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A novel photonic-vector modulator architecture for the generation of 16 quadrature amplitude modulation
(16 QAM) millimeter-wave carriers using dual-drive Mach—Zehnder modulators is proposed. Experimental
generation of 5 Gbits/s 4 amplitude shift-keying (4 ASK) and 10 Gbits/s 16 QAM modulated 42 GHz car-
riers is reported. The multilevel modulated millimeter-wave signals are demodulated using an electrical re-
ceiver and its error-vector magnitude (EVM) estimated from the measurements, obtaining EVMs of —21.04
and —18.33 dB for 4 ASK and 16 QAM modulation formats, respectively. © 2008 Optical Society of America
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Wireless transmission of multigigabits per second
signals has gathered much research effort lately
[1-3]. The potential of radio-over-fiber technologies
[4,5] to satisfy the stringent bandwidth and flexibility
requirements imposed by these challenging commu-
nication systems, overcoming the main limitations of
purely electrical approaches, has been reported in the
literature [6,7]. However, conventional methods
based on direct upconversion of the digital baseband
signal [1-3] suffer from huge bandwidth constraints,
in particular when thinking of realistic full-duplex
deployments, where the used bandwidth is required
in both downstream and upstream links. Therefore,
the use of more spectrally efficient modulation for-
mats such as multilevel quadrature amplitude or
multilevel phase-shift keying is of high interest to al-
leviate such problems [6,7]. Recently, we proposed
several photonic-vector modulation (PVM) architec-
tures with low hardware requirements, both optical
and electrical, showing the potential of this approach
to generate up to 3.6 Gbits/s 16 QAM 40 GHz carri-
ers [8-10].

In this Letter we propose a novel PVM technique
employing a single cw laser source, dual-drive Mach—
Zehnder modulators (DD-MZMs) combined with a
balanced photodetector (BPD) for generating 16 QAM
modulated millimeter-wave signals. One of the main
advantages of this architecture compared to the pre-
viously proposed one for 16 QAM signal generation
[9] is that it contains only one optical source, which
reduces the total laser relative intensity noise (RIN)
contribution to the signal and thus increases the
signal-to-noise ratio (SNR). The multilevel signals
are generated using the DD-MZMs and not using
direct current modulation of the lasers as in [9],
which have a lower extinction ratio compared to
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Mach—Zehnder (MZ) modulators. The quadrature
condition is achieved using an optical delay line as
proposed in [8]. The generation of a 10 Gbits/s 16
QAM 42 GHz carrier is reported.

In this PVM scheme, a single cw optical source is
modulated with a millimeter-wave carrier using a
Mach—Zehnder modulator (MZM) biased at the
quadrature bias (QB) point. The millimeter-wave car-
rier modulated optical signal is split into two arms, I
and @, using a 3 dB power splitter. To induce a 90°
phase shift between the I and @ millimeter-wave car-
riers, the @ arm optical signal is delayed by AT
=1/4f10 using a tunable optical delay line. This opti-
cal delay between the I and the @ arm opticals in-
duces a 90° phase shift between the photodetected
electrical carriers. Two DD-MZMs are used in each
arm for modulating baseband data. Both modulators
are biased at QB for generating amplitude modula-
tion; the upper modulator is driven with two inde-
pendent data I(¢) and I5(¢) and the lower with data
Q1(¢) and Q5(¢), where the amplitudes follow the con-
dition Iy,=1;/2 V, and @,=Q+/2 V for generating four
amplitude levels, resulting in 4 ASK signals in each
arm. Figure 1 shows a schematic of the PVM archi-
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Fig. 1. Schematic of the proposed 16 QAM PVM
architecture.
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Fig. 2. Radio frequency spectrum at the output of the

BPD.

tecture. The upper arm (I) and the lower arm (@) are
photo mixed and combined in a BPD. The electrical
output of the photodetector is a 16 QAM modulated
millimeter-wave carrier. Equation (1) represents the
resulting photocurrent:

ipp = ——dJo(myo)d1(mro)
tot

m

X [cos2( %Il(ll(t) - IZ(t)))cos(wLot)

. cos2<§Ql<Q1<t> . Qz(ﬂ))Sin(wLot)} ,
1)

where R is the responsivity of the photodetector, P is
the output power of the laser, L, is the total inser-
tion losses, myo=7V1,/V,, and J, is the Bessel func-
tion of nth order.

A cw DFB laser at 1555.4 nm with an output power
of +15 dBm is externally modulated by a 42 GHz lo-
cal oscillator carrier using a 50 GHz MZM biased at
the QB point. The output of the MZM is amplified to
+18 dBm using an erbium-doped fiber amplifier
(EDFA) to compensate the 6 dB insertion losses of
the modulator and the 3 dB losses due to QB. The
output of the EDFA is divided into two arms using a
3 dB splitter: upper (I) and lower (®). The @ arm op-
tical signal is delayed using an optical delay line to
generate a 90° phase shift between the I and @
modulated local oscillator (LLO) carrier components.
The I and @ optical components were corrected for
polarization mismatch using a polarization control-
ler. Two 40 GHz DD-MZMs biased at QB were used
for generating the I and @ 4 ASK signals. The two
arms of the I DD-MZM are driven with two
2.5 Gbits/s independent data I; and I, where I; was
tuned to 1V pp and I, to 0.5V pp, resulting in
5 Gbits/s 4 ASK modulation. Similarly the @ arm
DD-MZM was driven by 2.5 Gbits/s @; and @, data
resulting in another 5 Gbits/s 4 ASK. The I and @
optical signals with both the baseband data and rf
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signal modulated on them were photodetected and
added in a 45 GHz BPD with 0.53 A/W responsivity.
The output of the balanced photodetector (BPD) is a
10 Gbits/s 16 QAM modulated 42 GHz carrier. Fig-
ure 2 shows the rf spectrum of the generated 16 QAM
42 GHz carrier.

To analyze the quality generated, the 16 QAM sig-
nal was demodulated using an electrical mixer. The
16 QAM signal output at the BPD was amplified and
input to a 42 GHz broadband electrical mixer and
mixed with the same LO used at the transmitter. The
baseband output of the electrical mixer was filtered
using an electrical low pass filter with a 3 dB cut-off
frequency of 1.87 GHz. The I and @ components of
the 16 QAM signal were demodulated electrically by
tuning the phase of the LO carrier input to the mixer
using a tunable electrical delay. When the electrical
delay was tuned to have 0° phase between the LO
and the received 16 QAM carriers, the I signal was
demodulated and for 90° the @ signal was demodu-
lated.

Figures 3(a) and 3(b) show the demodulated I and
@ eye diagrams of the 10 Gbits/s 16 QAM
millimeter-wave carriers generated by the above de-
scribed PVM configuration. To analyze the quality of
the received signal EVM is calculated from the sta-
tistical data of the eye diagrams. To calculate the
EVM from the captured 4 ASK I and  eye diagrams,
the histogram of each level was plotted and the mean
p and the standard deviation o were measured.
Later a Gaussian distribution of each symbol was
generated using the p and o and normalized to 1.
The resulting symbols from the Gaussian distribu-
tion were compared with the ideal values for 16 QAM
(1, 1/3, -1/3, -1) and the EVM computed. It should
be noted that the EVM of the signal is calculated af-
ter the receiver stage, and an ideal receiver would
improve the EVM. The EVM of the 10 Gbits/s 16
QAM modulated 42 GHz carrier was calculated to be
-18.33 dB. The EVM calculated does not totally re-
flect the quality of the PVM but contains a contribu-
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Fig. 3. Downconverted (a) I and (b) @ components of the
16 QAM signal.
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Fig. 4. (Color online) Resulting normalized constellation
diagram of the 16 QAM signal.

tion from the electrical demodulation that incorpo-
rates bandwidth-limited components. For example,
the mixer and the amplifiers have an electrical band-
width of around 3 GHz. Also, the photodetector used
in the PVM has an uneven response at 41 GHz,
which can be noted from Fig. 4. The EVM can be im-
proved by accurate phase matching at the electrical
receiver by using a phase-locking mechanism. To
prove this claim, instead of vectorial 16 QAM modu-
lation, 5 Gbits/s 4 ASK modulation was performed
(5 Gbits/s 4 ASK and 10 Gbits/s 16 QAM have the
same electrical bandwidth: 5 GHz) with only one DD-
MZM and at the same LO frequency, 42 GHz. The
generated 4 ASK signal’s EVM was calculated to be
—21.04 dB, which is a 3 dB improvement at the same
electrical bandwidth.

A novel PVM scheme for generating multigigabits
per second 16 QAM modulated millimeter-wave car-
riers is presented. Generation of a 10 Gbits/s 16
QAM modulated 42 GHz carrier was experimentally
demonstrated, and an EVM of —-18.33 dB was calcu-
lated from measurements. This EVM value can be
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improved by using an enhanced phase-controlled de-
modulation that was demonstrated by generating a
5 Gbits/s 4 ASK modulated 42 GHz carrier with an
EVM of -21.04 dB. The advantage of this scheme
compared to the previously proposed technique in [9]
is that it contains only a single c¢cw source that re-
duces the total RIN contribution and increases the
SNR.
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