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Normas Asimétricas y los Espacios de Complejidad Dual

Desde el punto de vista de la Ciencia de la Computación, un avance reciente

lo ha constituido el establecimiento de un modelo matemático que da cuenta de

la distancia entre algoritmos y programas, cuando estos son analizados desde la

óptica de la complejidad computacional, entendiendo por complejidad, por ejemplo,

la medida del tiempo de computación.

En la última década se han llevado a cabo notables esfuerzos para elaborar una

teoŕıa matemática robusta que goce, en cierta medida, de buenas propiedades y

constituya una herramienta que, en este contexto, juegue un papel análogo al que

los espacios vectoriales normados han desempeñado en diversos ámbitos de la ciencia

y la tecnoloǵıa.

En el caso de la complejidad computacional, se demuestra que un modelo muy sa-

tisfactorio lo constituye el de los espacios vectoriales dotados de una norma asimétrica.

En esta tesis, realizamos un estudio general de las propiedades de estos espacios, en

analoǵıa con las propiedades que clásicamente se estudian en los espacios vectoriales

normados. Aśı, hemos estudiado las propiedades de separación de los espacios vec-

toriales de norma asimétrica, obteniendo una caracterización de aquellos espacios

que son Hausdorff; hemos obtenido una teoŕıa satisfactoria de la bicompletación

de dichos espacios; también hemos realizado un estudio de la compacidad cuando

el espacio vectorial tiene dimensión finita; hemos determinado condiciones bajo las

cuales una norma asimétrica definida en un conjunto algebraicamente cerrado de

un espacio vectorial puede ser extendida a todo el espacio y hemos analizado la

estructura del espacio dual y las topoloǵıas débiles asociadas. Por último, hemos

aplicado los resultados obtenidos al campo de la Ciencia de la Computación, más

concretamente a los Espacios de Complejidad Dual.



Asymmetric Norms and the Dual Complexity Spaces

One of the recent advances in Computer Science was due to the possibility of

establishing a mathematical model that account the distance between algorithms

and programs when they are analyzed in terms of their computational complexity

(complexity distance), where computational complexity is interpreted in terms of

running time, for example.

In the last decade, several authors have done a big effort in obtaining a robust

mathematical theory, which was a useful tool that played, in this context, a similar

role that normed linear spaces have played in different scientific areas.

In the context of Computational Complexity, it is shown that Asymmetric Normed

Linear Spaces constitute a very satisfactory model. This thesis is focused in the

study of the properties of these spaces, similarly to the classical properties that

are studied in the case of normed linear spaces. Thus, we have studied separation

properties of asymmetric normed linear spaces, obtaining in particular a charac-

terization of Hausdorffness; we have obtained a satisfactory theory of bicompletion

for these spaces; we have analyzed compactness on finite dimensional asymmet-

ric normed linear spaces; we have studied conditions under which an asymmetric

norm defined on an algebraically closed subset of a linear space can be extended

to the whole space and we have analyzed the structure of the dual space and the

weak topologies associated to it. Finally, we have applied our theory to Computer

Science, specifically to the so-called Dual Complexity Spaces.



Normes Asimètriques i els Espais de Complexitat Dual

Des del punt de vista de la Ciència de la Computació, un avanç recent ho ha

constitüıt l’establiment d’un model matemàtic que done compte de la distància

entre algoritmes i programes, quan són analitzats des de l’òptica de la complexi-

tat computacional, entenent per complexitat, per exemple, la mesura del temps de

computació.

En l’última dècada s’han dut a terme notables esforços per a elaborar una teoria

matemàtica robusta que gaudisca, en certa mesura, de bones propietats i constitüısca

una eina que, en aquest context, jugue un paper anàleg al què els espais vectorials

normats han jugat en diversos àmbits de la ciència i la tecnologia.

En el cas de la complexitat computacional, es demostra que un model molt sa-

tisfactori ho constitueix el dels espais vectorials de norma asimètrica. En la tesi

que es presenta, realitzem un estudi general de les propietats dels esmentats espais,

en analogia amb les propietats que clàssicament s’estudien en els espais vectorials

normats. Aix́ı, hem estudiat les propietats de separació dels espais vectorials de

norma asimètrica, obtenint una caracterització d’aquells espais que són Hausdorff;

hem obtingut una teoria satisfactòria de la bicompletació de dits espais; també hem

realitzat un estudi de la compacitat en els espais vectorials de dimensió finita; hem

determinat condicions baix les quals una norma asimètrica definida en un conjunt

algebraicament tancat d’un espai vectorial pot ser estesa a tot l’espai i hem analitzat

l’estructura de l’espai dual i les topologies dèbils associades. Finalment, hem aplicat

els resultats obtinguts al camp de la Ciència de la Computació, més concretament

als Espais de Complexitat Dual.
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Chapter 1

Introduction

1.1 Asymmetric topology

In the last decade several authors have successfully applied some asymmetric struc-

tures of Topological Algebra and Functional Analysis to problems in Approximation

Theory and Theoretical Computer Science.

In particular, locally convex cones and quasi-norms (or asymmetric norms, in our

context) on cones and linear spaces provide efficient tools to study several questions

in sign-sensitive approximation theory ([13]), in obtaining general theorems of Hahn-

Banach type ([4], [27], [56], [57]), to characterize the structure of (semi-)Chebyshev

sets ([6], [42]), and to measure complexity distances between programs or algorithms

([46]). Furthermore, the notions of fractal semigroup, partial metric monoid and

weightable invariant quasi-metric semigroup provide useful frameworks to construct

theoretical models for some computational processes that appear in a natural way

in programming languages (see, for instance, [7], [16], [17], [45], etc).

These facts have motivated, in part, an increasing interest in the research of

such kind of structures and the applications of the asymmetric basic notions (quasi-

uniformities and quasi-metrics) on which are supported, to various classical mathe-

matical theories: hyperspaces (e.g. [26], [31], [58]), function spaces (e.g. [10], [40],

[55]), fixed point theory (e.g. [20], [51]), topological algebra, of course (e.g. [4], [2],
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[3] [5], [30], [35], [41]), etc.

In this direction, the important review by H.P.A. Künzi “Nonsymmetric dis-

tances and their associated topologies: About the origin of basic ideas in the area

of asymmetric topology”([29]), provides an exhaustive list of references related to

these topics.

Talking about Nonsymmetric or Asymmetric Topology, there are two basic refer-

ences: the book of Murdeshwar and Naimpally ([37]) and the book of Fletcher and

Lindgren ([19]).

Let us recall that Smyth studied in [53] some concepts of the theory of quasi-

uniform spaces in connection with problems from Theoretical Computer Science

and proposed quasi-metric and quasi-uniform spaces as a generalization of cpo’s and

metric spaces as used in denotational semantics. One of the important things was

his idea about reworking the basic notions involving limits and completeness in order

to accommodate the theory to examples in Computer Science. He introduced the

concepts of S-Cauchy filter and S-completability in quasi-uniform spaces that have

been very useful in the applications of asymmetric topology.

In [51], M. Schellekens introduced the notion of “complexity distance ”. He de-

fined the complexity space in order to develop a topological foundation for the com-

plexity analysis of programs and algorithms. His complexity spaces are weightable

and thus, belong to the class of S-completable quasi-uniform spaces. In this seminal

paper, he illustrated the applicability of his theory via the complexity analysis of

“Divide and Conquer”algorithms and presented a new proof, based on the Banach

fixed point theorem, of the fact that mergesort has asymptotic average running time.

But probably, one of the most influencing papers that has inspired our research

is due to Romaguera and Schellekens [44]. In it, the authors introduce the notion

of Dual Complexity Space and study its quasi-metric properties. The main results

obtained are the Smyth-completeness of the complexity space and the compactness

of closed complexity subspaces which possesses a complexity lower bound. In [47],

Romaguera an Schellekens show that the structure of quasi-normed semilinear space

provides a suitable setting to carry out an analysis of the dual complexity space.

Our aim in this thesis is to develop a systematized theory of asymmetric normed
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linear spaces, applying our methods and results to obtain a mathematical model for

the dual complexity space in the framework of Theoretical Computer Science. This

kind of structures will provide a robust mathematical model in the sense that we

can obtain several properties following the classical scheme on normed linear spaces.

In this sense, our work extends the theory of normed linear spaces to the case of

lack of symmetry.

Thus, in Chapter 2 we present a characterization of those asymmetric normed

linear spaces which are Hausdorff and show that it is possible, under reasonable

conditions, to obtain a procedure in describing an symmetric normed linear space

as a direct sum of a Hausdorff subspace and a “purely non Hausdorff”subspace. In

Chapter 3, we present a satisfactory theory of bicompletion for asymmetric normed

linear spaces obtaining that each asymmetric normed linear space has a unique

bicompletion up to isometric isomorphism. In Chapter 4 we extend the classical

results about compact sets on finite dimensional normed spaces to the asymmetric

case. We prove the equivalence between T1 separation axiom and normability in the

finite dimensional case and thus between T1 and T2 separation axioms; we also prove

that the Heine-Borel Theorem characterizes finite dimensional asymmetric normed

linear spaces that satisfies T2 axiom. Chapter 5 is devoted to study conditions

under which we can extend an asymmetric norm which has been defined on an

algebraically closed subset of a linear space (the notion of algebraically closed set

is defined below) to the corresponding linear span. In Chapter 6 we define the

dual space of an asymmetric normed linear space and in Chapter 7 we present some

different weak and weak* topologies that can naturally be defined because of the lack

of symmetry. In particular we give an asymmetric version of the celebrated Alaoglu

Theorem. Finally in Chapter 8 we make use of this mathematical background to

the applied context of the dual complexity space ([44]) and extend our study to

algorithms and programs that have exponential running time.

A precedent of our study, in the realm of (para)topological linear spaces may

be found in “Estructuras Topológicas no Simétricas y Espacios Bitopológicos ”, by

Carmen Alegre (Thesis, Universidad Politécnica de Valencia, 1994).
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1.2 Preliminaries and basic notions

1.2.1 Quasi-Uniformities and quasi-metrics

Our basic reference for quasi-uniformities and quasi-pseudo-metric is [19].

A quasi-uniformity on a set X is a filter U on X ×X which satisfies:

i) ∆ ⊂ U , for all U ∈ U .

ii) Given U ∈ U exists V ∈ U such that V 2 ⊆ U ,

where ∆ = {(x, x) : x ∈ X} and V 2 = {(x, z) ∈ X×X : exists y ∈ X such that (x, y) ∈
V, (y, z) ∈ V } The members of U are called entourages.

The filter U−1, formed for all sets of the form U−1 = {(x, y) ∈ X×X : (y, x) ∈ U},
where U ∈ U , is a quasi-uniformity on X called the conjugate quasi-uniformity of

U .

A quasi-uniform space is a pair (X,U) such that X is a (nonempty) set and U is

a quasi-uniformity on X.

If U is a quasi-uniformity on a set X, the coarsest uniformity on X finer than U
will be denoted by U s, i.e. U s = U ∨ U−1. This uniformity is called the supremum

of the quasi-uniformities U and U−1.

Every quasi-uniformity U on X generates a topology T (U) on this set. A neig-

borhood base for each point x ∈ X is given by {U(x) : U ∈ U} where U(x) = {y ∈
X : (x, y) ∈ U}.

A quasi-uniformity U on X is called bicomplete if U s is a complete uniformity on

X. In this case we say that (X,U) is a bicomplete quasi-uniform space.

A bicompletion of a quasi-uniform space (X,U) is a bicomplete quasi-uniform

space (Y,V) such that (X,U) is quasi-isomorphic to a T (Vs)-dense subset of Y.

It was proved in [11] and in [50] (see also [19]) that every T0 quasi-uniform space
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(X,U) has a unique (up quasi-uniform isomorphism) T0 bicompletion (X̃, Ũ). Then

(X̃, Ũ) is called the bicompletion of (X,U). Moreover (X̃, Ũ−1) = (X̃, (Ũ)−1) and

(X̃, Ũ s) = (X̃, Ũ ∨ Ũ−1).

In our context a quasi-metric on a set X is a nonnegative real valued function d

on X ×X such that for all x, y, z ∈ X:

(i) d(x, y) = d(y, x) = 0⇔ x = y, and

(ii) d(x, y) ≤ d(x, z) + d(z, y).

A quasi-metric space is a pair (X, d) such that X is a (nonempty) set and d is a

quasi-metric on X.

Each quasi-metric d on X generates a T0 topology T (d) on X, which has as a

basic open sets the d-balls Bd(x, r) = {y ∈ X : d(x, y) < r} where x ∈ X and r > 0.

Each quasi-metric d on X induces a metric ds on X defined by ds(x, y) =

max{d(x, y), d−1(x, y)} for all x, y ∈ X, where d−1 is the conjugate quasi-metric

of d : d−1(x, y) = d(y, x) for all x, y ∈ X.

A quasi-metric d on X induces a quasi-uniformity Ud on X with basic entourages

of the form {(x, y) : d(x, y) < 2−n}, for every x ∈ X and n = 1, 2, 3, . . ..

A quasi-metric d on X is called bicomplete if the quasi-uniformity Ud is bicom-

plete, i.e. if ds is a complete metric.

A. Di Concilio ([12]) and S. Salbany ([50]) have independently proved that, sim-

ilarly to the quasi-uniform case, each quasi-metric space (X, d) has a unique (up to

isometry) quasi-metric bicompletion.

Results on bicompletion of some interesting asymmetric structures in topological

algebra may be found in [34], [35] and [30].
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1.2.2 Asymmetric norms

In the sequel the letters R, R+, ω and N will denote the set of real numbers, of non-

negative real numbers, of nonnegative integer numbers and positive integer numbers,

respectively.

Let X be a linear space. We say that a function q : X → R
+ is an asymmetric

norm on X if for all x, y ∈ X and a ∈ R+:

(i) q(x) = q(−x) = 0 if and only if x = 0.

(ii) q(ax) = aq(x).

(iii) q(x+ y) ≤ q(x) + q(y).

The pair (X, q) is called an asymmetric normed linear space. Asymmetric norms

are called quasi-norms in [18], [4] and [42].

The function q−1 : X → R
+ defined by q−1(x) := q(−x) is also an asymmetric

norm. The function qs : X → R
+ given by the formula qs(x) := max{q(x), q−1(x)}

is a norm on X.

An asymmetric norm q induces a quasi-metric dq by mean of the formula:

dq(x, y) = q(y − x), x, y ∈ X.

Hence, if q is an asymmetric norm on X, the sets

Vε(0) := {x ∈ X : q(x) < ε}, ε > 0,

form a fundamental system of neighbourhoods of zero for the topology T (dq) gen-

erated by dq. In the same way the translated sets Vε(y) = y + Vε(0), form a funda-

mental system of neighbourhoods of y for all y ∈ X. It follows from the definition

that Vε(y) = Bdq(y, ε). In case of q is a norm, the sets

Bε(0) := {x ∈ X : q(x) < ε}, ε > 0.
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form a fundamental system of neighbourhoods of zero for the topology generated by

dq.

We denote by Vε,≤(0), the set:

Vε,≤(0) := {x ∈ X : q(x) ≤ ε}, ε > 0,

and in the same way, in case of we are working with a norm, we will use the notation

Bε,≤(0) := {x ∈ X : q(x) ≤ ε}, ε > 0.

Of course, the set Bε,≤(0) is usually denoted by B̄ε(0) or simply BX . We will

indicate the (asymmetric) norm on the space under consideration by a superscript

if necessary. It is not easy to choose a satisfactory notation due to the nature of

different subjects involved in this work. Of course, some other different notations

to the one selected here could be more appropriated.

In the sequel we will also refer to T (dq) as the topology generated by q.

A seminorm on a (real) linear space X is a nonnegative real valued function p on

X that satisfies

i) p(x+ y) ≤ p(x) + p(y), x, y ∈ X,

and

ii) p(ax) = |a|p(x), x ∈ X and a ∈ R.

The seminorm p is a norm if p(x) = 0 implies x = 0.

Now, let us introduce the notion of algebraically closed space. An algebraically

closed space M (ac-space for short) is a subset of a (real) linear space X which

is closed with respect to the sum on X and with respect to the product by non

negative scalars, i.e.

x+ y ∈M, for every x, y ∈M

and

ax ∈M for every x ∈M and a ∈ R+.
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In particular, 0 ∈M .

Clearly every linear space can be considered as an ac-space.

An asymmetric seminorm on an ac-space M is a function q : M → R
+ such that

for all x, y ∈M and a ∈ R+:

1) q(ax) = aq(x).

2) q(x+ y) ≤ q(x) + q(y).

then, we say that the couple (M, q) is an asymmetric seminormed ac-space; more-

over, if the function q satisfies the following property,

3) for every x ∈ M such that −x ∈ M , then q(x) = q(−x) = 0 if and only if

x = 0,

then it is called an asymmetric norm on M . In this case, we say that the couple

(M, q) is an asymmetric normed ac-space. This definition is the reasonable restric-

tion to ac-spaces of the notion of an asymmetric norm on a linear space.

In our context a semilinear space on R+ will be an ordered triple (E,+, ·) such

that (E,+) is an Abelian monoid (i.e. an Abelian semigroup with neutral element)

and · is a function from R
+ × E to E such that for all x, y ∈ E and a, b ∈ R+ :

a · (b · x) = (ab) · x, (a + b) · x = (a · x) + (b · x), a · (x + y) = (a · x) + (a · y), and

1 · x = x.

Observe that every semilinear space is a cone in the sense of Keimel and Roth

[27].It is clear that every ac-space is a semilinear space.

An asymmetric normed semilinear space is a pair (F, qF ) such that F is a (nonempty)

subset of an asymmetric normed linear space (E, q), where qF denotes the restric-

tion of the asymmetric norm q to F , and (F,+ |F , · |F ) is a semilinear space, i.e. an

ac-space in this context (compare [43], [46]).
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Chapter 2

Separation properties in

asymmetric normed linear spaces

2.1 Introduction

Our aim in this chapter is to study the separation properties in asymmetric normed

linear spaces. We say that an asymmetric normed linear space (X, q) is Hausdoff if

the topology T (dq), generated by the quasi-metric dq, is Hausdorff. It is well known

that each quasi-metric generates a T0 topology, and then every asymmetric normed

linear space is T0. However, asymmetric normed linear spaces are not Hausdorff in

general. Of course, if q is a norm the space satisfies this property. However, the

most common (non trivial) example of asymmetric norm -the one that is defined in

a normed linear lattice (E, ‖.‖,≤) as q(x) = ‖x∨ 0‖- does not generate a Hausdorff

topology (see [4]). In Section 2.2 we will show an easy procedure to construct ex-

amples of asymmetric normed linear spaces which are Hausdorff. Another example,

of a different nature to the one given here can be found in Example 4.7 of [2]. We

also characterize those asymmetric normed linear spaces which are Hausdorff. This

characterization motivates the notion of a purely non Hausdorff asymmetric normed

linear space which is introduced here. As an application we show in Section 2.3 that

each asymmetric normed linear space can be written, under reasonable conditions,

as a direct sum of a Hausdorff asymmetric normed linear space and a “purely non
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Hausdorff”asymmetric normed linear space.

Definitions and results on general topology used in this chapter can be found in

[11]. The reader can find the basic properties about Banach lattices that are needed

in [33]. The main results of this chapter have been published in [22].

We denote by ∧ and ∨ the usual operations in a lattice. If 1 ≤ p <∞, we write

‖x‖p for the p-norm of a sequence of real numbers x = (xi)i∈N,

‖x‖p = (
∞∑
i=1

|xi|p)
1
p .

2.2 Hausdorff asymmetric normed linear spaces

It is well known that the norm of a normed space obviously defines a Hausdorff

topology. This is not the case when for instance we consider a normed linear lattice

(E, ‖.‖,≤) and the asymmetric normed linear space (E, q) defined by mean of the

asymmetric norm q(x) = ‖x ∨ 0‖. As we indicated in Section 2.1, the space (E, q)

is not Hausdorff. Thus, the first question that appears in a natural way is if each

Hausdorff asymmetric normed linear space -or at least each Hausdorff asymmetric

normed linear lattice- is isomorphic to a normed space. The following example shows

that this is not the case. We construct an asymmetric normed linear space that is

Hausdorff but is not isomorphic to a normed space.

Example 2.1 Consider the linear lattice (E0,≤) defined by all sequences of real

numbers that are different from zero only in a finite set of indexes endowed with its

natural order, and let q0 : E0 → R
+ be the function defined by

q0(x) = ‖x ∨ 0‖1 + ‖x ∧ 0‖2.

We prove that this function is in fact an asymmetric norm. Since x = x∨0+x∧0

for all x ∈ E0, we have that q0(x) = q0(−x) = 0 if and only if x = 0. Obviously it
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is also positively homogeneous. We just need to show that it satisfies the triangle

inequality.

First note that for a pair of elements x, y ∈ E0, (x + y) ∨ 0 ≤ x ∨ 0 + y ∨ 0. For

each 1 ≤ p <∞, the norm properties related to the order operations of the normed

lattices (E0, ‖.‖p,≤) (see Chapter I, Vol.II, in [33]) leads to the inequality

‖(x+ y) ∨ 0‖p ≤ ‖x ∨ 0‖p + ‖y ∨ 0‖p.

The following equalities are also satisfied for every x ∈ E0 and each 1 ≤ p < ∞
(Chapter I, Vol.II, in [33]),

‖x ∧ 0‖p = ‖ − (x ∧ 0)‖p = ‖ − (−((−x) ∨ 0))‖p = ‖ − x ∨ 0‖p.

Then

q0(x+ y) = ‖(x+ y) ∨ 0‖1 + ‖(x+ y) ∧ 0‖2 = ‖(x+ y) ∨ 0‖1 + ‖(−x− y) ∨ 0‖2 ≤

= ‖x ∨ 0‖1 + ‖y ∨ 0‖1 + ‖ − x ∨ 0‖2 + ‖ − y ∨ 0‖2 = q0(x) + q0(y).

We have shown that (E0, q0) is an asymmetric normed linear space.

Note that (E0, q0) is a Hausdorff space since for every x ∈ E0, the norm |‖.|‖,
given by |‖x‖| := ‖x ∨ 0‖2 + ‖x ∧ 0‖2 is equivalent to ‖.‖2, and |‖x‖| ≤ q0(x). This

means that the open balls defined by q0 are contained in the open balls defined by

the norm |‖.‖| on E0, and then (E0, q0) is a Hausdorff space. The proof of the fact

that (E0, q0) is not isomorphic to any normed space will be shown as a consequence

of the last result of this section.

Before to study the T2 separation axiom in asymmetric normed linear spaces, we

are going to give a simple characterization of the T1 separation axiom:
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Proposition 2.1 Let (X, q) be an asymmetric normed linear space and T (dq) the

topology generated by the quasi-metric dq. Then T (dq) is T1 if and only if q(y) 6= 0,

for each y ∈ X\{0}

Proof. Suppose that q(y) 6= 0 for every y ∈ X\{0}. Let x, y ∈ X such that

dq(x, y) = 0. Then q(x− y) = 0, so x = y. Conversely, suppose that T (dq) is T1 and

let y ∈ X\{0}. Then dq(0, y) > 0, i.e. q(y) > 0. �

Definition 2.1 Let (X, q) be an asymmetric normed linear space. We define the

function ‖.‖q : X → R
+ by the formula

‖x‖q := infx1∈X{q(x1) + q(x1 − x)}, x ∈ X.

Lemma 2.1 ‖.‖q is a seminorm on X. Moreover, it is the supremum of all semi-

norms p that satisfy

p(x) ≤ q(x), x ∈ X.

Proof. First we define on X the function φ0(x) = min{q(x), q(−x)}. φ0(.) is homo-

geneous, since for every x ∈ X and a ∈ R,

φ0(ax) = min{q(ax), q(−ax)} = min{aq(x), aq(−x)} = aφ0(x),

if a is nonnegative, and

φ0(ax) = min{q((−a)(−x)), q((−a)x)} = (−a)φ0(x),

if a is negative. In particular, φ0(x) = φ0(−x) for every x ∈ X.

Now let us consider the convexification φ of the function φ0 in X, which is defined

by
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φ(x) = inf{
n∑
i=1

φ0(xi) : x =
n∑
i=1

xi}.

It can be easily checked that φ is a seminorm on X. Moreover, a direct conse-

quence of its definition is that φ is the supremum seminorm p satisfying p(x) ≤ q(x)

for every x ∈ X. Therefore we just need to prove that φ = ‖.‖q.

Let x ∈ X and ε > 0 and consider a representation x =
∑n

i=1 xi of x such that

n∑
i=1

φ0(xi) ≤ φ(x) + ε.

Let us define the sets S+ = {x ∈ X : q(x) ≤ q(−x)} and S− = {x ∈ X : q(−x) <

q(x)}. Note that either S+ or S− can be an empty set. Then there is a natural

number k, 1 ≤ k ≤ n such that, without loss of generality, we can order the elements

{xi : i = 1, ..., n} of the above representation of x as follows,

x1, ..., xk ∈ S+, xk+1, ..., xn ∈ S−.

Then, if we denote by xε the sum
∑k

i=1 xi we obtain

φ(x) + ε ≥
k∑
i=1

q(xi) +
n∑

i=k+1

q(−xi) ≥ q(
k∑
i=1

xi) + q(−
n∑

i=k+1

xi) ≥

≥ q(xε) + q(xε − x) ≥ ‖x‖q.

This proves that φ(x) ≥ ‖x‖q for every x ∈ X. For the converse take an element

x ∈ X. For each x1 ∈ X we obtain

q(x1) + q(x1 − x) ≥ φ0(x1) + φ0(x− x1) ≥ φ(x),
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since x1 and x− x1 obviously define a particular representation of x. Then ‖x‖q ≥
φ(x) for every x ∈ X. This concludes the proof. �

Theorem 2.1 Let (X, q) be an asymmetric normed linear space. The following

statements are equivalent:

1) ‖.‖q is a norm on X.

2) (X, q) is a Hausdorff space.

3) (X, q−1) is a Hausdorf space.

Proof. 2)→ 1). By Lemma 2.1, we just need to prove that ‖x‖q = 0 implies x = 0.

If ‖x‖q = 0, there is a sequence (xn)n∈N in X such that

q(xn) + q(xn − x) <
1

n

for all n ∈ N. Then limn→∞ q(xn) = 0 and limn→∞ q(xn− x) = 0, which means that

x and 0 are limits of the sequence (xn)n∈N. Since the space (X, q) is Hausdorff, the

limit of each sequence is unique, and then x = 0.

1) → 2). Let x, y ∈ X, x 6= y. Since ‖.‖q is a norm, there exists an ε > 0 such

that ε < ‖x − y‖q. Consider the following basic neighbourhoods of x and y for the

topology generated by q on X,

V ε
2
(x) = {z ∈ X : q(z − x) <

ε

2
} , V ε

2
(y) = {z ∈ X : q(z − y) <

ε

2
}.

Then V ε
2
(x) ⊂ B

‖.‖q
ε
2

(x) and V ε
2
(y) ⊂ B

‖.‖q
ε
2

(y). Since B
‖.‖q
ε
2

(x) and B
‖.‖q
ε
2

(y) are

disjoint sets, V ε
2
(x) and V ε

2
(y) are disjoint too, and we obtain the result.

The equivalence of 2) and 3) is obvious.
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Remark 2.1 Note that the argument given in the proof of 1)→ 2), actually shows

that (X, q) is Hausdorff whenever ‖.‖ ≤ q for any norm ‖.‖ on X.

In our context, two asymmetric normed linear spaces (X, qX) and (Y, qY ) are

called isomorphic if there are a linear bijection T , T : (X, qX) → (Y, qY ) and two

positive constants K1 and K2 such that

K1qX(x) ≤ qY (T (x)) ≤ K2qX(x), x ∈ X.

Theorem 2.2 An asymmetric normed linear space (X, q) is isomorphic to a normed

linear space if and only if there is a constant K > 0 such that q(x) ≤ K‖x‖q for

every x ∈ X.

Proof. Suppose that there is a constant K > 0 that satisfies the above conditions.

First note that in this case qs(x) ≤ K‖x‖q for all x ∈ X, since ‖.‖q = ‖.‖q−1 . The

following inequalities hold for each x ∈ X,

q(x) ≤ qs(x) ≤ K‖x‖q ≤ Kq(x).

In particular, this implies that ‖.‖q is a norm since qs so is. To prove the isomorphy

it suffices to compare the neighbourhoods of zero defined by the norms qs, ‖.‖q and

the asymmetric norm q. Let ε > 0. The following inclusions are direct consequences

of the above inequalities and prove that (X, q), (X, ‖.‖q) and (X, qs) are isomorphic.

V ε
K

(0) ⊂ B
‖.‖q
ε
K

(0) ⊂ Bqs

ε (0).

It remains to show that if (X, q) is isomorphic to a normed space, then there is a

constant K such that the inequality q(x) ≤ K‖x‖q holds for every x ∈ X. If (X, q)

is isomorphic to the normed space (Y, ‖.‖) via a linear map i : Y → X, the formula

‖i(x)‖ induces a norm on X. Thus, it is sufficient to consider the case that there is

a norm ‖.‖ on X such that (X, q) and (X, ‖.‖) are isomorphic. In this case, there

are constants K1 and K2 such that
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K1B
‖.‖
1 (0) ⊂ V1(0) ⊂ K2B

‖.‖
1 (0).

We can directly conclude that for every x ∈ X the inequalities

K−1
2 ‖x‖ ≤ ‖x‖q ≤ q(x) ≤ K−1

1 ‖x‖

hold, since K−1
2 ‖.‖ is a norm and ‖.‖q is the supremum norm satisfying ‖x‖ ≤ q(x)

for all x ∈ X. We finally obtain the inequality q(x) ≤ K‖x‖q, for K = K−1
1 K2 and

for all x ∈ X. �

To finish this section, let us show that the space (E0, q0) given in Example 2.1

is not isomorphic to any normed space (E0, ‖.‖). Straightforward calculations show

that in this case ‖x‖q0 = ‖x∨ 0‖2 + ‖x∧ 0‖2, ‖.‖q0 is equivalent to ‖.‖2, and qs0(x) is

exactly ‖.‖1. The condition for (E0, q0) to be isomorphic to a normed space given in

the above theorem would imply that qs and ‖.‖q are equivalent. But this is not true,

since ‖.‖1 and ‖.‖2 are not equivalent in E0. Note that the construction provides

more examples of the same situation just by replacing the norms ‖.‖1 and ‖.‖2 by

‖.‖r and ‖.‖s respectively for any 1 ≤ r <∞ and 1 ≤ s <∞, r 6= s.

2.3 The canonical decomposition of an asymmet-

ric normed linear space

Let (X, q) be an asymmetric normed linear space. In this section we show that it is

always possible to find an asymmetric normed linear subspace (X0, q) of (X, q) which

is not Hausdorff and satisfies the following property: if X1 is a linear subspace of X

such that X1 ∩X0 = {0}, then (X1, q) is Hausdorff. In fact, we obtain a standard

procedure to describe -under reasonable conditions- an asymmetric normed linear

space as a direct sum of a Hausdorff subspace and a “purely non Hausdorff”subspace.

Definition 2.2 Let (X, q) an asymmetric normed linear space. We say that (X, q)
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is a purely non Hausdorff space if X = {0} or for every x ∈ X\{0} there is a

sequence (xn)n∈N in X that converges simultaneously to x and to 0.

An easy example of a purely non Hausdorff space is (R, u), where u(x) = x ∨ 0.

Another one is the linear lattice E0 given in Example 2.1 endowed with the

lattice asymmetric norm q(x) = ‖x ∨ 0‖2. If x ∈ X, it can be easily checked that

the constant sequence xn = x ∧ 0 satisfies that q(xn − x) = q(−(x ∨ 0)) = 0 and

q(xn) = 0 for every n. Obviously, if (X, q) is a non trivial Hausdorff space it is not

a purely non Hausdorff space. Example 2.1 provides then a space which does not

satisfy this property.

Definition 2.3 Let (X, q) be a asymmetric normed linear space. The kernel of the

seminorm ‖.‖q will be called the purely non Hausdorff kernel of (X, q), i.e.

Ker‖.‖q = {x ∈ X : ‖x‖q = 0}.

Obviously, (Ker‖.‖q, q) is a purely non Hausdorff asymmetric normed linear sub-

space of (X, q) (see 2)→ 1) in the proof of Theorem 2.1). It is clear that the purely

non Hausdorff kernel of a purely non Hausdorff asymmetric normed linear space

is the whole space, and is {0} when the space is Hausdorff. In other case, follow-

ing standard techniques of Functional Analysis we can consider the quotient normed

space (X/Ker‖.‖q, ‖.‖0
q), whose elements are the classes [x] = {y ∈ X : ‖x−y‖q = 0}

and the norm is defined by ‖[x]‖0
q := inf{‖z‖q : z ∈ [x]}.

The following lemma can be found without proof in Proposition 4.1 in [18].

Lemma 2.2 Let (X, q) and (Y, g) be asymmetric normed linear spaces. A linear

map f : (X, q)→ (Y, g) is continuous if and only in there is a constant K such that

g(f(x)) ≤ Kq(x) for every x ∈ X.

Proof. Let x ∈ X and consider the neighbourhood Vε(f(x)) = {y ∈ Y |g(y−f(x)) <

ε}. We just need to prove that the neighbourhood f(V ε
K

(x)) = {f(z)|q(z − x) <
ε
K
} ⊂ Vε(f(x)). But for every y = f(z) ∈ f(V ε

K
(x)), g(y − f(x)) = g(f(z − x)) ≤
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Kq(z−x) < K ε
K

= ε. This proves that the inequality gives a sufficient condition for

continuity. A similar argument for the neighbourhood V1(f(x)) proves the converse

implication. �

We can define the linear maps

i : (X, q)→ (X, ‖.‖q), by i(x) = x,

and

P : (X, ‖.‖q)→ (X/Ker‖.‖q, ‖.‖0
q), by P (x) = [x].

That they are continuous follows from the above lemma.

Proposition 2.2 Given an asymmetric normed linear space (X, q) we have:

1) (Ker‖.‖q, q) is a purely non Hausdorff closed subspace of (X, q).

2) Let X1 be a linear subspace of (X, q). Suppose that X1∩Ker‖.‖q = {0}. Then

(X1, q) is a Hausdorff space.

Proof. 1) {[0]} is a closed subset of (X/Ker‖.‖q, ‖.‖0
q) since it is a normed space.

It is easy to check that the linear maps i and P are continuous, and then (P ◦ i) is

continuous too. Thus (P ◦ i)−1([0]) = Ker‖.‖q is a closed subset of (X, q).

2) Consider two elements x, y ∈ X1, x 6= y. Then x − y does not belong to

Ker‖.‖q, and (P ◦ i)(x − y) 6= [0]. Thus ‖[x] − [y]‖0
q > 0, and we can find two dis-

joint balls of (X/Ker‖.‖q, ‖.‖0
q), B

‖.‖0q
ε ([x]) and B

‖.‖0q
ε ([y]). Since q(x) ≥ ‖[x]‖0

q and

q(y) ≥ ‖[y]‖0
q, the basic neighbourhoods Vε(x) and Vε(y) are disjoint. �

Let us define the function q0 : X/Ker‖.‖q → R
+ by q0([x]) := infz∈[x]q(z). Since

z ∈ [x] if and only if there is a t ∈ Ker‖.‖q such that x − t = z, we also have the

formula q0([x]) = inft∈Ker‖.‖qq(x− t).
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Proposition 2.3 (X/Ker‖.‖q, q0) is a Hausdorff asymmetric normed linear space.

Proof. It is clear that the function q0 defines an asymmetric norm on X/Ker‖.‖q. By

Remark 2.1 it is sufficient to prove that there is a norm ‖.‖ such that q0([x]) ≥ ‖[x]‖.
But obviously q0([x]) ≥ infz∈[x]‖z‖q = ‖[x]‖0

q. �

Note that for an asymmetric normed linear space (X, q) the set of continuous

linear maps f : (X, q) → (X, q) does not define a linear space in general. For

example, let us consider the identity map I : (X, q) → (X, q). It is obviously a

continuous linear map. However, the map−I defined by (−I)(x) = −x is continuous

if and only if q is equivalent to a norm, since q(−x) ≤ Kq(x) for all x ∈ X implies

q(−x) ≤ Kq(x) ≤ K2q(−x). Moreover, if f : X → X is a linear map, the condition

q(f(x)) ≤ K1q(x) does not imply q((I − f)(x)) ≤ K2q(x). An easy counterexample

is f(x) = 2x.

If X1 is linear subspace of X, a linear map Q : X → X1 is called a projection if

Q(x) = x for each x ∈ X1.

Definition 2.4 An asymmetric normed linear subspace (X1, q) of (X, q) is called

complemented if there is a continuous projection Q : X → X1 such that (I − Q) is

continuous too.

A consequence of Lemma 2.2 is that a subspace (X1, q) is complemented if and

only if there exists a projection Q : X → X1 and a constant K > 0 satisfying

max{Q(x), (I −Q)(x)} ≤ Kq(x) for every x ∈ X.

Theorem 2.3 Let (X, q) be an asymmetric normed linear space. Then the following

statements are equivalent:

1) (X, q) is isomorphic to a direct sum of the purely non Hausdorff subspace

(Ker‖.‖q, q) and a Hausdorff subspace (X0, q) which is isomorphic to the asymmetric

normed linear space (X/Ker‖.‖q, q0).

2) (Ker‖.‖q, q) is complemented.
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Proof. 1) → 2) is obvious. Let us show 2) → 1). There exist a projection Q and a

constant K such that max{Q(x), (I − Q)(x)} ≤ Kq(x) for every x ∈ X. Thus the

map (I − Q) : X → X is well defined and it is continuous. We will denote by X0

the subspace (I −Q)(X).

Let us show that we can factorize (I−Q) through the quotient space (X/Ker‖.‖q, q0).

The quotient map P : (X, q) → (X/Ker‖.‖q, q0) is continuous, since obviously

q0([x]) ≤ q(x) for every x ∈ X.

Now, note that Ker‖.‖q = Ker(I − Q). If x ∈ Ker‖.‖q, then Q(x) = x. Thus

x−Q(x) = (I−Q)(x) = 0, and x ∈ Ker(I−Q). On the other hand, if x−Q(x) = 0,

Q(x) = x and then x ∈ Ker‖.‖q. We define the linear map S : (X/Ker‖.‖q, q0) →
(X0, q) by S([x]) = (I −Q)(x). In fact, it is well defined since, if y ∈ [x], there is an

element t ∈ Ker‖.‖q such that y − x = t, and then (I − Q)(y) = (I − Q)(t + x) =

t−Q(t) + (I −Q)(x) = (I −Q)(x).

To prove that S is continuous, consider an element [x] ∈ X/Ker‖.‖q. We show

that q(S([x])) ≤ Kq0([x]). Take t ∈ Ker‖.‖q. Since q(x − Q(x)) ≤ Kq(x) and

Q(t) = t the following inequalities hold.

q(x−Q(x)) = q(x− t−Q(x) +Q(t))) = q((x− t)−Q(x− t)) ≤ Kq(x− t).

Therefore, q(S([x])) = q(x−Q(x)) ≤ Kinft∈Ker‖.‖qq(x−t) = Kq0([x]). Moreover,

since Q(x) ∈ Ker‖.‖q we get q0([x]) ≤ q(S([x])). S is an injection, since S([x]) =

S([y]) implies x − y = Q(x − y) ∈ Ker‖.‖q, and then [x] = [y]. Thus, S defines an

isomorphism between (X/Ker‖.‖q, q0) and an asymmetric normed linear subspace

(X0, q) of (X, q). Then (X0, q) is a Hausdorff space by Proposition 2.3.

Let us consider the product space X0 × Ker‖.‖q endowed with the asymmetric

norm q1(x0, x1) = q(x0) + q(x1). We just need to show that the map f : (X, q) →
(X0 × Ker‖.‖q, q1) defined by f(x) = ((I − Q)(x), Q(x)) is an isomorphism. We

have the following inequalities.

q(x) ≤ q((I −Q)(x)) + q(Q(x)) = q1(f(x)) ≤ 2Kq(x), x ∈ X.
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Moreover, if f(x) = f(y), we obtain that x−Q(x) = y−Q(y) and Q(x) = Q(y).

Then x = y and the map f is an injection. Since it is surjective by the definition of

Q, we get the result. �

Let us finish this chapter with an easy example of the above canonical decompo-

sition. Consider the linear lattice R4. Let {ei}4
i=1 denote the set of vectors of the

canonical basis of R4. Consider the asymmetric norm

q(
4∑
i=1

λiei) = ‖(
4∑
i=1

λiei) ∨ 0‖2 + ‖(λ1e1 + λ2e2) ∧ 0‖1.

Theorem 2.3 can be applied to the asymmetric normed linear space (R4, q). In this

case, Ker‖.‖q = span{e3, e4}, the purely non Hausdorff asymmetric normed kernel is

(span{e3, e4}, ‖(λ3e3 +λ4e4)∨0‖2) and the projection is Q(
∑4

i=1 λiei) = λ3e3 +λ4e4.

The quotient (R4/Ker‖.‖q, q0) is isomorphic to the asymmetric normed linear space

span{e1, e2} endowed with the asymmetric norm

q∗(λ1e1 + λ2e2) = ‖(λ1e1 + λ2e2) ∨ 0‖2 + ‖(λ1e1 + λ2e2) ∧ 0‖1.

The direct sum of span{e1, e2} and span{e3, e4} with the corresponding asym-

metric norm

q̃(
4∑
i=1

λiei) = q∗(λ1e1 + λ2e2) + ‖(λ3e3 + λ4e4) ∨ 0‖2,

is clearly isomorphic to (R4, q).
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Chapter 3

The bicompletion of an

asymmetric normed linear space

3.1 Introduction

The main purpose of this chapter is to obtain a satisfactory theory of bicompletion

for asymmetric normed linear spaces. Although our study should be seen as a new

contribution to the development of the theory of asymmetric norms (compare [18],

[3], [4], [13] , [38]), actually it is motivated, in great part, for the recent applications

of these structures to the analysis of the so-called dual complexity space ( [43], [44],

[46]). Furthermore, the dual complexity space is a (semilinear) subspace of a certain

biBanach space (see Example 3.2 in Section 3.2).

See [12], [19] and [50] for a general theory of bicompletion. The main results of

this chapter have been published in [21].

Let (X, q) be an asymmetric normed linear space. Let us recall that the asym-

metric norm q induces, in a natural way, a quasi-metric dq on X, defined by

dq(x, y) = q(y − x) for all x, y ∈ X. If the quasi-metric dq is bicomplete, we say

that (X, q) is a biBanach space.
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The following is a first simple but useful instance of a biBanach space (see also

Example 3.2 in Section 3.2).

Example 3.1 Let (R,+, ·) be the (usual) Euclidean linear space. For each x ∈ R
define u(x) = x ∨ 0. Then u is an asymmetric norm on R such that us is the

Euclidean norm. Therefore (R, u) is a biBanach space.

3.2 The bicompletion

Definition 3.1 An isometric isomorphism from an asymmetric normed linear space

(X, qX) to an asymmetric normed linear space (Y, qY ) is a linear map f : X → Y

such that qY (f(x)) = qX(x) for all x ∈ X.

Note that if f is an isometric isomorphism from the asymmetric normed linear

space (X, qX) to the asymmetric normed linear space (Y, qY ), then f is an isomet-

ric isomorphism from the normed linear space (X, qsX) to the normed linear space

(Y, qsY ) and hence f is injective.

Definition 3.2 Two asymmetric normed linear spaces (X, qX) and (Y, qY ) are said

to be isometrically isomorphic if there is an isometric isomorphism from X onto Y.

Definition 3.3 Let (X, q) be an asymmetric normed linear space. We say that a

biBanach space (Y, qY ) is a bicompletion of (X, q) if (X, q) is isometrically isomor-

phic to a subspace of (Y, qY ) that is dense in the Banach space (Y, qsY ).

We will prove that each asymmetric normed linear space (X, q) has a bicomple-

tion (X̃, q̃) such that any bicompletion of (X, q) is isometrically isomorphic to (X̃, q̃).
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Thus the biBanach space (X̃, q̃) will be called the bicompletion of (X, q). Further-

more (X̃, q̃) provides the standard completion of (X, q) when (X, q) is a normed

linear space.

Let (X, q) be an asymmetric normed linear space. Denote by X̂ the set of all

Cauchy sequences in the normed linear space (X, qs).

Define an equivalence relation R on X̂ as follows: For each x := (xn)n∈N and

y := (yn)n∈N in X̂ put

xRy ⇔ limn→∞ q
s(xn − yn) = 0.

Denote by X̃ the quotient X̂/R. Thus X̃ = {[x] : x ∈ X̂}, where as usual

[x] = {y ∈ X̂ : xRy} for all x ∈ X̂.

For each x := (xn)n∈N and y := (yn)n∈N in X̂ and each a ∈ R define

x+y = (xn+yn)n∈N, a ·x = (axn)n∈N, [x]+[y] = [x+y] and a · [x] = [a ·x].

Then we have the following result whose straightforward and essentially known

proof is omitted.

Lemma 3.1 Let (X, q) be an asymmetric normed linear space. Then (X̃,+, ·) is a

linear space.

Let (X, q) be an asymmetric normed linear space. For each x := (xn)n∈N in X̂,

let

q̃([x]) = limn→∞ q(xn).

We first observe that if y ∈ [x], then q̃([x]) = q̃([y]). Indeed, q̃([x]) = limn→∞ q(xn) ≤
limn→∞ q(xn − yn) + limn→∞ q(yn). Since limn→∞ q(xn − yn) = 0, it follows that

q̃([x]) ≤ q̃([y]). Similarly we show that q̃([y]) ≤ q̃([x]).
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Next we observe that q̃([x]) is a nonnegative real number. Indeed, since (xn)n∈N is

a Cauchy sequence in (X, qs), for each ε > 0 there is n0 ∈ N such that q(xn−xm) < ε

for all n,m ≥ n0, so q(xn) − q(xm) < ε for all n,m ≥ n0, and thus (q(xn))n∈N is a

Cauchy sequence in R+. Consequently limn→∞ q(xn) exists and is finite.

Therefore we may define a function q̃ : X̃ → R
+ given by q̃([x]) = limn→∞ q(xn)

for all x ∈ X̂. We will show that actually q̃ is an asymmetric norm on X̃ such that

(X̃, q̃) is a biBanach space.

Lemma 3.2 Let (X, q) be an asymmetric normed linear space. Then the following

statements hold:

(1) q̃ is an asymmetric norm on X̃.

(2) (X̃, q̃) is a biBanach space.

(3) (X, q) is isometrically isomorphic to a subspace of (X̃, q̃) that is dense is the

Banach space (X̃, (q̃)s).

Proof. (1): As we have observed above q̃ is a nonnegative real valued function on

X̃.

Let x := (xn)n∈N be an element of X̂ such that q̃([x]) = q̃(−[x]) = 0. Then

limn→∞ q(xn) = limn→∞ q(−xn) = 0, so limn→∞ q
s(xn) = 0, and hence [x] = [0].

Now let x := (xn)n∈N be an element of X̂ and let a ∈ R+. Then q̃(a · [x]) =

q̃([a · x]) = limn→∞ q(axn) = a limn→∞ q(xn) = aq̃([x]).

Finally let x := (xn)n∈N and y := (yn)n∈N bet two elements of X̂. Then q̃([x] +

[y]) = q̃([x+y]) = limn→∞ q(xn+yn) ≤ limn→∞ q(xn)+limn→∞ q(yn) = q̃([x])+q̃([y]).

We have shown that q̃ is an asymmetric norm on X̃.

(2): It is well known (see [12], [50]) that the bicompletion of the quasi-metric space

(X, dq) is the quasi-metric space (Xb, dbq), where Xb = {[x] : x is a Cauchy sequence

in the metric space (X, (dq)
s)}, dbq([x], [y]) = limn→∞ dq(xn, yn) for all [x], [y] ∈ Xb,
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and for each Cauchy sequence x := (xn)n∈N in (X, (dq)
s), [x] = {y := (yn)n∈N : y is

a Cauchy sequence in (X, (dq)
s) and limn→∞(dq)

s(xn, yn) = 0}.

It immediately follows that Xb = X̃ and dbq = dq̃ on X̃. Therefore (X̃, q̃) is a

biBanach space.

(3): For each x ∈ X denote by x̂ the constant sequence x, x, ..., x, ..

Since (Xb, dbq) is the bicompletion of (X, dq), i(X) is dense in (X̃, (q̃)s), where i

denotes the map from X into X̃ defined by i(x) = [x̂] for all x ∈ X (recall that for

each x ∈ X, [x̂] consists of all sequences in X which converges to x in the normed

linear space (X, qs)).

Since for each x ∈ X, q̃(i(x)) = q̃([x]) = q(x), in order to show that (X, q) is

isometrically isomorphic to (i(X), q̃ |i(X)) it remains to see that i is linear. Indeed,

given x, y ∈ X and a, b ∈ R, we have i(ax + by) = [âx+ by] = [a · x̂ + b · ŷ] =

a · [x̂] + b · [ŷ] = a · i(x) + b · i(y).

The proof is complete.�

Lemma 3.3 Let (X, qX) be an asymmetric normed linear space and (Y, qY ) a

biBanach space. If there is an isometric isomorphism f from a linear subspace

A of X to Y and A is dense in the normed linear space (X, qsX), then f has a unique

isometric isomorphism extension to X.

Proof. For each x ∈ X\A pick a sequence (xn)n∈N in A such that limn→∞ q
s
X(x−

xn) = 0. Since the sequence (xn)n∈N associated to x ∈ X\A, is a Cauchy sequence

in the normed linear space (X, qsX), (f(xn))n∈N is a Cauchy sequence in the Banach

space (Y, qsY ), so it converges to a point x∗ ∈ Y .

Define f ∗ : X → Y by f ∗(x) = f(x) for all x ∈ A and f ∗(x) = x∗ for all x ∈ X\A.

Observe that the definition of f ∗ is independent of the choice of sequences (xn)n∈N.

Indeed, if (xn)n∈N and (yn)n∈N are sequences in A that converge to a point x ∈ X\A
with respect to the norm qsX , and denote by x∗ and y∗ the limit points in (Y, qsY ) of
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(f(xn))n∈N and (f(yn))n∈N, respectively, we deduce that limn→∞ q
s
Y (f(xn)−f(yn)) =

0, since f is an isometric isomorphism on A and limn→∞ q
s
X(xn − yn) = 0. So, by

the triangle inequality, x∗ = y∗.

Next we show that f ∗ is an isometric isomorphism on X. Let x ∈ A. Then

qY (f ∗(x)) = qY (f(x)) = qX(x). Now let x ∈ X\A. Let (xn)n∈N be a sequence in

A such that limn→∞ q
s
X(x − xn) = 0. Then, for each ε > 0, qY (f ∗(x)) = qY (x∗) ≤

qY (f(xn))+ε = qX(xn)+ε eventually. Therefore, for each ε > 0, qY (f ∗(x)) < qX(x)+

2ε. Similarly we show that for each ε > 0, qX(x) < qY (f ∗(x)) + 2ε. Consequently

qY (f ∗(x)) = qX(x) for all x ∈ X.

Furthermore f ∗ is linear on X. Let x, y ∈ X and a, b ∈ R. We only consider

the case that x, y ∈ X\A (recall that f is linear on A). Let (xn)n∈N and (yn)n∈N
be sequences in A that converge to x and y respectively in the normed linear space

(X, qsX). Then (axn+byn)n∈N converges to ax+by with respect to qsX , so by definition

of f ∗, (f(axn+byn))n∈N converges to f ∗(ax+by) with respect to qsY . Since f is linear

on A, the sequence (af(xn) + bf(yn))n∈N converges to f ∗(ax + by) with respect

to qsY . On the other hand, by definition of f ∗, (f(xn))n∈N converges to f ∗(x) and

(f(yn))n∈N converges to f ∗(y) with respect to qsY . So ((af(xn)+bf(yn))n∈N converges

to af ∗(x) + bf ∗(y) with respect to qsY . Therefore f ∗(ax+ by) = af ∗(x) + bf ∗(y). We

conclude that f ∗ is linear on X.

Finally, suppose that f ′ is another isometric isomorphism extension of f to X.

Let x ∈ X\A and let (xn)n∈N be a sequence in A that converges to x with respect

to qsX . Then

limn→∞(qsY (f ∗(x)− f ∗(xn)) = limn→∞(qsY (f ′(x)− f ′(xn)) = 0.

Since f ∗(xn) = f ′(xn) = f(xn) for all n ∈ N, it follows that f ∗(x) = f ′(x). So f ∗

is unique.�

Lemma 3.4 Any bicompletion of an asymmetric normed linear space (X, q) is iso-

metrically isomorphic to (X̃, q̃).

Proof. Let (Y, qY ) be a bicompletion of (X, q). Since X is dense in the Banach
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space (Y, qsY ) and by Lemma 3.2 (3), there is an isometric isomorphism f from (X, q)

to (X̃, q̃), it follows from Lemma 3.3 that f has a (unique) isometric isomorphism

extension f ∗ to (Y, qY ). It remains to show that f ∗ : Y → X̃ is an onto map. Actu-

ally, this fact follows from standard arguments. Indeed, let x be an arbitrary point

of X̃. Since f(X) is dense in (X̃, (q̃)s), there is a sequence (xn)n∈N in X such that

(q̃(x− f(xn)))s → 0. Thus (f(xn))n∈N is a Cauchy sequence in (X̃, (q̃)s). Since f ∗ is

an isometric isomorphism, (xn)n∈N is a Cauchy sequence in (Y, qsY ). Let y ∈ Y such

that qsY (y − xn)→ 0. Then (q̃(f ∗(y)− f ∗(xn)))s → 0, so f ∗(y) = x. This completes

the proof.�

From the above lemmas we immediately deduce the following

Theorem 3.1 Each asymmetric normed linear space (X, q) has a unique bicom-

pletion (up to isometric isomorphism). Moreover if (X, q) is a normed linear space,

then its bicompletion is the standard completion of (X, q).

An application of Theorem 2.1 which is related to the bicompletion of a Hausdorff

asymmetric normed linear space is given in Proposition 3.1 below.

It must be keep in mind Definition 2.1 as well as the results of Lemma 2.1 and

Theorem 2.1. Let us recall that if (X, q) is an asymmetric normed linear space, ‖ ·‖q
is defined by:

‖x‖q := infx1∈X{q(x1) + q(x1 − x)}, x ∈ X.

Proposition 3.1 The bicompletion of a Hausdorff asymmetric normed linear space

is Hausdorff.

Proof. Let (X, q) be a Hausdorff asymmetric normed linear space. Denote by

(X̃, q̃) the bicompletion of (X, q) and by (X̃‖.‖q , ‖.‖
∼
q ) the completion of the normed

space (X, ‖.‖q) (see Theorem 2.1).

Since, by Lemma 2.1, ‖x‖q ≤ q(x) for all x ∈ X, then every Cauchy sequence in

(X, qs) is a Cauchy sequence in (X, ‖.‖q), so X̃ ⊆ X̃‖.‖q .Therefore (X̃, ‖.‖∼q |X̃) is a

normed subspace of (X̃‖.‖q , ‖.‖
∼
q ).
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Since ‖x‖∼q = limn→∞ ‖xn‖q for all x := [(xn)n∈N] ∈ X̃‖.‖q and q̃(x) = limn→∞ q(xn)

for all x := [(xn)n∈N] ∈ X̃, it follows that ‖x‖∼q ≤ q̃(x) whenever x ∈ X̃. Conse-

quently the topology induced on X̃ by q̃ is a Hausdorff topology by Remark 2.1.

This completes the proof. �

We finish the chapter by applying Theorem 3.1 to the dual complexity space.

The notation and terminology in the following example correspond to the ones used

in Chapter 8.

Example 3.2 The dual complexity space ([44]) is the pair (C∗, dC∗), where

C∗ = {f ∈ [0,∞)ω :
∑∞

n=0 2−nf(n) <∞},

and dC∗ is the quasi-metric defined on C∗ × C∗ by

dC∗(f, g) =
∑∞

n=0 2−n[(g(n)− f(n)) ∨ 0].

It is shown in [46] (see also [43]) that C∗ is the positive cone of the biBanach

space (B∗, q), where B∗ = {f ∈ Rω :
∑∞

n=0 2−n | f(n) |< ∞}, the operations +

and · (product by a real scalar) are defined in the usual pointwise way, and q is the

asymmetric norm defined on B∗ by q(f) =
∑∞

n=0 2−n(f(n) ∨ 0) for all f ∈ B∗.

On the other hand, denote, as usual, by l1 the set of infinite sequences x : =

(xn)n∈ω of real numbers such that
∑∞

n=0 | xn |<∞.

It is well known that (l1, ‖ . ‖1) is a Banach space, where ‖ . ‖1 is the norm on l1
defined by ‖ x ‖1=

∑∞
n=0 | xn | for all x ∈l1.

We will split the norm ‖ . ‖1 as follows:

For each x ∈ R, let x+ be the nonnegative real number x ∨ 0. For each x : =

(xn)n∈ω ∈ l1 define x+ := (x+
n )n∈ω and q(x)+ = ‖x+‖1 , i.e. q(x)+ =

∑∞
n=0(x+

n ).
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It is immediate to show that q+ is an asymmetric norm on l1 such that the norm

(q+)s is equivalent to ‖ . ‖1. Furthermore (B∗, q) and (l1, q+) are isometrically

isomorphic.

Now let D = {f ∈ B∗ : f is eventually constant}.

Clearly (D,+, ·) is a linear subspace of (B∗,+, ·). So (D, q | D) is an asymmetric

normed linear space. Moreover D is dense in (B∗, qs). Indeed, given g ∈ B∗ and

ε > 0 there is nε ∈ N such that
∑∞

n=nε
2−n | g(n) |< ε/2. Let f ∈ D defined by

f(n) = g(n) for n = 0, ..., nε − 1, and f(n) = ε/2 for n ≥ nε. Then

∑∞
n=0 2−n | g(n)− f(n) |=

∑∞
n=nε

2−n | g(n)− f(n) |≤

∑∞
n=nε

2−n | g(n) | +
∑∞

n=nε
2−n | f(n) |< ε.

We conclude that D is dense in the Banach space (B∗, (q)s). By the above theorem

(B∗, q) is the bicompletion of (D, q | D).

In particular, let D+ = {f ∈ D : f(n) ≥ 0 for all n ∈ ω}. Thus D+ is the positive

cone of D. Since the dual complexity space C∗ is closed in the complete metric space

(B∗, (dq)s) and (B∗, dq) is bicomplete, (C∗, dq |C∗) is a bicomplete quasi-metric space

([44]), which is clearly the bicompletion of (D+, dq |D∗).
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Chapter 4

Compactness and finite dimension

in asymmetric normed linear

spaces

4.1 Introduction

The aim of this chapter is to extend the results about compact sets on finite dimen-

sional normed spaces to the case of asymmetric normed linear spaces. In Section

4.2 we introduce the set theoretical arguments that allows to a general description

of compact sets of an asymmetric normed linear space. In Section 4.3, we focus

our attention in the finite dimensional case to reproduce the classical results of the

normed spaces theory. In particular, we prove that a T1 asymmetric normed linear

space is finite dimensional if and only if the unit ball is compact for the topology

generated by the asymmetric norm q (Theorem 4.2). Following the terminology

given in Chapter 1, we denote by V1,≤ the unit ball in the asymmetric normed linear

space (X, q) and B1,≤ the unit ball in the normed linear space (X, qs), this will be

done via the compactness of V1,≤ in the supremum norm qs. In fact, we will prove

the equivalence between T1 separation axiom and normability in the case of finite

dimensional asymmetric normed linear spaces and thus between T1 and T2 separa-

tion axioms. The T2 separation axiom in the general case of asymmetric normed
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linear spaces has been studied in [22]. We also prove that the Heine-Borel Theorem

characterizes finite dimensional asymmetric normed linear spaces that satisfies the

T2 axiom (Theorem 4.3). The general situation for nonnecessarily T1-spaces is also

explored.

Basic references about quasi-metrics and asymmetric norms are [4],[18], [42], [44]

and [50]. We use standard notation. Definitions and results on general topology can

be found in [11].

4.2 Compact sets in asymmetric normed linear

spaces

In this section we describe the compact sets of any asymmetric normed linear space.

In particular, given a compact set in (X, qs), we give a way to construct compact

sets in X for the topology generated by q.

Definition 4.1 Let (X, q) be an asymmetric normed linear space and x ∈ X. We

define the set θ(x) as:

θ(x) = {z ∈ X : dq(x, z) = q(z − x) = 0}.

In particular

θ(0) = {z ∈ X : dq(0, z) = q(z) = 0}.

Observe that θ(x) is the closure of {x} in (X, q−1).

Lemma 4.1 Given a subset A of an asymmetric normed linear space (X, q), we

have that

⋃
x∈A

θ(x) = A+ θ(0),
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where

A+ θ(0) = {z ∈ X : z = x+ y, x ∈ A and y ∈ θ(0)}.

Proof. Let z ∈
⋃
x∈A θ(x). Then there exists an x ∈ A such that q(z − x) = 0.

This implies that z− x = y, y ∈ θ(0) and then we can express z as z = x+ y. Thus⋃
x∈A θ(x) ⊂ A+ θ(0).

Now, let w ∈ A+ θ(0). Then there exists an x ∈ A and an element y ∈ θ(0) such

that w = x + y and also w − x = y. Then q(w − x) = q(y) = 0, so w ∈ θ(x) and

w ∈
⋃
x∈A θ(x). This implies that A+ θ(0) ⊂

⋃
x∈A θ(x). �

Lemma 4.2 Let (X, q) be an asymmetric normed linear space and x ∈ X. Then

Vε(x) = Vε(x) + θ(0).

Proof. Vε(x) ⊂ Vε(x) + θ(0) since 0 ∈ θ(0) and every x ∈ Vε(x) can be written as

x = x+ 0.

Let z ∈ Vε(x) + θ(0). Then there exists an y ∈ Vε(x) and w ∈ θ(0) such that

z = y + w. Then

q(z − x) = q(y + w − x) ≤ q(y − x) + q(w) < ε+ 0 = ε.

As a consequence, z ∈ Vε(x) and Vε(x) + θ(0) ⊂ Vε(x). �

Lemma 4.3 Let (X, q) be an asymmetric normed linear space and A ⊂ X an open

set. Then

A = A+ θ(0).
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Proof. It is obvious that A ⊂ A+ θ(0).

Let z ∈ A+ θ(0). Then we can express z as z = x+ y where x is in A and y is an

element of θ(0). Since A is an open set, there exists an ε > 0 such that Vε(x) ⊂ A.

Taking into account that by Lemma 4.2 Vε(x) = Vε(x) + θ(0), we conclude that z is

in A. �

Lemma 4.4 Given a family {Ai : i ∈ I} of sets in (X, q), then

⋃
i∈I

(Ai + θ(0)) =

(⋃
i∈I

Ai

)
+ θ(0).

Proof. If x ∈
⋃
i∈I(Ai+θ(0)), there exists some i ∈ I satisfying that x ∈ Ai+θ(0),

then x = xi + z with xi ∈ Ai and z ∈ θ(0). Thus xi ∈
⋃
i∈I Ai and x is in(⋃

i∈I Ai
)

+ θ(0).

If x ∈
(⋃

i∈I Ai
)

+ θ(0) there exists an xi ∈ Ai and z ∈ θ(0) such that x = xi + z

and then x is in
⋃
i∈I(Ai + θ(0)). �

Let (X, q) an asymmetric normed linear space endowed with the topology T (dq)

generated by q. A subset M ⊂ X is said to be compact if it is compact considered

as a subspace of X with the induced topology, that is, M is compact with respect

to the topology T (dq)|M .

Proposition 4.1 Let (X, q) be an asymmetric normed linear space and K ⊂ X.

Then K is compact respect to the topology generated by q if and only if K + θ(0) is

compact for the same topology.

Proof. We first prove the part “if”. Let be {Ai : i ∈ I} an open cover of K. By

Lemma 4.3 we have that

Ai = Ai + θ(0).
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Then by Lemma 4.4

K + θ(0) ⊂
⋃
i∈I

Ai + θ(0).

Since K is compact, there exists a finite subcover of K, {Aj : j ∈ J ⊂ I, J finite}
such that K ⊂

⋃
j∈J Aj. Then applying Lemma 4.4 we obtain that K + θ(0) ⊂⋃

j∈J(Aj + θ(0)). This implies that K + θ(0) admits a finite subcover {Aj + θ(0) :

j ∈ J ⊂ I, J finite} and thus K + θ(0) is a compact set.

Conversely, if K+θ(0) is compact, given an open cover of the set K, {Ai : i ∈ I},
the family {Ai + θ(0) : i ∈ I} is an open cover of K + θ(0) and this set admits a

finite subcover {Aj + θ(0) : j ∈ J ⊂ I, J finite}. Then by Lemma 4.4, K + θ(0) ⊂⋃
j∈J Aj + θ(0) that implies K ⊂

⋃
j∈J Aj and thus {Aj : j ∈ J ⊂ I, J finite} is a

subcover of K obtained from the open cover {Ai : i ∈ I}. Hence, K is compact. �

Corollary 4.1 Given a subset K0 such that K0 ⊂ K+θ(0), if K+θ(0) is a compact

set and K0 + θ(0) = K + θ(0) then K0 is also compact.

Note that if K is a compact set in (X, qs), then K + θ(0) is a compact set in

(X, q).

4.3 Compactness and finite dimension

Let us recall the following well known result.

Lemma 4.5 Let (X, ‖ · ‖) be a finite dimensional normed linear space, with base

{e1, e2, . . . , en}. Then, a sequence (xk)k∈N in X converges to x = λ1e1 +λ2e2 + . . .+

λnen if and only if the i-co-ordinate sequence of (xk)k∈N converges to λi, with respect

to the Euclidean norm, i = 1, . . . , n.

We generalize this classical result to asymmetric normed linear spaces as follows.
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Theorem 4.1 Let (X, q) be a finite dimensional T1 asymmetric normed linear space,

with base {e1, e2, . . . , en}. Then, a sequence (xk)k∈N in X converges to x = λ1e1 +

λ2e2 + . . .+λnen with respect to q if and only if the i-co-ordinate sequence of (xk)k∈N
converges to λi, with respect to the Euclidean norm, i = 1, . . . , n.

Proof. First suppose that the i-co-ordinate sequence of (xk)k∈N converges to λi,

with respect to the Euclidean norm, i = 1, . . . , n. Given a positive real number

M > 0 and an ε > 0 there is a ki0 such that when k ≥ ki0 then

|(xk)i − λi| <
ε

nM
.

Let k0 = max{ki0 : i = 1, . . . , n}. Then, if k ≥ k0,

q(xk − x) ≤
n∑
i=1

q((xk)i − λi) ≤
n∑
i=1

qs((xk)i − λi) ≤
n∑
i=1

M |(xk)i − λi| ≤ ε.

where we have used the fact that qs is a norm equivalent to the Euclidean norm

with constant M .

Suppose now that (xk)k∈N is a sequence in X that converges to 0 with respect to

q (if (xk)k∈N converges to x respect to q, the sequence (xk − x)k∈N converges to 0),

but for some n0 ∈ 1, . . . , n the co-ordinate sequence ((λk)n0)k∈N is not convergent to

0 with respect to the Euclidean norm, where

xk = (λk)1e1 + (λk)2e2 + . . .+ (λk)nen.

for each k ∈ N.

We may assume that there is a constant r > 0 such that |(λk)n0 | > r for all k ∈ N.

For each k ∈ N put Mk = max{|(λk)i : i = 1, . . . , n}. Define a sequence (yk)k∈N
by yk = xk/Mk for all k ∈ N. Then
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q(yk) =
q(xk)

Mk

<
q(xk)

r
,

for all k ∈ N, so (yk)k∈N converges to 0 with respect to q.

Now observe that there exists a co-ordinate sequence of (yk)k∈N that has a co-

ordinate subsequence which consists only of terms −1 or 1. Denote this subsequence

by ((λkj)m)j∈N where m ∈ {1, . . . , n}. Consider the corresponding subsequence

(ykj)j∈N of (yk)k∈N and its first co-ordinate sequence ((λkj)1)j∈N. Then ((λkj)1)j∈N has

a convergent subsequence. Continuing this process to the n-th co-ordinate sequence,

we obtain a subsequence (ykl)l∈N of (yk)k∈N which has each co-ordinate sequence

convergent since the m-th co-ordinate subsequence consists only of terms −1 or 1.

So by the preceding lemma (ykl)l∈N converges to a point y 6= 0 with respect to the

norm qs. Since q(y) ≤ q(y − ykl) + q(ykl) for all l ∈ N, it follows that q(y) = 0 so

y = 0, a contradiction.

We conclude that each co-ordinate sequence ((λk)i)k∈N converges for i = 1, . . . , n.

Finally, if the sequence (xk)k∈N converges to x with respect to q, then the se-

quence (xk − x)k∈N converges to 0 with respect to q. So the i-co-ordinate sequence

((xk)i − (x)i)k∈N converges to 0. Hence the i-co-ordinate sequence ((xk)i)k∈N con-

verges to the i-co-ordinate (x)i. This concludes the proof. �

Definition 4.2 An asymmetric normed linear space (X, q) is called normable if

there is a norm ‖.‖ on the linear space X such that the topologies T (dq) and T (d‖.‖)

coincide on X.

Corollary 4.2 Let (X, q) be a finite dimensional T1 asymmetric normed linear

space. Then (X, q) is normable by the norm qs.

Proof. Let (xk)k∈N be a sequence in X that converges to a point x with respect

to q. By Theorem 4.1 and Lemma 4.5, (xk)k∈N converges to x with respect to the

norm qs. �
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In particular observe that, because of Corollary 4.2, the T1 separation axiom

implies the T2 separation axiom in the finite dimensional case.

Theorem 4.2 The unit ball of a T1 asymmetric normed linear space (X, q) is com-

pact if and only if (X, q) is finite dimensional.

Proof. Suppose firstly that V1,≤ is a compact set of (X, q). Then V1,≤ is compact

in (X, qs) by the preceding corollary. Since B1,≤ ⊂ V1,≤ and B1,≤ is closed in (X, qs)

it follows that B1,≤ is compact in (X, qs). Hence (X, qs), and thus (X, q), are finite

dimensional.

Conversely, let {e1, e2, . . . , en} be a base of (X, q). For each x ∈ X set

x = λ1(x)e1 + λ2(x)e2 + . . .+ λn(x)en.

Thus we have defined n functions λi : X −→ R, which are clearly linear functions

on X.

By Theorem 4.1, each λi is continuous from (X, q) to R endowed with the Eu-

clidean norm, so there exist n constants Mi > 0,Mi ∈ R, i = 1, . . . , n such that

|λi(x)| ≤Miq(x), i = 1, . . . , n, for all x ∈ X.

Now let (xk)k∈N be a sequence in V1,≤. Then |λi(xk)| ≤ Mi i = 1, . . . , n, k ∈ N.

Hence, the first co-ordinate sequence (λ1(xk))k∈N has a convergent subsequence.

The corresponding co-ordinate sequence (λ2(xk))k∈N has also a convergent subse-

quence. Continuing this process, we obtain a subsequence (xkj)j∈N of (xk)k∈N,

which has each co-ordinate sequence convergent. Therefore (xkj)j∈N converges to

some y ∈ X with respect to the norm qs by Theorem 4.1. Since q(xkj) ≤ 1 and

q(y)− q(xkj) ≤ q(y − xkj) for all j ∈ N, it follows that q(y) ≤ 1. We conclude that

V1,≤ is a compact set of the normed space (X, qs) and by the preceding corollary it

is a compact set of (X, q). �



4.3 Compactness and finite dimension 41

Remark 4.1 The above proof is doing following the customary scheme but there

is an straightforward argument to deduce the result from classical theorems. This

comes from the observation that all asymmetric norms on a T1 finite dimensional

linear space are equivalent. It was shown in Chapter 2, Proposition 2.1 that an

asymmetric normed linear space is T1 if and only if q(x) 6= 0 for all x ∈ X\{0}. Let

(X, q) be a finite dimensional asymmetric normed linear space and qs the supremum

norm as usual. Then the restriction of q to the unit sphere of (X, qs) does not attain

zero because q is a continuous function in (X, qs). Thus, it is bounded below, and

so q and qs are equivalent.

Theorem 4.3 Let (X, q) be a finite dimensional asymmetric normed linear space.

Then (X, q) is normable if and only if each compact set is closed.

Proof. Suppose that (X, q) is not normable. Then it is not Hausdorff by Corollary

4.2, so there exist a sequence (xn)n∈N in X and two points x, y ∈ X with x 6= y such

that xn → x and xn → y with respect to the topology T (dq). Since K = {x}
⋃
{xn :

n ∈ N} is compact in (X, q) and y ∈ K −K, K cannot be closed.

The converse is well-known �

Note that, in a finite dimensional linear space, every compact set is bounded and

hence this theorem provides a version of the Heine-Borel Theorem for asymmetric

normed linear spaces.

The case in which (X, q) is only a T0 finite dimensional asymmetric normed linear

space is actually more complex. Let us now give a characterization for this situation.

Definition 4.3 Let (X, q) be an asymmetric normed linear space. We say that V1,≤

is right-bounded if there exists a real constant r > 0, such that

rV1,≤ ⊂ B1,≤ + θ(0)

Proposition 4.2 Let (X, q) be a T0 finite dimensional asymmetric normed linear

space such that V1,≤ is right-bounded . Then V1,≤ is compact.
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Proof. B1,≤ is the unit ball of the normed space (X, qs). Since X is finite di-

mensional, B1,≤ is compact. Let {Ai, i ∈ I} be an open cover of V1,≤ in T (dq).

Since B1,≤ ⊂ B1,≤ + θ(0) ⊂ V1,≤, then {B1,≤
⋂
Ai, i ∈ I} is an open cover of B1,≤

in T (dqs)|B1,≤ . There exists a finite subcover {B1,≤
⋂
Aj, j = 1, · · · , n} of B1,≤ in

T (dqs)|B1,≤ . Then B1,≤+ θ(0) ⊂
⋃n
j=1(B1,≤

⋂
Aj) + θ(0) ⊂

⋃n
j=1 Aj + θ(0). But V1,≤

is right-bounded, so rV1,≤ ⊂
⋃n
j=1 Aj + θ(0) ⊂

⋃n
j=1 Aj by Lemma 4.3. Then rV1,≤

is compact. Taking into account that the function f(x) = rx is continuous for the

topology T (dq), it is obvious that V1,≤ is compact. �
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Chapter 5

Extensions of asymmetric norms

to linear spaces

5.1 Introduction

In Chapter 1 we introduced the notion of algebraically closed space.

An easy example of an ac-space is the positive cone Cn of the finite dimensional

space Rn. For instance,

C2 = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0}

defines an ac-space.

The aim of the present chapter is to obtain conditions under which it is possible

to extend an asymmetric norm defined on an ac-space M to the corresponding linear

span span{M}. Our motivation is that a great part of asymmetric normed linear

spaces that appear in applied contexts are in fact extensions of asymmetric norms

defined on ac-spaces (see [24] and [44]). For example, the natural definition of the

dual of an asymmetric normed linear space X (see Chapter 6) provides an asymmet-

ric normed ac-space. In Section 5.2 we characterize those asymmetric seminorms

defined on an ac-space M that can be extended at least to an asymmetric seminorm
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q on span{M}. However, note that in general such an extension does not lead to an

asymmetric norm on span{M}, since we cannot assure that the separation axiom

(q(x) = q(−x) = 0 if and only if x = 0) is satisfied. For example, the asymmetric

seminorm q2 defined on C2 as q2((x1, x2)) = x1 can be extended to the function q2,

q2((x1, x2)) = x1 if x1 > 0,

and q2((x1, x2)) = 0 otherwise. It is clear that q2 does not satisfy the separation

axiom of the definition of the asymmetric norm, although q2 is an asymmetric norm

on C2.

This motivates the study of extensions satisfying the separation axiom. In Section

5.3 we characterize when this condition is also satisfied, under the assumption that

such an extension exists. Section 5.4 is devoted to the application of these results to

the particular case of the increasing asymmetric seminorms that appear in several

interesting applied frameworks.

The main results of this chapter have been published in [23].

5.2 Extensions of asymmetric seminorms defined

on ac-spaces

Let M be an ac-space and let X = span{M}. In this section we develop a con-

structive technique to obtain extensions of an asymmetric seminorm q from M to

X. Two basic functions are needed in order to construct the extension. The first

one is q. The second function that is needed is another asymmetric seminorm p0

on M . It is clear that the inversion map i(x) = −x defines a linear isomorphism

i : X → X such that i(M) = −M = {−x ∈ X : x ∈ M} and then −M is also an

ac-space. Thus we can use p0 in order to define an asymmetric seminorm p on −M
as p(x) := p0(−x) for every x ∈ −M .

The following definition gives the canonical construction of an asymmetric semi-

norm from q and p. Note that each element x ∈ X can be decomposed as a sum

x = x1 + x2, where x1 ∈M and x2 ∈ −M .
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Definition 5.1 Let q and p be asymmetric seminorms on the ac-spaces M and −M ,

respectively. We define the function q∗q,p induced by the couple (q, p) by mean of the

expression

q∗q,p(x) = inf{q(x1) + p(x2) : x1 ∈M,x2 ∈ −M,x = x1 + x2}

for every x ∈ X.

It is easy to prove that q∗q,p defines an asymmetric seminorm on X.

Definition 5.2 Let q be an asymmetric seminorm on the ac-space M . We say that

an asymmetric seminorm q∗ defined on X is an extension of q if the restriction of

q∗ to M coincides with q, i.e. q∗|M = q.

The asymmetric seminorm q∗q,p is closely related to the possible extensions of q to

X. For instance, consider the positive cone C+ of a Köthe function space (E, ‖ ‖, <).

A Köthe function space is a Banach lattice of functions with its natural order (see

[33]). If (Ω,Σ, µ) is a complete σ-finite measure, a Banach space E consisting of

equivalence classes, modulo equality almost everywhere of locally integrable real

valued functions is called a Köthe function space if the following conditions hold.

1) If |f(ω)| ≤ |g(ω)| a.e. on Ω, with f measurable and g ∈ E, then f ∈ E and

‖f‖ ≤ ‖g‖.

2) For every σ ∈ Σ with µ(σ) < ∞, the characteristic function χσ of σ belongs

to E.

An easy example of such a space is a (real) Hilbert space of integrable functions

L2(ν), where ν is a finite measure.

If E is a Köthe function space, it is easy to see that the function r(x) := ‖x∨ 0‖
defines an asymmetric norm. In fact, the definition of r is given by the evaluation

of the norm of the positive part of the function. This construction provides a broad

class of examples of asymmetric normed linear spaces of the type (E, r). The reader

can find information about related examples in [4] and [18].
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It is easy to see that the positive cone (C+, r) is an asymmetric normed ac-space.

Now consider the trivial seminorm p1(x) = 0 defined on −C+. A direct calculation

shows that q∗r,p1
|C+ = r. Another extension of r to E is the norm ‖ ‖. It is also

easy to prove that ‖ ‖ is equivalent to q∗r,p2
, where p2(x) := ‖x ∧ 0‖ = ‖x‖ for every

x ∈ −C+. Moreover, q∗r,p2
|C+ = r.

The example above shows that we can find different extensions of an asymmetric

seminorm defined on an ac-space M to the linear space X. In fact, the asymmetric

normed linear spaces (E, q∗r,p1
) and (E, q∗r,p2

) are different from a topological point

of view. (E, q∗r,p2
) is a Hausdorff space (it is in fact a biBanach space). However,

it can be easily proved that q∗r,p1
does not define a Hausdorff topology on E ([22]).

Anyway, the existence of such an extension cannot be assured in general. The

following theorem characterizes the asymmetric seminorms defined on ac-spaces M

which can be extended to span{M}, in terms of their moduli of asymmetry.

Definition 5.3 Let q be an asymmetric seminorm on the ac-space M . We define

the modulus of asymmetry of q as the real function Φq : M → R given by the formula

Φq(x) := sup{q(y)− q(y + x) : y ∈M}

for every x ∈M .

Note that Φq(x) = q(−x) if q is a norm on X.

Theorem 5.1 Let q be an asymmetric seminorm on the ac-space M . Then:

1) There exists an extension of q to X if and only if there is an asymmetric

seminorm p on −M such that

Φq(x) ≤ p(−x) for every x ∈M.

2) Such an extension can be obtained as the asymmetric seminorm q∗q,p induced

by the couple (q, p).
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Proof. The proof is a direct consequence of the properties of the asymmetric semi-

norm q∗q,p. It is defined on the whole linear space span{M}. Then we just need to

show that its restriction to M is exactly q. It is clear that q∗q,p(x) ≤ q(x) for every

x ∈M , since

inf{q(x1) + p(x2) : x1 ∈M,x2 ∈ −M,x = x1 + x2} ≤ q(x) + p(0) = q(x).

On the other hand, consider an element x ∈ M , an ε > 0 and a decomposition

x = x1 + x2, where x1 ∈M and x2 ∈ −M , that satisfies

q(x1) + p(x2) < q∗q,p(x) + ε.

Then we obtain the following inequalities using the condition given in 1) for Φq.

q∗q,p(x) + ε > q(x1) + p(x2) = q(x− x2) + p(x2) ≥

≥ q(x− x2) + sup{q(y)− q(y− x2) : y ∈M} ≥ q(x− x2) + q(x)− q(x− x2) = q(x).

Thus, q∗q,p(x) = q(x) for every x ∈ M , since the above inequalities hold for each

ε > 0.

For the converse, consider an extension q∗ of q to span{M}. Then for every

x, y ∈M ,

q(x+ y) + q∗(−x) = q∗(x+ y) + q∗(−x) ≥ q∗(y) = q(y),

since x + y ∈ M . Now let us define on −M the asymmetric seminorm p = q∗|−M
and fix x ∈M . We obtain for every y ∈M the inequality

p(−x) ≥ q(y)− q(x+ y).

Then

p(−x) ≥ Φq(x) for every x ∈M.

2) is a direct consequence of the constructive procedure used in the proof of 1).

�

The next example shows that it is possible to find asymmetric seminorms defined

on ac-spaces that cannot be extended to the corresponding linear span. According

to Theorem 5.1 we just need to show that there is not any seminorm satisfying

the required property. In fact, it is enough to find an element x ∈ M such that

Φq(x) =∞.
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Example 5.1 Consider the positive cone S+ of the lattice RN0 whose elements are the

sequences of real numbers (xn)n∈N that are non zero only for a finite set of indexes,

with the usual order. S+ is obviously an ac-space. Let us define the asymmetric

norm q+ on S+ as follows. Consider the canonical basis of RN0 , {en : n ∈ N}. Then

for every x = (xn)n∈N, if there is no λ ∈ R+ such that x = λen for any n ∈ N, we

define

q+(x) :=
∞∑
n=1

xn,

and q+(λen) := λn otherwise.

It is easy to prove that q+ is an asymmetric norm on S+. However, the element e1

satisfies that Φq+(e1) =∞ since

Φq+(e1) = sup{q(y)− q(e1 + y) : y ∈ S+} ≥ sup{q(en)− q(e1 + en) : n ∈ N} =

= sup{n− 2 : n ∈ N} =∞.

Then there is no asymmetric seminorm p on −M satisfying p(−e1) ≥ Φq+(e1).

Moreover, note that this conclusion does not depend on the separation properties of

the space (C+, q+). It is easy to see that q+(x) = 0 implies x = 0 in the above ex-

ample. However, an easy change of the definition of q+ would lead to an asymmetric

seminorm which does not satisfy this separation property but does not admit an

extension yet. The conditions required for the characterization of extensions that

are asymmetric norms are different that the ones that assures the existence of the

extension. The next section is devoted to study these conditions.

5.3 Extensions of asymmetric norms

Definition 5.4 Two asymmetric seminorms q and p given on the ac-spaces M and

−M respectively, define a compatible couple (q, p) if the extension q∗q,p exists and

satisfies that q∗q,p|M = q and q∗q,p|−M = p.
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Note that any extension q∗q,p of an asymmetric seminorm q can be obtained by

means of a compatible couple. It is enough to replace the seminorm p by p0 =

q∗q,p|−M . A direct computation shows that q∗q,p = q∗q,p0
. Thus we can use compatible

couples without loss of generality.

Definition 5.5 Consider an asymmetric seminormed ac-space (M, q) that admits

an extension by means of the compatible couple (q, p). We define the set M q,p as the

closure of M on the seminormed space (span{M}, (q∗q,p)s). Moreover, we say that

the ac-space M is closed if M = M q,p.

For each element y ∈M q,p there exists a sequence (xn)n∈N such that y ∈ limn→∞ xn,

where the limit is computed with respect to the seminorm (q∗q,p)
s. Then we can ex-

tend the asymmetric seminorm q to M q,p in the following way. Note that for each

n ∈ N
(q∗q,p)

s(xn − y) ≥ q∗q,p(xn − y) ≥ q∗q,p(xn)− q∗q,p(y)

and

(q∗q,p)
s(xn − y) ≥ q∗q,p(y − xn) ≥ q∗q,p(y)− q∗q,p(xn).

Then it is clear that limn→∞ q
∗
q,p(xn) = q∗q,p(y). Taking into account that q∗q,p|M = q,

we obtain that the following (topological) extension of q is well defined.

Definition 5.6 Let (M, q) be an asymmetric seminormed ac-space and let (q, p) be

a compatible couple. Then we define the (topological) extension q for each y ∈M q,p

by means of the formula

q(y) := lim
n→∞

q(xn),

where (xn)n∈N ⊂M satisfies that y ∈ limn→∞ xn.

Lemma 5.1 Let (M, q) be an asymmetric seminormed ac-space and let (q, p) be a

compatible couple. Then (M q,p, q) is an asymmetric seminormed ac-space.

Proof. Consider two elements x, y ∈ M q,p. Then there are sequences (xn)n∈N ⊂ M
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and (yn)n∈N ⊂M such that

lim
n→∞

(q∗q,p)
s(xn − x) = 0,

lim
n→∞

q(xn) = q(x),

lim
n→∞

(q∗q,p)
s(yn − y) = 0, and

lim
n→∞

q(yn) = q(y).

Then

lim
n→∞

q∗q,p(xn + yn − x− y) ≤ lim
n→∞

q∗q,p(xn − x) + lim
n→∞

q∗q,p(yn − y) = 0.

This means that x + y ∈ M q,p, since xn + yn ∈ M for every n ∈ N. It is also

possible to prove that limn→∞ q(xn + yn) = q∗q,p(x+ y) in the same way. Finally,

q(x+ y) ≤ lim
n→∞

q(xn) + lim
n→∞

q(yn) = q(x) + q(y).

The proof for the products λx, where λ ∈ R+ and x ∈M , is similar. �

Consider a compatible couple (q, p). Then we can define the corresponding closed

ac-space M q,p endowed with the asymmetric seminorm q. Since (q∗q,p)
s is a seminorm,

the ac-space (−M)q,p is also closed and (−M)q,p = −M q,p. Thus, we can also con-

sider the closed ac-space −M q,p endowed with the asymmetric seminorm p. Clearly,

X = span{M} = span{M q,p}. Moreover, the definition of the extension q∗q,p implies

q∗q,p ≥ q∗q,p. This argument shows that the separation properties that are satisfied by

q∗q,p are also fulfilled by q∗q,p. Therefore, we can suppose that q and p are seminorms

defined on the closed ac-spaces M and −M of (X, (q∗q,p)
s) in the following theorem.

In the general case, the condition that will be required in order to assure that the

separation axiom holds for extensions will be obtained as a direct consequence.

Theorem 5.2 Let (q, p) be a compatible couple of asymmetric norms on the closed

ac-spaces M and −M respectively. Then the following are equivalent.

1) ψ(x) := max{q(x), p(−x)} = 0 implies x = 0 for every x ∈M .
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2) The extension q∗q,p defined by (q, p) is an asymmetric norm.

Proof. Let us show that 1) implies 2). Suppose that for an element x ∈ X we

have q∗q,p(x) = 0 and q∗q,p(−x) = 0. Then, as a consequence of the definition of the

extension q∗q,p, there are sequences (xn)n∈N ⊂M and (yn)n∈N ⊂ −M such that

(x− xn)n∈N ⊂ −M, lim
n→∞

q(xn) = 0, lim
n→∞

p(x− xn) = 0,

and

(−x− yn)n∈N ⊂M, lim
n→∞

q(−x− yn) = 0, lim
n→∞

p(yn) = 0.

Let us define the sequence (zn)n∈N ⊂ M , zn := xn − yn. Since for every n ∈ N,

−x+ zn = −x− (yn − xn) ∈M , we have that

q(−x+ zn) ≤ q(xn) + q(−x− yn)

and

p(x− zn)) ≤ p(x− xn) + p(yn),

we deduce that limn→∞ q(−x+ zn) = 0 and limn→∞ p(x− zn) = 0. Moreover, since

q∗q,p|M = q and q∗q,p|−M = p, we get

q(−x+ zn) = q∗q,p(−x+ zn),

and

p(x− zn) = q∗q,p(x− zn).

Then

ψ(−x+ zn) = (q∗q,p)
s(−x+ zn),

and

lim
n→∞

(q∗q,p)
s(zn − x) = 0.

Therefore x ∈ M since M is closed, and ψ(x) = (q∗q,p)
s(x) = 0. Then an appli-

cation of 1) gives 2). For the converse we just need to note that ψ = (q∗q,p)
s|M .

�

Corollary 5.1 Let (q, p) be a compatible couple of asymmetric norms on the ac-

spaces M and −M . Then the following conditions are equivalent, and imply that

q∗q,p is an asymmetric norm:
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1) For every x ∈M q,p, (q∗q,p)
s(x) = 0 implies x = 0.

2) q∗q,p is an asymmetric norm.

5.4 Applications. Extensions of increasing asym-

metric seminorms

To finish this chapter we apply the results of Section 5.2 and Section 5.3 to a

particular case. We define a class of asymmetric seminorms that satisfy an increasing

condition. Our definition is motivated by the fact that many asymmetric norms that

have been used in applied contexts belong to this class.

Definition 5.7 Let q be an asymmetric seminorm defined on an ac-space M . We

say that q is an increasing asymmetric seminorm if for every pair x, y ∈M , q(x) ≤
q(x+ y).

Note that this property implies a strong restriction on the value of q(x) for the

elements x ∈M that satisfy that x and −x belong to M , since q(x) ≤ q(x+(−x)) =

q(0) = 0. In particular if M is a linear space, q = 0. However, we can find a lot

of examples of subsets of Banach lattices that satisfy this property. In particular,

the restriction of the norm to an ac-space contained on the positive cone of a Köthe

function space satisfies this condition (see [33] for the definition of the Köthe function

space). Moreover, the dual complexity space introduced in [44] (see also [24], [51])

satisfies this property too.

Corollary 5.2 Let q be an increasing asymmetric seminorm on an ac-space M .

Then the extension q∗q,p exists for each asymmetric seminorm p defined on −M .

Proof. Since q is increasing, it is obvious that Φq(x) = sup{q(y) − q(y + x) : y ∈
M} ≤ 0 for every x ∈ M . Then it is clear that each asymmetric seminorm p

on −M satisfies p(−x) ≥ Φq(x). An application of Theorem 5.1 gives the result.

�
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Corollary 5.2 is true even in the trivial case p = 0. Moreover, consider a normed

lattice (E, ‖ ‖, <). Then the canonical asymmetric norm on E is defined as q0(y) :=

‖y ∨ 0‖ for every y ∈ E (see [4] and [18]). If we define M as the positive cone of

E and q(x) := ‖x‖ for every x ∈ M , it can be easily proved that q0(y) = q∗q,p(y) for

every y ∈ E = span{M}, where p = 0.

Corollary 5.3 Let q be an increasing asymmetric seminorm on an ac-space M that

satisfies that for every x ∈ M , q(x) = 0 implies x = 0. Let p be an asymmetric

seminorm on −M . Then the extension q∗q,p exists and defines an asymmetric norm

if M is closed.

The proof of the above result is a direct consequence of Corollary 5.2 and Theorem

5.2. We can use the last result in order to extend the asymmetric norm q0 defined on

the normed lattice E. For instance, Corollary 5.3 can be applied to each ac-space M

contained in the positive cone of a Köthe function space (E, ‖.‖, <). The properties

of this class of normed lattices imply that the asymmetric seminorm q defined as

the restriction of ‖.‖ to M is increasing (see [33], p. 28). (Since the elements of

M are positive functions, we have that |f | ≤ |f + g| for every f, g ∈ M , and then

‖f‖ ≤ ‖f + g‖). Moreover, x = 0 if and only if q(x) = 0 for every x ∈ M . If p is

an asymmetric seminorm defined on −M such that M is an ac-space, the extension

q∗q,p is an asymmetric norm. Of course, this is also true if p = 0. In this case, the

asymmetric norm q∗q,0 is the natural extension of q0.
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Chapter 6

The dual space of an asymmetric

normed linear space

6.1 Introduction and preliminaries

Our aim in this chapter is to introduce and study the dual space (X∗, q∗) of an

asymmetric normed linear space (X, q). We observe that, in contrast to the classical

theory, it is not a linear space in general. However, we prove that if X and Y are

asymmetric normed linear spaces, then the space LC(X, Y ) of all continuous linear

maps from X to Y can be endowed with the structure of an asymmetric normed

semilinear space. From this result it follows that (X∗, q∗) is a biBanach semilinear

space. We also define the bidual space (X∗∗, q∗∗) and prove that (X, q) is isomet-

rically isomorphic to an asymmetric normed linear space that is an algebraically

closed subset of X∗∗.

We will give again some basic definitions presented in Chapter 1 because the

introduction of the notion of extended asymmetric norm.

If X is a linear space, A an algebraically closed subset of X and B a subset of A

that is algebraically closed in X, then we say that B is an algebraically closed subset

of A.
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Here, we will consider extended asymmetric norms. They satisfy the usual axioms,

except that we allow q(x) =∞.

We will also consider extended quasi-metrics (we allow d(x, y) = ∞). If d is

an extended quasi-metric on a set X, then the function d−1 is also an extended

quasi-metric on X and the function ds is an extended metric on X.

The notions of extended asymmetric normed semilinear space and bicomplete ex-

tended quasi-metric are defined in the obvious manner.

It is well known that an extended quasi-metric d on X induces a T0 topology as

in the usual case.

If (X, q) is an extended asymmetric normed linear space such that the induced

extended quasi-metric dq is bicomplete, we will say, as in the usual case, that (X, q)

is a biBanach space ([21],[24], [46]).

If A is an algebraically closed subset of X (i.e a semilinear space) such that the

restriction of dq to A is bicomplete, we will say that (A, q) is a biBanach semilinear

space.

As we will see in Chapter 8, asymmetric normed (semi)linear spaces and other

related structures provide suitable tools in some fields of Theoretical Computer

Science and Approximation Theory, respectively (see [42], [46], [51], [56], etc.).

6.2 Spaces of continuous linear functions

Given two asymmetric normed linear spaces (X, q) and (Y, p), we will denote by

LCs(X, Y ) the linear space of all continuous linear maps from the normed linear

space (X, qs) to the normed linear space (Y, ps).

According to the classical theory, (LCs(X, Y ), (qs)∗p) is a normed linear space,

where (qs)∗p is the norm on LCs(X, Y ) defined by

(qs)∗p(f) = sup{ps(f(x)) : qs(x) ≤ 1},
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for all f ∈ LCs(X,Y ). Furthermore (LCs(X,Y ), (qs)∗p) is a Banach space whenever

(Y, ps) is so.

In order to obtain a satisfactory generalization of the theory of duality to the

asymmetric setting, we will denote by LC(X, Y ) the set of all continuous linear

maps from the asymmetric normed linear space (X, q) to the asymmetric normed

linear space (Y, p).

First we will establish that LC(X, Y ) is an algebraically closed subset of LCs(X, Y ).

This will be done with the help of the following result, that has been introduced in

Lema 2.2 (see Proposition 4.1 in [18]) and, using the notation of this chapter, can

be written as follows.

Lemma 6.1 Let (X, q) and (Y, p) be two asymmetric normed linear spaces and let

f : X → Y be a linear map. Then f ∈ LC(X, Y ) if and only if there is a constant

M > 0 such that p(f(x)) ≤Mq(x) for all x ∈ X.

Proposition 6.1 Let (X, q) and (Y, p) be two asymmetric normed linear spaces.

Then, every continuous linear map from (X, q) to (Y, p) is continuous from (X, q−1)

to (Y, p−1). Hence LC(X, Y ) ⊆ LCs(X,Y ).

Proof. Let f ∈ LC(X, Y ). Then there is M > 0 such that p(f(x)) ≤ Mq(x) for

all x ∈ X. Thus

p−1(f(x)) = p(−f(x)) = p(f(−x)) ≤Mq(−x) = Mq−1(x).

Therefore f is continuous from (X, q−1) to (Y, p−1) by Lemma 6.1, and, con-

sequently it is continuous from (X, ps) to (Y, qs). We conclude that LC(X,Y ) ⊆
LCs(X,Y ).�

Corollary 6.1 Let (X, q) and (Y, p) be two asymmetric normed linear spaces. Then

LC(X,Y ) is an algebraically closed subset of LCs(X, Y ). Hence LC(X, Y ) is a semi-

linear space.



58 Chapter 6. The dual space of an asymmetric normed linear space

The next simple example shows that in contrast to the classical theory, LC(X, Y )

is not a linear space in general, and justifies the importance of considering semilinear

spaces in order to construct a satisfactory dual theory in this context.

Example 6.1 Let I be the identity function on R. Clearly I is a continuous linear

map from (R, u) into itself. However, it is clear that −I is not continuous. It follows

that LC(R,R) is not a linear space. Hence LC(X, Y ) 6= LCs(X, Y ), in general. We

also observe that for x < 0, u(−x) = −x, so sup{u(−x) : u(x) ≤ 1} =∞.

Theorem 6.1 Let (X, q) and (Y, p) be two asymmetric normed linear spaces. For

each f ∈ LCs(X, Y ) set

q∗p(f) = sup{p(f(x)) : q(x) ≤ 1}.

Then the following assertions hold:

(1) q∗p is an extended asymmetric norm on LCs(X, Y ), and (qs)∗p ≤ (q∗p)
s on

LCs(X, Y ).

(2) The restriction of q∗p to LC(X,Y ) is an asymmetric norm.

(3) LC(X, Y ) is a closed subset of (LCs(X, Y ), (q∗p)
s).

(4) If (Y, p) is a biBanach space, then (LCs(X, Y ), q∗p) is a biBanach space and

(LC(X,Y ), q∗p) is a biBanach semilinear space.

Proof. (1) Clearly q∗p(0) = 0.

Let f ∈ LCs(X, Y ) be such that q∗p(f) = q∗p(−f) = 0. Then p(f(x)) = p(−f(x)) =

0 whenever q(x) ≤ 1. Hence f(x) = 0 whenever q(x) ≤ 1. Now, if x ∈ X verifies

q(x) > 1 we obtain
1

q(x)
f(x) = f(

x

q(x)
) = 0.
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Therefore f(x) = 0 for all x ∈ X.

It is easy to see that for f, g ∈ LCs(X, Y ) and r ∈ R+ we have

q∗p(rf) = rq∗p(f) and q∗p(f + g) ≤ q∗p(f) + q∗p(g).

We conclude that q∗p is an extended asymmetric norm on LCs(X,Y ) (Example

6.1 above shows that “extended” cannot be omitted in our assertion).

Next we show that (qs)∗p ≤ (q∗p)
s on LCs(X, Y ).

Let f ∈ LCs(X, Y ).Given ε > 0 there is x ∈ X such that qs(x) ≤ 1 and

(qs)∗p(f) < ps(f(x)) + ε. Assume without loss of generality that qs(x) = q(x). Then,

if ps(f(x)) = p(f(x)), we obtain

(qs)∗p(f) < p(f(x)) + ε ≤ q∗p(f) + ε.

Otherwise, ps(f(x)) = p(−f(x)), so

(qs)∗p(f) < p(−f(x)) + ε ≤ q∗p(−f) + ε.

Consequently (qs)∗p < (q∗p)
s + ε. Thus (qs)∗p ≤ (q∗p)

s on LCs(X, Y ).

(2) By virtue of statement (1) it suffices to show that for each f ∈ LC(X,Y ),

q∗p(f) < ∞. But this is clear because, by Lemma 6.1, for each f ∈ LC(X, Y ) there

is M > 0 such that p(f(x)) ≤Mq(x) for all x ∈ X, and hence q∗p(f) ≤M.

(3) Let f ∈ LCs(X, Y ) be such that there is a sequence (fn)n∈N in LC(X, Y )

which converges to f in (LCs(X, Y ), (q∗p)
s). We will show that there is M > 0 such

that p(f(x)) ≤ (M + 1)q(x) for all x ∈ X, and thus f ∈ LC(X, Y ).

Choose n0 ∈ N such that q∗p(f − fn0) < 1. Since fn0 ∈ LC(X,Y ), there is M > 0

such that p(fn0(x)) ≤Mq(x) for all x ∈ X.

Let x ∈ X. If q(x) 6= 0. Then

p

(
f(x)− fn0(x)

q(x)

)
= p

(
(f − fn0)(

x

q(x)
)

)
≤ q∗p(f − fn0).
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Hence

p(f(x))− p(fn0(x)) ≤ q∗p(f − fn0)q(x) < q(x).

So

p(f(x)) < p(fn0(x)) + q(x) ≤ (M + 1)q(x).

If q(x) = 0, for each ε > 0 choose nε ∈ N such that q∗p(f − fnε) < ε. Since

p(fnε(x)) = 0 we obtain

p(f(x)) = p(f(x))− p(fnε(x)) ≤ p((f − fnε)(x)) ≤ q∗p(f − fnε) < ε.

Therefore p(f(x)) = 0.

We have shown that f ∈ LC(X, Y ), and consequently LC(X, Y ) is closed in

(LCs(X,Y ), (q∗p)
s). (Note that actually we have proved the more general fact that

LC(X, Y ) is closed in (LCs(X,Y ), (q∗p)
−1)).

(4) Let (fn)n∈N be a Cauchy sequence in the extended normed linear space

(LCs(X,Y ), (q∗p)
s). It immediately follows that for each x ∈ X, (fn(x))n∈N is a

Cauchy sequence in the Banach space (Y, ps). Thus we can construct a map f :

X → Y, where for each x ∈ X, f(x) is the limit point of the sequence (fn(x))n∈N in

the Banach space (Y, ps).

On the other hand, since by (1), (qs)∗p ≤ (q∗p)
s, it follows that (fn)n∈N is a Cauchy

sequence in the Banach space (LCs(X,Y ), (qs)∗p), so (fn)n∈N converges to some g ∈
LCs(X, Y ). Hence (fn(x))n∈N converges to g(x) in the Banach space (Y, ps) for all

x ∈ X. Consequently g = f.

Next we show that actually (fn)n∈N converges to f in (LCs(X,Y ), (q∗p)
s).

Indeed, let ε > 0. Then there is n0 ∈ N such that (q∗p)
s(fn − fm) < ε/2 for all

n,m ≥ n0. Choose an arbitrary point x ∈ X such that q(x) ≤ 1. There is m ≥ n0

such that ps(f(x)− fm(x)) < ε/2. Therefore for each n ≥ n0 we have

ps((f − fn)(x)) = ps(f(x)− fn(x)) ≤ ps(f(x)− fm(x)) + ps(fm(x)− fn(x))

<
ε

2
+ (q∗p)

s(fn − fm) < ε.
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We deduce that for each n ≥ n0, (q∗p)
s(f − fn) ≤ ε, and thus (LCs(X, Y ), q∗p) is

a biBanach space.

Finally, since by (3), LC(X,Y ) is closed in the extended Banach space (LCs(XY ), (q∗p)
s),

it follows that (LC(X, Y ),q∗p) is a biBanach semilinear space.�

Remark 6.1 Let us observe that if in the above theorem (Y, p) is a normed linear

space, then q∗p is an extended norm on LCs(X, Y ) and thus (qs)∗p ≤ q∗p. Hence the

topology induced by q∗p is finer than the topology induced by (qs)∗p on LCs(X, Y ).

We show that actually these topologies do not coincide in general. Indeed, for each

n ∈ N let fn : R → R given by fn(x) = −x/n. Then fn is linear and continuous

with respect to the Euclidean norm. Furthermore fn → 0 with respect to the usual

norm of uniform convergence because sup{|−x/n| : |x| ≤ 1} = 1/n for all n ∈ N.

Nevertheless we have sup{|−x/n| : u(x) ≤ 1} =∞ for all n ∈ N.

Next we discuss the preservation by (LC(X, Y ), q∗p) of properties as Hausdorffness,

complete regularity and normability.

We say that an extended asymmetric normed linear space (X, q) is Hausdorff

(resp. completely regular) if the topology induced by q is Hausdorff (resp. com-

pletely regular).

Proposition 6.2 Let (X, q) and (Y, p) be two asymmetric normed linear spaces.

If (Y, p) is Hausdorff, then (LCs(X, Y ), q∗p) is Hausdorff.

Proof. Let f, g ∈ LCs(X, Y ) such that f 6= g. Then there is x0 ∈ X with f(x0) 6=
g(x0), and we may assume without loss of generality that q(x0) ≤ 1. Let ε > 0 such

that Bdp(f(x0), ε)∩Bdp(g(x0), ε) = ∅. It follows that Bdq∗p
(f, ε)∩Bdq∗p

(g, ε) = ∅. We

conclude that (LCs(X, Y ), q∗p) is a Hausdorff space.�

Since Hausdorffness is a hereditary property we obtain the following.
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Corollary 6.2 Let (X, q) and (Y, p) be two asymmetric normed linear spaces. If

(Y, p) is Hausdorff, then (LC(X, Y ), q∗p) is Hausdorff.

We do not know if the preceding corollary remains valid when “Hausdorff” is

replaced by “completely regular”. However, for normable asymmetric normed linear

spaces we will obtain a positive result.

The natural extension of normability to the class of extended asymmetric normed

linear spaces is the following. An (extended) asymmetric normed linear space (X, q)

is called normable if there is a norm ‖.‖ on the linear spaceX such that the topologies

T (dq) and T (d‖.‖) coincide on X.

In Chapter 2 were obtained examples of Hausdorff asymmetric normed linear

spaces that are not normable. Next we give an easy example of an asymmetric

normed linear space which is not a normed linear space but is normable.

Example 6.2 Let k be a positive real number different from 1 and let q be the

function defined on R by

q(x) = x if x ≥ 0 and q(x) = k(−x) if x < 0.

It is routine to check that q is an asymmetric norm on the Euclidean linear space

R. Clearly q is not a norm.

Furthermore the ball Bdq(0,ε) is the open interval ]− ε/k, ε[. We deduce that the

topology T (dq) coincides with the Euclidean topology on R.

Note that if k < 1, qs is exactly the Euclidean norm on R, and if k > 1, qs(x) =

k | x | for all x ∈ R.

Lemma 6.2 Let (X, q) be an extended asymmetric normed linear space. If (X,T (dq))

is a topological group, then (X, q) is normable.

Proof. Let (xn)n∈N be a sequence in X and x ∈ X such that xn → x with re-

spect to T (dq). Then −xn → −x with respect to T (dq). Hence q(xn − x) → 0 and



6.3 The dual space of an asymmetric normed linear space 63

q(−xn + x) → 0, so qs(xn − x) → 0. We have shown that T (dq) = T (dqs) on X.

It immediately follows that (X,T (dq)) is a topological linear space that admits a

bounded and convex neighborhood of 0. Hence (X, q) is normable ([49]).�

Proposition 6.3 Let (X, q) and (Y, p) be two asymmetric normed linear spaces.

If (Y, p) is normable, then (LCs(X, Y ), q∗p) is normable.

Proof. By Lemma 6.2 it suffices to show that (LCs(X, Y ), T (dq∗p)) is a topolog-

ical group. Indeed, choose an arbitrary ε > 0. Since (Y, p) is normable, we have

T (dp) = T (dp−1) = T (dps) and thus there exists δ > 0 such that Bd−1
p

(0, δ) ⊆
Bdp(0, ε/2). Then, an easy computation shows that Bd(q∗p)−1 (0, δ) ⊆ Bdqp∗

(0, ε).

Therefore T (dq∗p) ⊆ T (d(qp∗ )−1). Similarly we prove that T (d(q∗p)−1) ⊆ T (dqp∗ ). Hence

(LCs(X, Y ), T (dqp∗ )) is a topological group. We conclude that (LCs(X, Y ), q∗p) is

normable.�

6.3 The dual space of an asymmetric normed lin-

ear space

Given an asymmetric normed linear space (X, q) let

Xs∗ = {f : (X, qs)→ (R, |.|) : f is linear and continuous},

and let

X∗ = {f : (X, q)→ (R, u) : f is linear and continuous}.

Then Xs∗ is a linear space.

Note that f ∈ X∗ if and only if it is a linear and upper semicontinuous real-valued

function on (X, q).

By Corollary 6.1, X∗ is an algebraically closed subset of Xs∗, and thus it is a

semilinear space. Moreover, by Theorem 6.1, q∗u is an extended asymmetric norm
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on Xs∗ such that the restriction of q∗u to X∗ is an asymmetric norm, where

q∗u(f) = sup{f(x) ∨ 0 : q(x) ≤ 1},

for all f ∈ Xs∗. In the following q∗u will be simply denoted by q∗.

Observe that (Xs∗, q∗) is a biBanach space and that (X∗, q∗) is a biBanach semi-

linear space, by Theorem 6.1.

If (X, q) is an asymmetric normed linear space, then the pair (X∗, q∗) is called

the dual space of (X, q).

It is interesting to observe that actually we have

q∗(f) = sup{f(x) : q(x) ≤ 1},

for all f ∈ Xs∗.

Example 6.1 above shows that X∗ is not a linear space in general. Since the space

of this example is finite dimensional, we next present an example of an infinite di-

mensional asymmetric normed linear space (X, q) for which X∗ is not a linear space.

Proposition 3.4 in [18] provides more examples.

Example 6.3 Consider the asymmetric normed linear space (l2, q
+
2 ) defined by the

sequences (λi)
∞
i=1 that belong to the Hilbert space l2 and the asymmetric norm

q+
2 ((λi)) = ‖(λi ∨ 0)‖2, (λi)

∞
i=1 ∈ l2,

where ‖(λi)‖2 := (
∑∞

i=1 |λi|2)1/2. An easy computation applying the definition leads

to the representation of the dual space l∗2 as the set

l∗2 := {(µi)∞i=1 : µi ≥ 0, ‖(µi)‖2 <∞}.

Each element µ = (µi)
∞
i=1 ∈ l∗2 defines a linear and upper semicontinuous function

fµ by the formula
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fµ((λi)) :=
∞∑
i=1

µiλi, (λi)
∞
i=1 ∈ l2.

Thus, we can identify the function fµ with the element µ. Moreover, a straight-

forward calculation shows that in this case the restriction of the asymmetric norm

(q+
2 )∗ to the algebraically closed subset l∗2 of ls∗2 is given by the expression

(q+
2 )∗((µi)) = (

∞∑
i=1

µ2
i )

1/2, (µi)
∞
i=1 ∈ l∗2.

Furthermore, (ls∗2 , (q
+
2 )∗) is a biBanach space and (l∗2, (q

+
2 )∗) is a biBanach semi-

linear space by Theorem 6.1.

Given an asymmetric normed linear space (X, q), we denote by V X∗
1,≤ the unit ball

of the dual space (X∗, q∗), i.e. V X∗
1,≤ = {f ∈ X∗ : q∗(f) ≤ 1}.

The following somewhat surprising identification of V X∗
1,≤ will be useful at the last

part of this section.

Proposition 6.4 Let (X, q) be an asymmetric normed linear space. Then

V X∗
1,≤ = {f ∈ Xs∗ : q∗(f) ≤ 1} and X∗ = {f ∈ Xs∗ : q∗(f) <∞}.

Proof. Let f ∈ V X∗
1,≤ . Then q∗(f) ≤ 1 and f ∈ Xs∗ because X∗ ⊆ Xs∗.

Now let f ∈ Xs∗ such that q∗(f) ≤ 1. We want to show that f(x) ≤ q(x) for all

x ∈ X. Indeed, fix x ∈ X. We will distinguish two cases.

Case 1. q(x) = 0.

Suppose f(x) > 0. Choose r > 0 such that rf(x) > 1. Put y = rx. Then q(y) = 0.

Since q∗(f) ≤ 1 it follows that f(y) ≤ 1. However f(y) = rf(x) > 1, a contradiction.

Therefore f(x) ≤ 0.
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Case 2. q(x) > 0.

Then we obtain
1

q(x)
f(x) = f(

x

q(x)
) ≤ q∗(f) ≤ 1,

and thus f(x) ≤ q(x).

From Lemma 6.1 it follows that f ∈ X∗, so f ∈ V X∗
1,≤ .

Now let f ∈ Xs∗ such that q∗(f) < ∞. Then the function g = f/q∗(f) is in

Xs∗ and q∗(g) = 1. Therefore g ∈ V X∗
1,≤ . We conclude that f ∈ X∗. The proof is

complete.�

Lemma 6.3 ([4], [18]). Let (X, q) be an asymmetric normed linear space, let A

be an algebraic closed subset of X and let g be a linear and upper semicontinuous

real-valued function on A. Then there exists a linear and upper semicontinuous real-

valued function f on X such that f |A= g and q∗(f) = q∗ |A (g).

Lemma 6.4 Let (X, q) be an asymmetric normed linear space. Then for each

x0 ∈ X there is f ∈ V X∗
1,≤ such that f(x0) = q(x0).

Proof. If q(x0) = 0, the function f ≡ 0, satisfies obviously the requirements.

Suppose then that q(x0) > 0.Consider the algebraically closed subspace of X,

span{x0} . Let g :span{x0} → R given by g(ax0) = aq(x0) for all a ∈ R. Clearly g

is linear. Furthermore g is upper semicontinuous on (span{x0}, q |span{x0}). Indeed,

let (an)n∈N be a sequence in R and a ∈ R such that q(anx0 − ax0) → 0. If an ≤ a

eventually, we have g(anx0) − g(ax0) = (an − a)q(x0) ≤ 0 eventually, and hence

g(anx0) → g(ax0), in (R, u), obviously. Otherwise, we may assume without loss of

generality that an > a eventually. Then, we have q(anx0 − ax0) = (an − a)q(x0)

eventually, so (an − a)q(x0) → 0, and hence g(anx0) → g(ax0) with respect to the

Euclidean norm on R.

Therefore, we may apply Lemma 6.3, and thus g has an extension to a linear and

upper semicontinuous real-valued function f such that
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q∗(f) = sup{g(x) : x ∈ span{x0} and q(x) ≤ 1}.

Hence f(x0) = g(x0), so f(x0) = q(x0). Furthermore, it is clear for the definition

of g that

q∗(f) = sup{aq(x0) : a > 0 and aq(x0) ≤ 1}.

Thus q∗(f) ≤ 1. This completes the proof.�

Theorem 6.2 Let (X, q) be an asymmetric normed linear space. Then for each

x ∈ X,

q(x) = sup{f(x) : f ∈ V X∗
1,≤ }.

Proof. Fix x ∈ X. If q(x) = 0, then f(x) ≤ 0 for all f ∈ V X∗
1,≤ because f(x) ≤

Mq(x) for some M > 0. Consequently 0 = sup{f(x) : f ∈ V X∗
1,≤ } = q(x).

If q(x) > 0, then for each f ∈ V X∗
1,≤ , we obtain

1

q(x)
f(x) = f(

x

q(x)
) ≤ q∗(f) ≤ 1,

and thus f(x) ≤ q(x). Therefore

sup{f(x) : f ∈ V X∗

1,≤ } ≤ q(x).

On the other hand, by Lemma 6.4 there exists f0 ∈ V X∗
1,≤ such that f0(x) = q(x).

Hence

q(x) ≤ sup{f(x) : f ∈ V X∗

1,≤ }.

This completes the proof.�
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It is a classical result that each normed linear space X is isometrically isomorphic

to a closed linear subspace of its bidual X∗∗. In the rest of this section we discuss

the corresponding situation for asymmetric normed linear spaces.

Let (X, q) be an asymmetric normed linear space. By analogy with the notion of

the dual X∗ of X, introduced above, we define the following sets.

Xs∗∗ = {ϕ : (Xs∗, (q∗)s)→ (R, |.|) : ϕ is linear and continuous},

and

X∗∗ = {ϕ : (Xs∗, q∗)→ (R, u) : ϕ is linear and continuous}.

Then Xs∗∗ is a linear space and X∗∗ is an algebraically closed subset of Xs∗∗.

Now for each ϕ ∈ X∗∗ set

q∗∗(ϕ) = sup{ϕ(f) : q∗(f) ≤ 1}.

Then (X∗∗, q∗∗) is an asymmetric normed semilinear space, which will be called

the bidual space of (X, q).

Given two asymmetric normed semilinear spaces (X, q) and (Y, p), a linear map f :

X → Y such that p(f(x)) = q(x) for all x ∈ X, is called an isometric isomorphism

from (X, q) to (Y, p).

Observe that every isometric isomorphism is a one-to-one map.

Two asymmetric normed linear spaces (X, q) and (Y, p) are called isometrically

isomorphic if there exists an isometric isomorphism from (X, q) onto (Y, p).

Theorem 6.3 Let (X, q) be an asymmetric normed linear space. For each x ∈ X
let ϕx : Xs∗ → R defined by

ϕx(f) = f(x), f ∈ Xs∗,
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and let ϕ(X) = {ϕx : x ∈ X}. Then the following statements hold.

(1) ϕ(X) is a linear space which is algebraically closed in X∗∗.

(2) (ϕ(X), q∗∗) is an asymmetric normed linear space isometrically isomorphic to

(X, q).

(3) (ϕ(X), q∗∗) is a biBanach space if (X, q) is so.

Proof. (1) We first prove that ϕ(X) is a subset of X∗∗. Fix x0 ∈ X. Let f, g ∈
Xs∗ and a, b ∈ R. Then

ϕx0(af + bg) = (af + bg)(x0) = af(x0) + bg(x0) = aϕx0(f) + bϕx0(g).

Hence ϕx0 is a linear function.

Now let (fn)n∈N be a sequence in Xs∗ that converges to a function f in (Xs∗, q∗).

Given ε > 0 there is nε ∈ N such that q∗(fn − f) < ε for all n ≥ nε.

If q(x0) = 0 it follows that fn(x0)− f(x0) < ε for all n ≥ nε.

If q(x0) > 0 it follows that

fn(
x0

q(x0)
)− f(

x0

q(x0)
) < ε

for all n ≥ nε. So fn(x0)− f(x0) < εq(x0).

We deduce that (fn(x0))n∈N converges to f(x0) in (R, u), and thus ϕx0 is contin-

uous from (Xs∗, q∗) to (R, u). Consequently ϕx0 ∈ X∗∗. Hence ϕ(X) ⊆ X∗∗.

Next we show that ϕ(X) is a linear space. Let x, y ∈ X and a, b ∈ R. Then, for

each f ∈ Xs∗,

(aϕx + bϕy)(f) = aϕx(f) + bϕy(f) = af(x) + bf(y) = f(ax+ by) = ϕax+by(f).

So aϕx + bϕy ∈ ϕ(X). It immediately follows that ϕ(X) is a linear space and it

is algebraically closed in X∗∗.
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(2) From (1) we obtain that (ϕ(X), q∗∗) is an asymmetric normed linear space.

Next we prove that (X, q) and (ϕ(X), q∗∗) are isometrically isomorphic. Define

a map Ψ : X → ϕ(X) by Ψ(x) = ϕx for all x ∈ X. Then Ψ is linear because for

x, y ∈ X and a, b ∈ R we obtain

Ψ(ax+ by) = ϕax+by = aϕx + bϕy = aΨ(x) + bΨ(y).

Clearly, Ψ is an onto map.

Given x ∈ X, we have by Proposition 6.4 and Theorem 6.2,

q(x) = sup{f(x) : f ∈ Xs∗ and q∗(f) ≤ 1}

= sup{ϕx(f) : f ∈ Xs∗ and q∗(f) ≤ 1} = q∗∗(ϕx) = q∗∗(Ψ(x)).

(3) If (X, q) is a biBanach space, it is obvious by (2) that (ϕ(X), q∗∗) is also a

biBanach space.�

Remark 6.2 Although it does not follow the idea proposed above to constructing the

bidual of an asymmetric normed linear space (X, q), there is a temptation to give an

alternative and apparently more simple notion of biduality, working directly on the

set of all linear and upper semicontinuous real-valued functions defined on (X∗, q∗).

Thus we define

(X∗)∗ = {ϕ : (X∗, q∗)→ (R, u) : ϕ is linear and continuous}.

Since span{(X∗)∗} is clearly a linear space and (X∗)∗ is an algebraically closed

subset of it, we deduce that ((X∗)∗, (q∗)∗) is an asymmetric normed semilinear space,

where

(q∗)∗(ϕ) = sup{ϕ(f) : q∗(f) ≤ 1},

for all ϕ ∈ (X∗)∗.
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Now, for each x ∈ X let ϕx|X∗ be the restriction to X∗ of the function ϕx con-

structed in Theorem 6.3 (thus ϕx|X∗(f) = f(x) for all f ∈ X∗), and let ϕ(X)|X∗ =

{ϕx|X∗ : x ∈ X}. Then, as in the proof of Theorem 6.3, we obtain that (ϕ(X)|X∗ , (q
∗)∗)

is an asymmetric normed linear space isometrically isomorphic to (X, q).Hence

(ϕ(X), q∗∗) and (ϕ(X)|X∗ , (q
∗)∗) are isometrically isomorphic.
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Chapter 7

Weak topologies on asymmetric

normed linear spaces

7.1 Introduction

The use of the structure of the dual space is one of the main tools of the theory of the

locally convex spaces, since it leads to the definition of the weak topologies for the

spaces as a consequence of the properties of the space of the (real) continuous linear

maps. In this chapter we show how we can construct weak topologies in the context

of the asymmetric normed linear spaces, and we present several results related to

the basic properties of these topologies.

7.2 Preliminary results

The proof of the following result was given essentially in Chapter 6.

Proposition 7.1 Let (X, q) be an asymmetric normed linear space. The dual space

X∗ is an ac-closed subset of Xs∗ and (qs)∗(f) ≤ q∗(f) for every f ∈ X∗. Moreover,

q∗ is an asymmetric norm on X∗. In particular, this means that if f ∈ X∗ and

−f ∈ X∗, q∗(f) = q∗(−f) = 0 implies f = 0.
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The following pointwise boundedness property can be obtained directly. In fact,

it is the main idea in the proof of Proposition 7.1. For every f ∈ X∗ and every

x ∈ X, we have:

−q(−x)q∗(f) ≤ f(x) ≤ q(x)q∗(f).

Proposition 7.2 gives a representation of the linear span of X∗ which will be used in

the following section.

Proposition 7.2 Let (X, q) be an asymmetric normed linear space and X∗ its dual

space. Then

span{X∗} = {f ∈ Xs∗ : f = f1 − f2, f1, f2 ∈ X∗} = X∗ −X∗.

Proof. Let f ∈ span{X∗}. Then we can write f as

f =
n∑
i=1

αigi −
m∑

i=n+1

αigi,

where n,m ∈ N, m ≥ n, and for every i = 1, ...,m αi is a non negative real number

and gi ∈ X∗.

SinceX∗ is algebraically closed, the functions f1 =
∑n

i=1 αigi and f2 =
∑m

i=n+1 αigi
are in fact elements ofX∗. �

Therefore, X∗ − X∗ is a linear subspace of Xs∗. Moreover, in the following

section we show that the equality between these linear spaces gives conditions for

the coincidence of several weak topologies.

7.3 Weak topologies on X

The first definition of weak topology that we give for the asymmetric normed linear

space (X, q) is induced when the linear functionals of X∗ are considered as elements

of Xs∗.
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Definition 7.1 We define the weak topology for X, denoted by τweakq, as the one

that has as a basis of neighborhoods of 0 the following subsets. For every natural

number n, each finite sequence f1, ..., fn ∈ X∗ and each ε > 0, we define

Wε,f1,...,fn(0) := {x ∈ X : |f1(x)| < ε, ..., |fn(x)| < ε}.

A basis of neighborhoods for an element y ∈ X is obtained by translations of these

neighborhoods, i.e.

Wε,f1,...,fn(y) := y +Wε,f1,...,fn(0).

Note that each neighborhood of y can be written as

Wε,f1,...,fn(y) = {x ∈ X : |f1(x− y)| < ε, ..., |fn(x− y)| < ε}.

We can consider the asymmetry of the norm on the original space (X, q) to define

two different topologies that are coarser than τweakq.

Definition 7.2 The weak positive topology for X (weak+ topology for short), de-

noted by τweak+, is the one that has as a basis of neighborhoods of 0 the following

subsets. For every natural number n, each finite sequence f1, ..., fn ∈ X∗ and each

ε > 0, we define

W+
ε,f1,...,fn

(0) := {x ∈ X : f1(x) < ε, ..., fn(x) < ε}.

As in the case of the weak topology, a basis of neighborhoods for an element y ∈ X
is obtained by

W+
ε,f1,...,fn

(y) := y +W+
ε,f1,...,fn

(0).

In this case, each neighborhood of y can be written as

W+
ε,f1,...,fn

(y) = {x ∈ X : f1(x− y) < ε, ..., fn(x− y) < ε}.
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Definition 7.3 The weak negative topology for X (weak− topology for short), de-

noted by τweak−, is the one that is defined by the basis of neighborhoods of 0 given by

the following subsets. For every natural number n, each finite sequence f1, ..., fn ∈
X∗ and each ε > 0, we define

W−
ε,f1,...,fn

(0) := {x ∈ X : −f1(x) < ε, ...,−fn(x) < ε}.

A basis of neighborhoods for an element y ∈ X is given by

W−
ε,f1,...,fn

(y) := y +W−
ε,f1,...,fn

(0),

which can also be defined as

W−
ε,f1,...,fn

(y) = {x ∈ X : −f1(x− y) < ε, ...,−fn(x− y) < ε}.

Note that the continuity properties of a function f ∈ X∗ with respect to the

topologies defined above can be characterized by mean of the study of the continuity

in 0, since they are invariant by translations.

We can also consider the weak topology on X induced by the elements of the

dual of the normed space (X, qs). We will denote it by τweakqs .

Theorem 7.1 The following relations between the topologies defined on X by the

asymmetric norm q and the dual space X∗ hold.

1) τweakq is coarser than τweakqs.

2) τweak+ is coarser than the topology T (dq) generated by q .

3) τweak+ and τweak− are coarser than τweakq.

4) τweakq = τweak+ ∨ τweak−.

5) If Xs∗ = X∗ −X∗, then τweakq = τweakqs.

Proof. The statement 1) is obvious. To prove, 2), consider a neighborhood

W+
ε,f1,...,fn

(0) of τweak+. Then there are positive constants M1, ...,Mn such that
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fi(x) ≤ Miq(x) for every x ∈ X and each fi, i = 1, ..., n. We just need to con-

sider the ball V ε
M

(0), where M is the maximum of the constants Mi, i = 1, ..., n,

since for every x ∈ V ε
M

(0) and i = 1, ..., n

fi(x) ≤Miq(x) ≤Mq(x) < ε.

The statement 3) is just a consequence of the definitions, since for every x ∈ X

and each function f ∈ X∗ we have f(x) ≤ |f(x)| and −f(x) ≤ |f(x)|. The same

inequalities show 4), since

W+
ε,f (0) ∩W−

ε,f (0) = {x ∈ X : −f(x) < ε, f(x) < ε} = Wε,f (0)

for every ε > 0 and f ∈ X∗, and the same argument can be used to construct the

neighborhoods Wε,f1,...,fn(0) as W+
ε,f1,...,fn

(0)∩W−
ε,f1,...,fn

(0) for finite sets of functions

f1, ..., fn ∈ X∗.

To prove 5), consider the neighborhood of 0 for the topology τweakqs W
s
ε,f1,...,fn

(0) =

{x ∈ X : |f(x)| < ε}, where fi ∈ Xs∗ for every i = 1, ..., n. Then we can find

functions fi,1, fi,2 ∈ X∗ for each fi, i = 1, ..., n, such that fi = fi,1 − fi,2. Since

|fi(x)| ≤ |fi,1(x)|+ |fi,2(x)| for each i = 1, ..., n and every x ∈ X, we obtain that

Wε,f1,1,...,fn,1(0) ∩Wε,f1,2,...,fn,2(0) ⊂ W s
ε,f1,...,fn

(0),

which gives the result. �

Let us show that, contrarily to the classical case, T (dq) can be weaker than τweakq.

Consider the space (R2, q+
2 ), where q+

2 ((x, y)) =
√

(x ∨ 0)2 + (y ∨ 0)2. It is clear that

(R2)∗ is defined by the positive cone of R2 (with respect to the usual order) with the

Euclidean norm, and each element of the dual space of (R2, ‖.‖2) can be written as

a difference of two elements of (R2)∗. Thus, we have that the τweakq = τweakqs . Since

the weak and the norm topology coincide for finite dimensional normed spaces,

we obtain T (dqs) = τweakq. However, it is clear that there is no ball of (R2, q+
2 )

contained in the unit ball of R2 (endowed with the Euclidean norm), since the set

{λ(−1,−1) : λ ∈ R+} is contained into every ball Vε(0), ε > 0 for the topology

generated by q+
2 . Therefore, in this case T (dq) is weaker than τweakq.

Proposition 7.3 Let (X, q) be an asymmetric normed linear space. Then
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1) The weak topology is the coarsest that makes continuous all linear functionals

in X∗.

2) The weak+ topology is the coarsest that makes upper semicontinuous all linear

functionals of X∗.

3) The weak− topology is the coarsest that makes lower semicontinuous all linear

functionals of X∗.

Proof. 1) If f ∈ X∗ and ε > 0, we just need to consider the neighborhood of 0, Wε,f

to show that f is continuous, since x ∈ Wε,f , |f(x)| ≤ ε, implies f(x) ∈ (−ε, ε). To

see that it is the coarsest, it is enough to take into account that Wε,f (0) = {x ∈ X :

|f(x)| < ε} = f−1((−ε, ε)), and then these sets must be contained in every topology

such that all the functions f ∈ X∗ are continuous. Since the single neighborhoods

as Wε,f (0) define a subbases for τweakq, we obtain the result.

2) The proof is similar for the topology τweak+. In this case, we just need to

consider an upper semicontinuous function f ∈ X∗ as a continuous function f :

X → (R, u). A basic neighborhood of 0 in (R, u) is (−∞, ε) for an ε > 0. It is

clear that f(W+
ε,f ) ⊂ (−∞, ε), and then we obtain the upper semicontinuity of f . A

similar argument that the one of 1) gives that τweak+ is the coarsest topology that

satisfies this condition for every function f ∈ X∗. The proof of 3) follows the same

lines. �

7.4 Weak topologies on X∗

As in the case of the asymmetric normed linear space (X, q), we can give several

definitions for the space (X∗, q∗). In this section we present these notions and we

show that the definitions of Section 7.3 lead to the same topology when we adapt

them to the dual space X∗. We restrict our attention to the case of the weak*

topologies, i.e. the topologies induced by X on X∗. Therefore, in this section we

are interested in the (pointwise) topologies generated by the elements of X when we

consider them as functions acting on X∗.
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Definition 7.4 We define the weak* topology for X∗, denoted by τweak∗, as the one

that has as a basis of neighborhoods of 0 the following subsets. For every natural

number n, each finite sequence x1, ..., xn ∈ X and each ε > 0, we define

W ∗
ε,x1,...,xn

(0) := {f ∈ X∗ : |f(x1)| < ε, ..., |f(xn)| < ε}.

A basis of neighborhoods for a function g ∈ X∗ is obtained by translations of these

neighborhoods, i.e.

W ∗
ε,x1,...,xn

(g) := g +W ∗
ε,x1,...,xn

(0).

It is obvious that we get in this way a translation invariant topology. In the same

way, we can define the weak* positive topology, denoted by τweak∗+, on the space

X∗ (the weak*+ topology for short) as in the case of the weak topologies for X. In

this case, this would be the one that has the following neighborhoods of 0. For each

finite subset of elements x1, ..., xn ∈ X and each ε > 0, we define

W ∗+
ε,x1,...,xn

(0) := {f ∈ X∗ : f(x1) < ε, ..., f(xn) < ε}.

The translations of these sets W ∗+
ε,x1,...,xn

(g) = g+W ∗+
ε,x1,...,xn

(0), define a fundamental

system of neighborhoods of g for every g ∈ X∗.

We can also define the weak* negative topology, denoted by τweak∗−, with the

following neighborhoods of 0. If x1, ..., xn are elements of X and ε is a positive real

number, we define W ∗−
ε,x1,...,xn

(0) as

W ∗−
ε,x1,...,xn

(0) := {f ∈ X∗ : −f(x1) < ε, ...,−f(xn) < ε}.

Although the definitions above seems to give different topologies, it is easy to

prove that these topologies are in fact the same. Hence,

τweak∗ = τweak∗+ = τweak∗−

on every dual X∗ of an asymmetric normed linear space (X, q).

To see this, it is enough to take a neighborhood of 0 for the weak* topology as

W ∗
ε,x(0). Then we can consider W ∗+

ε,x,−x(0), and it is clear that W ∗
ε,x(0) = W ∗+

ε,x,−x(0).
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Since these sets define a subbases of the weak* topology, the equivalence is proved.

Therefore, this is a consequence of the linearity of X.

In the same way, we can consider the linearization X∗ − X∗ of the dual space

X∗ and extend the definition of the topologies to this new space. This leads to the

following definition.

Definition 7.5 We define the pc-weak* topology, denoted by τpc−weak∗, to the topol-

ogy induced by X on X∗−X∗, i.e. the one that has as neighborhoods of g ∈ X∗−X∗
the sets

W pc∗
ε,x1,...,xn

(g) := {f ∈ X∗ −X∗ : |(f − g)(x1)| < ε, ..., |(f − g)(xn)| < ε},

for every finite set of elements x1, ..., xn of X.

The notation pc-weak* is due to the obvious fact that this topology is exactly

the topology of the pointwise convergence (“pc ”for short).

Note that, in this case, we do not define the neighborhoods of an element g ∈ X∗−
X∗ as translations of the neighborhoods of 0. However, we have also a translation

invariant topology, since

W pc∗
ε,x1,...,xn

(g) = g +W pc∗
ε,x1,...,xn

(0).

for every g and every neighborhood of 0.

We could give other definitions of pointwise topologies on X∗−X∗ that are related

to the topology τpc−weak∗ but taking into account the asymmetry of the space X∗,

following the definition of the dual topologies for X. As in the case of τweak∗, the

definition of the corresponding positive topology by mean of neighborhoods of g as

W pc∗+
ε,x1,...,xn

(g) := {f ∈ X∗ −X∗ : (f − g)(x1) < ε, ..., (f − g)(xn) < ε}

for every finite set of elements x1, ..., xn of X leads to the topology τpc−weak∗.

Remark 7.1 It is interesting to note that the topology τweak∗ does not coincide on

X∗ with the topology τpc−weak∗ when we restrict it to the space X∗. It is easy to
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prove that τweak∗ is finer than the restriction τpc−weak∗|X∗, but the converse is not

true in general. The neighborhoods of an element g ∈ X∗ for τweak∗ are translations

of neighborhoods of 0 in X∗. This means that

W ∗
ε,x1,...,xn

(g) = g +W ∗
ε,x1,...,xn

(0) =

= {f ∈ X∗ : f − g ∈ X∗, |(f − g)(x1)| < ε, ..., |(f − g)(xn)| < ε}.

However, the restriction to X∗ of the corresponding neighborhood of g ∈ X∗ for

τpc−weak∗ is

W pc∗
ε,x1,...,xn

(g)
⋂

X∗ = (g +W pc∗
ε,x1,...,xn

(0))
⋂

X∗ =

= {f ∈ X∗ : |(f − g)(x1)| < ε, ..., |(f − g)(xn)| < ε}.

which are not in general the same sets, since X∗ is not in general a linear space. In

fact, τweak∗ is translation invariant, but this is not the case for τpc−weak∗|X∗ . The

following example illustrates this fact.

Example 7.1 Consider the linear space RN0 of sequences of real numbers (λi) that

are different of 0 only for a finite subset of co-ordinates. We define the asymmetric

normed linear space l+1 as the pair (RN0 , q1), where q1 is the asymmetric norm defined

by

q1((λi)) := ‖(λi ∨ 0)‖1,

where ‖.‖1 is the usual 1-norm, i.e., for every (λi) ∈ RN0 ,

‖(λi)‖1 =
∞∑
i=1

|λi|.

The dual of this space can be directly computed by using the lattice properties of

the space RN0 with the usual order and the well-known duality between the space of

summable sequences l1 and the space of bounded sequences l∞. Since for this kind

of asymmetric norms, the continuous functions are exactly the positive continuous

functions for the original norm in the lattice (in this case ‖.‖1) (see [4]), we obtain

that (l+1 )∗ is exactly the positive cone of l∞. Now, consider the constant sequence

(1, 1, 1, ...) ∈ (l+1 )∗ and the corresponding neighborhood defined by the element

(1, 0, 0, 0...) ∈ l+1 ,

W ∗
ε,(1,0,0...)((1, 1, ...) = {(λi) ∈ l∞ : λi ≥ 1, i ∈ N, λ1 − 1 < ε} =
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= (1, 1, 1, ...) +W ∗
ε,(1,0,0...)((0, 0, 0, ...).

However, the restriction to (l+1 )∗ of the neighborhood of (1, 1, 1, ...) for τpc−weak∗ is

W pc∗
ε,(1,0,0...)((1, 1, ...) = {(λi) ∈ l∞ : λi ≥ 0, i ∈ N, |λ1 − 1| < ε}.

which can not be written as the translation of any neighborhood of 0 of τpc−weak∗|(l+1 )∗.

Then, note that every neighborhood of (1, 1, 1, ...) for the weak* topology have all

its co-ordinates greater or equal to 1. But every neighborhood for τpc−weak∗ contains

an element that have all its co-ordinates equal to 0 after a finite number of non-zero

co-ordinates, since the neighborhoods are defined by finite sets of sequences that has

finitely many non-zero co-ordinates.

We are interested in the pc-weak* topology, since it leads to a good weak re-

flexivity relation for asymmetric normed linear spaces as we will show in the next

section. However, τpc−weak∗ is the topology that really acts as a weak* topology for

the linearization of the dual space X∗, as the following proposition shows.

Proposition 7.4 The pc-weak* topology is the coarsest topology which makes con-

tinuous the functionals x : X∗ −X∗ → R, defined by x(f) := f(x) for every x ∈ X.

Proof. First we show that every functional defined by an element x ∈ X on X∗−X∗
is continuous for τpc−weak∗. Let ε > 0 and consider the neighborhood of zero in R

given by (−ε, ε). Take the neighborhood W pc∗
ε,x (0) := {f ∈ X∗ − X∗ : |f(x)| < ε}.

It is clear that x(W pc∗
ε,x (0)) ⊂ (−ε, ε), and then the function is continuous. On the

other hand, each topology τ that makes continuous the map x(f) := f(x) satisfies

that x−1((−ε, ε)) ∈ τ . Since x−1((−ε, ε)) = W pc∗
ε,x (0) and the pc-weak* topology is

the coarsest topology generated by the neighborhoods {W pc∗
ε,x (0) : x ∈ X}, we obtain

the result. �

7.5 The Alaoglu theorem for asymmetric normed

linear spaces

Let (X, q) be an asymmetric normed linear space and let BXs∗
1,≤ = {f ∈ Xs∗ :

(qs)∗(f) ≤ 1}. Then, the celebrated Alaoglu theorem states that BXs∗
1,≤ is compact
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for the weak* topology on Xs∗. Here we will show that the unit ball V X∗
1,≤ is compact

for the pc-weak* topology on X∗. In fact, we present two proofs of this result. The

proof of the following lemma can be found in Chapter 6 (see Proposition 6.4).

Lemma 7.1 Let (X, q) be an asymmetric normed linear space. Then V X∗
1,≤ ⊆ BXs∗

1,≤ .

Theorem 7.2 Let (X, q) be an asymmetric normed linear space. Then V X∗
1,≤ is com-

pact in X∗ with respect to τpc−weak∗|X∗.

Proof . Let (fα)α∈∆ be a net in V X∗
1,≤ . Since V X∗

1,≤ ⊆ BXs∗
1,≤ and BXs∗

1,≤ is compact

for the weak* topology by Alaoglu Theorem, there is a subnet (fαλ)λ∈Λ of (fα)α∈∆,

which converges to a function f ∈ BXs∗ with respect to the weak* topology on Xs∗.

Thus f is linear. Moreover, for x ∈ X and ε > 0 there is λ0 such that for λ ≥ λ0,

|f(x)− fαλ(x)| < ε. Since by Theorem 6.2, fαλ(x) ≤ q(x) for all λ ∈ Λ, we obtain

f(x) < ε+ fαλ(x) ≤ ε+ q(x),

for all λ ≥ λ0. Hence, f(x) ≤ q(x). Consequently f is continuous from (X, q) to

(R, u) and q∗(f) ≤ 1. We conclude that f ∈ V X∗
1,≤ . Therefore V X∗

1,≤ is compact with

respect to τpc−weak∗|X∗ .�

Remark 7.2 Theorem 7.2 admits a direct proof without using explicitly Alaoglu’s

Theorem as we show in the following.

Indeed, let x ∈ X. The interval [−q(−x), q(x)] is a compact subset of (R,|.|). For

each function f ∈ V X∗
1,≤ we have, by Theorem 6.2, that f(x) ∈ [−q(−x), q(x)] for

every x ∈ X.

Now, consider the product space H := Πx∈X [−q(−x), q(x)] endowed with the prod-

uct topology. We can identify each function f ∈ V X∗
1,≤ with its range (f(x))x∈X ∈ H.

Moreover, a direct argument shows that the restriction of the product topology to the

following subset of H,
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{(f(x))x∈X : f ∈ V X∗

1,≤ },

coincides with the pc-weak* topology of V X∗
1,≤ (see the classical proof of Alaoglu The-

orem in [9] or [59]).

As a consequence of Tychonov’s theorem, the product space H endowed with its

product topology is compact. Now we just need to prove that {(f(x))x∈X : f ∈ V X∗
1,≤ }

is a compact subset of the product space. In order to do this, we will prove that it is

closed. Fix the elements x, y ∈ X. Let us define the function Ψx,y : H → R as

Ψx,y(f) := f(x) + f(y)− f(x+ y), f ∈ H.

This function is obviously continuous for the product topology, since its definition

only depends on a finite subset of elements of X -in fact, two-. If a ∈ R and x ∈ X,

we can define in the same way the function

Φa,x(f) := af(x)− f(ax), f ∈ H,

that is also continuous. Now we define the set

A := (∩x,y∈XΨ−1
x,y({0})) ∩ (∩a∈R,x∈XΦ−1

a,x({0})).

It is a closed subset, since it is the intersection of a family of closed subsets.

Moreover, A is clearly the representation of the unit ball V X∗
1,≤ via the range (f(x))x∈X

of each function f . Therefore V X∗
1,≤ is compact.

7.6 Applications. Reflexivity of Hausdorff asym-

metric normed linear spaces

In this section we prove that the dual of the topological space X∗ − X∗ endowed

with the pc-weak* topology is the original space X when the asymmetric normed



7.6 Applications. Reflexivity of Hausdorff asymmetric normed linear spaces 85

linear space X is Hausdorff. We generalize in this way the classical result for the

weak* topology of normed spaces. We have shown that each element x ∈ X defines

a continuous map x : X∗ − X∗ → R when we consider the pc-weak* topology on

X∗ −X∗. Thus, we just need to show that the functionals defined in this way are

the only ones.

First, it is interesting to declare that there are asymmetric normed linear spaces

that are Hausdorff and are not normable (see Chapter 2 or [22]). For normed spaces,

Theorem 7.1 is already known (see for example Ch.II of [9]). An easy example of

an asymmetric normed linear space that is Hausdorff but not normable is Example

2.1.

Theorem 7.3 Let (X, q) be a Hausdorff asymmetric normed linear space. Let φ

be a linear functional on X∗ −X∗ which is continuous with respect to the pc-weak*

topology of X∗. Then it can be identified with an element x ∈ X, i.e. there is an

element x ∈ X such that φ(f) = f(x) for every f ∈ X∗ −X∗.

Proof. By Proposition 7.4, we know that all the functionals defined by mean of the

elements of X are continuous with respect to the pc-weak* topology of X∗ − X∗.
Thus, we just need to prove that we can find an element x ∈ X for every functional

φ : X∗ −X∗ → R satisfying the required property. Since φ is continuous, for every

ε > 0 there is a δ > 0, and elements x1, ..., xn such that, if f ∈ W pc∗
δ,x1,...,xn

(0), then

|φ(f)| < ε. This means that the conditions |f(x1)| < δ,..., |f(xn)| < δ implies

|φ(f)| < ε.

Now suppose that the first r elements, r ≤ n, of x1, ..., xn define a basis. Let

us show that, if f ∈ X∗ − X∗ and all the images f(x1),...,f(xr) are equal to 0,

then φ(f) = 0. Suppose that f is a non zero element of X∗ −X∗ and satisfies the

above condition for the elements x1, ..., xr. The linearity of f shows that f(xi) = 0

also for the rest of the elements of the sequence x1, ..., xn. Then, it belongs to the

neighborhood W pc∗
δ,x1,...,xn

(0), and for each λ ∈ R the element λφ also belongs to this

subset. But then, if φ(f) 6= 0, there is a λ such that |φ(λf)| = |λφ(f)| > ε, which

contradicts the continuity of φ.

Consider the finite dimensional subspace S of X generated by the elements

x1, ..., xr. Since X is Hausdorff, Corollary 4.2 shows that S is isomorphic to a
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normed space, and then we can find linear functionals fi on S such that fi(xj) = 1

if i = j, and 0 otherwise, which are continuous with respect to the topology induced

by q. By the Hahn-Banach Theorem for asymmetric normed linear spaces obtained

in [4], we can extend these functionals to the whole space X. We denote them by

f i, i = 1, ..., r.

Take an element g ∈ X∗ −X∗, and define the linear functional

g′ = g −
r∑
i=1

g(xi)f i ∈ X∗ −X∗.

It is equal to 0 in S, since for each xj, j = 1, ..., r, we have

g′(xj) = g(xj)−
r∑
i=1

g(xi)f i(xj) = g(xj)− g(xj) = 0.

Then, φ(g′) = 0, and

φ(g) =
r∑
i=1

g(xi)φ(f i) = g(
r∑
i=1

αixi),

where αi = φ(f i), i = 1, ..., r. This gives the result, since φ is determined by the

element
∑r

i=1 αixi. �
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Chapter 8

Sequence spaces and asymmetric

norms in the theory of

computational complexity

8.1 Introduction and preliminaries

Our purpose in this chapter consists in developing a robust mathematical model for

the theory of computational complexity of algorithms and programs in the context

of Theoretical Computer Science, by using the mathematical background of the

preceding chapters

In [51] M. Schellekens introduced the complexity (quasi-metric) space as a part of

the development of a topological foundation for the complexity analysis of programs

and algorithms. In particular, he presented some applications of this theory to the

complexity analysis of Divide&Conquer algorithms.

The complexity space ([51]) is the pair (C, dC), where

C = {f ∈ (0,∞]ω :
∑∞

n=0 2−n(1/f(n)) <∞},

and dC is the quasi-metric defined on C × C by
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dC(f, g) =
∑∞

n=0 2−n[( 1
g(n)
− 1

f(n)
) ∨ 0].

The dual complexity space was introduced in [44], where several quasi-metric

properties of the complexity space which are interesting from a computational point

of view are obtained via the analysis of its dual. Some motivations for the use of the

dual space instead of the original complexity space are given in [44] p. 313. In par-

ticular, the structure of an asymmetric normed semilinear space provides a suitable

setting to develop a consistent theory for the analysis of the dual complexity space

([46]) and, by other hand, the dual has a definite appeal, since in this context, it has

a minimum ⊥ which corresponds directly to the minimum of semantics domains.

Moreover the dual complexity space can be directly used for the complexity anal-

ysis of algorithms where the running time of computing is the complexity measure

(compare [51] Section 4, and [44] page 313).

The dual complexity space ([44]) is the pair (C∗, dC∗), where

C∗ = {f ∈ [0,∞)ω :
∑∞

n=0 2−nf(n) <∞},

and dC∗ is the quasi-metric defined on C∗ × C∗ by

dC∗(f, g) =
∑∞

n=0 2−n[(g(n)− f(n)) ∨ 0].

As is noted in [44], the inversion map Ψ : C∗ → C is an isometry from (C∗, dC∗)
to (C, dC).

Following M. Schellekens ([51], Section 4), the intuition behind the complexity

distance between two functions f, g ∈ C is that dC(f, g) measures relative progress

made in lowering the complexity by replacing any program P with complexity

function f by any program Q with complexity function g. Let f, g ∈ C∗. As

dC∗(f, g) = dC(1/f, 1/g), we deduce that dC∗(f, g) measures relative progress made

in lowering the complexity by replacing g by f . In particular dC∗(f, g) = 0, with

f 6= g, can be interpreted as g is “more efficient”than f .

Anyway, there are some algorithms which are time exponential. Several of these

problems lead to a complexity analysis that cannot be performed using the dual
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complexity space. In fact, as the reader can check, an algorithm with running

time O( 2n√
n
) generates the function f given by f(n) = 2n/

√
n for all n ∈ N, which

obviously does not belong to the dual complexity space C∗ ([1] page 312). However,

this function belongs to a generalized (p-norm) version of the dual complexity space

(see Examples 8.1 and 8.2 below).

Motivated, in part, by this kind of examples, we here define and study several

properties of the asymmetric normed linear space (lp, ‖.‖+p) and the so-called dual

p-complexity space (see Section 8.3 for definitions), which can be used for the com-

plexity analysis of several exponential time algorithms. In particular the asymmetric

norms defined on these duals provide a suitable interpretation in terms of running

time. We observe that the dual p-complexity space is isometrically isomorphic to

the positive cone of (lp, ‖.‖+p) and show strong completeness (in the sense of [48])

of the dual p-complexity space. Finally a compactness result for upper bounded

subsets of the dual p-complexity space is stated.

On the other hand, there is in the last years a renewed interest in automata

of infinite objects due to their intimate relation with temporal and modal logics

of programs. Thus, E.A. Emerson and C.S. Jutla ([14]) have successfully applied

complexity of tree automata to obtain optimal deterministic exponential time algo-

rithms in some important modal logics of programs, where by an exponential time

algorithm we mean an algorithm with running time O(2P (n)), such that P (n) is a

polynomial with P (n) > 0 for all n. This running time corresponds to the function

f given by f(n) = 2P (n) for all n, which does not belong to any dual p-complexity

space whenever P (n) ≥ n.

In Section 8.4 and subsequent we show that the supremum asymmetric norms that

one can define in a natural way on certain sequence algebras provide an efficient tool

to study those complexity functions that generate exponential time algorithms. In

this direction, we construct a very general class of asymmetric normed linear spaces

whose positive cones constitute a suitable setting for extending Schellekens’ idea of

complexity distance to the measure of improvements in complexity of exponential

time algorithms. Furthermore, these positive cones are biBanach semialgebras which

are isometrically isomorphic to the positive cone of the biBanach space (l∞, ‖.‖+∞),

where ‖x‖+∞ = sup{xn ∨ 0 : n ∈ ω} for each x := (xn)n∈ω ∈ l∞. Schellekens proved

in [51] that Divide & Conquer algorithms induce contraction maps on the complexity
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space. In the last section, we will show that this fact also follows from our approach.

The main results of this chapter have been published in [24].

8.2 Some asymmetric norms on sequence spaces

It is proved in [46] that the dual complexity space is a semilinear subspace of an

asymmetric normed linear space whose induced quasi-metric is bicomplete.

Let us now give some definitions for sequence spaces.

For 1 ≤ p <∞, we will denote by lp the set of infinite sequences x : = (xn)n∈ω of

real numbers such that
∑∞

n=0 | xn |p<∞.

It is well known that (lp, ‖.‖p) is a Banach space, where ‖ . ‖p is the norm on lp
defined by ‖ x ‖p=(

∑∞
n=0 | xn |p)1/p for all x ∈lp.

We will split the norm ‖ . ‖p as follows:

For each x ∈ R, let x+ be the nonnegative real number x ∨ 0.

Fix p ∈ [1,∞). For each x : = (xn)n∈ω ∈ lp define x+ := (x+
n )n∈ω and ‖x‖+p =

‖x+‖p , i.e.

‖x‖+p = (
∞∑
n=0

(x+
n )p)1/p.

We will show that ‖.‖+p is an asymmetric norm on lp such that the norm (‖.‖+p)
s

is equivalent to ‖.‖p . To this end the following well-known relations will be useful.

Lemma 8.1 For x := (xn)n∈ω ∈ lp, y := (yn)n∈ω ∈ lp and a ∈ R+ the following

statements hold:

(a) x = x+ − (−x)+;

(b) (ax)+ = ax+;
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(c) (xn + yn)+ ≤ x+
n + y+

n for all n ∈ ω.

Proposition 8.1 (compare [18] Theorem 3.1). For each p ∈ [1,∞), ‖.‖+p is an

asymmetric norm on lp.

Proof. Fix p ∈ [1,∞).Let x : = (xn)n∈ω ∈ lp such that ‖x‖+p = ‖−x‖+p = 0.

Then x+ = (−x)+ = 0 and by Lemma 8.1 (a), x = 0. On the other hand, it is clear

that ‖0‖+p = 0.

Now let a ∈ R+, x : = (xn)n∈ω ∈ lp and y : = (yn)n∈ω ∈ lp. Then

‖(ax)‖+p = ‖(ax)+‖p = a ‖x‖+p, by Lemma 8.1 (b).

Finally,

‖x + y‖+p =
∥∥(x + y)+

∥∥
p
≤ (
∑∞

n=0(x+
n + y+

n )p)1/p by Lemma 8.1 (c), so

‖x + y‖+p ≤ ‖x+ + y+‖p ≤ ‖x+‖p + ‖y+‖p = ‖x‖+p + ‖y‖+p . �

Corollary 8.1 For each p ∈ [1,∞), (lp, ‖.‖+p) is an asymmetric normed linear

space.

Proposition 8.2 For each p ∈ [1,∞), (‖x‖+p)
s ≤‖ x ‖p≤ ‖x‖+p + ‖−x‖+p, when-

ever x ∈ lp.

Proof. Fix p ∈ [1,∞). Let x : = (xn)n∈ω ∈ lp. Then, it is clear that

(‖x‖+p)
s = max{‖x‖+p , ‖−x‖+p} ≤ ‖x‖p .

Finally, by Lemma 8.1 (a), we obtain

‖x‖p =
∥∥x+ − (−x)+

∥∥
p
≤ ‖x+‖p +

∥∥(−x)+
∥∥
p

= ‖x‖+p + ‖−x‖+p . �
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Corollary 8.2 For each p ∈ [1,∞), (‖.‖+p)
s ≤ ‖.‖p ≤ 2(‖.‖+p)

s. Therefore (‖.‖+p)
s

and ‖.‖p are equivalent norms in lp.

Corollary 8.3 For each p ∈ [1,∞), (lp, ‖.‖+p) is a biBanach space.

Following [46], set B∗ = {f ∈ Rω :
∑∞

n=0 2−n | f(n) |< ∞}. Note that the dual

complexity space C∗ is the positive cone of B∗. Furthermore it is clear that l1 ( B∗.

If for each f, g ∈ B∗ and each a ∈ R we define f + g and a · f in the usual

pointwise way, then (B∗,+, ·) is a linear space (on R), and we deduce that (B∗, q)
is an asymmetric normed linear space, where q(f) =

∑∞
n=0 2−nf(n)+ for all f ∈ B∗

([46]).

It is proved in [46] Theorem 1, that actually (B∗, q) is a biBanach space, for which

C∗ is a semilinear subspace closed in the Banach space (B∗, qs).

In order to obtain a general theory which implies the possibility of extending the

notion of dual complexity for any p > 1, we introduce the following class of spaces.

For each p ∈ [1,∞) set

B∗p = {f ∈ Rω :
∑∞

n=0(2−n |f(n)|)p <∞}.

If for each f, g ∈ B∗p and each a ∈ R we define f+g and a·f in the usual pointwise

way, then it easily follows that (B∗p,+, ·) is a linear space.

Now denote by qp the nonnegative real valued function defined on B∗p by

qp(f) = (
∑∞

n=0(2−nf(n)+)p)1/p.

For each f ∈ B∗p let xf := (2−nf(n))n∈ω. Then xf ∈ lp and we have

qp(f) =
∥∥x+

f

∥∥
+p

.
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Since, by Proposition 8.1, ‖.‖+p is an asymmetric norm on lp, then qp is an

asymmetric norm on B∗p and consequently (B∗p, qp) is an asymmetric normed linear

space.

Observe that, in particular, (B∗1, q1) is exactly the biBanach space (B∗, q) defined

above.

The above simple but useful relationship between qp and ‖.‖+p actually permits

us to show that (B∗p, qp) and (lp, ‖.‖+p) are isometrically isomorphic as our next

result shows. (Let us recall that two (asymmetric) normed linear spaces (X, qX)

and (Y, qY ) are isometrically isomorphic if there is a linear map F from X onto Y

such that qY (F (x)) = qX(x) for all x ∈ X.)

Fix p ∈ [1,∞). Define a map φ : B∗p → lp by the rule:

(φ(f))(n) = 2−nf(n).

for all f ∈ B∗p and n ∈ ω. Thus φ(f) = xf , where xf is the element of lp defined

above. We then have the following result.

Proposition 8.3 φ is a linear bijection between (B∗p, qp) and (lp, ‖.‖+p) such that

qp(f) = ‖φ(f)‖+p for all f ∈ B∗p.

Proof. We first show that φ is onto. Indeed, let x = (xn)n∈ω be an element of lp.

Define f ∈ Rω by f(n) = 2nxn for all n ∈ ω. Then f ∈ B∗p since

(
∑∞

n=0 | 2−nf(n) |p)1/p = (
∑∞

n=0 | xn |p)1/p = ‖x‖p .

Furthermore (φ(f))(n) = xn for all n ∈ ω, so φ(f) = x.

Clearly φ is one-to-one and hence it is a bijection.

On the other hand, since for each f, g ∈ B∗p and each a, b ∈ R we have
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(φ(af + bg))(n) = 2−n(af(n) + bg(n)) = aφ(f(n)) + bφ(g(n))

whenever n ∈ ω, we deduce that φ(af + bg) = aφ(f) + bφ(g), and thus φ is linear.

Finally, for each f ∈ B∗p we have

‖φ(f)‖+p = ‖xf‖+p = qp(f).

The proof is complete. �

Corollary 8.4 (B∗p, qp) and (lp, ‖.‖+p) are isometrically isomorphic.

Corollary 8.5 (B∗p, qp) is a biBanach space.

8.3 The dual p-complexity space

For each p ∈ [1,∞) consider the biBanach space (B∗p, qp) defined in the preceding

section and set

C∗p = {f ∈ B∗p : f(n) ≥ 0 for all n ∈ ω}.

The restriction of the asymmetric norm qp to C∗p will be also denoted by qp if no

confusion arises. Then, the proof of the following result is straightforward and so is

omitted.

Proposition 8.4 For each p ∈ [1,∞), (C∗p , qp) is an asymmetric normed semilinear

space which is closed in the Banach space (B∗p, (qp)s).
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In the following the asymmetric normed semilinear space (C∗p , qp) will be called

the dual p-complexity space.

As in the case p = 1 (see Section 1), the fact that dqp(f, g) = 0, with f 6= g,

can be interpreted as g is more efficient than f . Furthermore qp(f) = dqp(0, f) mea-

sures relative progress made in lowering complexity by replacing f by the ”optimal”

complexity function 0, assuming that the complexity measure is the running time

of computing, of course.

Example 8.1 Consider the World Series Odds problem. Suppose two teams, A

and B are playing a match to see who is the first to win n games. Let P (i, j) be

the probability that if A needs i games to win, and B needs j games , that A will

eventually win the match. To compute P (i, j) it can be used a recursive algorithm

in two variables with running time O (2n/
√
n)(see [1] page 312, for more details).

As we indicate in Section 1 this running time induces the function f ∈ C∗p for every

p > 2, given by f(0) = 0 and f(n) = 2n/
√
n for all n ∈ N. Obviously f /∈ C∗p for

p ≤ 2.

Example 8.2 Suppose a problem with running time O(2n) (see [1]). In case we

had always the same number of processors than the size of the instance of such a

problem, say n, the running time is reduced to O(2n/n) in the ideal case of 100%

parallel processing efficiency. As in Example 8.1 the situation leads to a function

f ∈ C∗p for every p > 1, given by f(0) = 0 and f(n) = 2n/n for all n ∈ N. Obviously

f /∈ C∗.

Note that the natural definition of the asymmetric norm for the case of running

time O(2n/n) would be the ”infinite” version of qp, i.e. q∞(f) = sup{2−nf(n) : n ∈
ω}. This case will discuss later in this chapter.

In Proposition 8.5 below we extend Proposition 8.3 and Corollary 8.4 to the dual

p-complexity space and the positive cone of lp.

For each p ∈ [1,∞) denote by l+p the positive cone of lp. Thus

l+p = {x+ : x ∈ lp}.
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It is immediate to see that (l+p , ‖.‖+p) is an asymmetric normed semilinear space

which is closed in the Banach space (lp, (‖.‖+p)
s), where the restriction of ‖.‖+p to

l+p is also denoted by ‖.‖+p .

Furthermore, it is clear that the restriction to C∗p of the map φ : B∗p → lp, defined

in Section 2, is a linear bijection between the dual p-complexity space (C∗, qp) and

the positive cone (l+p , ‖.‖+p) which preserves asymmetric norms.

Hence, considering the notion of an isometric isomorphism between asymmetric

normed semilinear spaces, we deduce from the above observations the following re-

sult.

Proposition 8.5 For each p ∈ [1,∞), (C∗p , qp) and (l+p , ‖.‖+p) are isometrically

isomorphic.

Remark 8.1 Although (C∗p , qp) and (l+p , ‖.‖+p) are isometrically isomorphic, the

dual p-complexity space has the advantage that it allows us to interpret as con-

vergent, with respect to qp, for instance programs whose computing-time is constant

(or at least it has a polynomial growth). However such programs provide series that

are clearly divergent in (l+p , ‖.‖+p). On the other hand, note that the functions con-

structed in Examples 8.1 and 8.2 are in C∗p for p > 2 and p > 1, respectively, but

they are not in lp.

S.G. Matthews introduced in [36] the notion of a weightable quasi-metric space

as a part of the study of denotational semantics of dataflow networks.

A quasi-metric space (X, d) is called weightable if there is a nonnegative real

valued function w on X such that

d(x, y) + w(x) = d(y, x) + w(y),

for all x, y ∈ X. The function w is called a weighting function for d and the quasi-

metric d is called weightable.
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Both the complexity space and the dual complexity space are weightable, with

weighting functions wC and wC∗ defined by wC(f) =
∑∞

n=0 2−n(1/f(n)) for all f ∈ C,
and wC∗(f) =

∑∞
n=0 2−nf(n) for all f ∈ C∗, respectively ([51], [44]).

Note that the weighting function wC∗ coincides with the asymmetric norm q1 on

C∗1 .

We say that an asymmetric normed (semi)linear space (E, q) is weightable if

(E, dq) is a weightable quasi-metric space.

We want to show that the dual p-complexity space is weightable only for p = 1.

To this end, we will use the following technical lemma.

Lemma 8.2 The real valued function u defined on (0,∞) by u(p) = 31/p − 21/p is

strictly decreasing.

Proof. It suffices to see that u′(p) < 0 for all p > 0. Indeed, we have

u′(p) = p−2(21/p log 2− 31/p log 3).

Since for each p > 0, (3/2)1/p > 1 > log 2/ log 3, it follows that 31/p log 3 >

21/p log 2, so u′(p) < 0 for all p > 0. �

Theorem 8.1 The dual p-complexity space is weightable if and only if p = 1.

Proof. As we have indicate above the dual (1-) complexity space is weightable.

Conversely, suppose that (C∗p , qp) is weightable via the weighting function w on C∗p .
Then for each f, g ∈ C∗p ,

w(f) + qp(g − f) = w(g) + qp(f − g),

and
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w(f) + qp(−f) = w(0) + qp(f) and w(g) + qp(−g) = w(0) + qp(g).

Since qp(−f) = qp(−g) = 0, it follows that w(0) = w(f) − qp(f) = w(g) −
qp(g), and thus

qp(f) + qp(g − f) = qp(g) + qp(f − g).

Now define f, g : ω → R
+ by f(n) = 2n−(n/p) for all n ∈ ω, and g(n) = 0 for

n odd and g(n) = 2n−(n/p) for n even. Clearly f, g ∈ C∗p with qp(f) = 21/p and

qp(g) = (4/3)1/p. Moreover, qp(g − f) = 0 and qp(f − g) = (2/3)1/p. So we obtain

21/p = (4/3)1/p + (2/3)1/p, and, hence, 21/p31/p = 21/p(21/p + 1), i.e. 31/p − 21/p = 1.

By Lemma 8.2, this equality only holds when p = 1. We conclude that (C∗p , qp) is

weightable only for p = 1. �

Remark 8.2 It is known that (B∗1, q1) is not weightable ([46]). This observation,

joint with Theorem 8.1 and the obvious fact that every subspace of a weightable

quasi-metric space is weightable, shows that for each p > 1, the biBanach space

(B∗p, qp) is not weightable.

The theory of Smyth completable quasi-metric spaces provides an efficient setting

to give a topological foundation for many kinds of spaces which arise naturally in

several fields of Theoretical Computer Science ([36], [44], [46], [51], [53], [54], etc.).

A quasi-metric space (X, d) is Smyth completable if and only if every left K -

Cauchy sequence in (X, d) is a Cauchy sequence in (X, ds) ([32], [52]). (Let us recall

that a sequence (xn)n∈N in (X, d) is left K -Cauchy ([39]) provided that for each

ε > 0 there is k ∈ N such that d(xn, xm) < ε whenever k ≤ n ≤ m.)

A quasi-metric space (X, d) is Smyth complete if and only if every left K -Cauchy

sequence in (X, d) has a T (ds)-limit point ([32], [52]).

It immediately follows that a quasi-metric space is Smyth complete if and only if

it is bicomplete and Smyth completable.
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It was proved in [28] that every weightable quasi-metric space is Smyth com-

pletable, so every weightable bicomplete quasi-metric space is Smyth complete.

We say that an asymmetric normed semilinear space (E, q) is bicomplete (Smyth

complete) if (E, dq) is a bicomplete (Smyth complete) quasi-metric space.

Combining Corollary 3.2 with the second statement of Proposition 8.4, we obtain

that the dual p-complexity space is bicomplete. In particular, the dual (1 -) com-

plexity space is Smyth complete because it is weightable. However, it is possible

to prove that for each p > 1, the dual p-complexity space is Smyth complete. Ac-

tually, we will show that it admits a stronger kind of completeness, namely, strong

completeness in the sense of [48].

A filter F on a quasi-metric space (X, d) is called a Cauchy filter if for each n ∈ N
there is x ∈ X such that Bd(x, 2

−n) ∈ F ([19]).

A quasi-metric space (X, d) is called strongly complete if every Cauchy filter on

(X, d) has a T (ds)-cluster point ([48]).

Several properties of strongly complete quasi-metric spaces were discussed in [48].

In particular, every strongly complete quasi-metric space is Smyth complete, but the

converse does not hold.

Let u be the upper quasi-metric on R defined by u(r) = r ∨ 0, r ∈ R. Then

we can define the quasi-metric uP of pointwise convergence as the quasi-metric on

R
ω ×Rω given by uP (f, g) =

∑∞
n=0 2−n min{1, u(f(n), g(n))} for all f, g ∈ Rω ×Rω.

Theorem 8.2 For each p ∈ [1,∞), the dual p-complexity space (C∗p , qp) is strongly

complete.

Proof. Fix p ∈ [1,∞). Let F be a Cauchy filter on (C∗p , qp). Then, for each k ∈ N
there is a fk ∈ C∗p such that Fk ∈ F , where Fk = {f ∈ C∗p : qp(f − fk) < 2−3k}.

Therefore, for each f ∈ F1,∑∞
n=0(2−n(f(n)− f1(n))+)p < 2−3p,
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so f(n) < f1(n) + 2n−3 for all f ∈ F1 and n ∈ ω.

Denote by K the compact space
∏∞

n=0[0, f1(n) + 2n−3], and by F ∩K the closure

of F ∩ K in K for all F ∈ F . (Note that for each F ∈ F , F ∩ K 6= ∅ because

F1 ⊆ K.)

Next we show that for each F ∈ F , (F ∩K) ∩ (
⋂∞
k=1 Fk ∩K) 6= ∅.

Indeed, fix F ∈ F . For each k ∈ N there is gk ∈ F ∩ (
⋂k
j=1 Fj), so (gk)k∈N is a

sequence in F1 ⊆ K and, thus, it clusters to some g ∈ K with respect to T ((uP )s).

Therefore g ∈ (F ∩K) ∩ (
⋂∞
k=1 Fk ∩K).

In particular, it follows from the above observation that
⋂∞
k=1 Fk ∩K is a nonempty

compact subset of K, so the filter base {(F ∩K)∩ (
⋂∞
k=1 Fk ∩K) : F ∈ F} clusters

to some h ∈
⋂∞
k=1 Fk ∩K with respect to T ((uP )s). (Note that h(n) ≥ 0 for all

n ∈ ω).

Now we want to show that h ∈ C∗p and that F clusters to h with respect to the

metric induced by the norm (qp)
s. Thus (C∗p , qp) will be strongly complete.

Suppose that h /∈ C∗p . Then, for each j ∈ N there is an mj ∈ ω such that

jp <
∑mj

n=0(2−nh(n))p. Since h ∈ F1 ∩K, there exists gj ∈ F1 such that | h(n) −
gj(n) |< 2−j for n = 0, 1, ...,mj. So h(n) < gj(n) + 2−j for n = 0, 1, ...,mj, and thus

jp <
∑mj

n=0(2−n(gj(n) + 2−j))p <
∑∞

n=0(2−n(gj(n) + vj(n)))p = (qp(gj + vj))
p,

where vj is the constant function in C∗p defined by vj(n) = 2−j for all n ∈ ω. Hence

j < qp(gj + vj) ≤ qp(gj) + qp(vj) = qp(gj) + 2−(j−1) ≤ qp(gj) + 1

for all j ∈ N. Since qp(gj − f1) < 2−3, it follows that qp(gj) < qp(f1) + 2−3. So, for

each j ∈ N,

j < qp(f1) + (1 + 2−3),

which contradicts the fact that qp(f1) <∞. Consequently h ∈ C∗p .
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Finally, we will prove that F clusters to h with respect to the metric induced by

(qp)
s.

Fix k ∈ N and F ∈ F . Since h and fk are in C∗p , there is n0 ∈ N such that

(1)
∑∞

n=n0
(2−nh(n))p < 2−2kp and

∑∞
n=n0

(2−nfk(n))p < 2−3kp.

On the other hand, since h ∈ F ∩ Fk ∩K, there is f ∈ F ∩ Fk such that

∑n0−1
n=0 (2−n |f(n)− h(n)|)p < 2−2kp.

We want to show that qsp(f − h) < 2−k.

To this end, let h′, f ′k and f ′ be the functions in C∗p defined by h′(n) = h(n),

f ′k(n) = fk(n) and f ′(n) = f(n) whenever n ≥ n0, and h′(n) = f ′k(n) = f ′(n) = 0

whenever n < n0.

Note that, by the inequalities (1), it follows that qp(h
′) < 2−2k and qp(f

′
k) < 2−3k.

Furthermore qp(−h′) = qp(−f
′

k) = 0 because h′(n) ≥ 0 and f ′k(n) ≥ 0 for all n ∈ ω.

Then, we have

(
∑∞

n=n0
(2−n(f − h)(n)+)p)1/p = qp(f

′ − h′) ≤ qp(f
′) + qp(−h′) = qp(f

′),

and, on the other hand,

qp(f
′ − f ′k) = (

∑∞
n=n0

(2−n(f − fk)(n)+)p)1/p ≤ qp(f − fk) < 2−3k.

So

qp(f
′) < qp(f

′
k) + 2−3k < 2−3k + 2−3k ≤ 2−2k.

Therefore
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qp(f − h) = (
∑∞

n=0(2−n(f − h)(n)+)p)1/p

= (
∑n0−1

n=0 (2−n(f − h)(n)+)p +
∑∞

n=n0
(2−n(f − h)(n)+)p)1/p

< (2−2kp + (qp(f
′))p)1/p < (2−2kp + 2−2kp)1/p ≤ 2−k.

It remains to show that qp(h− f) < 2−k.

Observe that qp(h
′ − f ′) ≤ qp(h

′) + qp(−f ′) = qp(h
′) < 2−2k. Thus

qp(h− f) = (
∑n0−1

n=0 (2−n(h− f)(n)+)p +
∑∞

n=n0
(2−n(h− f)(n)+)p)1/p

< (2−2kp + (qp(h
′ − f ′))p)1/p < (2−2kp + 2−2kp)1/p ≤ 2−k.

We conclude that (qp)
s(f − h) < 2−k. Hence (C∗p , qp) is strongly complete. �

For an arbitrary Tychonoff topological space X we denote, as usual, by Cp(X)

the space of all continuous real valued functions on X with the topology of pointwise

convergence.

The celebrated Grothendieck theorem ([25]) states that if X is a Tychonoff count-

ably compact space and A is a subset of Cp(X) such that every infinite subset of

A has a limit point in Cp(X), then the closure of A is compact in Cp(X). Asanov

and Velichko ([8]) have obtained the following generalization of Grothendieck’s the-

orem: if X is a Tychonoff countably compact space, then the closure in Cp(X)

of every bounded subset A of Cp(X) is compact. In our next theorem we extend

Asanov-Velichko’s theorem to the dual p-complexity space (C∗p , qp).

Following [47], a subset A of a topological space X is called upper bounded if

every upper semicontinuous real valued function on X is upper bounded on A.

Lemma 8.3 ([47]). A subset A of a quasi-metrizable space X is upper bounded if

and only if every sequence in A has a cluster point in X.
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Theorem 8.3 Let A be an upper bounded subset of the dual p-complexity space

(C∗p , qp). Then the closure of A in (C∗p , (qp)−1) is compact in (C∗p , (qp)s).

Proof. Denote by A the closure of A in (C∗p , (qp)−1). Let (fk)k∈N be a sequence in

A. Then there is a sequence (gk)k∈N in A such that (qp)
−1(gk − fk)→ 0. By Lemma

8.3, there are a subsequence (gkj)j∈N of (gk)k∈N and a g ∈ C∗p such that qp(gkj−g)→ 0.

Hence qp(fkj − g) → 0. Then, the filter generated by {{fkj : j ≥ m} : m ∈ N} is

a Cauchy filter on (C∗p , qp), and by Theorem 8.2, there is f ∈ C∗p which is a cluster

point of (fkj)j∈N, and thus of (fk)k∈N, in (C∗p , (qp)s). Obviously f ∈ A. We conclude

that A is compact in (C∗p , (qp)s). �

Corollary 8.6 Let A be an upper bounded subset of the dual p-complexity space

(C∗p , qp). Then the closure of A in (C∗p , (qp)s) is compact in (C∗p , (qp)s).

8.4 The supremum asymmetric norm on sequence

algebras

In the precedent sections we have seen that the complexity analysis of algorithms

with running timeO(2n/nr), 0 < r ≤ 1, cannot be performed via the dual complexity

space. This is the reason because we have introduced ([24]) the so-called dual p-

complexity space (p ≥ 1), which provides, for p > 1, an appropriate framework to

discuss complexity functions generating this kind of algorithms. In particular, it has

been shown that the dual p-complexity space is an asymmetric normed semilinear

space which is isometrically isomorphic to the positive cone of (lp, ‖.‖+p).

Here, motivated by the work of E.A. Emerson and C.S. Jutla ([14]) we present

the precise context that will be used in order to obtain a robust mathematical model

for discussing those complexity functions that generate exponential time algorithms.

We start by recalling some pertinent concepts.

By an algebra we mean a linear space E (on R) with a binary (multiplicative)

operation that is commutative, has identity element and satisfies for all x, y, z ∈ E
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and a ∈ R the following conditions: x(yz) = (xy)z, x(y + z) = xy + xz, and

a(xy) = (ax)y = (ay)x.

A (n asymmetric) normed algebra is an algebra E with a (n asymmetric) norm

‖.‖ satisfying ‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ E. By a Banach algebra is meant a

normed algebra that is also a Banach space, and by a biBanach algebra is meant an

asymmetric normed algebra that is also a biBanach space.

As usual we denote by l∞ the algebra consisting of all bounded infinite sequences

of real numbers.

It is well known that (l∞, ‖.‖∞) is a Banach algebra for the usual multiplication

operation on l∞, where ‖.‖∞ is the supremum norm on l∞, i.e. ‖x‖∞ = sup{| xn |:
n ∈ ω} for all x := (xn)n∈ω ∈ l∞.

As in the lp-case (see Section 8.2) we may split the norm ‖.‖∞ as follows:

For each x : = (xn)n∈ω ∈ l∞ define ‖x‖+∞ = ‖x+‖∞ , i.e. ‖x‖+∞ = sup{xn ∨ 0 :

n ∈ ω}.

It is immediate to see that ‖.‖+∞ is an asymmetric norm on l∞.

In addition, we have the following facts.

Proposition 8.6 (‖.‖+∞)s = ‖.‖∞ on l∞.

Proof. Let x := (xn)n∈ω ∈ l∞. It is clear that ‖x‖+∞ ≤ ‖x‖∞ and ‖−x‖+∞ ≤
‖x‖∞ .

On the other hand, for each ε > 0 there is k ∈ ω such that

‖x‖∞ < ε+ | xk |= ε+ (xk ∨ (−xk)) ≤ ε+ (‖x‖+∞ ∨ ‖−x‖+∞).

We conclude that (‖x‖+∞)s = ‖x‖∞ .�
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Corollary 8.7 (l∞, ‖.‖+∞) is a biBanach space.

Example 8.3 Note that (l∞, ‖.‖+∞) is a not an asymmetric normed algebra. In-

deed, let x := (xn)n∈ω ∈ l∞ with xn = −1 for all n. Clearly ‖xx‖+∞ = 1. However

‖x‖+∞ = 0.

For each polynomial P (n), with P (n) > 0 for all n ∈ ω, define

B∗P (n),∞ := {f ∈ Rω : sup{2−P (n) | f(n) |: n ∈ ω} <∞}.

It easily follows that B∗P (n),∞ is a linear space for the usual pointwise operations.

Observe that, in particular, B∗n,∞ =
⋂
P (n)>n BP (n),∞, and C∗p ( B∗p ( B∗n,∞ for all

p ≥ 1.

Now define a binary operation ? on B∗P (n),∞ as follows: For each f, g ∈ B∗P (n),∞
let f ? g be the element of B∗P (n),∞ given by the rule

(f ? g)(n) = 2−P (n)f(n)g(n).

An easy computation shows that, equipped with the operation ?, B∗P (n),∞ is an

algebra with identity element the function e : ω → R given by e(n) = 2P (n) for all

n.

Next denote by qP (n),∞ the nonnegative real valued function defined on B∗P (n),∞
by

qP (n),∞(f) = sup{2−P (n)f(n)+ : n ∈ ω}.

For each f ∈ B∗P (n),∞ let xf := (2−P (n)f(n))n∈ω. Then xf ∈ l∞ and we have

qP (n),∞(f) = ‖xf‖+∞.
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Since ‖.‖+∞ is an asymmetric norm on l∞ it follows that qP (n),∞ is an asymmetric

norm on B∗P (n),∞ and consequently (B∗P (n),∞, qP (n),∞) is an asymmetric normed linear

space.

We will show that this space is isometrically isomorphic to (l∞, ‖.‖+∞).

To this end define a map φ : B∗P (n),∞ → l∞ by the rule:

(φ(f))(n) = 2−P (n)f(n),

for all f ∈ B∗P (n),∞ and n ∈ ω. Thus φ(f) = xf , where xf is the element of l∞
defined above. We then have the following result. (Let us recall that a map ϕ from

an algebra X to an algebra Y is a homomorphism provided that ϕ is a linear map

such that ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ X).

Proposition 8.7 φ is a bijective homomorphism between (B∗P (n),∞, qP (n),∞) and (l∞, ‖.‖+∞)

such that qP (n),∞(f) = ‖φ(f)‖+∞ for all f ∈ B∗P (n),∞.

Proof. We first show that φ is bijective.

Suppose that φ(f) = φ(g). Then 2−P (n)f(n) = 2−P (n)g(n) for all n ∈ ω, so f = g.

Thus φ is one-to-one.

Now let x := (xn)n∈ω ∈ l∞. Then the function f defined by f(n) = 2P (n)xn for

all n ∈ ω, satisfies φ(f) = x. Hence φ is onto.

We conclude that φ is bijective.

In order to see that φ is an homomorphism, let f, g ∈ B∗P (n),∞ and let a, b ∈ R.
Then

φ(af + bg)(n) = 2−P (n)(af(n) + bg(n)) = aφ(f)(n) + bφ(g)(n),

for all n ∈ ω. Therefore φ is linear.

Moreover φ(f ? g)(n) = 2−P (n)(f ? g)(n) = 2−2P (n)f(n)g(n) = φ(f)(n)φ(g)(n) for

all n ∈ ω, and thus φ(f ? g) = φ(f)φ(g).
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We have shown that φ is a homomorphism.

Finally, given f ∈ B∗P (n),∞ we obtain

‖φ(f)‖+∞ = ‖xf‖+∞ = qP (n),∞(f),

which concludes the proof.�

Corollary 8.8 (B∗P (n),∞, qP (n),∞) and (l∞, ‖.‖+∞) are isometrically isomorphic.

Corollary 8.9 (B∗P (n),∞, qP (n),∞) is a biBanach space.

8.5 The supP (n)-complexity space

By a semialgebra we mean a semilinear space E (on R+) with a binary (multi-

plicative) operation that is commutative, has identity element and satisfies for all

x, y, z ∈ E and a ∈ R+ the following conditions: x(yz) = (xy)z, x(y+ z) = xy+ xz,

and a(xy) = (ax)y = (ay)x.

By an asymmetric normed semialgebra we mean an asymmetric normed semilin-

ear space (F, ‖.‖F ) such that F is a semialgebra satisfying ‖xy‖F ≤ ‖x‖F ‖y‖F for

all x, y ∈ F. If, in addition, (F, ‖.‖F ) is a biBanach semilinear space, we say that

(F, ‖.‖F ) is a biBanach semialgebra.

Two asymmetric normed semialgebras (X, ‖.‖X) and (Y, ‖.‖Y ) are called isomet-

rically isomorphic if there is a map ϕ from X onto Y such that for all x, y ∈ X and

a, b ∈ R+, ϕ(ax+ by) = aϕ(x) + bϕ(y), ϕ(xy) = ϕ(x)ϕ(y) and ‖x‖X = ‖ϕ(x)‖Y .

Next we obtain a simple but crucial example of an asymmetric normed semialge-

bra.

Denote by l+∞ the positive cone of l∞, i.e. l+∞ = {x+ : x ∈ l∞}.



108 Sequence spaces and asymmetric norms in the theory of...

It is immediate to see that (l+∞, ‖.‖+∞) is an asymmetric normed semilinear space

which is closed in the Banach space (l∞, (‖.‖+∞)s), where the restriction of ‖.‖+∞
to l+∞ is also denoted by ‖.‖+∞ .

Clearly l+∞ is a semialgebra and for each x,y ∈ l+∞ we have ‖xy‖+∞ ≤ ‖x‖+∞ ‖y‖+∞
(compare 8.3).

Consequently, we obtain the following result.

Proposition 8.8 (l+∞, ‖.‖+∞) is a biBanach semialgebra.

For each polynomial P (n), with P (n) > 0 for all n ∈ ω, consider the biBanach

space (B∗P (n),∞, qP (n),∞) constructed in the preceding section and let

C∗P (n),∞ := {f ∈ B∗P (n),∞ : f(n) ≥ 0 for all n ∈ ω}.

The restriction of the asymmetric norm qP (n),∞ to C∗P (n),∞ will be also denoted

by qP (n),∞ if no confusion arises. Similarly, the restriction of the multiplication

operation ? to C∗P (n),∞ is also denoted by ?. Therefore C∗P (n),∞ is a semialgebra for

the operation ?.

It is clear that the restriction to C∗P (n),∞ of the map φ : B∗P (n),∞ → l∞, defined

before, is a bijective homomorphism between the asymmetric normed semialge-

bra (C∗P (n),∞, qP (n),∞) and the positive cone (l+∞, ‖.‖+∞) which preserves asymmetric

norms.

As a consequence of these observations and Proposition 8.8 we have the following

result.

Proposition 8.9 (C∗P (n),∞, qP (n),∞) and (l+∞, ‖.‖+∞) are isometrically isomorphic biBanach

semialgebras, and hence C∗P (n),∞ is a closed subset of the Banach space (B∗P (n),∞, (qP (n),∞)s).
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In the following the biBanach semialgebra (C∗P (n),∞, qP (n),∞) will be called the

supP (n)-complexity space.

Remark 8.3 Observe that, in particular, C∗n,∞ =
⋂
P (n)>n C∗P (n),∞, and C∗p ( C∗n,∞

for all p ≥ 1. Furthermore, if P (n) ≥ n for all n ∈ ω, the identity element e of

the semialgebra C∗P (n),∞ does not belong to any C∗p , p ≥ 1, (recall that e is defined by

e(n) = 2P (n) for all n ∈ ω, and we have qP (n),∞(e) = 1.)

Remark 8.4 If P (n) < Q(n) for all n ∈ ω, then C∗P (n),∞ ⊆ C∗Q(n),∞ and qQ(n),∞(f) ≤
qP (n),∞(f) for all f ∈ C∗P (n),∞.

Next we show that the (complexity) quasi-metric induced by the asymmetric norm

qP (n),∞ also provides a suitable interpretation of the functions in supP (n)-complexity

space.

Let f be a function from ω to R+. As usual, a function g : ω → R
+ is said to be

in the class O(f(n)) if there is c > 0 such that g(n) ≤ cf(n) for all n ∈ ω.

Let f ∈ C∗P (n),∞ and let g be in class O(f(n)). Then g ≤ cf, for some c > 0.

Obviously g ∈ C∗P (n),∞.

• If c ≤ 1, we have g ≤ f, and hence

dqP (n),∞(f, g) = qP (n),∞(g − f) = 0.

Thus, as in the case of the dual p-complexity space, condition dqP (n),∞(f, g) = 0

(with f 6= g), agrees with the fact that g is more efficient than f on all inputs.

Furthermore qP (n),∞(f) = dqP (n),∞(0, f) measures relative progress made in lowering

complexity by replacing f by the “optimal” complexity function 0, assuming that

the complexity measure is the running time of computing.
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• If c > 1, then

qP (n),∞(g)− qP (n),∞(f) ≤ qP (n),∞(g − f)

= sup{2−P (n)((g(n)− f(n)) ∨ 0)) : n ∈ ω}
≤ sup{2−P (n)(c− 1)f(n) : n ∈ ω}
= (c− 1)qP (n),∞(f),

and consequently

qP (n),∞(g) ≤ c qP (n),∞(f) and dqP (n),∞(f, g) ≤ (c− 1)dqP (n),∞(0, f).

The following example shows that unfortunately the supP (n)-complexity space is

not Smyth completable, hence not Smyth complete.

Example 8.4 Let P (n) be a polynomial (with P (n) > 0 for all n ∈ ω). Define a

sequence (fk)k∈ω by fk(n) = 0 for n = 0, 1, ..., k, and fk(n) = 2P (n) for n > k. Clearly

fk ∈ C∗P (n),∞ for all k ∈ ω (actually each fk is in class O(2P (n))).

Then

dqP (n),∞(fk, fk+1) = sup{2−P (n)((fk+1(n)− fk(n)) ∨ 0)} = 0,

for all k ∈ ω.Hence (fk)k∈ω is a left K-Cauchy sequence in (C∗P (n),∞, dqP (n),∞).

However, for each j, k ∈ ω with j > k, we have

dqP (n),∞(fj, fk) = sup{2−P (n)((fk(n)− fj(n)) ∨ 0)} = 1.

Therefore (C∗P (n),∞, qP (n),∞) is not Smyth completable.

8.6 Contraction maps

It is known that for applications the complexity space (C, dC) is typically restricted

to functions which range over positive integers which are power of a given integer b

(see Section 6 of [51]).
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Let a, b, c ∈ N with a, b ≥ 2, let n range over the set {bk : k ∈ ω} and let h ∈ C.
A functional Φ corresponding to a Divide & Conquer algorithm in the sense of [51],

is typically defined by

(Φ(f))(n) =

 c if n = 1

af(n/b) + h(n) if n ∈ {bk : k ∈ N}.

We recall that this functional intuitively corresponds to a Divide & Conquer

algorithm which recursively splits a given problem in a subproblems of size n/b and

which takes h(n) time to recombine the separately solved problems into the solution

of the original problem.

It was proved in Theorem 6.1 of [51], that Φ is a contraction map for dC with

contraction constant 1/a. This result was extended in Section 4 of [44] to the dual

complexity space (C∗1 , dq1), where the corresponding functional Φ∗ is given, for h ∈ C,
by

(Φ∗(f))(n) =

 1/c if n = 1

f(n/b)
a+f(n/b)h(n)

if n ∈ {bk : k ∈ N}.

A slight modification of the proof of Theorem 6.1 of [51] shows that such a result

also follows in the realm of any dual p-complexity space. We conclude the chapter

by obtaining an extension of Theorem 6.1 of [51] to the supP (n)-complexity space

when P (nk+1) ≥ P (nk) for all n, k ∈ ω.

Under the above assumptions, define

C∗P (n),∞ | b, c := {f : f is the restriction to arguments n of the form bk, k ∈ ω, of

f ′ ∈ C∗P (n),∞ such that f ′(1) = 1/c}.

Observe that each f ∈ C∗P (n),∞ | b, c can be considered as an element of C∗P (n),∞,

by defining f(n) = 0 whenever n /∈ {bk : k ∈ ω}. Thus, if for each f ∈ C∗P (n),∞ | b, c,
Φ∗(f) is defined as above, we obtain the following.
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Proposition 8.10 Let f, g ∈ C∗P (n),∞ | b, c. Then Φ∗(f),Φ∗(g) ∈ C∗P (n),∞ | b, c, and

dqP (n),∞(Φ∗(f),Φ∗(g)) ≤ 1

a
dqP (n),∞(f, g).

Proof. It is easy to check that Φ∗(f),Φ∗(g) ∈ C∗P (n),∞ | b, c. Furthermore

dqP (n),∞(Φ∗(f),Φ∗(g))

= sup
n∈{bk:k∈N}

2−P (n)

(
(

g(n/b)

a+ g(n/b)h(n)
− f(n/b)

a+ f(n/b)h(n)
) ∨ 0

)
≤ sup

n∈{bk:k∈N}
2−P (n)

(
a(g(n/b)− f(n/b))

a2
∨ 0

)
≤ 1

a
sup

n∈{bk:k∈ω}
2−P (n) ((g(n)− f(n)) ∨ 0) =

1

a
dqP (n),∞(f, g).

This completes the proof.�
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