and arcs are
requests to the web application. Two request dependency state variables are used
to enforce inter-request dependencies. The items in cart is an integer variable that
indicates the number of items in the shopping cart and the signed on is a boolean vari-
able that states whether a user has signed on or not. For example, the items in cart
variable is incremented by 1 when the user executes the Add request type (transition
from S2 to S3), and it is decremented by 1 when the user executes the Delete request
type (transition from S3 to S4). So that, the Checkout request type (transition from
S4 to S5) is only allowed when the previous sequences of requests have resulted in at
least one item in the shopping cart (items in cart > 0).

Benevenuto et al. [BRdMCA09] introduced the Clickstream Model to characterize
user’s behavior in On-line Social Network (OSN). This approach identifies and de-
scribes representative users’ behaviors in OSNs by characterizing the type, frequency,
and sequence of their activities. The modeling of the system implies two steps: i) to

7

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

input.
To accommodate the approach described in Section 3, we
introduce several additional model elements. Firstly, to facilitate
the generation of an input trace of sessionlets an EFSM always
has a Start state and an Exit state. They model respectively,
the starting and termination of interactions a user has with the
Web-based application. Secondly, each transition has two distinct
sets of predicates and actions. Request dependency predicates
and request dependency actions are involved in enforcing correct
inter-request dependencies. Data dependency predicates and data
dependency actions are used to satisfy data dependencies. As
described later, such a distinction is necessitated by the two step
trace generation process described in Section 3. Finally, data
dependency actions may invoke select functions. The
select function is used to choose a specific value for a given
request parameter from among all the possible values for the
parameter. The following sections provide a detailed description
of these elements along with examples.

4.2 Modeling Inter-Request Dependencies
As described in Section 3, the sequence generator uses the
application model to create a trace of input sessionlets. A
sessionlet is generated as follows. The model is initialized by
providing initial values to the state variables. The sequence
generator causes a transition from the Start state by executing a
randomly selected transition from among the set of allowed
transitions from that state. Another transition is executed in a
similar manner if the resulting state is not the End state.
Sessionlet generation is complete if the End state is reached. The
sequence generator outputs the sequence of inputs (i.e., request
types) corresponding to the sequence of transitions executed. It
then re-initializes the application model to generate more
sessionlets. Valid sessionlets are produced as long as the
application model enforces the correct inter-request dependencies.

We now present an e-commerce application example to illustrate
modeling of inter-request dependencies. Figure 2 shows a
simplified model for the application. In this application users
execute the Home request type to request the homepage. The
Sign-in request type allows a user to login as a registered user.
A user can view product information through the Browse request
type. The Add and Delete request types allow a user to add and
delete items from the shopping cart, respectively. The Checkout
request type allows a user to initiate ordering of products in the
shopping cart. A user submits the Purchase request type to
provide payment details for finalizing the order.

Two request dependency state variables are used to enforce inter-
request dependencies. The items_in_cart is an integer
variable that indicates the number of items in the shopping cart.
The signed_on Boolean variable states whether a user has
signed on or not. The initial values of the items_in_cart and
signed_on variables are 0 and FALSE, respectively. The
values of these variables are changed by actions associated with
several transitions. For example, from Figure 2, submitting the
Sign-in request type (transitions S1 to S7 and S5 to S7) changes
the value of signed_on to TRUE. Similarly an Add request
type (transition S2 to S3) increments items_in_cart variable
by 1 while a Delete request type (transitions S3 to S4 and S4 to
S4) decrements the variable by 1.

From Figure 2, certain transitions depend only on the current state
of the EFSM. These first-order transitions are not associated with
any predicates. For example, a user can submit a Browse
request type after submitting a Home request type as indicated by
the transition from S1 to S2. Similarly, a user can browse another
product after browsing a particular product as indicated by the
transition from S2 to S2.

Our application model also allows higher-order dependencies
between request types to be captured. For example, consider the
transition from S4 to S5 in Figure 2. In this transition, the user
submits a checkout request after deleting an item from the
shopping cart. This transition is allowed only when the previous
sequences of requests have resulted in at least one item in the
shopping cart. This dependency is enforced by the predicate
associated with the transition which checks whether the
items_in_cart variable is greater than 0. Consequently, the
sequence [Home, Browse, Add, Browse, Add,

Delete, Checkout] is allowed while the sequence [Home,
Browse, Add, Delete, Checkout] is not.

The EFSM can model different ways in which a user can complete
a given task. Such a scenario is very common in Web-based
applications. In the example considered a user can either sign-in
just immediately before purchasing (transition S5 to S7 in Figure
2) or sign-in immediately after visiting the homepage (transition
S1 to S7 in Figure 2). As a result, the sequences [Home,
Browse, Add, Checkout, Sign-in, Purchase] and
[Home, Sign-in, Browse, Add, Checkout,

Purchase] represent two possible ways for a user to purchase

Figure 2. An EFSM for an e-commerce system

Proceedings of the Third International Workshop on Software Quality Assurance (SOQUA’06)

58

Figure 2.3: Example of a simplified EFSM model for an e-commerce system

Source [SKF06]

identify dominant user’s activities in clickstreams, and ii) to compute the transition
rates between activities. For illustrative purposes, Figure 2.4 shows the transition
probability in the Clickstream Model for an OSN.

These four models only characterize web workload for specific paradigms or appli-
cations, but they either do not model user’s dynamic behavior for a general context
and in an appropriate and accurate way (Challenge I) or do not consider user’s dy-
namic roles (Challenges II and III).

On the other hand, there is an evidence of an important change of user interaction
with the Web. For instance, a recent study showed that 57.4% of web sessions involve
parallel browsing behavior [HW10]. This behavior was originally found in the experi-
enced users, who surf the Web by using multiple browsers tabs or windows to support
backtracking or multitasking with the aim of enhancing their navigation productivity

8

2.2. WEB WORKLOAD GENERATORS OVERVIEWActivity at time t

Ac
tiv

ity
 a

t t
im

e
t+

1

Start
Search

Scrapbook
Message

Testimonial
Video

Photo

Profile & Friends

Community

Other

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Tr
an

sit
io

n
pr

ob
ab

ilit
y

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

−0

2: browse scraps

18: browse home

17: browse profile

(a) User behaviors at the level of activities

(b) User behaviors at the level of categories

Figure 6: Transition probability in the clickstream model for Orkut

57

Figure 2.4: Transition probability in the Clickstream Model for an OSN

Source [BRdMCA09]

[AJK05, Tha08]. Moreover, the history-back button, included in any current web
browser, is still one of the world’s most heavily used user interface components in the
web context, and accounts for up to 31% of all revisits [OWHM07]. This important
change has been considered in several studies and tools to improve the website usabil-
ity [ASW06], to test web applications [DLDP03] or learning user preferences [SZ00].
However, to the best of our knowledge, User-Browser Interaction (UBI) have not been
taken into account when modeling user’s dynamism on workload characterization in
web performance studies yet.

2.2 Web workload generators overview

Workload generators are software products based on workload models to generate
HTTP requests sequences similar to real requests. They are designed and imple-
mented as versatile software tools for performing tuning or capacity planning studies.

Comparing web workload generators is a laborious and difficult task since they
offer a large amount and diversity of features. In this section we contrast genera-
tors according to a wide set of features and capabilities, focusing on their ability to
reproduce user’s dynamism in performance studies for current Web.

To this end, Section 2.2.1 analyzes a representative subset of state-of-the-art work-
load generators as a first step, highlighting their main features as web performance
evaluation software and their main disadvantages when reproducing accurate work-
load for current Web. After that, in Section 2.2.2 we evaluate and classify these
generators, concentrating on those that consider user’s dynamic behavior.

9

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

2.2.1 Software tools study

2.2.1.1 WebStone

WebStone [Min02b] was designed by Silicon Graphics in 1996 to measure the perfor-
mance of web server software and hardware products. It was acquired by Mindcraft,
Inc. that improved its reliability and portability as well as the reproducibility of
performance tests. Moreover, new workloads for CGI, NSAPI and ISAPI tests were
provided. Nowadays, both executable and source code for WebStone are available for
free.

The benchmark generates a web server load by simulating multiple web clients
navigating a website as shown in Figure 2.5. These clients can be considered as users,
web browsers, or other software that makes requests to the website files, which can be
classified in different categories according to their size. The simulation is carried out
using multiple clients running on one or more computers to generate large loads on
a web server. All the testings done by the benchmark are controlled by a webmaster,
which is a program that can be run on one of the client computers or on a different one.
The webmaster distributes the web client software and test configuration files to the
client computers. After that, it starts the execution and waits for the clients to report
the performance they measured. Finally, the webmaster combines the performance
results from all the clients into a single report.

The performance measured by WebStone depends on the set of files used by the
web clients. The set used by default is based on a model of the Silicon Graphics website
in 1995, although it is possible to change the file set to one that better simulates the
website of interest.

Figure 2.5: WebStone architecture

Source [Min02a]

10

2.2. WEB WORKLOAD GENERATORS OVERVIEW

To sum up, WebStone is one of the first software products proposed to measure
the performance of web systems but it seems obsolete for the current Web. Table 2.1
summarizes its main features and disadvantages.

Main features

• Parameterized workload.

• Distributed model for workload generation.

• Open performance reports.

• Open source solution.

Disadvantages

• Basic HTTP protocol only.

• No users’ navigations characterization.

• No facilities to consider user’s dynamism.

Table 2.1: Main features and disadvantages of WebStone

2.2.1.2 SPEC’s Benchmarks for Web Servers

The Standard Performance Evaluation Corporation (SPEC) has commercialized Bench-
marks for Web Servers [SPE09] from 1996 to the early 2012. This benchmarks’ family
is designed to measure the performance of systems offering services in the Web. The
last member of the family, named SPECweb2009, includes many sophisticated and
state-of-the-art enhancements to meet the modern demands of the current Web, such
as requests to static and dynamic content (ASP, JSP, and PHP), simultaneous user
sessions, parallel HTTP connections to request page images or simulates browser
caching effects.

Figure 2.6 shows the logical components of SPECweb2009. The prime client ini-
tializes and manages the other clients, sets up the web server and the back-end sim-
ulator, and stores the results of the benchmark tests. The web server handles the
requests issued by the clients by itself or by communicating with the back-end sim-
ulator in order to retrieve specific information needed to complete HTTP responses.
This simulator emulates the communication between a web server and a back-end ap-
plication server. Each benchmark client generates HTTP requests according to certain
workloads that are defined by studying three representative types of web applications
(banking, e-commerce, and support).

Table 2.2 presents the main features and disadvantages of SPECweb2009. As
observed, SPEC software is a mature benchmark that has evolved with the Web,
nonetheless it has not achieved to reproduce realistic workload in the performance
studies for the current Web because it does not consider user’s dynamism on workload
characterization.

11

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

<<component>>
Prime Client

<<component>>
Client 1

<<component>>
Client 2

<<component>>
Client n

<<component>>
Web Server

<<component>>
Back-End
Simulator

Figure 2.6: Logical components of SPECweb2009

Main features

• Parameterized workload.

• Different types of workloads according to the kind of
web application.

• Distributed model for workload generation.

• Full HTTP protocol (cookies, HTTPS, dynamic con-
tent, etc).

• Performance reports.

• Proprietary software.

Disadvantages

• No users’ navigations characterization.

• No facilities to consider user’s dynamism.

Table 2.2: Main features and disadvantages of SPECweb2009

2.2.1.3 SURGE

The Scalable URL Reference Generator (SURGE) [Bar98] was developed by Barford
in 1998 with the goal of measuring the server behavior while varying the user load.
The need to develop SURGE appeared with the difficulty to generate representative
traces for the Web because workloads generated by web users have a number of un-
usual features, such as the highly variable demands experienced by the web servers
or the self-similarity shown by the network traffic [BC98]. To tackle these drawbacks,
SURGE performs an analytical characterization of the user load and a set of math-
ematical models that generate the HTTP requests in the server [BBBC99]. These
models characterize:

• The distribution of sizes of unique files requested from web servers.

12

2.2. WEB WORKLOAD GENERATORS OVERVIEW

• The distribution of sizes of all files transferred from web servers.

• The popularity of all requested files.

• The temporal locality of requested files.

• The active (ON) and inactive (OFF) periods of time for the emulated users.

• The number of documents transferred during an active period.

SURGE was designed as a scalable software framework where the previous models
are combined according to the various components of the Web [BC97]. The software
resides on a sets of clients that are connected to a web server as depicted in Figure
2.7. Each client executes a set of threads that request sets of documents which are
then transferred by the server (ON time). After receiving a set, the thread sleeps for
a some amount of time (OFF time) simulating the user’s think time.

In summary, SURGE was a step forward on modeling accurate workload for eval-
uating the performance of Web 1.0. Specifically, it was able to produce self-similar
network traffic under conditions of both high and low workload intensity. However, it
also seems to be obsolete for the current Web because its generation process is based
on analytical models that do not consider user’s dynamism, and it cannot model 3-
tier architectures for dynamic content generation. Table 2.3 summarizes the main
features and disadvantages of SURGE.

Web ServerSURGE Client

SURGE Client

SURGE Client

ON/OFF Thread

ON/OFF Thread

ON/OFF Thread

ON/OFF Thread

System

System

System

System

LAN

Figure 2.7: SURGE architecture

Source [BC97]

13

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

Main features

• Workload generation architecture based on analytical
models.

• Distributed model for workload generation.

• Open source solution.

Disadvantages

• Basic HTTP protocol only.

• No users’ navigations characterization.

• No facilities to consider user’s dynamism.

Table 2.3: Main features and disadvantages of SURGE

2.2.1.4 S-Clients

Banga and Druschel proposed in their approach a new improved methodology for
HTTP request generation [BD99]. In this context, S-Clients was designed with the
aim of reproducing bursty traffic with peak loads exceeding the capacity of the server
as well as the modeling delay and loss characteristics of Wide Area Networks (WANs).

Figure 2.8 shows the S-Clients design. It defines an architecture (Figure 2.8a)
where a set of client machines are connected to the server machine being tested
through a router, which has sufficient capacity to support the maximum client traffic
specification. The purpose of the router is to simulate WAN effects by introducing an
artificial delay and/or dropping packets at a controlled rate. Each client machine runs
a number of scalable client processes. S-Clients splits the process of generating traced
HTTP requests in two subprocesses: one for obtaining the connection and other for
recovering the content (Figure 2.8b), so enabling a relative parallelism.

To sum up, S-Clients was an architecture devised to improve workload generators
for Web 1.0 that is still interesting to be considered in Web 2.0. Table 2.4 presents
the main features and disadvantages of S-Clients.

2.2.1.5 WebJamma

WebJamma was a library to generate HTTP traffic written by the Network Research
Group at Virginia Tech [CAJ+99]. It is aimed at serving as baseline for developing a
full web workload generator.

This library works in a simple way by taking a URL file that provides the source
of the HTTP requests to be generated, so it cannot represent user’s dynamism. It
uses a multiprocessing architecture based on distributed generation nodes to test the
performance of web caching subsystems.

In summary, WebJamma was an interesting open source library to generate HTTP
requests in a easy way. Table 2.5 shows its main features and disadvantages.

14

2.2. WEB WORKLOAD GENERATORS OVERVIEW

G. Banga, P. Druschel / Measuring Web server capacity 73

Fox et al. 1997; Maltzahn et al. 1997] and other types
of servers.
WAN delays also cause an increase in the bandwidth-

delay product experienced by a TCP connection. There-
fore, the server TCP needs to provide increased amounts of
buffer space (in the form of socket send buffers) for Web
transfers to proceed at full speed. This increased demand
for buffer space may reduce the amount of main mem-
ory available for the document cache. Current Web server
benchmarks do not expose these performance aspects of
servers.
Other aspects of the network subsystem, such as the

server TCP’s timeout mechanism, are never exercised dur-
ing benchmarking and may perform poorly in practice. Our
experiments, described in detail later in section 5, suggest
that these factors are important in practice.

3.3. Client and network resource constraints

When generating synthetic HTTP requests from a small
number of client machines, care must be taken that resource
constraints on the client machine do not accidentally dis-
tort the measured server performance. With an increasing
number of simulated clients per client machine, client-side
CPU and memory contention is likely to arise. Eventually,
a point is reached where the bottleneck in a Web trans-
action is no longer the server but the client. Designers
of commercial Web server benchmarks have also noticed
this pitfall. The WebStone benchmark [Mindcraft 1998]
explicitly warns about this potential problem, but gives no
systematic method to avoid it.
The primary factor in preventing client bottlenecks from

affecting server performance results is to limit the number
of simulated clients per client machine. In addition, it is
important to use an efficient implementation of TCP/IP (in
particular, an efficient PCB table implementation) on the
client machines, and to avoid I/O operations in the simu-
lated clients that could affect the rate of HTTP transactions
in uncontrolled ways. For example, writing logging infor-
mation to disk can affect the client behavior in complex
and undesirable ways.
Similarly, while benchmarking a Web server, it is impor-

tant to ensure that the bandwidth of the network connecting
the client machines to the server is not a bottleneck factor.
Many modern workstations can saturate a single 100 Mbps
link. Therefore, it may be necessary to use multiple net-
work interfaces in the Web server machine to measure its
true capacity.

4. A new method for generating HTTP requests

In this section, we describe the design of a new method
to generate Web traffic. This method addresses the prob-
lems raised in the previous section. It should be noted that
our work does not by itself address the problem of accu-
rate simulation of Web workloads in terms of the request

Figure 3. Test-bed architecture.

file types, transfer sizes and locality of reference in URLs
requested; instead, we concentrate on mechanisms for gen-
erating heavy concurrent traffic that has a temporal behavior
similar to that of real Web traffic. Our work is intended to
complement the existing work done on Web workload char-
acterization [Bestavros et al. 1995; Braun and Claffy 1994;
Chankhunthod et al. 1996; Seltzer and Gwertzman 1995;
Williams et al. 1996], and can be easily used in conjunc-
tion with it.

4.1. Basic architecture

The basic architecture of our test-bed is shown in fig-
ure 3. A set of P client machines are connected to the
server machine being tested. Each client machine runs a
number of S-Client (short for Scalable Client) processes.
The structure of an S-Client, and the number of S-Clients
that run on a single machine are critical to our method
and are described in detail below. The client machines are
connected to the server through a router that has sufficient
capacity to carry the maximum client traffic anticipated.
The purpose of the router is to simulate WAN effects by
introducing an artificial delay and/or dropping packets at a
controlled rate.

4.2. S-Clients

An S-Client (figure 4) consists of a pair of processes
connected by a UNIX domain socketpair. One process in
the S-Client, the connection establishment process, is re-
sponsible for generating HTTP requests at a certain rate
and with a certain request distribution. After a connection
is established, the connection establishment process sends
an HTTP request to the server, then it passes on the con-
nection to the connection handling process, which handles
the HTTP response.

(a) Basic architecture

74 G. Banga, P. Druschel / Measuring Web server capacity

Figure 4. A Scalable Client.

The connection establishment process of an S-Client
works as follows: The process opens D connections to
the server using D sockets in non-blocking mode. These
D connection requests7 are spaced out over T milliseconds.
T is required to be larger than the maximal round-trip delay
between client and server (remember that an artificial delay
may be added at the router).
After the process executes a non-blocking connect() to

initiate a connection, it records the current time in a variable
associated with the used socket. In a tight loop, the process
checks if for any of its D active sockets, the connection is
complete, or if T milliseconds have elapsed since a con-
nect() was performed on this socket. In the former case,
the process sends an HTTP request on the newly estab-
lished connection, hands off this connection to the other
process of the S-Client through the UNIX domain socket-
pair, closes the socket, and then initiates another connection
to the server. In the latter case, the process simply closes the
socket and initiates another connection to the server. No-
tice that closing the socket in both cases does not generate
any TCP packets on the network. In the first case, the close
merely releases a reference to the corresponding socket. In
the second case, the close prematurely aborts TCP’s con-
nection establishment timeout period and releases socket
resources in the kernel.
The connection handling process of an S-Client waits for

(1) data to arrive on any of the active connections, or (2) for
7 In this paper, we model only HTTP/1.0, which uses a dedicated connec-
tion for each distinct HTTP request.

a new connection to arrive on the UNIX domain socket
connecting it to the other process. In case of new data on
an active socket, it reads this data; if this completes the
server’s response, it closes the socket. A new connection
arriving at the UNIX domain socket is simply added to the
set of active connections.
The rationale behind the structure of an S-Client is as

follows. The two key ideas are to (1) shorten TCP’s connec-
tion establishment timeout, and (2) to maintain a constant
number of unconnected sockets (simulated clients) that are
trying to establish new connections. Condition (1) is ac-
complished by using non-blocking connects and closing the
socket if no connection was established after T seconds.
The fact that the connection establishment process tries to
establish another connection immediately after a connection
was established ensures condition (2).
The purpose of (1) is to allow the generation of request

rates beyond the capacity of the server with a reasonable
number of client sockets. Its effect is that each client socket
generates SYN packets at a rate of at least 1/T . Shortening
the connection establishment timeout to 500 ms by itself
would cause the system’s request rate to follow the dashed
line in figure 2.
The idea behind (2) is to ensure that the generated re-

quest rate is independent of the rate at which the server han-
dles requests. In particular, once the request rate matches
the capacity of the server, the additional queuing delays
in the server’s accept queue no longer reduce the request
rate of the simulated clients. Once the server’s capacity
is reached, adding more sockets (descriptors) increases the

(b) A Scalable Client

Figure 2.8: S-Clients design

Source [BD99]

Main features

• Parameterized workload.

• A router to simulate WAN effects.

• A split generation process to avoid limits on HTTP
requests.

• Open source solution.

Disadvantages

• Only an architecture for workload generation.

• Basic HTTP protocol only.

• No users’ navigations characterization.

• No facilities to consider user’s dynamism.

Table 2.4: Main features and disadvantages of S-Clients

2.2.1.6 TPC BenchmarkTM W

TPC BenchmarkTM W (TPC-W) is a transactional web benchmark defined by the
Transaction Processing Performance Council [Tra02a]. It models a representative
e-commerce system, specifically an on-line bookstore environment, with the aim of

15

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

Main features

• Easy to use as a baseline of other software generators.

• Open source solution.

Disadvantages

• Basic stressing functionalities.

• No users’ navigations characterization.

• No facilities to consider user’s dynamism.

Table 2.5: Main features and disadvantages of WebJamma

evaluating the architecture performance on a generic profile. To this end, the bench-
mark provides both models of business-client and business-business and examines real
features of e-commerce applications, such as: catalog, searcher, security, etc.

As shown in Figure 2.9, TPC-W presents a client-server architecture. The remote
browser emulators are located in the client side and generate workload towards the
e-commerce web application, which is located in the server side (e-commerce server).
With the aim of reproducing a representative workload, the emulators simulate real
users’ behaviors when they surf the website by using the CBMG model, which is com-
posed of all pages of the on-line bookstore and the associated transition probability.
The server hosts the system under test, which consists of a web server and its storage
of static contents, and an application server with a database system to generate dy-
namic content. The payment gateway emulator represents an entity to authorize users’
payments. These three main architecture components are interconnected through a
dedicated network.

Figure 2.9: TPC-W architecture

16

2.2. WEB WORKLOAD GENERATORS OVERVIEW

To sum up, TPC-W was the first benchmark for e-commerce considering the users’
behaviors on workload generation. To this end, TPC-W adopts CBMG model to
define web workload in spite of this model only characterizes user’s dynamic behavior
partially, as introduced in Section 2.1. The benchmark, which has been commonly
accepted by the scientific community in many research works [DMB01, ACC+02,
GG03], presents the main features and disadvantages shown in Table 2.6.

Main features

• Parameterized workload.

• Different types of workloads according to the type of
scenario.

• Distributed model for workload generation.

• Full HTTP protocol (cookies, HTTPS, dynamic con-
tent, etc).

• Basic facilities to consider user’s behavior.

• Performance reports.

• Open source solution.

Disadvantages

• Basic users’ navigations characterization.

• No advanced facilities to consider user’s dynamism.

Table 2.6: Main features and disadvantages of TPC-W

2.2.1.7 Web Polygraph

Web Polygraph is a performance testing tool for caching proxies, origin server accel-
erators, L4/7 switches, content filters, and other web intermediaries. It was originally
developed at the University of California by Wessels and Rousskov in the context
of the IRCache project [RWC99]. Nowadays, it is copyrighted by The Measurement
Factory [MF12] that authorizes the use of Polygraph under the Apache License.

The benchmark consists of virtual clients and servers glued together with an ex-
periment configuration file [RW03]. Clients, named robots, generate HTTP requests
for the simulated objects. These requests may be sent directly to the servers (e.g.
web servers), or through an intermediary (e.g. proxy cache or load balancer) using a
configurable mix of HTTP/1.0 and HTTP/1.1 protocols, optionally encrypted with
SSL or TLS. The benchmark can be configured to produce a variety of realistic and
unrealistic workloads based on a synthetic workload characterization. As Polygraph
runs, measurements and statistics are gathered for a detailed postmortem analysis.

In summary, Web Polygraph is a versatile tool for generating web traffic and
measuring proxy performance that was chosen for several industry-wide benchmarking

17

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

events. Table 2.7 shows its main features and disadvantages focusing on workload
generation.

Main features

• Synthetic workload characterization.

• Distributed model for workload generation.

• Full HTTP protocol.

• Performance reports.

• Successful industrial solution.

• Apache License.

Disadvantages

• No users’ navigations characterization.

• No facilities to consider user’s dynamism.

Table 2.7: Main features and disadvantages of Web Polygraph

2.2.1.8 LoadRunner

LoadRunner is one of the most popular industry-standard software products for func-
tional and performance testing. It was originally developed by Mercury Interactive,
but nowadays it is commercialized by Hewlett-Packard [HP12a].

Figure 2.10 shows how LoadRunner works [HP12b]. As observed, it tests a web
application by emulating an environment where multiple users work concurrently.
Moreover, it accurately measures, monitors, and analyzes performance and function-

8

Figure 5
How HP LoadRunner works

Hundreds of virtual users
perform real-life
transactions to simulate
production traffic

Real-time monitors capture
performance data across all
tiers, servers and network
resources and display
information on the Controller

Results are stored in a
database repository
allowing users to
generate reports and
perform analysisThe Controller is a

central console from
which the load tests are
managed and monitored

2 3

4

1

6WHS����'HƭQLQJ�WKH�SHUIRUPDQFH�WHVWV�VFHQDULRV�

The performance test scenario contains information about the
groups of Vusers that can run the scripts and the load machines
on which the groups are running. To run a successful scenario, you
PXVW�ƭUVW�FDWHJRUL]H�\RXU�FXVWRPHUV�LQWR�JURXSV�EDVHG�RQ�WKHLU�
WUDQVDFWLRQV��7KHQ��\RX�QHHG�WR�GHƭQH�DQG�GLVWULEXWH�WKH�WRWDO�
QXPEHU�RI�9XVHUV��<RX�FDQ�DVVLJQ�D�YDU\LQJ�QXPEHU�RI�9XVHUV�WR�
LQGLYLGXDO�EXVLQHVV�SURFHVVHV�WR�HPXODWH�XVHU�JURXSV�SHUIRUPLQJ�
multiple transactions. One group may be searching for a book, while
the second and third groups are entering payment information or
VKLSSLQJ�DGGUHVVHV��$IWHU�9XVHU�JURXSV�KDYH�EHHQ�DVVLJQHG��\RX�
must determine which load-generating machines the Vusers can
run on. You can add load generator machines to the client side of
the system architecture to run additional Vusers. Finally, you need
to specify how the scenario will run. You can run the Vuser groups
either in staggered or parallel formation. Staggering the Vusers
DOORZV�\RX�WR�H[DPLQH�D�JUDGXDO�LQFUHDVH�RI�WKH�XVHU�ORDG�WR�D�SHDN��

r� Creating load testing scenarios with HP LoadRunner
+3�/RDG5XQQHU�&RQWUROOHU�LV�XVHG�WR�FUHDWH�VFHQDULRV��SURYLGLQJ�
\RX�ZLWK�FRPSOHWH�YLVLELOLW\�RI�WKH�WHVWV�DQG�WKH�9XVHUV�IURP�D�
single point of control. The Controller facilitates the process of
creating a load test scenario by allowing you to:

 Ơ $VVLJQ�VFULSWV�WR�LQGLYLGXDO�JURXSV

 Ơ 'HƭQH�WKH�WRWDO�QXPEHU�RI�9XVHUV�QHHGHG�WR�UXQ�WKH�WHVWV

 Ơ 'HƭQH�WKH�KRVW�PDFKLQHV�RQ�ZKLFK�9XVHUV�DUH�UXQQLQJ

,Q�DGGLWLRQ��+3�/RDG5XQQHU�RƫHUV�D�VFHQDULR�ZL]DUG��D�VFKHGXOHU�
DQG�7XUER/RDG�WR�HQKDQFH�\RXU�H[SHULHQFH�GXULQJ�WHVWLQJ��7KH�
HP LoadRunner scenario wizard allows you to quickly compose

PXOWLXVHU�ORDG�WHVW�VFHQDULRV��8VLQJ�ƭYH�HDV\�WR�IROORZ�VFUHHQV��
the scenario wizard leads you through a process of selecting the
workstations that can host the Vusers, as well as the test scripts
to run.

During this step-by-step process, you also create simulation
groups of Vusers. The HP LoadRunner scheduler is used to ramp
Vuser numbers up or down in order to position Vusers in both the
UHDG\�VWDWH�DQG�WKH�UXQQLQJ�VWDWH��)RU�H[DPSOH��\RX�PD\�ZDQW�WR�
gradually increase the number of customers logging onto your site
ZLWK�D�ƭ[HG�EDWFK�VL]H��7KLV�LV�UHIHUUHG�WR�DV�WKH�UHDG\�VWDWH��7KLV�
PHWKRG�KHOSV�DYRLG�XQQHFHVVDU\�VWUDLQ�RQ�WKH�V\VWHP�

The scheduler also manages scheduling and features an
automated process that allows the user to run the script without
being present. In real time, this would be similar to running a script
GXULQJ�Rƫ�SHDN�KRXUVtVXFK�DV���S�P��WR���D�P��7R�VFKHGXOH�D�WHVW��
you simply click the Run Scenario button and enter the desired
starting time.

r� Create network impact tests.
The network test uses information about where the groups of
9XVHUV�FDQ�EH�ORFDWHG�UHODWLYH�WR�WKH�VHUYHU��'XULQJ�WKH�WHVW��RQO\�
WKH�QHWZRUN�FKDUDFWHULVWLFVtVXFK�DV�EDQGZLGWK�DYDLODELOLW\��
contention, latency, errors, and jitter—can change; the
number of Vusers in this test remains constant. By staggering
the decreases in network bandwidth or increases in latency,
HUURUV��DQG�MLWWHU��\RX�FDQ�XQGHUVWDQG�WKHLU�UHODWLYH�LQƯXHQFH�
RQ�DSSOLFDWLRQ�EHKDYLRU��7KLV�GDWD�FDQ�EH�XVHG�WR�VHW�QHWZRUN�
requirements for the application when it is deployed. You can
FRQGXFW�WKLV�NLQG�RI�WHVWLQJ�GLUHFWO\�RYHU�WKH�QHWZRUN�WR�UHPRWH�

Figure 2.10: How LoadRunner works

Source [HP12b]

18

2.2. WEB WORKLOAD GENERATORS OVERVIEW

ality of the application while it is working under load. The testing process is controlled
by a central console.

LoadRunner supports the definition of users’ navigations, which are represented
using a scripting language, to characterize users’ families. Figure 2.11 depicts the
sequential approach to scripting a Web 2.0 application using LoadRunner [HP12c].
First the basic steps are recorded, creating a shell script. Next, this script is then
taken off-line, and undergoes further manual steps such as data parameterization
and correlations. Finally, the desired performance scripts are obtained after adding
transactions and any other required logic. LoadRunner scripting permits only to
partially reproduce user’s dynamism when generating web workload because it cannot
define neither advanced interactions of users, such as parallel browsing behavior, nor
continuous changes in user’s behaviors.

4

%XW��DV�DOZD\V��ZLWK�SRZHU�FRPHV�FRPSOH[LW\��DQG�LQQRYDWLYH�
WHFKQRORJLHV�FDQ�FUHDWH�XQIRUHVHHQ�FKDOOHQJHV�LI�QRW�SURSHUO\�
WHVWHG��,Q�:HE�����DSSOLFDWLRQV��WKH�FOLHQWV�EHFRPH�pWKLFNHU�q�ULFKHU�
LQ�IHDWXUHV�DQG�IXQFWLRQDOLW\��DQG�PRUH�UHVRXUFH�LQWHQVLYH��6LPLODUO\��
IHDWXUHV�OLNH�SUHIHWFKLQJtDQ�LQWHUDFWLYH�ZD\�RI�UHWXUQLQJ�D�TXHU\�
ZLWK�HYHU\�NH\VWURNHtFDQ�VLJQLƭFDQWO\�LQFUHDVH�WKH�URXQGWULS�
WUDưF�WR�WKH�GDWDEDVH�DQG�JUHDWO\�LPSDFW�SHUIRUPDQFH��7KLV�FDQ�
SRWHQWLDOO\�FUHDWH�D�FRQVLGHUDEOH�DPRXQW�RI�SHUIRUPDQFH�LVVXHV��
YLRODWH�6/$V��DQG�QHJDWLYHO\�LPSDFW�WKH�HQG�XVHU�H[SHULHQFH�

Adjusting for modern methods
5LFK�,QWHUQHW�DSSOLFDWLRQV�DOORZ�IRU�G\QDPLF��DV\QFKURQRXV�GDWD�
WUDQVIHU��XVLQJ�PXOWLSOH�SURWRFROV�DQG�D�YDULHW\�RI�VHUYHUV��7KH\�
JDWKHU�GDWD�IURP�GLVWULEXWHG��KHWHURJHQHRXV�VRXUFHV��LQFOXGLQJ�
FORXG�EDVHG�DQG�H[WHUQDO�GDWD�VWRUDJH�RSWLRQV��7KLFN�FOLHQWV�
ZLWK�ZLGJHWV�DQG�FOLHQW�VLGH�IXQFWLRQDOLW\�RIWHQ�KDYH�VHUYHU�VLGH�
FRPSRQHQWV��ZKLFK�PD\�QHHG�DGGLWLRQDO�SURFHVVLQJ�EHIRUH�WKH�
VHUYHU�VHQGV�WKH�GDWD�EDFN�WR�WKH�FOLHQW��'HYHORSHUV�ZKR�EXLOG�WKHVH�
ZLGJHWVtRIWHQ�DGGLQJ�WKHP�IURP�DYDLODEOH�WRRONLWVtGR�LW�RQ�WKHLU�
GHYHORSPHQW�PDFKLQHV�DQG�GRQoW�UHDOL]H�WKDW�RQFH�VHSDUDWHG�DFURVV�
WKH�QHWZRUN��WKH�VHUYHU�FRPSRQHQW�PD\�FDXVH�ODWHQF\�DQG�DƫHFW�WKH�
RYHUDOO�V\VWHP�SHUIRUPDQFH��

1HZ�WHFKQRORJLHV�VXFK�DV�$MD[�HQDEOH�SUHIHWFKLQJ��ZKHUH�HYHU\�
new letter that a user enters into a search engine suggests a
QHZ�VHW�RI�UHVXOWV�WKDW�DUH�G\QDPLFDOO\�GHOLYHUHG�IURP�WKH�VHUYHU��
$OO�WKLV�DFWLYLW\�JHQHUDWHV�D�ORW�RI�QHWZRUN�WUDưF�DQG�FDQ�
VLJQLƭFDQWO\�LPSDFW�SHUIRUPDQFH��1HWZRUN�ODWHQF\�DQG�EDQGZLGWK�
FRQVWUDLQWV�FDQ�DOVR�FUHDWH�SHUIRUPDQFH�ERWWOHQHFNV��7R�DFFXUDWHO\�
SUHGLFW�WKH�SHUIRUPDQFH�RI�DQ�DSSOLFDWLRQ��LW�LV�QHFHVVDU\�WR�WHVW�
LQGLYLGXDO�FRPSRQHQWV�DQG�VHUYLFHV��EXW�HTXDOO\�FULWLFDO�DUH�VHUYHU�
PRQLWRULQJ�DQG�HQG�WR�HQG�SHUIRUPDQFH�WHVWLQJ��DORQJ�ZLWK�
accurate WAN emulation.

Testing Web 2.0 applications presents its own set of challenges.1 The
FRPSOH[LW\�RI�QHZ�WHFKQRORJLHV��WKH�ODFN�RI�FRPPRQO\�UHFRJQL]HG�
DQG�DFFHSWHG�VWDQGDUGV��DQG�WKH�VKHHU�PXOWLWXGH�RI�HPHUJLQJ�
IUDPHZRUNV�DQG�WRRONLWV�PDNH�LW�GLưFXOW�IRU�FRPSDQLHV�WR�EXLOG�:HE�
2.0 testing strategies and select appropriate automation solutions.
7UDGLWLRQDO�WHVWLQJ�WRROV�IRFXV�RQ�SURWRFRO�OHYHO�YHULƭFDWLRQ��RƫHULQJ�
QR�IUDPHZRUN�OHYHO�VXSSRUW�RU�DELOLW\�WR�DFFXUDWHO\�UHFRJQL]H�
REMHFWV�LQ�WKHVH�QHZ��ULFK�FOLHQWV��PDNLQJ�LW�YLUWXDOO\�LPSRVVLEOH�WR�
HƫHFWLYHO\�YDOLGDWH�WKH�SHUIRUPDQFH�RI�:HE�����DSSOLFDWLRQV��6FULSW�
FUHDWLRQ��ZKLFK�KDV�DOZD\V�EHHQ�D�OHQJWK\��WLPH�FRQVXPLQJ�SURFHVV�
WKDW�UHTXLUHV�GRPDLQ�DQG�DSSOLFDWLRQ�H[SHUWLVH��EHFRPHV�HYHQ�PRUH�
complex in Web 2.0 applications.

Out with the old: The trouble with
traditional testing tools
The emergence of new Web 2.0 technologies has also transformed
WKH�ZRUOG�RI�WHVWLQJ��,Q�WKH�HDUO\�:HE�GD\V��WHVWLQJ�WRROV�ZHUH�EDVHG�
RQ�SURWRFRO�OHYHO�UHFRUGLQJ��7KH\�UHFRUGHG�WKH�KWWS�UHTXHVWV�IURP�
WKH�EURZVHU�WR�WKH�VHUYHU�DQG�EDFN��'\QDPLF�YDOXHV�WKDW�WKH�VHUYHU�
VHQW�EDFN��VXFK�DV�VHVVLRQ�,'V��KDG�WR�EH�PDQXDOO\�FRUUHODWHG��$V�
DSSOLFDWLRQV�EHFDPH�PRUH�FRPSOH[��VR�GLG�WKH�VFULSWLQJ��&RUUHODWLRQV�
VWDUWHG�WR�UHTXLUH�DGYDQFHG�VFULSWLQJ�DQG�DSSOLFDWLRQ�H[SHUWLVH��DQG�
IT scripting became a complex and time-consuming process.

1 https://h10078.www1.hp.com/cda/hpdc/navigation.do?action=downloadPDF&caid=47
��	FS ��B����B���]Q EWR	ƭOHQDPH �$$������(1:�SGI

Record a
script

Parameterize
data

Do
Correlations

Add
transactions

Add logic

Figure 2: 6FULSWLQJ�IRU�:HE�����DSSOLFDWLRQV�VXFK�DV�$MD[�FDQ�EH�H[WUHPHO\�FRPSOLFDWHG

Figure 2.11: LoadRunner scripting for Web 2.0 applications

Source [HP12c]

To sum up, LoadRunner is one of the most important software products to test
the functionality and performance of a web application. It presents some facilities
to consider user’s dynamism on the workload generation process, but only partially.
Table 2.8 summarizes its main features and disadvantages.

2.2.1.9 WebLOAD

WebLOAD [Rad12] is a software for web performance commercialized by RadView
since 1997. It is oriented to explore the performance of critical web applications by
quantifying the utilization of the main server resources.

Figure 2.12 depicts the WebLOAD architecture. The authoring environment is a
software tool to create scenarios that try to mimic the navigations of real users. To
this end, it provides facilities to record, edit and debug test scripts, that are used
to define the scenarios on workload characterization. The execution environment is
a console to manage tests execution, whose results are analyzed in the Analytics
application. Since WebLOAD is a distributed system, it is possible to deploy several
load generators to reproduce the desired load. Load generators can also be used as

19

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

Main features

• Parameterized workload.

• Different types of workloads according to the type
users’ families.

• Distributed model for workload generation.

• Full HTTP protocol (cookies, HTTPS, dynamic con-
tent, etc).

• Basic facilities to consider user’s behavior.

• Advanced reports during performance evaluation
studies.

• Multi-platform.

Disadvantages

• No users’ dynamic navigations characterization.

• No advanced facilities to consider user’s dynamism.

Table 2.8: Main features and disadvantages of LoadRunner

Figure 2.12: WebLOAD architecture

Source [Rad12]

probing clients where a single virtual user is simulated to evaluate specific statistics
of a single user. These probing clients resemble the experience of a real user using
the system while it is under load.

20

2.2. WEB WORKLOAD GENERATORS OVERVIEW

In summary, WebLOAD is a commercial software that presents some capability
to generate user’s dynamic behavior, but only in a partial way, when evaluating
performance of a given web application. Table 2.9 shows the main features and
disadvantages of WebLOAD.

Main features

• Parameterized workload.

• Different types of workloads according to the type of
scenario.

• Distributed model for workload generation.

• Full HTTP protocol (cookies, HTTPS, dynamic con-
tent, etc).

• Basic facilities to consider user’s behavior.

• Advanced reports during performance evaluation
studies.

• Multi-platform.

Disadvantages

• No users’ dynamic navigations characterization.

• No advanced facilities to consider user’s dynamism.

Table 2.9: Main features and disadvantages of WebLOAD

2.2.1.10 JMeter

JMeter [ASF12] is an open source solution presented by the Apache Software Foun-
dation and designed to generate web workload with the aim of testing client/server
software, such as web applications and services.

The generator is written entirely in Java and provides an easily configurable and
visual API to define, execute and analyze web performance tests from the client
side. It presents partial capability to generate dynamic user’s workload by defining
a navigation test based on patterns (e.g. regular expressions). Additionally, JMeter
presents some facilities to check the functionality of a web application, such as test
scripts which use assertions to validate that the application returns the expected
results. Table 2.10 summarizes its main features and disadvantages.

2.2.1.11 Testing scripts and tools

With the increasing popularity of web applications, some software and testing factories
or web developers have created several scripts and tools, which are usually basic and

21

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

Main features

• Parameterized workload.

• Different types of workloads according to navigation
tests.

• Full HTTP protocol (cookies, HTTPS, dynamic con-
tent, etc).

• Basic facilities to consider user’s behavior.

• Basic performance reports.

• Open source solution.

• Multi-platform.

Disadvantages

• No users’ dynamic navigations characterization.

• No advanced facilities to consider user’s dynamism.

Table 2.10: Main features and disadvantages of JMeter

open source approaches. These tools capture HTTP requests and reproduce them for
the purpose of stressing applications and testing their functionalities.

For instance, HTTPERF [MJ08] and Deluge [Bla05] were developed as tools for
measuring web server performance in Hewlett-Packard and Thrown Clear Produc-
tions, respectively. HTTPERF is not focused on implementing one particular bench-
mark but on providing a robust high-performance tool that facilitates the construc-
tion of both micro- and macro-level benchmarks [MJ98]. In contrast, Deluge is a final
stressing tool that includes three main components: i) dlg proxy that records HTTP
requests, ii) dlg attack, which generates workload by reproducing recorded users’
requests, and iii) dlg eval that elaborates statistics from the generated results.

On the other hand, HAMMERHEAD 2 [WDG11], PTester [Eri99], Siege [Ful12]
and Autobench [Mid04] are examples of scripts and utilities deployed by the open
source community to evaluate the quality of its developments.

Table 2.11 summarizes common features and disadvantages for these tools.

2.2.2 A survey on reproducing user’s dynamism

In this section we classify the studied tools according to a wide set of features and
capabilities. Below, the twelve features and capabilities used are defined to ease the
understanding of the comparison study.

1. Distributed architecture. It refers to the ability to distribute the generation
process among different nodes. The distribution of the workload generation
significantly helps us to improve the workload accuracy.

22

2.2. WEB WORKLOAD GENERATORS OVERVIEW

Main features

• Easy to use and introduce in both development and
testing processes.

• Simple reports for functional and performance tests.

• Open source solutions.

Disadvantages

• Basic stressing functionalities.

• No users’ navigations characterization.

• No facilities to consider user’s dynamism.

Table 2.11: Main features and disadvantages of testing scripts and tools

2. Analytical-based architecture. This feature represents the capability to use an-
alytical and mathematical models to define the workload. These models allow
to improve the workload quality by using them as workload parameters (e.g.
user’s behavior models or simulation architectures).

3. Business-based architecture. When defining a testing environment, the simulator
architecture should implement the same features as the real environment (e.g.
e-commerce architectures typically include a catalog, a product searcher or a
payment gateway), so it is quite important to model the business logic deployed
by the web application under test.

4. Client parameterization. This is the ability to parameterize generators nodes
(e.g. number of users, allowed navigations set, or changes between navigations).
In general, web dynamism highlights the need for a workload characterization
based on parameters, and specially the related to user’s behavior.

5. Workload types. Some generators organize the workload in categories or types,
each one modeling a given user profile (e.g. searcher or buyer user profiles).

6. Testing the web application functionality (functional testing). This capability
permits to define functional tests related to a real web application. These tests
allow to guarantee the application correctness; that is, the application provides
the defined functionality, which fulfills the quality and assurance requirements.

7. Multi-platform is referred to a software package that is implemented in multiple
types of computer platforms inter-operating among them.

8. Differences between LAN and WAN. Simulations usually run in Local Area
Network (LAN) environments. Most of the current simulators cannot model
differences between LAN and WAN, where applications are usually located.

23

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

9. Ease of use. The generator should be a friendly application carrying out usabil-
ity guidelines, mainly in commercial products.

10. Performance reports. The elaborated results by the generation process are usu-
ally presented by using both on-line and off-line graphical plots.

11. Open source. This feature allows the open source community to develop exten-
sions or different generation alternatives over the generator architecture.

12. User’s dynamism. This is the main feature we are interested in, because the
dynamism in contents and users is the most relevant characteristic in the current
Web that makes workload generation difficult.

Table 2.12 summarizes the studied software packages used to generate web work-
load as well as the grade (full or partial) in which they fulfill the features described
above. These software packages can be classified in three groups according to their
main application contexts:

• Group I: Benchmarks that model the client and server paradigm in web con-
text. In this case, among the five studied benchmarks, only TPC-W provides a
workload generation process that considers user’s dynamism, but only partially.
The others do not model user’s dynamism because: i) they are simulation ap-
proaches that do not reproduce real workload (WebStone and Web Polygraph),
or ii) they are based on analytical models that do not consider user’s dynamism
as a parameter (SPECweb and SURGE).

• Group II: Software products to evaluate performance and functionality of a given
web application, such as LoadRunner, WebLOAD and JMeter. All of them
provide abilities to generate web workload taking into account user’s dynamism
in a partial way.

• Group III: Testing tools and other approaches for traffic generation, that cannot
reproduce user’s dynamic behavior due to they are based on HTTP traces.

As observed, only four of the studied approaches (i.e. TPC-W, LoadRunner,
WebLOAD and JMeter) present some capability to reproduce user’s dynamism. Table
2.13 deals with the ability of considering user’s dynamism in depth, and explores how
each approach takes into account the three challenges. Notice that, the four generators
provide some capability to partially reproduce the dynamism of users when they surf
a website (Challenge I) but in a different way. For instance, TPC-W only considers
a probabilistic approach to define users’ navigations by using the CBMG model. On
the other hand, LoadRunner, WebLOAD and JMeter provide scripting languages that
permit to define users’ navigations considering conditional transitions between their
pages. Among these three generators, only the commercial products (LoadRunner
and WebLOAD) offer software artifacts to represent the different behaviors of users
(Challenge II), but they do not mind continuous changes in these behaviors.

24

2.2. WEB WORKLOAD GENERATORS OVERVIEW

G
R

O
U

P
I

G
R

O
U

P
II

G
R

O
U

P
II

I

h
h
h

h
h

h
h
h

h
h
h

h
h
h

h
h

h h
F

E
A

T
U

./
C

A
P

A
B

.

G
E

N
E

R
A

T
O

R

WebStone

SPECweb

SURGE

WebPolygraph

TPC-W

LoadRunner

WebLOAD

JMeter

S-Clients

WebJamma

Deluge

HAMMERHEAD2

PTester

Siege

HTTPERF

Autobench

A
n
a
ly
ti
c
a
l-
B
a
se
d

A
rc
h
it
e
c
tu

re
�
�
�

�
�

N
N

N
D
is
tr
ib
u
te
d

A
rc
h
it
e
c
tu

re
�
�
�

�
�
�

B
u
si
n
e
ss
-B

a
se
d

A
rc
h
it
e
c
tu

re
N

N
�

�
�

�
C
li
e
n
t
P
a
ra

m
e
te
ri
z
a
ti
o
n

�
�

N
�

�
�

�
�

N
N

W
o
rk

lo
a
d

T
y
p
e
s

�
�

�
�

N
F
u
n
c
ti
o
n
a
l
T
e
st
in
g

�
�

N
N
N

N
N

L
A
N

a
n
d

W
A
N

�
M

u
lt
i-
p
la
tf
o
rm

�
�
�

�
�

�
�

�
�
�

�
N
�

N
�
�

E
a
se

o
f
U
se

�
�

N
P
e
rf
o
rm

a
n
c
e
R
e
p
o
rt
s

N
�

�
�

�
�

�
N

N
N

N
N
N

O
p
e
n

S
o
u
rc
e

�
�
N

�
N

�
�

�
�
�

�
�
�

U
s
e
r
’s

D
y
n
a
m

is
m

N
N
N

N

�
F

u
ll

su
p

p
or

t
N

P
a
rt

ia
l

su
p

p
o
rt

T
a
b

le
2.

12
:

W
eb

w
or

k
lo

ad
ge

n
er

at
or

s
an

d
gr

ad
e

in
w

h
ic

h
m

a
in

fe
a
tu

re
s

a
re

fu
lfi

ll
ed

25

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

TPC-W LoadRunner WebLOAD JMeter
Challenge I } ~ ~ ~
Challenge II s s
Challenge III

} Analytical approach ~ Scripting s Software artifact

Table 2.13: Web workload generators and how challenges of user’s dynamism are
fulfilled

2.3 Summary

This chapter has analyzed state-of-the-art workload models and generators for web
performance evaluation, focusing on the capability to fulfill the three challenges that
have been introduced in Chapter 1.

With the aim of improving workload models, few approaches (CBMG, VBMG,
EFSM and Clickstream Model) provided some capabilities to represent user’s behavior
on web workload characterization, but they do not offer an accurate solution to model
user’s dynamism.

Furthermore, among the studied software tools, only one benchmark for e-commerce
(TPC-W) and three software solutions to evaluate functionality and performance of
a given web application (LoadRunner, WebLOAD and JMeter) provide mechanisms
to reproduce users’ navigations in current Web. However, these mechanisms do not
consider all challenges when reproducing user’s dynamic behavior, so they are not
enough to mimic real patterns of HTTP requests.

These lacks in models and software motivate us to propose a more accurate work-
load model in order to develop a new workload generator with the aim of analyzing
the effect of using dynamic workloads on web performance evaluation, instead of
traditional workloads.

A first review of this state-of-the-art can be found in the context of the GENER-
ICA project as a technical report [GENERICA’04a]. A summary of this work was
published in [WOSP’05, IJEB’05]. In [WEBIST’11], an updated state-of-the-art was
presented.

26

CHAPTER 3

DWEB: modeling user’s dynamism on web
workload characterization

This chapter proposes the Dynamic WEB workload model (DWEB) with the aim of
characterizing a more realistic workload when evaluating the performance of current
web applications.

DWEB tackles in a progressive way the three previously mentioned challenges
when modeling the user’s behavior on representative workloads. To this end, it de-
fines a couple of new concepts: user’s navigations and user’s roles. These concepts
characterize different levels of dynamism in the workload definition by means of mod-
eling web users’ behaviors.

The remainder of this chapter is organized as follows. Section 3.1 introduces the
navigation concept in general terms, describes its notation and provides an example of
modeling a first level of dynamism. Section 3.2 defines the concept of role and presents
an example of representing a second level of dynamism. Finally, some concluding
remarks are drawn in Section 3.3.

3.1 The user’s navigation

The concept of user’s navigation defines a first level of user’s dynamism and satis-
fies the Challenge I by modeling user’s dynamic behavior when interacting with the
contents and services offered by the Web.

For instance, a typical navigation of a user searching for specific information,
usually begins with a query on a web finder. Queries are frequently cancelled when
the response time surpasses a certain value, which is characteristic for each user and
his current navigation conditions. In the case of obtaining results, users usually visit
the first site on the list or refine the search when receiving too much information.
Analyzing this simple example, one can see that each user request depends not only
on the response itself but also on other issues related to the quality of service (e.g.
response time length or content amount), and the users’ states. That is, users take

27

CHAPTER 3. DWEB: MODELING USER’S DYNAMISM ON WEB
WORKLOAD CHARACTERIZATION

their navigation decisions according to their personal preferences, navigation goals,
visited resources, network and connectivity conditions, etc.

The navigation concept is not just limited to reproduce human behavior, since it
can be further applied to any web client, such as software automatons, that are easier
to model than users because they follow a given navigation pattern. Nevertheless,
the strong point of the concept lies in the flexibility to represent dynamism in user’s
behavior when interacting with the Web.

Formally, a user’s navigation N is defined as a sequence of n URLs of HTTP
requests where each visited URL depends on the previously visited ones, as defined
in equation 3.1.

N = {url1, url2, ..., urln} / ∀i = 2..n : urli depends on urlk for

k < i and user’s-statei−1

(3.1)

where urli refers both to the content related to the resource i and its associated char-
acteristics and, user’s-statei−1 denotes the user’s state resulting from the interaction
with the previously visited resource.

A graph where nodes were pages of websites and arcs were transitions between
pages is not enough as a visual representation of a user’s navigation, because we need a
visual modeling language that allows us to define user’s state. Moreover, this language
has to provide mechanisms to easily model the user’s dynamism when navigating.

There are several successful extensions of Unified Modeling Language (UML) ap-
plied to web engineering. For instance, User eXperience diagrams [Con03] are in-
troduced to model the storyboards and the dynamic information of pages in build-
ing model-driven web applications. Moreover, these diagrams were extended to
rapidly develop and deploy public administration portals considering usability fac-
tors [FPZ07].

Due to these reasons, we decide to represent a navigation using a state machine
view of UML. In general, a state machine is a graph of states and transitions that
describes the response of an object to the events that it receives [RJB99]. We simplify
this model by considering only a reduced set of graphical elements where states are web
pages, as shown in Table 3.1. The result has been adopted for visual representation
of the navigation concept.

For illustrative purposes, Figure 3.1 shows the visual navigation corresponding
to a Google search where some dynamic issues in the user’s behavior (e.g. dynamic
think time or conditional and parallel requests) are introduced. Two main parts can
be distinguished in this navigation:

1. The upper part of the diagram (before reaching branch b1) shows the two ways
in which the search can be initiated:

(1) On the left side, the user makes use of a search toolbar of a web browser
(e.g. Google toolbar for Mozilla Firefox) to make the query directly.

(2) On the right side of the figure, the user reaches branch b1 after the
Google.HOME node, where the user requests the main page to the web

28

3.1. THE USER’S NAVIGATION

Notation Name Description

76 Part 2 • UML Concepts

Transitions into or out of a composite state invoke the entry actions or exit ac-
tions of the state. If there are several composite states, a transition across several
levels may invoke multiple entry actions (outermost first) or several exit actions

Table 6-4: Kinds of States

State Kind Description Notation

simple state A state with no substructure

concurrent com-
posite state

A state that is divided into two or
more concurrent substates, all of
which are concurrently active when
the composite state is active

sequential com-
posite state

A state that contains one or more
disjoint substates, exactly one of
which is active at one time when the
composite state is active

initial state A pseudostate that indicates the
starting state when the enclosing
state in invoked

final state A special state whose activation indi-
cates the enclosing state has com-
pleted activity

junction state A pseudostate that chains transition
segments into a single run-to-
completion transition

history state A pseudostate whose activation
restores the previously active state
within a composite state

submachine refer-
ence state

A state that references a submachine,
which is implicitly inserted in place
of the submachine reference state

stub state A pseudostate within a submachine
reference state that identifies a state
in the referenced state machine

H

include S

T

Beginning
The initial state in a state machine represents the
beginning of a navigation.

76 Part 2 • UML Concepts

Transitions into or out of a composite state invoke the entry actions or exit ac-
tions of the state. If there are several composite states, a transition across several
levels may invoke multiple entry actions (outermost first) or several exit actions

Table 6-4: Kinds of States

State Kind Description Notation

simple state A state with no substructure

concurrent com-
posite state

A state that is divided into two or
more concurrent substates, all of
which are concurrently active when
the composite state is active

sequential com-
posite state

A state that contains one or more
disjoint substates, exactly one of
which is active at one time when the
composite state is active

initial state A pseudostate that indicates the
starting state when the enclosing
state in invoked

final state A special state whose activation indi-
cates the enclosing state has com-
pleted activity

junction state A pseudostate that chains transition
segments into a single run-to-
completion transition

history state A pseudostate whose activation
restores the previously active state
within a composite state

submachine refer-
ence state

A state that references a submachine,
which is implicitly inserted in place
of the submachine reference state

stub state A pseudostate within a submachine
reference state that identifies a state
in the referenced state machine

H

include S

T

End
The final state in a state machine defines the end
of a navigation; that is, the user leaves the website.

internal act ion[guard condit ion]
State2Page action [guard condit ion]

Page

Pages are states where a user can execute actions
(e.g. user’s think time) when their guard condi-
tions are true. These conditions can also consider
probabilities in the same way than CBMG.

internal act ion[guard condit ion]

internal act ion[guard condit ion]
State2Page

State2Page

action [guard condit ion]

action [guard condit ion] HTTP
request

Transitions are HTTP requests to pages that are
executed when their guard conditions are true.
These conditions can also consider probabilities in
the same way than CBMG.

internal act ion[guard condit ion]

internal act ion[guard condit ion]

[Guard condit ion]

State2
Page

State2

Page
false

t rue

action [guard condit ion]

action [guard condit ion]

If/else
A simple condition is introduced to ease under-
standing of branches in user’s way.

internal act ion[guard condit ion]

internal act ion[guard condit ion]
State2Page

State2Page

action [guard condit ion]

action [guard condit ion]

Parallel
HTTP
request

A parallel request starts parallelism on navigat-
ing to execute n HTTP requests using n different
threads.

internal act ion[guard condit ion]

internal act ion[guard condit ion]

[Guard condit ion]

State2
Page

State2

Page
false

t rue

action [guard condit ion]

action [guard condit ion]

End of
paral-
lelism

It transforms the parallel navigation in a sequential
navigation again by killing the threading.

internal act ion[guard condit ion]

internal act ion[guard condit ion]

[Guard condit ion]

State2Page

State2

Page
false

t rue

action [guard condit ion]

action [guard condit ion]

Extension

It introduces a new extension point in the naviga-
tion (e.g. call to external constraints or functions),
that is used to highlight issues of dynamism.

76 Part 2 • UML Concepts

Transitions into or out of a composite state invoke the entry actions or exit ac-
tions of the state. If there are several composite states, a transition across several
levels may invoke multiple entry actions (outermost first) or several exit actions

Table 6-4: Kinds of States

State Kind Description Notation

simple state A state with no substructure

concurrent com-
posite state

A state that is divided into two or
more concurrent substates, all of
which are concurrently active when
the composite state is active

sequential com-
posite state

A state that contains one or more
disjoint substates, exactly one of
which is active at one time when the
composite state is active

initial state A pseudostate that indicates the
starting state when the enclosing
state in invoked

final state A special state whose activation indi-
cates the enclosing state has com-
pleted activity

junction state A pseudostate that chains transition
segments into a single run-to-
completion transition

history state A pseudostate whose activation
restores the previously active state
within a composite state

submachine refer-
ence state

A state that references a submachine,
which is implicitly inserted in place
of the submachine reference state

stub state A pseudostate within a submachine
reference state that identifies a state
in the referenced state machine

H

include S

T

Call
other
naviga-
tion

It calls another navigation that is defined outside
the model.

internal act ion[guard condit ion]

internal act ion[guard condit ion]

[Guard condit ion]

State2Page

State2

Page
false

t rue

action [guard condit ion]

action [guard condit ion]

States
set/get

It allows users to store (set) and recover (get) some
information at their states (e.g. cookies or visited
contents).

Table 3.1: User’s navigation notation

29

CHAPTER 3. DWEB: MODELING USER’S DYNAMISM ON WEB
WORKLOAD CHARACTERIZATION

searcher engine (www.google.com). After that, he waits for a while (time
referred to as the user’s think time) and then the user makes the query.

2. In the bottom of the diagram, the user analyzes the results for a dynamic think
time, which depends on the number of results, and takes a decision (conditional
request):

(1) If the web search engine provides results (path from b1 to b2) the user
analyzes them. After that, he can refine the results by making a new
query, refined query in the figure (path from b2 to b1), or access the top
10 sites provided by using multiple browsers tabs (one for each result).
Finally, he finishes the navigation (path from b2 to black dot through
X TH RESULTS.HOME node).

(2) On the contrary, when no results are provided (path from b1 to b3), the
user can make a new query, other query in the figure (path from b3 to b1),
or finish the process (path from b3 to black dot).

Figure 3.1: Google Search navigation pattern

30

http://www.google.com

3.2. THE USER’S ROLES

3.2 The user’s roles

The DWEB model proposes the concept of user’s roles to fulfill the Challenges II and
III by introducing a second level of dynamism in user’s behavior. This level is related
to the roles that users play when navigating the Web. The continuous changes of
these roles defines users’ behaviors.

For instance, assume people at the Import and Export Department in a typical
multinational company who usually access the Web during their working time. As-
sume also that the company has got an intranet (web ERP) which allows web access.
Most of the time, workers use Internet for professional purposes (e.g. intranet naviga-
tions, suppliers sites navigations, or professional web searches), but sometimes they
use the web for leisure purposes (e.g. reading the news with Google Reader, perform-
ing personal searches, or checking the mail). So we can distinguish between two roles
when a department member navigates the web: working behavior (professional navi-
gations), and leisure behavior (personal navigations). Figure 3.2 defines the working
and leisure behaviors of the example, and the likelihood to change between behaviors
by using balanced arcs (the arc weight is the probability to change from the source
behavior to the destination behavior). These behaviors are defined as automatons,
where their nodes represent navigations, and their balanced arcs indicate the transi-
tions between navigations (the arc weight indicates the probability to take that arc).

Figure 3.2: User’s roles example: working and leisure behaviors

31

CHAPTER 3. DWEB: MODELING USER’S DYNAMISM ON WEB
WORKLOAD CHARACTERIZATION

Formally, we define user’s roles R(C,ϕ:CxC→N), where:

• C is the set of navigations; that is, C = {n1,n2 ... ,nk} with ni ε N.

• ϕ:CxC→N. ϕ is the function which provides the next navigation to be executed
in terms of probabilities.

3.3 Summary

In this chapter we proposed the Dynamic WEB workload model (DWEB) with the
aim of characterizing workload in a more accurate and appropriate way when evalu-
ating the performance of current web applications. To this end, DWEB tackles in a
progressive way the three challenges when modeling the user’s behavior on represen-
tative workloads (introduced in Chapter 1) by using a couple of new concepts: user’s
navigation and user’s roles.

The user’s navigation defines a first level of user’s dynamism by modeling user’s
dynamic behavior when interacting with the current Web, and consequently fulfills
the Challenge I.

On the other hand, the concept of user’s roles satisfies Challenges II and III
by modeling a second level of dynamism related to the roles that users play when
navigating the Web, and the continuous changes of these roles. Each role is explained
in the terms defined by the navigation concept.

For illustrative purposes, some examples of using DWEB concepts have been pre-
sented, and the main visual notation has been described.

A summary of this contribution was published in [WOSP’05, COMCOMJ’09].

32

CHAPTER 4

GUERNICA: a workload generator for
current Web

This chapter presents the Universal Generator of Dynamic Workload under WWW
Platforms (GUERNICA), which is a web workload generator and testing tool to eval-
uate performance and functionality of web applications. GUERNICA was developed
as a result of the cooperation among the Web Architecture Research Group (Universi-
tat Politècnica de València), iSOCO S.L, and the Institute of Computer Technology ;
thereby, bridging the gap between academia and industry.

The main aim of GUERNICA is its workload generation process, which is based on
DWEB model that characterizes web workload modeling user’s behavior as described
in Chapter 3.

The remainder of this chapter is organized as follows. Section 4.1 introduces the
main applications of GUERNICA, which permit to carry out performance studies
based on the five phases detailed in Section 4.2. Next, the software architecture is
described in Section 4.3, and the main features are recapitulated in Section 4.4. For
illustrative purposes, Section 4.5 shows an example of web performance evaluation
using the generator. Finally, we draw some concluding remarks in Section 4.6.

4.1 The application suite

GUERNICA is a software made up of three main applications (workload generator,
performance evaluator and performance tests planner) as shown in Figure 4.1. Each
application, described below, permits an autonomous distribution among different
machines of the main activities in the evaluation of performance and functional spec-
ifications of a web application.

• The performance tests planner manages the testing process. Its main function-
alities are: i) to define both performance and functional testing cases, ii) to
plan their execution, iii) to monitor on-line results, which are generated by the

33

CHAPTER 4. GUERNICA: A WORKLOAD GENERATOR FOR CURRENT
WEB

Figure 4.1: Main applications of GUERNICA

distributed clients, and iv) to elaborate final reports combining the obtained
results.

• Workload generators reproduce web workload for stressing purposes. They are
not required to be executed in the same machine as the planner, which configures
generators and controls the executions. Each generator mimics user’s behavior
and notifies navigation statistics and results to the planner, which performs the
corresponding graphical representation. Alternatively, a generator must stop its
execution when the planner requires it.

• The performance evaluator, also known as probe client, is aimed at evaluating
the major functionalities of a given web application while it is stressed by the
workload generators, from the user’s point of view. A probe client also can
execute functional tests notifying their results to the planner.

In addition to these main applications, there are two software extensions that
assist the suite:

• CARENA [NdlOG+05] is a Mozilla plugin that helps GUERNICA to define
users’ navigations. It captures and reproduces a real sequence of HTTP requests

34

4.2. TESTING PHASES

that a user makes when surfing the Web. GUERNICA provides conversion from
CARENA data format to its own data format.

• SemViz [BCCPB07] is an application to visualize knowledge based on ontologies
by using 3D technology. GUERNICA transforms results of functional tests in
an external format based on an ontology that SemViz can read and display
graphically in a 3D representation.

4.2 Testing phases

GUERNICA permits to carry out a website evaluation of performance and functional
specifications by following the next five phases (see Figure 4.2).

2 31

4 5

Figure 4.2: Testing phases in GUERNICA

1. The navigation definition phase characterizes the first level of user’s dynamism
by modeling his interactions with the dynamic web contents, typical of the cur-
rent Web. To this end, GUERNICA adopts the user’s navigation concept of
DWEB, and implements it as a navigational plugin. As mentioned, CARENA

35

CHAPTER 4. GUERNICA: A WORKLOAD GENERATOR FOR CURRENT
WEB

helps GUERNICA to define user’s navigations by capturing real HTTP se-
quences that are converted, in a second step, to navigational plugins.

2. The performance test definition phase specifies the behaviors that users play
in a website using workload tests that implement the user’s roles concept of
DWEB. A workload test specifies a set of navigational plugins that define
user’s behaviors by considering the capability of changing them with time.

3. The execution configuration phase sets others execution parameters, such as
the number and type of users, the types of reports or the workload distribution.
The distribution allows GUERNICA to improve the workload accuracy by dis-
persing its generation among different machines. Figure 4.3 shows the three
main workload generation approaches that can be used by the performance test
planner to coordinate the set of secondary workload generation processes.

In the ideal distributed model, the planner, the generators, and the probe client
are located in different machines. This is the best way to evaluate the per-
formance of web applications because the probe is in an individual machine;
therefore it is influenced neither by other generators nor by the planner.

The advanced distributed model stipulates only three machines to host the plan-
ner, the generators and the probe. The main drawback of this approach is that
all generators are in the same machine. In this model, the generated workload
is not as real as in the ideal model because in a real environment different users
are usually in different machines. Even so, this model can be used when there
are not enough machines to perform the evaluation.

In the basic model, the generators, the probe client, and the planner are located
in the same machine. Thus, if the performance of this machine is not good
enough, the approach will introduce noise in the tests. This model can be used
as a first attempt in the workload generation to identify performance bottlenecks
in web applications. Nevertheless, ideal or advanced approaches are required
for a more accurate performance evaluation.

4. Tests execution. This phase executes workload tests gathering performance and
functional statistics. Results collected by generators and probe clients are given
to the planner, that groups, classifies and reaches a consensus among them in
order to obtain a uniform set of results.

5. Results analysis. Finally, GUERNICA analyzes the performance of the system
under test and represents performance indexes in different formats (e.g. graph-
ical plots or tabular text). As introduced, SemViz visualizes results by using
3D technology.

36

4.2. TESTING PHASES

Figure 4.3: Distribution of workload generation

37

CHAPTER 4. GUERNICA: A WORKLOAD GENERATOR FOR CURRENT
WEB

4.3 Architecture

The GUERNICA suite presents a distributed software architecture as depicted in the
deployment diagram (UML 2.1) of Figure 4.4.

Figure 4.4: Architecture of GUERNICA

The three main applications (WorkloadGeneratorApp, PlannerApp and ProbeApp)
have been programmed in Java using web services technology, so they run indepen-
dently of the execution platform. Their business logics are provided by three interfaces
of the core library: WorkloadPlanner, Probe and WorkloadGenerator.

The core is the main component of the architecture and carries out the work-
load generation process by using DWEB. Navigational plugins and workload tests
are implemented by WorkloadNavigation and WorkloadTest interfaces, respectively.
The NavigationEngine defines an API to reproduce the user’s behavior; its con-
figuration is described in terms of DWEB, and it is stored in a repository called
WorkloadTestRespository. The engine can operate with any technology fulfilling

38

4.4. MAIN FEATURES

its API, but it currently supports Personal Content Aggregator (PCA) technology to
implement the navigational plugin execution. To this end, the PCANavigation and
the PCANavigationEngine classes have been provided.

The PCA technology, developed by iSOCO, offers: i) a scripting language that
allows GUERNICA to easily define dynamic user’s navigations for the current Web,
and ii) an engine to carry out automatic executions for the navigational plugins.

Finally, the util package helps the main library, that can be accessed by using
the CoreManager in a centralized way.

4.4 Main features

GUERNICA supports, totally or partially, the main features introduced in well-known
workload generators proposed in the open literature (see Section 2.2.2), as well as the
capability to represent the user’s dynamism, as shown in Table 4.1.

FEATURE/CAPABILITY GUERNICA
Analytical-Based Architecture N
Distributed Architecture �
Business-Based Architecture N
Client Parameterization �
Workload Types �
Functional Testing N
LAN and WAN N
Multi-platform �
Ease of Use �
Performance Reports �
Open Source N

User’s Dynamism �

� Full support N Partial support

Table 4.1: GUERNICA features

Regarding the totally supported features, the generator presents a distributed
architecture based on web services. That is, GUERNICA allows to distribute the
generation process among different nodes which emulate users working on different
machines. Furthermore, the generator implements the DWEB model that offers im-
portant capabilities. For instance, it provides an analytical approach (user’s roles) to
characterize users’ dynamic behaviors as well as their continuous changes (Challenge
II and III). That is, GUERNICA can organize the workload in dynamic categories
or types, each of them modeling a given user profile by using a workload test. The
model also introduces some client variables to parameterize the user behavior (e.g.

39

CHAPTER 4. GUERNICA: A WORKLOAD GENERATOR FOR CURRENT
WEB

the user’s think time by means of a Gaussian distribution), which are provided by
GUERNICA as a part of the scripting language. This language allows the generator
to reproduce users’ dynamic navigations (Challenge I). Table 4.2 summarizes how
GUERNICA technology fulfills the challenges when representing user’s dynamism.

GUERNICA
Challenge I Navigational plugins ~
Challenge II

Workload tests }
Challenge III

} Analytical approach ~ Scripting

Table 4.2: Challenges of user’s dynamism fulfilled by GUERNICA

Among other features supported by GUERNICA, one can observe its ease of use
(e.g. CARENA to define user navigation), the ability to generate performance reports
(e.g. 3D graphical representation), and the capability to model differences between
LAN (where generators are usually run) and WAN (where applications are usually
located). Moreover, the workload tests can be used as web application functional tests,
and the generation process can be easily applied to different business architectures.
Finally, it should be noted that a significant part of the code (the applications and
the core packages that do not use PCA technology) has been written under an open
source license.

4.5 Case study

The objective of this case study is not to present a detailed performance evaluation
but to show how GUERNICA can be used in web performance studies.

The case study considers that users can behave as searchers or surfers [CPCP01]
when navigating the Web. Searchers are users who start their navigations with a
query in a search engine like Google. On the other hand, surfers prefer to navigate
through the Web using its direct hyperlinks. With the aim of illustrating these two
behaviors, different navigations looking for some information related with the US
president election in 2012 are chosen.

Figure 4.5 presents an automaton that defines the surfer and searcher users’ be-
haviors, and the continuous changes of behavior when they are looking for some
information about the candidates. The automaton shows how a typical user can pro-
ceed: i) to search the name of a candidate in the searcher engine, or ii) to navigate
through one of the most important news sites (the CNN website). The automaton
states the same probability (50%) to start a user’s navigation searching in Google the
democratic candidate name (Obama) or the republican (Romney). Then, the user
can search the other candidate in Google (25%), can browse the CNN website to look
for some information about the same candidate (50%), or can finish the navigation

40

4.5. CASE STUDY

Figure 4.5: Web searcher and surfer user’s behaviors

(25% of probability). When the user has found the information in the CNN website,
he can navigate to the other candidate page in the site (30% of probability), or he can
change his behavior by executing a new search looking for some information about
the other candidate (30%). The third alternative is to finish the navigation (40%).

For illustrative purposes, Figure 4.6 specifies the searcher behavior by modeling a
simple search in Google. As observed, once the main page of Google (www.google.es)
is accessed, the user spends some time thinking (think time - 1000 ms) until he
asks Google for some information (www.google.es/search). After that, Google
returns the results page (SEARCH RESULTS) and a new user’s think time (given by
a Gaussian distribution as 3500 ms of average with 1500 ms standard deviation)
is provided. Then, the user has two options represented by two branches in the
graph; if the searcher engine provides results for the candidate name (left branch)
the user will access the candidate site (first site provided); otherwise, the user will
finish the process (right branch). If the user accesses the candidate home page
(www.first result.home), he spends time thinking about the returned contents be-
fore finishing the navigation (black dot).

GUERNICA was implemented by using a model language based on XML labels
to define workload tests, navigational plugins and workload distribution. Listing 4.1
shows the XML file that implements as a workload test the automaton of Figure 4.5.
On the other hand, Listing 4.2 presents the navigational plugin for a simple search
in Google (Figure 4.6). The PCA-Plugin is the XML file that defines, by using the
PCA technology, the user’s navigation.

41

CHAPTER 4. GUERNICA: A WORKLOAD GENERATOR FOR CURRENT
WEB

page

FIRST_RESULT.HOME

Google.HOME

Google.SEARCH_RESULTS

GET(http://www.google.es)

Figure 4.6: A simple search in Google

Listing 4.1: Workload test

<?xml version="1.0" encoding="UTF -8"?>
<WorkloadTest id="test_searcher_vs_surfer">

<UsersNumber >2</UsersNumber >
<NavigationGraph >

<InitialNavigations >
<InitialNavigation id="google_obama" prob="0.50"/>
<InitialNavigation id="google_romney" prob="0.50"/>

</InitialNavigations >
<NavigationTransitions >

<NavigationTransition from="google_obama" to="cnn_obama" prob="0.50"/>
<NavigationTransition from="google_obama" to="google_romney" prob="0.25"/>
<NavigationTransition from="google_romney" to="cnn_romney" prob="0.50"/>
<NavigationTransition from="google_romney" to="google_obama" prob="0.25"/>
<NavigationTransition from="cnn_obama" to="google_romney" prob="0.30"/>
<NavigationTransition from="cnn_obama" to="cnn_romney" prob="0.30"/>
<NavigationTransition from="cnn_romney" to="google_obama" prob="0.30"/>
<NavigationTransition from="cnn_romney" to="cnn_obama" prob="0.30"/>

</NavigationTransitions >
</NavigationGraph >

</WorkloadTest >

42

4.5. CASE STUDY

Listing 4.2: Searching Obama in Google for the US President Election 2012

<?xml version="1.0" encoding="UTF -8"?>

<Navigation id="google_obama">
<InputData >

<Param name="phrase" value="Obama"/>
</InputData >
<ExecutionCode >

<PCA -Plugin name="google.pca.xml"/>
</ExecutionCode >
<StatisticsConfiguration >

<StatisticAttribute name="NavigationTime"/>
<StatisticAttribute name="ExecutionTime"/>
<StatisticAttribute name="HttpRoute">

<StatisticAttribute name="URL"/>
<StatisticAttribute name="HttpMethod"/>
<StatisticAttribute name="Stablished"/>
<StatisticAttribute name="StablishmentTime"/>
<StatisticAttribute name="TransferTime"/>
<StatisticAttribute name="ThinkUserTime"/>
<StatisticAttribute name="ContentSize"/>

</StatisticAttribute >
</StatisticsConfiguration >

</Navigation >

Finally, Listing 4.3 shows the XML file that distributes the workload generation
process. This file configures GUERNICA in the basic generation approach with only
a workload generator process (generator-1) in a single machine.

Listing 4.3: Workload distribution for the US President Election 2012

<?xml version="1.0" encoding="UTF -8"?>
<WorkloadPlannerConfiguration >

<PlannerIdentifier >election -2004</PlannerIdentifier >
<WorkloadGenerators >

<WorkloadGenerator >
<Id>generator -1</Id>

</WorkloadGenerator >
</WorkloadGenerators >
<WorkloadTestAssignations >

<WorkloadtestAssignation testId="test_searcher_vs_surfer"
generatorId="generator -1"/>

</WorkloadTestAssignations >
</WorkloadPlannerConfiguration >

Once the workload test has been run, we obtain the plan of conducted navigations
and their HTTP requests, each one having different outcome. Listing 4.4 illustrates
an example showing the results of an execution for two users. As observed, a set of
global statistics is obtained, such as the total execution time of the experiment or
the navigation time. For each HTTP request, the test execution produces different
statistics, such as the GET or POST method, the time for establishing the connec-
tion, the transfer time, the user think time, the content size, accessed URL, or the
successfulness when making the connection (Established).

43

CHAPTER 4. GUERNICA: A WORKLOAD GENERATOR FOR CURRENT
WEB

Listing 4.4: Testing results for the US President Election 2012

<?xml version="1.0" encoding="UTF -8"?>

<WorkloadTestStatistics id="..." testId="test_searcher_vs_surfer"
<UserNavigations >

<NavigationStatistic navigationId="google_obama" date="...">
<NavigationTime >17065 </NavigationTime >
<ExecutionTime >18453</ExecutionTime >
<HttpRoute >

<HttpRouteElement >
<URL>http://www.google.es</URL>
<HttpMethod >GET</HttpMethod >
...

</HttpRouteElement >
<HttpRouteElement >

<URL>http://www.google.es/search?q=Obama </URL>
<HttpMethod >GET</HttpMethod >
<Established >true</Established >
<EstablishmentTime >116</EstablishmentTime >
<TransferTime >1084</TransferTime >
<ThinkTime >5622</ThinkTime >
<ContentSize >19896</ContentSize >

</HttpRouteElement >
<HttpRouteElement >

...
<TransferTime >257</TransferTime >
<ThinkTime >5000</ThinkTime >
<ContentSize >15545</ContentSize >

</HttpRouteElement >
</HttpRoute >

</NavigationStatistic >

<NavigationStatistic navigationId="cnn_obama" date="...">
...

</NavigationStatistic >

<NavigationStatistic navigationId="google_romney" date="...">
...

</NavigationStatistic >

<NavigationStatistic navigationId="cnn_romney" date="...">
...

</NavigationStatistic >
</UserNavigations >
<UserNavigations >

<NavigationStatistic navigationId="google_obama" date="...">
...

</NavigationStatistic >
</UserNavigations >

</WorkloadTestStatistics >

4.6 Summary

This chapter has presented GUERNICA, a new web workload generator based on
DWEB model with the aim of reproducing dynamic users workload in a more accurate
and appropriate way than traditional approaches to workload generation.

GUERNICA implements the main DWEB concepts with the aim of adopting the
model: i) the user’s navigation is incorporated with a scripting approach named nav-
igational plugin, and the workload test carries out the concept of user’s roles from an
analytical perspective. Furthermore, the generator represents the physical distribu-

44

4.6. SUMMARY

tion of users in the Web by providing a distributed architecture, which permits to set
up different approaches (basic, advanced, and ideal) when generating web workload.

Additionally, GUERNICA supports, totally or partially, the main features intro-
duced in well-known workload generators proposed in the open literature. These fea-
tures work together under a five-phases methodology allowing GUERNICA to carry
out performance and functional evaluation of web application in the current Web.

The main results of this chapter were published in [WOSP’05, COMCOMJ’09].
Further details about GUERNICA design and features can be found in the context of
the GENERICA project as a technical reports [GENERICA’04b, GENERICA’04c].
Furthermore, more information about CARENA and SemViz can be obtained in
[GENERICA’04d, GENERICA’04e].

45

CHAPTER 5

GUERNICA validation: a new testbed for
web performance evaluation

Before widely using GUERNICA in web performance studies, we need to validate
it against a traditional approach to workload generation. To this end, we devise a
new testbed with the ability of reproducing different types of workloads. After the
validation process, the testbed will be used to analyze the effect of applying dynamic
workloads on the web performance metrics, instead of traditional workloads. This
chapter introduces the testbed design and describes the validation process.

The new testbed has to accomplish three main goals. First, it must define and
reproduce traditional web workloads by using a parameterized and extensible archi-
tecture that allows us to integrate the workload generation process of GUERNICA.
Second, it must be able to provide client and server metrics with the aim of being used
for web performance evaluation studies. Finally, it should be representative of web
transactional systems that have been established in recent years, such as e-commerce
websites, blogs or OSNs.

Among the evaluated benchmarks in Section 2.2, TPC-W is the best candidate
to provide an appropriate testbed for our purposes, because it satisfies the previous
goals and also considers user’s behavior on workload generation although in a partial
way. Consequently, with the aim of validating GUERNICA against the traditional
approach to workload generation of TPC-W, we deploy a new testbed for web per-
formance evaluation by integrating our generator into the benchmark.

The remainder of this chapter is organized as follows. Section 5.1 presents the main
features of the TPC-W implementation that is adopted as a framework of the testbed.
After that, in Section 5.2, we show the devised architecture of integrating GUERNICA
into TPC-W. Section 5.3 and Section 5.4 describe the experimental setup and the
main measured performance metrics in the validation process, respectively. This
process is discussed in Section 5.5. Finally, we draw some concluding remarks in
Section 5.6.

47

CHAPTER 5. GUERNICA VALIDATION: A NEW TESTBED FOR WEB
PERFORMANCE EVALUATION

5.1 The TPC-W framework

As mentioned in Section 2.2.1.6, the TPC-W is a transactional web benchmark that
models an on-line bookstore environment. The benchmark specification [Tra02b] de-
fines a full website map for the on-line bookstore that consists of 14 unique pages and
their navigation transitions. Figure 5.1 depicts a reduced TPC-W website map, where
pages with related functionality are included in the same group: ordering, shopping,
browsing, admin and search. Navigation hyperlinks among them are also indicated.

Page GROUP OF
PAGES

ADMIN

Product Detail
Page

BROWSING

SHOPPING

SEARCH

ORDERING

Home Page

Figure 5.1: TPC-W reduced website map

The search group provides a book searcher by using the Search page to request
the query and the Search Results page to show a list of results. The browsing group
embraces the Best-sellers and the New Products pages, which arrange the bookstore
catalog according to the sales and the publication date, respectively. The shopping
group is the largest set of pages and provides i) sale functionality by managing the
shopping cart (ShoppingCart page), ii) the buy request and its confirmation (Buy
Request page and Buy Confirm page, respectively), and iii) the pay through a secured
navigation (Customer Registration page). The ordering group includes a set of pages
that allows checking the order status (Order Inquiry page and Order Display page).
The admin group manages the catalog of books (using Admin Request and Product
Updated pages). Finally, the most referred pages (Home page and Product Detail
page) are also included. Search and shopping groups implement the most interactive

48

5.2. TESTBED ARCHITECTURE

and personalized functionality in the website, so they are potentially interesting as
dynamic user workload.

The benchmark provides a standard environment that is independent of the un-
derlying technology, designed architecture and deployed infrastructure. A TPC-W
Java implementation developed by the UW-Madison Computer Architecture Group
[CRML01] was selected as framework of our testbed. As shown in Figure 5.2, the
architecture client side is a Java console application that provides two interfaces for
workload generation; an Emulated Browser (EB) and a factory (EBFactory) to cre-
ate, configure and manage it. These interfaces allow us to define new processes for
workload generation. The server side was developed as a Java web application made
of a set of Servlets. Each Servlet resolves client requests by looking in the database
information.

Figure 5.2: Main software components of TPC-W Java implementation

5.2 Testbed architecture

The architecture of integrating GUERNICA into TPC-W is organized in three main
layers as depicted in Figure 5.3 and detailed below.

• The top layer is defined at the client side of TPC-W and supplies the two inter-
faces related to the workload generation process (EB, EBFactory), as introduced
in Section 5.1.

49

CHAPTER 5. GUERNICA VALIDATION: A NEW TESTBED FOR WEB
PERFORMANCE EVALUATION

• The bottom layer is related to the process of workload generation in GUERNICA,
detailed in Chapter 4.

• Finally, the intermediate layer defines the integration between GUERNICA
and TPC-W. This integration is provided by an independent Java library
named TGI. This library implements a new type of EB (DwebEB) that uses the
GUERNICA core to reproduce user’s dynamic behavior in the workload genera-
tion process. In order to simplify the new EB, a workload generation engine
(DwebExecutorEngine) is implemented to carry out the generation process. A
browser factory (DwebEBFactory) is also developed to manage the creation and
configuration of the new EB.

Figure 5.3: Testbed architecture

50

5.3. EXPERIMENTAL SETUP

5.3 Experimental setup

The experimental setup used in this dissertation is a typical two-tier configuration con-
sisting of an Ubuntu Linux Server back-end tier and an Ubuntu Linux client front-end
tier. The back-end runs the on-line bookstore, which core is a Java web application
(TPC-W web app) deployed on the Tomcat web application server. Requests to static
content, such as images, are served by the Apache web server, which redirects requests
for dynamic content to Tomcat. TPC-W web app generates the dynamic content by
fetching data from the MySQL database. On the other hand, the front-end tier is
able to generate the workload either using conventional or dynamic models. Both
web application and workload generators are run on the SUN Java Runtime Envi-
ronment 5.0 (JRE 5.0). Figure 5.4 illustrates the hardware/software platform of the
experimental setup used in this dissertation.

Given the multi-tier configuration of this environment, system parameters (both
in the server and in the workload generators) have been properly tuned to avoid
that middleware and infrastructure bottlenecks interfere in the results. The on-line
bookstore has been configured with 300 EBs and a large number of items (100,000
books) that forced us to balance accesses in the database (e.g. the pool connection
size), static content service by Apache (e.g. the number of processes to attend HTTP
requests), or dynamic content service by Tomcat (e.g. the number of threads provid-
ing dynamic contents). For each experiment, the measurements were performed for
several runs with a 20-minute collecting-data phase after a 15-minute warm-up phase.

Figure 5.4: Experimental setup

51

CHAPTER 5. GUERNICA VALIDATION: A NEW TESTBED FOR WEB
PERFORMANCE EVALUATION

5.4 Performance metrics

Table 5.1 summarizes the performance metrics available in the experimental setup.
The main metrics measured on the client side are the total number of requests per page
and the response time, which is expressed as Web Interaction Response Time (WIRT).
On the server side, the platform collects the server performance statistics required
by the TPC-W specification (CPU and memory utilization, database I/O activity,
system I/O activity, and web server statistics) as well as other optional statistics.
These metrics allow a better understanding of the system behavior under test and
permit to check the techniques used to improve performance when applying a dynamic
workload. The collected metrics can be classified in two main groups: metrics related
with the usage of main hardware resources, and performance metrics for the software
components of the back-end. For evaluation purposes, we used a middleware named
collectd [For12] that collects system performance statistics periodically.

5.5 GUERNICA validation

This section validates GUERNICA by using the devised testbed to compare our work-
load generation approach against the TPC-W approach. According to the TPC-W
specification three scenarios are defined when characterizing the web workload: shop-
ping, browsing, and ordering. The shopping scenario presents intensive browsing and
ordering activities while the browsing and ordering scenarios reduce ordering and
browsing activities, respectively. TPC-W describes these scenarios as three different
full CBMGs.

Regarding the validation test, we contrast both workload characterization approx-
imations (i.e. CBMG and DWEB) for each scenario. Figure 5.5 depicts the shopping
scenario workload as an illustrative example. Note that we are able to model the
same workload by using only the navigation concept of DWEB, and disabling all the
parameters used to include user dynamism in the workload characterization. The
validation test considers 50 EBs because the Java implementation of the TPC-W
generator presents some limitations in the workload generation process. The mea-
surements were performed for 50 runs and obtaining confidence intervals with a 99%
confidence level.

For illustrative purposes, this section presents results of a subset of the most
significative metrics when running TPC-W for the three scenarios defined by CBMG
and DWEB.

Figure 5.6 and Figure 5.7 depicts client and server performance metrics for the
shopping scenario, respectively.

52

5.5. GUERNICA VALIDATION
R
e
so

u
rc

e
M

e
tr
ic

D
e
sc
ri
p
ti
o
n
/
F
o
rm

u
la

C
li
en

t
S
id

e

R
es

p
o
n
se

T
im

e
(W

IR
T

)

W
IR

T
is

d
efi

n
ed

b
y

T
P

C
-W

a
s
t2
−

t1
,

w
h
er

e
t1

is
th

e
ti

m
e

m
ea

su
re

d
a
t

th
e

E
m

u
la

te
d

B
ro

w
se

rs
w

h
en

th
e

fi
rs

t
b
y
te

o
f

th
e

fi
rs

t
H

T
T

P
re

q
u
es

t
o
f

th
e

w
eb

in
te

ra
ct

io
n

is
se

n
t

b
y

th
e

b
ro

w
se

r
to

th
e

se
rv

er
,
a
n
d
t2

is
th

e
ti

m
e

w
h
en

th
e

la
st

b
y
te

o
f

th
e

la
st

H
T

T
P

re
sp

o
n
se

th
a
t

co
m

p
le

te
s

th
e

w
eb

in
te

ra
ct

io
n

is
re

ce
iv

ed
.

A
v
er

a
g
e

R
es

p
o
n
se

T
im

e
(W

I
R
T

)
W

I
R
T

=
∑ i∈

P
a
g
e
s
W

I
R
T
i
∗R

eq
i

∑ i∈
P
a
g
e
s
R
eq

i

R
eq

p
a
g
e

R
eq

u
es

ts
p

er
P

a
g
e

(R
eq

p
a
g
e
)

a
re

th
e

to
ta

l
n
u
m

b
er

o
f

co
n
-

n
ec

ti
o
n
s

fo
r

a
p
a
g
e

re
q
u
es

te
d

b
y

E
m

u
la

te
d

B
ro

w
se

rs
a
n
d

a
c-

ce
p
te

d
b
y

th
e

se
rv

er
.

ServerSide

C
P

U
U

C
P
U

M
et

ri
cs

fo
r

h
a
rd

w
a
re

re
so

u
rc

es
in

cl
u
d
e

u
ti

li
za

ti
o
n

fo
r

a
ll

o
f

th
em

,
a
n
d

th
ro

u
g
h
p
u
t

fo
r

th
e

d
is

k
a
n
d

th
e

n
et

w
o
rk

.

H
a
rd

w
a
re

M
em

o
ry

U
m

e
m

o
r
y

D
is

k
U

d
is

k
,X

d
is

k

N
et

w
o
rk

U
n
e
t
,X

n
e
t

A
p
a
ch

e
X

a
p
a
c
h
e
,C

P
U

a
p
a
c
h
e
,M

E
M

a
p
a
c
h
e

P
er

fo
rm

a
n
ce

m
et

ri
cs

fo
r

so
ft

w
a
re

co
m

p
o
n
en

ts
o
f

se
rv

er
in

-
cl

u
d
e:

th
ei

r
th

ro
u
g
h
p
u
t,

th
e

C
P

U
a
n
d

m
em

o
ry

co
n
su

m
p
ti

o
n
,

th
e

n
u
m

b
er

o
f

p
ro

ce
ss

es
o
r

th
re

a
d
s,

et
c

S
o
ft

w
a
re

T
o
m

ca
t

X
to

m
c
a
t
,C

P
U

to
m

c
a
t
,M

E
M

to
m

c
a
t

M
y
S
Q

L
X

m
y
s
q
l,
C
P
U

m
y
s
q
l,
M

E
M

m
y
s
q
l

T
ab

le
5.

1:
P

er
fo

rm
an

ce
m

et
ri

cs
cl

as
si

fi
ca

ti
on

a
cc

o
rd

in
g

to
th

e
ev

a
lu

a
te

d
re

so
u

rc
e

53

CHAPTER 5. GUERNICA VALIDATION: A NEW TESTBED FOR WEB
PERFORMANCE EVALUATION

Choice
Page GROUP OF

PAGES
Dynamic behavior

ORDERING

BROWSING

ADMIN

SHOPPING

SEARCH

BuyConfirm Page

BuyRequest PageCustomerRegister Page

ShoppingCart Page

Product Detail Page

Search Results PageSearch Page

Home
Page

0.07

13.96

98.65

4.69

1.35

1.43

47.52

1.63

62.5

49.42

0.43

99.57

0.59

99.15

0.85

19.32

12.39

0.94

34.53

6.958.64

74.07

29.73

46.15

86.67

25.86

4.56

26.58

73.15

7.74

66.37

0.10

85.00

6.36

3.08

H*

H*

H*

Have I

book cost

Do I know which

ORDERING

Order Display PageOrder Inquiry
Page

Home Page

C.1.1C1.2

C2

TTdynamic

BuyConfirm Page

BuyRequest PageCustomerRegister Page

ShoppingCart Page

Search Results PageSearch Page

Choice
Page GROUP OF... Cx referes to Case X of dynamic behavior

ORDERING

BROWSING

ADMIN

SHOPPING

Product Detail Page

SEARCH

Home
Page

1 0 0

1 0 01 0 0

1 0 0

1 0 0

100[No]

100[Yes]

[Yes]

100[No]

[No]

13.96

98.65

1.35

4.69

1.43

47.52

1.63

49.42

62.5

0.43

99.57

0.59

99.15

0.85

46.15

74.07

25.86
0.07

[Yes]

34.53

6.958.64

29.73

12.39

0.94
86.67

19.32

73.15

7.74
4.56

66.37

26.58

0.10

85.00

6.36

3.08

Figure 5.5: CBMG model for shopping scenario in GUERNICA validation

54

5.5. GUERNICA VALIDATION

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Search Results

Search Request

Hom
e

O
rder Display

Best Sellers

New Products

Adm
in Request

Custom
er Regist

Product Detail

Buy Confirm

Adm
in Confirm

Buy request

O
rder Inquiry

Shopping Cart

Us
er

 P
ag

e
Re

qu
es

ts

CBMG
DWEB

(a) User page requests

 0

 200

 400

 600

 800

 1000

 1200
Search Results

Search Request

Hom
e

O
rder Display

Best Sellers

New Products

Adm
in Request

Custom
er Regist

Product Detail

Buy Confirm

Adm
in Confirm

Buy request

O
rder Inquiry

Shopping Cart

Average Site

W
IR

T
(m

s)

101k 104k

CBMG
DWEB

(b) WIRT

Figure 5.6: Client metrics obtained for the shopping scenario in GUERNICA valida-
tion

55

CHAPTER 5. GUERNICA VALIDATION: A NEW TESTBED FOR WEB
PERFORMANCE EVALUATION

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

45 %

Memory CPU

U
til

iz
at

io
n

CBMG
DWEB

(a) Server memory and CPU utilization

0 %

0.5 %

1 %

1.5 %

2 %

2.5 %

Incomming Outgoing

Ut
iliz

at
io

n

CBMG
DWEB

(b) Server network utilization

Figure 5.7: Server metrics obtained for the shopping scenario in GUERNICA valida-
tion

56

5.5. GUERNICA VALIDATION

 0

 500

 1000

 1500

 2000

 2500

Search Results

Search Request

Hom
e

O
rder Display

Best Sellers

New Products

Adm
in Request

Custom
er Regist

Product Detail

Buy Confirm

Adm
in Confirm

Buy request

O
rder Inquiry

Shopping Cart

Us
er

 P
ag

e
Re

qu
es

ts

CBMG
DWEB

(a) User page requests

 0

 500

 1000

 1500

 2000

Search Results

Search Request

Hom
e

O
rder Display

Best Sellers

New Products

Adm
in Request

Custom
er Regist

Product Detail

Buy Confirm

Adm
in Confirm

Buy request

O
rder Inquiry

Shopping Cart

Average Site

W
IR

T
(m

s)

125k 121k

CBMG
DWEB

(b) WIRT

Figure 5.8: Client metrics obtained for the browsing scenario in GUERNICA valida-
tion

57

CHAPTER 5. GUERNICA VALIDATION: A NEW TESTBED FOR WEB
PERFORMANCE EVALUATION

0 %

10 %

20 %

30 %

40 %

50 %

60 %

Memory CPU

U
til

iz
at

io
n

CBMG
DWEB

(a) Server memory and CPU utilization

0 %

0.2 %

0.4 %

0.6 %

0.8 %

1 %

1.2 %

1.4 %

1.6 %

1.8 %

2 %

Incomming Outgoing

Ut
iliz

at
io

n

CBMG
DWEB

(b) Server network utilization

Figure 5.9: Server metrics obtained for the browsing scenario in GUERNICA valida-
tion

58

5.5. GUERNICA VALIDATION

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Search Results

Search Request

Hom
e

O
rder Display

Best Sellers

New Products

Adm
in Request

Custom
er Regist

Product Detail

Buy Confirm

Adm
in Confirm

Buy request

O
rder Inquiry

Shopping Cart

Us
er

 P
ag

e
Re

qu
es

ts

CBMG
DWEB

(a) User page requests

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600
Search Results

Search Request

Hom
e

O
rder Display

Best Sellers

New Products

Adm
in Request

Custom
er Regist

Product Detail

Buy Confirm

Adm
in Confirm

Buy request

O
rder Inquiry

Shopping Cart

Average Site

W
IR

T
(m

s)

100k 100k

CBMG
DWEB

(b) WIRT

Figure 5.10: Client metrics obtained for the ordering scenario in GUERNICA valida-
tion

59

CHAPTER 5. GUERNICA VALIDATION: A NEW TESTBED FOR WEB
PERFORMANCE EVALUATION

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

45 %

Memory CPU

U
til

iz
at

io
n

CBMG
DWEB

(a) Server memory and CPU utilization

0 %

0.2 %

0.4 %

0.6 %

0.8 %

1 %

1.2 %

1.4 %

Incomming Outgoing

Ut
iliz

at
io

n

CBMG
DWEB

(b) Server network utilization

Figure 5.11: Server metrics obtained for the ordering scenario in GUERNICA valida-
tion

60

5.6. SUMMARY

As shown in Figure 5.6a, both approximations generate a similar number of page
requests. Figure 5.6b shows that the DWEB response time is, on average, 5% higher
than that of CBMG, because some pages (e.g. Search Results or Buy Confirm) present
very wide confidence intervals in this scenario. However, this difference does not affect
the server performance metrics since, as observed in Figure 5.7, the highest utilization
is below 40% in both cases. The utilization for CPU and memory is rather low and
similar in both cases (see Figure 5.7a). Incoming and outgoing traffics do not increase
network utilization more than 2% in the studied workloads (see Figure 5.7b). Finally,
the disk utilization is lower than 0.2% in both workloads (not shown in the figures).

Browsing scenario results are illustrated in Figure 5.8 and Figure 5.9. Both work-
loads generate a similar number of page requests and response time as shown in Figure
5.8a and Figure 5.8b, respectively. On the other hand, the server is characterized by
a middle level of stress in both cases. CPU utilization is by 50%, while the memory,
network and disk utilizations are low, as observed in Figures 5.9a and Figure 5.9b,
respectively.

Figure 5.10 and Figure 5.11 depict the results for the ordering scenario. The
former shows that both workloads present similar levels of client metrics. The latter
presents how the highest server’s utilization is lower than 40% in both cases.

Finally, we can conclude that the DWEB model and GUERNICA can generate
accurate traditional workloads for web performance studies based on TPC-W. More-
over, due to their designs, our new testbed can be used to generate web workloads
with user’s dynamic behavior.

5.6 Summary

This chapter has discussed the validation of GUERNICA against a traditional ap-
proach to workload generation. With this aim, we have developed a new testbed
for performance evaluation with the ability of generating dynamic user workload by
integrating GUERNICA into TPC-W.

We have validated our approach by contrasting the new testbed main function-
alities and behavior against TPC-W, and found that both implementations present
similar behavior in traditional web workloads. Moreover, our approach represents a
more valuable alternative because DWEB and GUERNICA are able to model and
reproduce user’s dynamism on workload characterization in an accurate and appro-
priate way, respectively. The devised testbed will help us to prove it.

In [CLEIej’12], a summary of both testbed and validation introduced in this chap-
ter was presented.

61

CHAPTER 6

The impact of dynamic user workloads on
web performance

This chapter proves that the web user’s dynamic behavior is a crucial issue that must
be addressed in web performance studies in order to accurately estimate system per-
formance indexes. To this end, using the testbed presented in Chapter 5, we analyze
and measure for the first time, to the best of our knowledge, the effect of consider-
ing different levels of dynamic workload on web performance evaluation, instead of
traditional workloads.

Results show that CPU utilization can increase as large as 30% with dynamic
user workloads. These more realistic workloads show that processor utilization is
not uniformly balanced along time, but overloaded peaks rise when considering user’s
dynamic behavior. As a consequence, the probability of a long response time is higher,
and the number of user’s abandonments can increase (up to 40%).

The remainder of this chapter is organized as follows. Section 6.1 presents the
dynamic workloads proposals and how they can be modeled by the approaches under
study. Then, Section 6.2 shows the effect of the different workloads on the web system
performance. Finally, we draw some concluding remarks in Section 6.3.

6.1 Workload design

This section presents the experimental workloads used in the study. We would like
to emphasize that the aim of this work is not to present a detailed dynamic workload
based on current user’s behavior, but to explore how typical web performance metrics
are affected by introducing different degrees of dynamism.

This study assumes CBMG model to define traditional web workload, and DWEB
model to introduce different levels of user’s dynamism on workload characterization.
First, Section 6.1.1 focuses only on user’s navigation in order to represent dynamism
on workload characterization by using the user’s navigation concept. Second, Section

63

CHAPTER 6. THE IMPACT OF DYNAMIC USER WORKLOADS ON WEB
PERFORMANCE

6.1.2 introduces a more realistic dynamic workload that also models changes on the
user’s roles by using the user’s roles concept.

6.1.1 Considering dynamism on user’s navigations

In a first step, a dynamic workload (DWEB workload I - DW1) is defined with the
aim of introducing user’s dynamic navigations on workload characterization. For this
purpose, we assume a common scenario of e-commerce where the main objective is
to avoid the defection of customers. A large percentage of new customers - more
than 60% in some sectors - defect before their third anniversary with an e-commerce
website [RS00]. Consequently, these websites care deeply about customer retention
and consider loyalty vital to the success of their on-line operations.

For the studied scenario, regarding customer retention in the on-line bookstore, we
define a loyalty promotion consisting of a general discount only for those customers
who buy at least once a month. The promotion introduces a new behavior with four
cases of dynamism as summarized in Table 6.1.

Case Description

1 If customers do not remember their last order status, they will check them by
navigating into the ordering group of pages.

2
Because the customer has to buy at least once a month to keep the discount,
a buying session must finish with a payment when he has not bought anything
during that month.

3 An experienced customer only buys a book when its cost is 25% cheaper than in
other markets.

4 The higher the number of provided search results, the longer the time that a user
takes to read and think about them.

Table 6.1: Cases of dynamism in the loyalty promotion behavior

DWEB allows the modeling of these cases of dynamism, which cannot be repre-
sented with this level of accuracy using traditional approaches such as CBMG.

Figure 5.5, which was introduced in Chapter 5 as the shopping scenario for the on-
line bookstore, depicts the workload described using the traditional approach (CBMG
workload). On the other hand, Figure 6.1 shows the workload characterization using
DWEB (DW1 workload). Both graphs focus on searching and shopping groups of the
TPC-W website, and highlight their main pages and transitions.

CBMG workload considers the think time based on the TPC-W specification
[Tra02b]. This benchmark defines the user think time (TT) as TT = T2 − T1,
where T1 is the time measured at the emulated browser when the last byte of the
last web interaction is received from the server, and T2 is the time measured when

64

6.1. WORKLOAD DESIGN

H*

H*

H*

Have I

book cost

Do I know which

Home Page Order Display PageOrder Inquiry
Page

ORDERING

C1C2

C3

TTdynamic

BuyConfirm Page

BuyRequest PageCustomerRegister Page

ShoppingCart Page

Search Results PageSearch Page

Choice
Page GROUP OF

PAGES
Cx referes to Case X of dynamic behavior

ORDERING

BROWSING

ADMIN

SHOPPING

Product Detail Page

SEARCH

Home
Page

1 0 01 0 0 1 0 0

1 0 0

100[No]

100[Yes]

[Yes]

100[No]

[No]

13.96

98.65

1.35

4.69

1.43

47.52

1.63

49.42

62.5

0.43

99.57

0.59

99.15

0.85

46.15

74.07

25.86
0.07

[Yes]

34.53

6.958.64

29.73

12.39

0.94
86.67

19.32

73.15

7.74
4.56

66.37

26.58

0.10

85.00

6.36

3.08

H*

H*

H*

Have I

book cost

Do I know which

Home Page Order Display PageOrder Inquiry
Page

ORDERING

C1C2

C3

TTdynamic

BuyConfirm Page

BuyRequest PageCustomerRegister Page

ShoppingCart Page

Search Results PageSearch Page

Choice
Page GROUP OF

PAGES
Cx referes to Case X of dynamic behavior

ORDERING

BROWSING

ADMIN

SHOPPING

Product Detail Page

SEARCH

Home
Page

1 0 01 0 0 1 0 0

1 0 0

100[No]

100[Yes]

[Yes]

100[No]

[No]

13.96

98.65

1.35

4.69

1.43

47.52

1.63

49.42

62.5

0.43

99.57

0.59

99.15

0.85

46.15

74.07

25.86
0.07

[Yes]

34.53

6.958.64

29.73

12.39

0.94
86.67

19.32

73.15

7.74
4.56

66.37

26.58

0.10

85.00

6.36

3.08

Figure 6.1: DWEB workload I - DW1: navigation for loyalty promotion behavior

65

CHAPTER 6. THE IMPACT OF DYNAMIC USER WORKLOADS ON WEB
PERFORMANCE

the first byte of the first HTTP request of the next web interaction is sent from the
emulated browser to the server. TPC-W considers that each think time must be taken
independently from a negative exponential distribution, with the restriction that the
average value must be greater than 7 seconds and lower than 8 seconds, as shown in
equation (6.1). An important drawback of this approach is that it does not consider
the results of the current search (web contents) on the actual user think time as occurs
in real navigations.

TTTPC−W = −ln(r) ∗ p , where (0 < r < 1) ∧ (7 ≤ p ≤ 8) (6.1)

In contrast, DWEB allows us to define a dynamic think time (TTdynamic) according
to the number of items returned by the search as shown in equation 6.2, which is closer
to real web activities like the one defined in case 4. DW1 workload is still assuming
TT for the less dynamic pages in the website (e.g. the Home page or the Product
Detail page), but it uses TTdynamic in the Search Results page.

TTdynamic = −ln(r) ∗ p , where (0 < r < 1) ∧

(p = 7 +
Number of Search Results

Max. Search Results
)

(6.2)

The remaining cases of dynamism have been characterized using conditional tran-
sitions with DWEB. The transition from the Buy Request to the Buy Confirm pages
depends on the last customer’s purchase. If the customer did not buy any book during
a given month, he has to commit the buying process, otherwise, he may finish the
purchase or navigate to the Home page according to estimated probabilities of arcs
as defined in case 2. Notice that, when a customer does not remember the date of
his last purchase, he must visit the ordering group in order to find out it, as defined
in case 1. Finally, case 3 has been implemented in DW1 workload with a conditional
transition between the Product Detail and the Shopping Cart pages. This transition
only allows users to add a book to the shopping cart in case that its cost is 25%
cheaper than in other markets.

6.1.2 One step ahead: evolving user’s profile using dynamic
roles

A common behavior characteristic of the web users community is the dynamism in
the user’s roles. In other words, the different roles that users adopt and the changes
among them. Chang et al. [CACB97] reported three phases of marketing in an e-
commerce website that can induce the mentioned dynamic evolution of web users.
These phases are: pre-sales, on-line, and after sales. The pre-sales phase includes
company efforts to attract customers by advertising, public relations, new products
or service announcements, and other related activities such as discounts in some prod-
ucts or freebies (e.g. Apple promotions: Back to school and 12 Days of Christmas).
Customers’ electronic purchasing activities take place in the on-line sales where orders

66

6.1. WORKLOAD DESIGN

and charges are done through web facilities. The after-sales phase includes customer
service, problem resolution, etc.

In the second scenario, we define a new DWEB workload (DWEB workload II
- DW2) that reproduces how user’s behavior evolves from pre-sales to on-line user
profiles. We adopt the loyalty promotion behavior presented above as an example of
on-line user profile, and define a new behavior based on a pre-sales promotion on the
studied on-line bookstore. The pre-sales promotion consists of 1000 bonus to acquire
common books in a buying session. This promotion should present a different user
behavior with five cases of dynamism as summarized in Table 6.2.

Case Description

1 Books that are best-sellers or new products cannot be added to the shopping
cart because the bonus is only valid for common books.

2 The customer can buy a book only if the cost of the resulting shopping cart is
lower than the bonus value.

3 A buying session (navigation session) finishes with a payment when the shopping
cart cost is at least 75% of the bonus value.

4 A customer leaves the website when the buying session finishes.

5 The higher the number of provided search results, the longer the time that a user
takes to read and think about them.

Table 6.2: Cases of dynamism in the new pre-sales promotion behavior

Figure 6.2 depicts the DW2 workload. This characterization defines the pre-sales
promotion behavior using the DWEB navigation concept (Figure 6.2a). Case 1 and
case 2 have been implemented with a conditional transition between the Product
Detail and the Shopping Cart pages. This transition depends on the user’s state (the
available user’s bonus) and the user’s navigation path. That is, it only allows users to
add a book to the shopping cart in case that they arrive at the Product Detail page
from other pages than the Best-sellers or New Products ones. The transition from
the Shopping Cart to the Customer Register page depends on the content of the first
page (case 3), and it implies the end of the user navigation when the buying process
is committed (case 4). We also use the dynamic think time based on the number of
items returned by the search (case 5).

Finally, we combine both promotion behaviors (behaviors for loyalty and pre-sales
promotions) as dynamic roles by using the user’s roles concept of DWEB (Figure
6.2b). The user’s roles automaton considers that the average response of the pre-sales
promotion is 25% of users, based on the suggestions made in [SAP02]. The transition
between the pre-sales promotion and the loyalty promotion behaviors models the
evolution from a new user to a loyal customer, according to the average percentage of

67

CHAPTER 6. THE IMPACT OF DYNAMIC USER WORKLOADS ON WEB
PERFORMANCE

Choice
Page GROUP OF

PAGES
Dynamic behavior

Is there more money ?

TTdynamic

Do offer condit ions cover the book buying ?

ORDERING

BROWSING

ADMIN

BuyConfirm Page

BuyRequest PageCustomerRegister Page

ShoppingCart Page

Search Results PageSearch Page

SHOPPING

Product Detail Page

SEARCH

Home
Page

1 0 0

1 0 0

100[No]

13.96[No]

0.07

85.00

99.57

99.33

62.50

49.42

1.63

0.10

1.43

0.43

4.69

29.73

4.56

66.37

98.65
26.58

34.53

8.64 6.95

0.59

7.74

13.96[Yes]

6.36

1.35

3.08

47.52

73.15

1 0 0

(a) Navigation for pre-sales promotion behavior

25%

��
75%

��
Pre-sales promotion

behavior

60%

��

40% // Loyalty promotion
behavior

60%

��
• •

(b) User’s roles: promotion behaviors

Figure 6.2: DWEB workload II - DW2: characterization based on user’s dynamic
roles

68

6.2. IMPACT OF THE DYNAMIC WORKLOADS ON WEB SYSTEM
PERFORMANCE

customer retention (40%) reported in [RS00], while the arcs arriving to a final state
represent the users’ defection (60%).

6.2 Impact of the dynamic workloads on web sys-
tem performance

Experimental tests have been devised to compare performance metrics obtained with
CBMG workload versus those obtained with the studied DWEB workloads (DW1
and DW2). With the aim of finding out the stress borderline of the server for each
workload, we varied the number of EBs ranging from 30 to 75 in 5-user steps. All
the experiments were done repeating 50 runs to obtain a margin of error with 99%
confidence level.

Although experiments measured all the performance metrics listed in Table 5.1,
only those present significant differences between traditional and dynamic workloads
(e.g. number of requests, response time, CPU utilization and MySQL throughput)
are shown in Figure 6.3 and Figure 6.4. Note that, in general, considering user’s
dynamism degrades the service conditions more than using traditional workloads,
even though dynamic workloads generate a lower number of requests.

The object requests per second generated by CBMG workload is 45% to 60% higher
than the generated by dynamic workloads (see Figure 6.3a). However, the response
time for DWEB workloads presents exponential curves with more pronounced slopes
than CBMG curve (see Figure 6.3b), for instance, DW2 workload increases the differ-
ence with respect to CBMG workload by 10%. On the other hand, the total number
of page requests shows different values depending on the stressing server conditions
(see Figure 6.3a). When the server is characterized by a poor stress level (e.g. less
than 40 browsers), the number of page requests generated by the dynamic workloads
is by 3% higher than the generated by CBMG, because TTdynamic reduces idle times
when there are simultaneous requests on a search process. However, CBMG workload
requests a higher number of pages than DWEB workloads for a significative level of
stress (e.g. more than 40 browsers), because the dynamism produces, in general, more
complex requests that require extra service time and consequently, reducing service
rate.

Regarding the utilization of the main hardware resources (CPU, memory, network
and disk), only the processor presents significant differences. As expected, the CPU
utilization increases with the number of emulated browsers as shown in Figure 6.4a.
However, although the workloads present similar CPU utilization for a low number
of browsers, differences between dynamic and traditional workloads can be as large
as 30% when considering dynamism. Notice that a high CPU utilization means that
the processor acts as the main performance bottleneck.

To better understand why the CPU utilization is so high, we studied how the main
software components use the processor (Apache, Tomcat and MySQL). As observed in
Table 6.3, MySQL almost monopolizes the processor since its execution time is more

69

CHAPTER 6. THE IMPACT OF DYNAMIC USER WORKLOADS ON WEB
PERFORMANCE

7k

8k

9k

10k

11k

12k

13k

14k

15k

16k

17k

 30 35 40 45 50 55 60 65 70 75
 20

 40

 60

 80

 100

 120

 140

 160
To

ta
l N

um
be

r o
f P

ag
e

Re
qu

es
ts

 (T
NP

R)

O
bj

ec
t R

eq
ue

st
s

pe
r S

ec
on

d
(O

RS
)

Emulated browsers

TNPR. CBMG
ORS. CBMG

TNPR. DW1
ORS. DW1

TNPR. DW2
ORS. DW2

(a) Requests

 0

 1

 2

 3

 4

 5

 6

 30 35 40 45 50 55 60 65 70 75

Av
er

ag
e

Pa
ge

 R
es

po
ns

e
Ti

m
e

(s
)

Emulated Browsers

DW1
DW2

CBMG

(b) Page Response Time

Figure 6.3: Main performance client metrics values

70

6.2. IMPACT OF THE DYNAMIC WORKLOADS ON WEB SYSTEM
PERFORMANCE

0 %

20 %

40 %

60 %

80 %

100 %

 30 35 40 45 50 55 60 65 70 75

C
PU

 U
til

iz
at

io
n

Emulated Browsers

DW1
DW2

CBMG

(a) CPU utilization

 6

 7

 8

 9

 10

 11

 12

 13

 14

 30 35 40 45 50 55 60 65 70 75

Ex
ec

ut
ed

 q
ue

rie
s/

s

Emulated Browsers

DW1
DW2

CBMG

(b) MySQL throughput

Figure 6.4: Main performance server metrics values

71

CHAPTER 6. THE IMPACT OF DYNAMIC USER WORKLOADS ON WEB
PERFORMANCE

EBs Workload Apache Tomcat MySQL

30
CBMG 7.71 4.55 886.48
DW1 2.64 4.65 972.87
DW2 2.61 4.93 1044.66

35
CBMG 9.36 5.41 1103.24
DW1 3.44 6.47 1390.73
DW2 3.25 6.34 1462.59

40
CBMG 11.01 6.45 1301.23
DW1 3.87 7.51 1612.87
DW2 3.86 7.92 1693.67

45
CBMG 13.16 8.03 1573.35
DW1 4.52 9.05 1862.63
DW2 4.67 9.59 2003.51

50
CBMG 14.95 9.64 1760.76
DW1 5.45 11.52 2486.49
DW2 5.32 11.45 2398.61

55
CBMG 17.13 11.59 1979.87
DW1 6.00 12.95 2703.26
DW2 6.04 13.03 2732.06

60
CBMG 19.04 12.98 2171.47
DW1 6.45 13.82 2868.51
DW2 6.55 14.11 2948.50

65
CBMG 21.97 15.42 2489.40
DW1 6.81 14.97 3043.73
DW2 7.00 15.19 3152.04

70
CBMG 23.51 16.81 2575.40
DW1 6.97 14.99 3190.34
DW2 7.28 15.72 3222.43

75
CBMG 25.68 18.08 2748.36
DW1 7.23 15.33 3246.03
DW2 7.32 15.80 3264.57

Table 6.3: CPU consumption (in jiffies) foreach application

than two orders of magnitude higher than the time devoted to Tomcat, specially with
dynamic workloads. Figure 6.4b shows the executed queries rate by MySQL for each
workload. As observed, for a relatively low number of emulated browsers (e.g. 45),
this rate is by 15% higher when considering dynamism. But, more than 60 browsers
cause that the number of executed queries becomes almost constant with dynamic
workloads. That is due to a higher CPU utilization (greater than 80%) as depicted in
Figure 6.4a. Consequently, MySQL database is the major candidate to be a software
bottleneck.

With the aim of evaluating the impact of dynamism on server stress peaks, we
analyze the database usage done by dynamic workloads. Before this study, we need to
understand how MySQL database works. This database includes qcache as a cache of

72

6.2. IMPACT OF THE DYNAMIC WORKLOADS ON WEB SYSTEM
PERFORMANCE

executed queries, where queries result in hit or miss. We also distinguish not cached
queries as a part of misses that cannot be cached for their dynamic nature or their
complexity [Ora12]. Listing 6.1 shows a not cached query example at TPC-W website.�
SELECT o l i i d FROM orders , o r d e r l i n e
WHERE

orde r s . o i d = o r d e r l i n e . o l o i d
ANDNOT (o r d e r l i n e . o l i i d = 93234)
AND orde r s . o c i d IN (

SELECT o c i d FROM orders , o r d e r l i n e
WHERE orde r s . o i d = o r d e r l i n e . o l o i d AND

orde r s . o i d > (SELECTMAX(o i d) . . .)
) . . .
� �

Listing 6.1: Not cached queries example at TPC-W website

For a deeper study, we compared the cache status of the executed queries versus
CPU utilization for several stress levels. Figure 6.5 shows the values for 35, 55 and
75 emulated browsers as examples of poor stress, significative stress, and overloaded
situation at the server side, respectively. DW2 workload (the right column) presents
a higher number of misses than DW1 and CBMG workloads (center and left columns,
respectively). CPU overload peaks become larger and larger with the increase of not
cached queries, which is caused by the dynamic query nature, specially for the DW2
workload that presents higher increase than the DW1 workload. Note that hits are
not represented because their execution time is around one millisecond while the time
taken by misses might be more than eight seconds.

Finally, we present an example illustrating how the system level of stressing caused
by user’s dynamism might induce higher probability of user abandonment. According
to a Jupiter Research report [Jup06] commissioned by Akamai, web page rendering
should be not longer than four seconds to avoid user abandonment. Figure 6.6 de-
picts how dynamic workloads increase the probability that a response takes over four
seconds, specially when considering changes of user’s behaviors in a overloaded sys-
tem. Consequently, if the server is not properly tuned, the extra workload induced
by the user’s dynamic behavior can increase the probability of user abandonment (up
to 40%).

In summary, results show that considering user’s dynamism when characterizing
web workload affects system performance. Dynamism on workloads characterization
introduces new patterns of HTTP requests. These patterns, in general, reduce the
number of requests to objects but increases the number of requests to dynamic web
content so incurring differences in the system performance metrics, specially on the
processor usage and the database throughput. As a result, the server performance
degradation affects service conditions, increasing the average response time that in-
duces a higher number of user abandonments. Results have also proved that consid-
ering user’s dynamic navigations on workload characterization has a higher impact

73

CHAPTER 6. THE IMPACT OF DYNAMIC USER WORKLOADS ON WEB
PERFORMANCE

 0 2 4 6 8

 10

 0
 100

 200
 300

 400
 500

 600
 700

 800 10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Average execution time (s)

CPU Utilization

Tim
eline (s)

C
BM

G
. EBs = 35

M
isses

N
ot cached

C
PU

 0 2 4 6 8

 10

 0
 100

 200
 300

 400
 500

 600
 700

 800 10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Average execution time (s)

CPU Utilization

Tim
eline (s)

D
W

1. EBs = 35

M
isses

N
ot cached

C
PU

 0 2 4 6 8

 10

 0
 100

 200
 300

 400
 500

 600
 700

 800 10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Average execution time (s)

CPU Utilization

Tim
eline (s)

D
W

2. EBs = 35

M
isses

N
ot cached

C
PU

 0 2 4 6 8

 10

 0
 100

 200
 300

 400
 500

 600
 700

 800 10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Average execution time (s)

CPU Utilization

Tim
eline (s)

C
BM

G
. EBs = 55

M
isses

N
ot cached

C
PU

 0 2 4 6 8

 10

 0
 100

 200
 300

 400
 500

 600
 700

 800 10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Average execution time (s)

CPU Utilization

Tim
eline (s)

D
W

1. EBs = 55

M
isses

N
ot cached

C
PU

 0 2 4 6 8

 10

 0
 100

 200
 300

 400
 500

 600
 700

 800 10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Average execution time (s)

CPU Utilization

Tim
eline (s)

D
W

2. EBs = 55

M
isses

N
ot cached

C
PU

 0 2 4 6 8

 10

 0
 100

 200
 300

 400
 500

 600
 700

 800 10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Average execution time (s)

CPU Utilization

Tim
eline (s)

C
BM

G
. EBs = 75

M
isses

N
ot cached

C
PU

 0 2 4 6 8

 10

 0
 100

 200
 300

 400
 500

 600
 700

 800 10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Average execution time (s)

CPU Utilization

Tim
eline (s)

D
W

1. EBs = 75

M
isses

N
ot cached

C
PU

 0 2 4 6 8

 10

 0
 100

 200
 300

 400
 500

 600
 700

 800 10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Average execution time (s)

CPU Utilization

Tim
eline (s)

D
W

2. EBs = 75

M
isses

N
ot cached

C
PU

 0 2 4 6 8

 10

 0
 100

 200
 300

 400
 500

 600
 700

 800
 900

 1000 1100 10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Average execution time (s)

CPU Utilization

Tim
eline (s)

D
W

EB. EBs = 75

M
isses

N
ot cached

C
PU

 0 2 4 6 8

 10

 0
 100

 200
 300

 400
 500

 600
 700

 800
 900

 1000 1100 10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Average execution time (s)

CPU Utilization

Tim
eline (s)

D
W

EB. EBs = 75

M
isses

N
ot cached

C
PU

F
igu

re
6.5:

C
P

U
u

tilizatio
n

b
y

q
u

ery
ca

ch
e

sta
tu

s

74

6.2. IMPACT OF THE DYNAMIC WORKLOADS ON WEB SYSTEM
PERFORMANCE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28

 4

P(
t)

 T
)

t = Average Page Response Time (seconds)

EBs=55

CBMG
DW1
DW2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28

 4

P(
t)

 T
)

t = Average Page Response Time (seconds)

EBs=65

CBMG
DW1
DW2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28

 4

P(
t)

 T
)

t = Average Page Response Time (seconds)

EBs=75

CBMG
DW1
DW2

Figure 6.6: Cummulative distribution for page response time

75

CHAPTER 6. THE IMPACT OF DYNAMIC USER WORKLOADS ON WEB
PERFORMANCE

on the system performance metrics than modeling changes in user’s roles because the
dynamism is more present in navigations than in user’s role changes.

6.3 Summary

This chapter has explored the effects of using dynamic user workload on web perfor-
mance evaluation studies. The obtained results have been compared against those
generated with traditional workloads. To this end, a scenario based on a typical
e-commerce website has been recreated and different user’s dynamic behaviors have
been reproduced. We have used DWEB model to define the dynamic workloads be-
cause it permits easily to model these behaviors, which cannot be represented with
this level of accuracy with traditional approaches, such as the CBMG model. Further-
more, DWEB allowed us to define the workloads considering not only the dynamism
in user’s interaction but also the dynamic changes in the role when navigating the
website. With the aim of evaluating the effect of these levels of dynamism on the
system performance, a large and representative set of the most commonly used per-
formance metrics has been measured for each experiment, such as client metrics (total
number of page requests or response time), server hardware metrics (CPU utilization),
or metrics for the main software components at the server (executed queries rate).

Experimental results have shown that dynamic workloads affect the stress border-
line on the server, which is more degraded than when using traditional workloads in
the studied cases. The object requests rate has decreased between 45% and 60%, but
dynamic workloads have also changed the request nature, which has become more
dynamic. This change has implied an important growth by 15% in the number of
executed queries by the database with a significant increase in their dynamic nature
that led the database to be an overloaded application. Consequently, the CPU uti-
lization increased by 30% and consolidates the processor as the main performance
bottleneck. The server performance degradation affects the service conditions in-
creasing the average response time exponentially, which yield to higher probability of
user abandonment (up to 40%). Furthermore, we observed that considering user’s dy-
namic navigations on workload characterization has a stronger impact on the system
performance metrics than modeling changes in the role, because dynamism is more
present in navigations than in user’s roles.

In [IEEE-NCA’12, COMCOMJ’13], a summary of the study introduced in this
chapter was presented.

76

CHAPTER 7

The impact of User-Browser Interaction on
web performance

This chapter analyzes and measures the effect of considering the User-Browser Inter-
action (UBI) as a part of user’s dynamic behavior on web workload characterization in
performance studies. To this end, we evaluate a typical e-commerce scenario by using
the testbed presented in Chapter 5, and compare the obtained results for different
behaviors that take user’s interaction with browser interface facilities into account,
such as the use of the back button and parallel browsing originated by browser tabs
or opening new windows when surfing a website.

Experimental results show that these interaction patterns allow users to achieve
their navigation objectives sooner than when browsing in a sequential way, so in-
creasing their productivity up to 200% when surfing the website. In addition, results
prove that when this type of behaviors is taken into account, performance indexes
can widely differ and relax the stress borderline of the server. For instance, the server
utilization drops as much as 45% due to parallel browsing behavior permitting the
system either to devote more resources to other applications or to serve more users.

The remainder of this chapter is organized as follows. Section 7.1 presents the
workloads considering UBI when modeling user’s behavior. Section 7.2 shows the
effect of the proposed workloads on the web system performance. Finally, we draw
some concluding remarks in Section 7.3.

7.1 Workload design

This work uses DWEB to introduce different levels of user’s dynamism on work-
load characterization, especifically dynamism related to the interaction with the web
browser. Section 7.1.1 focuses on user’s goals when surfing a website and defines user’s
navigations according to this end. After that, a more realistic dynamic workload is
defined considering rapid return to recently visited pages by using the history-back

77

CHAPTER 7. THE IMPACT OF USER-BROWSER INTERACTION ON WEB
PERFORMANCE

button on web browsers. Section 7.1.2 introduces parallel tab browsing behavior on
workload characterization.

7.1.1 The back button: rapid return to recently visited pages

Web browsers includes a stack-based model for web page navigation [CMJ02]. In this
model, there are two traditional ways of displaying pages in the browser: load and
reload. Pages are loaded when the user clicks on a link, types a URL or selects a
favorite page. The effect of load is to add the page to the top of the visited pages
stack. Pages are reloaded with the back and forward buttons, and the effect is to alter
the position within the stack. Each back click shows the next page down the stack
until the stack bottom is reached. Forward clicks shows pages up the stack until the
stack top is reached.

An important factor of the back button success is the chance of rapid return to
recently visited pages [CG00], which can avoid new HTTP requests and consequently
changes the causes of the stressing conditions of a given website. However, only
certain visited pages can be cached by a web browser with the aim of going back
using the back button. That is, some web contents such as audio or video streaming,
dynamic contents or web forms are not cached according to their HTTP headers. For
these types of contents the back button does not have any effect because pages are
completely reloaded.

With the purpose of measuring the effect of UBI in web performance evaluation we
compare different dynamic workloads. In a first step, a workload (LOY) conducted
by user’s goals is defined. To this end, we extend the loyalty promotion behavior
presented in Section 6.1.1 by adding a new case of dynamism to establish that a user
leaves the website when his goals are satisfied. The new behavior is characterized by
five cases of dynamism as summarized in Table 7.1.

Secondly, a new DWEB workload (LOYB) is defined by extending the LOY work-
load with an extra case of dynamism that characterizes the use of the back button on
web browser (see Table 7.1).

Figure 7.1 and Figure 7.2 show the workloads generated using DWEB for the loy-
alty promotion behavior conducted by goals (LOY) and its extended version (LOYB)
considering the back button, respectively. Both workloads assume TT (see equation
6.1) as think time for the less dynamic pages in the website (e.g. the Home page
or the Product Detail page), and TTdynamic (see equation 6.2) in the Search Result
page, that is closer to real web activities like that defined in case 4 listed in Table
7.1.

The remaining cases of dynamism have been characterized using conditional tran-
sitions with DWEB. The transition from the Buy Request page to the Buy Confirm
page depends on the last customer’s purchase. If the customer does not buy any book
during a given month, he has to commit the buying process, which means the end of
the navigation session (case 5). Otherwise, he may finish the purchase or navigate to
the Home page according to estimated probabilities of arcs as defined in case 2 and

78

7.1. WORKLOAD DESIGN

Case Description

1 If customers do not remember their last order status, they will check them by
navigating into the ordering group of pages.

2
Because the customer has to buy at least once a month to keep the discount,
a buying session must finish with a payment when he has not bought anything
during that month.

3 A experienced customer only buys a book when its cost is 25% cheaper than in
other markets.

4 The higher the number of provided search results, the longer the time that a user
takes to read and think about them.

5 A customer leaves the website when the buying session finishes because his goals
have been satisfied.

Extra case in the extended behavior

6
A customer can return to recently visited listings of books (browsing listings or
search results) without repeating a request to the web server through the back
button.

Table 7.1: Cases of dynamism in the loyalty promotion behaviors conducted by goals

shown in both figures. Notice that when a customer does not remember the date of
his last purchase, he must visit the ordering group in order to find out it, as defined
in case 1. Case 3 has been implemented with a conditional transition between the
Product Detail and the Shopping Cart pages. This transition represents users adding
a book to the shopping cart because its cost is 25% cheaper than in other markets.
Finally, the back button has been characterized in LOYB workload as a cache that
only stores the immediately previous listing page (case 6).

7.1.2 Optimizing user productivity: the parallel tab browsing
behavior

Parallel browsing describes a behavior where users visit web pages in multiple con-
current threads by using web browsers tabs or windows. To help the understanding
of how parallel browsing works, Figure 7.3 illustrates a parallel tab browsing session
applied to the on-line bookstore. It shows how a web user uses parallel browsing
based on three web browser tabs to improve his navigation time avoiding searches of
books. The user begins a navigation session in a window with the aim of buying a
book that fulfills several requirements as soon as possible. After he visits some pages,
a search result is provided. At this point of time, he starts a parallel tab browsing

79

CHAPTER 7. THE IMPACT OF USER-BROWSER INTERACTION ON WEB
PERFORMANCE

H*

H*

H*

Have I

book cost

Do I know which

Order Display PageOrder Inquiry
Page

C1C2

TTdynamic

BuyConfirm Page

BuyRequest PageCustomerRegister Page

ShoppingCart Page

C3

Search Results PageSearch Page

Home Page

ORDERING

Choice
Page GROUP OF... Cx referes to Case X of dynamic behavior

ORDERING

BROWSING

ADMIN

SHOPPING

Product Detail Page

SEARCH

Home
Page

100

1 0 01 0 0 1 0 0

1 0 0

100[No]

[No]

[Yes]

13.96

98.65

1.35

4.69

1.43

47.52

1.63

49.42

62.5

0.43

99.57

0.59

34.53

86.67

100[Yes]

12.39

0.94

25.86

[Yes]

100[No]

74.07

0.07

6.958.64

29.73

46.15

19.32

73.15

7.74
4.56

66.37

26.58

0.10

85.00

6.36

3.08

Figure 7.1: LOY workload: loyalty promotion behaviors conducted by goals

80

7.1. WORKLOAD DESIGN

H*

H*

Have I

book cost

Do I know which

H*
Choice

Page GROUP OF
PAGES

Cx referes to Case X of dynamic behavior

Get previous page

Cache previous page

Order Display Page

C1C2

TTdynamic

Order Inquiry
Page

BuyConfirm Page

BuyRequest PageCustomerRegister Page

ShoppingCart Page

C3

Search Results PageSearch Page

Home Page

ORDERING

ORDERING

BROWSING

ADMIN

SHOPPING

Product Detail Page

SEARCH

Home
Page

[Yes]

[No]

100

1 0 01 0 01 0 0

1 0 0

100[No]

13.96

98.65

1.35

4.69

49.42

47.52

1.43

1.63

62.5

0.43

99.57 0.59[No browser tab]

100[Yes]

[Yes]

100[No]

0.94
86.67

12.39

25.86

46.15

19.32

74.07
34.53

0.07

8.64

29.73

6.95

73.15[No browser tab]

7.74[No browser tab]

66.37

4.56[No browser tab]

26.58

0.10

85.00

6.36

3.08

Figure 7.2: LOYB workload: LOY workload considering the back button

81

CHAPTER 7. THE IMPACT OF USER-BROWSER INTERACTION ON WEB
PERFORMANCE

Browser Tab 4

Browser Tab 3

Browser Tab 2

WebsiteBrowser Tab 1User

Think Time-6

http://server/ADD_TO_BASKET/2 GET Shopping Cart Page?ID=2

close

Think Time-5

closeThink Time-4

GET Product Detail Page?ID=3

open

GET Product Detail Page?ID=2

open

http://server/PRODUCT_DETAIL/3

http://server/PRODUCT_DETAIL/2

GET Product Detail Page?ID=1

http://server/PRODUCT_DETAIL/1

[PARALLEL NAVIGATION]

open

Think Time-3

GET Search Results Page?query=----http://server/SEARCH/submit

Think Time-2

GET Search Request Pagehttp://server/SEARCH
Think Time-1

GET Home Pagehttp://server/HOME

Figure 7.3: Example of parallel tab browsing session

behavior by opening three new tabs with the detail of three different books selected
from the results. Then, he takes some time calculated according to equation 6.1,
such as Think Time 4 or Think Time 5 (see Figure 7.3), to evaluate the content of
each tab until he finds a book satisfying his requirements. When a book does not
fulfill the requirements, the user closes its associated tab and switches to the next
one. Otherwise he discards the rest of tabs and adds the book to the shopping cart,

82

7.2. IMPACT OF UBI ON WEB PERFORMANCE

finishing the parallel browsing session. Notice that the user does not take any think
time on a book detail page when he discards its tab.

In the third scenario, we define a new DWEB workload (LOYT) that reproduces
parallel tab browsing behavior in the loyalty promotion. With this aim, we extended
the loyalty promotion behavior presented above by characterizing the navigation on
web browser tabs as summarized in Table 7.2.

Case Description

6 When a user has to review a listing of books, such as the result of a search or a
browsing request, he begins a parallel tab browsing session with three tabs.

7 A user closes a tab when its book does not fulfill his buying requirements or
when he has found the the wished book in other tab.

Table 7.2: Extra cases of dynamism in the loyalty promotion behavior conducted by
goals to represent parallel tab browsing

Figure 7.4 depicts the LOYT workload. This characterization defines the same
behavior as LOY workload (Figure 7.1) except the navigations related to parallel tab
browsing (cases 6 and 7). Case 6 has been implemented with a pool of three parallel
navigation threads, one for each tab. A navigation thread is killed when its book does
not fulfill the user’s requirements, or when the user finds the required book in other
thread, as defined in case 7. The navigation becomes sequential again when only a
thread is kept alive. Notice that even though LOYT workload does not consider the
possibility of opening new tabs from another existing tab in this study, DWEB and
GUERNICA provide mechanisms to model and execute multi-level in tab branching,
respectively, if required.

7.2 Impact of UBI on web performance

Experimental tests have been carried out to compare the performance achieved with
the loyalty promotion workload (LOY) against those of the extended versions (LOYB
and LOYT) which consider UBI when modeling the user’s behavior. With the aim of
finding out the stress borderline of the server for each workload, we varied the number
of users ranging from 50 to 250 in 50-user steps.

Additional metrics measured at the client side have been defined in order to quan-
tify the user’s productivity, such as number of finished sessions, session length and
number of visited pages per session. Notice that a navigation session finishes when a
user leaves the website after his goals are achieved; that is, after he buys some books
in the case study. Thus, the higher the number of finished sessions, the higher the
user’s productivity.

83

CHAPTER 7. THE IMPACT OF USER-BROWSER INTERACTION ON WEB
PERFORMANCE

H*

H*

H*

Have I

book cost

Do I know which

Order Display Page

C1C2

TTdynamic

Order Inquiry
Page

BuyConfirm Page

BuyRequest PageCustomerRegister Page

ShoppingCart Page

C3

Search Results PageSearch Page

Select the book
and close tabs

Home Page

ORDERING

ChoicePage GROUP OF
PAGES

Cx referes to Case X of dynamic behavior

ORDERING

BROWSING

ADMIN

SHOPPING

Product Detail Page

SEARCH

Home
Page

Browser
Tabs

Navigation

66.37{1..3} {1..3}

49.42

4.56[No browser tab]

46.15

12.39
[Yes]

100[No]

1.43

29.73

6.95

19.32

1 0 0

62.5

3.08

1.63

26.58

6.36

100[No]

34.53

8.64

4.69

100

99.57

25.86

[Yes]

[No]

[No]

73.15[No browser tab]

[No]

47.52

[Yes]

[Yes]

100[Yes]

0.94
86.67

0.59[No browser tab]

1 0 0 1 0 01 0 0

0.43

74.07

7.74[No browser tab]

1.35

98.65 0.10

85.00

13.96

0.07

Figure 7.4: LOYT workload: parallel tab browsing behavior in LOY workload

84

7.2. IMPACT OF UBI ON WEB PERFORMANCE

Although we measured all the performance metrics listed in Table 5.1, only those
showing significant differences in the studied workloads are discussed below.

Figure 7.5 shows how the user’s productivity (measured in number of finished ses-
sions) increases when considering UBI on workload characterization, specially when a
parallel browsing behavior is introduced, because both the session length (in seconds)
and the number of visited pages per session are lower in these workloads (see Table 7.3
considering 100 simultaneous users as example). Therefore, user’s productivity is im-
proved when the user changes his navigation patterns as a result of parallel browsing
behavior (up to 200%) or using the back button (up to 100%).

 0

 100

 200

 300

 400

 500

 600

 50 100 150 200 250

Nu
m

be
r o

f F
in

ish
ed

 S
es

sio
ns

Users

LOY
LOYB
LOYT

Figure 7.5: User’s productivity evolution

Metric LOY LOYB LOYT

Number of finished sessions 177.530 348.180 526.380

Session length (sec) 598.024 230.032 132.839

Number of visited pages per session 78.909 26.146 18.814

Table 7.3: Mean user productivity considering 100 simultaneous users in the system

In general, the extended workloads also increase the server throughput, despite
of the LOY workload degrades the service conditions more than considering the in-
teractive behaviors as depicted in Figure 7.6. Considering a significative number of
simultaneous users (e.g. from 100 users on), the total served pages is on average by
25% and 90% higher for the extended workloads (Figure 7.6). To identify the causes

85

CHAPTER 7. THE IMPACT OF USER-BROWSER INTERACTION ON WEB
PERFORMANCE

12k

14k

16k

18k

20k

22k

24k

26k

28k

30k

 50 100 150 200 250

M
ea

n
Se

rv
ed

 P
ag

es

Users

LOYB
LOYT

LOY

Figure 7.6: Total served pages

of this high increase, served pages are classified in three main types: search results
page, product detail page and others. As observed in Figure 7.7, the interactive behav-
iors generate less requests to the search engine (Figure 7.7a) and increase the number
of requests to the product detail page (Figure 7.7b) and to the others (Figure 7.7c),
especially for the LOYT workload. This new pattern of HTTP requests reduces the
complexity of database queries when decreasing searches, so the throughput of the
web server increases as shown in Figure 7.8. Specifically, the Apache HTTP requests
per second generated by LOY workload is by 25% and 75% lower than those generated
by the LOYB and the LOYT workloads, respectively.

Figure 7.9 shows the CPU utilization, which is the only element that presents
significant differences among the main hardware resources. Stress conditions have
been classified in three levels according to the CPU utilization values: low stress
(UCPU < 50%), significant stress (50% ≤ UCPU ≤ 80%), and high stress - here by
overload at server - (UCPU > 80%). As can be seen, the processor utilization for
the extended workloads is always lower than for the LOY workload. For instance,
considering 100 users, the utilization decreases by 15% and 45% for the LOYB and
the LOYT workloads, respectively. Notice that the high CPU utilization value denotes
that the processor acts as the main performance bottleneck but the stress borderline
moves from 100 users for the LOY workload to 150 and 200 users for the LOYB and
the LOYT workloads, respectively. This means that the web server allows the system
to serve about 50% and 100% more users for the LOYB and the LOYT workloads.

86

7.2. IMPACT OF UBI ON WEB PERFORMANCE

1k

1.2k

1.4k

1.6k

1.8k

2k

2.2k

2.4k

2.6k

 50 100 150 200 250

M
ea

n
Se

rv
ed

 P
ag

es

Users

LOYB
LOYT

LOY

(a) Search results page

1k

2k

3k

4k

5k

6k

7k

8k

9k

 50 100 150 200 250

M
ea

n
Se

rv
ed

 P
ag

es

Users

LOYB
LOYT

LOY

(b) Product detail page

8k

9k

10k

11k

12k

13k

14k

15k

16k

17k

18k

19k

 50 100 150 200 250

M
ea

n
Se

rv
ed

 P
ag

es

Users

LOYB
LOYT

LOY

(c) Others

Figure 7.7: Mean served pages by type

87

CHAPTER 7. THE IMPACT OF USER-BROWSER INTERACTION ON WEB
PERFORMANCE

 60

 70

 80

 90

 100

 110

 120

 130

 50 100 150 200 250

Ap
ac

he
 H

TT
P

Re
qu

es
ts

/s

Users

LOYB
LOYT

LOY

Figure 7.8: Apache throughput

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 50 100 150 200 250

CP
U

Ut
iliz

at
io

n

Users

LOYB
LOYT

LOY

Figure 7.9: CPU utilization

88

7.2. IMPACT OF UBI ON WEB PERFORMANCE

To better understand why the CPU utilization decreases, we studied how the main
software components (Apache, Tomcat and MySQL) make use of the processor. As
observed in Table 7.4, MySQL almost monopolizes the processor for the different
workloads since its execution time is more than two orders of magnitude higher than
the time devoted to Tomcat and Apache. Consequently, MySQL database is the major
candidate to be a software bottleneck. However, despite of the executed queries rate
for the extended workloads can be as large as 30% and 93% higher than for the
LOY workload (Figure 7.10), the CPU time consumed by MySQL for the extended
workloads is by 30% and 55% lower than for the LOY workload. Moreover, the CPU
consumption of Tomcat and Apache increases for the extended workloads. That is,
there is a change in the patterns of HTTP requests and consequently in the type of
executed queries at MySQL.

(a) LOY
XXXXXXXXXSoft.

Users
50 100 150 200 250

MySQL 1315 2883 2807 2768 2897

Tomcat 10 22 22 23 23

Apache 4 9 10 10 10

(b) LOYB
XXXXXXXXXSoft.

Users
50 100 150 200 250

MySQL 931 2439 2606 2540 2624

Tomcat 9 24 26 27 28

Apache 3 9 11 12 13

(c) LOYT
XXXXXXXXXSoft.

Users
50 100 150 200 250

MySQL 567 1808 2381 2434 2424

Tomcat 8 27 33 34 34

Apache 3 10 15 17 18

Table 7.4: CPU consumption (in jiffies) for each application

We performed a deeper study to provide a sound understanding about how the
database is used by these workloads. As introduced in Chapter 6, MySQL database
includes qcache[Ora12] as a cache of executed queries, where a query results in a hit
or miss. Figure 7.11 shows the mean execution time for hits, misses and total queries
considering 50, 100 and 250 simultaneous users in the system as examples of the dif-
ferent stress conditions: low stress (Figure 7.11a), significant stress (Figure 7.11b)
and overload at server (Figure 7.11c). As observed, the mean execution time for a
query when considering the extended workloads is always lower than for LOY work-

89

CHAPTER 7. THE IMPACT OF USER-BROWSER INTERACTION ON WEB
PERFORMANCE

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 50 100 150 200 250

M
yS

Q
L

Q
ue

rie
s/

s

Users

LOYB
LOYT

LOY

Figure 7.10: MySQL Throughput

load because decreasing the number of searches reduces the complexity, on average,
of misses (the execution time decreases for the extended workloads) and increases the
number of hits.

In summary, results show that considering user interaction with web browser fa-
cilities positively affects the system performance. This is because of considering UBI
when modeling user’s behavior introduces new patterns of HTTP requests. These
patterns, in general, increase the number of requests to objects but reduce requests
to the search engine allowing users to achieve a higher productivity. This fact causes
noticeable differences in the performance metrics, specially in the processor utilization
and the server throughput. As a result, the stress borderline of the server is affected.

7.3 Summary

This chapter has explored the effects of considering User-Browser Interaction in web
performance evaluation studies. To this end, the previously presented scenario based
on a typical e-commerce website has been extended and a dynamic workload con-
ducted by user’s goals has been reproduced. Additionally, with the aim of improving
the user’s productivity, we included in the navigation patterns the use of the back but-
ton and the parallel tab browsing, as examples of user interactions with web browsers
facilities. DWEB model has been used to take these behaviors into account in an easy
and flexible way when modeling web browsing patterns.

90

7.3. SUMMARY

0k

2k

4k

6k

8k

10k

TOTAL HITS MISSES

M
ea

n
Ex

ec
ut

io
n

Q
ue

ry
 T

im
e

(m
s)

50 Users

190 136 66
0.55 0.49 0.49

283k
LOY

LOYB
LOYT

(a) Low stress conditions

0k

2k

4k

6k

8k

10k

TOTAL HITS MISSES

M
ea

n
Ex

ec
ut

io
n

Q
ue

ry
 T

im
e

(m
s)

100 Users

0.70 0.60 0.55

229k
LOY

LOYB
LOYT

(b) Significative stress conditions

0k

2k

4k

6k

8k

10k

TOTAL HITS MISSES

M
ea

n
Ex

ec
ut

io
n

Q
ue

ry
 T

im
e

(m
s)

250 Users

0.78 0.71 0.68

385k
LOY

LOYB
LOYT

(c) Overload at server

Figure 7.11: Execution time per query type

91

CHAPTER 7. THE IMPACT OF USER-BROWSER INTERACTION ON WEB
PERFORMANCE

The study has considered a wide set of traditional performance metrics measured
both at client side and server side. In addition, new metrics have been defined in order
to quantify the productivity in the web navigations from the user point of view, such
as number of finished session, number of visited pages per session or session length.

This study proved that navigations using the back button or opening new tabs,
which result from considering a user dynamic interaction with the provided contents,
clearly allow users to achieve their goals in less time, so increasing their navigation
productivity. These browsing patterns also affect the utilization and the throughput
of the main system resources, and consequently the stress borderline on the server.
Experimental results have shown that parallel tab browsing behavior noticeably in-
creases the user’s productivity (measured in number of finished sessions) up to 200%
with respect to browsing the website in a sequential way. The new navigation patterns
also increase the number of served pages (up to 90%). Nevertheless, they generate
less requests to the search engine so reducing the complexity of the executed database
queries and decreasing their execution time. This means an important drop in the
processor utilization (up to 45%) and a noticeable rise in the web server throughput
(up to 75%). As a consequence, the stress borderline is relaxed permitting the system
either to support more applications or serve more users.

In [SAC’13], a summary of the study introduced in this chapter will be presented.

92

CHAPTER 8

Conclusions and open research lines

This chapter presents the main conclusions of this dissertation, summarizes the con-
tributions and lists the publications in international and national journals and con-
ferences related to this work. Possible research lines that are opened by this study
are also drawn.

8.1 Conclusions

The current Web introduces a new paradigm where users become contributors to the
dynamic contents and services offered. As a result, the behavior of users and their
interaction patterns have evolved and are currently more active and dynamic. Con-
sequently, web performance studies should take this new user behavior into account
in the workload models to guarantee the validity of the results. According to the
open literature three different problems must be addressed when modeling the user’s
behavior on web workload characterization: i) the dynamic behaviors of users [BC98],
ii) the different roles that they can play when surfing the Web [WOHM06], and iii)
the continuous changes among these roles [GBGP10].

This thesis has analyzed the current state of the art in modeling and generating
workloads for web performance evaluation, focusing on the capability to fulfill the
three open problems before mentioned. The lack of appropriate models and software
applications motivated us to propose a more accurate workload model (first thesis
contribution) and to develop a new workload generator (second thesis contribution),
based on this model, with the aim of analyzing the effect of using dynamic work-
loads on web performance evaluation, instead of traditional workloads (third thesis
contribution).

The proposed model, named DWEB, characterizes web workload in a more accu-
rate and appropriate way by using a couple of concepts: user’s navigation and user’s
roles. Both concepts tackle in a progressive way the implicit dynamism in user’s
interaction and user’s roles, respectively, when navigating the Web.

93

CHAPTER 8. CONCLUSIONS AND OPEN RESEARCH LINES

Once this model was defined, the GUERNICA web workload generator was devel-
oped in order to reproduce more realistic workload mimicking the behavior of the real
web users community. GUERNICA implements the two concepts of DWEB with the
aim of adopting the model, and represents the physical distribution of users in the
Web, which improves the workload accuracy by providing a distributed architecture.

Finally, we analyzed and measured the effect of using representative dynamic
workloads on the web performance metrics. To this end, we previously validated
GUERNICA in a new testbed for web performance studies. This testbed integrates
our generator with the TPC-W benchmark in order to contrast performance metrics
for traditional and dynamic workloads.

As a first step, we evaluated the impact of representing different levels of user’s
dynamism in web workload characterization. The obtained results were compared
against those obtained with traditional workloads proving that dynamic workloads
negatively affect the stress borderline on the server in the studied cases. Furthermore,
we observed that considering user’s dynamic navigations on workload characterization
has a stronger impact on the system performance metrics than modeling changes in
the role, because dynamism is more present in the navigations than in modeling
changes.

In a second study, we explored the effects of considering User-Browser Interaction
in web performance evaluation. This study proved that navigations using the back
button or opening new tabs, which result from considering a user dynamic interaction
with the provided contents, clearly allow users to achieve their goals in less time, so
increasing productivity. These browsing patterns also affect the utilization and the
throughput of the main system resources, and consequently the stress borderline on
the server, which is relaxed permitting the system either to support more applications
or serve more users.

The work presented in this dissertation permits us to state that workload models
have to consider the different levels of user’s dynamism in order to precisely estimate
system performance for the dynamic Web.

8.2 Open research lines

The work done through this dissertation opens several research lines and new research
fields based on its contributions. Some of them are briefly described below:

• DWEB could be formalized with the aim of: i) developing a graphical designer
software, and ii) generating automatically web workloads from real traffic logs.
To this end, approaches as the model driven development or the semantic knowl-
edge would be considered.

• GUERNICA can be improved as a software product, or its generation process
can be integrated in one of the most important commercial or open source
community solutions with the aim of transferring the research knowledge into
the industry.

94

8.3. PUBLICATIONS RELATED TO THE THESIS

• Other contexts of the current Web could be modeled, analyzed and evaluated
using our approach, such as On-line Social Network or Mobile Apps.

• Traffic generation using DWEB and GUERNICA could be applied to other
research contexts. After a research stay at Coventry University, the possibility
of extending our approach to the web security context was suggested by Dr.
Siraj Ahmed Shaikh. To this end, we can study how to generate traffic for:

– Distributed Denial of Service (DDoS) attacks. These attacks are explicit
attempts to disrupt the services of a provider, which are intended for its
legitimate clients, by consuming computing and networking resources.

– Flash Events (FEs) scenarios, which represent a period of time when a
web-server experiences a dramatic increase in incoming traffic.

– Flash-Crowd attacks, that are a popular form of DDoS targeted at application-
level floods, where attackers mimic FEs by deploying a large, distributed
bot network and generating legitimate application requests that overwhelm
the victim.

8.3 Publications related to the thesis

Table 8.1 classifies the main publications related to this dissertation, which are de-
tailed below, according to the publication type and provides the next information:

• REFERENCE : The publication identifier.

• RANK : The publication class according to the next rankings:

– CORE: Conference class in the Computing Research Education (CORE)
classification [Aus06] of 2006.

– ERA: Conference class in the Excellence in Research for Australia (ERA)
classification [Aus10] of 2010.

– JCR: Journal class in the Journal Citation Reports (JCR) classification
[Tho11] of 2009 and 2011.

– SJR: Journal class in the SCImago Journal Rank (SJR) [SCI11] of 2009
and 2011.

• CITATIONS : Paper citations (source Google Scholar [Goo12]).

95

CHAPTER 8. CONCLUSIONS AND OPEN RESEARCH LINES

REFERENCE RANK CITATIONS TYPE
[IJEB’05] - 5

J
ou

rn
al

s

[COMCOMJ’09]
JCR-Q2

12
SJR-Q1

[CLEIej’12] - 1

[COMCOMJ’13]
JCR-Q2

-
SJR-Q1

[INFOSCI’13]a - -
[HET-NET’04] - 2

In
te
rn

a
ti
o
n
a
l

C
on

fe
re

n
ce

s

[WOSP’05] CORE-B 5
[CLEI’06] - -

[WEBIST’11] ERA-C -
[CLEI’11] - -

[IEEE-NCA’12] ERA-A -
[SAC’13] ERA-B -

[JSWEB’05] - -

N
a
ti
o
n
a
l

[JJPP’10] - -
[JJPP’11] - -

[GENERICA’04a] - -

R
ep

or
ts[GENERICA’04b] - -

[GENERICA’04c] - -
[GENERICA’04d] - -
[GENERICA’04e] - -

Table 8.1: List of main publications

aSubmitted

96

BIBLIOGRAPHY

[HET-NET’04] Raúl Peña-Ortiz, Julio Sahuquillo, Ana Pont, and José Antonio Gil.
Modeling users’ dynamic behavior in web aplication environments. In 2nd In-
ternational Working Conference on Performance Modelling and Evaluation of
Heterogeneous Networks (HET-NET’04), ISBN 0-99540151-6-9, pages P50/1–
P50/10. Ilkley, West Yorkshire, UK, July, 2004.

[GENERICA’04a] GENERICA. Estudio del estado actual de los generadores de
carga. Technical report. iSOCO S.L, December 2004.

[GENERICA’04b] GENERICA. Arquitectura. Technical report. iSOCO S.L, De-
cember 2004.

[GENERICA’04c] GENERICA. Arquitectura del Motor de navegaciones. Technical
report. iSOCO S.L, December 2004.

[GENERICA’04d] GENERICA. Arquitectura de CARENA. Technical report.
iSOCO S.L, December 2004.

[GENERICA’04e] GENERICA. Componente de visualización de navegaciones. Tech-
nical report. iSOCO S.L, December 2004.

[IJEB’05] Raúl Peña-Ortiz, Julio Sahuquillo, Ana Pont, and José Antonio Gil. Model-
ing users’ dynamic behavior in e-business environments using navigations. Inter-
national Journal of Electronic Business (IJEB), ISSN 1741-5063, 3(3):225–242,
May-June 2005. doi: 10.1504/IJEB.2005.007268.

[WOSP’05] Raúl Peña-Ortiz, Julio Sahuquillo, Ana Pont, and José Antonio Gil. Mod-
eling continuos changes of the user’s web dynamic behavior in the WWW. In
Fifth International Workshop on Software and Performance (WOSP’05), ISBN
1-59593-087-6, pages 175–180. Palma de Mallorca, Spain, July 2005.

[JSWEB’05] Raúl Peña-Ortiz, Julio Sahuquillo, Ana Pont, and José Antonio Gil.
Modelado de patrones de comportamiento de usuarios WWW de segunda gen-
eración. In I Jornadas Cient́ıfico-Técnicas en Servicios Web (JSWEB’05), ISBN
84-9732-455-2, pages 251–254. Granada, Spain, September, 2005.

[CLEI’06] Raúl Peña-Ortiz, Julio Sahuquillo, Ana Pont, and José Antonio Gil. In-
corporación de modelado dinámico a un generador de carga para la Web 2.0. In
XXXII Conferencia Latinoamericana de Informática (CLEI’06), pages 158–168.
Santiago de Chile, Chile, August, 2006.

[COMCOMJ’09] Raúl Peña-Ortiz, Julio Sahuquillo, Ana Pont, and José Antonio
Gil. DWEB model: Representing Web 2.0 dynamism. Computer Communi-
cations Journal (COMCOMJ), ISSN 0140-3664, 32(6):1118–1128, 2009. doi:
10.1016/j.comcom.2009.01.002.

97

BIBLIOGRAPHY

[JJPP’10] Raúl Peña-Ortiz, Julio Sahuquillo, Ana Pont, and José Antonio Gil. Gen-
erating dynamic workload for web performance evaluation. In XXI Jornadas
de Paralelismo (JJPP’10), ISBN 978-84-92812-49-3, pages 711–718. Valencia,
Spain, September, 2010.

[WEBIST’11] Raúl Peña-Ortiz, Julio Sahuquillo, Ana Pont, and José Antonio Gil.
WEB WORKLOAD GENERATORS: A survey focusing on user dynamism rep-
resentation. In 7th International Conference on Web Information Systems and
Technologies (WEBIST’11) , ISBN 978-989-8425-51-5, pages 119–126. Noordwi-
jkerhout, The Netherlands, May, 2011.

[JJPP’11] Raúl Peña-Ortiz, José Antonio Gil, Julio Sahuquillo, and Ana Pont. Incor-
poración del dinamismo del usuario en un benchmark de comercio electrónico. In
XXII Jornadas de Paralelismo (JJPP’11), ISBN 978-84-694-1791-1, pages 459–
465. La Laguna, Tenerife, Spain, September, 2011.

[CLEI’11] Raúl Peña-Ortiz, José Antonio Gil, Julio Sahuquillo, and Ana Pont. In-
tegración del comportamiento dinámico del usuario en TPC-W. In XXXVII
Conferencia Latinoamericana de Informática (CLEI’11), pages 34–48. Quito,
Ecuador, October, 2011.

[CLEIej’12] Raúl Peña-Ortiz, José Antonio Gil, Julio Sahuquillo, and Ana Pont.
Providing TPC-W with web user dynamic behavior. CLEI electronic journal
(CLEIej), ISSN 0717-5000, 15(2):1. August, 2012.

[IEEE-NCA’12] Raúl Peña-Ortiz, José Antonio Gil, Julio Sahuquillo, and Ana Pont.
The impact of user’s dynamic behavior on web performance. In 11th IEEE Inter-
national Symposium on Network Computing and Applications (IEEE-NCA’12),
ISBN 978-0-7695-4773-2/12, pages 143–150. Cambridge, Massachusetts, USA,
August, 2012. doi: 10.1109/NCA.2012.9.

[COMCOMJ’13] Raúl Peña-Ortiz, José Antonio Gil, Julio Sahuquillo, and Ana Pont.
Analyzing web server performance under dynamic user workloads. Computer
Communications Journal (COMCOMJ), ISSN 0140-3664. Accepted but not yet
published. doi: 10.1016/j.comcom.2012.11.005.

[SAC’13] Raúl Peña-Ortiz, José Antonio Gil, Julio Sahuquillo, and Ana Pont. The
impact of User-Browser Interaction on web performance. In 28th Symposium On
Applied Computing (SAC). Accepted but not yet published.

[INFOSCI’13] Raúl Peña-Ortiz, José Antonio Gil, Julio Sahuquillo, and Ana Pont.
Surfing the web using browser interface facilities: a performance evaluation ap-
proach. Information Sciences (INFOSCI), ISSN 0020-0255. Submitted.

98

APPENDIX A

Acronyms

Web 1.0 First Web Generation . 1

Web 2.0 Second Web Generation . 1

CBMG Customer Behavior Model Graph . 6

FSM Finite State Machine . 6

VBMG Visitor Behavior Model Graph. .6

EFSM Extended Finite State Machine . 7

OSN On-line Social Network . 7

SPEC Standard Performance Evaluation Corporation . 11

SURGE Scalable URL Reference Generator . 12

TPC-W TPC BenchmarkTM W . 15

EB Emulated Browser . 49

99

APPENDIX A. ACRONYMS

WAN Wide Area Network . 14

LAN Local Area Network. .23

DWEB Dynamic WEB workload model . 27

UML Unified Modeling Language . 28

GUERNICA Universal Generator of Dynamic Workload under WWW Platforms
33

PCA Personal Content Aggregator. .39

WIRT Web Interaction Response Time . 52

UBI User-Browser Interaction. .9

CORE Computing Research Education . 95

ERA Excellence in Research for Australia. .95

JCR Journal Citation Reports . 95

SJR SCImago Journal Rank . 95

DDoS Distributed Denial of Service. .95

FE Flash Event . 95

100

APPENDIX B

Glossary

3-tier architecture 3-tier architecture is a client–server architecture that typically
comprises a presentation tier, a business or data access tier, and a data tier. 13

AJAX AJAX (Asynchronous JavaScript and XML) is a group of interrelated web
development techniques used on the client-side to create asynchronous web ap-
plications. 5

ASP Active Server Pages, also known as Classic ASP, was Microsoft’s first server-side
script engine for dynamically generated web pages. 11

blurker A blog lurker (blurker) is someone who reads a lot of blogs but never posts
any comments. 6

CGI The Common Gateway Interface (CGI) is a standard method for web server
software to delegate the generation of dynamic web content to executable files,
which are known as CGI scripts. 10

ERP Enterprise Resource Planning (ERP) is an application used by large organiza-
tions to manage inventory, resources, and business processes across departments.
31

ISAPI Internet Server Application Programming Interface (ISAPI) is an N-tier ap-
plication programming interface of Internet Information Services (IIS). The
most prominent application of IIS and ISAPI is Microsoft’s web server. 10

J2EE Java Platform Enterprise Edition (J2EE) is an enterprise Java computing plat-
form that provides an API and runtime environment for developing and running
enterprise software, including network and web services, and other large-scale,
multi-tiered, scalable, reliable, and secure network applications. 5

101

Glossary

JSP JavaServer Pages (JSP) is a technology that helps software developers create
dynamically generated web pages based on HTML, XML, or other document
types. 11

L4/7 switches Layer 4/7 switching refers to content or application aware intelligent
switching and deep packet inspection of IP application traffic. By increasing
performance, security, availability, and scalability through content-aware intel-
ligence, Layer 4/7 switching has become an indispensable component of new
data center and network infrastructures. 17

NSAPI Netscape Server Application Programming Interface (NSAPI) is an appli-
cation programming interface for extending web server software. 10

PHP General-purpose server-side scripting language originally designed for web de-
velopment to produce dynamic web pages. 11

102

APPENDIX C

Bibliography

[ACC+02] Cristiana Amza, Anupam Chanda, Alan L. Cox, Sameh Elnikety,
Romer Gil, Karthick Rajamani, Emmanuel Cecchet, Julie Marguerite,
and Willy Zwaenepoel. Specification and implementation of dynamic
web site benchmarks. In Workshop on Workload Characterization,
pages 3–13, November 2002.

[AJK05] Anne Aula, Natalie Jhaveri, and Mika Käki. Information Search and
Re-access Strategies of Experienced Web Users. In Conference on
World Wide Web, pages 583–592, May 2005.

[ASF12] ASF (Apache Software Foundation). Apache JMeterTM [online]. 2012.
Available from: http://jmeter.apache.org/ [cited July 2012].

[ASW06] Ernesto Arroyo, Ted Selker, and Willy Wei. Usability tool for analysis
of web designs using mouse tracks. In Conference on Human factors
in computing systems, pages 484–489. ACM, April 2006.

[Aus06] Australian Research Council. Australian Ranking of ICT conferences
[online]. 2006. Available from: http://core.edu.au/rankings/

ConferenceRankingMain.html [cited April 2006].

[Aus10] Australian Research Council. Archived material from ERA 2010 [on-
line]. 2010. Available from: http://www.arc.gov.au/era/era_2010/
archive/era_journal_list.htm [cited October 2012].

[Bar98] Paul Barford. The SURGE Web Workloaad Generator [online]. 1998.
Available from: http://pages.cs.wisc.edu/~pb/software_data.

html [cited 2005].

[BBBC99] Paul Barford, Azer Bestavros, Adam Bradley, and Mark E. Crovella.
Changes in Web client access patterns: Characteristics and caching
implications. World Wide Web Internet and Web Information Systems,
2(1):15–28, 1999.

103

http://jmeter.apache.org/
http://core.edu.au/rankings/Conference Ranking Main.html
http://core.edu.au/rankings/Conference Ranking Main.html
http://www.arc.gov.au/era/era_2010/archive/era_journal_list.htm
http://www.arc.gov.au/era/era_2010/archive/era_journal_list.htm
http://pages.cs.wisc.edu/~pb/software_data.html
http://pages.cs.wisc.edu/~pb/software_data.html

BIBLIOGRAPHY

[BC97] Paul Barford and Mark Crovella. An architecture for a WWW work-
load generator. In World Wide Web Consortium Workshop on Work-
load Characterization, October 1997.

[BC98] Paul Barford and Mark Crovella. Generating representative web work-
loads for network and server performance evaluation. In SIGMET-
RICS ’98/PERFORMANCE ’98, Joint International Conference on
Measurement and Modeling of Computer Systems, pages 151–160, June
1998.

[BCCPB07] Mercedes Blázquez-Ćıvico, Jesús Contreras-Cino, Raúl Peña-Ortiz,
and V. Richard Benjamins. Trends on Legal Knowledge, the Semantic
Web and the Regulation of Electronic Social Systems, chapter Visual-
ization of Semantic Content. European Press Academic Publishing,
2007.

[BD99] Gaurav Banga and Peter Druschel. Measuring the capacity of a Web
server under realistic loads. World Wide Web Internet and Web In-
formation Systems, 2(1/2):69–83, 1999.

[Bla05] Michael Blakeley. Deluge: website stress test tool [online]. 2005. Avail-
able from: http://deluge.sourceforge.net/ [cited 2010].

[BRdMCA09] Fabŕıcio Benevenuto, Tiago Rodrigues de Magalhães, Meeyoung Cha,
and Virgilio A.F Almeida. Characterizing user behavior in online social
networks. In Internet Measurement Conference, pages 49–62, Novem-
ber 2009.

[CACB97] Liu Chang, Kirk P. Arnett, Louis M. Capella, and Robert C. Beatty.
Web sites of the Fortune 500 companies: Facing customers through
home pages. Information & Management Journal, 31(6):335–345, Jan-
uary 1997.

[CAJ+99] Hua Chen, Marc Abrams, Tommy Johnson, Anup Mathur, Ibraz An-
war, and John Stevenson. Wormhole caching with HTTP PUSH
method for a satellite-based web content multicast and replication sys-
tem. In Web Caching Workshop, 1999.

[CG00] Andy Cockburn and Saul Greenberg. Issues of Page Representation
and Organisation in Web Browser’s Revisitation Tools. Australasian
Journal of Information Systems, 7(2), May 2000.

[CK08] Graham Cormode and Balachander Krishnamurthy. Key differences
between Web 1.0 and Web 2.0. First Monday Journal, 13(6), 2008.

[CMJ02] A. Cockburn, B. McKenzie, and M. JasonSmith. Pushing back:
evaluating a new behaviour for the back and forward buttons in

104

http://deluge.sourceforge.net/

BIBLIOGRAPHY

web browsers. International Journal of Human-Computer Studies,
57(5):397–414, November 2002.

[CMZ02] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. Perfor-
mance and scalability of EJB applications. In Conference on Object-
oriented programming, systems, languages, and applications, pages
246–261. ACM Request Permissions, November 2002.

[Con03] Jim Conallen. Building Web Applications With UML. Addison-Wesley
Professional, 2003.

[CPCP01] Ed H. Chi, Peter Pirolli, Kim Chen, and James Pitkow. Using in-
formation scent to model user information needs and actions and the
Web. In Conference on Human factors in computing systems, pages
490–497, 2001.

[CRML01] Harold W. Cain, Ravi Rajwar, Morris Marden, and Mikko H. Lipasti.
An Architectural Evaluation of Java TPC-W. In International Sympo-
sium on High-Performance Computer Architecture, page 229, January
2001.

[DLDP03] Giuseppe A. Di Lucca and Massimiliano Di Penta. Considering browser
interaction in web application testing. In International Workshop on
Web Site Evolution, pages 74–81. IEEE, September 2003.

[DMA+08] Fernando Duarte, Bernardo Mattos, Jussara Almeida, Virgilio A.F
Almeida, Mariela Curiel, and Azer Bestavros. Hierarchical charac-
terization and generation of blogosphere workloads. Technical report,
October 2008.

[DMB01] Ronald C. Jr Dodge, Daniel A. Menascé, and Daniel Barbará. Testing
e-commerce site scalability with TPC-W. In Computer Measurement
Group Conference, pages 457–466, December 2001.

[Eri99] Peter Eriksson. PTester [online]. 1999. Available from: http://www.

lysator.liu.se/~pen/ptester/ [cited 2005].

[For12] Florian Forster. Collectd – The system statistics collection daemon
[online]. 2012. Available from: http://collectd.org/ [cited June
2012].

[FP01] Sally Floyd and Vern Paxson. Difficulties in simulating the Internet.
IEEE/ACM Transactions on Networking, 9(4):392–403, August 2001.

[FPZ07] Pierfrancesco Foglia, Cosimo Antonio Prete, and Michele Zanda. Mod-
elling Public Administration Portals. In Encyclopedia of Portal Tech-
nologies and Applications, pages 606–614. 2007.

105

http://www.lysator.liu.se/~pen/ptester/
http://www.lysator.liu.se/~pen/ptester/
http://collectd.org/

BIBLIOGRAPHY

[Ful12] Jeffrey Fulmer. SIEGE [online]. 2012. Available from: http://www.

joedog.org/siege-home/ [cited July 2012].

[GBGP10] Sharad Goel, Andrei Broder, Evgeniy Gabrilovich, and Bo Pang.
Anatomy of the long tail: ordinary people with extraordinary tastes.
In ACM International Conference on Web Search and Data Mining,
pages 201–210. Yahoo Research, February 2010.

[GG03] Daniel F. Garćıa and Javier Garćıa. TPC-W e-commerce benchmark
evaluation. Computer, 36(2):42–48, February 2003.

[Goo12] Google. Google Scholar [online]. 2012. Available from: http:

//scholar.google.com/ [cited October 2012].

[Hen09] Jim Hendler. Web 3.0 Emerging. Computer, 42(1):111–113, 2009.

[HP12a] Hewlett-Packard. HP LoadRunner [online]. 2012. Available from:
http://www8.hp.com/us/en/software-solutions/software.html?

compURI=1175451 [cited July 2012].

[HP12b] Hewlett-Packard. Load factor: performance testing for web applica-
tions business white paper. Business white paper, June 2012.

[HP12c] Hewlett-Packard. Setting the pace for testing modern applications.
Business white paper, May 2012.

[HW10] Jeff Huang and Ryen W. White. Parallel browsing behavior on the
web. In Conference on Hypertext and hypermedia, pages 13–18. ACM,
June 2010.

[Jup06] Jupiter Research. Retail Web Site Performance: Consumer Reaction
to a Poor Online Shopping Experience. Technical report, Akamai, June
2006.

[LY96] David Lee and Mihalis Yannakakis. Principles and methods of testing
finite state machines-a survey. Proceedings of the IEEE, 84(8):1090–
1123, 1996.

[MA00] Daniel A. Menascé and Virgilio A.F Almeida. Scaling for E-Business:
Technologies, Models, Performance, and Capacity Planning. Prentice
Hall, 2000.

[MF12] The Measurement Factory. Web Polygraph [online]. 2012. Available
from: http://www.web-polygraph.org/ [cited July 2012].

[Mid04] Julian T.J Midgley. AUTOBENCH [online]. 2004. Available from:
http://www.xenoclast.org/autobench [cited 2005].

106

http://www.joedog.org/siege-home/
http://www.joedog.org/siege-home/
http://scholar.google.com/
http://scholar.google.com/
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1175451
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1175451
http://www.web-polygraph.org/
http://www.xenoclast.org/autobench

BIBLIOGRAPHY

[Min02a] Mindcraft. WebStone 2.x Benchmark Description [online]. 2002. Avail-
able from: http://www.mindcraft.com/webstone/ws201-descr.

html [cited 2005].

[Min02b] Mindcraft. WebStone: The Benchmark for Web Servers [online]. 2002.
Available from: http://www.mindcraft.com/webstone/ [cited 2005].

[MJ98] David Mosberger and Tai Jin. httperf—a tool for measuring web server
performance. Performance Evaluation Review, 26(3), December 1998.

[MJ08] David Mosberger and Tai Jin. HTTPERF [online]. 2008. Available
from: http://www.hpl.hp.com/research/linux/httperf/ [cited
2010].

[NdlOG+05] Ingrid Juliana Niño, Bernardo de la Ossa, José Antonio Gil, Julio
Sahuquillo, and Ana Pont. CARENA: a tool to capture and replay
web navigation sessions. In End-to-End Monitoring Techniques and
Services, pages 127–141, May 2005.

[ONUI09] Moriyoshi Ohara, Priya Nagpurkar, Yohei Ueda, and Kazuaki Ishizaki.
The Data-centricity of Web 2.0 Workloads and its Impact on Server
Performance. In IEEE International Symposium on Workload Char-
acterization, pages 133–142, October 2009.

[Ora12] Oracle. MySQL 5.1 Reference Manual: How the Query Cache Operates
[online]. 2012. Available from: http://dev.mysql.com/doc/refman/
5.1/en/query-cache-operation.html [cited April 2012].

[Ore07] Tim Oreilly. What is Web 2.0: Design patterns and business models for
the next generation of software. Communications & Strategies, 1:17,
January 2007.

[OWHM07] Hartmut Obendorf, Harald Weinreich, Eelco Herder, and Matthias
Mayer. Web page revisitation revisited: implications of a long-term
click-stream study of browser usage. In Conference on Human factors
in computing systems, pages 597–606, April-May 2007.

[PP99] Peter L.T. Pirolli and James E. Pitkow. Distributions of surfers’ paths
through the World Wide Web: Empirical characterizations. World
Wide Web, 2(1/2):29–45, 1999.

[Rad12] RadView Software. WebLOAD [online]. 2012. Available from: http:

//www.radview.com/product/Product.aspx [cited July 2012].

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Mod-
eling Language Reference Manual. 1999.

107

http://www.mindcraft.com/webstone/ws201-descr.html
http://www.mindcraft.com/webstone/ws201-descr.html
http://www.mindcraft.com/webstone/
http://www.hpl.hp.com/research/linux/httperf/
http://dev.mysql.com/doc/refman/5.1/en/query-cache-operation.html
http://dev.mysql.com/doc/refman/5.1/en/query-cache-operation.html
http://www.radview.com/product/Product.aspx
http://www.radview.com/product/Product.aspx

BIBLIOGRAPHY

[Rod09] Pablo Rodriguez. Web Infrastructure for the 21st Century. In Confer-
ence on World Wide Web. Telefónica I+D, January 2009.

[RS00] Frederick F. Reichheld and Phil Schefter. E-Loyalty: Your Secret
Weapon on the Web. Harvard Business Review Magazine, 78:105, De-
cember 2000.

[RSD+12] Kira Radinsky, Krysta Svore, Susan Dumais, Jaime Teevan, Alex
Bocharov, and Eric Horvitz. Modeling and predicting behavioral dy-
namics on the web. In Conference on World Wide Web, pages 599–608.
ACM, April 2012.

[RW03] Alex Rousskov and Duane Wessels. High performance benchmarking
with Web Polygraph. Software: Practice and Experience, 1:1–10, 2003.

[RWC99] Alex Rousskov, Duane Wessels, and Glenn Chisholm. The First IR-
Cache Web Cache Bake-off. In Web Caching Workshop, 1999.

[SAAF08] Fabian Schneider, Sachin Agarwal, Tansu Alpcan, and Anja Feldmann.
The new web: Characterizing AJAX traffic. In International Confer-
ence on Passive and Active Network Measurement, pages 31–40, April
2008.

[SAP02] Srini S. Srinivasan, Rolph Anderson, and Kishore Ponnavolu. Cus-
tomer loyalty in e-commerce: an exploration of its antecedents and
consequences. Journal of Retailing, 78(1):41–50, 2002.

[SCI11] SCImago Lab. SCImago Journal and Country Rank [online]. 2011.
Available from: http://www.scimagojr.com [cited December 2012].

[SCK03] Weisong Song Shi, Elizabeth Collins, and Vijay Karamcheti. Modeling
object characteristics of dynamic web content. Journal of Parallel and
Distributed Computing, 63(10):963–980, October 2003.

[SKF06] Mahnaz Shams, Diwakar Krishnamurthy, and Behrouz Far. A model-
based approach for testing the performance of web applications. In
International Workshop on Software Quality Assurance, pages 54–61.
ACM, November 2006.

[SPE09] SPEC. SPEC’s Benchmarks for Web Servers [online]. 2009. Available
from: http://www.spec.org/benchmarks.html#web [cited 2012].

[SZ00] Young-Woo Seo and Byoung-Tak Zhang. Learning user’s preferences
by analyzing Web-browsing behaviors. In International conference on
autonomous agents, pages 381–387. ACM, June 2000.

108

http://www.scimagojr.com
http://www.spec.org/benchmarks.html#web

BIBLIOGRAPHY

[TGG+09] Georgios Tselentis, Alex Galis, Anastasius Gavras, Srdjan Krco, Volk-
mar Lotz, Elena Simperl, Burkhard Stiller, and Theodore Zahariadis.
Towards the Future Internet: A European Research Perspective. IOS
Press, May 2009.

[Tha08] Andrew Thatcher. Web search strategies: The influence of Web expe-
rience and task type. Information Processing & Management, 44(3),
May 2008.

[Tho11] Thomson Reuters. Journal Citation Reports [online]. 2011. Available
from: http://thomsonreuters.com/products_services/science/

science_products/a-z/journal_citation_reports/ [cited Decem-
ber 2012].

[Tra02a] Transaction Processing Performance Council. TPC BenchmarkTM W
[online]. 2002. Available from: http://www.tpc.org/tpcw/ [cited
2005].

[Tra02b] Transaction Processing Performance Council. TPC BenchmarkTM W
Specification. Version 1.8. Technical report, February 2002.

[WDG11] Geoff Wong, Mick Dwyer, and Jon Gifford. Hammerhead 2.0 [on-
line]. 2011. Available from: http://sourceforge.net/projects/

hammerhead/ [cited July 2012].

[WOHM06] Harald Weinreich, Hartmut Obendorf, Eelco Herder, and Matthias
Mayer. Off the beaten tracks: exploring three aspects of web nav-
igation. In Conference on World Wide Web, pages 133–142, June
2006.

109

http://thomsonreuters.com/products_services/science/science_products/a-z/journal_citation_reports/
http://thomsonreuters.com/products_services/science/science_products/a-z/journal_citation_reports/
http://www.tpc.org/tpcw/
http://sourceforge.net/projects/hammerhead/
http://sourceforge.net/projects/hammerhead/

	Covert
	Credits
	Acknowledgments
	Abstract
	Resumen
	Resum
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and main goals
	1.2 Contributions of the thesis
	1.3 Research context
	1.4 Outline

	2 Characterizing and generating workload for web performance evaluation
	2.1 Workload models and the current Web
	2.2 Web workload generators overview
	2.2.1 Software tools study
	2.2.2 A survey on reproducing user's dynamism

	2.3 Summary

	3 DWEB: modeling user's dynamism on web workload characterization
	3.1 The user's navigation
	3.2 The user's roles
	3.3 Summary

	4 GUERNICA: a workload generator for current Web
	4.1 The application suite
	4.2 Testing phases
	4.3 Architecture
	4.4 Main features
	4.5 Case study
	4.6 Summary

	GUERNICA validation: a new testbed forweb performance evaluation
	5.1 The TPC-W framework
	5.2 Testbed architecture
	5.3 Experimental setup
	5.4 Performance metrics
	5.5 GUERNICA validation
	5.6 Summary

	The impact of dynamic user workloads onweb performance
	6.1 Workload design
	6.1.1 Considering dynamism on user's navigations
	6.1.2 One step ahead: evolving user's profile using dynamic roles

	6.2 Impact of the dynamic workloads on web system performance
	6.3 Summary

	7 The impact of User-Browser Interaction on web performance
	7.1 Workload design
	7.1.1 The back button: rapid return to recently visited pages
	7.1.2 Optimizing user productivity: the parallel tab browsing behavior

	7.2 Impact of UBI on web performance
	7.3 Summary

	8 Conclusions and open research lines
	8.1 Conclusions
	8.2 Open research lines
	8.3 Publications related to the thesis

	A Acronyms
	B Glossary
	C Bibliography

