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Resumen

Actualmente, los sistemas informáticos complejos se describen en términos de en-
tidades que actúan como proveedores y consumidores. Estas entidades ofrecen su
funcionalidad a través de servicios e interactúan entre ellas para ofrecer o pedir estos
servicios. La integración de Sistemas Multi-Agente Abiertos y de Sistemas Orienta-
dos a Servicios es adecuada para implementar este tipo de sistemas. En los Sistemas
Multi-Agente abiertos, los agentes entran y salen del sistema, interactúan con los
demás de una manera flexible, y se consideran como entidades reactivas y proactivas,
capaces de razonar acerca de lo que sucede en su entorno y llevar a cabo acciones
locales sobre la base de sus observaciones para alcanzar sus metas. El área de los
sistemas orientada a servicios proporciona los bloques de construcción básicos para
aplicaciones empresariales complejas que son los servicios. Los servicios son in-
dependientes de la plataforma y pueden ser descubiertos y compuestos de manera
dinámica. Estas caracterı́sticas hacen que los servicios sean adecuados para hacer
frente a la elevada tasa de cambios en las demandas de las empresas.

La complejidad de los sistemas informáticos, los cambios en las condiciones del en-
torno y el conocimiento parcial que tienen los agentes sobre el sistema requieren que
los agentes cuenten con mecanismos que les faciliten tareas como el descubrimiento
de servicios, la auto-organización de sus relaciones estructurales conforme se pro-
ducen cambios en la demanda de servicios, y la promoción y mantenimiento de un
comportamiento cooperativo entre los agentes para garantizar el buen desarrollo de
la actividad del sistema.

La principal aportación de esta tesis doctoral es la propuesta de un marco para Sis-
temas Multi-Agente Abiertos Orientados a Servicios. Este marco integra agentes que
se encuentran en una red sin ningún tipo de estructura predefinida, y agentes que
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además de estar en esa red forman parte de grupos dinámicos más complejos como
organizaciones virtuales. El marco que se presenta proporciona mecanismos para la
gestión de las organizaciones virtuales y los servicios prestados por los agentes que
forman parte de ellas. Además, el marco proporciona una estructura de red basada en
homofilia entre los agentes que facilita un descubrimiento eficiente de los servicios
de una manera descentralizada permitiendo a los agentes que sólo tienen una visión
parcial del sistema poder localizar los recursos requeridos para alcanzar sus obje-
tivos. Los agentes de este marco también disponen de mecanismos que les permiten
razonar acerca de su ubicación en la red y de las posibles acciones estructurales para
mejorar su situación en ella y mejorar el rendimiento del sistema. Por otra parte,
debido a que el descubrimiento de servicios descentralizado necesita la colaboración
de los agentes, el marco proporciona mecanismos para facilitar la promoción de la
cooperación entre los agentes a través de la plasticidad social y los incentivos. El
marco propuesto y los mecanismos que se presentan en el se han probado en difer-
entes escenarios con varias configuraciones y se han comparado con otros enfoques
presentes en los sistemas distribuidos.
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Resum

Actualment, els sistemes informàtics complexos es descriuen en termes d’entitats que
actuen com proveı̈dors i consumidors. Aquestes entitats ofereixen la seua funcional-
itat a través de serveis i interactuen entre elles per a oferir o demanar aquests serveis.
La integració de Sistemes Multi-Agent Oberts i de Sistemes Orientats a Serveis es
adequada per a implementar aquest tipus de sistemes. Als Sistemes Multi-Agent
oberts, els agents entren i surten del sistema, interactuen amb els altres d’una manera
flexible, i es consideren com a entitats reactives i proactives, capaços de raonar sobre
el que passa en el seu entorn i portar a cap accions locals sobre la base de les seues
observacions per assolir les seues metes. L’àrea dels Sistemes Orientats a Serveis
proporciona els blocs de construcció bàsics per aplicacions empresarials complexes.
Els serveis son independents de la plataforma i poden ser descoberts i compostos de
manera dinàmica. Aquestes characteristiques fan que els serveis siguen adequats per
a fer front de la elevada taxa de canvis en les demandes dels consumidors.

La complexitat dels sistemes informàtics, els canvis en les condicions de l’entorn i
el coneixement parcial dels agents sobre el sistema mateix requereix que el agents
compten amb mecanismes que els faciliten tasques com el descobriment de serveis,
l’auto-organització de les seues relacions estructurals en el cas de que es produeixen
canvis en la demanda de serveis, i la promoció i manteniment del comportament
cooperatiu entre els agents per a garantir el bon desenvolupament de la activitat del
sistema.

La principal aportació de aquesta tesi és la proposta de un marc per a sistemes multi-
agent oberts orientats a serveis. Aquest marc integra els agents que es troben en una
xarxa que no te una structura predefinida, i els agents que a més a més formen part de
grups dinàmics i complexos com organizations virtuals. El marc proporciona mecan-
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ismes per la gestió de les organitzacions virtuals i els serveis oferits pels agents que
formen part d’aquestes organitzacions. A més, el marc proporciona una estructura de
la xarxa que está basada en l’homofı́lia entre els agents i que els permet un desco-
briment dels serveis d’una manera eficient i descentralitzada on els agents amb una
visió parcial del sistema poden localitzar els recursos requerits per assolir els seus ob-
jectius. Els agents d’aquest marc també tenen mecanismes que els permeten raonar
sobre la seua ubicació a la xarxa i de les possibles accions structurals per a millorar
aquesta situació i aixı́ millorar el rendiment del sistema. Per altra banda, degut a
que la activitat del descobriment de serveis descentralitzats necessita la col·laboració
dels agents, el marc proporciona mecanismes com la plasticitat social i els incentius
per a facilitar la promoció de la cooperació entre els agents. El marc proposat i els
mecanismes que es presenten acı́ s’han provat en diferents escenaris amb diverses
configurations i s’han comparat amb altres enfocaments presents en els sistemes dis-
tribuı̈ts.
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Summary

Currently, large systems are described in terms of entities that act as providers and
consumers. These entities offer their functionality through services and interact to
provide or ask for these services. The integration of Open Multi-Agent Systems and
Service-Oriented Computing seems to be suitable to implement these systems. In
open MAS, agents enter and leave the system, interact with others in a flexible way,
and are considered as reactive and proactive entities that are able to reason about
what is happening in their environment and perform local actions based on their ob-
servations to achieve their goals. Service-Oriented Computing provides services that
are considered the basic building blocks of complex business applications. Services
are platform-independent and can be discovered and composed dynamically. These
features make services suitable to cope with the high rate of changes in business
demands.

The openness of large systems, the changes in environment conditions, and the par-
tial knowledge of agents about the system require agents to have mechanisms that fa-
cilitate service discovery, self-organization of structural relations as service demand
changes, and the promotion and maintenance of a cooperative behavior among agents
to ensure the proper performance of the service discovery activity.

The main contribution of this PhD work is the proposal of a model for Open Service-
Oriented Multi-Agent Systems. This model integrates agents that are located in a
network as in a plain society, and agents that also are part of dynamic complex groups
(i.e., virtual organizations). The model provides mechanisms for the management of
virtual organizations and services provided inside them. In addition, the model pro-
vides a network structure based on homophily between agents that model an efficient
decentralized service discovery to agents that only have a partial view of the system.
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Agents in this model have mechanisms that allow them to reason about their location
in the network and the possible structural actions to improve their situation and the
performance of the service discovery. Moreover, since decentralized service discov-
ery relies on the cooperation of the agents, the framework provides mechanisms to
facilitate the promotion of cooperation among agents through social plasticity and
incentives. The proposed model and the mechanisms have been tested considering
different configurations and compared with other approaches present in distributed
systems.
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1.1 Motivation

Service-Oriented Computing (SOC) and Service-Oriented Architectures (SOA) are

gaining importance in industry due to their suitability for quickly coping with new

business models and requirements. In these areas, services are considered to be

the basic building blocks of complex business applications. Services are platform-

independent and can be described, discovered, and composed dynamically. These

features make services suitable for giving support to the high number of changes in

business demands. In the last few years, there has been a trend in SOC to provide

higher levels of functionality in order to facilitate the emergence of new services in

a flexible and dynamic way exploiting existing services and avoiding the implemen-

tation of redundant services [105]. This trend brings additional considerations to the

services. In order to create more complex, flexible, and adaptive systems, services

1
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cannot simply be passive and reactive entities. They should be considered as hetero-

geneous entities that are reactive and proactive and that interact with other entities

in a flexible way. Consequently, services are becoming more agent-like [64, 19].

Agents are autonomous, adaptive entities that are aware of what is happening in their

environment and that decide to perform local actions based on their observations.

Agents are able to learn from previous experiences and update and reason about their

information in order to improve their decisions and achieve their goals. The inte-

gration of these two technologies results has led to Service-Oriented Multi-Agent

Systems. Service-Oriented MAS are populated by agents that provide their func-

tionality through services. They need the cooperation and collaboration with each

other to achieve individual or collective goals that cannot be achieved with their indi-

vidual services [63]. These agents have intelligent and social capabilities that allow

them to define complex services creating Virtual Organizations (VOs). In this con-

text, Service-Oriented MAS should provide mechanisms that: (i) facilitate the service

management (service discovery and composition); (ii) facilitate the adaptation to en-

vironmental changes or new business requirements; (iii) promote and maintain the

cooperation in the system. This is not an easy task due to the large number of enti-

ties, the dynamism of the systems, and the uncertainty when only partial information

is available.

In complex systems such as Service-Oriented MAS, entities need to coordinate re-

sources and services across institutional boundaries. VOs are seen as a suitable rep-

resentation of a group of heterogeneous entities that collaborate in order to deal with

a goal [65, 17]. These VOs could be predefined or could emerge dynamically in or-

der to self-adjust to obtain advantages from their present context and offer compound

services. Usually, the service management in VOs relies on a central entity or set

of entities that have global knowledge about the available service in the VOs. This

central entity provides coordination mechanisms that consider not only the function-

ality of agents but also organizational information [22]. These mechanisms, based

on a certain desirable criteria, would be able to find adequate services in VOs and,

if necessary, to construct new services through service composition. This task is
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automated with the inclusion of semantic information associated to services. Seman-

tic information facilitates the discovery and composition of services and improves

the precision and accuracy of these processes [72, 88, 130]. Nevertheless, there are

scenarios where a central entity is not an appropriated solution to deal with service

discovery. When the number of agents increases, scalability problems appears and

a central entity becomes a bottleneck. Furthermore, global knowledge is not always

available and the dynamism of these systems makes the maintenance of updated in-

formation about available services complicated.

In order to avoid the dependence of an entity or a set of predefined entities respon-

sible for facilitating the coordination among heterogeneous entities, and the mainte-

nance of updated information, systems should provide mechanisms where the task

of service management is completely decentralized. In these proposals all the en-

tities are equal and manage their own information about their functionality and re-

sources. They only have a partial knowledge about the system structure and available

resources. In order to locate the required resources, flooding algorithms are one of

the most used strategies in unstructured networks in P2P systems [82, 11]. Never-

theless, these algorithms generate too much traffic. There are other algorithms that

consider information about routes stored in local registries but they are sensitive to

the increase of changes in the network structure. In the last years, the use of math-

ematical models of Complex Networks has been proposed to create structures with

certain properties that facilitate the search of resources in distributed environments in

few steps taking only local information into account [70, 4, 139].

Another aspect that should be considered in Service-Oriented MAS is that agents

that are part of the system, their features, and their tasks will not remain constant.

These systems are expected to perform well under many circumstances, i.e., when the

number of available agents changes, or when the service demand varies with time.

However, the majority of the proposals for service management and specifically for

service discovery in distributed systems are only focused on the location task, and do

not take into consideration the inclusion of self- organization mechanisms to adapt
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their structure to changes in the environmental conditions and requirements [105].

Moreover, due to in large, open, and distributed systems there is not a global view of

the system, this adaptation should be performed in a decentralized way, without the

supervision of any centralized authority.

In distributed environments where entities only have a partial view of the system co-

operation plays a key issue. In the case of decentralized service discovery in Service-

Oriented MAS, if agents do not belong to a Virtual Organization, they only know

about the services they provide and their direct neighbors. Therefore, agents need

the cooperation of their neighbors in order to locate the required services. However,

cooperation is not always present in open and distributed systems. Non-cooperative

agents pursuing their own goals could reject forwarding queries from other agents

to avoid the cost of this action; therefore, the efficiency of the decentralized service

discovery could be seriously damaged. As a result of this fact, mechanisms that pro-

mote the cooperation of agents in the system as well as its maintenance should be

provided.

This discussion raises several questions that this research is intended to answer:

• Q1 How distributed systems deal with the problem of resource management,

self-organization, and coordination between entities?

• Q2 How a service management system for open environments where individual

agents and Virtual Organizations are present should be formalized?

• Q3 How the service management should be carried out in Virtual Organiza-

tions?

• Q4 How the structure of the service management and the search strategy should

be in environments where only local information is available?

• Q5 Which self-organization mechanisms are necessary to maintain or improve

the system efficiency when environment conditions change?
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• Q6 How should the system deal with heterogeneous agents behaviors to pro-

mote cooperation in the service discovery?

• Q7 How the performance of the service management of a service-oriented

MAS can be evaluated?

This work is also motivated by the research lines of the group where the PhD candi-

date works.1 Among other areas of AI, the group is interested in communication, co-

ordination and negotiation among agents, MAS architectures, integration of services

and agents, MAS development methodologies and reasoning and learning in MAS.

This PhD work is being developed in the context of several research projects devel-

oped by the GTI-IA group: THOMAS TIN2006-14630-C0301, OVAMAH TIN2009-

13839-C03-01, CONSOLIDER INGENIO 2010 Agreement Technologies project

CSD2007-00022, the GVA project PROMETEO 2008/051, Social And Economic

Computing VLC-CAMPUS, and Consensus Networks for the Non-Supervised Elab-

oration of Agreements among Autonomous Intelligent Entities PAID-06-11-2048.

The former proposes a service-based architecture for the development of virtual agent

organizations. The second is intended to develop agent organizations as adaptive sys-

tems with a dynamic behavior of each entity (agent or organization). CONSOLIDER

and PROMETEO projects focus on investigating the notion of agreement and all

the processes and mechanisms implicated in reaching agreements between differ-

ent kind of entities, analyzing them from many perspectives. Social And Economic

Computing project aims the development of methods and techniques that allow the

development of computational systems with social behaviors. Finally, the project

of Consensus Networks focuses on the development of a model that allows agents

virtual organizations to reach agreements through consensus.

1http://gti-ia.upv.es
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1.2 Objectives

With the aim of providing answers to the questions posed in the previous section, the

objective of this PhD thesis is to propose a model to facilitate the service manage-

ment in Service-Oriented Multi-Agent Systems. This model integrates strategies to

facilitate the service management for virtual organizations (i.e., where there is an or-

ganizational structure and there is global knowledge available about the agents, roles,

and services that are part of it) or for individual agents that only have local informa-

tion. Moreover, the proposed model allows agents to self-organize their structural

relations and their location in the system in order to maintain the performance of the

service discovery process when service demand changes. Due to the openness of

Service-Oriented MAS and the requirement of cooperation to carry out the service

discovery activity, the model also includes strategies that facilitate the promotion and

maintenance of cooperation.

According to its main objectives, the contributions of this work are organized on

different levels:

• On the State of the Art Revision level, an overview and analysis of differ-

ent structures and search strategies present in distributed environments for the

management of resources is presented. We focus on the strengths and weakness

of different system structures and search techniques. Moreover, an overview

of different self-organization and cooperation works is also provided. This

analysis would provide the answer to question 1.

• On the Formal level, a proposal of a model that deals with the integration of

agents, organizations, and services, being agents complex entities that collabo-

rate to deal with changing goals in dynamic and open environments. Question

2 is answered in this level.

• On the Organizational level, an approach to provide coordination mechanisms

in VOs in Service-Oriented MAS is presented. The mechanism is based on
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automatic service discovery and composition that considers organizational in-

formation and time constraints. Question 3 is answered in this point.

• On the Agent level we present different proposals:

– A loosely-structured network and search mechanisms to facilitate decen-

tralized service management in distributed systems. This part proposes

a network structure based on agents preferences and an algorithm where

agents considering local information are able to find an agent that offers

the service that they require. Question 4 is answered in this point.

– Incorporation of self-organization mechanisms to adapt the system struc-

ture when network conditions change (i.e., traffic, user’s demand, or

available services). This point answers the question 5.

– Mechanisms for promoting cooperation. A proposal based on the com-

bination of a mechanism based on structural changes and a mechanism

based on incentives is presented. Question 6 is answered in this point.

• On the Evaluation level, each proposal of the thesis has been evaluated through

an application example or a set of experiments that consider different scenarios

with different configuration setups. This point answers the question 7.

1.3 Structure of the Thesis

Considering the motivation and objectives of this thesis the rest of the document is

structured as follows: Chapter 2 presents a state of the art in search strategies in dis-

tributed environments. We have also reviewed works in the area of self-organization

and cooperation. These related works have been reviewed and analyzed to point out

their main advantages and handicaps. Chapter 3 presents a formal model for Service-

Oriented MAS that describes the set of components that form part of our system

proposal. In Chapter 4, an instantiation of the formal model to provide a service

management in VOs is presented. In Chapter 5, an instantiation of the formal model
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to deal with fully decentralized environments where agents have only a partial view

of the system is described. Chapter 6 presents self-organization mechanisms that al-

low agents to change locally its structural links in order to maintain or improve the

service discovery performance when service demand changes as well as to decide if

they are going to clone, remain or leave the system. In Chapter 7, the absence of

cooperation problem in open systems is presented. A combination of two mecha-

nisms is proposed to facilitate the cooperation emergence and maintenance. Finally,

in Chapter 8, conclusions and future lines of work are presented.
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2.1 Introduction

Nowadays, there is a trend towards the design of open systems that are populated by a

large number of entities that interact with each other in order to share their resources

or achieve a complex goal. The entities that are part of these systems change in

order to cope with environmental changes, such as new client requirements or the

emergence of new business processes [142]. Therefore, under these conditions, the

management of the information about which entities or resources are available in the

system at a certain moment, as well as how to locate them in an efficient way are

considered to be challenges.

Moreover, the structure of open systems does not remain static. Entities that are part

9
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of the system change their structural connections with others in order to cope with

new business models or requirements. Agents should incorporate self-organization

mechanisms to facilitate this adaptation [39].

In open systems where there is not a central entity that controls the interactions among

members of the system, the success of the service discovery process relies on the

cooperation behavior of the members involved in the process. For this reason, mech-

anisms that promote cooperation in distributed systems are gaining importance [60].

In this chapter, we present an overview of different approaches proposed to deal

with service discovery, self-organization and cooperation emergence in distributed

systems. We focus specially in approaches present in the area of service discovery

since it is the core of this PhD thesis. Finally, taking into account the analyzed works,

we describe a set of open issues and important aspects that should be taken into

consideration in this type of systems.

2.2 Search Strategies in Distributed Environments

Throughout the last decade, the research done on search strategies in distributed en-

vironments has received important contributions from traditional research areas such

as Peer-to-Peer (P2P) systems [83, 136, 117, 90]. The work on this area has pro-

duced important influences in other areas that also deal with the issue of search in

distributed environments, such as Service-Oriented Environments (SOE) [7, 62], and

Multi-Agent Systems (MAS) [10, 35]. These areas have adapted and extended archi-

tectures and algorithms that were initially proposed in P2P to deal with specific do-

main requirements. Moreover, in new distributed systems there is a growing interest

in the area of Complex Networks (CN) [140]. CN present new, less rigid structures

that are inspired in social, biological, or technological networks, and algorithms that

facilitate an efficient navigation of these networks [70].

In this section, we present an analysis of existing works that deal with search in dis-
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tributed environments, such as P2P systems, Service-Oriented Environments, Multi-

Agent Systems, and Complex Networks. In these areas, the search for resources,

services, or entities plays a key role for the proper performance of the systems built

on them. The aim of this analysis is to compare approaches from these areas taking

into account the underlying system structure: centralized, decentralized, and decen-

tralized approaches. Specially, we focus on decentralized approaches that are more

similar to the proposal presented in this work. In Figures 2.1, 2.2, and 2.3 a schematic

overview of the analysis is shown. The table groups the proposals by areas. An ap-

proach is analyzed in each row of the table. The first column describes the structure.

The second column contains the first author of the article where the proposal is de-

scribed and the year of the publication ([authorYear]). Moreover, the search strategy

is described briefly. The three following columns describe the criteria of the struc-

tural dimension. The rest of the columns describes the search dimension. The review

presented here is a short version of a previous work. We do not review all the ap-

proaches that appear on the tables. For a complete overview of search strategies in

distributed environments we refer the reader to [37].

Centralized approaches such as super-peers [55], central registries1, or middle-agents

[72] are appropriate for systems with a low number of entities. In these approaches,

the search process is fast and considers all the information that is available in the

system. This global knowledge provides efficiency and accuracy in the search pro-

cess. However, these approaches could be a bottleneck if they have a very limited

capability, if the number of entities increases, or if the number of search requests

and the information to take into consideration increase. Moreover, the existence of a

single entity that is responsible for the management of the information about services

seriously affects the robustness of the system. In order to avoid these drawbacks,

distributed approaches have been proposed.

In distributed approaches, the responsibility of resource management relies on a set

of specific entities to provide scalability and robustness. In P2P systems, structures

1Evolution of UDDI, White Paper , http://www.uddi.org/pubs/the evolution of uddi 20020719.pdf
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based on a set of super-peers [28] and Distributed Hash Tables (DHT) [131, 118,

116, 87] have been proposed. Super-peer approaches have problems when several

super-peers fail and other peers that are less qualified must replace them. DHT ap-

proaches are able to locate resources in O(log n). Nevertheless, the maintenance

of the indexes when the peers join and leave the system affects the performance of

the system. Updates imply the interchange of messages among peers; therefore, the

system could be in an inconsistent state during a period of time due to outdated ref-

erences. Furthermore, these mechanisms are not very effective in locating resources

with partial information. The accuracy of the search is reduced since the search is

based on numeric keys and does not consider semantic information, which allows

more flexible and accurate search processes. In the area of SOE there are proposals

that distribute the content of the service descriptions in several registries; however

there is still a central entity that coordinates, supervises, and is responsible for the

maintenance of the structure [129, 108, 23]. This implies that the search process re-

lies on this central entity and could be a critical point of failure. Some approaches

that makes use of coalitions or sets of adaptative matchmakers have been proposed in

MAS to provide more scalability [100]. The main problem with these approaches is

that the formation process of the optimal coalition requires coordination extra effort

among the entities that participate in the coalition.

There are other works based on decentralized structures where all the entities are

considered to be equal and there is an arbitrary topology. These structures provide

more flexibility and adaptability. Entities only have a partial view of the system

structure or service organization and need the collaboration of the rest of the system

in order to succeed in the search process. The search approaches in decentralized

systems use blind or informed algorithms for locating services or resources.

Blind algorithms do not consider any information about resource locations and use

flooding or random strategies. In flooding strategies, if the entity that receives the

query about a resource does not have it, the entity forwards the query to all its neigh-

bors [145, 103, 82]. The efficiency of this strategy depends on the underlying net-
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work, the number of copies of one resource, and the Time To Live (TTL) that the

query has. In general, flooding algorithms overload the system with the traffic gener-

ated during the search process. Random-walks have been presented as an alternative

to flooding strategies [85, 147]. A random walk strategy is based on the random

selection of a subset of the neighbors of the entity to forward the message. Each

message follows its own path and is called a walker. A walker can be successful or

fail. If the search fails, the reason could either be that the TTL has been consumed

or that the query has been satisfied. This algorithm reduces the number of messages

considerably when compared to flooding algorithms [14].

In order to prevent the generation of traffic, informed algorithms that consider lo-

cal information have been proposed. These algorithms consider the information that

is stored about their direct neighbors or statistics of previous searches in local reg-

istries. An example of these algorithms is presented by Crespo et al. [32]. They

present a proposal that is based on Routing indices. These indices allow nodes to

forward queries to the neighbor that is most likely to have answers. Each node has a

routing index (RI) with information about the number of documents along the path

and the number of documents on each topic of interest. If a node cannot answer the

query, it forwards the query to a subset of its neighbors based on its local RI rather

than randomly selecting or flooding the network. The problem with this proposal it

keeping the large amount of information updated. The number of messages required

to propagate changes in the system could overload the system. If the update process

is delayed, a node can have information about routes that are not valid. Moreover,

the precision of the method depends on the number of categories that are considered

in the search process. Similar to the work of Crespo et al. [32], Yang et al. [145]

present the Directed Breath First search, which forwards the queries only to a sub-

set of neighbors considering several heuristics that are based on information from

previous searches (neighbors with the highest success in previous searches, or the

neighbor that finds the shortest paths, etc.). Adaptive Probabilistic Search is a similar

approach presented by Tsoumakos et al. [134]. It is an algorithm that is based on the

combination of the k-random walk algorithm and probabilistic forwarding. Each peer



14 2.2. Search Strategies in Distributed Environments

has a local index that keeps one entry for each neighbor. The value of each entry is a

tuple that contains the identifier of a neighbor and the probability that the neighbor be

selected the next time based on its success in previous searches. Analogous work is

presented by Kalogeraki et al. [67]. The authors propose an Intelligent Search Mech-

anism that allows peers to identify links that are likely to have relevant information.

The drawback of these algorithms is that a period of time is needed to collect the

information that improves the search. Moreover, if the links between peers change

frequently, the statistical information stored in the local indexes could become use-

less. Another drawback is that some of the heuristics that are used to guide the search

process could overload some peers and leave other potential peers without traffic.

Other approaches use biologically inspired techniques to locate and organize re-

sources. For instance, ant algorithms are also suitable for unstructured networks

because they do not rely on global knowledge about the network. The algorithm

proposed by Michlmayr et al. [91] uses ants to guide the search. Each peer in the

system maintains a repository of documents. Each document has the following in-

formation associated to it: a keyword, the neighbor that provides the document, and

the quantity of pheromone. There are two types of ants in the system: forward ants

and backward ants. The forward ants navigate the network until the document is

found or the TTL finishes. In each step, the forward ant decides between two strate-

gies: exploiting or exploring. The first strategy selects the best neighbor based on

the quantity of pheromone. The second strategy encourages the forward ants to dis-

cover new paths. The backward ant is responsible for updating the path with the

pheromone. The quantity of the pheromone depends on the goodness of the path.

The algorithm also considers an evaporation rule to update the pheromone based on

time. The main problem is that the pheromone is based on the keywords of the doc-

uments. Therefore, if a peer is looking for a document with a keyword that does not

appear, even though similar documents exist, the peer will not find it in the network.

There are other approaches where the underlying structure of the system is loosely

structured using certain criteria. This facilitates the search process. An example of
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this is presented by Zhang et al. [146]. The authors propose a completely decentral-

ized MAS without mediators. Initially, agents are connected randomly. The authors

propose a reorganization algorithm to group agents with similar services together.

In order to avoid isolated clusters of agents, the algorithm establishes a percentage

of similar and dissimilar agents that should be in the neighborhood of the agent.

For distributed searches, the authors propose the use of two algorithms: K-Nearest

Neighbors (KNN) and Gradient Search Scheme (GS). The idea of the first algorithm

is to redirect the queries to the most similar k-agents. In this process, the algorithm

also considers the degree of the agents. The second algorithm (GS) has a first stage

where it tries to find a ’good starting agent’. An agent is considered to be a ’good

starting agent’ if its similarity with respect to the query is above a certain threshold.

If the initial agent is a ’good starting agent’, the algorithm performs like KNN. Oth-

erwise, the agent selects the most similar neighbor to the target, and a message with

the similarity information is sent to that neighbor. This process is repeated n times.

The agent with the highest similarity value will be choosen to restart the search us-

ing the KNN algorithm. The main disadvantage of this approach is the high cost of

communication required to organize the agents into communities.

Semantics has been included in the systems in order to guide the search process,

improve the accuracy of the results, and as a criterion to establish links. Upadrashta

et al. [135] present a routing protocol that uses semantics included in queries to

improve the performance of Gnutella systems. The main idea is that each peer keeps

a list of friends and learns about their interests to obtain more relevant sources faster

and with less traffic. The list reflects similarity of interests (semantic categories)

between peers. Bianchini et al. [11] present a decentralized service system. Peers are

connected through semantic and logical links. Semantic links are established between

peers that offer similar services. Logical links are the links of the P2P system. During

the search process, if a peer does not have a service that is similar to the target, it

forwards the query taking into account its semantic links. If the peer does not find

any semantic similar service, it queries its neighborhood. Specifically, a random

subset of its neighbors in the logical layer is selected to redirect the query. This helps
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to prevent the formation of isolated clusters in the semantic layer. The drawback of

this approach is that the peers are organized in clusters of similar services; therefore,

a peer may not be able to find services that are semantically different to its services.

In this situation, the required service cannot be found using the neighbors in the

semantic level and the peer must choose a neighbor using random strategies. This

reduces the system to a traditional P2P system without semantics.

Basters et al. [9] use a local training set that contains previous queries and their results

and semantic information about services to determine which neighbor is the most

promising to forward the query to. This selection is based on probability and uses

the mixed conditional bayesian risk, which considers two parameters: the semantic

gain and the communication loss (number of messages to find the required service).

These two parameters are calculated taking the information of the training set into

account. The main drawback of this approach is that it relies on a training set that

each agent maintains individually. This training set allows agents to learn which

neighbor will probably return relevant semantic web services. When the agent gets

into the system, this training set is empty and the agent forwards the requests using a

flooding algorithm until it has enough information. In highly dynamic environments,

new agents frequently join and leave the system; therefore, they will initially use

flooding algorithms that overload the system.

The analysis of the different works shows that, from the structural point of view, the

areas of P2P, SOE, and MAS follow similar structures. In systems where the num-

ber of entities is limited, centralized approaches are responsible for resource location

[55, 20, 72, 111, 5]. These approaches generate less traffic, are more efficient and the

results are more accurate since all the information is considered. In order to avoid

bottlenecks and to provide robustness and scalability, if the system is larger, dis-

tributed approaches such as: super-peers [78] or DHT [131, 118, 116, 92, 87] in P2P;

federations of registries [129] in SOE; coalitions of agents [100, 99] or distributed

middle-agents [94, 124] in MAS, have been proposed. Moreover, there are some

proposals that integrate structures from different areas such as DHT and Semantic
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Overlay Networks based on semantic service descriptions [86, 59, 110]. Finally, if the

systems are highly dynamic, with a large number of heterogeneous entities that only

have partial knowledge, the search process relies on each entity. In these approaches,

there are two types of search strategies: blind or informed. Blind strategies generate

more traffic since they do not rely on domain-specific information. Informed strate-

gies use statistical information from previous searches in order to guide the search.

The main problem with the informed strategies is that they need a training period

in order to have enough information to guide the search [145, 9]. For this reason,

there are decentralized approaches that try to facilitate the search process following

certain criteria to establish links between entities. An example of this is the use of

Semantic Overlay Networks [82, 11]. Moreover, Complex Network provide models

where short paths can be found following greedy search strategies [128, 4, 70]. These

models are considered in proposals in P2P, SOE and MAS to organize and improve

the resource location in decentralized and loosely structured systems [86, 54, 93].

With regard to the search dimension, in general, the four environments present sim-

ilar solutions for dealing with the search for resources or services. In P2P systems,

the majority of the proposals are oriented to the location of resources such as files,

and the search process is based on keys [131, 118, 116, 87]. SOE approaches use

similar structures to deal with the service discovery. However, this area introduces

an important improvement: the inclusion of semantics in the service descriptions and

in the search process. Semantics enhances the discovery process by providing more

flexibility and precision [92, 20, 8, 111]. Moreover, semantics has also been intro-

duced as a criterion to establish links between different entities [11, 110, 36]. In the

case of MAS, the agents that populate the system offer their capabilities through ser-

vices. For this reason, some of the works presented in SOE could be directly applied

to solve the problem of service discovery in MAS. Moreover, agent features such as

organizational roles, trust, or argumentation and negotiation capabilities have been

included to improve the selection process or guide the search process [47, 21, 54].
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2.3 Self-Organization in Distributed Environments

Open systems do not remain static. They must be able to adapt themselves to changes

in the environment conditions or resources demand. Self-organization is considered

the mechanism that enables a system to arrange its organization at run-time, without

explicit external commands [39]. Starting from entities that are structured in a sub-

optimal organization or that are not organized at all, a self-organizing system is able

to form a specific organization to pursue a well-defined goal [75]. The main issue in

self-organization is to determine which is the best mechanism to reorganize the cur-

rent structure through the execution of local actions to achieve the desirable behavior

with a high degree of uncertainty in the system. In this context, researchers from

different areas have proposed mechanisms that face the problem of self-organization.

Specifically, we review some of the proposed approaches in Peer-to-Peer and Multi-

Agent Systems.

Many of the proposals for self-organization in decentralized systems such as P2P are

based on Ant Colony Optimization algorithms [25][48]. These algorithms are in-

spired on the behavior of ants and specifically on a principle called stigmergy. Stig-

mergy is an indirect mechanism of communication that is based on the information

that ants leave in the environment. This information is considered by other ants in or-

der to make decisions. Usually, works based on stigmergy propose a hybrid protocol

for routing and for improving the efficiency of the paths. This protocol combines re-

active ants, which use broadcast mechanisms for route discovery and bootstrap their

routing tables, and proactive ants, which use unicast mechanisms based on probabil-

ities for system maintenance.

In other approaches, peers consider trust values about their neighbors in order to de-

cide which local actions are more appropriate to improve the structure of the system.

Wang [138] presents a self-organized system of services that considers semantic in-

formation and trust in each peer of the network to form groups of peers with similar

domains. The system has a hierarchical structure where ’expert-peers’ contain infor-
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mation about a set of peers that have information related to their domain. To build

this structure and acquire knowledge about the environment, a broadcast mechanism

and trust values are used by the peers. However, the hierarchical organization in peers

and ’expert-peers’ can overload ’expert-peers’ since they initially receive and process

all the queries and also the system is more sensible to deliberate attacks. Condie et.

al [30] also consider trust in order to adapt a random network of peers. A peer i

considers ’local trust values’ with respect each peer it has interacted with. A ’local

trust value’ represents the number of requests that have been solved successfully by

peer j (i.e., the peer that interacts with i). If a peer i has an acquaintance j that has

a higher trust value that one of its current neighbors, then it changes its current link

by a new one with peer j. In open environments where the peers that are part of the

system changes it is difficult to establish these ’local trust values’ because peers do

not have information about previous direct interactions with new peers.

There are other approaches that instead of considering trust they consider similarity

to decide when the local structure of peers should be re-organized. Raftopoulou and

Petrakis [113] present a iCluster overlay network that manages text files. The initial

structure of peers is random. The system has two global parameters that establish

the number of long-links (links with dissimilar peers) and short-links (links with

similar links) that a peer should have. Periodically, each peer evaluates its degree

of internal clustering (degree of similarity of short-links). If the degree of internal

clustering is under a threshold, the peer initiates a reorganization sending a message

to m of its neighbors to find other peers enough similar to its interests and replace its

current links. A drawback of this proposal is that initially nodes need to find possible

candidates to create clusters through random walks which affects to the success of the

searches. Another drawback is that the decision of considering re-organization of the

structural links is done periodically instead of when peers consider more appropriate.

Moreover, when peers cannot do a search based on similarity, they use a k-flooding

algorithm that increases the traffic in the network. Another thing that this approach

do not consider is the inclusion of semantic information.
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Reinforcement Learning has been used in MAS to modify dynamically the behavior

of the agents. In these approaches, agents adapt their behavior calculating a proba-

bility that is based on information related to its current state, previous decisions, and

environment conditions [45]. Abdallah et al. [2] presents a self-organization mech-

anism where each agent, when it receives a message, updates its current state using

a reinforcement algorithm and decides if it is appropriate to reorganize stochasti-

cally its current links adding or removing neighbors. The reinforcement learning

algorithm used in the decision making process to update the behavior of agents is

called Weighted Policy Learner (WPL). This gradient algorithm allows agents to

learn stochastic policies that make agents to slow down learning when moving away

from a stable policy and speedup learning when moving towards a stable policy. This

approach improves previous proposals based on reinforcement learning [109] since

it considers the dynamism of the network. Nevertheless, the decision making algo-

rithm considers the reorganization of agents links based on a predefined probability.

Moreover, the decision of removing neighbors is also conditioned by a constant that

is dependent of the average degree of connection of the network.

There are other approaches focused in cooperative problem solving in organizations

and how these organizations can be rearranged in order to improve its performance as

the environmental conditions and the organizational goals change [75][68]. Many of

these approaches rely on hierarchical structures where agents change their relations

in order to distribute their workload to subordinates. The change of relations is based

on a utility function that evaluates the reorganization cost, the load of the agent,

and the communication cost. However, some of these models assume that all the

agents are acquaintance of each other (fully connected network) that is not a realistic

situation in open environments and also rely on the hierarchical structure that reduces

the flexibility of the system.

In general, many of the approaches that deal with decentralized search of resources

consider an initial self-organization criteria to build a suitable structure but they do

not consider dynamics and how should evolve the structure as time passes and the
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circumstances change. Nevertheless, there are some proposals that focus on the re-

organization of links when resources change or when new peers enter or leave the

system. In P2P systems, self-organization is based on the content of the peers. They

consider the degree of similarity between peers or the number of successful direct

interactions in order to decide if it is worthwhile to maintain a link. In the area of

MAS, self-organization is not focused on the resources that agents have. Agents

consider different types of links and the organizational structure. They use utility

functions based on the number of times a connection has been used, the workload in

certain moment, or the cost that a re-organization implies for them in order to decide

if it is appropriate changing a link.

Moreover, we can conclude that there are some desirable features that distributed

systems should have to provide suitable self-organization mechanisms. These main

features are: (i) no external control, central authority or supervisor should guide the

organization process; the organization process should be carried out locally, based on

the local interactions of each agent in the system; (ii) the system should be able to

evolve; and (iii) the agents of the system should be able to deal with uncertainty in

order to decide when it is more appropriate to consider a self-organization decision

and which action is suitable.

2.4 Cooperation Emergence

In distributed environments, cooperative behavior benefits to all individuals present

in a system and implies a cost for those that have this behavior. Moreover, there is a

potential exploitation of cooperative individuals by selfish ones. Selfish individuals

obtain benefits from cooperator without contribute to the system. Cooperation when

self-interested individuals are present in the system is known as social dilemmas. In

these dilemmas, individuals decide between a short-term individual benefit or a long

term group benefit. If there are many individuals that decide to obtain a short term

benefit, this behavior can exhaust the resources and damage the performance of the
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whole system.

The area of Game Theory is well-suited for understanding scenarios where the deci-

sions and payoff or outcome of an individual depend on what other individuals are

doing. Game Theory uses mathematical models that are based on well studied-games

to explain these scenarios [6]. These games describe the possible available actions,

the strategies, the potential payoffs of the participants, and the information consid-

ered when participants make decisions.

Furthermore, approaches based on Game Theory have been widely used to explain

mechanisms through which cooperation can emerge and be maintained in different

scenarios. For instance, in scenarios where individuals interact repeatedly, selfish

or altruistic actions would be returned in future. In these scenarios, the mechanism

to facilitate the emergence of cooperation is direct reciprocity. In every round, an

individual has two alternatives: to cooperate or not cooperate. If the individual co-

operates, the other individual may cooperate later. Hence, it might compensate to

collaborate. In this scenario, the best strategy when the majority are defectors is

”tit-for-tat”. Otherwise, the strategy ”win-stay, lose-shift” is better for maintaining

cooperation [97]. When agents do not always interact with the same individuals, there

are other mechanisms such as indirect reciprocity or tags. Indirect reciprocity is used

in environments where agents interact with other agents who have information about

their previous interactions with other agents. Trust and reputation are techniques

that are used for indirect reciprocity [98]. Mechanisms based on tags facilitate the

emergence of cooperation [56]. Tags are established taking into account cultural ar-

tifacts or traits [127]. Punishment has also been considered to promote cooperation

and to overcome the ”tragedy of the commons” [57]. Punishment is present in hu-

man societies where sanctioning institutions apply a punishment to those that do not

obey the law. In systems where such centralized institutions do not exist, individu-

als are willing to punish defectors even though this implies a cost for them [58]. In

general, punishment has been proven to be an efficient way to maintain cooperation

[125, 126].
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Many approaches that are based on games assume well-mixed populations where

everybody interacts with equal frequency with everybody else. However, real popu-

lations are not well-mixed. In real populations, some individuals interact more often

than others; therefore, to understand the social behavior of the systems it is impor-

tant to consider the social structure. The social structure is represented by a network

where links are established by the individuals following certain preferences. There-

fore, the network structure influences the interactions between the individuals and

the social behavior of the system. There are several works that analyze the influence

of the network structure in the emergence of cooperation. These works study how

structural parameters such as clustering or degree distribution affect the emergence

and maintenance of cooperation [112, 101, 120, 60].

Although there are many works that take into account the structure of the networks,

there are some works that not only consider the structure of the network, but also

consider how local changes in the network structure can influence the collective so-

cial behavior. Eguı́luz et al. [44] present a model that uses the Prisioner’s Dilemma

game [6] and social plasticity in random undirected networks of agents. Agents up-

date their behavior in discrete time steps using an imitation strategy that considers

the payoff of neighbors. The social plasticity (i.e., changes in structural links) is

considered when an agent imitates a defector in order to facilitate the replacement

of an unprofitable relationship with a new one that is randomly chosen. This process

creates a hierarchical topology in which highly connected nodes (leaders) play an im-

portant role sustaining cooperation. Salazar et al. propose a mechanism to promote

and sustain cooperation in coalitions based on taxes. Agents are located in scale-free

and small-world network structures where they can change their links to join or leave

a coalition [119]. Griffiths et al. [52] propose the combination of partial observation

with rewiring techniques to facilitate the emergence of cooperation. They present

a mechanism that is based on tags to facilitate the emergence of cooperation in a

donation scenario. Their approach considers context awareness and tags of agents.

Moreover, agents can remove part of their connections with agents that are not co-

operative and add connections with others that can improve cooperation. There are
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other approaches that also make use of rewiring techniques and partial observation

to facilitate the emergence of cooperation [137]. Partial observation allows agents to

observe a subset of other agents that are located outside of their circle of interaction,

and afterwards, the agent imitates the majority action taken by the observed agents.

Rewiring allows agents to decide to change a link after a number of unsuccessful

interactions and replace it with a link to an agent recommended by a neighbor.

2.5 Final Remarks

Distributed systems are populated by a large number of heterogeneous entities that

act as clients and providers. Therefore, there are a great number of different types of

resources that could be considered during the search process. Moreover, the entities

join and leave the system dynamically which makes the management of updated in-

formation about resources difficult. In distributed systems, there are situations where

entities only have a partial view of the system, the environmental conditions change,

and selfish entities appear. Taking into account these features, the systems should

provide mechanisms that: (i) provide scalability and robustness when entities that

participate in the search process change; (ii) locate a required resource only consid-

ering local information and do not require flooding strategies; (iii) manage different

types of information (i.e., syntactic and semantic data); (iv) integrate functional and

non-functional information in the selection process; (v) adapt the system structure

as the environmental conditions changes (i.e., user demand, business requirements);

(vi) promote the cooperation in systems where self-interest or malicious entities are

present in order to maintain the system performance. In the following paragraphs we

describe each feature:

Entities as agents. Entities that populate current systems could be seen as agents

with complex capabilities that interact with others in order to achieve common or

individual goals. Agent capabilities allow them to be aware of their situation in the
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system and act in consequence. Therefore, they can incorporate some of the features

that we have mentioned (i.e., trust and reputation models) in order to establish more

reliable links with other entities in the system. They can also use their previous

experience to improve the search process. Another interesting point to consider is the

inclusion of MAS features in the search process. Most of the approaches are based on

statistical or semantic information about the resources. Trust and reputation introduce

new information that could give more flexibility and efficiency to the search process

[54]. Moreover, negotiations [21, 81], organizational information [22], or behavioral

aspects [31] could be included in the system to enhance the search process.

Robustness and Scalability. In many proposals, systems are based on rigid hier-

archical structures where the content is placed on a set of entities according to hash

functions. Moreover, these entities are also responsible for the search process. The

most appropriate systems for providing robustness and scalability in distributed envi-

ronments should be decentralized, where all the entities are equal and each one man-

ages its own information and carries out the search process. Complex Networks pro-

vide decentralized and loosely structured models. In these models, links that follow

more flexible criteria than in structured systems are established. In some approaches,

semantics has been introduced to establish these links, this provides flexible self-

organization and improves the query routing and search performance, facilitating the

adaptation to environmental conditions as well as the search process. Moreover, there

is a set of Complex Network models that have a structure where greedy algorithms

can locate the target resource in short paths.

Local knowledge. In distributed systems, in most situations, entities only have a

partial view of the system. Therefore, the search process should use blind strategies

or informed strategies that rely on local knowledge. Blind strategies such as flooding

are inefficient since they generate too much traffic. Informed algorithms are more

scalable since they have information that guides the search and the number of gen-

erated messages in the process is lower than in blind strategies. For these reasons,
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the use of informed strategies is more appropriate. However, not all the entities have

enough information in the system to consider informed strategies. Therefore, entities

should be able to choose which strategy is more appropriate by taking into account

their information. In this situation, structures that consider semantic information

such as Semantic Overlay Networks can guide the search when the entities do not

have enough information to decide the best neighbor to forward the query to.

Data Heterogeneity. Although there are semantic-free approaches such as DHT

systems that provide good performance for key discovery, they are not as efficient as

semantic approaches for other types of queries such as text queries. Moreover, con-

sidering the heterogeneity of entities, an important issue is the inclusion of semantics

in the search process. Semantics provides a mechanism to facilitate the interoperabil-

ity of entities that require and offer services or resources [88, 142] and to improve

the results of the searches. Semantics could not only be included in the service de-

scriptions and in the search process, but also could be included in the structure of the

network.Moreover, not all the semantic service descriptions are annotated using the

same ontological language. Even the service descriptions that use the same language

could use different ontologies that should be aligned [122]. It is nevertheless im-

portant to consider that not all the entities of the system provide semantic annotated

information. For this reason, the integration of both semantic and syntactic infor-

mation, as well as the use of mechanisms to align ontologies and translate different

descriptions to a common model, facilitates the integration of heterogeneous entities.

Reputation. Entities cooperate with other entities in order to forward requests and

provide services. In the absence of a central entity or set of entities that handles

the queries and the data the entities must have mechanisms to determine which of

their neighbors are trustful and whether or not to forward the query. In decentralized

environments, reputation and recommendation mechanisms have been proposed to

deal with this task. These mechanisms determine the trustworthiness of other enti-

ties considering direct interactions or the information received from other entities.
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Reputation mechanisms could be considered during the search process as a criteria

to determine which entity is more suitable to forward a query or provide a service.

Beyond functional parameters. In the majority of the proposals presented, the

search process is reduced to finding an accurate result considering simple functional

criteria. However, in SOE, since there is a large number of entities a set of similar

service providers is easily found. Therefore, more information is necessary to deter-

mine the best provider. To carry out this ranking, non-functional parameters should

be included in the service descriptions [106, 27]. However, there is no a standard

way to include these parameters inside the semantic descriptions. This makes their

usability in the discovery process difficult.

Self-Organization. The system structure should not be rigid: systems are not static;

collaborations between entities may change; service demand can change; unexpected

failures might appear; or entities might leave the system. Therefore, the structure

should facilitate the adaptation at run time in order to maintain the efficiency of the

search process [143]. Current proposals for self-organization focus on completely un-

structured systems that use biologically inspired adaptation mechanisms or on well-

defined organizational systems where adaptation protocols are defined for hierarchi-

cal structural relations. In the majority of approaches, the self-organization actions

considered only focus on changes in structural relations between entities or changes

in population; they do not consider the combination of the two. It would be interest-

ing a more generic self-organization model, which combines two types of structural

changes and that could be applied to systems that are loosely structured.

Cooperation. In systems where only local knowledge is available and there is no a

predefined structure, the success of the search process relies on the collaboration

of the entities that are part of the system. Nevertheless, this is not a very com-

mon situation in open and dynamic systems where the entities that belong to the
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system frequently change. A common problem in P2P systems are the free riders.

Free riders are peers that only download resources from other peers. Moreover, in

MAS, self-interested agents that decide to pursue its own goals and not to collabo-

rate to accomplish other goals are also present. Therefore, the system should pro-

vide mechanisms to deal with this problem and encourage the collaboration among

agents. Malicious agents could also appear and the entities that are part of the sys-

tem should be able to detect and isolate them in order to improve the efficiency of the

search process. Approaches based on Game Theory have been widely used to explain

mechanisms through which cooperation can emerge and be maintained in different

scenarios. Mechanisms such as direct reciprocity, indirect reciprocity or tags, or pun-

ishment have been used on games that assume well-mixed populations. However,

mechanisms that promote cooperation should take into account the structure of the

network since it establishes the interactions between the entities and affects to the

behavior of the entities of the system. In this context, there are several proposals

that focus on how local changes in the network structure can influence the collective

social behavior.

An approach that provides an structure and a search mechanism that includes all

these features could be considered suitable to deal with the search of resources in

open, dynamic and distributed environments in an efficient way.
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3.1 Introduction

The areas of Service Oriented Computing (SOC) and Multi-agent Systems (MAS)

are getting closer. Both areas try to deal with the same kind of environments formed

by loose-coupled, flexible, persistent and distributed tasks.

On the one hand, in MAS, agents must cooperate with others inside a ”society”. Due

to the technological advances of recent years, the term ”society”, in which the multi-

agent system participates, needs to meet several requirements such as: distribution,

constant evolution, flexibility to allow members enter or exit the society, appropri-

ate management of the organizational structure that defines the society, multi-device

agent execution including devices with limited resources, and so on. All these re-

quirements define a set of features that can be addressed through an open system

paradigm and virtual organizations in multi-agent systems.
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On the other hand, SOC provides the necessary support for the development of inter-

operable, evolvable, and massively distributed applications. Moreover, SOC brings

additional considerations, such as the necessity of modeling autonomous and het-

erogeneous components in uncertain and dynamic environments. Such components

must be autonomously reactive and proactive to interact flexibly with other compo-

nents and environments. As a result, they are best thought as agents who collectively

form MAS. SOC represents an emerging class of approaches with MAS-like charac-

teristics for developing systems in large-scale open environments. Moreover, the key

MAS concepts are reflected directly in SOC with ontologies, process models, chore-

ographies, directories and facilitators, service level agreements and quality of service

measures.

For these reasons it is interesting to integrate these two technologies to model service-

oriented autonomous and heterogeneous computational agents in dynamic and open

environments. The integration of MAS and SOC technologies creates a new type of

systems called Service-Oriented Multi-Agent Systems (Service-Oriented MAS).

Service-Oriented MAS are populated by autonomous agents that offer their function-

ality through services. Coordination mechanisms are required in Service-Oriented

MAS in order to facilitate the interaction between heterogeneous entities that take

part in the system. As it has been described in Chapter 2, coordination mechanisms

depend on the underlying structure and available information. There are structures

where global knowledge about the entities that participate in the system and their

functionality is available. In these systems, a central entity is responsible for the

management of knowledge and coordination. However, there are other structures

where there is only partial knowledge of the system. In these situations, coordina-

tion is more complex since only a partial view of the system is available and this

introduces uncertainty in the system. In Service-Oriented MAS both situations can

be found. On the one hand, there are organizations where an agent is responsible

for managing the services of organizations and this agent has a global knowledge

about which service is provided by each agent inside the organization. On the other
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hand, there are agents that only have a local view of the capabilities of its immediate

neighbors. In this case, agents should be able to locate the provider agents that offer

the required services using its direct contacts. These two scenarios may be present in

Service-Oriented MAS; therefore, coordination mechanisms that fulfill the needs of

both should be provided. Moreover, agents should consider self-organization actions

in order to rearrange its structural connections to deal with changes in the environ-

ment such as service demand. Another important aspect to consider is that coop-

erative behavior of the agents in Service-Oriented MAS plays an important role to

ensure the correct performance of service discovery task. For this reason, the system

must offer mechanisms to promote and maintain the cooperation in the system.

In this chapter we present a formal model for Service-Oriented MAS. The aim of this

model is the integration of agents, services, and organizations. In this model, agents

play organizational roles that define the kind of services they offer. In order to pursue

a specific goal, agents can create, enter and exit from virtual organizations. Taking

into account that agents can be part of a VO or can be only members of the system,

the allowed actions in the system are different. We present a diagram that describes

the dynamics of the system considering different states in the system.

3.2 Abstract Model for Service Management

The system is made up of a set of autonomous agents that play an organizational role

in the system and offer their functionality through a set of semantic services. These

agents could be members of a Virtual Organization (VO), and, therefore, they can

have access to a more complete vision of the system or, at least, they have a full

picture of the organization of which they are members. If agents are not part of any

VO, they only have a narrow view of the global community: just a limited number of

direct neighbors are known and the rest of the network remains invisible to them. In

the following paragraphs the elements of the hybrid model are defined.
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ap

Rp = {TravelOrganizer}
Sp = {bookHotel}

ak

Rk = {TravelOrganizer,
searchTravel}
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VO1 = {�Bookhotel�, SD1, FD1}
OR1 = {TravelOrganizer}

E1 = {ap, ak}
Rel1 = {�team�}
FD1 = {Sp, Sk}

ai

Ri = {TravelOrganizer}
Si = {bookF light}

VO2

VO3

Figure 3.1: Abstract model for an open Service-Oriented MAS where nodes can be individual agents
with local knowledge (i.e., direct neighbors, its roles, its services, and its internal state) or virtual
organizations.

DEFINITION 1 (System). For our proposal, the system is defined as a tuple (E,L),

where E = {e1, ..., en} : E = A ∪ VO is the a finite set of entities (agents and

Virtual Organizations) that are part of the system and L ⊆ E × E is the set of links,

where each link (ei, ej) ∈ L indicates the existence of a direct relationship between

entity ei and ej .

It is assumed that the knowledge relationship among entities is symmetric, so the

network is an undirected graph. An entity in the system could be an agent ai ∈ A or

a Virtual Organization VOi ∈ V O, ei = ai|VOi ∈ E .

In this model, an agent is a social entity that interacts with other agents in the system.

It controls its own information about (i) the semantic descriptions of the services it

offers, (ii) the role it plays in the organization, and (iii) knowledge about a subset of

agents in the system.

DEFINITION 2 (Agent). An agent ai ∈ E is characterized by a tuple of four elements

(Ri, Si, Ni, sti) where:
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• Ri ⊆ R, is the set of roles that an agent can hold at a given time, and R the

roles defined in an organizational ontology L;

• Si ⊆ S is the set of semantic service descriptions of the services provided by

the agent and S represents all the service descriptions in the system. Each

service description si ∈ Si should be associated at least to one of the roles

played by the agent, si ∈
⋃

∀ri∈Ri

Sri ,∀si ∈ Si.

• Ni ⊆ E is the set of agents an agent i can communicate with, Ni ⊆ E−{ai} :

∀ej ∈ Ni,∃(ei, ej) ∈ L, and 0 < |Ni| � |E|;

• sti is the internal state of the agent. The internal state contains information

the local environment of the agent and the degree of cooperation of the agent.

See Sections 6.3 and 7.3 for a detailed view of the internal state of an agent.

In our model, the set of neighbors Ni an agent has depends on if it is part of a virtual

organization or not. If an agent is not part of any virtual organization, it only knows

about the existence of a set of agents (i.e., its direct neighbors) and it is unaware of

the rest of the agents in the system. If an agent is part of a virtual organization, it

can have a global view of the organization (i.e., all the agents that are part of the

organization) besides the agents it knew previously.

In our model, the concept of role represents the functional position of an agent. An

agent must play at least one role, but it can play several roles. Moreover, a role can

be played by several agents. The role determines the type of services offered by the

agent. The agent acquires a role defined inside an organization of the system if it

satisfies a set of requirements [46]. In our model, a role is semantically defined by

an ontological concept that is defined in an organizational ontology. Moreover, a

role establishes a set of semantic service descriptions that describes the functionality

associated to the role.

DEFINITION 3 (Role). A role ri ∈ R is defined by the tuple (φi, Sri) , where:
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• φi is a semantic concept for the role defined using a organizational ontology

L.

• Sri ∈ S is the set of semantic service descriptions associated to the role. Each

service description si ∈ Sri is defined by the tuple in terms of (Ii, Oi, Pi, Efi)

(Inputs, Outputs, Preconditions and Effects).

In our model, a Virtual Organization VO is a set of agents that need to coordinate

resources and services across institutional boundaries. These agents are organized not

in plain societies, but in structured organizations that enclose the real world with the

society representation and ease the development of open and heterogeneous systems.

DEFINITION 4 (Virtual Organization). A VOi is defined as (Gi, SDi, FDi), where:

• Gi = {gi, ..., gn} is the set of goals associated to the virtual organization at a

given time.

• SDi = {Ei, ORi, Relations} is the structural dimension that defines roles and

relations between them. Ei refers to the set of entities (virtual organizations,

agents, or both) that are inside the organization. ORi ⊆ R refers to the roles

that can be played inside the organization. Relations defines the relationships

between roles in the organization (i.e., organizational topology).

• FDi is the functional dimension. It describes the functionality of the organiza-

tion, including its services at a given time.

FDi =
⋃

∀ei∈Ei

Si (3.1)

Once all the components of the hybrid model are defined, the possible interactions

that could occur in the system between agents and organizations are explained in

detail in the following section.
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3.2.1 Dynamics

Agents that are part of the proposed system can be in different states depending on

their actions or the events produced by the actions of other agents in the system. In

order to analyze all these possible states, we propose an state-based diagram. This

diagram consists of four main states that include the main activities that an agent can

carry out in the system (see Figure 3.2):

• Non-member state: This is the start state for agents that are not member of

the system and want to get into it. ’Non-member’ agents should contact with

another agent that is already present in the system. All agents in the system

are considered as an entry point. Agents in the system could accept or reject

a request from a ’non-member’ to be part of the system agent. This request

contains the profile description of the agent. The profile description contains

the set of organizational roles that the agent plays and the set of services the

agent offers. If an agent in the system accepts the request, it is responsible for

looking for a neighbor to establish a link with the new member agent. Once a

new agent establishes a link with a neighbor, it goes to state Member.

• Member state: An agent in this state is member of the system, and it is con-

nected with one or more agents but it is not member of any VO. Once an

agent is part of the system it has three possible states to go depending on the

events that it receives, or the actions it wants to do. The possible states are:

organizational state, discovery state, and structural state.

• Organizational state: If an agent wants to create a VO, or if it wants to join

an existing VO and it fulfills a set of organizational requirements, an agent

arrives to Organizational state. The main activities in this state are related to

the life-cycle of a VO. From this state an agent can go to the following states:

– Creation state: An agent that is member of the system creates a VO.

From this state, the agent joins the created organization and goes to the

state Organization member.
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– Organization member state: An agent that is member of the system joins

an existing VO if it fulfills a set of organizational requirements and be-

comes member of a VO. Otherwise, it is only member of the system.

From this state, an agent can go to the following states:

∗ Creation state: an agent creates a new VO;

∗ Registration state: an agent registers its services;

∗ Discovery state: an agent gets information about registered services

in a central repository;

∗ Member state: an agent leaves the VOs it belongs;

∗ Decentralized Discovery state: an agent participates in a decentral-

ized service discovery process;

• Decentralized Discovery state: In this state, an agent that is in the system can

carry out a set of tasks related to decentralized service discovery. Basically, an

agent arrives to this state when it receives a query about a service. The agent

analyzes the query. If it can solve the query, it informs the agent that created

the query and goes to the state Member. If the agent cannot solve the query, it

can decide to cooperate or not in forwarding the query to one of its neighbors.

If an agent does not cooperate, it goes to the state Member. Otherwise, it goes

to the Forwarding state where it forwards the query to a neighbor agent that

it estimates that is close to the target agent that offers the required service.

Once this local decision process finishes, the agent can go to Organization

member/Member state or it can analyze its structural situation in the system

and goes to the Structural state.

• Structural state: In this state, an agent tries to improve the structural organiza-

tion of the system through self-organization mechanisms. An agent analyzes

its local information about the service demand and decides to continue, clone

itself, leave the system, or change its links.

– Structural analysis state: an agent arrives to update its local informa-

tion and to evaluate if it has enough information to consider structural
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changes. If the agent has enough information, it can make several deci-

sions: continue in the system, clone itself if its services are demanded,

leave the system if its services are not demanded (Population analysis

state), or change its current neighbors (Rewiring state). After that, the

agent goes to the state Organization member, if the agent belongs to a

VO, otherwise, it goes to the state Member.

– Population analysis state: an agent arrives to this state to analyze if its

services are demanded. In this state the agent creates a clone/s or leaves

the system in order to adjust the population in the system to the service

demand.

– Rewiring state: an agent arrives to this state when one of its links is not

being used or when a neighbor is not cooperating forwarding its queries

during a discovery process. Therefore, the agent tries to replace this link

with a new one. After that, the agent goes to the state Organization mem-

ber, if the agent belongs to a VO, otherwise, it goes to the state Member.

3.3 Conclusions

In this chapter, the abstract model of the system for service management in open

Service-Oriented MAS has been presented. The model integrates the concepts of ser-

vices, agents and organizations. The main components that take part in the system

and their formal descriptions have been detailed in this chapter. Moreover, a dia-

gram that describes the possible actions that can be carried out by agents depending

on their state have been presented. The main states of this diagram are related to

organizational aspects, service discovery activity, and structural self-organization.

The organizational state deals with coordination tasks among agents situated in VOs.

The decentralized service discovery state deals with the location of possible service

providers considering local information. The self-organization state considers the ac-

tions that agents can take in order to deal with changes in the environment. These
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Figure 3.2: States and sub-states of agents in the system. Each state defines the allowed actions.



3. Abstract Model for Service-Oriented MAS 43

three states contain a set of sub-states that give more detail of the actions and events

that could appear in the model.
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4.1 Introduction

In this chapter we present an architecture for open Service-Oriented Multi-Agent

Systems. This architecture is called THOMAS (MeTHods, Techniques and Tools

for Open Multi-Agent Systems). THOMAS deals with the integration of agents and

services, being agents complex entities that offer their functionality through services

[102]. These agents are organized not in plain societies, but in structured organiza-

tions that enclose the real world with the society representation and ease the devel-

opment of open and heterogeneous systems.

Current agent platforms must integrate these concepts to allow designers employ

45
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higher abstractions for modeling and implementing these complex systems. All these

concerns are gathered in the THOMAS architecture. THOMAS architecture is inte-

grated in the model presented in the previous chapter (see Chapter 3) in a transparent

way providing the concept of Virtual Organization (VO) and facilitating the manage-

ment and interaction among agents and VOs through a set of services associated to

two main roles: a service facilitator and an organization manager. Specifically, we

focus on the description of the services associated to the service facilitator role.

Moreover, in this chapter we present a framework that implements the THOMAS

architecture. We implement as agents the entities responsible of the life-cycle man-

agement of virtual organizations and the management of services provided by agents

and organizations. These agents play service facilitator and organization manager

roles. The services they offer are implemented as semantic web services. Finally, an

example of an scenario illustrates how agents are capable of discovering and employ-

ing functionalities in THOMAS framework.

This chapter is structured as follows: Section 4.2 presents the THOMAS architecture

and describes the main components. Section 4.3 describes the component respon-

sible for the service management in virtual organization. Section 4.4 presents the

THOMAS framework to facilitate the creation and management of virtual organiza-

tions. Finally, Section 4.6 presents conclusions and final remarks.

4.2 Architecture Model

THOMAS architecture is based on a set of modular services that manages the life-

cycle of organizations and their functionality. In THOMAS, organizations are struc-

tured by means of virtual organizations VOs, which represent groups of entities

(agents or other units), that are related in order to pursue a common goal. Those

virtual organizations have an internal topology (i.e., hierarchical, team, plain), which

imposes restrictions on agent relationships and control (i.e., supervision or informa-

tion relationships). An organization can also be composed of more organizations.
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Moreover, roles are defined in each organization. They represent all required func-

tionality needed in order to achieve the organization goal. They might also have

associated norms for controlling role actions (i.e., which services agents playing that

role are allowed to request, offer or serve; permissions for accessing resources).

Though THOMAS feeds initially on the FIPA architecture, it expands its capabilities

to deal with organizations, and to boost up its services abilities. In this way, a new

module in charge of managing organizations has been introduced into the architec-

ture, along with a redefinition of the FIPA Directory Facilitator that is able to deal

with services in a more elaborated way, following Service Oriented Architectures

guidelines.

As it has been stated before, services are very important in this architecture. In fact,

agents have access to the THOMAS infrastructure through a range of services in-

cluded on different modules or components. The main components of THOMAS are

the following: an agent (or set of agents) that plays the OMS (’Organization Man-

ager’) role, an agent (or set of agents) that plays SF (’Service Facilitator’), and a

Platform Kernel (PK) (Figure 4.1).

VO0

(a)

aoms

Roms = {OMS}
Soms = {registerRole,

registerUnit · · · }

asf

Rsf = {SF}
Ssf = {registerProfile,
registerProcess, · · · }

VO0 = {�Travel�, SD0, FD0}
OR0 = {SF,OMS, TravelOrganizer,

T ransport, Employment}
E0 = {asf , aoms, ak, an, av}

Rel0 = {�team�}
FD0 = {Ssf , Soms, searchHotel, searchTravel,

rentalCar, personnelRecruitment}

av

Rv = {Transport}
Sv = {rentalCar}

an

Rn = {Employment}
Sn = {personnelRecruitment}

ak

Rk = {TravelOrganizer}
Sk = {searchHotel,

searchTravel}

PLATFORM KERNEL (PK)

(b)

Figure 4.1: (a) Service-Oriented MAS populated by individual agents and Virtual Organizations; (b)
THOMAS architecture where there are: an agent that plays the role of service facilitator (SF); an agent
that plays the role of organization manager (OMS); and a platform kernel (PK).
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Type Subtype Meta-service Description

Structural

Registration

RegisterRole Creates a new role inside a
unit

RegisterNorm Includes a new norm inside a
unit

RegisterUnit Creates a new unit inside a
specific organization

DeregisterRole Removes a specific role de-
scription from a unit

DeregisterNorm Removes a specific norm de-
scription

DeregisterUnit Removes a unit from an orga-
nization

Information

InformAgentRole Indicates roles adopted by an
agent

InformMembers Indicates entities that are
members of a specific unit

QuantityMembers Provides the number of cur-
rent members of a specific
unit

InformUnit Provides unit description
InformUnitRoles Indicates which are the roles

defined inside a specific unit
InformRoleProfiles Indicates all profiles associ-

ated to a specific role
InformRoleNorms Provides all norms addressed

to a specific role

Dynamic

Basic
RegisterAgentRole Creates a new <entity, unit,

role> relationship
DeregisterAgentRole Removes a specific <entity,

unit, role> relation

Compound
AcquireRole Requests adopting a specific

role inside a unit
LeaveRole Requests leaving a role
Expulse Forces an agent to leave a

specific role

Table 4.1: OMS meta-services

The OMS role is defined inside a VOi and has associated services that deal with the

organization management.

INSTANCE 1 (OMS). OMS ∈ R is a role defined inside a VOi organization. It is



4. Service Management in Virtual Organizations 49

described by the following tuple (φoms, Soms) where:

• φoms is the semantic concept ’Organization Manager’ defined in an organiza-

tional ontology.

• Soms contains a set of meta-services needed for organizations life-cycle man-

agement, including specification and administration of both their structural

components (roles, units and norms) and their execution components (partici-

pant agents and roles they play and active organizational units). These services

are classified in two groups (Table 4.1):

– structural services, that modify the structural and normative organization

specification;

– dynamical services, that allow agents to entry or leave the organization

dynamically, as well as role adoption.

The agent that acquires the OMS role makes use of the following information:

• UnitList: it stores existing units, together with their objectives, topology and

parent unit.

• RoleList: is stores the list of roles defined in each unit and their attributes (ac-

cessibility, visibility, position and inheritance). Accessibility indicates whether

a role can be adopted by an agent on demand; Visibility indicates whether

agents can obtain information of this role on demand; Position indicates whether

it is a supervisor, subordinate or member of the unit; and Inheritance indicates

its parent role.

• NormList: it stores norms defined in the system.

• EntityPlayList: it describes < entity, unit, role > association, i.e., which

roles have been adopted by an entity (agent) inside each unit.
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The SF role is defined inside a VOi and has associated meta-services that deal with

the service management tasks.

INSTANCE 2 (SF). SF ∈ R is a role defined by the following tuple (φsf , Ssf ) where:

• φsf is the semantic concept ’Service Facilitator’ defined in an organizational

ontology.

• Ssf contains a set of services needed for a suitable service management and

access performance. These services are also used by the rest of THOMAS com-

ponents (OMS and PK) to advertise their own services. These meta-services

are classified in three groups (Table 4.2):

– Registration: they allow to add, modify and remove services from the

SF directory. Available services are: RegisterProfile, RegisterProcess,

ModifyProfile and ModifyProcess.

– Affordability: for managing the association between providers and their

services. Available services are: AddProvider and RemoveProvider.

– Discovery: for searching and composing services as an answer to user

requirements. Available services are: SearchService, GetProfile and Get-

Process.

The Platform Kernel (PK) is in charge of providing the usual services required in a

multi-agent platform. Therefore, it is responsible for managing the life cycle of the

agents included in the different organizations, and also allows to have a communica-

tion channel (incorporating several message transport mechanisms) to facilitate the

interaction among entities. Furthermore, the PK offers a safe connectivity and the

necessary mechanisms that allow multi-device interconnectivity. A previous security

mechanism is assumed for some of the services described below, which permits to

manage who can invoke each service and over whom. For example, the supervisor of
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Type Meta-service Description

Registration

RegisterProfile Creates a new service description (pro-
file)

RegisterProcess Creates a particular implementation
(process) for a service

ModifyProfile Modifies an existing service profile
ModifyProcess Modifies an existing service process
DeregisterProfile Removes a service description

Affordab.
AddProvider Adds a new provider to an existing ser-

vice process
RemoveProvider Removes a provider from a service pro-

cess

Discovery
SearchService Searches a service (or a composition of

services) that satisfies the user require-
ments

GetProfile Gets the description (profile) of an spe-
cific a service

GetProcess Gets the implementation (process) of
an specific a service

Table 4.2: SF meta-services

an organization may have the option of creating new agents inside its organization.

For this, the agent should invoke the Register service at platform kernel level.

The PK services needed in a THOMAS infrastructure are classified in four types: (i)

Registration: they allow to add, modify and remove native agents from the platform;

(ii) Discovery: services to get some information about the native agents active in the

platform; (iii) Management: services to control the activation state of native agents

in the platform; (iv) Communication: services to communicate agents in the platform

and outside it. The complete relation of the PK services is detailed in Table 4.3.

4.3 Service Facilitator (SF)

The agent that acquires the SF role deals with the service management in virtual

organizations and improves traditional Directory Facilitator in the following ways:
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Type Service Description

Registration
Register Registers a new agent in the platform
Deregister Eliminates an agent registration
Update register Modifies the information appearing in

an agent register (except the agent
name).

Discovery
Agent Search Request information from a registered

agent on the platform.
Get Description Obtain the platform description.

Management
Suspend Suspend the execution of an specific

agent.
Activation Activate the execution of an agent who

currently is suspended.
Communication Send Send a message to any agent in the plat-

form or outside it.

Table 4.3: PK services

• includes semantic information in the service discovery algorithm;

• considers service discovery composition when there is no a single service that

can provide the service requested;

• takes into account temporal information in the service descriptions during the

service composition process;

• takes into account organizational information about the roles required to ask

for a certain service or to provide a service;

• manages semantic descriptions about services offered and required in the or-

ganizations.

The agent that acquires the SF role maintains an internal view of the services. This

internal view is an extension of the service definition specified in Definition 3. The

internal view of a service is divided in two parts: one part refers to the profile of the

services that represents the abstract service specification, and the second part refers

to set of service processes specifications of an existing profile. Thus, services are
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organized as the following tuple:

DEFINITION 5 (Service) A service in THOMAS is defined as:

< ServiceID, Providers, prof >

Providers ::=< ProvIDList, ServImpID, proc, ground > +

ProvIDList ::= ProviderID+

where:

• ServiceID is the identifier of the service.

• Providers is a set of tuples composed of a Providers identifier list (ProvIDList),

the service process model specification (proc), and its particular instantiation

(ground).

• prof is the service profile that describes the service in terms of (Ii, Oi, Pi, Efi)

(Inputs, Outputs, Preconditions and Effects) and non-functional attributes, in

a readable way for those agents that are searching information (or matchmak-

ing agents which act as searching service agents). This type of representation

includes a description of what the service fulfills, the constraints about its ap-

plicability, the quality of service, and the requirements that clients have to

satisfy in order to use the service. This definition corresponds to the definition

presented in Definition 3.

• ProvIDList maintains a list of service provider identifiers.

• ServImpID is an identifier associated to an implementation of a service profile.

• proc describes how a client has to use the service and specifies the semantic

content for using the service. If the service is composed by more than one

service, the process describes the control structure that defines the logic to

execute the services.
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• ground specifies in detail how an agent can access the service. A grounding

specifies a communication protocol, the message formats, the contact port and

other specific details of the service.

Considering the internal view of the services, the set of meta-services included in the

SF role are described as following:

RegisterProfile: it is used when an autonomous entity (an organization or an agent)

wants to register a new service description. To do this, the profile structure has to be

completed in order to provide the service description.

Service 1 RegisterProfile
Precond.: @S ∈ SF |si.prof = prof
Input: the service goal and the service profile
Output: a service ID
Effects: ∃S ∈ SF |S.ServiceID = ServiceID ∧ S.prof = prof

RegisterProcess: it is used when an agent wants to register a particular implementa-

tion of a given service. The ID of the service and the provider entity (EntityID) have

to be specified. There could be several providers for the same service process. In

this case, the first time an implementation is going to be added, the RegisterProcess

meta-service has to be used. If other providers offer the same process model for this

service, they can be attached to it by using the AddProvider meta-service.

Service 2 RegisterProcess
Precond.: ∃S ∈ SF |S.ServiceID = ServiceID ∧ (@I ∈ S.Providers|I.proc =
proc ∧ I.ground = ground)
Input: service ID, its process, its grounding and provider ID
Output: a unique service ID for this process (ServImpID)
Effects: ∃S ∈ SF |S.ServiceID = ServiceID ∧ (∃I ∈
S.Providers|I.ServImpID = ServImpID ∧ ProviderID ∈ I.ProvIDList ∧
I.proc = proc ∧ I.ground = ground)
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ModifyProfile: it is used for modifying the description (profile) of a registered ser-

vice. The client specifies the part of the service to be modified (the goal or the profile).

The service ID will not change.

Service 3 ModifyProfile
Precond.: ∃S ∈ SF |S.ServiceID = ServiceID
Input: ServiceID, goal and profile
Output: —
Effects: ∃S ∈ SF |S.ServiceID = ServiceID ∧ S.ServGoal = ServGoal ∧
S.prof = prof

ModifyProcess: it is used for modifying the implementation of a registered service.

The client specifies the part of the service to be modified. The service ID will not

change. If more than one provider implements the service, then the implementation

will not be modified.

Service 4 ModifyProcess
Precond.: ∃S ∈ SF |S.ServiceID = ServiceID ∧ ∃!P ∈ S.Providers ∧
P.ProviderID = ProviderID
Input: ServImpID, process and grounding
Output: —
Effects: ∃P ∈ Providers|P.ServImpID = ServImpID∧∃!P ∈ S.Providers∧
P.ProviderID = ProviderID ∧ P.proc = proc∧ P.ServGroun = ServGroun

DeregisterProfile: it is used for deleting a service description.

Service 5 DeregisterProfile
Precond.: ∃S ∈ SF |S.ServiceID = ServiceID
Input: a valid service ID
Output: —
Effects: @S ∈ SF |S.ServiceID = ServiceID

AddProvider: adds a new provider to an existing service implementation.



56 4.3. Service Facilitator (SF)

Service 6 AddProvider
Precond.: ∃P ∈ Providers|P.ServiceImpID = ServImpID ∧ ProviderID /∈
P.ProvIDList
Input: IDs of the service (ServImpID) and the provider (ProviderID)
Output: —
Effects: ∃P ∈ Providers|P.ServImpID = ServImpID ∧ ProviderID ∈
P.ProvIDList

RemoveProvider: it deletes a provider from a service implementation. If it is the

last provider, then the service implementation is automatically erased. Furthermore,

if that is the unique implementation of the service, then the provider is alerted and it

can deregister the service.

Service 7 RemoveProvider
Precond.: ∃P ∈ Providers|P.ServImpID = ServImpID ∧ ProviderID ∈
P.ProvIDList
Input: IDs of the service (ServImpID) and the provider (ProviderID)
Output: —
Effects:

1. ∃P ∈ Providers|P.ServImpID = ServImpID ∧ ProviderID /∈
P.ProvIDList

2. ∃P ∈ Providers|P.ProvIDList = ∅ →
[ModifyProcess(P.ServImpID, ∅, ∅, ∅)]

3. ∃S ∈ SF |S.Providers = ∅ → [Deregister(S.ServiceID)]

SearchService: it searches a service whose description satisfies the client request.

The search process can use matchmaking, composition and other techniques to solve

complex queries. To request a service, the user has to specify a ServicePurpose. It is a

general structure in which the request is stored. It can be expressed as a ServiceGoal,

a partial ServiceProfile description or a combination of both. The result of the search

is a list of tuples < ServiceID,Ranking >, where ranking indicates the matching

degree between the service and the request.
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Service 8 SearchService
Precond.: —
Input: ServicePurpose
Output: list of tuples < ServiceID,Ranking >
Effects: —

GetProfile: it is used to retrieve the profile details (description) for an specific ser-

vice.

Service 9 GetProfile
Precond.: ∃serv ∈ SF |serv.ServiceID = ServiceID
Input: a valid service ID
Output: service profile and goal
Effects: —

GetProcess: it is used to retrieve the process details (implementation) for an specific

service.

Service 10 GetProcess
Precond.: ∃serv ∈ SF |serv.ServiceID = ServiceID
Input: a valid service ID
Output: a ProvidersList that contains service implementation details
Effects: —

4.4 Service Facilitator in THOMAS Framework

The THOMAS Framework is composed of OMS and SF modules. Its purpose is

to obtain a product wholly independent of any internal agent platform, thus fully

addressed for open systems. The THOMAS framework allows any agent to create

virtual organizations with the structure and norms needed, along with the demanding

and offering services required. The framework is in charge of the management of the

organization structure, norms and life cycle, as well as controlling the visibility of

the offered and demanded services, and the fulfillment of the conditions to use them.
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In this way, the capabilities provided by the OMS and the SF are implemented as a

set of independent services that can be allocated in any host, even in different ones.

Services are accessible via WSDL descriptions, as common web services, or by using

more elaborated communications or even negotiation processes via ACL messages.

Moreover, the OMS and SF entities are implemented as autonomous agents that play

the OMS and SF roles, respectively, and invoke and use these services. Services

are described by means of OWL-S1. OWL-S is a well-known standard ontology for

describing semantic services. However, this does not necessary mean that the services

managed by the THOMAS framework must be typical web services, since a more

general concept of service is considered here.

Regarding the platform kernel, the PK provides a unique entry point for all the exter-

nal entities and redirects every message to the corresponding component: the SF for

service management and the OMS for organization management. In the THOMAS

framework, JADE2 is the platform used as PK. The URL address of this platform and

the methods for doing this ’first contact’ situation must be public and known by the

entities that try to belong to the THOMAS framework.

From a virtual organization point-of-view, all agents included in the framework must

belong to an organization. Thus, THOMAS framework provides a Main organization

in which any entity is automatically included, as well as a general role that allows

the entity to ask for service descriptions so as to fulfill its needs. Throughout service

descriptions stored in the SF, the client can be informed of the roles required to ask

for any specific service or the roles needed to be able to provide a specific service

inside an organization. Furthermore, the OMS takes control on several role enactment

norms, such as limiting the number of entities playing a concrete role or checking the

membership of an agent to a specific organization.

Next, a general description of how services have been implemented in the THOMAS

framework is presented. Then, we described the implementation of the SF agent.

1http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
2http://jade.tilab.com/
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Finally, it is detailed how SF entities are encapsulated into agents to be accessible

by other agents. Note that we focus on the service management and therefore, we

do not provide details about the implementation of the OMS component. The im-

plementation of the OMS is similar to the SF but for more information about its

implementation we refer the reader to [33].

4.4.1 Service Implementation

THOMAS Services are implemented as semantic web services, using Axis23, more

specifically Apache Axis2/Java as core engine for web services. Each service has

a WSDL description and a semantic description in OWL-S. The WSDL document

describes network services as a set of endpoints operating on messages that con-

tain either document-oriented or procedure-oriented information. The operations and

messages are described abstractly, and then bound to a concrete network protocol

and message format to define an endpoint. The OWL-S document details the proper-

ties and capabilities of a web service in unambiguous, computer-interpretable form.

The OWL-S description facilitates the automation of web service tasks, including

automated service discovery, execution, composition and interoperability.

All SF and OMS services are registered in the SF, and also agent and organization ser-

vices. For each service registered in the SF, there should be two OWL-S documents,

one with the profile description (mandatory) and the other one with the process and

grounding description. This division avoids redundant information in the SF if a ser-

vice with the same profile is provided by two providers. In this case, both providers

offer the service with the same IOPE4 parameters but different implementation (i.e.,

they employ different process models and groundings).

3http://www.jaxmag.com/itr/online artikel/psecom,id,747,nodeid,147.html
4input, output, preconditions and effects
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4.4.2 Implementation of the SF component

The SF has to be able to manage services provided by external agents. In order facil-

itate the service management, semantic information is added as OWL-S descriptions

for services and ontology specification in OWL for agent beliefs interchange and the

specification of service parameters. Thus, tools to handle semantic information have

been added to the SF.

OWL-S allows to describe a web service in terms of a Profile, which tells ”what the

service does”, a Process Model, which tells ”how the service works”, and a Ground-

ing, which tells ”how to access the service”. The Profile and Process Model are

considered to be abstract specifications, in the sense that they do not specify the de-

tails of particular message formats, protocols, and network addresses by which a web

service is instantiated. The role of the Grounding is to provide these more concrete

details. For each service in the SF should be two OWL-S documents, one with the

profile description, and the other with the process and grounding description. The

reason to divide the service description in two files is to avoid redundant information

in the SF (Figure 4.2).

OWL-S Service Description

Profile

General Service Data:
IO’s, Service Name, ...

Implementat ion Detai ls 
WSDL

Process & Grounding

WSDL

Process & Grounding

WSDL

Process & Grounding

Figure 4.2: Semantic service description in OWL-S.

The SF web services manipulate semantic information in OWL using JENA. JENA5

manages all these semantic data in OWL. Jena is a Java framework for building se-

mantic web applications. It provides a programmatic environment for RDF, RDFS,

OWL, SPARQL, and includes a rule-based inference engine. Jena provides an imple-

mentation of the RDF model interface that stores the triples persistently in a database.
5http://jena.sourceforge.net/ontology/index.html



4. Service Management in Virtual Organizations 61

Each triple is an arc in an RDF model that is called a statement. Each statement as-

serts a fact about a resource. A statement has three parts :

• the subject: is the resource from which the arc leaves

• the predicate: is the property that labels the arc

• the object: is the resource or literal pointed to by the arc

In Figure 4.4 and 4.3 there is an example of some statements stored in by the SF.

These statements are part of a registered service SearchCheapHotel.

Resource
Property

Literal

Resource

Property

#SearchCheapHotelInputCity

#SearchHotelProfi le
profi le:hasInput

#SearchCheapHotelInputCategory

#SearchCheapHotelInputCountry

Figure 4.3: RDF graph.

<http://.../SearchCheapHotelProfile.owl#SearchCheapHotelProfile>;
a profile:Profile ;
profile:contactInformation mind:ProviderA ;
profile:hasInput
<http://.../SearchCheapHotelProfile.owl#SearchCheapHotelInputCity>;,
<http://.../SearchCheapHotelProfile.owl#SearchCheapHotelInputCategory>;,
<http://.../SearchCheapHotelProfile.owl#SearchCheapHotelInputCountry>;

;
profile:hasOutput
<http://.../SearchCheapHotelProfile.owl#SearchCheapHotelOutputHotel>;,
<http://.../SearchCheapHotelProfile.owl#SearchCheapHotelOutputHotelCompany>;

;
profile:serviceName "SearchCheapHotel"@en ;
service:isPresentedBy
<http://.../SearchCheapHotelProfile.owl#SearchCheapHotelService>;

.

Figure 4.4: RDF triples.
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Furthermore, SPARQL6 has been used as a query language. SPARQL is ”data-

oriented” language that only queries the information held in the models; there is

no inference in the query language itself. The Jena model may be ’smart’ in that it

provides the impression that certain triples exist by creating them on-demand, includ-

ing OWL reasoning. SPARQL does not do anything other than take the description

of what the application wants, in the form of a query, and returns that information, in

the form of a set of bindings or an RDF graph. In Figure 4.5 there is an example of a

SPARQL query about the service profile of a service with the name ”SearchCheap-

Hotel”.

PREFIX profile: <http://www.daml.org/services/owl-s/1.1/Profile.owl#>;
SELECT ?x
WHERE

{ ?x profile:serviceName "SearchCheapHotel"@en .}

Query Result
ServiceID:
http://.../SF/OWLS/SearchCheapHotelProfile.owl#SearchCheapHotelProfile
Profile http://.../SF/OWLS/SearchCheapHotelProfile.owl

Figure 4.5: SPARQL query about services that have in their profile the serviceName field with the
value ”SearchCheapHotel”.

One of the goals of agents that play the SF role is providing an intelligent service

discovery. The discovery of services would be seriously limited to discover sin-

gle services if algorithms do not address the issue of discovering service composi-

tions. In many situations, queries that cannot be satisfied by a single service might be

frequently satisfied by composing several services. The SearchService provided by

agents that play the SF role has to consider service composition when there is no a

single service available that can deal with an agent or organization requirements. The

task of automated service composition is to automatically sequence together services

into a composition that achieve some defined goals. Several approaches consider ser-

vice composition problem as a planning problem [24, 107]. An important benefit of

using a planning approach is the exploitation of knowledge that has been accumu-

6http://www.w3.org/TR/rdf-sparql-query/
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lated over years of research on the field of planning. Therefore, well known planning

algorithms, techniques and tools can be used to provide efficient service composi-

tions. For this reason, we have considered the use of planning techniques to provide

service composition functionality in the agents that play the SF role in THOMAS.

DEFINITION 6 (Planning problem) In general, a planning problem can be described

as a five tuple < ST, S0,G,Acc,Γ >, where:

• ST is the set of possible states of the world,

• S0 denotes the initial state of the world,

• G denotes the goal state of the world that the planning system attempts to reach,

• Acc is the set of actions the planner can perform in attempting to change from

one state to another state in the world,

• Γ ⊆ G × Acc × S is translation relation that defines the preconditions and

effects for the execution of each action.

In the context of services, a planning problem can be seen as a service composition

problem where:

• ST is the set of possible partial service compositions;

• S0 denotes the initial information available by the requester agent;

• G represents the goals of a organization or agent;

• Acc is the set of available services;

• Γ denotes the state change function that links services outputs-inputs;
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In order to describe all the components of a planning problem, PDDL language has

been widely recognized as an standardized input for state-of-the-art planners. Specif-

ically, we are going to consider the PDDL2.1 version [49]. PDDL2.1 extends PDDL

with numeric and durative extensions to achieve additional expressive power.

The modeling of temporal relationships in a discretized durative action in PDDL is

done by means of temporally annotated conditions and effects. All conditions and

effects of durative actions are temporally annotated:

• Conditions. The annotation of a condition makes explicit when the associated

proposition must hold:

– at the start of the interval (the point when the action is applied)

– at the end of the interval (the point when the final effects of the action are

asserted)

– over the interval from the start to the end (invariant over the duration of

the action)

Invariant conditions in a durative action are required to hold over an interval

that is open at both ends (starting and ending at the end points of the action).

These are expressed using the over all. If one wants to specify that a fact p

holds in the closed interval over the duration of a durative action, then three

conditions are required: (at start p), (over all p) and (at end p).

• Effects. The annotation of an effect makes explicit whether the effect is imme-

diate (it happens at the start of the interval) or delayed (it happens at the end of

the interval). No other time points are accessible, therefore all discrete activity

takes place at the identified start and end points of the actions in the plan.

Moreover, an action can have associated a numeric duration that is represented by a

variable called duration that represents the durative interval.

We have considered the posibility of describing services similarly to temporal ac-

tions in PDDL 2.1. Specifically, we have added temporal annotations to semantic
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service description in OWL-S. OWL-S is a well-known standard ontology for de-

scribing semantic services and its usage facilitates the creation of interoperable, and

open systems being possible for any entity to understand and employ these service

descriptions. OWL-S pre-conditions and effects have been temporally annotated with

the same labels that appear in a PDDL domain definition: at start, at end and overall

(Figure 4.6). The OWL-S inputs and outputs are not temporally annotated, but if the

service is considered as a durative action all input parameters are considered as if

they were annotated with the label at start. The case of the outputs is similar, but

the parameters are considered as if they were annotated with the label at end. An

example of a service with temporal annotations is shown in Figures 4.6 and 4.7.

In our proposal, all the temporal annotations in preconditions and effects of a OWL-

S service description are inside a PDDXML expression. PDDXML [74] is a XML

dialect of PDDL that simplifies parsing, reading, and communication PDDL descrip-

tions using SOAP. We have extended this XML language with new labels to facilitate

the temporal annotation in the OWL-S service descriptions.

<process:hasPrecondition>
<pddxml:PDDXML-Condition rdf:ID="PDDXML-Precondition">
<expr:expressionBody rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
<and>
<atStart>
<not>
<pred name="agentHasKnowledgeAbout">
<param>?http://.../Packing/GetItems.owl#BookFlightFinishEvent
</param>
</pred>
</not>
</atStart>
</and>
</expr:expressionBody>
</pddxml:PDDXML-Condition>
</process:hasPrecondition>

Figure 4.6: Temporally annotated precondition in BookFlight OWL-S service description.

Although PDDL and OWL-S languages are similar, planners cannot deal directly

with semantic service descriptions in OWL-S. OWL-S service description should be

translated into a PDDL representation [115]. The conversion process from OWL-S
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<Duration_param:hasLocal>
<duration:Duration-Expression rdf:ID="PDDXML-Duration">
<expr:expressionBody rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
<and>
<equals>
<variable><var type="object">?duration</var></variable>
<constant><const type="int">4</const></constant>
</equals>
</and>
</expr:expressionBody>
</duration:Duration-Expression>
</Duration_param:hasLocal>

Figure 4.7: Duration non-functional parameter in OWL-S service description.

OWL-S Service
Description

InitialOntology.owl

GoalOntology.owl

OWL-S 2 PDDXML PDDXML 2 PDDL 2.1 

Problem.pddxml

Domain.pddxml

Planner
Plan with the 
sequence of 
actions - services Problem.pddl

Domain.pddl

Figure 4.8: Translation process from OWL-S/OWL to PDDL 2.1.

to PDDL takes as inputs: a set of available OWL-S temporal service descriptions, a

domain description, and a query. The domain description is a set of OWL individuals

(i.e., facts) that are initially true (initial state). The query contains a set of OWL

individuals that must be achieved by a plan (goals). The result of the process is

a plan sequence, i.e., a composite service that satisfies the query and the temporal

restrictions.

The composition process is divided in three stages (see Figure 4.8):

• From OWL-S service descriptions and OWL facts to PDDXML. This stage con-

verts the domain ontology in OWL and service descriptions in OWL-S to an

intermediate language in XML. This stage is an extension of the converter pre-
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sented in [74]. The converter presented in [74] converts OWL-S documents

with PDDXML expressions, but neither consider temporal annotations nor the

duration non-functional parameter; therefore, time annotations cannot be con-

sidered in the service composition process.

This conversion process requires the transcription of types and properties from

OWL to PDDL predicates as well as the mapping of services in OWL-S to ac-

tions in PDDL. Any OWL-S service input parameter correlates with an equally

named input of a PDDL action, and the hasPrecondition service parameter can

directly be transformed to the precondition of the action. The same holds for

the hasEffect parameter. For the conversion of the output of an OWL-S service

to PDDL, the service output is mapped to a special type of hasEffect parame-

ter. This is because the service hasEffect condition explicitly describes how the

world state will change. This is not necessarily the case for a service hasOutput

parameter value, though it could implicitly influence the composition planning

process. PDDL does not allow describing such non-physical knowledge. This

problem can be solved by mapping the service output parameter X to a special

type of hasEffect parameter. In particular, every output variable X is described

in, and added to the current (physical) planning world state as a predicate in

PDDL uniquely named ”agentHasKnowledgeAbout(X)”. Similarly, each in-

put variable Y is mapped to an input parameter Y of an PDDL action com-

plemented by precondition predicate ”agentHasKnowledgeAbout(Y )” (Table

4.4).

• From PDDXML to PDDL 2.1 is a process in which a parser translates the do-

main and problem specification in PDDXML in an equivalent PDDL 2.1 prob-

lem and domain descriptions.

• Planner deals with PDDL 2.1 language and it is used to obtain, if it is possible,

a sequence of durative-actions to achieve the goal state from the initial state.

Any planner that deals with PDDL problems can be used (i.e., Fast-Forward,

GraphPlan, LPG). The final plan represents the service composition that an-
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OWL-S 1.1 PDDL 2.1
hasPrecondition parameter precondition predicate

hasEffect parameter effect predicate
hasInput parameter input predicate +

additional precondition
agentHasKnowledgeAbout(Input param)

hasOutput parameter effect predicate +
agentHasKnowledgeAbout(Output param)

Table 4.4: Mapping between OWL-S service description and PDDL action.

swers the query.

(:durative-action BookFlightService
:parameters (
?BookFlightInputDestination - object
?BookFlightInputDepartureDate - object
?BookFlightInputArrivalDate - object
?BookFlightOutputBookCode - object
?BookFlightFinishEvent - object )
:duration ( = ?duration 4 )
:precondition (and

(at start (agentHasKnowledgeAbout ?BookFlightInputDestination ))
(at start (Destination ?BookFlightInputDestination ))
(at start (agentHasKnowledgeAbout ?BookFlightInputDepartureDate ))
(at start (DepartureDate ?BookFlightInputDepartureDate ))
(at start (agentHasKnowledgeAbout ?BookFlightInputArrivalDate ))
(at start (ArrivalDate ?BookFlightInputArrivalDate ))
(at start (not(agentHasKnowledgeAbout ?BookFlightOutputBookCode)))
(at start (not(agentHasKnowledgeAbout ?BookFlightFinishEvent )))
)

:effect (and
(at end (agentHasKnowledgeAbout ?BookFlightOutputBookCode ))
(at end (BookCode ?BookFlightOutputBookCode ))
(at end (agentHasKnowledgeAbout ?BookFlightFinishEvent ))
(at end (FinishEvent ?BookFlightFinishEvent ))
)

)

Figure 4.9: OWL-S temporally annotated service BookFlightService translated into a Durative-action
in PDDL.
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4.4.3 Agent Implementation

Both the OMS and SF entities have been developed as JADE agents that play the

roles OMS and SF defined in Definitions 1 and 2, and offer the services associated to

these roles. The logic of these agents has been implemented using the OWL-S API

provided by Mindswap7. This OWL-S API employs a Java API for programming

access to read, execute and write OWL-S service descriptions. When the SF agent (or

the OMS agent) receives a FIPA request message from a client, it employs the OWL-

S API to access the service description in OWL-S and execute the correspondent web

service. As an example, Figure 4.10 shows the interaction between a client agent, the

SF agent, and the SF web services.

asf

ak

Apache Tomcat (Axis 2) .war

SPARQL

MySQL database
JENA

API OWL-S
Mindswap

SF services:
RegisterProfile

RegisterProcess
GetProfile

GetProcess
...

OWL-S Service
Descriptions

FIPA Request
Protocol

Figure 4.10: SF agent in THOMAS Framework.

A service execution implies accessing to the process information included in the ser-

vice description. The service process description should have a valid grounding spec-

ification in order to invoke the service successfully.

Along this section, the implementation features of the THOMAS framework have

been described in detail. We have focused on the implementation of the SF com-

ponent. The SF component is an intermediary agent for accessing semantic web

7http://www.mindswap.org/2004/owl-s/api/
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services that deal with the management of services offered by agents in organiza-

tions. The next section illustrates a case study which describes how an external agent,

which has been designed independently of the THOMAS framework, makes use of

both THOMAS and registered functionalities.

4.5 Application Example

In order to illustrate the performance of the THOMAS framework with greater detail,

a case-study example for making flight and hotel arrangements [40, 123] has been

implemented. The Travel Agency example is an application that facilitates the inter-

connection between clients (individuals, companies, travel agencies) and providers

(hotel chains, airlines); delimiting services that each one can offer and/or request.

A simple demo example of a travel agency system can be found together with an

available prototype of the THOMAS architecture8. Following, a description of the

organizational structure of the TravelAgency organization is explained, and a dynam-

ical usage of the organization is detailed.

Organization Structure. This case study is modeled as an organization (Trave-

lAgency), in which two kinds of roles can interact: customer and provider. The

Customer role requests travel services of the system, i.e., it can request hotel or flight

search services, booking services for hotel rooms, or flight seats and payment ser-

vices. The Provider role is in charge of performing these travel services. Thus,

a provider agent offers hotel or flight search services, and can also offer booking

hotel rooms or flight seats. The TravelAgency organization offers three services:

SearchTravel, Booking and Payment service. In addition to service identification,

designers should provide an OWL-S description of each service offered inside the

TravelAgency. As an example, Table 4.5 contains the service profile corresponding

to SearchTravel service.
8http://www.dsic.upv.es/users/ia/sma/tools/Thomas/index.html



4. Service Management in Virtual Organizations 71

Service Description UnitID
SearchTravel Search for travel information TravelAgency
ClientRole ProviderRole Inputs Outputs
Customer TravelOrganizer city:string [city ok] [not in city]

country:string company:string error
location:string
price:float

Table 4.5: Profile of the service TravelSearch.

Dynamical Usage. The system dynamics are shown through the specification of

two scenarios. The first scenario shows how an agent registers a new implementation

of a service in an organization (see Figure 4.11). The second scenario shows the

interactions carried out by an external agent to ask for a service (see Figure 4.12).

These examples illustrate how the employment of the web service standards for both

providing and publishing services allow agents to discover and make use of both

agent and THOMAS functionalities.

In the first scenario, agent ak asks the SF agent for the list of services registered in

the platform that are related to Travel. Agent ak receives from the SF a list with the

services. Then, agent ak asks for the profile of the service with highest rank. Based

on the profile, agent al knows the the inputs, outputs, preconditions and effects of the

service and the role that must be acquired to be a provider of this service. Agent ak
provides a service with the same profile and it wants to register its implementation

of the service. To do that, ak acquires the role provider. Then, agent ak asks the

SF agent for the implementation details of the service SearchTravel. If the imple-

mentation provided by agent ak is not equal to any of the implementations already

registered, then the agent ak registers its process. Otherwise, ak adds itself as a

provider associated to an existing implementation.

In the second scenario, an external agent joins the THOMAS framework, registers

itself as a service client and carries out a service request (Figure 4.12). The client

agent (am) requests the SearchService to the SF component so as to find services of
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7. RegisterProcess(ServID, proc, ground, provID)

1. SearchService(Travel)

2. (<SearchTravel, 0.75>)

3. GetProfile(SearchTravel)

4. (<SearchTravelGoal, SearchTravelProfile>)

5. AcquireRole(Provider, TravelAgency) 

9. AddProvider(ServImpID, provID)

asf

Rsf = {SF, Member}
Ssf = {registerProfile,
registerProcess, · · · }

aoms

Roms = {OMS, Member}
Soms = {registerRole,

registerUnit · · · }

ak

Rk = {TravelOrganizer}
Sk = {BookF light}

6. Ok 

7. GetProcess(SearchTravel)

8. Providers 

Figure 4.11: Provider registering a service in THOMAS Framework.

its interest (message 1). The result of this service is shown in message 2. Then, am
asks the SF agent for the profile of the service it is interested in. Agent ak analyzes the

profile and then it knows that it must acquire the Customer role to demand this service

(messages 3-6). Once ak plays this customer role, it employs the SearchProvider

service in order to know who the service providers are and how this service can be

requested (messages 9 and 10). As shown in message 10, one implementation of the

SearchTravel service has been previously registered. This implementation has one

provider (ak). Agent am makes a service petition to ak agent, so then according to

this service process, am sends a message for requesting this SearchTravel service to

ak agent (messages 9 and 10).
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1. SearchService(Search
 information about hotels)

2. (<SearchTravel, 0.75>)

3. GetProfile(SearchTravel)

4. (<SearchTravelGoal, SearchTravelProfile>)

5. AcquireRole(Customer, TravelAgency) 

6. OK

7.GetProcess(SearchTravel)

8. (<SearchTravelGrounding, SearchTravelProcess, (     )>) 

9. SearchTravel(Valencia, Spain)

10. (<TravelChain,Address,100>)

asf

Rsf = {SF}
Ssf = {registerProfile,
registerProcess, · · · }

aoms

Roms = {OMS}
Soms = {registerRole,

registerUnit · · · }

am

Rm = {Customer}
Sm = {}

ak

Rk = {TravelOrganizer}
Sk = {SearchHotel, SearchTravel}

ak

Figure 4.12: Client requesting a service in THOMAS Framework.

4.6 Conclusions

In this chapter, we have described the THOMAS architecture that integrates agents

and services, and provides mechanisms that facilitate the management of virtual or-

ganizations and the services provided by agents that are part of these organizations.

The SF and OMS roles present in this architecture describe the functionality required

to provide a suitable management of VOs. Based on this architecture a new service-

oriented execution framework for supporting the development of real VOs, named

THOMAS framework, has been presented. This framework is suitable for the devel-

opment of large scale open multi-agent systems and capable of managing the com-

plexity, uncertainty and dynamic features of virtual organizations in open systems in

an efficient way.

This framework extends the previous proposals taking as a reference the challenging
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development of open systems. Therefore, the main contributions of the THOMAS

framework are:

• it gives support to virtual organizations as a social abstraction for coordinating

the autonomous behaviors of agents;

• system functionalities are described and provided as meta-services in order to

make possible the interaction among heterogeneous entities in a standardized

way;

• it provides discovering and composition services for allowing external agents,

which have been designed independently of the THOMAS framework, to par-

ticipate inside it;

A case study, which illustrates how an external agent is capable of discovering and

employing functionalities in THOMAS, is also provided. All this work has been

included in an available prototype of the THOMAS abstract architecture.
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5.1 Introduction

Service management and specifically service discovery is a key issue in facilitating

the cooperation and the goal fulfillment of agents that are organized in virtual orga-

nizations (VOs). In these VOs, the life-cycle of the organizations and the available

services provided by agents are centralized and controlled in a set of entities. Nev-

ertheless, there are Service-Oriented MAS where there is no central control on how

agents should be connected or disconnected and there is no maintenance of system

75
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structure. These features provide more flexibility and adaptability to the system.

However, service discovery becomes more complicated. Agents usually have no

global knowledge about the system structure —they only know information about

their direct neighbors. Therefore, agents need the collaboration of the rest of the

agents in the system to succeed in the service discovery process. Thus, locating a

service efficiently is considered to be one of the most important challenges in this

area [14].

In these environments, centralized mechanisms such as registries or middle-agents

are not efficient in dealing with this challenge. Weaknesses such as bottlenecks, lack

of coordination, outdated data, or the need of huge amounts of memory to store infor-

mation about the agents’ services make centralized approaches unsuitable for coping

with dynamic system requirements. Moreover, one of the most important drawbacks

is that these mechanisms rely on global knowledge and, this global knowledge is

usually not present in open Service-Oriented MAS. Hence, decentralized service dis-

covery mechanisms are required in these systems.

One of the areas of interest that has structures and search strategies for dealing with

decentralized service discovery is the area of Complex Networks [16]. Complex

Networks have new, less rigid structures that are inspired in social, biological, or

technological networks and algorithms that facilitate the search in distributed envi-

ronments. This area proposes models to create efficient structures in a self-organized

way without the supervision of a central authority. Moreover, in some of these struc-

tures, a target can be found in just a few steps and considering only local information

[141, 71, 139, 4, 70]. Some of these models take into account properties that are

present in human societies as a criteria for establishing links. One of these properties

is homophily [89].

Homophily, also known as assortativity [95, 96], is one of the most salient properties

present in complex networks [89, 26, 12]. The term ’homophily’ was introduced by

Lazarsfeld and Merton [77] in 1954. The idea behind this concept is that individuals

tend to interact and establish links with similar individuals. Therefore, homophily es-
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tablishes the proportion in which two individuals are similar based on a set of social

dimensions. These social dimensions are attributes such as religion, age, or educa-

tion. Therefore, in a complex network model based on homophily, an individual has

a higher probability of being connected to a more similar individual than to a dissim-

ilar one. This criterion to establish links between individuals creates structures that

facilitate the location task [139, 128, 70, 34]. For this reason, homophily could be

considered as a self-organizing principle to generate searchable structures.

In this chapter, we present a decentralized service management system for Service-

Oriented MAS where homophily has been introduced as a self-organizing criterion

to create the social structure of the system and as a criterion to guide the service

discovery process. The structure is a network based on preferences where agents

create links with other agents by considering their homophily based on two social

dimensions: services and organizational roles. We also propose an algorithm that

allows agents to locate services offered by other agents using only local information,

without any centralized service repository or directory. This algorithm offers good

performance not only in networks based on homophily but also in other network

structures.

The proposal described in this chapter attempts to improve previous approaches in

several ways. First, as a decentralized system, all the agents are considered to be

equal and they only consider local information in the service discovery process and

to establish links. Therefore, the system provides robustness, scalability, and adapt-

ability. Second, the system is self-organized based on homophily between agents and

does not need an initial period to establish its structure. Progressively, each agent that

joins the system establishes links with agents that share features such as the organi-

zational role or the services offered. Third, each agent only maintains a local view of

the services it offers and who are its neighbors, and it does not maintain information

about routes that could change frequently in highly dynamic environments. Fourth,

in our system, the algorithm for the service discovery process is not based on previ-

ous information or statistics that require a training period in order to be reliable. The
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algorithm is based on similarity between agents, and this similarity is calculated con-

sidering the semantic descriptions of the agents and not just keywords or pre-defined

categories.

This chapter is structured as follows. Section 5.2 describes the service discovery sce-

nario. Section 5.3 explains how we have introduced the concept of homophily in the

service discovery context. Section 5.4 describes the process that creates a network

structure that facilitates the service discovery. Section 5.5 explains the service dis-

covery process. Section 5.6 presents the results of the experiments to evaluate the

network structure and the discovery process. Finally, Section 5.7 presents conclu-

sions and final remarks.

5.2 Decentralized Service Discovery Scenario

To illustrate the context where decentralized service discovery is applied, let us present

a service discovery scenario where the discovery process is described (see Figure

5.1). Consider a network of agents as a form of autonomic cloud computing system.

This network contains different groups of specialized computing systems as part of

an overlaying network where semantic web services are provided by software agents.

Agents play an organizational role that defines the type of services they offer. Agents

only have information about their direct neighbors with which they have a connection

with and they do not know about the other agents that are part of the system, the num-

ber of agents or the system structure. Neither, there are the figure of an intermediator

or central registry that has a global and complete vision of the hole system or part of

it.

5.2.1 Network Creation

The structural relations between these agents have been established taking the ho-

mophily criterion into account. The idea behind the homophily concept is that in-



5. Decentralized Service Management in Service-Oriented MAS 79

dividuals tend to interact and establish links with similar individuals through a set

of social dimensions. In the context of Service-Oriented MAS, two agents are con-

sidered similar if they play similar roles and offer similar services. For each pair of

agents, the higher the homophily value is, the more similar the agents are. Homophily

is a probabilistic concept; therefore, agents have a higher probability of establishing

connections with similar agents than with dissimilar ones.

In Figure 5.1, agent ai has connections with agents ak, and aj , which play similar

roles and offer similar services, and an, which plays a dissimilar role and offers a

dissimilar service. Note that agents that play similar roles are represented in Figure

5.1 with similar colors.

5.2.2 Discovery Process

Agents, in some situations, should interact with each other to achieve a task that they

cannot afford to do individually since they are not specialized in that area or because

the task is too complex to be carried out by a single agent.

Agent ai offers the service bookHotel; however, in order to achieve one of its goals,

it needs to locate an agent that offers a rentalCar service and plays Transport role.

In that moment, agent ai creates a query q = {ai, rentalCar, Transport, TTL, ε}
that consists of the identifier of the agent that creates the query, the required semantic

service description, the organizational role that the target agent should play, the Time

To Live (TTL) that limits the number of steps that the query can be forwarded, and the

threshold ε that establishes when a service it is similar enough to finish the discovery

process. If the query exceeds the TTL, it is considered to be a failure of the service

discovery process. Otherwise, the query is forwarded to one of the neighbors. It is

assumed that all the agents are collaborative and follow the same criterion to forward

the queries.

In the scenario of Figure 5.1, agent ai should choose one of its neighbors, an,aj ,

or ak, to forward the query q. In order to select the most promising neighbor, the
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CH(ai, ak) = 0.9

CH(ai, aj) = 0.75

CH(ai, an) = 0.15

ak

Rk = {TravelOrganizer}
Sk = {searchHotel, searchTravel}

an

Rn = {Employment}
Sn = {personnelRecruitment}

aj

Rj = {TravelOrganizer}
Sj = {searchTravel}

ai

Ri = {TravelOrganizer}
Si = {bookHotel}

(a)

ak

Rk = {TravelOrganizer}
Sk = {searchHotel, searchTravel}

CH(ak, at) = 0.5

aj

Rj = {TravelOrganizer}
Sj = {searchTravel}

CH(aj , at) = 0.5

A S R |N |
ak Sk Rk 5
an Sn Rn 5
aj Sj Rj 4

an

Rn = {Employment}
Sn = {personnelRecruitment}

CH(an, at) = 0.15

av = at

Rv = {Transport}
Sv = {rentalCar}

ai

Ri = {TravelOrganizer}
Si = {bookHotel}

(b)

Figure 5.1: An example of decentralized service discovery system. (a) Agent ai establishes a link with
two similar agents ak and aj and with a dissimilar one an; (b) Agent ai only knows its direct neighbors
ak, aj , and an. If ai needs to locate a service (i.e., rentalCar), it will forward the query to its most
promising neighbor (i.e., ak) based on the homophily between the neighbor and the target agent (i.e.,
at) that should provide the required service and the degree of the neighbor.

agent ai considers: (i) the homophily between the neighbors and an hypothetical

unknown target agent at that offers the service and plays the role specified in the

query q; and (ii) the degree of connection of the neighbors. Assuming the values

of choice homophily that appear in Figure 5.1, agent ai sends the query to the most

promising agent (i.e., agent ak). This process is repeated until the similarity between

a local service of an agent and the service in the query is over a certain threshold,

or the query exceeds the TTL. In the described scenario, the process ends when the

query arrives to agent av that is similar to the hypothetical target agent at that ai was

looking for.

5.3 Introducing Homophily in Service-Oriented MAS

Agents in this model are self-organized considering a social feature called choice

homophily (CH) [89]. This type of homophily is the factor that allows agents to

establish links with similar agents based on a set of social dimensions and guides
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the decentralized discovery process. Choice homophily is subdivided into two types:

(i) value homophily, which is based on the similarity of shared attributes (such as

gender, age, geographical location, and so on); and (ii) the status homophily, which

is related to the formal or informal status similarity of the individuals (social status,

status within an organization, or professional degree).

In this section, we focus on the formal definition of choice homophily in the con-

text of Service-Oriented MAS and how it is included in the system as a criterion to

self-organize the structure and guide the service discovery process. As stated above,

choice homophily is divided into two types: value and status. If these two concepts

are matched with the agency-related concepts, value homophily represents the indi-

vidual characteristics of the agent (which are the services the agent offers), whereas

status homophily can be identified with the semantic description of the role that an

agent plays.

5.3.1 Value Homophily

The value homophily function Hv(Si, Sj) calculates the degree of matching between

two sets of services, where Si and Sj are the sets of services provided by the agents

ai and aj , respectively. We consider each set of services Si (or Sj) to be composed

by a set of semantic concepts that can be classified in: Inputs (Ii), Outputs (Oi),

Preconditions (Pi), and Effects (Efi).

To generalize, the level of matching between two sets of semantic concepts, Ci and

Cj , is calculated through a bipartite matching graph (see Figure 5.2). Let G =

(Ci, Cj , E) be a complete, weighted bipartite graph that links each concept ci ∈ Ci
to each concept cj ∈ Cj , eij = (ci, cj) ∈ E, and letE represent the edges established

in the graph E = Ci × Cj . The term ωij represents the weight associated to the

arc ei = (ci, cj) ∈ E between ci and cj as the semantic similarity between those

concepts. Four degrees of matching can be identified: exact, subsumes, plug-in, and

fail [104]. The match is considered to be:
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DEFINITION 2: (Agent). An agent ai ∈ A is characterized
by a tuple of five elements (Ri, Ni, sti,πi, ρi) where:

• Ri = {r1, . . . , rm} is the set of roles played by the agent;
• Ni is the set of neighbors of the agent, Ni = {ap, ..., aq} :

∀aj ∈ Ni,∃(ai, aj) ∈ L, and |Ni| > 0. It is assumed that
|Ni| � |A|;

• sti is the internal state of the agent;
• πi : sti → Ni, is the neighbor selection function that

returns the most promising neighbor to provide a service;
• ρi : sti → Ψ is the adaptation selection function where

Ψ is the set of finite adaptation actions of the agent.
The organizational role of an agent is a semantic concept

that is defined in a common ontology shared in the system.
The role is related to the services that can be offered by the
agent.

DEFINITION 3: (Role). A role ri ∈ Ri is defined by the
tuple (φi, Si) , where:

• φi is a semantic concept for the role;
• Si = {s1, . . . , sl} is the set of services associated to

the role. Each service is defined by the tuple si =
(Ii, Oi, Pi, Effi), where the components are the set of
inputs, outputs, preconditions, and effects of the services,
respectively. All of them are semantic concepts that can
be defined in different ontologies.

Homophily is introduced to create s self-organized structure
in which agents are linked to similar ones. Choice homophily
(CH) is the factor that allows the agents to establish links with
other agents and to redirect queries about services that they
cannot offer. This homophily is based on the characterization
of the services that the agents provide and the roles that are
played by them. Structural homophily (SH) refers to how
the structure in which the individuals are adapts itself to
external conditions. The adaptation of each agent to the system
conditions makes the structure of the system more efficient
in fulfilling the service demand. Also, choice homophily is
subdivided into two types: (i) status homophily, which is
related to the formal or informal status similarity of the
individuals (social status, status within an organization, or
professional degree); and (ii) the value homophily, which is
based on the similarity of shared attributes (such as gender,
age, geographical location, and so on).

Matching these concepts with the agency-related concepts,
status homophily can be identified with the semantic descrip-
tion of the role that an agent plays within an organization,
whereas value homophily represents the individual character-
istics of the agent.

DEFINITION 4: Choice homophily between two agents
ai, aj ∈ A in the system is defined as the linear combination
of status and value homophily

CH(ai, aj) = ϕ ∗ Hs(Ri, Rj) + (1 − ϕ) ∗ Hv(Si, Sj)

The ϕ parameter regulates the importance of the influence of
roles (status homophily) or services (value homophily) in the
total homophily of the agent with its neighbors.

The value homophily function Hv(Si, Sj) calculates the
degree of matching between two set of services, where Si

and Sj are the sets of services provided by the agents ai and
aj , respectively. In general, the level of matching between to
sets of semantic concepts Ci and Cj is calculated through a
bipartite matching graph. Let G = (Ci, Cj , E) be a complete,
weighted, bipartite graph that links each concept ci ∈ Ci to
each concept cj ∈ Cj . ωij represents the weight associated
to the arc ei = (ci, cj) ∈ E between ci and cj as the
semantic similarity between those concepts. Four degrees of
matching can be identified: exact, subsumes, plug-in, and
fail [18]. The match is considered as exact, if c1 ∈ Ci is
equivalent to c2 ∈ Cj (c1 ≡ c2); subsumes, if c1 subsumes
c2 (c1 ❂ c2); plug-in, if c1 is subsumed by c2 (c1 ❁ c2);
and fail, otherwise. A value in the interval [0, 1] is assigned
to each degree of matching, where 1 represents an exact
matching among the terms. The best match among concepts
is obtained by calculating the maximum weighted bipartite
matching, G� = (Ci, Cj , E

�), where E� ⊆ E are the edges
that have the maximal value.
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Fig. 1. Full connected Weighted Bipartite Graph G and resulting Maximum
Weighted Matching Bipartite Graph G�

To calculate the value homophily, four bipartite graphs are
defined, one for each one of the components of service si:
inputs, outputs, preconditions, and effects. Let’s explain the
case of the inputs. The rest of the components are treated
in the same way. Let Ii =

�
si∈Si

Ii be the set formed
by all the inputs of all the services si of the agent ai;
GI = (Ii, Ij , E) the weighted bipartite graph among the inputs
of all the services Si and Sj provided by agents ai and aj ;
and let G�

I = (Ii, Ij , E
�) be the maximum weighted bipartite

matching. Then WG�
I

is defined as:

WG�
I

=

�

ωij∈E�
I

ωij

max |Ii|, |Ij |
(1)

the normalized total weight of the maximum bipartite graph
G�

I . WG�
O

, WG�
P

, and WG�
Eff

are similarly defined for outputs,

Table with the values

ω15 = 0.5

ω25 =  0.75

ω36 = 0.75

Figure 5.2: (Left) Full connected weighted bipartite graph G, and (Right) resulting maximum weighted
matching relaxed bipartite graph G′.

• exact if c1 ∈ Ci is equivalent to c2 ∈ Cj (c1 ≡ c2);

• it is subsumes if c1 subsumes c2 (c1 = c2);

• it is plug-in if c1 is subsumed by c2 (c1 < c2);

• and it is fail, otherwise.

For simplicity, we have considered these four degrees of matching but other degrees

could be considered [73]. A value in the interval [0, 1] is assigned to each degree of

matching, where 1 represents an exact matching among the terms. The best match

among concepts is obtained by calculating the maximum weighted bipartite matching,

G′ = (Ci, Cj , E
′), where E′ ⊆ E are the edges that have the maximal value. The

graph G′ is a relaxed bipartite graph because not all the concepts from Cj have to be

connected to a concept in Ci; therefore, two concepts from Ci can share a concept

from Cj .

Specifically, to calculate the value homophily, four bipartite graphs are defined, (one

for each one of the components of services present in the sets Si and Sj): Inputs



5. Decentralized Service Management in Service-Oriented MAS 83

PortableDVDPlayer

MP3Player

Vehicle

RecommendedPrice

Quality

Price

= Recommender
     = mp3playerportabledvdplayer_recommendedpricequality_service.owls

 = CycleSeller
= vehicle_price_service.owls

GI

0.5

0
0

0

RecommendedPrice

Quality

Price0.5

G'I

PortableDVDPlayer

MP3Player

Vehicle

GO G'O

WG'I = 0

WG'O = 0.5+0/max(2,1) = 0.25

0
0

r1

r2

0

φ1

φ2

s1

s2

Figure 5.3: Example of WG′
I

(top) and WG′
0

calculation (bottom) between two agents that offer one
service each.

(Ii, Ij), Outputs (Oi, Oj), Preconditions (Pi, Pj), and Effects (Efi, Efj). Let’s ex-

plain the case of the inputs. The rest of the components are treated in the same way.

Let Ii =
⋃
si∈Si Ii be the set formed by all the inputs of all the services si of the

agent ai; Let GI = (Ii, Ij , E) be the weighted bipartite graph among the inputs of

all the services Si and Sj provided by agents ai and aj ; and let G′I = (Ii, Ij , E
′)

be the maximum weighted relaxed bipartite matching. Then WG′I
is defined as the

normalized total weight of the maximum relaxed bipartite graph G′I .

WG′I
=

∑

ωij∈E′I

ωij

max (|Ii|, |Ij |)
(5.1)

WG′O
, WG′P

, and WG′Ef
are similarly defined for outputs, preconditions, and effects,

respectively.
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DEFINITION 7 The value homophily between two agents ai and aj is defined as

Hv(Si, Sj) = α
[
β ∗WG′I

+ (1− β)WG′O

]
+ (1− α)

[
β ∗WG′P

+ (1− β)WG′E

]
=

= α

[
β

∑
wij∈E′I

wij

max |Ii|, |Ij |
+ (1− β)

∑
wij∈E′O

wij

max |Oi|, |Oj |

]
+

+(1− α)

[
β

∑
wij∈E′P

wij

max |Pi|, |Pj |
+ (1− β)

∑
wij∈E′Ef

wij

max |Efi|, |Efj |

]

The parameters α and β assign different weights to the components of the formula.

The adjustment of α, β ∈ [0, 1] allows varying how the parameters of the service

are considered in the calculation of value homophily. The α parameter controls a

data-driven homophily calculation (inputs and outputs) or a goal-driven homophily

calculation (preconditions and effects). The β parameter determines the importance

of the intakes (inputs and preconditions) or the consequences (outputs and effects) in

the homophily calculation.

Let’s see an example of how value homophily is calculated among two agents, a1

and a2 (see Figure 5.3). Agent a1 has a set of services S1 that contains a service

s1 (mp3playerportabledvdplayer recommendedpricequality service.owls) that has a

set of inputs (I1 = {PortableDVDPlayer, MP3Player}) and a set of outputs (O1 =

{RecommendedPrice, Quality}). Agent a2 has a set of services S2 that contains a

service s2 (vehicle price service.owls) that has a set of inputs (I2 = {Vehicle}) and a

set of outputs (O2 = {Price}). In order to calculate the value homophily, a bipartite

graph is created for the inputs GI and for the outputs GO. The similarity between

the concepts from sets I1 and I2 (similarly for concepts from O1 and O2) labels the

arcs of the graph. In this case, the concepts from I1 only have one possible matching

since there is only one input in the set I2. Once the maximum bipartite graphs for

inputs and outputs are built (G′I and G′O), their weights are calculated for inputs and

outputs (WG′I
,WG′O

). To calculate the value homophily we instantiate the parameters
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α=1 (which means that the services only have inputs and outputs), and β = 0.5 (which

means that inputs and outputs have the same importance). We replace the values of

WG′I
andWG′O

in Definition 7, and we obtain 0.125 for the value homophily between

agents a1 and a2.

Hv(S1, S2) = 1 [0.5 ∗ 0 + (1− 0.5)0.25] = 0.125 (5.2)

5.3.2 Status Homophily

The status homophily Hs(Ri, Rj) in the system calculates the best match between

the set of roles Ri and Rj played by the agents ai and aj . The match between two

individual roles ri ∈ Ri and rj ∈ Rj is based on the distance between the semantic

concepts φi and φj . The function presented by [50] is used to calculate the distance.

DEFINITION 8 Status homophily between two agents ai and aj is defined as the max-

imum degree of match between the concepts φi and φj that describe the roles ri ∈ Ri
and rj ∈ Rj for all possible pairs (ri, rj).

Hs(Ri, Rj) = max
ri∈Ri,rj∈Rj

rmatch(φi, φj)

where

rmatch(φi, φj) =





1 if path length = 0

δφiφj · e
−λ(plφiφj+cpφiφj ) if φi and φj are not siblings

δφiφj · e
−λ(plφiφj+cpφiφj )−dφiφj if φi and φj are siblings

and

δφiφj =
e
γdpφiφj − e−γdpφiφj
e
γdpφiφj + e

−γdpφiφj

The status homophily Hs(Ri, Rj) takes into account the following:
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• plφiφj the shortest path length between φi and φj in an organizational ontology;

• dpφiφj the depth of the roles in the ontology;

• dφiφj the number of the sibling nodes of each role;

• cpφiφj the relationship ’parent-child’ between roles;

• λ and γ are parameters that control the influence of path length and depth,

respectively.

The value obtained in the calculation of Hs(Ri, Rj) ranges in the interval [0,1],

where 1 indicates that the roles are the same.

Let’s see the calculation of status homophily between the agents a1 and a2 from the

previous example (see Figure 5.3). The set of roles R1 of a1 is composed by the role

r1 (φ1 = CycleSeller). The set of rolesR2 of a2 is composed by the role r2 (φ2 = Rec-

ommender). The calculation of this type of homophily is based on the organization

structure that is shown in Figure 5.4. The roles r1 and r2 are depicted with a thick

line. The figure shows the organizational roles and the values of the parameters in-

volved in the calculation of rmatch(φ1, φ2). If we replace the value of the structural

parameters and the parameters that control the influence of the path length λ = 0.3

and depth γ = 1 in the formula of rmatch, we obtain rmatch(φ1, φ2) = 0.04 and

Hs = 0.04 (see Equation 5.3).

Hs(R1, R2) = δφ1φ2 · e(−0.3(7+3)) = δφ1φ2 · e−3 = 0.0497 · 0.82 = 0.04

(5.3)

δφ1φ2 =
e(4/6+3/6) − e(−4/6+3/6)

e(4/6+3/6) + e(−4/6+3/6)
=
e1.16 − e0.16

e1.16 + e0.16
=

3.21− 0.31

3.21 + 0.31
=

2.89

3.52
= 0.82
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Figure 5.4: Partial view of the organizational structure that contains the semantic concepts that define
the roles present in the system.

5.3.3 Choice Homophily

Once the Value and Status homophily have been defined, we can define the Choice

Homophily between two agents as the linear combination of both.

DEFINITION 9 Choice homophily between two agents ai, aj ∈ A in the system is

defined as the linear combination of value and status homophily,

CH(ai, aj) = (1− ϕ) ∗Hv(Si, Sj) + ϕ ∗Hs(Ri, Rj)
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The ϕ parameter regulates the importance of the influence of services (value ho-

mophily) or roles (status homophily) in the total homophily of the agent with another

agent.

Finally, once the value and status homophily are calculated (see Equations 5.2 and

5.3), the calculation of choice homophily between agents a1 and a2 is shown in Equa-

tion 5.4. In this equation, the value of ϕ is 0.75, which means that status homophily

has more influence in the final homophily between agents.

CH(a1, a2) = (1− 0.75) ∗ 0.125 + 0.75 ∗ 0.04 = 0.061 (5.4)

5.4 Community Creation based on Homophily

Choice homophily establishes a measure of semantic similarity between two agents.

This similarity measure is taken into account by agents when they decide to establish

a link with other agent. Here we present a growing creation process of the network

and how the consideration of homophily generates a self-organized network struc-

ture based on homophily with an exponential degree of connection distribution. The

self-organization based on homophily provides short paths in the discovery process.

The exponential degree of connection distribution provides a resilient structure to

deliberate attacks.

5.4.1 Join Protocol

Each agent that is part of the system is considered an entry point. If an external

provider agent ai wants to get into the system, it follows the protocol shown in Figure

5.5 (see Algorithm 1):

• Agent ai should know at least one agent aj already present in the system.

Agent ai sends a request to agent aj to be part of the system.
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Figure 5.5: Access protocol for new agents to get into the system.

• If aj sends ai a refuse message the interaction finishes. Otherwise, aj allows

ai to get into the system and it sends ai an agree message. This means that

aj , based on the choice homophily between them, is going to consider the

establishment of a link with ai. The probability Pl of establishing a connection

between agent ai and agent aj is

Pl(〈ai, aj〉) =

(
1− CH(ai, aj)

ρ

)−r
(5.5)

which considers the choice homophily between the agents. To obtain the proba-

bility distribution, the choice homophily between two agents should be divided

by an appropriate constant ρ that indicates the degree of precision to consider

two agents equal. The r parameter is a homophily regulator. When r is zero,

the system shows no homophily (i.e, agents are not grouped by similar ser-

vices). As r grows, links tend to connect agents with more similar services.

Basically, r makes the system create communities with similar services [71].
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• If agent aj decides to establish a link with ai, it sends a inform message to

ai with the link information (〈ai, aj〉). Otherwise, aj forwards the request

to one of its neighbors ak randomly selected. The process is repeated until

agent ai receives an inform message with its neighbor (〈ai, ak〉) and establishes

a connection with it. The number of connections that an agent establishes

is predefined by the system. Note that the link establishment process uses a

random walk strategy and a probability based on homophily to find neighbors.

The reason to use this random strategy, instead of a strategy based only on

homophily criterion, is to give new agents the chance of establishing links

not only with similar agents, but also with dissimilar ones. Links between

dissimilar agents allow agents to locate other agents communities in a few

steps.

Algorithm 1 Function that describes how an agent ai enters into the system.

1: function JoinSystem(ai, aj)
2: if checkCondition then
3: if Pl(〈ai, aj〉) > random(0, 1) then
4: Nj ← Nj ∪ ai
5: inform(ai, aj)
6: else
7: ak ← random(Nj)
8: while Pl(〈ai, ak〉) < random(0, 1) do
9: ak ← random(Nk)

10: end while
11: Nk ← Nk ∪ ai
12: inform(ai, ak)
13: end if
14: else
15: refuse(ai)
16: end if
17: end function

5.4.2 Structural Properties

Agents have a greater probability of establishing connections with other agents if they

provide similar services (value homophily) and play similar roles (status homophily)

in the system. As a result of this behavior, communities of similar agents are created
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Figure 5.6: Degree of connection distribution in different type of networks: Random networks, Scale-
Free networks, networks based on value homophily Hv , and networks based on choice homophily CH .

in a decentralized way. The resulting system structure is a network based on prefer-

ences, which grows according to a simple self-organized process. The construction

process of a growing network ensures that the oldest nodes have a higher probability

of receiving new links than the newest ones. Therefore, the total number of neighbors

an agent has will depend on its age. The average degree of connection of a network

built following this process follows an exponential distribution [43] (see Figure 5.6).

Because the homophily condition is a probability function, it allows new agents not

only to establish ’direct connections’ between agents with similar attributes (services

and roles), but also between agents that are not similar. These connections allow

agents to interconnect communities and locate other agents efficiently in a few steps

by using only local information [71].

An example of the resulting structures is shown in Figures 5.7 and 5.8. The networks

of these figures represent the structure of a system with 1,000 agents. Each node

of the network represents one agent that plays one role and offers one service. The
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Figure 5.7: System with 1000 agents, 16 roles, and one semantic service per agent. Each node color
reflects one role. Similar colors reflect that the roles are close to each other in the organizational ontol-
ogy (see Figure 5.4). (Top) The network structure reflects the effects of introducing choice homophily
to the system with the parameter ϕ = 0. (Bottom) Communities obtained through a clustering algorithm
based on eigenvectors of the adjacency matrix [41].
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Figure 5.8: System with 1,000 agents, 16 roles, and one semantic service per agent. The network
structure reflects the effects of integrating choice homophily in the system. Each node color reflects
one role. Similar colors reflect that the roles are close to each other in the organizational ontology (see
Figure 5.4). (Top) The network structure reflects the effects of introducing choice homophily into the
system with the parameter ϕ = 1. (Bottom) Communities obtained through a clustering algorithm based
on eigenvectors of the adjacency matrix [41].
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color of the node represents the organizational role. Nodes with colors in the same

range mean that their roles are close to each other in the organizational ontology (see

Figure 5.4). Information about the structural properties of these networks such as

average degree, path length, or clustering coefficient are described in Table 5.1. In

this table, we have included the average choice homophily in the network CH . This

parameter measures the average homophily between an agent and its neighborhood .

CH is calculated as follows:

CH =

∑

∀ai∈A

∑

∀aj∈Ni

CH(ai, aj)

|Ni|
|A| (5.6)

The network shown at the top of Figure 5.7 is created considering only value ho-

mophily (ϕ = 0, see Definition 9). In this network, the agents are grouped based on

similarity between services. The groups are tightly connected internally and there

are few links that connect to other groups. Note that since organizational information

has not been considered, in some communities, agents that offer similar semantic

services but play different roles are connected. The communities obtained through a

clustering algorithm are shown at the bottom of Figure 5.7. The clustering algorithm

is based on the use of eigenvectors of the adjacency matrix [41]. The components of

the first non-eigenvectors allow to detect communities. However, if there is a large

number of group interconnections, the communities become more entangled and the

community detection using this type of one-dimensional plot worsens. This difficulty

can be solved by taking into account some more eigenvectors. In this case, we have

considered two eigenvectors. The x-axis shows the components of the first non-trivial

eigenvector. The y-axis shows the components of the second non-trivial eigenvector.

The number of clusters obtained is 10. The clusters are clearly defined and loosely

connected with other clusters. The network shown at the top of Figure 5.8 is created

taking into account only status homophily (ϕ = 1). In this case, the consideration of

information from a higher level of abstraction, such as organizational roles, facilitates

the interaction among groups of agents that offer different services. At the bottom
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of Figure 5.8, the clusters obtained are shown. Although the clusters in the figure

cannot be easily distinguished, the algorithm detects 10 clusters again. The distances

between different communities has been reduced considering organizational infor-

mation, thereby facilitating the navigation among the communities. Nevertheless,

when a query arrives at the appropriate community, it is more difficult to locate a

service since no information related to services has been considered during the self-

organization process. Section 5.6 discusses the effects of considering organizational

information in the network creation process and in the service discovery process.

5.5 Decentralized Service Discovery Using Homophily

In open, large, and dynamic systems, agents should rely on local information during

the service discovery process for several reasons. One reason is to prevent depen-

dence on a single point of failure. Another reason is to avoid the effects of changes in

the system structure. A third reason is that global information may not be available

in open and dynamic systems. In this situation, it is important to provide agents of

mechanisms that are based on local information.

In this section, we describe a service discovery process that relies on local informa-

tion about the direct neighbors of the agents. Agents are able to locate the required

service with only this information. The servide discovery strategy proposed exploits

the structure based on homophily of the network to reduce the number of steps re-

quired to locate a suitable provider agent that offers the required service.

The selected algorithm for service discovery in the system is an extension of the

Expected-Value Navigation (EVN) algorithm [128], which is a greedy, mixed al-

gorithm that considers local information related to the similarity and the degree of

connection. It has been modified to use choice homophily as the similarity measure

that integrates organizational information with the service description. The proposed

algorithm is called Choice Homophily Navigation (CHN). The CHN algorithm is

based on a selection function that calculates the most promising neighbor aj of an
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agent ai to reach the agent at is :

FNi(at) = argmax
aj∈Ni

Ps(〈aj , at〉) (5.7)

For each neighbor aj , Ps(aj , at) determines the probability that the neighbor aj redi-

rects the search to the nearest network community where there are more probabilities

of finding the agent at .

Ps(〈aj , at〉) = 1−


1−




CH(aj , at)∑

aj∈Ni

CH(aj , at)







|Nj |

(5.8)

This probability uses homophily-based factors (choice homophily CH) and degree-

based factors (number of neighbors |Nj |) to explore the network.

The CHN algorithm performs as follows (see Algorithm 2 and 3). When an agent ai
looks for an unknown target agent at (which provides a required service st and plays

a certain role rt), it sends a query to the most promising agent in its neighborhood.

Likewise, when an agent ai receives a query about a service that it cannot provide,

it forwards the query to the most promising agent in its neighborhood. The most

promising neighbor, aj ∈ Ni, is the most similar neighbor to the target agent at and

that has the highest number of connections. This process is repeated until an agent

that offers a service that is ’similar enough’ is found (Alg. 3 Line 7) or when the TTL

(Time To Live) of the query ends (Alg. 3 Line 14). The criterion of ’similar enough’

is established by the agent that generates the query as a semantic similarity threshold

ε.

An example of this process is described considering the scenario presented in Section

5.2 (see Figure 5.1). Agent ai should choose the most promising neighbor from

its neighborhood (an,aj , or ak), to forward the query q. To do that, the agent ai
applies the function that appears in Equation 5.7. This function considers: (i) the
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choice homophily between each neighbors of agent ai and the profile of an unknown

target agent at = (rentalCar, Transport, ∅, ∅) that offers the service and plays

the role specified in the query q; and (ii) the connection degree of the neighbors.

Assuming the values of choice homophily that appear in Figure 5.1 (CH(ak, at) =

CH(aj , at) = 0.5, and CH(an, at) = 0.15):

FNi(at) = argmax
ak,aj ,an

[
1−

(
1− 0.5

1.15

)5

, 1−
(

1− 0.5

1.15

)4

, 1−
(

1− 0.15

1.15

)5 ]

= argmax
ak,aj ,an

[0.942, 0.897, 0.5] = ak

Therefore, agent ai sends the query to the most promising agent, i.e agent ak. This

process is repeated until the similarity between a local services of an agent and the

service in the query is over a threshold, or the query exceeds the TTL. In the described

scenario, the process ends when the query arrives to agent av that is similar to the

target agent at that ai was looking for (see Figure 5.1b).

Algorithm 2 Function that describes how an agent ai starts a service discovery process.

1: function startDiscovery()
2: TTL→ 100 /* value established by the agent ai */
3: ε→ 0.75 /* value established by the agent ai */
4: aj ← serviceDiscovery(ai, q = (ai, sq , rq , TTL, ε))
5: if aj 6= ∅ then
6: request(aj , sq)
7: end if
8: end function

5.6 Evaluation

In this section, we evaluate the proposed system structure and the service discovery

strategy based on choice homophily. For the evaluation, we compare structural fea-

tures and the success rate of the service discovery of our proposal with other network

structures, commonly used in the complex networks area. The network structures

that were considered in the experiments are:
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Algorithm 3 Function that describes the service discovery process that an agent ai carries out when
receives a query.

1: function serviceDiscovery(ai, q = (asource, sq , rq , TTL, ε))
2: at ← (rq , sq , ∅, ∅)
3: if TTL > 0 then
4: if CH(ai, at) ≥ ε then
5: inform(asource, ai)
6: else
7: ai ← FNi(at)
8: TTL← TTL− 1
9: serviceDiscovery(ai, q = (asource, sq , rq , TTL, ε))

10: end if
11: else
12: inform(asource, ∅)
13: end if
14: end function

• Random networks (R), where links between agents are established randomly.

• Scale-Free networks (SF), where links between agents are established based

on the degree of connection. Agents with a high degree of connection have a

greater probability of receiving a new link than agents that have a low degree

of connection.

• Networks based on value homophily among agents (Networks based on Hv).

Agents in these networks are based on the value homophily and the degree of

connection.

• Networks based on choice homophily among agents (Networks based on CH).

Links in these networks are established based on the choice homophily be-

tween agents and the degree of connection.

We also compare our search strategy for decentralized service discovery with typical

search strategies that are used in complex networks. The difference among them is

how the most promising neighbor is selected in each step. These strategies are:

• Random: a search process that uses random walks [14, 51];
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• Degree: a search process that uses only degree of connection information

[144];

• Similarity: a search process that uses only service similarity information [146,

135, 11];

• VHN: a mixed search process that uses a combination of degree of connection

and service similarity [128];

• CHN: a mixed search process that is based on the degree of connection and

choice homophily CH(ai, aj).

Queries in the experiments are uniformly generated among all the agents. This

means that all the agents in the system had the same probability of generating service

queries. A query consisted of two features that characterize the required provider

agent: the semantic concepts that identified the organizational role and the semantic

service description. Each query was forwarded by the agents following a criterion de-

termined by the search strategy until the query was successfully solved or the query

reached its TTL.

Each network of these experiments was undirected. Each agent played one role and

offered one semantic web service. The agents were distributed uniformly over the

roles. The role played by an agent was defined in a common organizational ontology

(see Figure 5.4). All the experiments were performed with real semantic services.

The set of semantic services used for the experiments were from the test collection

OWL-S TC4 1. Each experiment has been done over 10 networks for each of the

structures and 5,000 queries have been generated in each network.

The tests that we did for the evaluation of our proposal are divided in two groups: a

first group of tests that evaluates configuration parameters related to networks based

on CH and search strategies, and a second group of tests that compares our proposal

1http://www.semwebcentral.org/projects/owls-tc/
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of network structure and search strategy based on CH with other existing structures

and search strategies.

5.6.1 Evaluation of Configuration Parameters

In the following sections, we evaluate the effects that configuration parameters of

networks based on CH have in the performance of service discovery. The parame-

ters that we consider are related to the structure of networks based on CH (i.e., the

influence of value and status homophily (ϕ), the size of the network, and the average

number of neighbors), and the service discovery process (i.e., the similarity threshold

(ε), and the Time To Live (TTL)). Specifically, we focus on how different values of

these parameters affect the success and the average path length of the service discov-

ery process.

5.6.1.1 Influence of Value and Status Homophily

The ϕ parameter balances the weight of value homophily and status homophily to

determine the similarity measure between two agents (i.e., the importance of the role

or service description in the overall similarity is regulated by ϕ)(see Equation 9).

Details about the structural properties of these networks as ϕ changes are shown in

Table 5.1. These properties are the following: k is the average degree of connection

of the agents in the network; c is the average clustering coefficient [76] (indicates

how nodes are embedded in their neighborhood); d is the average diameter of the

network (the diameter is the longest graph distance between any two nodes in the

network); p is the average distance between all pairs of nodes; CH is the average

choice homophily in the network.

Figure 5.9 compares the results obtained with the different algorithms in networks

based on CH varying the value of ϕ parameter. Each network has 1,000 agents and

an average degree of connection of 2.5. In each graph, the ϕ parameter takes different
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PPPPPPPPPϕ
Properties

k c d l CH

0 2.5 0.0099 18.10 8.02 0.48
0.25 2.65 0.0062 16.20 7.05 0.42
0.5 2.70 0.0045 15.19 6.82 0.48
0.75 2.65 0.0052 15.2 6.84 0.58
1 2.67 0.0052 15.60 6.92 0.71

Table 5.1: Structural properties of Networks based on CH with different values of ϕ. k is the average
degree of connection of the agents; c is the average clustering coefficient; d is the average diameter of
the network; p is the average distance between all pairs of nodes; CH is the average choice homophily
in the network

HHH
HHϕ
Al.

Random Degree Similarity VHN CHN

0 39.22 ±3.63 73.47 ±9.96 45.25 ±7.52 71.84 ±13.31 71.96 ±13.70
0.25 64.64 ±2.18 89.19 ±2.39 57.03 ±3.08 85.51 ±3.57 94.14 ±0.93
0.5 65.85 ±1.79 88.63 ±1.96 63.15 ±9.48 88.71 ±3.27 95.55 ±1.78
0.75 65.48 ±2.74 88.85 ±4.00 60.23 ±5.94 87.03 ±3.11 96.91 ±0.85
1 64.64 ±2.18 89.19 ±2.39 95.14 ±0.93 57.03 ±3.07 85.51 ±3.57

Table 5.2: Success rate (%) obtained by different search algorithms in Networks based on CH when ϕ
value ranges from 0 to 1.

H
HHHHϕ

Al.
Random Degree Similarity VHN CHN

0 31.72 ±1.70 25.02 ±5.84 19.36 ±3.38 20.57 ±2.88 20.52 ±3.06
0.25 33.55 ±1.04 21.63 ±6.19 19.88 ±1.87 16.99 ±2.92 12.36 ±0.98
0.5 33.44 ±1.22 19.02 ±4.77 19.48 ±2.35 15.79 ±1.86 11.38 ±1.24
0.75 33.77 ±1.07 18.78 ±5.02 20.10 ±1.63 16.83 ±3.00 10.68 ±1.76
1 33.66 ±1.06 18.21 ±2.96 21.83 ±2.60 17.72 ±2.32 12.08 ±1.16

Table 5.3: Mean path length obtained by different search algorithms in Networks based on CH when
ϕ value ranges from 0 to 1.
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Figure 5.9: Search performance in Networks based on CH with different values for ϕ (Top row: ϕ [0,
0.25], Middle row: ϕ [0.5, 0.75], and Bottom row: ϕ=1).

values that range from 0 to 1 giving more importance to functional information (ser-

vices) or to organizational information (roles). The x-axis shows the average number

of steps required in the service discovery process. The y-axis shows the number of

queries that were solved in a certain number of steps before the TTL (TTL=100,

ε = 0.75). When ϕ = 0, the networks have been built using only value homophily

information (see Figure 5.7). As ϕ increases, status homophily appears and organi-

zational information has more influence in the network creation process (see Figure

5.8).
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In general, it can be observed that, independently of the value of ϕ, the CHN algo-

rithm obtains the best results providing with a greater number of short paths than

other traditional algorithms used in distributed environments. The consideration of

status homophily (i.e., role information ϕ > 0) improves the results obtained by all

the search strategies but specially the results obtained by the CHN algorithm.

In networks that are built based only on semantic service information (ϕ = 0), several

small agent communities that are specialized in certain types of services emerge and

there are only a few connections between communities. In these communities, agents

that play different roles but offer semantically similar services could be connected

directly. These features make the navigation from one community to another more

complicated. Consequently, the path lengths obtained by the search strategies are

longer.

In the networks that are built based on a combination of organizational and service

information (ϕ = [0.5, 0.75]), networks are not divided in loosely connected com-

munities. Agents self-organize taking roles and services into account. Agents are

connected to agents that play similar roles that are situated close to each other in

the organizational ontology. Specifically, the best parameter configuration is when

ϕ = 0.75. Furthermore, with low probability, agents also establish connection with

agents that play completely dissimilar roles. This makes the navigation between

communities easier. Consequently, the path lengths obtained in the search process

are shorter. Organizational information is useful in guiding the search. Nonetheless,

in networks that have been built with only this information, the search becomes com-

plicated (ϕ = 1). The reason is that once an agent arrives to a community that has

a high probability of containing the required service, it does not have any criteria for

determining which agent is better for reaching the required service since all of them

play similar roles.

In general, it can be observed that the consideration of both status and value ho-

mophily in the network structure improves the service discovery process. Also, the

CHN algorithm significantly reduces the length of the paths to the target (see Figure
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Figure 5.10: Influence of the number of agents on the average path length and success on Networks
based on CH .

5.9). The success rate obtained by CHN increases when organizational information is

included in the decision process, ϕ > 0 (see Table 5.2). The algorithm based on the

degree of connection provides similar success rate; however, the mean path length is

almost double the mean path length obtained with CHN algorithm.

5.6.1.2 Network Size

In order to check the scalability of network structures based on CH , we tested dif-

ferent search strategies when the number of agents changes and we paid attention to

the average path length of successful searches and the percentage of success of the

discovery processes. In this experiment, the average degree of connection of agents

was 2.5, the TTL was 100, and the ε was 0.75. Figure 5.10 presents the results of

the tests. The graphs show that the size of the networks does not have a significant

influence in the path length and in the success rate when networks have more than

500 agents.

5.6.1.3 Neighbors

To evaluate the influence of the average degree of connection of agents in networks

based on CH we considered values that range from 2 to 11. In this experiment,
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Figure 5.11: Influence of the average degree of connection on the average path length on Networks
based on CH . The mean-shortest path length dismisses when agents have more connections.

networks had 1,000 agents, the TTL was 100, and the ε was 0.75. As it was expected,

as the average degree of connection increased, the paths got shorter and it was easier

to locate the target agent since agents had available more possibilities to guide the

search (see Figure 5.11). Furthermore, the resulting networks were more robust. On

the other hand, if agents joined one neighbor, the resulting structure was less robust

and could be broken in isolated components under same failure conditions. In the

generation process of networks based on CH we considered that agents when arrive

to the system can establish a number of connections up to 2. This criterion creates

networks with an average degree of 2.5 approximately. This degree of connection

allows to analyze critical scenarios where the difference between search strategies

and structures is significant.

5.6.1.4 Similarity Threshold

A query was successfully solved when an agent that offers a similar enough semantic

service to the target service and played a similar role to the target role was found. This

means that the semantic similarity between the services and organizational roles was

over a threshold. We evaluated the effect of different ε values in the success rate and

the average path length obtained with different search strategies in networks based

on CH (see Figure 5.12). In this experiment, networks had 1,000 agents, each agent
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Figure 5.12: Influence on average path length and success of ε parameter on service discovery on
Networks based on CH when different search strategies are used.

had an average degree of connection of 2.5, and the TTL was 100. We considered

that 0.75 offers a balance between the degree of similarity and, the success rate and

the average number of steps.

5.6.1.5 Time To Live

The Time To Live (TTL) parameter determines the maximum number of forwarding

actions allowed in the system for a specific query. In this test, we evaluated how the

variation of the value of this parameter affects to the discovery process in networks

based on CH . In this experiment, networks had 1,000 agents, each agent had an

average degree of connection of 2.5, and the ε was 0.75. The results are shown in

Figure 5.13. As it was expected, higher values of TTL offered the opportunity to

search strategies such as random walks and similarity to improve their success rate.

The search strategy based on CH offered the shortest paths and the TTL had not a

significant influence in its performance. In the rest of the experiments we considered

a TTL=100 to give the chance to all the search strategies to reach the target.
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Figure 5.13: Influence on average path length and success of TTL parameter on Networks based on
CH when different search strategies are used.

5.6.2 Service Discovery and Structure Evaluation

The aim of the second part of the tests is to compare our proposed structure and

algorithm with other complex network models and search strategies. Specifically, we

focus on two metrics: the average number of steps required by a search strategy to

find the target agent and the percentage of successful searches obtained (searches that

end before the TTL) in each network structure.

Based on the results obtained from the previous experiments, the setup for the sec-

ond group of experiments was as follows. Each network of these experiments was

undirected and had 1,000 agents. Each agent had an average degree of connection

of 2.5. Agents played one role and offered one semantic web service. The agents

were distributed uniformly over the roles. The role played by an agent was defined

in a common organizational ontology (see Figure 5.4). All the experiments were

performed with real semantic services. The set of semantic services used for the ex-

periments were from the test collection OWL-S TC4 2. The value for the ϕ parameter

for choice homophily between agents is 0.75. Each experiment has been done over

10 networks for each of the structures and 5,000 queries have been generated in each

network. The value for the similarity threshold parameter ε is 0.75.

2http://www.semwebcentral.org/projects/owls-tc/



108 5.6. Evaluation

hhhhhhhhhhhhhhhhhNetwork Structure
Properties

k c d l CH

Random 2.53 0.0014 19.89 8.71 0.15
Scale-Free 2.48 0.0028 9.0 4.83 0.15
Net. based on Hv 2.53 0.0093 18.10 8.02 0.48
Net. based on CH 2.66 0.0058 15.80 6.91 0.57

Table 5.4: Structural properties of network structures.

5.6.2.1 Comparison with other Search Strategies and Complex Net-
works Models

We evaluated the performance of search strategies (random, degree, similarity, VHN,

and CHN) in 10 networks for each type: networks based on Hv (ϕ = 0), networks

based on CH (CH with ϕ = 0.75), Scale-Free (SF), and Random (R). Details about

the structural properties of these networks such as average degree of connection, path

length, or clustering coefficient are described in Table 5.4. In this table, we have

included the average choice homophily in the network CH . This parameter measures

the homophily between an agent and its neighborhood.

With regard to the structural properties, SF and R networks are characterized by a

low clustering. Moreover, the CH takes low values since choice homophily it is not

considered in the network generation process. SF networks have a small diameter

and short paths. Networks based on Hv and CH have low clustering values and high

values ofCH . Networks based onCH have a higher value due to the consideration of

organizational information. Note that the CH values are around 0.5. This is because

the homophily criterion for establishing links do not limit agents to establishing links

with only similar agents, but they can also establish links with dissimilar agents.

The results of this experiment are shown in Figures 5.14 and 5.15. The graph on the

left contains four histograms (one for each network structure). In each histogram, the

x-axis shows the different search strategies and the y-axis shows the average number

of steps required to reach the target agent. In general, in each type of structure, the
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shortest paths are obtained by the search strategies that are based on the criteria used

to build the network. For example, random walks perform better in random networks

or a degree-based method in SF networks. This highlights the close relationship

between the search strategies and the network structures.

With regard to the average path length, the best structures that provide the shortest

path are the networks based on CH and the SF networks. In the networks based

on CH , the best strategy is the CHN. Moreover, strategies based on similarities, de-

gree of connection, and the combination of both also provide short paths. In the SF

networks, the best strategy is the strategy based on the degree of connection. Nev-

ertheless, in structures of this type, strategies that combine degree of connection and

similarity also obtain good results, particularly the CHN strategy. The conclusions to

be drawn from this data are that Scale-Free networks and networks based on CH are

structures where short paths can be found through different search strategies. More-

over, the CHN search strategy obtains good results in both structures: SF networks

and networks based on CH .

In the graph on the right, the x-axis shows the different search strategies and the

y-axis shows the percentage of successful searches (i.e, the percentage of queries

that were solved before the TTL). For SF networks and networks based on CH the

success in the service discovery process provide the best results with Degree, VHN,

and CHN strategies. In SF networks, the success rate is over 80% with all the search

strategies. In networks based on CH , the success rate is over the 80% in three search

strategies. We can conclude that the search strategy that provides the highest success

rate independently of the network structure is the CHN.

The path length and the success rate are closely related and can influence each other.

For instance, even though short path lengths could be obtained in a network structure,

this does not always mean that the structure offers good performance. The success

rate could be too low, and only searches that are solved in the surroundings of the

source agent (path with a low number of steps) are considered. For this reason, we

have analyzed the relation between the success and the path length (PS) . This relation
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Figure 5.14: Search results using different network structures with an average connection degree of
2.5. (Left) Average number of steps in the discovery process. (Right) Success rate (%) of queries. The
error interval is depicted with I at the top of each bar.

is measured using the following equation, which takes into consideration the number

of queries that were successfully solved as well as the average mean path,

PS =

∑

ai∈A
#sq(t)

#Q(t)
· TTL− p̄

TTL
(5.9)

In the equation, #sq(t) is the number of queries generated by an agent that were

solved before the TTL at a given time t. The term #Q(t) is the total number of

queries generated in the system at a given time t. TTL reflects the maximum path

length allowed in the system, and p̄ is the average path length (number of steps) of a

service discovery process in the system. The first term evaluates the success rate and

the second term evaluates the significance of the path length. The values of PS range

in the interval [0,1], where 0 means that none of the queries generated in the system

where solved, and 1 means that all the queries were successfully solved and by direct

neighbors (p̄ = 0). This situation is possible in regular networks where each node is

connected to the rest of the nodes of the network.

The results of PS obtained with the different network structures are shown in Figure

5.15. In this figure, the x-axis shows the different search strategies, and the y-axis

shows the PS. In general, it can be observed that the success rate is the information
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Figure 5.15: Relation between the path length and the success rate (PS) in different network structures
with an average connection degree of 2.5.

that has the most influence on the PS. The PS values obtained confirm that SF net-

works and networks based on CH obtain the best results. The CHN is the strategy

that offers better performance in different network structures than the other strategies

that are commonly used in complex networks.

The results of this experiment allow us to conclude that degree-based algorithm and

CHN perform well independently of the underlying network structure. Moreover,

networks based on CH and Scale-Free networks have desirable characteristics for

providing an underlying structure to a discovery system. They have high percentage

of success in the search process and short paths. Therefore, the traffic generated by

the service discovery process is reduced and its efficiency improved.

5.6.2.2 Tolerance to Failures

Networks could be sensitive to failure or deliberate attacks. The most critical sit-

uation for networks where the distribution of the degree of connection follows an

exponential or power-law distribution is when deliberate attacks on highly connected

nodes are produced. In the context of service discovery, the failure of an agent im-

plies the removal of all its links. We evaluate the performance of the service discovery

process in different network structures as the number of failed nodes increases. We
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have studied the failure tolerance of networks based on CH and SF networks in dif-

ferent situations, but in this article, we only include a subset of these experiments.

Specifically, we focus on ’sabotage’ situations in two particular network structures,

networks based on CH and SF networks. We have only included these two types of

networks since both of them obtained the best results in the experiments described

above. We only show the results obtained in scenarios where deliberate failure (’sab-

otage’) is produced. We consider this scenario to be a more interesting scenario than

random failures since the network structures and the service discovery strategies are

evaluated in the worst case.

Figure 5.16 shows the behavior of networks based on CH and Scale-Free networks

under ’sabotage’. The results for the Scale-Free networks are shown in the left col-

umn. The results for the networks based on CH are shown in the right column.

The top row shows the average number of steps required to reach the target agent as

the number of failures of highly connected agents increases (50,100,150, and 200).

Taking into account the average path length of the successful searches, the results

indicate that the SF networks obtain shorter paths than networks based on CH in

the presence of failures. When the number of failures is 50, this difference is not as

significant. This difference is greater when the number of agents that have failed is

between 50 and 100. The main reason of this fact is that SF networks are more sensi-

tive to failures; therefore, as the number of highly connected nodes that fail increases,

the network is divided in a higher number of isolated parts where the only successful

searches are those which can be solved by a nearby agent.

The middle row shows the success rate in the discovery process as the number of

agents that fail increases. The graph on the right shows that the rate of success in

networks based on CH is over 40% until 150 agents are removed (using the CHN

search strategy). In the case of SF networks (left), the success rate is seriously re-

duced when more than 50 agents fail (5% success when the number of deleted agents

is 150). Note that, in the case of SF networks, the tests range from 50 to 150 failure

agents. This is because in the experiments with 200 failure agents, the network is
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disconnected in so many isolated parts that it is not possible to find the required ser-

vices. The PS relation is shown in the bottom row. The network structure based on

CH offers the best results where path length and success rate under intentional fail-

ures is concerned. Moreover, the strategy based on CH also obtains the best results

in networks based on homophily and almost the same as the strategy based on the

degree of connection in SF networks.

In general, it can be observed from the results that since SF networks have a distri-

bution of the degree of connection that follows a power-law, SF networks are more

vulnerable to intentional failures. This is due to the existence of hubs that concentrate

network connections. If an attack is addressed to these hubs, the network can be bro-

ken into isolated groups. However, a growing network based on choice homophily

generates structures with an exponential degree distribution. In networks based on

choice homophily, the size of the hubs is limited. For example, whereas a SF net-

work with 1,000 agents and an average degree of connection of 2.5 can contain nodes

connected to more than 75 nodes, a network with an exponential distribution degree

of connection barely arrives to hubs with 20 connections with other nodes. The ab-

sence of highly connected hubs makes the network more robust under a deliberate

attack.

Based on these results, we consider that the most suitable structure for the self-

organization of services is the network structure based on choice homophily between

agents. When agents join other similar agents, the network has short paths to locate

the desired services. Moreover, a hill climbing mechanism can be implemented with

a high success rate in the service discovery process. Therefore, despite the network

structure has not small-world network properties, its performance is in the same order

of magnitude.

Finally, the proposed CHN algorithm, which uses node degree and the homophily

information, performs as the best method in SF networks and CH based networks.

Networks based on CH are more robust than SF networks under targeted attacks.

Therefore, homophily-based networks seem a good structure for self-organized sys-
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Figure 5.16: Sabotage in Scale-Free networks (Left column) and in Networks based on CH (Right
column). (Top row) The average number of steps required to reach the target using different search
strategies as the number of agents that have failed increases. (Middle row) The success rate (%) in
the service discovery process using different search strategies as the number of agents that have failed
increases. (Bottom row) The relation between path length and success (PS) using different search
strategies as the number of agents that have failed increases.

tems and the CHN algorithm offers a good performance even in other type of net-

works that are not self-organized considering homophily criterion.
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5.7 Conclusions

In this chapter, we have studied how the integration of different areas such as Service-

Oriented systems, MAS, Semantics, and Complex Networks provide the necessary

tools to build a decentralized service management system. We have proposed a

Service-Oriented MAS where agents establish relations with other agents by tak-

ing into account a social feature that is present in complex networks and that acts as

a self-organizing criterion. This feature is called homophily. Specifically, we have

considered a type of homophily called choice homophily that is composed of the com-

bination of value and status homophily. In the context of agents, choice homophily

is based on the attributes of agents. Value homophily is based on the services pro-

vided by the agent. Status homophily is based on the organizational role played by

the agent. Choice homophily is used to create a network based on preferences with-

out the supervision of a central authority where agents have a greater probability of

establishing links with other agents that share attributes with them (such as services

and roles) than with dissimilar agents. Therefore, the system does not need an initial

training period to establish its structure. The resultant structure is a growing network

based on preferences. The degree of connection of this type of networks follows an

exponential distribution.

Moreover, in the presented model, agents only have to maintain their local view and

do not have to store information about routes that could frequently change. The pro-

posed algorithm for decentralized service discovery is based on semantic information

and considers local information about choice homophily between agents in its deci-

sion process.

Several experiments have been performed to evaluate and compare our network model

(network based on CH) and service discovery strategy (CHN) with other existing

proposals in Complex Networks. We evaluated the influence of the inclusion of or-

ganizational information in networks based on CH and in the search strategy CHN.

The consideration of the organizational information in the network structure and in
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the service discovery process considerably improves the performance of the system

providing a high success rate and short paths. Furthermore, the proposed model to

build networks based on homophily creates network structures with a degree of con-

nection that follows an exponential distribution. This means that there are no hubs as

in SF networks that follow a power-law distribution. Therefore, the system is more

robust under critical situations such as sabotage. In these scenarios, their performance

is better than other network structures such as SF networks.

We also compared our proposal with other network structures and algorithms. The

results indicate that the service discovery strategy allows agents to locate the required

service in just a few steps, not only in structures that are built following homophily

criteria but also in other networks such as SF networks. The performance of the al-

gorithm CHN in networks based on CH and SF networks is very similar considering

the average path length of the searches in the discovery process and the success rate.

Although networks based on CH do not have hub nodes such as SF networks that

facilitate the search process reducing the number of steps, agents considering the ho-

mophily information are also able to provide short paths similar to those obtained by

SF structures.
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6.1 Introduction

The evolution of Internet and communications, and the emergence of new business

models have generated new requirements in the underlying systems such as the dy-

namic adaptation to changes in the environment in order to improve the system per-

formance. In distributed large-scale systems, where there is a lack of global knowl-

edge, dynamic adaptation generates new challenges [1] [13]. In this context, the

inclusion of self-organization mechanisms plays an important role to facilitate the

evolution of these systems. Researchers have focused on the integration of self-

organization functionalities in distributed systems. Self-organization is considered

a bottom up mechanism or process that enables a system to arrange its organiza-

117
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tion at run-time, without explicit external commands [39]. Starting from entities that

are structured in a sub-optimal organization or that are not organized at all, a self-

organizing system is able to form a specific organization to pursue a well-defined

goal [75]. The main issue in self-organization is to determine the best mechanism

for reorganizing the current structure through the execution of local actions in order

to achieve the desirable behavior despite a high degree of uncertainty in the sys-

tem. Self-organization mechanisms attempt to deal with this task. The inclusion of

these mechanisms in distributed systems provides desirable system features such as

openness, robustness, flexibility, or scalability [143]. However, the main goal is the

improvement of the system utility in dynamic environments. In order to facilitate the

integration of self-organization mechanisms, it is desirable for the systems to have

three main features: (i) no external control, central authority, or supervisor should

guide the adaptation process; (ii) the system should be able to evolve; (iii) the agents

of the system should be able to deal with uncertainty in order to take decisions.

Service discovery systems are deployed in dynamic environments where their com-

ponents, features, and tasks do not remain constant. These systems are expected to

perform well under many circumstances (i.e., when the number of available agents

changes, or when the service demand varies with time). However, the majority of the

proposals for service discovery in distributed systems are only focused on the location

task and do not take into consideration the inclusion of self-organization mechanisms

in order to adapt their structure to environmental conditions and requirement changes

[105]. The structural adaptation plays an important role in service discovery since

structural relations determine the interactions between the agents, their local knowl-

edge, and, therefore, the performance of the service discovery process. Moreover,

since there is not a global view of the system in large, open, and distributed systems,

this adaptation should be performed in a decentralized way without the supervision

of any centralized authority and considering only local knowledge. This ensures that

the system is robust under failures.

In this chapter, we present two self-organization mechanisms that are included in
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the service discovery process in order to facilitate system adaptation when changes

in service demand occur. One mechanism focuses on how the relations between

agents could be rearranged to improve system performance. The other mechanism

considers the adaptation of the agent population according to the service demand.

The main advantages of this proposal are that the self-organization of the system

is a continuous process that is carried out by each individual agent without central

supervision; each agent is able to reason about when it is most appropriate to make

a self-organization decision; agents only require local information about the service

demand and the utility of their links; and, system dynamics about structural relations

and population are taken into account.

The rest of the chapter is structured as follows: In section 6.2, we describe an ex-

ample of a service discovery scenario. In section 6.3 the information that agents

considers to make decisions is described. Section 6.4 describes the reasoning process

that agents follow to decide about self-organization actions. In section 6.5, we present

a set of experiments to validate the proposed model and the self-organization mech-

anisms in different scenarios. Finally, in section 6.6, conclusions and final remarks

are presented.

6.2 Self-Organized Service Discovery Scenario

To illustrate the context where the self-organization mechanisms are applied, let us to

consider the service discovery scenario presented in Section 5.2. Basically, the sce-

nario consists on a set of agents that play organizational roles and offer semantic web

services. The structural relations between these agents have been established taking

the choice homophily criterion into account. Agents, in some situations, should inter-

act with each other to achieve a task that they cannot afford to do individually since

they are not specialized in that area or because the task is too complex to be carried

out by a single agent. Moreover, we assume that the service demand changes at dif-

ferent times of day. Therefore, agents should be able to evaluate their importance in
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Figure 6.1: Example of a decentralized service discovery system where agents have self-organization
mechanisms.

the system and adapt their structural relations with other agents to deal with changes

in environment conditions trying to optimize the overall performance of the system.

In the scenario shown in Figure 6.1a, agent ai should choose one of its neighbors,

an,aj , or ak, to forward the query q. In order to select the most promising neighbor,

the agent i applies Function 5.8. This function considers: (i) the choice homophily

between the neighbors of ai and a fictitious agent at = (rentalCar, Transport, ∅, ∅)
that offers the service and plays the role specified in the query q; and (ii) the degree of

connection of the neighbors. Assuming the values of choice homophily that appear

in Figure 6.1 (CH(ak, at) = CH(aj , at) = 0.5, and CH(an, at) = 0.15) and the

degree of connection of the agents, agent ai sends the query to the most promising

agent (i.e., agent ak). This process is repeated until the similarity between a local ser-

vice of an agent and the service in the query is over a certain threshold or the query

exceeds the TTL. In the described scenario, the process ends when the query arrives

to agent av (see Figure 6.1a). Afterwards, agent ai stores agent av in its local view as

a possible candidate for establishing a future structural relation if some of its current

relations are not being used currently.
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We assume that as time passes service demand changes and the services offered by

agents that play the role Transport start to be the most demanded services in the

system. As a result, agent ai analyzes its internal state sti and realizes that its struc-

tural relation with neighbor an has not being used but it has knowledge about an

agent from a previous interaction that offers services that now are being demanded.

Therefore, agent ai decides to break its current structural relation with an and es-

tablishes a new one with the candidate that was discovered as a result of a previous

search process ((ai, an) → (ai, av)) (see Figure 6.1b). This self-organization action

reduces the path distance towards the agents that provide the most demanded services

in a certain moment and improves the success rate in future discovery processes.

Also, there are other agents (such as agent am) that, through an analysis of the infor-

mation in their internal state, realize that they are offering services that are not being

demanded in the system. In this case, these agents might decide to leave the system.

For instance, in Figure 6.1b, agent am leaves the system. Otherwise, if the demand

for services offered by agents that play certain roles increases, agents might decide to

create a clone to satisfy the current service demand. Therefore, the population of the

system self-adapts to the demand in each moment. In our scenario, assuming that the

demand for services offered by agents with role Transport increases considerably,

agent av creates a clone, av′ , to satisfy the current service demand.

In our model we include two adaptation mechanisms that allow agents to reason about

different organization actions based on their local view. These organization actions

allow the adaptation of the structural links between agents and the system population

when service demand changes.

6.3 Agent Internal State

Our self-organization model allows agents to reason about actions that they can carry

out in order to improve the service discovery activity in the system. Specifically, this

model allows agents to analyze their local information and, based on this information,
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to determine whether it is appropriate to replace their structural relations that are not

being used with profitable ones or to leave, continue, or clone themselves in order to

adapt the system population to the service demand.

Each agent in the system maintains a local view of what is happening. This local

view is stored in its internal state, sti, (see Definition 2) which is built using the in-

formation collected from previous interactions with other agents. The sti allows an

agent to make decisions based on its local data without the need for communicating

with other agents, which requires coordination with higher level entities that super-

vise what is happening in the system and introduces scalability problems [13]. The

sti of an agent in the system is defined by the following tuple< KNi ∪KAi ,KEi ,Ksti >

where:

• KNi ∪ KAi represents the partial knowledge about its neighborhood. An agent

only has knowledge about a limited number of agents and only has a partial

view of them. Specifically, an agent has knowledge about the following:

– a set of direct neighbors KNi =< {Rj , |Nj |, UQij}∀j ∈ Ni >. Agent ai
contains information about each neighbor j: the roles j plays, the degree

of connection of j, and the number of times that a query that arrived to

the agent ai was not forwarded through its neighbor aj ;

– a set of acquaintances KAi = {ak ∈ A|ak /∈ Ni} that agent ai is at least

aware of them as a result of the discovery process.

The neighborhood of an agent does not remain constant. The update process

of neighbors is carried out by the agents in a proactive way as a consequence

of the service discovery activity in the system: new agents are discovered;

other agents decide to leave since they are not receiving enough requests re-

lated to their services; or existing links are reinforced or replaced depending

on whether or not they are being used in the forwarding process.

• KEi is the model of the local environment. This model includes information that

estimates aspects of the environment that are relevant to the agent in order to
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improve the agent’s situation in the system. In the case of our service discovery

scenario, an agent maintains the following information KEi =< ~qi, Qi, ρi, >,

where:

– ~qi = [qr1i , q
r2
i , ..., ] is the local service demand distribution (i.e., the num-

ber of queries that the agent receives about services offered by different

organizational roles);

– Qi is the number of total queries that the agent receives and forwards;

– ρi is the correlation coefficient that establishes the relationship between

the local service demand distribution ~qi and an estimation of the expected

service demand distribution. The correlation parameter ρi ranges in the

interval [-1,1], where 1 indicates a perfect positive fit and -1 indicates a

perfect negative fit. If there is no linear correlation, ρi is close to 0.

The information contained in the model of the local environment is important

for determining what the most demanded services are. Moreover, this informa-

tion is continuously updated by the continuous interactions among agents and

helps agents to learn about remote parts of the system.

• Ksti is the status of the agent. The status depends on the significance of the

information an agent has. If an agent has an accurate view of the system, it is

considered to be in a stable situation. When a new agent arrives to the system,

or when it has outdated information that introduces noise in its local environ-

ment, the agent is considered to be in a transition situation. It is important

to determine the situation of an agent in order to make decisions related to

the adaptation process. Agents in the system can be in one of two adaptation

status: transition and stable. An agent is in a transition state when its local

view of the service demand in the system (KEi ) does not follow the expected

service distribution (eDist). All the agents are initially in a transition status

since agents do not have information about the service demand distribution in

the system. An agent is in a stable status when its local view of the service

demand follows the expected service demand distribution.
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Power-law, Exponential, and Zipf’s-law distributions are present in many features of

Internet [3, 61]. In our system, the exponential distribution has been considered as

the function that models the service demand in the system, where there are always

a few services that are the most demanded and the rest of the services have a lower

demand rate. Specifically, we assume that the expected service demand distribution is

eDistr(x) = a · ex·b, where the x parameter represents a role identifier. We estimate

the a and b parameters of this distribution using the least squares method and the data

from ~qi.

An example of KEi is shown in Figure 6.2a. The graph reflects the local view of the

service demand distribution ~qi in a certain moment. The x-axis shows the numeric

identifiers for the roles (r1, r2, ...) that appear in the queries that agent ai receives.

The y-axis shows the number of queries forwarded of each role ~qi[r]. The number

of queries is normalized. The line shows an estimation of the expected distribution

of service demand taking into account the data collected by the agent. We consider

that this distribution follows an exponential function since Power-law, Exponential,

and Zipf’s-law distributions are present in many features of Internet [3, 61]. In our

system, the exponential distribution has been considered as the function that models

the service demand in the system, where there are always a few services that are the

most demanded and the rest of the services have a lower demand rate. Specifically, we

assume that the expected service demand distribution is eDistr(x) = a · ex·b, where

the x parameter represents a role identifier. We estimate the a and b parameters of

this distribution using the least squares method and the data from ~qi. Specifically,

in Figure 6.2a, the a and b parameters take the following values: a = 1.73 and

b = 1.16. The correlation coefficient ρi = 0.86 near 1 indicates that the current data

about service demand ~qi fits with the expected exponential distribution eDistr.

Figure 6.2 also shows how the internal state sti of an agent is modified as the service

demand changes. Specifically, in Figure 6.2a, agent ai has its status Ksti = stable.

However, when the service demand changes in the system, the agent should be able

to notice this change. In Figure 6.2b, agent ai is able to recognize that there are cer-
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tain services that are starting to be demanded. These services are offered by agents

that play roles r15, r14, r13, and r11. The correlation ρi between the local data and

the expected service demand distribution decreases considerably (initially the ρi was

0.865 and now it is 0.59). The evolution of ρi indicates that agent ai is aware that

there is a change in the service demand distribution. Therefore, previous information

is not meaningful for analyzing the current situation, and agent ai decides to reset its

local model of the environment (KEi ). Figure 6.2c shows how agent ai has modified

its local service demand distribution ~qi towards a new service demand distribution

where services offered by agents that play roles r15, r14, and r13 are the most de-

manded. Note that agent ai has changed the order of the role identifiers based on

the demand for their services. At that moment, agent ai does not have an accurate

view of the service demand since ρi is 0.54. Figure 6.2d shows how agent ai has

continued reorganizing its local service demand distribution. Now, the correlation

parameter ρi between the data and the estimated service demand distribution has

increased (ρi = 0.89); therefore, agent ai considers that its local data accurately re-

flects the current service demand. As a result, agent ai could consider that it is an

appropriate moment to execute possible self-organization actions.

6.4 Agent Reasoning Process

Agents reason about local properties of the system by combining their partial view

of the neighborhood (KNi ∪ KAi ), their model of the local environment (KEi ), and

their internal status (Ksti ). As a result of this reasoning process, agents make local

decisions that are translated into actions. These actions affect the internal state of the

agents, sti, which should be updated. The environment is also affected by the local

actions carried out by the agents, since the structural relations and the population

are adapted to changes in service demand. These local actions improve the global

performance of the system.

Algorithms 4 and 5 shows an overview of the reasoning process followed by the
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Figure 6.2: Example of the internal state sti of the agent ai where the KEi and Ksti are shown.

agents during the discovery process where self-organization mechanisms are consid-

ered. These algorithms are modifications of the Algorithms 2 and 3 in Chapter 5. The

modifications are lines 7-14 in Algorithm 4 and line 8 in Algorithm 5. This process

is initiated when agent generates a query q = (ai, sq, rq, TTL, ε), which contains

the identifier of the agent that sends the query, the semantic description of the desired

service, the role that the target agent should play, the Time To Live, and the similarity
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threshold ε (see Alg. 4).

The agent that receives the query creates the profile of a fictitious agent at with the

service and role specified in the query q (Alg. 5 Line 2). Agent ai looks for a neighbor

similar to at. If it finds a suitable neighbor, the service discovery process ends (Alg.

5 Lines 4-6) and informs to the agent that generates the query. Otherwise, the agent

ai forwards q to one of its neighbors aj ∈ Ni. Specifically, q is forwarded to the

agent that has semantic closeness (degree of choice homophily) to the fictitious agent

at and also has a high degree of connection (see Equation 5.7)(Alg. 5 Line 8). Then,

agent ai updates its information about: which of its links have been used, the number

of total queries it received (Qi), and the number of queries about the role rq (~qi[rq]).

Finally, if the query is solved successfully, the source agent (which started the ser-

vice discovery process) sends a request to the provider agent that was found. If the

source agent does not already have another agent in its acquaintances that plays the

role contained in the query, the source agent adds the provider agent to its set of ac-

quaintances (Alg. 4 Lines 8-10). Finally, the source agent updates its internal state

sti and analyzes the set of self-organization actions that it can carry out (Alg. 4 Lines

12-14).

Algorithm 4 Function that describes how an agent ai starts a service discovery process where agents
consider self-organization actions.

1: function startDiscovery()
2: TTL→ 100 /* number of steps associated to the query */
3: ε→ 0.75
4: aj ← serviceDiscovery(ai, q = (ai, sq , rq , TTL, ε))
5: if aj 6= ∅ then
6: request(aj , sq)
7: /* START MODIFICATION */
8: if @ak ∈ KAi : rq ∈ Rk then
9: KAi ← KAi ∪ aj

10: end if
11: end if
12: InternalStateAnalysis(ai)
13: LinkDecayAdaptation(ai)
14: PopulationAdaptation(ai) /* END MODIFICATION */
15: end function

In the following sections, we are going to describe the main functions that appear in
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Algorithm 5 Function that describes the service discovery process that an agent ai carries out when
receives a query and considers self-organization actions.

1: function serviceDiscovery(ai, q = (asource, sq , rq , TTL, ε))
2: at ← (rq , sq , ∅, ∅)
3: if TTL > 0 then
4: if CH(ai, at) ≥ ε then
5: found← true
6: inform(asource, ai)
7: else
8: ai ← promisingNeighbor(ai, at) /* MODIFICATION */
9: TTL← TTL− 1

10: serviceDiscovery(ai, q = (asource, sq , rq , TTL, ε))
11: end if
12: else
13: inform(asource, ∅)
14: end if
15: end function

Algorithm 6 Function that describes how an agent ai selects the most promising neighbor when
considers self-organization actions.

1: function promisingNeighbor(ai, at)
2: an ← FNi(at)
3: updateLinksDecay(ai, an)
4: ~qi[rq ]← ~qi[rq ] + 1
5: Qi ← Qi + 1
6: ai ← an
7: return ai
8: end function

the service discovery algorithm: Internal state analysis, Structural adaptation, and

Agent adaptation.

6.4.1 Internal State Analysis

The internal state analysis consists of reorganizing the local information that an agent

has about the service demand and determining whether or not this information is reli-

able and sufficient to be able to know what is happening in the system (see Algorithm

7).

Initially, if the agent is in a transition state, the agent can reorganize the local service

demand distribution ~qi taking into account the number of queries received about the
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services of each role (Lines 2-4). An example of this situation is shown in Figures

6.2c and 6.2d where agent ai is in a transition state and decides to reorganize the

local service demand distribution ~qi ({qr15 � qr14 � qr13 � qr11 � qr12 �
qr10 � qr9 � qr8} to { qr13 � qr15 � qr14 � qr11 � qr9 � qr12}). If the

agent is in a stable state, the previously defined order of most demanded services is

maintained.

Once KEi is updated, the agent updates its status Ksti (Lines 5-9). To determine if

it is in the appropriate status, the agent evaluates the linear correlation. Correlation

parameter ρi indicates the degree of fitness between the local data ~qi and the expected

exponential distribution eDistr(x) = a · ex·b. If ρi is over a certain threshold δ, the

local information accurately reflects the current traffic situation and the agent changes

its current status to stable.

The consideration of an outdated KEi could negatively influence the reasoning pro-

cess of the agent. This usually happens when frequent dynamic changes in the service

demand occur. In order to determine whether or not reset its model of the local en-

vironment KEi and its status Ksti to transition, the agent should receive a sufficient

number of queries. The significance of the number of queries received is evaluated

through a logistic function (Lines 10-24) :

P (Qi) =
1

1 + ·e
−(Qi−d)

y

, (6.1)

where y is the slope, d is the displacement constant, and Qi is the number of queries

the agent has forwarded. The most influential constant is d. A higher value of d

means that the agent is going to consider a higher number of queries in order to

make a decision about resetting the information inKEi . The function P (Qi) returns a

value in the range [0,1], where 0 indicates that the agent has not received a sufficient

number of queries to make a decision about resetting its current KEi and where 1

indicates that the number of queries is significant enough to make a decision. Besides

the number of queries, one of the following cases must also be given in order to reset
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KEi :

• the agent is in a stable status, but its ρi is under a certain threshold (Line 12);

• the agent should be in a stable status since it has received a high number of

queries, but it is still in a transition status (Line 16).

• the agent is in a stable status, but it has never consider to clone itself (Line 20).

All three of these situations mean that the local model of the agent starts to be out-

dated with respect to the current system demand, and it is advisable to reset its local

view since the consideration of outdated information introduces noise in the current

data distribution and affects the self-organization process.

Algorithm 7 Function that analyzes the internal state of the agent: reorganizes the local model of
the environment, changes the status of the agent, or resets its current information when it considers that
is required.

1: function InternalStateAnalysis(i)
2: if (Ksti = TRANSITION) then
3: sort(KEi )
4: end if
5: a, b← leastSquaresF itting(~qi)
6: ρi ← linearCorrelation(a · e(b·x), ~qi)
7: if (ρi > δ) then
8: Ksti ← STABLE
9: end if

10: pReset← 1/(1 + ·e−(Qi−d)/y)
11: if (pReset > random) then
12: if ((Ksti = STABLE) ∧ (ρi < δ) then
13: KEi ← resetInformation(KEi )
14: Ksti ← TRANSITION
15: end if
16: if (Ksti = TRANSITION) then
17: KEi ← resetInformation(KEi )
18: Ksti ← TRANSITION
19: end if
20: if ((Ksti = STABLE) ∧ (clones = 0)) then
21: KEi ← resetInformation(KEi )
22: Ksti ← TRANSITION
23: end if
24: end if
25: end function

Once the agent has analyzed its internal state, it is able to make decisions about
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changing its structural links or about remaining, cloning, or leaving the system. In

the following sections, we explain the information that an agent takes into account in

order to make each decision and the reasoning process that the agent follows.

6.4.2 Self-Organization of the Structural Links

Agents are able to reason about whether or not to maintain, reinforce or create new

structural relations. To facilitate the reasoning process about the structural relations

between agents, agents consider a decay metric that it is associated to each link. This

metric indicates the probability of maintaining a link. It ranges in the interval [0,1],

where 0 indicates that the link is not being used and 1 indicates that the link is being

used. The function is a sigmoid :

decay(UQij) = 1− 1

1 + ·e
−(UQij−z)

y

, (6.2)

where y is the slope and z is the displacement constant. The constant that has more

influence on the decay function is z. In Figure 6.3, the effects of varying this constant

in the function can be observed. If z takes a high value, the agent is more resilient

to making changes in its current links. UQij is the number of queries that arrived

to agent ai and were not forwarded through agent aj . Each time agent ai forwards a

query, it updates the information about the traffic of its links. If the query is forwarded

through agent aj , the UQij is updated to 0. Otherwise, the UQij is increased by

increments of 1 (see Algorithm 6, Line 3). With the information provided by the

decay function, agent ai reasons about the benefit of maintaining its current links.

In Algorithm 8, we describe the reasoning process that agents follow to adapt their

current links. Each agent invokes this function when a service discovery process that

the agent has initiated ends. If the agent has at least one acquaintance (|KAi | > 0) in

its internal state sti as a result of a previous discovery process, then the agent analyzes

its current structural links with its neighbors (Line 2). The agent has information
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Figure 6.3: Decay function for the structural links of agents with different values for the displacement
parameter z.

about its neighborhood KNi in its sti. With this information, the agent evaluates

the probability of maintaining each of its links (Line 4). If this probability is under

a certain threshold, the agent looks for a candidate in KAi . The agent selects the

acquaintance that plays one of the most demanded roles according to its local view

of the environment KEi (Lines 6-10). In the case that a suitable candidate is found

by the agent, the agent breaks its current relation and establishes a new one with the

selected acquaintance. Finally, the agent updates its internal state (Lines 11-15).

6.4.3 Population Self-Organization: Leave, Clone, or Remain

The analysis that evaluates whether it is worthwhile for the agent to remain in the

system, clone itself, or leave the system takes the following three parameters into

account:

• the number of queries received by the agent Qi (see Equation 6.1),

• the degree of correlation ρi,

• the structural homophily of the agent SHi.
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Algorithm 8 Function that analyzes the traffic through each link in order to decide if it is appropriate
to modify them. Each agent invokes this function when a service discovery process that it initiated ends.

1: function LinkDecayAdaptation(ai)
2: if |KAi | > 0 then
3: for aj ∈ KNi do
4: decay ← decay(UQij)
5: if decay < random then
6: while ¬found ∧ an ∈ KAi do
7: if rn ∈ demandedRoles then
8: found← true
9: end if

10: end while
11: if found then
12: KAi ← KAi − an
13: KNi ← KNi ∪ an
14: KNi ← KNi − aj
15: end if
16: end if
17: end for
18: end if
19: end function

In the context of service discovery, we define the concept of structural homophily

SHi as the degree of similarity between the services demanded in the system and

the services provided by an agent in the system. This kind of homophily reflects

how important an agent is to the system with regard to the current service demand.

Structural homophily is used to facilitate the decentralized self-organization of the

system population. In the system, each agent controls the queries that it receives.

The agent classifies each query taking into account the organizational role associated

to its ~qi. The agent stores this information and periodically analyzes its structural

homophily, (i.e., the agent determines how similar the services it offers are to the

services required in the system).

DEFINITION 10 (Structural homophily) The structural homophily of an agent with

respect the system dynamics is defined by the following function :

SHi = a · eri·b (6.3)
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where ri is the role of agent ai that maximizes the following function:

ri = argmax
x∈Ri

a · ex·b (6.4)

where the a and b parameters are obtained in the InternalStateAnalysis function (see

Algorithm 7 Line 5). SHi ranges in the interval [0,1], where 1 indicates that the

services the agent offers are required in the system, and 0 indicates that the services

the agent offers are not being demanded in the system.

An example of how the structural homophily of agent ai is calculated is shown in

Figure 6.2a. Agent ai plays two roles: r1 and r4. At that moment, using the data in ~qi,

the exponential function that estimates the service demand distribution is eDistr =

1.73 · e−x·1.16. Therefore, the structural homophily of agent ai is:

SHi = 1.73 · e−r1·1.16 = 0.54, (6.5)

where

r1 = argmax
r1,r4

[1.73 · e−r1·1.16, 1.73 · e−r4·1.16] = argmax
r1,r4

[0.54, 0.018] (6.6)

This means that the services that agent ai offers are being demanded, but are not the

most demanded services in the system.

The population adaptation algorithm (see Algorithm 9) evaluates whether or not it is

worthwhile for an agent to remain in the system. Basically determines one of three

possible actions: remain in the system, leave the system, or create a clone.

The analysis of the leave action is based on the following parameters: number of

queries received Qi, the degree of correlation ρi, and SHi (Lines 2-8). If the number

of queries received is high enough, ρi is over a certain threshold, and SHi has a

value near 0; then the agent decides to leave the system. However, this does not

always happen. In order to ensure the availability of a certain type of services in
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the system, the agent does not leave the system if there is no similar neighbor that

provides similar services (Line 4). Finally, if the agent leaves the system, it breaks all

the connections with all its immediate neighbors and communicates that it is going

to leave. The neighbors will try to find an alternative neighbor based on the choice

homophily connection criterion.

If the agent has decided not to leave the system, it analyzes the clone action (Lines

9-14). This analysis is also based on the three parameters described above. The main

difference is the logistic function for evaluating the significance of the number of

queries received. In this function, the displacement parameter d takes into account

the number of clones that an agent has:

P (Qi, clones) =
1

1 + ·e
−(Qi−2clones)

y

, (6.7)

where the parameter y is the slope, Qi is the number of queries the agent has re-

ceived, and 2clones is the displacement. A higher value of the displacement implies

that an agent must receive more queries in order to consider a clone action. The

higher the number of clones that an agent creates, the higher the number of queries

should receive; therefore, the next time the probability of cloning decreases exponen-

tially. In our proposal, it is assumed that there are unlimited resources. Therefore, the

displacement depends on the number of clones that an agent has created previously.

However, in scenarios where there are a limited economical or physical resources,

the displacement could be expressed in terms of other variables.

If the number of queries received is high enough, ρi is over a threshold, and SHi has

a value near 1; then the agent decides to execute the clone action (Line 10). However,

this does not always happen. In order to prevent the number of clones increasing

exponentially, there are two more conditions that reduce the probability of cloning.

The agent does not clone if all its neighbors are similar to it or if the number of

queries it forwards has not increased since the last analysis (Line 11). Taking into

account all these parameters, the agent evaluates whether or not creating a clone is
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worthwhile. The clone generated by the agent will offer the same services and play

the same roles, and the number of clones it has will be initialized with the value of

its father. The cloned agent establishes links with other agents in the system taking

into account the choice homophily criterion. When an agent creates a clone it resets

its internal state.

Algorithm 9 Function that decides the most appropriate action taking into account the current local
view of the agent: remain in the system, leave the system, or clone itself. Each agent invokes this
function when a service discovery process it initiated ends.

1: function PopulationAdaptation(ai)
2: pLeave← 1/(1 + ·e−(Qi−d′)/y)
3: if ((Ksti = STABLE) ∧ (SHi < random) ∧ (pLeave > random)) then
4: if (similarN(Ni) >0) then
5: leave()
6: leave← true
7: end if
8: end if
9: pClone← 1/(1 + ·e−(Qi−2clones)/y)

10: if (Ksti = STABLE) ∧ (ρi > δ) ∧ ¬leave
∧(SHi) > random)) then

11: if ((similarN(Ni) <| Ni |) ∧ (∆qi > 0)) then
12: clone()
13: end if
14: end if
15: end function

6.5 Evaluation

Several tests were performed to evaluate the effects of the introduction of adaptation

mechanisms in a decentralized service management system. There were three sets of

tests. Each one analyzes the effects of a different adaptation mechanism on the system

performance. The first test set analyzes the influence of changing structural relations

between agents. The second test set is focused on the effects of agent decisions about

remaining in the system, leaving the system, or cloning themselves. The third test

set that pays attention to the benefits of integrating both the changes in structural

relations and agent decisions about continuing, leaving, or cloning.

Specifically, the tests focus on a set of metrics that are meaningful for the analysis
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of the performance of the system and for the effects on the service discovery process

when agents incorporate self-organization mechanisms [66] [114]. These metrics are:

• Average number of steps required to locate an appropriate agent that solves a

query.

• Percentage of queries that are solved before the TTL.

• Communication load improvement: This measures the system improvement

comparing the number of exchanged messages during the service discovery

process when adaptation mechanisms are exploited with respect to the number

of exchanged messages when the system is not self-organized.

CL = 1− number of messages generated in a self-organized system
number of messages generated in a system that is not self-organized

(6.8)

• Progress: This refers to how the system progressively improves its performance

using a self-organization mechanism.

• Time for adaptation or Latency: This is the time needed to recover the normal

behavior of the system after a change.

• Structural adaptive cost: This quantifies the number of structural changes re-

quired to adapt the system:

– Number of structural relations between agents that have changed during

the service discovery process,

– Number of agents that clone or leave the system during the service dis-

covery process.

Each set of tests has a set of 5 networks (undirected preferential attachment networks)

with 1,000 agents. Agents play one role and offer one semantic web service associ-

ated to this role. Initially, agents are uniformly distributed over 16 roles, which are
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defined in an organizational ontology. The set of semantic service descriptions used

for the experiments have been taken from the OWL-S TC4 test collection 1.

All the agents in the system have the same probability of generating service queries.

A query consists of two features that characterize the required provider agent: the role

and the service. The query is successfully solved when an agent that offers a similar

service (i.e., the degree of semantic match between the semantic service descriptions

is over a threshold ε = 0.75) is found before the TTL (TTL = 100). We assume

that all agents are collaborative, that is, agents will fulfill the rules and redirect the

queries.

Query distribution in the system is modeled as an exponential distribution (λ = 0.7)

where there are services offered by certain roles that are the most demanded and the

rest of services have a lower demand rate [3, 61]. In the experiments, we made a

snapshot of all the metrics every 10,000 queries in order to see the evolution of the

system.

6.5.1 Changing Structural Relations

The first set of tests evaluated the effects of introducing self-organization mecha-

nisms that modify the structural links between agents. Specifically, we evaluated

the mechanism based on the decay of the structural links between agents. We com-

pared the obtained results with another mechanism that is based on a Reinforcement

Learning (RL) algorithm called Weighted Policy Learner (WPL)[2]. We chose this

algorithm to compare our approach since Reinforcement Learning is a common ap-

proach for solving multi-agent decision problems and specifically, the proposal pre-

sented in [2] is the first one to study and analyze the interaction between learning and

self-organization.

WPL uses a learning strategy that is similar to WoLF [18]. As in many RL algorithms,

WPL makes use of two matrices, πi and Qi, for each agent. In the the context of

1http://www.semwebcentral.org/projects/owls-tc/
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service discovery, πi maintains the probability of sending a query about a service

that should be provided by an agent that play the role r through the structural relation

with a neighbor j. Thus, the organizational roles are the states of πi and the actions

are the neighbors. The matrix Qi stores the rewards, which are based on the success

of the previous searches. πi values are initialized using semantic similarity values.

The WPL algorithm is based on the following idea: to slow down learning when

moving away from a stable policy and to speed up learning when moving towards the

stable policy. The decision-making algorithm for establishing when it is appropriate

to add or remove a link is based on a re-organization parameter (Po), and on the

average degree of connection of the network.

In the experiments, we considered different values for configuration parameters that

are meaningful in both self-organization mechanisms. Specifically, we analyzed the

influence of parameters that make agents be more resilient to structural changes or be

more prone to making structural changes. In the case of our self-organization mech-

anism, which is called Decay-based, this parameter is the displacement z (see

Equation 6.2). In the case of the reinforcement learning mechanism, which is called

RL-based, this parameter is the re-organization parameter Po. We evaluated both

mechanisms and the influence of their configuration parameters in two different sce-

narios. In the first scenario we tested several values for the configuration parameters

z and Po. We performed an analysis to determine the configurations that offered the

best results for each mechanism. In the second scenario, we only considered these

configurations under changes in the service demand distribution.

6.5.1.1 First Scenario: service demand does not change.

In the first scenario, the agents were initially distributed over the different organiza-

tional roles uniformly, and the queries that agents generated followed an exponential

distribution (λ = 0.7) over the organizational roles. We chose 4 for the average de-

gree of connection of each agent because with RL-based mechanism a lower value

divided the network into isolated parts. By considering local information generated
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Figure 6.4: Average path length obtained when agents use link-based organization mechanisms: (Left)
Decay-based, (Right) RL-based.

during the discovery process, agents should be able to reorganize their links accord-

ing to the service demand.

Each graph has an associated table that contains the results with error intervals ob-

tained in certain snapshots sn. The results obtained in the first snapshots (sn = 1

and sn = 5) are shown since there were more significant differences between mech-

anisms and configurations. The last snapshot sn = 50 is also shown since it reflects

the final results when the system was adapted. For reasons of clarity, the error inter-

vals of the results are not shown here in the graphs.

Figure 6.4 shows that the introduction of self-organization mechanisms considerably

improves the number of steps required to reach a suitable provider agent. The x-axis

shows the snapshots, and the y-axis shows the average number of steps required to

reach a provider agent that solves the query. Initially, the average number of steps was

near 25 and decreased to 7 steps in a few snapshots. In the case of the RL-based

mechanism, the re-organization parameter with value Po = 0.002 offered better re-

sults than with the other values (see Table 6.1 (Left)). In these configurations, agents

are prone to change their structural links. The Decay-based is less sensitive to

configuration parameters than RL-based, and, in general, the Decay-based im-

provement in the average path length was better than the improvement obtained with

RL-based mechanism.
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Figure 6.5: Percentage of successful searches (searches that are solved before the TTL) when agents
use link-based self-organization mechanisms: (Left) Decay-based, (Right) RL-based.

Av. path
sn = 1 sn = 5 sn = 50

z = 100 8.07 ± 1.03 4.81 ± 0.51 3.45 ± 0.24
z = 300 8.96 ± 0.78 6.70 ± 0.76 4.59 ± 0.52
z = 500 10.02 ± 2.35 7.42 ± 0.80 5.33 ± 0.98

Po = 0.0002 22.85 ± 5.63 18.37 ±7.45 23.76 ± 6.90
Po = 0.002 18.46 ± 2.34 11.12 ±6.25 6.87 ± 0.53
Po = 0.02 13.16 ±6.41 8.14 ± 1.14 10.36 ± 2.25

% Success
sn = 1 sn = 5 sn = 50

z = 100 96.59 ± 0.94 97.71 ± 0.89 98.21 ± 0.23
z = 300 95.47 ± 1.72 97.12 ± 1.5 98.18 ± 0.54
z = 500 96.09 ± 1.42 96.42 ± 1.06 97.94 ± 0.92

Po = 0.0002 86.73 ± 18.70 90.52 ± 15.06 95.65 ± 3.78
Po = 0.002 89.83 ± 15.14 97.35 ± 0.82 97.34 ± 1.20
Po = 0.02 91.83 ± 7.32 96.10 ± 5.11 96.07 ± 3.15

Table 6.1: (Left) Average path length, and (Right) percentage of successful queries in different snap-
shots sn when agents change their structural relations using Decay-based or RL-based mecha-
nisms in the discovery process.
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Figure 6.5 shows the effects on the success of the service discovery process. The

x-axis shows the snapshots, and the y-axis shows the percentage of queries that were

solved by a provider agent before the TTL. In general, both approaches improved

the percentage of queries that ended successfully in the system. This improvement

was achieved in the first snapshots and then remained constant. In the case of the

Decay-based mechanism, there was no difference between the results obtained

with the different values of the z parameter. In the case of the RL-based mecha-

nism, the difference between the results obtained with Po = 0.002, Po = 0.02 and

Po = 0.0002 was more relevant in the first adaptation steps, and then this difference

decreased. It can be concluded that systems that require a faster adaptation should

use values between 0.002 and 0.02 for parameter Po.

Figure 6.6 shows the number of structural relations that agents change in order to im-

prove the system performance. The results show that the Decay-basedmechanism

allowed agents to be aware that there was a change in the service demand; therefore,

they realized that structural changes were needed to adapt some of their links accord-

ing to a new service demand. This fact can be observed in the first five snapshots

where the number of rewired links is greater than in the following snapshots. If the

rewiring action implies a cost, the most suitable configuration is z = 300 since agents

consider the rewiring action, but the number of structural changes is not as significant

as with the configuration z = 100. In the case of the RL-based mechanism, this

only occurred when the re-organization parameter was Po = 0.02 or Po = 0.002.

With lower values of Po, the agents were less prone to make many structural changes

and the structural changes followed a constant rate.

Figure 6.7 shows the improvement in the communication load when the system is

adapted with respect to when agents do not include adaptation mechanisms. In gen-

eral, it can be observed that both mechanisms considerably reduced the communica-

tion load. The Decay-based mechanism introduced an improvement of over 0.5

independently of the values of the parameter z. In the case of the RL-based mech-

anism, the communication load is also decreased, but it took more time and there
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Figure 6.6: Number of structural relations rewired when agents use link-based organization mecha-
nisms: (Left) Decay-based, (Right) RL-based.
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Figure 6.7: Communication load metric when agents use link-based self-organization mechanisms:
(Left) Decay-based, (Right) RL-based.

Number of rewired links
sn = 1 sn = 5 sn = 50

z = 100 546.2 ± 37.44 289.4 ± 62.38 219.8 ± 78.25
z = 300 183.4 ± 41.73 72.2 ± 20.68 34.0 ± 14.45
z = 500 119.6 ± 23.79 28.8 ± 12.72 15.6 ± 14.69

Po = 0.02 12.6 ± 3.63 12.0 ± 5.11 7.4 ± 2.65
Po = 0.002 113.4 ± 28.17 86.0 ± 4.11 36.2 ± 8.16
Po = 0.02 622.6 ± 91.84 333.6 ± 35.59 301.4 ± 47.40

Communication load improvement
sn = 1 sn = 5 sn = 50

z = 100 0.62 ± 0.02 0.76 ± 0.03 0.82 ± 0.01
z = 300 0.55 ± 0.03 0.68 ± 0.05 0.78 ± 0.02
z = 500 0.54 ± 0.05 0.63 ± 0.04 0.75 ± 0.01

Po = 0.0002 -0.12 ± 0.41 0.12 ± 0.51 0.47 ± 0.27
Po = 0.002 0.09 ± 0.45 0.54 ± 0.20 0.68 ± 0.039
Po = 0.02 0.32 ± 0.39 0.60 ± 0.17 0.53 ± 0.10

Table 6.2: (Left) Number of structural relations rewired, and (Right) Communication load improvement
in different snapshots sn when agents use link-based self-organization mechanisms: Decay-based,
and RL-based.

was more variability in the results. This is because the adaptation process with this

mechanism takes more time.
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In general, the Decay-based mechanism provides a more reactive adaptation be-

havior that makes agents change many structural relations when they detect a signifi-

cant change in its internal state. The best configurations were obtained with z = 100

and z = 300. These two configurations were similar. Both offered good results in

path length, success, and communication load. The best results are obtained by the

configuration with z = 100. However, this configuration made a high number of

structural changes. In scenarios where the cost of the structural changes is signifi-

cant, this configuration may not be appropriate, and the configuration with z = 300

could be considered to be more suitable in reduce the costs. The RL-based mech-

anism with parameter configurations Po = 0.002 and Po = 0.02 considered more

structural changes than Po = 0.0002. Therefore, the behavior of the RL-based

mechanism with Po = 0.002 and Po = 0.02 is more appropriate for dynamic envi-

ronments whereas Po = 0.0002 is suitable for less dynamic environments where the

service demand distribution remains without changes during a long period of time

after a change.

6.5.1.2 Second Scenario: dynamic service demand.

In the second scenario, the link-based self-organization mechanisms were evaluated

taking into account a service demand distribution that changes over time. The ser-

vice demand distribution changed in intervals of 500,000 queries. During these inter-

vals, snapshots were made every 10,000 queries in order to see the system evolution.

There were two intervals. In the first interval (snapshots in the range [0,50]), the ser-

vice demand followed an exponential distribution (λ = 0.7). In the second interval

(snapshots in the range [50,100]), the service demand also followed an exponential

distribution. However, in the second interval, the most demanded services were those

that were less demanded in the previous interval. In this second scenario, we only

show the results obtained with the best configurations of each self-organization mech-

anism: for Decay-based mechanism z = 300 and z = 100, and for RL-based

mechanism Po = 0.002.
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Figure 6.8 (Left) shows the effects of adaptation mechanisms on the path length under

dynamic service demand. For the Decay-based algorithm, the adaptation mech-

anism considerably reduced the average number of steps required to reach the target

service in the first interval. There was no a significant difference between the results

obtained with Decay-based and different values of z. The adaptation achieved

in the first interval was better than in the following interval since in the first interval

there was no historical information about different previous service demands, which

introduces noise in the internal state of the agents. The agents should realize that

they must reset their current view of the service demand, and afterwards, collect in-

formation about the new service demand in order to accurately analyze the utility of

their links. In snapshot 50, there was a sharp rise, which indicates that the service

demand changed and the system was not adapted. At the beginning of the second

interval, the service demand changed to the worst case, which was the inverse service

demand distribution. For this reason, in the second interval, the number of structural

changes required was greater than in the previous interval, and the differences be-

tween the results obtained with Decay-based and different values for z parameter

were more significant. The best results were obtained with z = 100, which was the

configuration for agents that were more prone to make structural changes. Note that

in this second interval, the error intervals were bigger (most of all at the beginning

of the second interval), which means that there was more variability in the number of

steps required to find a service (see Table 6.3). Something similar happened with the

RL-based adaptation mechanism. However, there were a few differences with re-

spect to the Decay-based mechanism. The average path length obtained using the

RL-based mechanism was longer (7 steps in the first interval and 10 steps in the

second interval). Moreover, the error intervals were larger, which introduces more

uncertainty in the results (see Table 6.3).

Figure 6.8 (Right) shows the success rate in different intervals. Both adaptation

strategies obtained good results (over the 95% in the majority snapshots). This per-

centage decreased sharply at the beginning of the second interval, when there was a

considerably large change in the service demand distribution. However, the system
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Figure 6.8: (Left) Average number of steps required to reach the desirable provider agent, and (Right)
percentage of successful queries when there are dynamic changes in the service demand and agents use
link-based self-organization mechanisms: Decay-based and RL-based.

Av. path
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 8.07 ± 1.03 4.81 ± 0.51 3.45 ± 0.24 16.40 ± 2.16 7.18 ± 0.54 4.41 ± 0.32
z = 300 8.96 ± 0.78 6.70 ± 0.76 4.59 ± 0.52 18.92 ± 3.89 11.32 ± 1.30 6.37 ± 1.11

Po = 0.002 18.46 ± 2.34 11.12 ±6.25 6.87 ± 0.53 17.02 ± 5.98 13.69 ± 0.92 10.21 ± 1.36

% Success
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 96.59 ± 0.94 97.71 ± 0.89 98.21 ± 0.23 87.14 ± 2.99 96.38 ± 1.47 97.70 ± 0.59
z = 300 95.47 ± 1.72 97.12 ± 1.5 98.18 ± 0.54 82.57 ± 15.63 92.51 ± 5.08 97.19 ± 2.0

Po = 0.002 89.83 ± 15.14 97.35 ± 0.82 97.34 ± 1.20 83.92 ± 4.67 92.69 ± 8.39 96.72 ± 2.32

Table 6.3: (Up) Average path length, and (Down) Percentage of successful searches in different
snapshots sn when service demand changes and agents use link-based self-organization mechanisms:
Decay-based, and RL-based.
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Figure 6.9: (Left) Number of structural relations rewired, and (Right) Communication load improve-
ment when the service demand changes and agents use link-based self-organization mechanisms:
Decay-based and RL-based.

Communication load improvement
sn=1 sn=5 sn=50 sn=51 sn=55 sn=99

z = 100 0.62 ± 0.02 0.76 ± 0.03 0.82 ± 0.01 0.086 ± 0.12 0.64 ± 0.05 0.77 ± 0.02
z = 300 0.55 ± 0.03 0.68 ± 0.05 0.78 ± 0.02 -0.11 ± 0.47 0.39 ± 0.16 0.69 ± 0.07

Po = 0.002 0.09 ± 0.45 0.54 ± 0.20 0.68 ± 0.039 -0.02 ± 0.17 0.32 ± 0.25 0.55 ± 0.09

Number of rewired links
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 546.2 ± 37.44 289.4 ± 62.38 219.8 ± 78.25 1058.8 ± 113.27 447.0 ± 115.59 366.6 ± 125.29
z = 300 183.4 ± 41.73 72.2 ± 20.68 34.0 ± 14.45 376.0 ± 91.58 85.0 ± 53.86 35.8 ± 31.39

Po = 0.002 113.4 ± 28.17 86.0 ± 4.11 36.2 ± 8.16 55.0 ± 10.59 41.0 ± 11.82 22.0 ± 6.78

Table 3: Number of structural relations rewired in different snapshots sn when agents use link-
based adaptation mechanisms, Decay-based and RL-based,and the service demand changes.

Communication load improvement
sn=1 sn=5 sn=50 sn=51 sn=55 sn=99

z = 100 0.62 ± 0.02 0.76 ± 0.03 0.82 ± 0.01 0.086 ± 0.12 0.64 ± 0.05 0.77 ± 0.02
z = 300 0.55 ± 0.03 0.68 ± 0.05 0.78 ± 0.02 -0.11 ± 0.47 0.39 ± 0.16 0.69 ± 0.07

Po = 0.002 0.09 ± 0.45 0.54 ± 0.20 0.68 ± 0.039 -0.02 ± 0.17 0.32 ± 0.25 0.55 ± 0.09

Table 4: Communication load improvement in different snapshots sn when agents use different
adaptation mechanisms, Decay-based, and RL-based, and the service demand changes.

This improvement is influenced by the number of structural changes as well as
by the path length and the success in the discovery process. In the case of the
Decay-based mechanism, the best results are obtained with z = 100. Note that
the results obtained with z = 300 are not as good as the results with z = 100, but
considering that the number of structural changes are lower, the improvement in
the communication load is quite good. In the case of the RL-based mechanism
the improvement is not as significant as with the Decay-based.

In general, we conclude that both mechanisms offer good results for self-
organization of structural relations between agents. However, the Decay-based
self-organization mechanism offers better results than the RL-based mecha-
nism. the main differences are in the number of structural changes, in the av-
erage path length, and in the improvement of the communication load. Moreover,
the latency of the system to achieve a suitable self-organization is greater with
RL-based mechanism than with Decay-based mechanism.

4.2. Population self-organization: Leave, Clone, or Remain
In the second set of tests, we evaluate the effects of local decisions of agents

about continuing in the system, leaving the system, or continuing and cloning
themselves in order to adapt the population of the system accordingly to the ser-
vice demand. Initially, agents are distributed uniformly over the set of roles de-
fined in the system. Agents have an average degree of connection of 2.5. The
service demand in these experiments is dynamic. We have defined two intervals

34

Table 6.4: (Up) Number of structural relations changed, and (Down) Communication improvement
in different snapshots sn when service demand changes and agents use link-based self-organization
mechanisms: Decay-based, and RL-based.

was able to recover its success rate quickly. The latency of the Decay-basedmech-

anism with z = 100 was lower than the RL-based mechanism. Therefore, we can

conclude that the Decay-based is more appropriate for dynamic environments.

Figure 6.9 (Left) shows the number of rewired structural relations to deal with varies

in the service demand distribution at each moment. For Decay-based mechanism

with z = 100, there was a substantial peak in the number of rewired relationships at

the beginning of each interval when the service demand changed. This peak means

that agents, considering their local view, were able to be aware that there was a change
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in the services that were being demanded in the system, and, therefore, there were

links that started to not being used. Agents with parameter z = 100 were more

prone to changes, and they did not wait very long to decide to rewire these relations

that are not being used to more profitable ones with other agents. However, note

that the results obtained with z = 100 had greater error intervals, which indicates

the variability in the number of changes in the structural relations (see Table 6.4).

The results obtained with z = 300 considerably decreased the number of structural

changes and the error intervals since agents wait to receive a higher number of queries

before considering the rewiring action. These results show that this configuration also

offers a high degree of adaptation. Note that if the change in the service demand is

significant (such as in the second interval), the agents note this fact and the number of

the structural changes increases accordingly. For the RL-based mechanism in our

test, the number of structural changes was not as significant as in the Decay-based

mechanism. This indicates that there is an increase in the latency of the system to

achieve a suitable adaptation.

Figure 6.9 (Right) shows the improvement introduced in the communication load

of the system with adaptation mechanisms as the service demand changes. This

improvement is influenced by the number of structural changes as well as by the path

length and the success in the discovery process. For the Decay-based mechanism,

the best results were obtained with z = 100. Note that the results obtained with

z = 300 were not as good as the results with z = 100; however, considering that

the number of structural changes was lower, the improvement in the communication

load was quite good. For the RL-based mechanism, the improvement was not as

significant as with the Decay-based.

In general, we can conclude that both mechanisms offer good results for self-organization

of structural relations between agents. However, the Decay-based self-organization

mechanism offers better results than the RL-based mechanism. The main differ-

ences are in the number of structural changes, in the average path length, and in

the improvement of the communication load. Moreover, the latency of the system
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to achieve a suitable self-organization is greater with the RL-based mechanism

than with the Decay-based mechanism. For highly dynamic environments, the

Decay-based mechanism is more appropriate.

6.5.2 Population Self-Organization: Leave, Clone, or Remain

In the second set of tests, we evaluated the effects of local Population-based

mechanism that considers decisions about continuing in the system, leaving the sys-

tem, or continuing and cloning themselves in order to adapt the population of the

system according to the service demand. Initially, agents were distributed uniformly

over the set of roles defined in the system. The agents had an average degree of con-

nection of 2.5. There are two reasons to choose this degree of connection. One reason

is to evaluate the performance of networks and search algorithms when connection

parameters are at limit. The other reason is that could be scenarios where the main-

tenance of links is costly, therefore, it is interesting to see the behavior of networks

when the average number of connections is low. The service demand in these experi-

ments was dynamic. As in the previous test, two intervals where the most demanded

services change were defined. In the first interval, there was a set of services that

were more demanded than others following an exponential distribution (λ = 0.7).

In the second interval, the least demanded services were the services that were most

demanded in the previous interval. Note that this was the worst scenario. Each in-

terval consisted of a set of 50 snapshots. A snapshot contained 10,000 queries. The

tables with results are not shown here since the graphs clearly show the results with

the error intervals.

Figure 6.10 (Left) shows the effects of local decisions of agents about their situation

with respect to the path length of the service discovery process. As the figure shows,

the two intervals where there were different service demands are clearly defined by

a sharp increase in the path length in the service discovery process. This increase

was more significant at the beginning of the second interval since the population of

the system was adapted to the opposite service demand. At the beginning of the first
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Figure 6.10: (Left)Average number of steps required to locate the provider agent of the required service,
and (Right) Percentage of successful queries when agents use Population-based self-organization
mechanism.

interval, this increase was not as significant since, initially, agents were distributed

uniformly over the roles of the system, (i.e., there were the same number of agents

that played each role). At the end of the first interval, the distribution of the number

of agents per role followed an exponential distribution, where the number of agents

that offered services of certain roles was higher than the number of agents that played

other roles. For this reason, at the beginning of the second interval, where the service

demand followed the opposite service distribution as the first interval, the average

path length increased sharply. At that moment, there were only a few agents that

offered services that were being demanded, and there was a low probability of locat-

ing the required services until the agent population was adapted to the new service

demand. Note that the increase of the path length in this scenario was higher than in

scenarios where only link-based organization mechanisms were introduced. This is

because the degree of adaptation achieved by changing the population of the system

was greater, and, therefore, the effects of changes in the service demand had more

significant effects. The local decisions of agents about their situation in the system

reduced the number of steps required to reach the provider agent needed.

Figure 6.10 (Right) shows the effects of local decisions of agents about leaving or

cloning themselves in the service discovery success. The Population-based

mechanism considerably improved the percentage of successful searches, and it was

able to deal with service demand changes. Note that, in the second interval, the
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Figure 6.11: (Left) Number of agents that decide to clone or leave the system, and (Right) Communi-
cation load improvement as the service demand distribution changes.

error intervals indicate that there was a higher variability in the success rate. This

is because the service demand changed to the opposite service demand; therefore,

this introduced a higher variability in the system adaptation and consequently in the

success of the service discovery process.

Figure 6.11 (Left) shows the number of agents that decided to create a clone or leave

the system. It can be observed that, when there was a change in the service demand,

the agents that offered some services became aware that these services were not in

demand and decided to leave the system. The number of agents that decided to leave

the system was greater at the beginning of each interval, and especially in the second

interval, since, at the end of the first interval, the majority of the system population

was offering services that were demanded in that interval but were now the least

demanded. At the beginning of an interval, the decision to clone themselves was

taken by a lower number of agents than the decision to leave the system since the

decision of this action required the consideration of more information. However, as

time passed, the number of agents that decided to clone themselves was higher than

the number of agents that decided to leave the system. The trend for both actions

(leaving and cloning) fell gradually diminished as the system became adapted.

Figure 6.11 (Right) shows the improvement in the communication load in the system.

It can be observed that the self-organization of the population significantly reduced

the communication load in the system. The latency to recover the normal behavior of
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the system was shorter in the first interval because the agents did not have previous

information about a different service demand that introduced noise in their local view.

Agents were able to adapt to the service demand in the first 10 snapshots. In the

second interval, the latency was greater than in the first interval. The adaptation of

the population to the service demand took 20 snapshots. The progress in each interval

followed a logarithmic curve, where the greater changes were at the beginning and

then the system stabilized.

6.5.3 Combining Self-Organization Strategies

The third set of tests evaluated the combination of the two self-organization mech-

anisms proposed in this paper: Decay-based mechanism with z = 100 and

Population-based mechanism. We selected the value z = 100 since we do

not consider that structural changes imply a cost. In scenarios where there is a cost

in the structural changes, the Decay-based mechanism with z = 300 is more ap-

propriate. As in the previous test, we evaluated the effects of this combination in a

dynamic environment where the service demand changed in each interval. An inter-

val contained 50 snapshots and each snapshot consisted of 10,000 queries. Initially,

the agents were uniformly distributed over the organizational roles. The average de-

gree of connection of an agent was 2.5.

Figure 6.12 shows the results related to the path length of the search process. As in

previous experiments, there was a sharp increase at the beginning of the second in-

terval; then the number of steps required to locate the provider agent went down and

finally remained constant. One of the differences between considering the two mech-

anisms together or separately was that, at the beginning of each interval, the peak

of the number of steps increased more when the two mechanisms were combined.

This was because the system achieved a better adaptation to the current service de-

mand, and, therefore, agents required more steps at the beginning of the next interval

when the service demand changed. Another difference was the variability in the path

length. This variability was reduced when the mechanisms were combined (see Ta-
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Figure 6.12: (Left) Average path, and (Right) Percentage of successful queries when agents include
Decay-based and Population-based mechanisms in the discovery process.

Figure 16: Average path when agents include Decay-based and Population-based mech-
anisms in the discovery process.

Av. path
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 13.29 ± 1.60 8.84 ± 0.93 6.69 ± 0.6 23.39 ± 3 13.92 ± 2.30 7.56 ± 0.76
Links + Agz = 100 13.73 ± 1.5 10.01 ± 1.51 6.32 ± 0.89 30.98 ± 1.14 11.77 ± 1.73 6.26 ± 0.95

Table 1: Average path in different snapshots sn when agents include Decay-based and
Population-based mechanisms in the discovery process.

% Success
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 94.28 ± 3.33 94.16 ± 3.73 95.13 ± 0.85 72.64 ± 7.51 88.18 ± 5.56 94.0 ± 1.81
Links + Agz = 100 93.10 ± 2.52 93.93 ± 0.91 93.83 ± 1.85 68.7 ± 14.55 94.50 ± 2.05 94.67 ± 2.27

Table 2: Success in different snapshots sn when agents include Decay-based and
Population-based mechanisms in the discovery process.
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Table 6.5: (Up) Average path length, and (Down) Percentage of successful searches in dif-
ferent snapshots sn when service demand changes and agents include Decay-based and
Population-based mechanisms in the discovery process.

ble 6.5). This is clearly observed in the results obtained in the second interval, where

there was a service demand that was completely different to the previous one. This

fact is because the adaptation to the service demand of the Population-based

mechanism reduced the number of rewired structural relations needed. Also, the in-

clusion of the Population-based mechanism reduced the latency of the system

to adapt to the new service distribution.

Figure 6.12 (Right) shows the effects of the combination of the two adaptation strate-

gies on the success rate of the service discovery process in the system. At the begin-

ning of an interval where the service demand changed considerably, there was a drop

in the percentage of successful searches. The latency of the adaptation at the begin-
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Figure 6.13: (Left) Improvement in the communication load, and (Right) Number of structural changes
when Decay-based and Population-based mechanisms are combined.

ning of an interval was lower when the two mechanisms were combined. The system

was able to recover from this situation quickly and achieved a success rate of nearly

95%. This success rate was maintained throughout the entire interval. The drop in

the intervals was more significant when the two self-organization mechanisms were

combined because the system was more adapted to the service demand. Note that a

better system adaptation reduced the variability in the obtained results, mainly when

the changes in the service demand were significant (see Table 6.5).

Figure 6.13 (Left) shows the results related to the communication load in the system.

In general, the improvement of the communication load when there was a change in

the service demand was reduced. However, the system was able to recover and im-

prove the communication cost significantly (around 50%). Note, that the combination

of the two strategies reduced variability (see Table 6.6).

With regard to the structural self-organization cost, the combination of the Decay-based

and Population-basedmethods did not have a significant influence on the num-

ber of agents that left the system or cloned themselves. The results obtained are sim-

ilar to the results obtained with the Population-based mechanism that did not

consider the link changes (see Figure 6.11 (Left)).

Figure 6.13 (Right) shows the number of changes in the structural relations between

agents. The number of structural changes increased when both mechanisms were
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Population-based mechanisms are combined.

Communication load improvement
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 0.46 ± 0.12 0.58 ± 0.08 0.66 ± 0.02 -0.30 ± 0.2 0.29 ± 0.15 0.61 ± 0.03
Links + Agz = 100 0.42 ± 0.09 0.54 ± 0.04 0.64 ± 0.06 -0.54 ± 0.27 0.51 ± 0.07 0.66 ± 0.05

Table 3: Communication load improvement in different snapshots sn when agents include
Decay-based and Population-based mechanisms in the discovery process.

of an interval is lower when both mechanisms are combined. The system is able
to recover from this situation quickly and achieve a successful rate near the 95%.
This success rate is maintained during all the interval. The plunge in the intervals
is more significant when both self-organization mechanisms are combined due
to the system is more adapted to the service demand. Note that a better system
adaptation reduces the variability of the obtained results, mainly when the changes
in the service demand are significant (see Table 2).

The results related to the communication load in the system (see Figure 17) are
similar to the results commented in Figures 16 and ??. In general, the improve-
ment of the communication load when there is a change in the service demand
is reduced. However, the system is able to recover and improve the communica-
tion cost significantly, around 50%. Note, that the combination of both strategies
reduces the variability (see Table 3).

Regarding the structural self-organization cost, the combination of both Decay-based
and Population-based methods does not have a significant influence in the
number of agents that leave the system or clone themselves. The obtained results
are similar to the results obtained with the Population-based mechanism
that does not consider the link changes (see Figure 15).

The number of changes in the structural relations between agents is shown in

39

Structural changes
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 158.8 ± 32.66 57.0 ± 30.03 20.6 ± 26.19 339.4 ± 74.57 90.2 ± 46.27 87.8 ± 33.75
Links + Agz = 100 46.2 ± 19.53 42.2 ± 23.23 95.4 ± 32.55 815.2 ± 144.02 129.4 ± 45.59 87.6 ± 114.41

Table 4: Number of rewired links in different sn when agents include Decay-based and
Population-based mechanisms in the discovery process.

Figure ??. The number of structural changes increases when both mechanisms
are combined. This is due to the fact that the system achieves a greater degree of
adaptation that includes not only the structural links, but also the population of
the system, therefore, a change in the service demand requires a higher number of
structural changes.

4.4. Discussion
Taking into account the results of the different tests, we can conclude that the

inclusion of self-organization mechanisms improves considerably the system per-
formance. Particularly, in the case of service discovery, self-organization mecha-
nisms introduce an improvement in the percentage of successful searches as well
as in the average number of steps required to locate a suitable provider agent.
Moreover, the communication load is considerably reduced.

The Decay-basedmechanism offers a more reactive self-organization. There-
fore, the latency or time for adaptation is reduced considerably with respect RL-based
mechanism. However, this reactive behavior implies an adaptive cost in the num-
ber of structural relations changed. The number of changes in the structural re-
lationships between agents can be regulated through the displacement parameter
z. The experiments show that with z = 100, the best results are obtained. How-
ever, in systems where the structural changes are expensive the configuration with
z = 300 reduces the structural changes and also offers good results.

We compared the proposed Decay-based mechanism with a RL-based
mechanism. The best configuration of Decay-based mechanism offer better
results than the best configuration of RL-based mechanism. RL-based mech-
anism reduces the number of structural changes, and therefore, takes more time
for adaptation. This mechanism is not suitable for highly-dynamic environments.

The Population-basedmechanism is also an appropriate for self-organization
in distributed environment. The degree of adaptation obtained with this mech-
anism is higher than with Decay-based mechanism. This fact makes that
changes in the service demand have more significant effects. However, this mech-
anism also offers a small latency to recover from changes in the service demand.
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Table 6.6: (Up) Communication load improvement, and (Down) Number of structural changes
in different snapshots sn when service demand changes and agents include Decay-based and
Population-based mechanisms in the discovery process.

combined. This is due to the fact that the system achieved a greater degree of adapta-

tion that included not only the structural links, but also the population of the system;

therefore, a change in the service demand required a higher number of structural

changes.

6.6 Conclusions

Environmental conditions in open, service-oriented systems change and the systems

should be able to adapt to new circumstances in a decentralized way and taking only

local information into account. This chapter addresses the problem of adaptation to

changes in the environment through self-organization mechanisms. In the presented

system, neither the agent population nor the structural relations between agents re-

main constant. Agents in the system include two self-organization mechanisms in

order to adapt the system to changes in the service demand.

On one hand, agents estimate the utility of their links by analyzing the number of

times they use each link to forward queries. The weight of each link decays with

time if it is not being used. The relationships with neighbors that are not being used

are placed with new structural relations with acquaintances. The acquaintances are

established as a results of the service discovery activity.
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On the other hand, agents are also able to estimate whether or not they are playing an

important role in the system. This estimation is carried out by calculating their struc-

tural homophily in the system. Based on their structural homophily, agents decide to

remain, leave, or clone themselves in order to adapt the population of the system to

the service demand.

We evaluated the proposed approach through a set of experiments taking into ac-

count the effects of the inclusion of self-organization mechanisms of the average

path length, the percentage of successful searches, the improvement in communica-

tions and the time to recover from changes. We analyzed the behavior of each self-

organization mechanism both separately Decay-based and Population-based

and combined.

The Decay-based mechanism offers a more reactive self-organization. Therefore,

the latency or time for adaptation is reduced considerably with respect RL-based

mechanism. However, this reactive behavior implies an adaptive cost in the number

of structural relations changed. The number of changes in the structural relationships

between agents can be regulated through the displacement parameter z. The exper-

iments show that the best results are obtained with z = 100. However, in systems

where the structural changes are expensive, the configuration with z = 300 reduces

the structural changes and also offers good results.

We compared the proposed Decay-based mechanism with a RL-based mecha-

nism. The best configuration of Decay-basedmechanism offers better results than

the best configuration of RL-based mechanism. RL-based mechanism reduces

the number of structural changes, and, therefore, takes more time for adaptation. This

mechanism is not suitable for highly-dynamic environments.

The Population-based mechanism is also appropriate for self-organization in

distributed environments. The degree of adaptation obtained with this mechanism

is higher than with Decay-based mechanism. This causes changes in the service

demand to have more significant effects. However, this mechanism also offers a small

latency to recover from changes in the service demand.
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The combination of Decay-based and Population-based mechanisms of-

fers a more dynamic system adaptation. This combination improves previous mecha-

nisms in the percentage of successful searches, the average path, and communication

load. The latency to adapt to the new service demand is also reduced as well as the

variability in the obtained results. The improvement introduced with the combination

of both mechanisms is more significant when drastic changes in the service demand

are produced and agents have outdated information in their internal states.

In conclusion, the proposed model, which integrates self-organization mechanisms,

can be used in the context of service discovery in open Service-Oriented MAS to

improve the performance of the system under dynamic changes. Agents are able to

reason about when it is the most appropriate to apply self-organization actions. The

proposed mechanisms are based on local information and allow agents to continu-

ously adapt their structural relations and their situation in the system.
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7.1 Introduction

There are distributed systems where the cooperation of all the entities that participate

in them is required to obtain a good performance that provides benefits for all the par-

ticipants. Some of the scenarios where cooperation is required are: wireless ad-hoc

networks where nodes rely on other nodes to forward their packets in order to reach

the destination node; file sharing in P2P systems [133]; streaming applications [80],

discussion boards [53], on-line auctions [121], or overlay routing [15]. If participants

that decide not to contribute in order to maximize their own benefits and exploit the

contributions of the others appear in these scenarios, they will obtain a high rate of

benefits in the short term. However, these benefits decrease as the number of self-

ish participants increases, thereby damaging the performance of the whole system.

159
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There are models of genetic and cultural evolution that confirm that the opportunity

to take advantage of others undermines and often eliminates cooperation [57]. These

cooperation problems are also known as social dilemmas (i.e., the tragedy of the

commons, the free-rider problem, the social trap). The promotion and stabilization

of cooperation in scenarios of this type has been considered to be an area of interest

[42].

One of the scenarios where cooperation plays an important role is service discovery

in open Service-Oriented Multi-Agent systems (Service-Oriented MAS) [38]. These

systems are populated by agents that offer their functionality through services [84].

Agents are social entities that are aware of other agents. However, sometimes this

awareness is not enough to find potential collaborators in order to achieve the goals

of agents. Therefore, open Service-Oriented MAS should provide mechanisms to fa-

cilitate the discovery of services provided by other agents. Nevertheless, this is not

an easy task due to the intrinsic characteristics of these systems. Agents only have

a partial vision of the system, and there is no a central control that is responsible

for supervising the system. As a consequence, agents need the cooperation of their

neighbors in order to forward queries to locate the required resources or services.

Moreover, this becomes even more difficult when there are self-interested agents that

do not cooperate with other agents in order to avoid the cost of forwarding queries.

In that case, if there are no mechanisms to deal with these agents and promote coop-

eration, the performance of the whole system could be seriously compromised.

This chapter proposes a combination of decentralized mechanisms to facilitate the

emergence of cooperation in a service discovery scenario. In this scenario, agents are

located in a network and their interactions are influenced by the network structure.

We propose the integration of social plasticity and the use of incentives to promote

cooperation when self-interested agents appear. Social plasticity is used as a struc-

tural punishment to those agents that decide not to cooperate in repeated encounters.

Incentives are used to promote the cooperation among agents during the service dis-

covery.
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The main contributions of the proposal presented in this chapter are the following:

(i) our mechanism is asynchronous, i.e., agents update their behavior when they par-

ticipate in the service discovery process; (ii) the payoff calculation is based on local

information obtained from the activity of agents and the results in the discovery pro-

cess; (iii) in the rewiring process, agents only break links with those neighbors that

have non-cooperative behavior, and instead of replacing them randomly, the agents

look for another agent based on their preferences; (iv) agents are able to detect when

it is more appropriate to use incentives or social plasticity taking into account local

information about the degree of cooperation of their neighborhood.

The chapter is structured as follows. Section 7.2 describes the service discovery sce-

nario where cooperative and non-cooperative agents are present. Section 7.3 explains

three mechanisms to promote cooperation in service-oriented environments. The first

is based on local structural changes in the structure of the network. The second is

based on incentives. The third mechanism is the combination of the two previous

mechanisms. Section 7.4 presents a set of experiments where we evaluate the perfor-

mance of the proposed mechanisms and compare them with other proposals. Finally,

section 7.5 presents conclusions and final remarks.

7.2 Cooperation in Service Discovery Scenario

Distributed systems rely on the cooperation of the entities that participate in them.

However, in open and heterogeneous environments, a common and more realistic

situation is that selfish agents appear in them [29]. Agents of this type exploit the

cooperation of other agents and deny their cooperation in order to maximize their

benefits. If the number of agents that decide not to cooperate with others increases,

the efficiency of the system could be seriously damaged.

In the scenario of Figure 7.1a we show an scenario where all the agents are coop-

erative. Agent ai can forward the query to agent ak and the discovery process only

requires 3 steps to locate the provider agent av that offers the service it needs. In the
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ai

A Si Ri |N |
ak Sk Rk 5
an Sn Rn 5
aj Sj Rj 4

A Si Ri |N |
ak Sk Rk 5
an Sn Rn 5
aj Sj Rj 4

(a) (b)

ai

Ri = {TravelAgency}
Si = {bookHotel}

ak

Rk = {TravelAgency}
Sk = {searchHotel}

CH(k, t) = 0.5

aj

Rj = {TravelAgency}
Sj = {searchTravel}

CH(j, t) = 0.5

an

Rn = {Employment}
Sn = {jobSeeking}

CH(n, t) = 0.15

av

Rt = {Transport}
St = {rentalCar}
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Rk = {TravelAgency}
Sk = {searchHotel}

CH(k, t) = 0.5
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Rj = {TravelAgency}
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CH(j, t) = 0.5
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Rn = {Employment}
Sn = {jobSeeking}

CH(n, t) = 0.15

av

Rt = {Transport}
St = {rentalCar}

Figure 7.1: Service discovery scenario.(a) All the agents are cooperative. Agent ai only knows its
direct neighbors ak, aj , and an. If ai needs to locate a service (i.e., rentalCar), it will forward the
query to its most promising neighbor (i.e., ak) based on the homophily between the neighbor and the
target agent (i.e., at) that should provide the required service and the degree of the neighbor. (b) Agents
with thick silhouette are not cooperative. Agent ai has to find an alternative agent to ak since ak refuses
to forward queries.

scenario of Figure 7.1b there are cooperative agents that collaborate with others in the

forwarding process, and agents, such as ak (thick silhouette), that are not cooperative

and decide not to forward queries from other neighbors compromising the service

discovery process. As an example, if agent ai receives a query about a service that

it does not offer, it should choose one of its neighbors. Agent ai considers that the

most suitable agent to forward the query is ak. However, agent ai should find another

neighbor, aj , to forward the query since the behavior of ak is non-cooperative and it

is not going to forward the query. As a result of this non-cooperative behavior, the

number of steps required to reach the target agent av increases (5 steps).

In this particular scenario of service discovery, if the number of agents that de-

cide not to forward queries from other agents increases, the length of the paths and

the messages generated in the discovery process increases considerably since non-

cooperative agents should be avoided and alternative paths should be found. There-

fore, cooperative agents must forward more queries, the number of searches that end
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successfully is reduced, and the system efficiency decreases. The worst case is when

the length of a path is near to the TTL and the service is finally not found. In this sit-

uation, the effort of all cooperative agents is useless. For that reason, it is important

to provide mechanisms to be able to confront situations where agents are pursuing

their own goals without cooperating and are compromising the performance of the

overall system [70]. These mechanisms should promote and maintain cooperation in

the system in order to guarantee the proper performance of the system [42].

In the following sections, we describe the information that agents consider when

it is appropriate to deal with non-cooperative behavior, and two mechanisms that

facilitate the emergence of cooperation. One of them is based on local structural

changes. The other one is based on the use of incentives. We also describe under

which circumstances are more appropriate to use them. Finally, we explain how both

mechanisms can be combined to improve the performance of the service discovery

and maintain the degree of cooperation even in scenarios where the predominant

behavior is not collaborate.

7.3 Promoting Cooperation

The structural relations between agents influence their interactions, and, therefore,

influence the behavior of the agents. In the discovery process, if an agent needs to

locate another agent that provides a service in order to achieve one of its goals, it

should rely on the cooperation of its direct neighbors. Based on the local information

about the success or failure of their previous interactions with their direct neighbors,

agents update their behavior (i.e., cooperate or not cooperate in the discovery process)

and decide when it is appropriate to change their current structural relations.

In order to facilitate agents to reason about their behavior in the service discovery

process, each agent maintains a local view of the activity in the system. This local

view is stored in the internal state of the agent sti (see Definition 2). Regarding the

reasoning process about cooperation, agents consider the information contained in
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their internal states, specifically, in their model of the local environment KEi that has

been extended from the definition presented in Section 6.3. The information from the

KEi that the agents use during the cooperation analysis is the following:

• dci represents the degree of cooperation of agent ai. dci ranges in the interval

[0,1]. Agents are not completely cooperative or non-cooperative. They have a

degree of cooperation that establishes the probability of cooperate.

• Ci represents the behavior of agent ai in the last interaction with other agents.

Ci can take two values: cooperative or not cooperative,

• Qi is the number of queries that agent ai forwarded,

• SQi is the number of queries that the agent ai forwarded in discovery processes

that ended successfully,

• RQij is the number of queries from agent ai that agent aj refused to forward,

• Pi is the number of service requests attended to by agent ai,

• Ri is the number of service requests created by agent ai.

Based on the local information that agents have in their internal state (sti), they can

decide to deal with non-cooperative neighbors using social plasticity, incentives, or

the combination of both.

7.3.1 Structural Mechanism: Social Plasticity

Structure is an important feature to consider in the cooperation models [79]. The

structure of the network influences interactions of agents, therefore it is important to

provide agents mechanisms to be able of changing their local structure in the network.

We propose the inclusion of a structural mechanism. Through interactions during the

service discovery process, agents are able to change their relations taking into account
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which neighbors provide profitable relationships and which do not. This feature is

called social plasticity [44]. Social plasticity is the capacity of individuals to change

their relationships as time passes. Specifically, in our system, each agent maintains

information related to its neighbors. This information consists of the number of times

a neighbor has refused to forward one of its queriesRQij . The agent keeps a counter

for each of its links in its internal state (sti). Each counter is increased by one unit

each time that a query is refused by a neighbor. If a neighbor decides to change

its behavior and forwards queries, the agent updates the counter to 0. Therefore,

a cooperative agent that occasionally cannot forward queries, because its workload

at a certain moment is too high to attend to more queries is not considered to be a

non-cooperative agent.

Each time an agent tries to forward a query to one of its neighbors aj , it updates its

information associated to the link with aj and evaluates the utility of the link. In order

to evaluate the utility of a link, an agent ai uses a decay function that calculates the

probability of maintaining a link with aj taking into account the number of queries

that it would have sent through neighbor aj but that aj refused to forward. This

function is a sigmoid that ranges between [0,1],

D(RQij) =
1

1 + e
−(RQij−d)

y

, (7.1)

where RQij is the number of queries that neighbor aj received from agent ai and

that aj decided not to forward. The constant y is the slope and d is the displacement.

These constants are established by the agent. The parameter y indicates if the transi-

tion between considering a structural change or not is going to be sharp or gradual.

As the value of y increases, the transition is more gradual. The displacement d in-

dicates how benevolent an agent is with respect the non-cooperative behavior of its

neighbors. The increase of the value of d means that the agent is going to consider a

higher number of refuses in order to make a decision about looking for another neigh-

bor. The decrease of the value of d means that it is not permissive with the number

of refuses (see Figure 7.2). The function D(RQij) returns a value in the range [0,1],
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Figure 7.2: Sigmoid function that calculates the probability of breaking a current link with a neighbor
and looking for a new neighbor. The figure shows the shape of the function with different values of
slope parameter y and displacement parameter d.

Algorithm 10 Function that an agent uses to analyze if it is appropriate to change a link.

1: function socialP lasticity(ai, aj)
2: if D(RQij) > (random(0, 1)) then
3: Ni ← Ni − {aj}
4: newAg ← lookForNeighbor(ai)
5: Ni ← Ni

⋃
{newAg}

6: NnewAg ← NnewAg
⋃
ai

7: end if
8: end function

where 0 indicates that the agent does not consider that the number of rejects from

its neighbor is enough to make a decision about rewiring, and 1 indicates that it is

necessary to change the link.

Algorithm 10 shows the socialPlasticity function where an agent ai evaluates its link

with one of its neighbors aj . The agent ai uses the D function and considering this

probability it decides to break its current link and look for a neighbor to maintain its

degree of connectivity (Alg. 10 Line 4). We assume that any alternative agent (co-

operator or non cooperator) always accepts a new partner. There are different criteria

for establishing a new link with another agent in the network. We have considered

two criteria:

• establishing a link with a neighbor’s neighbor;

• establishing a link based on choice homophily.
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To illustrate how these criteria affect the system structure, let us begin with simple

examples of networks where agents have social plasticity to ostracize agents that are

not cooperating. Figure 7.3 shows the effect of ostracizing non-cooperative agents

with different rewiring mechanisms. Each network has 100 agents. Each agent is

represented by a node and plays a role and offers a semantic service associated to

the role. There are 6 roles defined in the system. Each color represents the role that

an agent plays. The number inside a node is the identifier of the agent. Agents are

distributed uniformly over the roles and services in the system. The average degree

of connection of the network is 2.5. Figure 7.3a shows the initial structure of the

system. Note that the effect of homophily makes agents establish a higher number

of connections with similar agents than with dissimilar ones. The number of non-

cooperative agents is 25. An agent that breaks a link with another agent looks for

a new one. As stated above, we consider two criteria to replace a link with a non-

cooperative neighbor. We analyzed the effects of each criterion after 1,000 queries

that were uniformly generated by the agents:

Neighbor’s neighbors. The effects of using the criteria Neighbor’s neighbors are

shown in Figure 7.3b. The non-cooperative agents are the agents with id-labels that

range in the interval [0,25]. The nodes that are non-cooperative are isolated as a result

of the local decisions of the agents. The structure of the network remains connected

and the success rate of the discovery process does not change. However, the structure

of the network does not always remain connected. In this case, the non-cooperative

agents have a low degree of connection and they do not are not located in a critical

position in the structure of the network (i.e., hub that connects different communities

of agents). A different situation is when non-cooperative agents have a high degree

of connection. In Figure 7.3c, non-cooperative agents are those nodes with id-labels

that range in the interval [99,74]. These agents with a high degree of connection play

an important role in connecting different communities. The ostracism of these agents

using the Neighbor’s neighbors criterion not only disconnects or reduces the con-

nectivity of non-cooperator agents but also divides the network into several isolated
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(a) Original system structure. (b) Structure of the system when non-cooperative agents
have a low degree of connection. The rewiring criterion of the
agents is ’Neighbor’s neighbors’.

(c) Structure of the system when non-cooperative agents
have a high degree of connection. The rewiring criterion of the
agents is ’Neighbor’s neighbors’.

(d) Structure of the system when non-cooperative agents
have a high degree of connection. The rewiring criterion of the
agents is ’choice homophily’.

Figure 7.3: Effects of social plasticity on the structure of the system where 25 agents are non-
cooperative and 75 cooperative.
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parts. On one hand, the rewiring strategy increases the degree of clustering inside

the community. On the other hand, the rewiring strategy decreases the probability

of establishing connections with different communities, thereby decreasing the suc-

cess rate of the search process since services from different communities cannot be

reached.

Choice Homophily. The effects of the mechanism based on the probability of es-

tablishing a link with an agent that offers similar services and plays similar roles

to the previous neighbor are shown in Figure 7.3d. The probability of agent ai es-

tablishing a connection with an agent similar to aj is proportional to the homophily

between the candidate neighbor and the current neighbor (CH(aj , an)). This strat-

egy gives cooperative agents the opportunity to maintain their inter-community con-

nections avoiding the creation of isolated communities. As Figure 7.3d shows, this

mechanism allows agents to maintain the structure of the network even though non-

cooperative agents are located on a critical position in the structure of the network.

The non-cooperative agents (nodes with id-labels that range in the interval [99,74])

have lost all their connections or their degree of connection has been considerably

reduced. Therefore, they lose their privileged position in the network and now are

located on the fringes of the network or completely ostracized.

Therefore, we consider that the Choice homophily criterion is suitable to avoid the

system disconnection when social plasticity is considered by the agents and non-

cooperative agents have a high degree of connection (i.e., act as hubs in the service

discovery process). The maintenance of the connected system is important to main-

tain the success rate of the discovery process since services located in far positions

could be reached.

The use of social plasticity to isolate or to reduce the degree of connection (thereby

the influence of non-cooperative agents) improves the performance of the system.

However, the use of structural mechanisms when the number of non-collaborator

agents increases could break the network structure into several isolated parts, thus
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reducing the system performance. Moreover, it is difficult to break links with non-

cooperative agents that are located in the fringes of the network and have a low de-

gree of connection. These non-cooperative agents do not receive enough queries to

consider a rewiring action. Note that, in scenarios where structural changes have a

significant cost, this mechanism can not be always profitable. As an alternative to

this method, in the following section, we propose an incentive mechanism that does

not change the network structure to facilitate the emergence of cooperation.

7.3.2 Incentive Mechanism

In the proposed model, agents can have cooperative or non-cooperative behavior. Co-

operating in the service discovery scenario implies that an agent is going to: forward

queries, request services, and attend to requests about its services. If an agent has

non-cooperative behavior, it means that the agent is going to act selfishly by request-

ing services and offering its services, but it is not going to forward the queries that it

receives from its neighbors.

We assume that each action in our model implies a cost or a benefit. For instance,

forwarding a request has a cost since an agent has to dedicate time and resources

to decide which neighbor is the best one to forward the query to. If a query finally

arrives to an agent that provides the required service (i.e., the search process ends

before the TTL), then the agents that participated by cooperating in the forwarding

process will obtain a reward for their contribution. Otherwise, the agents lose their

investment in the forwarding process. Moreover, an agent that locates the required

provider agent must pay for the service and the provider gets a benefit for attending

to the request.

Agents are rational entities that update their own behavior to maximize their own pay-

off. An agent calculates its payoff with the following function based on its behavior
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and taking into account its actions:

PO(sti) = SQi · sq −Qi · q + Pi · p−Ri · r (7.2)

where:

• SQi (number of queries forwarded in discovery process that ended success-

fully), Qi (number of queries forwarded), Pi (number of services provided),

Ri (number of requests generated) is the information of the internal state (sti)

of an agent,

• q is the cost of forwarding queries,

• sq is the benefit obtained by the agents that participate by forwarding queries

in a service discovery process that ends successfully,

• p is the benefit obtained by the agents that provide a service,

• r is the cost of requesting a service.

We assume that all the agents have the same costs and benefits for the actions. The

strategy update rule implemented in this model is based on imitation [132]. Agents

take into account the payoff of their direct neighbors to update their behavior. If an

agent has a neighbor that obtains a higher payoff, the agent changes its behavior to

the behavior of its neighbor (see Algorithm 11).

We would like to remark that cooperative behavior analysis is asynchronous. Agents

that analyze and update their cooperative behavior are those that during the service

discovery process are considered to be the most promising candidates to forward a

query, even though they finally do not forward the query.

When the number of cooperative agents is greater than the number of non-cooperative

agents, non-cooperative agents are prone to change their behavior to cooperate since

the probability that a query ends successfully is high, and, therefore, cooperation
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Algorithm 11 Function that updates the behavior of an agent taking into account the payoff of its
neighbors.

1: function CooperationAnalysis(aj)
2: payOffj ← PO(stj)
3: neighborToImitate← ∅
4: for an ∈ Nj do
5: if PO(stn) > payOffj then
6: neighborToImitate← an
7: end if
8: end for
9: Cj ← CneighborToImitate

10: dcj ← dcneighborToImitate
11: return Cj , dcj
12: end function

receives a reward if the discovery process ends successfully. However, when the

number of non-cooperators is greater than the number of cooperators, cooperative

behavior does not always emerge. In this case, the incentive of cooperating in the

discovery process is not always enough to maintain cooperation.

To asses the impact of the incentive mechanism, we conducted several simulations

in small networks of 100 agents and two different configurations. In the networks

of Figure 7.4, 75% of the agents were cooperative and 25% were non-cooperative.

The rest of the structural parameters of the networks were similar to the networks

presented in Figure 7.3. The costs and benefits of the actions were: q = 0.15, sq =

0.30, p = 0.5, and r = 0.5. Agents update their behavior when they participate

in the discovery process. In the networks of Figure 7.4, non-cooperative agents are

represented by red nodes and cooperative agents by blue nodes.

Figure 7.4a shows an example of the effects of the incentive mechanism after 1,000

queries generated in the system where the degree of connection is uniformly dis-

tributed over the agents without taking into account their behavior. In this scenario,

the incentive mechanism is enough to promote cooperation among agents. The ma-

jority of agents that do not cooperate are situated on the fringes of the network since

these positions are not easily influenced.

Figure 7.4b shows an example of the effects of the incentive mechanism after 1,000
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queries generated in the system where the non-cooperative agents had a high degree

of connection. The non-cooperative agents got benefits quickly since they received

a high number of service requests and they do not have the cost of forwarding oth-

ers’ queries. The cooperative agents had a great number of losses when agents with

a high degree of connection did not cooperate because the discovery process took

more steps, and, therefore, cooperative agents had the cost of forwarding queries but

they had a low probability of receiving a benefit since the number of non-cooperators

was too high and the probability of being successful decreased significantly. In this

scenario, non-cooperative agents obtained a higher payoff than cooperative agents,

and, therefore, had a greater influence on their neighborhood. Although the influence

of the non-cooperative agents was clear, their influence was not enough to convert

all the cooperative agents into non-cooperative agents. There are some special situa-

tions where cooperative agents have influence over the non-cooperative even though

they have a low degree of connection. These cooperative agents are located on the

fringes of the network with a degree of 1. Therefore, they have less probability of

participating in the search process, and they do not have many losses because of the

forwarding process. This fact gives them more benefits than their neighbors, and

they can influence their behavior. Moreover, nodes that have a neighborhood with

the same behavior and a low degree of connectivity do not change their behavior.

However, this is not enough to influence nodes beyond the neighborhood.

7.3.3 Adaptive Combination of Social Plasticity and Incentives

The use of structural mechanisms such as social plasticity or incentives promotes the

emergence of cooperation. On one hand, social plasticity allows agents to isolate or

reduce the connectivity and therefore the influence of those non-cooperators that are

exploiting the system and specially those non-cooperators that have a high degree of

connection. However, if social plasticity is the only mechanism used and the number

of non-cooperators is higher than the number of cooperators, the network could be

broken into several isolated parts which seriously affects to the system performance.
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(b) Initially, the system was populated by a set of 25 non-cooperative agents
that had a high degree of connection (agents with ids in the range [99,75]).
The figure shows the distribution of cooperation after the use of incentives to
promote cooperation among agents.

(a) Initially, the system was populated by a set of 25 non-cooperative agents
and 75 cooperative agents. The degree of connection was uniformly distributed
over agents. The figure shows the e↵ects of using incentives to promote coop-
eration among agents.

Figure 7.4: Evolution of the number of cooperative and non-cooperative agents after 1,000 queries
generated in the system. Initially, there were 75 agents that cooperate and 25 that did not cooperate.
Agents consider incentives during the service discovery process. The nodes represent agents and the
numbers are the identifiers of the agents. Blue nodes represent cooperative agents and red nodes non-
cooperative agents.

On the other hand, a mechanism based on incentives tries to motivate a change in

the behavior of agents to cooperate without changing the structure of the network.

However, if highly connected nodes are non-cooperative or the number of non coop-

erative agents increases, then the expected payoff does not compensate the effort to

cooperate.

We propose the integration of both mechanisms in order to combine their advantages

to deal with non-cooperative scenarios. Incentives is used to change the behavior of

non-cooperative agents and to be more effective is combined with social plasticity.

Social plasticity is used by agents when the majority of their neighbors are non co-

operative in order to reduce the influence of the non-cooperative ones. The influence

decrease of non-cooperative agents makes more effective the use of incentives. With

the combination of both mechanisms the social plasticity reduces the influence of

non-cooperator agents and this fact increases the effectiveness of incentives.
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Algorithms and describes a modified version of the service discovery process Algo-

rithms 2 and 3 presented in Chapter 5 to include the social plasticity and incentives.

Algorithm 14 shows how these two mechanisms have been combined and integrated

in the service discovery process. Specifically, both mechanisms are included in the

process carried out by each agent when it has to decide the most promising neighbor

to forward the query to the target agent. Once an agent ai has selected a neighbor aj ,

agent aj evaluates its behavior comparing its payoff with the rest of its direct neigh-

bors (Line 7). Based on this comparison, the agent decides whether or not to change

its behavior in order to improve its payoff in future interactions.

If agent aj does not cooperate, then ai increases the number of times its neighbor

aj has refused to forward a query. Moreover, ai evaluates whether or not it is ap-

propriate to rewire the current link with aj in order to find a better connection. In

order to find a trade-off between the number of structural changes and the emergence

of cooperation, the use of the social plasticity mechanism is affected by the number

of non-cooperator agents that an agent has in its neighborhood (Lines 11-12). If the

number of non-cooperator neighbors is over a certain threshold, the mechanism used

to facilitate the emergence of cooperation is the social plasticity mechanism com-

bined with the mechanism based on incentives. Otherwise, the mechanism used is

based on incentives only. If aj does not cooperate, ai eliminates aj from the set of

neighbors to consider in the current forwarding process and repeats the process until

a cooperative neighbor is found or the set of neighbors to consider is empty (Lines

13 and 19).

Finally, if ai finds a neighbor that cooperates, the neighbor increases by one its local

information about the number of queries forwarded (Line 17). Otherwise, the search

process fails.

With the combination of the two mechanisms, social plasticity and incentives, non-

cooperative agents lose connectivity, benefits, and influence in the neighborhood. As

a consequence, they decide to change their behavior to the most promising behav-

ior in the neighborhood, which is to cooperate. In situations where the number of
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Algorithm 12 Function that describes how an agent ai starts a service discovery process.

1: function startDiscovery()
2: Ri ←Ri + 1 /* increase of the number of requests generated by aiM ODIFICATION */
3: TTL→ 100 /* number of steps associated to the query */
4: part→ {} /* list of participants in the service discovery process MODIFICATION */
5: ε→ 0.75 /* threshold similarity */
6: aj , part← serviceDiscovery(part, ai, q = (ai, sq , rq , TTL, ε)) /* MODIFICATION */
7: /* if a suitable provider agent is found before the TTL */
8: if aj 6= ∅ then
9: request(aj , sq)

10: Pj ← Pj + 1 /* increase of the number of services provided by agent aj START
MODIFICATION */

11: for an ∈ part do
12: SQn → SQn + 1 /* increase of the number of queries that agent an forwarded in a

discovery process that ends successfully */
13: end for /* END MODIFICATION */
14: end if
15: end function

Algorithm 13 Function that describes the service discovery process that an agent ai carries out when
it receives a query.

1: function serviceDiscovery(part, ai, q = (asource, sq , rq , TTL, ε))
2: found← false
3: at ← (rq , sq , ∅, ∅) /* target agent that represents the profile of a suitable provider agent to solve the query

*/
4: if TTL > 0 then
5: /* if an agent enough similar to the target is found */
6: if CH(ai, at) ≥ ε then
7: found← true
8: inform(asource, part, ai)
9: else

10: /* if the agent is not enough similar, it selects the most promising neighbor */
11: ai ← promisingNeighbor(ai, at) /* START MODIFICATION */
12: if ai 6= ∅ then
13: part→ part ∪ {ai}
14: TTL← TTL− 1
15: serviceDiscovery(part, ai, q = (asource, sq , rq , TTL, ε))
16: else
17: inform(asource, ∅, ∅)
18: end if /* END MODIFICATION */
19: end if
20: else
21: inform(asource, ∅, ∅)
22: end if
23: end function
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Algorithm 14 Function that describes how an agent selects the most promising neighbor when
heterogeneous agents that cooperate and do not cooperate are considered.

1: function promisingNeighbor(ai, at)
2: N ′i ← Ni /* list of candidate neighbors to consider to forward the query */
3: numCoop← 0 /* number of cooperative neighbors */
4: coop← false
5: repeat
6: aj ← FN′

i
(at) /* Most promising neighbor selection function (see Formula 5.8) */

7: Cj , dcj ← cooperationAnalysis(aj)
8: /* if the neighbor aj does not cooperate, ai considers the use of social plasticity */
9: if dcj < random(0, 1) then

10: RQij ←RQij + 1 /* increase of the number of queries that aj rejects from ai */
11: numCoop ← coopNeighbors(ai) /* numCoop number of cooperative neighbors of agent ai

*/
12: /* if the number of cooperative neighbors of agent ai is under a threshold (Ni · ρ) */
13: if coop < Ni · ρ then
14: socialP lasticity(ai, aj)
15: end if
16: N ′i ← N ′i − {aj} /* the neighbor aj is deleted from the list of candidates to consider to forward

the query */
17: coop← false
18: else
19: coop← true
20: Qj ← Qj + 1 /* increase of the number of queries that aj forwarded */
21: end if
22: until ¬coop ∨ (|N ′i | == 0) /* until a cooperator neighbor is found or the list of candidates is empty */
23: if (|N ′i | == 0) then
24: return ∅
25: else
26: return aj
27: end if
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non-cooperative agents is significant, this mechanism allows the emergence of co-

operation. Some agents remain non-cooperative because they are located where the

degree of clustering and the degree of connection are too low; therefore, the number

of services provided and the queries forwarded are too low to influence the others.

7.4 Evaluation

In this section we evaluate the proposed mechanisms to promote cooperation in

service-oriented environments. First, we evaluate the social plasticity mechanism.

Specifically, we analyze the behavior of the mechanism with different configuration

parameters and in different networks. Second, we test the behavior of the incentives

mechanism when different reward values are used in different network configura-

tions. Finally, we evaluate the combination of both mechanism and we compare it

with other approaches used to promote cooperation in distributed environments.

In order to see the effects of the introduction of heterogeneous agents with differ-

ent degrees of cooperation on the performance of the service discovery system, we

conducted several simulations. In these simulations, the networks had 1,000 agents

and there were 16 different roles defined in the system. Each agent played one role

and offered one service associated to the role it played. The set of semantic service

descriptions used for the experiments has been taken from the OWL-S TC4 test col-

lection 1. Roles and services were distributed following a uniform distribution. The

degree of cooperation of an agent ranged in the interval [0,1]. The value assigned to

ε parameter was 0.75. The average degree of connection of the agents was 2.5.

All the agents in the system had the same probability of generating service queries. A

query consisted of two features that characterize the required provider agent: the role

and the service. A query was successfully solved when an agent that offered a similar

service (i.e., the degree of semantic match between the semantic service descriptions

1http://www.semwebcentral.org/projects/owls-tc/
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was over a threshold ε = 0.75) was found before the TTL (TTL = 100). The query

distribution in the system was modeled as a uniform distribution.

7.4.1 Social Plasticity

In order to see the influence of the slope parameter y and the displacement parameter

d (see Figure 7.2), we tested the behavior of the service discovery system when agents

incorporate social plasticity with different values of y and d. The tests were done in

10 networks with 1,000 agents where there were 600 non-cooperative agents and 400

cooperative agents. Each snapshot consisted of 5,000 queries.

Figure 7.5 shows the results of the test. The rows show the structural changes, the

average path to reach the target agent, and the success in the discovery process. The

columns represent each configuration value for the displacement parameter d (d =

7, d = 14, d = 28). In each configuration of the parameter d we have evaluated the

influence of parameter y (y = 1, y = 4, y = 7).

The first row shows the total number of structural changes in the system in each

snapshot. When agents were configured with d = 7, they were less benevolent with

their non-cooperative neighbors and the number of structural changes was larger than

in the other configurations. Note that in all configurations the highest number of

changes were in the first iterations. The effect of a high number of structural changes

is that the system isolates the number of non-cooperators earlier. As the value of

parameter d increases, the number of structural changes is reduced. Note that values

1 and 4 of parameter y also reduced the number of structural changes.

The number of structural changes make that the success rate in configurations with

values d = 7 and d = 14 increases earlier than with other configurations with values

d = 28 and the final success rate when the system is adapted is higher with config-

urations d = 7 and d = 14 than configuration d = 28. In the success results the

parameter y has not a significant influence.
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In general, the average path increases as the non-cooperative agents are isolated. At

the first iterations, the only searches that ended successfully were those that located

a suitable provider agent in a few steps because, in short paths, there was a lower

probability of finding a non-cooperator agent. In the following snapshots, the agents

isolated the non-cooperative agents and the path length of successful searches in-

creased. This happened because not only queries about services provided by nearby

agents could be solved, but also queries about services that were provided by agents

located outside of the circle of interaction of the agents that initiated the discovery

process could be solved. Note that configurations d = 7 and d = 14 obtained similar

results of average path length. In each configuration, the main differences were es-

tablished by the value of the parameter y. However, the configuration d = 14 made

a lower number of structural changes than d = 7. Therefore, for scenarios where

structural changes have a cost associated to them, the configuration of decay function

D(RQij) for evaluating the links of an agent with d = 14 is better than d = 7. Note

that the results indicate that the transition between considering a structural change or

not should be sharp (y = 1) rather than gradual (y = 7, y = 14) since it reduces the

structural changes and the average path length.

We analyzed the social plasticity criterion to find a replacement of a neighbor that

it is not cooperating. Specifically, we considered Neighbor’s Neighbors and Choice

homophily (CH). We also evaluated how the increase of non-cooperative affects the

success rate and the number of steps required in successful searches. For the ex-

periments we consider two types of networks: networks where cooperative and non-

cooperative agents had the same probability of having a high degree of connection,

and networks where non-cooperative agents had a high degree of connection. In the

experiments, 25,000 queries were uniformly generated by the agents. The parameters

of the social plasticity mechanism were d = 14 and y = 1.

Figure 7.6 shows in the first row the success rate of the queries and in the second

row the average path length of the successful queries. Left column shows the results

obtained in networks where all the agents had the same probability of having a high
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Figure 7.5: Influence of slope parameter y and displacement parameter d in a service discovery system
where there are 600 non-cooperative agents and 400 cooperative agents.

degree of connection. Right column shows the results obtained in networks where

non-cooperators had a high degree of connection. The x-axis shows the percentage

of non-cooperative agents.

Regarding the success rate results (see first row of Figure 7.6), as expected, in sys-

tems with a static structure, where agents could not break links with non-cooperative

agents, the percentage of success in the service discovery process decreased consid-

erably. In dynamic systems, providing the agents with social plasticity to modify

their relations benefits the search process. If the number of non-cooperative agents

increases, agents with social plasticity isolate non-cooperative agents and although

the success rate decreases, the decrease is not as significantly as in static networks.

The search process in dynamic networks obtained a success rate of over 80% in the

case where 40% of agents were not collaborating in forwarding tasks. This was an in-

crease of 40% over the success rate obtained in static networks. We can conclude that
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the use of social plasticity to isolate non-cooperative agents benefits system perfor-

mance. However, the social plasticity that used the criterion CH offered better results

than the social plasticity that used Neighbor’s Neighbors criterion. The reason is that

Neighbor’s Neighbors criterion divides the network into isolated parts that reduces

the probability of reaching the required agent. The difference between these two cri-

teria is more clear in networks where non-cooperative agents have a high degree of

connection (see Figure 7.6 right column).

The second row of Figure 7.6 shows how the path length of queries that were suc-

cessfully solved changed as the number of non-cooperative agents increased. In

static networks where all agents had the same probability of having a high degree

of connection the path length of successful queries as the number of non-cooperative

agents did not change significantly. The reason is that only queries that were gen-

erated close to the agent that provided the service could be solved. In the case of

dynamic networks, the path length increased when agents used the criterion Neigh-

bor’s Neighbors. This is because agents were able to find alternative paths avoiding

non-cooperative agents. When agents used the criterion CH , the path length of the

successful queries remained around 11 steps since with the CH criterion the network

structure was maintained and therefore the average path length.

In static networks where non-cooperative agents had a high degree of connection the

path length increased until the 15% of non-cooperators. This increase was because

the non-cooperative agents blocked short paths and agents should find alternative

paths that took more steps. When the percentage of non-cooperators was over the

15% the success rate decreased and only queries that could be solved in the neighbor-

hood ended successfully. Something similar happened to dynamic networks where

agents used social plasticity with the Neighbor’s Neighbor criterion or the CH cri-

terion. However, these effects were less significant in the case of networks where

agents used social plasticity with CH criterion.
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Figure 7.6: Performance evaluation of social plasticity mechanism as the number of non-cooperative
agents increases in two types of networks: (Left column) networks where all agents had the same
probability of having a high degree of connection, (Right column) networks where non-cooperator had
a high degree of connection. Each row shows: % of queries that end successfully, and average number
of steps in service discovery.
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7.4.2 Incentives

We analyzed the effects of different rewards to agents that cooperate in successful

discovery processes in the success rate, in the average path length of successful

searches, and in the emergence of cooperative behavior in the system. We consid-

ered two types of networks: networks where cooperative and non-cooperative agents

had the same probability of having a high degree of connection, and networks where

non-cooperative agents had a high degree of connection. In the experiments 75,000

queries were generated in 10 different networks of each type. The costs and benefits

of the actions were: q = 0.15 cost of forwarding action, p = 0.5 benefit of providing

a service, and r = 0.5 cost of asking for a service. We considered three values for

rewards sq:

• 0.15 that is a reward that compensates the cost of the forwarding action (q =

0.15) but the agents do not obtain any extra reward,

• 0.20 that is a reward that compensates the cost of the forwarding action and

agents obtain an extra reward of 0.05,

• 0.30 this reward that compensates the cost of the forwarding action and agents

obtain an extra reward of 0.15.

The results are shown in Figure 7.7. In networks where all the agents had equal prob-

ability of having a high degree of connection the rewards sq = 0.15 and sq = 0.20

were not enough to promote cooperation. Although the incentives mechanism with

reward sq = 0.20 did not promote cooperation, the success rate was not seriously

affected until the network had the 25% of the initial agents with a non-cooperative

behavior. In the case of networks where non-cooperative agents had a high degree

of connection, the rewards sq = 0.15 and sq = 0.20 could not promote coopera-

tion and the reward sq = 0.30 promoted cooperation only in networks where the

percentage of initial non-cooperator was not over the 10%. The presence of a high

number of non-cooperators made a decrease in the success rate and in the average
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Figure 7.7: Performance evaluation of incentives mechanism with different rewards as the number of
non-cooperative agents increases in two types of networks: (Left column) networks where all agents
had the same probability of having a high degree of connection, (Right column) networks where non-
cooperator had a high degree of connection. The first row shows % of queries that end successfully. The
second row shows the average number of steps in service discovery. The third row shows the number
of cooperator agents.

mean path of the successful searches since only those queries that could be solved in

the neighborhood of the agent that generated the query.
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Figure 7.8: Payoff matrix: (Left) Prisioner’s Dilemma [44], (Right) Stag Hunt Dilemma.

7.4.3 Social Plasticity and Incentives

Several tests were performed to evaluate the effects of the combination of social

plasticity and incentives to facilitate the emergence of cooperation in a decentralized

service discovery system. In the experiments, we made a snapshot of all of the metrics

every time 5,000 queries were solved in the system in order to see the evolution of the

metrics. We compared our proposal of combining social plasticity and incentives with

the separate use of both mechanisms. Moreover, we also compared the proposal with

other mechanisms present in the literature. The set of approaches that we considered

in the tests were the following:

• Social plasticity (SP): agents only consider social plasticity to promote coop-

eration in the system. The value used for the displacement parameter in the

decay function was d = 7 and the value used for the slope parameter was

y = 4.

• Incentives: agents only consider incentives to facilitate the emergence of co-

operation. The costs and benefits of the actions were: q = 0.15, sq = 0.30,

p = 0.5, and r = 0.5.

• Incentives and Social Plasticity (Incentives+SP): agents consider the combi-

nation of incentives and social plasticity to facilitate the emergence of coopera-

tion. The costs and benefits of the actions were: q = 0.15, sq = 0.30, p = 0.5,

and r = 0.5, and the value for the displacement parameter was d = 7 and the

value used for the slope parameter was y = 4.

• Reinforcement Learning (RL): Reinforcement learning has been used as an
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approach for solving decision-making problems in multi-agent systems. It al-

lows agents to dynamically adapt to changes without requiring global knowl-

edge. The reinforcement learning method used to promote cooperation was

WPL. This algorithm is based on the following idea to achieve convergence:

slow down learning when moving away from a stable policy and speed up when

moving towards a stable policy [2]. This idea is similar to the Win or Lose Fast

(WOLF) method [18], but the WPL method offers better performance than

WOLF. The WPL has been adapted to the context of service discovery. Each

agent ai maintains two matrices, πi and Qi, with two dimensions |st| × |acc|
(states and actions). There are two possible states in the context of cooperation:

cooperate or not cooperate. There are two possible actions considered in the

context of service discovery are: forward or refuse to forward a query. The ma-

trix πi stores the probability of cooperating. The value πi(st, acc) represents

the degree of cooperation of an agent in a certain state. The value Qi(st, acc)

represents the expected reward an agent will obtain by executing an action

when it is in a certain state; this value is based on the number of agents in

the neighborhood of agent ai that collaborated and the number of queries that

agent ai sent and were solved successfully. Moreover, each time an agent par-

ticipates in the service discovery process it considers the re-organization of its

links (add or remove links) based on its degree of connection and the initial

average degree of connection of the network.

• Game Theory. We considered two type of games: the Prisioner’s Dilemma

(PD) [44], where individuals might not cooperate even though it seems to be

their best interest to do so; and Stag and Hunt (SH) [69], which describes a

conflict between safety and social cooperation. The main difference between

them is the payoff matrix (see Figure 7.8). In these games, cooperate implies

forwarding queries and not cooperate rejecting forward queries. These games

do not consider the actions of requesting services or providing services.

An agent ai plays the PD (or the SH) with its neighbors (aj) when it is con-

sidered as the most appropriate agent to forward the query. The process of
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updating the behavior of the agents is similar to the process described in [44].

Agent ai and each agent in its neighborhood (aj ∈ Ni) calculate their aggre-

gate payoff within their neighborhood. Agent ai updates its current strategy

by imitating the strategy of the neighbor with the largest payoff. If ai imi-

tates a non-cooperative agent aj , it breaks its link with aj and establishes a

new link with another agent taking into account the homophily criterion with a

probability of p = 0.1.

To evaluate the ’Incentives+SP’ mechanism and compare it with the other approaches,

we considered two scenarios: (i) one in which the number of cooperators was greater

than the number of non-cooperators, and (ii) one in which the number of non-cooperators

was greater than the number of cooperators. Specifically, the tests in each scenario

focus on a set of metrics that are meaningful for the analysis of the performance of

the system: (i) the evolution of the number of cooperator agents in the system; (ii) the

average number of steps required to locate an appropriate agent that solves a query;

(iii) the percentage of queries that are solved before the TTL; (iv) the number of

failures caused by the presence of non-cooperator agents.

Each graph has an associated table that contains the results with error intervals ob-

tained in certain snapshots sn. The results obtained in the first snapshots (sn = 1

and sn = 5) are shown since there were more significant differences between mech-

anisms and configurations than in other snapshots. The last snapshot sn = 20 is

also shown since it reflects the final results when the system evolved. For reasons of

clarity, the error intervals of the results are not shown here in the graphs.

7.4.3.1 Scenario with 600 cooperators and 400 non-cooperators.

In scenarios where the number of cooperator agents is greater than the number of non-

cooperator agents, the majority of the mechanisms improve the degree of cooperation

in the system (see Figure 7.9 (Left)). The best degree of cooperation was achieved

by the mechanism based on ’SH’ and the mechanism based on ’Incentives’. The
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Figure 7.9: Evaluation of (Left) the evolution of cooperation in the system, and (Right) the average
path length in the discovery process when there are 600 cooperative agents and 400 non-cooperative
agents.

Collaboration Av. Path
sn = 1 sn = 5 sn = 20 sn = 1 sn = 5 sn = 20

SP 600 600 600 10.74 ± 0.61 11.92 ± 0.67 12.13 ± 0.73
Incentives 574.2 ± 107.89 710.6 ± 321.2 819.8 ± 322.3 9.92 ± 0.63 10.64 ± 2.76 11.67 ± 2.80

Incentives+SP 587.0 ± 161.3 807.2 ± 90.3 841.4 ± 54.9 11.27 ± 0.46 13.51 ± 1.14 13.64 ± 1.30
RL 592.8 ± 12.8 598.8 ± 35.5 694.4 ± 27.4 11.40 ± 0.7 13.2 ± 0.91 15.72 ± 1.4
DP 513.0 ± 83 570.6 ± 69.7 595.8 ± 56.1 9.52 ± 0.53 8.69 ± 0.64 8.88 ± 8.88
SH 884.2 ± 31.04 945.4 ± 23.2 953.6 ± 20.3 8.88 ± 0.73 12.46 ± 1.15 12.49 ± 1.38

Table 7.1: (Left) Collaboration and (Right) average path length in different snapshots sn when agents
use different strategies to promote cooperation during the discovery process.



190 7.4. Evaluation

’SH’ mechanism achieved a high degree of cooperation since the initial degree of

cooperation made agents to prefer risk and cooperate than safety and not cooperate.

’Incentives’ and ’Incentives+SP’ also achieved a high degree of cooperation since

in this scenario the incentive for the forwarding action was worth it in the majority

of service discovery process. However, the ’Incentives+SP’ achieved a lower degree

of cooperation than ’SH’ due to the social plasticity isolated a high number of non-

cooperator agents that could not change their behavior.

The average number of steps of queries that were successfully solved is shown in

Figure 7.9 (Right). The largest average path length appeared with the ’SP’ mecha-

nism. This is because it took more time to isolate the non-cooperative agents, and,

therefore, the forwarding process had to avoid non-cooperative agents and required

more steps. Moreover, with ’SP’ the number of potential provider agents is reduced

by the ostracism of the non-cooperators. The mechanism ’Incentives+SP’ offered a

lower number of steps than ’SP’ since the influence of incentives facilitated changes

in the agent’s behavior and promoted cooperation. The ’SH’ and ’Incentives’ mech-

anisms offered shorter paths than ’Incentives+SP’ because the degree of cooperation

achieved was nearly 100%; therefore, the number of queries that could only be solved

by agents located far away with this mechanisms could be solved and the success in

the discovery process increased. The ’PD’ mechanism obtained shorter paths than

the other mechanisms since the number of non-cooperative agents did not decrease

and this made that the only successful searches were those that could be solved by

a nearby agent. Therefore, the average path length of successful searches was the

shortest. The error intervals of the results in certain snapshots are shown in Table

7.1. In general, the error intervals increase as time passes due to networks have a

higher number of structural changes and there is more variability in the structure of

the networks.

Figure 7.10 (Left) shows the number of searches that failed because to an agent could

not find a neighbor that forwarded a request. The mechanisms that reduced the num-

ber of failures for non-cooperation were ’SP’ and ’Incentives+SP’. This is because
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Figure 7.10: Evaluation of (Left) the percentage of failures because of the absence of cooperation, and
(Right) the percentage of searches that end successfully in the system when there are 600 cooperative
agents and 400 non-cooperative agents.

Failures Success
sn = 1 sn = 5 sn = 20 sn = 1 sn = 5 sn = 20

SP 95.1 ± 0.84 87.1 ± 3.4 60.8 ± 7.5 54.14 ± 5.34 80.26 ± 4.05 91.23 ± 2.69
Incentives 96.2 ± 1.4 90 ± 13 75 ± 25 43.67 ± 4.10 65.35 ± 41.46 79.55 ± 35.72

Incentives+SP 94.7 ± 1.9 64 ± 24 47 ± 13 53.74 ± 4.90 88.36 ± 9.61 92.02 ± 3.96
RL 96.2 ± 0.7 96.0 ± 0.9 89 ± 3 42.36 ± 3.81 47.09 ± 8.86 63.14 ± 7.2
DP 94.4 ± 0.8 95 ± 1 95 ± 1 40.63 ± 6.40 55.75 ± 12.65 60.14 ± 11.90
SH 93.2 ± 1.3 60 ± 10 63 ± 9 42.12 ± 3.97 86.59 ± 3.67 87.08± 3.78

Table 7.2: (Left) Searches failed because of the absence of cooperation and (Right) successful searches
in different snapshots sn when agents use different strategies to promote cooperation during the dis-
covery process.

Str. Changes
sn = 1 sn = 5 sn = 20

SP 274.6 ± 52.4 78.4 ± 14.2 13.0 ± 6.3
Incentives+SP 254.8 ± 43.7 23.4 ± 10.6

RL 220.8 ± 49.8 38.6 ± 15.1 12.4 ± 5.7
DP 488.6 ± 156.4 27.2 ± 10.5 0.6 ± 0.9
SH 6.4 ± 2.6

Table 7.3: Structural changes in different snapshots sn when agents use different strategies to promote
cooperation during the discovery process.
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both mechanisms isolated the non-cooperators quickly. ’Incentives’ and ’SH’ re-

duced the initial percentage of failures in the first snapshots and then remained con-

stant because the number of non-cooperators are located in the fringes of the network

or in an strategic position that makes difficult change their behavior; therefore, the

number of failures for the absence of cooperation remained constant. When the ’RL’

and the ’DP’ mechanisms were used, the number of non-cooperators could not be

sufficiently reduced; therefore, the main reason for failure was non-cooperation. In

general, the percentage of failures decreases but the error intervals associated to the

data increase as time passes due to the changes in the behavior of the agents and the

network structure introduce variability in the failure results (see Table 7.2).

Figure 7.10 (Right) shows the percentage of searches that were solved successfully.

The strategies of ’SP’, ’Incentives’, ’Incentives+SP’, and ’SH’ obtained good results.

The main difference among them is the number of iterations required to achieve a

successful rate near 90%. The mechanism that offered the best results was the ’In-

centives+SP’ because when the degree of cooperation in the local neighborhood in-

creases, agents only consider incentives and do not use social plasticity; therefore,

the number of agents that remain connected and can be considered to participate in

the discovery process is higher than with other mechanisms such as ’SP’. The error

intervals in certain snapshots are shown in Table 7.2

In Figure 7.11, we compare the number of structural changes made by the agents

using the mechanisms for cooperation. The combination ’Incentives+SP’ reduced

the number of structural changes required to achieve cooperation if we compare the

results with the ’SP’ strategy. This is important because there are scenarios where

changes in the structure entail a cost and also because the excessive use of ’SP’ re-

duces the number of potential provider agents to consider, and therefore, reduces the

possibilities of finding a suitable provider in the service discovery process. The ’DP’

strategy generated the highest number of structural changes since agents did not co-

operate and there was a high number of links between non-cooperative agents that

were broken in the first iterations. The ’SH’ strategy generated only a few structural



7. Cooperation Emergence in Service-Oriented MAS 193

 0

 100

 200

 300

 400

 500

 2  4  6  8  10  12  14  16  18  20

st
ru

ct
u
ra

l 
ch

a
n
g
e
s

snapshots

SP
Incentives+SP

RL
DP
SH

Figure 7.11: Number of structural changes in the system because of the social plasticity of the agents
when there are 600 cooperative agents and 400 non-cooperative agents.

changes since agents preferred the risk of cooperate and this promoted cooperation

in the network decreasing the number of links between non-cooperative agents and

therefore the number of structural changes. The ’RL’ strategy generated less struc-

tural changes than ’Incentives+SP’ and were not enough to promote the cooperation

in the network. In general, the error intervals of the results decrease as time passes

and the behavior of the agents in the network stabilizes and non-cooperative agents

are isolated (see Table 7.3).

In this scenario, there are not significant differences between the mechanisms. In

general, ’SP’, ’Incentives+SP’, and ’SH’ offer the best results. However, the ’SP’

and ’Incentives+SP’ are able to reduce the number of failures for not cooperating

in the discovery process. The main differences between ’SP’ and ’Incentives+SP’

are the average path length since the ’SP’ reduces the number of potential provider

agents and also the number of structural changes to maintain the proper performance

of the system.

7.4.3.2 Scenario 400 cooperators and 600 non-cooperators.

In scenarios where the number of non-cooperators is greater than the number of co-

operators, the mechanisms to facilitate the emergence the cooperation become more
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Figure 7.12: Evaluation of (Left) the evolution of cooperation in the system, and (Right) the average
path length in the discovery process when there are 400 cooperative agents and 600 non-cooperative
agents.

important. The behavior of the system when 600 non-cooperator and 400 cooper-

ator agents are present in the system is evaluated. In this scenario, the differences

between the mechanisms are greater than in the previous scenario since there is a

greater number of non-cooperator agents.

Figure 7.12 (Left) and Table 7.4 show the evolution of cooperation in the system

when different mechanisms were used by the agents to promote cooperation. The best

results were obtained by the ’Incentives+SP’ mechanism. ’Incentives+SP’ achieved

the cooperation of the majority of agents in 5 snapshots. The ’SH’ mechanism ob-

tained worse results than ’Incentives+SP’ mechanism due to the presence of a high

number of non-cooperators. Agents prefer the safety of not cooperating over the risk

of cooperating. The ’RL’ mechanism maintained the cooperation level, but it could

not increase it. The ’DP’ mechanism did not promote cooperation due to the pay-

off for not cooperating taking into account that the majority of the network did not

cooperate. Therefore, the agents imitated the behavior of the agents with the highest

payoff which were the non-cooperators. The ’Incentives’ mechanism did not promote

cooperation since the number of agents that did not cooperate forced the cooperators

to invest resources in searches that were going to fail; therefore, the payoff of the

cooperators decreased and the non-cooperators did not imitate them.

Figure 7.12 (Right) shows the average path length of successful searches. The ’SP’
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Collaboration Av. Path Length
sn = 1 sn = 5 sn = 20 sn = 1 sn = 5 sn = 20

SP 400 400 400 8.82 ± 1.03 11.53 ± 1.23 11.01 ± 1.08
Incentives 314.2 ± 15.22 185.4 ± 54.1 240.2 ± 145.4 6.51 ± 0.55 2.85 ± 2.55 3.61 ± 5.88

Incentives+SP 324.8 ± 53 442.4 ± 42.4 702.0 ± 106.7 2.85 ± 0.83 14.06 ± 1.12 13.99 ± 1.23
RL 414.4 ± 10.1 460.2 ± 48.7 462.4 ± 32 7.30 ± 0.86 8.5 ± 1.24 7.18 ± 1.62
DP 214.8 ± 128.5 263.4 ± 148.9 301.0 ± 171.22 6.33 ± 1.01 6.03 ± 3.08 6.30 ± 3.32
SH 524.2 ± 157.37 539.8 ± 128.7 539.8 ± 128.7 6.53 ± 0.52 9.54 ± 1.05 9.72 ± 1.24

Table 7.4: (Left) Collaboration and (Right) Average path length in different snapshots sn when agents
use different strategies to promote cooperation during the discovery process.

and ’Incentives+SP’ mechanisms obtained longer paths because the number of po-

tential provider agents was reduced since some of them could not be reached because

they were isolated. Consequently, there were some service provider agents that took

more steps to find. In the rest of the mechanisms, the number of non-cooperator

agents was high enough to make the majority of the searches fail. Hence, the number

of queries that ended successfully was low and these queries were those that could be

solved near the neighborhood of the agent that generated the query.

Figure 7.13 (Left) and Table 7.5 show the percentage of failures caused by non-

cooperator agents. The ’Incentives+SP’ and ’SP’ mechanisms reduced the num-

ber of failures considerably. Since the other mechanisms could not deal with non-

cooperators, the main reason for the unsuccessful searches was the absence of co-

operation. Figure 7.13 (Right) shows the percentage of successful searches. When

agents used the ’Incentives+SP’ or ’SP’ mechanisms, cooperator agents were able

to deal gradually with non-cooperators and improved the successful rate of searches.

The ’SH’ mechanism also improved the success rate, but the improvement was not

as significant as the improvement achieved by ’Incentives+SP’ or ’SP’.

Finally, Figure 7.14 and Table 7.6 compare the number of structural changes made

by the different mechanisms. As in the previous scenario, agents were able to detect

at the first snapshots that structural changes are necessary to promote cooperation.

In this scenario, the mechanism ’Incentives+SP’ made more structural changes than

’SP’ since in the first iterations with the mechanism ’Incentives+SP’ the number of
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Figure 7.13: Evaluation of (Left) the percentage of failures because of the absence of cooperation, and
(Right) the percentage of searches that end successfully in the system when there are 400 cooperative
agents and 600 non-cooperative agents.

Failures Success
sn = 1 sn = 5 sn = 20 sn = 1 sn = 5 sn = 20

SP 98 ± 0.96 92 ± 3.15 71 ± 11 36.08 ± 4.99 70.53 ± 5.45 85.86 ± 2.74
Incentives 95 ± 0.78 97 ± 1.1 95 ± 4.7 21.3 ± 1.84 10.04 ± 5.81 20.69 ± 10.43

Incentives+SP 97 ± 0.96 90 ± 19 29 ± 7 35.36 ± 3.40 57.74 ± 10.86 91.52 ± 1.57
RL 97 ± 0.57 97 ± 0.75 97 ± 0.75 20.16 ± 1.86 22.32 ± 2.24 19.88 ± 3.36
DP 95 ± 1.2 96± 1.1 96 ± 1.9 21.10 ± 1.75 29.39 ± 12.14 36.24 ± 18.22
SH 95 ± 1.1 92 ± 2.6 91 ± 3.8 21.37 ± 3.15 63.94 ± 10 63.69 ± 10.32

Table 7.5: (Left) Searches that failed because of the absence of cooperation and (Right) searches that
end successfully in different snapshots sn when agents use different strategies to promote cooperation
during the discovery process.

Str. Changes
sn = 1 sn = 5 sn = 20

SP 414.2 ± 38.11 164.6 ± 30.68 28.8 ± 10.32
Incentives+SP 397.4 ± 44.77 247.4 ± 26.51 1.2 ± 2.28

RL 183.4 ± 25.90 55.2 ± 7.58 18.2 ± 3.99
DP 468.4 ± 200.57 59.2 ± 62.05 59.2 ± 3.99
SH 14.4 ± 7.29 0 ± 0 0 ± 0

Table 7.6: Structural changes in different snapshots sn when agents use different strategies to promote
cooperation during the discovery process.
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Figure 7.14: Number of structural changes in the system because of the social plasticity of the agents
when there are 400 cooperative agents and 600 non-cooperative agents.

non-cooperator agents increased. Therefore, cooperative agents required a higher

number of structural changes than with the ’SP’ mechanism where agents did not

change their behavior and the number of non-cooperators remained constant. The

’DP’ strategy generated the highest number of structural changes since there were a

high number of links between non-cooperative agents that were broken in the first

iterations. The ’SH’ strategy generated only a few structural changes since agents

preferred the risk of cooperate and this promoted cooperation in the network. This

fact decreased the number of links between non-cooperative agents and therefore the

number of links that must be broken. The ’RL’ strategy generated less structural

changes than ’Incentives+SP’ and were not enough to promote the cooperation in the

network.

7.5 Conclusions

This chapter addresses the problem of emergence of cooperation in scenarios where

cooperation is required to achieve a good performance that benefits all of the par-

ticipants. Specifically, our proposal focuses on the emergence of cooperation in de-

centralized service discovery scenarios where agents only have a local view of the

system and need the cooperation of their neighbors in order to locate other agents
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that offer services that they require. Therefore, if selfish agents appear in the system,

in the long term, as the number of non-cooperator agents increases, the service dis-

covery process could be seriously compromised. For this reason, it is important to

provide mechanisms that facilitate the emergence and maintenance of cooperation.

In this chapter, we presented the combination of two mechanisms to facilitate the

emergence of cooperation in open service-oriented multi-agent systems where not all

the agents have cooperative behavior.

On one hand, agents have social plasticity to change their structural relations based on

the degree of cooperation of their neighbors. As the number of times a neighbor re-

fuses to forward a query increases, the probability of changing this relation increases.

If an agent decides to change a neighbor, it chooses a neighbor with similar functional

features to the previous one. This avoids a high degree of fragmentation of the net-

work when agents that act as hubs (i.e., they have a high number of connections) and

non-cooperative agents are isolated by cooperative ones. However, this mechanism

may not be appropriate if there are many non-cooperative agents since cooperative

agents that are trying to isolate non-cooperative ones could change considerably the

structure of the network. Moreover, if many agents are ostracized, the number of

potential provider agents that could solve the query is reduced, and, therefore, the

probability of success in the service discovery process is reduced. Furthermore, there

are scenarios where break links could imply a cost; therefore, not all agent would be

able to make use of social plasticity.

On the other hand, we propose the inclusion of incentives in order to influence the

behavior of other agents. This mechanism associates a cost or a benefit to each ac-

tion that an agent can carry out in the service discovery scenario. Forwarding queries

have a benefit that depends on the success of the discovery process. Therefore, if

the system is populated by a high number of cooperators, forwarding queries is con-

sidered to be a beneficial action with high probability. However, as the number of

non-cooperators increases, this action becomes reckless and less profitable since the

probability of finding an agent that has a neighborhood of non-cooperators increases
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and that ensures that the discovery process fails. Incentives are more appropriate for

the emergence of cooperation in scenarios where the number of non-cooperators is

not greater than the number of cooperators.

In order to deal efficiently with the emergence of cooperation even in scenarios where

the number of non-cooperators is higher than the number of cooperators, we have

proposed an adaptive combination of social plasticity and incentives. Agents con-

sidering local information are able to analyze and change their behavior, influence

their neighbors, and decide when it is more appropriate the use social plasticity and

incentives mechanisms or when it is enough with the incentives mechanism. With

this combination, agents reduce the number of structural changes thereby avoiding

the fragmentation of the network and the decrease of potential providers that can be

considered during the service discovery process. The structural changes are enough

to isolate non-cooperative agents and to increase the effectiveness of incentives in the

emergence of cooperation even in scenarios where the majority of agents are non-

cooperative. The experiments confirm that this combination of mechanisms promote

cooperation in service discovery scenarios with different degrees of cooperation in

the population of agents and offer better results than their use separate and than other

approaches proposed for promoting cooperation in networks and that are based on

game theory or reinforcement learning.
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This chapter summarizes the main contributions of this PhD research and identifies

future work to extend these contributions. The chapter also presents the list of publi-

cations where the main results of the PhD thesis have been presented.

8.1 Contributions

This PhD work presents a model for the management of services in open Service-

Oriented Multi-Agent systems. This model integrates different research areas such as

Service-Oriented Computing, Multi-Agent Systems, Complex Networks, Semantics,

Self-organization and Cooperation. The main contribution of this work is a frame-

work that integrates strategies to facilitate the service management for agents situated

in well-structured virtual organizations as well as for agents situated in loosely struc-

tured networks. Moreover, the proposed framework allows agents to self-organize

201
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in order to maintain the performance of the system when service demand changes.

Due to the openness of Service-Oriented MAS and the requirement of cooperation to

carry out the service discovery activity, we have also included strategies that facilitate

the promotion and maintenance of cooperation.

On the State of the Art Revision level, we have reviewed the literature about struc-

tures and search strategies in distributed systems. We have analyzed proposals on

the areas of Peer-to-Peer, Service-Oriented Computing, Multi-Agent Systems, and

Complex Networks. The analysis is centered on the underlying structure of the sys-

tems, how the information is organized, and how the structure conditions the search

strategy used to locate the required resources. The works reviewed are organized

in three groups: centralized, distributed, and decentralized. Each work is analyzed

and discussed taking into account structural features and aspects related to the search

process that we consider significant for the development of open distributed sys-

tems (i.e., scalability, robustness, adaptability, accuracy, knowledge). Moreover,

we have analyzed works related to self-organization and cooperation emergence in

distributed systems. Finally, remarks about the desirable features that distributed

service-oriented systems should have for the management of resources are presented.

These are: (i) scalability and robustness; (ii) capability to deal with a search process

relying on local information; (iii) self-organization to environmental changes; (iv)

management of different types of information; (v) cooperation promotion; and (vi)

integration of functional and non-functional information. This PhD work deals with

the majority of these issues.

On the Formal level, we have proposed a model that describes the main components

that are part of Service-Oriented MAS and their main features. This model describes

the system as a set of entities located in an undirected network. The concept of entity

integrates individual agents and Virtual Organizations (VOs). Agents are character-

ized by the organizational role they play. This role determines the type of services

offered by an agent that plays that role. Services are defined by their semantic de-

scription. The organizational information and the functional information of an agent
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is considered to establish structural relations between agents in the network. A Vir-

tual Organization is defined by its goals, the individual agents that are part of it, the

roles that are present or required, the structure of the organization, and its function-

ality. Based on individual agents and VOs, we define a set of actions an agent can

perform depending on its situation. There are actions associated to the life-cycle of

organizations as well as actions associated to individual agents that deal with decen-

tralized service management or self-organization.

On the Organization level, we have presented the THOMAS architecture that inte-

grates services, agents, and organizations. The main roles of this architecture are the

Organization Manager, which describes the set of services required for the manage-

ment of the organizational aspects and the life-cycle of the organizations, and the

Service Facilitator, which describes the set of services required for the management

of services provided by entities inside the organizations. Based on this architecture

we have designed a new service-oriented execution framework for supporting the

development of real VOs. This framework extends previous proposals giving sup-

port for VOs, providing functionalities through services that facilitate the interaction

among heterogeneous entities in a standardized way, and providing discovery and

composition services to facilitate the coordination among entities and the organiza-

tion adaptation.

On the Agent level, we have presented different proposals: (i) how the considera-

tion of social features between agents can create self-organized structures; (ii) how

service management can be carried out in a decentralized way; (iii) how agents are

able to adapt locally its structure in order to maintain the system performance when

the service demand changes; and (iv) how the integration of social plasticity and in-

centives in the activities of agents can promote the cooperation in service-oriented

systems.

The first contribution at Agent level is the creation of a self-organized structure based

on preferences. These preferences are based on homophily. The concept of ho-

mophily is based on the organizational role of the agents and the services they offer.
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Agents have more probability to establish links with similar agents than with dissim-

ilar ones. The result of the network structure creation process based on homophily

generates networks where agents have the major part of its connections with similar

agents and some of them with dissimilar agents. The latter links connect different

communities which provides the small-world property of short paths facilitating the

service discovery task. Moreover, the exponential degree distribution of this type of

networks makes the system less vulnerable to intentional failures than other type of

networks such as Scale-Free networks.

The second contribution at Agent level is the proposal of a service discovery based

on local information. Agents, considering local information about their neighbors

degree of connection, and considering the choice homophily between each neighbor

and the target agent, are able to decide which of their neighbors has more probabili-

ties to reach the target agent in less steps. Moreover, the experiments show that the

consideration of organizational information in the search process improves the results

of the service discovery.

The third contribution at Agent level is the proposal of a reasoning process that al-

lows agents to decide when is more appropriate to make local decisions about their

position in the system. These local decisions facilitate the self-organization of the

system when system demand changes. Specifically, agents estimate the utility of

their links by analyzing local information about queries received. The weight of each

link decays with time if it is not being used. The relationships with neighbors that

are not being used are replaced with new structural relations with acquaintances. Ac-

quaintances are established as a result of the service discovery activity. Agents are

also able to estimate whether or not they are playing an important role in the system.

This estimation is carried out by calculating their structural homophily in the system.

Based on their structural homophily, agents decide to remain, leave, or clone them-

selves in order to adapt the population of the system to the service demand. The use

of the self-organization mechanisms maintains the system performance when service

demand changes.
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Finally, the fourth contribution at Agent level is the inclusion of mechanisms to

promote and maintain cooperation in the system. The presence of non-cooperative

agents in the system can affect seriously to the performance of the service discovery

process. Agents in our system have two mechanisms: social plasticity and incentives.

The combination of both promote cooperation even in situations where the number

of non-cooperators is higher than the cooperators. The inclusion of these two mech-

anisms facilitate the maintenance of a proper system performance.

Finally, on the Evaluation level, we have evaluated each of the contributions through

an application example or a set of experiments that consider different scenarios with

different configuration setups to analyze the performance of the different proposals.

8.2 Future Lines of Research

Due to the hybrid proposal presented in this PhD work, we can extend this contri-

bution in different directions by advancing research in any of the areas that are cov-

ered, such as Service-Oriented Computing, Multi-Agent Systems, Semantics, Com-

plex Networks, Self-Organization, or Cooperation. Here, we mention those that we

consider more interesting from our point of view.

Regarding Service-Oriented Computing and Multi-Agent Systems, we consider as

the next step for our research the inclusion of decentralized service composition tak-

ing as start point the proposal of decentralized service discovery. Moreover, in order

to apply the decentralized service discovery in more realistic scenarios, we plan to

consider networks of service directories instead of individual agents. This requires

the analysis of how directories should be defined, how their local information about

services should be organized internally, how the network should be created in a de-

centralized way, and which criteria is appropriate to facilitate the service location.

Another future work related to the decentralized service discovery is exploring al-

ternative solutions instead of stopping the service discovery process when the first

solution is found. If alternative solutions are considered, we plan to include non-
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functional parameters related to the quality of the services to rank the solutions.

Regarding the area of Self-Organization, there are several possibilities that can be

still investigated. One of them is the consideration of costs associated to the different

adaptation actions such as rewiring or cloning. Moreover, in this thesis we have

assumed that agents have an unbounded number of resources, therefore, they always

have enough computational resources to attend and analyze all the queries received

during the service discovery. However, real application scenarios can impose these

constraints to the resources of agents.

Regarding the area of Cooperation, we want to include several considerations that

would create a more complex scenarios for the cooperation emergence. Some of these

considerations are: bounded economical resources in the system, associate costs to

social plasticity, or shared costs of social plasticity between agents that are located

in the neighborhood. Another issue that we want to introduce in a future work is

reputation mechanisms in order to avoid the entry or reconnection of non-cooperative

agents.

Furthermore, depending on the application domain, the preferences over values of

each agent in self-organization and cooperation mechanisms can change with the

curse of the time. In this thesis we have assumed that all agents have the same values

for the parameters in the mechanisms and that their values do not change. This is not

realistic, and therefore, requires adaption methods that allow agents to reconfigure its

self-organization and cooperation parameters dynamically.

8.3 Related Publications

This section presents the publications associated with the PhD thesis that have been

published to date. The first list includes publications in SCI Journals. The second

list includes those publications that are indexed in a ranking. Two rankings are con-

sidered: the CORE and the Computer Science Conference Ranking. The third list
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includes publications from workshops that are not indexed.

8.3.1 Indexed Journals

• E. Del Val, M. Rebollo and V. Botti. An Overview of Search Strategies in

Distributed Environments. The Knowledge Engineering Review pp. In Press.

(2012) JCR 1.257

• E. Del Val, M. Rebollo and V. Botti. Enhancing Decentralized Service Discov-

ery in Open Service-Oriented Multi-Agent Systems. Journal of Autonomous

Agents and Multi-Agent Systems pp. 1-30. (2012) DOI: 10.1007/s10458-012-

9210-0 JCR 1.213 Q2

• E. Del Val, M. Rebollo and V. Botti. Promoting Cooperation in Service-

Oriented MAS through Social Plasticity and Incentives. Journal of Systems

and Software. Vol 86, 2 (February 2013) p. 520-537 JCR 0.836 Q2

8.3.2 Indexed Conferences

• E. Del Val, M. Rebollo and V. Botti. Emergence of Cooperation through Struc-

tural Changes and Incentives in Service-Oriented MAS. Proceedings of the

11th International Conference on Autonomous Agents and Multiagent Systems

pp. 1355-1356. (2012) CORE A

• E. Del Val, M. Vassirani, M. Rebollo and A. Fernández. Enhancing Decen-

tralized Service Discovery through Structural Self-Organization. Proceedings

of the 11th International Conference on Autonomous Agents and Multiagent

Systems pp. 1429-1430. (2012) CORE A

• E. Del Val, M. Rebollo and V. Botti. Self-Organized Service Management in

Social Systems. Proceedings of the 45th Hawaii International Conference on

System Sciences pp. 810-817. (2012) Best paper nomination CORE A
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• E. Del Val, M. Rebollo and V. Botti. Decentralized Service Management based

on Homophily for Self-Adaptive SOMAS. Proceedings of the 8th IEEE Inter-

national Conference on Services Computing pp. 755-756. (2011) CORE A

• E. Del Val. Decentralized Semantic Service Discovery based on Homophily for

Self-Adaptive Service-Oriented MAS. Proceedings of the 10th Int. Conf. on

Autonomous Agents and Multiagent Systems pp. 1347-1348. (2011) CORE
A

• E. Del Val, M. Rebollo and V. Botti. Introducing homophily to improve seman-

tic service search in a self-adaptive system (Extended Abstract). Proceedings

of the 10th Int. Conf. on Autonomous Agents and Multiagent Systems pp.

1242-1243. (2011) CORE A

• E. Del Val, N. Criado, C. Carrascosa, V. Julian, M. Rebollo, E. Argente and V.

Botti. THOMAS: A Service-Oriented Framework For Virtual Organizations.

Proceedings of the 9th Int. Conf. on Autonomous Agents and Multiagent

Systems (AAMAS 2010) pp. 1631-1632. (2010) CORE A

• E. Del Val, M. Rebollo and V. Botti. Decentralized Semantic Service Dis-

covery in MAS. Proceedings of the 8th European Workshop on Multi-Agent

Systems pp. 1-12. (2010) CORE C

• E. Del Val, M. Navarro, V. Julian and M. Rebollo. Managing Real-Time Web

Services Through Agents. Proceedings of the International Conference on

Practical Applications of Agents and Multi-Agent Systems (PAAMS) Vol. 71

pp. 61-68. (2010). Computer Science Conference Ranking: 0.56 (position
51 / 701)

• E. Del Val, N. Criado, M. Rebollo and E. Argente. Normative Time-Bounded

Service Logic. Proceedings of the 7th European Workshop on Multi-Agent

Systems (EUMAS’09) pp. 1-13. (2009) CORE C
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• N. Criado, E. Del Val, M. Rebollo and E. Argente. A Logic for Normative

Time-Bounded Services. Proceedings of the Conferencia de la Asociación

Española para la Inteligencia Artificial (CAEPIA) pp. 645-654. (2009) Com-
puter Science Conference Ranking: 0.55 (position 54 / 701)

• E. Del Val, M. Navarro, V. Julian and M. Rebollo. Ensuring time in ser-

vice composition. Proceedings of the IEEE Congress on Services (SERVICES

2009) Vol. 1 pp. 376-383. (2009) CORE B

• E. Del Val, M. Navarro, V. Julian and M. Rebollo. A framework to guarantee

time-bounded composed services. Proceedings of the IEEE / WIC / ACM

International Conferences on Web Intelligence pp. 434-437. (2009) Computer
Science Conference Ranking: 0.82 (position 16 / 701)

• M. Navarro, E. Del Val, M. Rebollo and V. Julian. Composing and Ensur-

ing Time-Bounded Agent Services. Proceedings of the International Work-

Conference on Artificial Neural Networks (IWANN’09) Vol. 1 N. 5517 pp.

553-560. (2009) Computer Science Conference Ranking: 0.55 (position 55
/ 701)

• E. Del Val, N. Criado, M. Rebollo, E. Argente and V. Julian. Service-Oriented

Framework for Virtual Organizations. Proceedings of the International Confer-

ence on Artificial Intelligence (ICAI) Vol. 1 pp. 108-114. (2009) Computer
Science Conference Ranking: 0.8 (positionn 18 / 701)

• E. Del Val and M. Rebollo. A SURVEY ON WEB SERVICE DISCOVERING

AND COMPOSITION. Proceedings of the International Conference on Web

Information Systems and Technologies (Webist) Vol. I pp. 135-142. (2008)

CORE C

• E. Del Val and M. Rebollo. Service Discovery and Composition in Multiagent

Systems. Proceedings of the 5th European Workshop On Multi-Agent Systems

(EUMAS 2007) pp. 197-212. (2007) CORE C
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8.3.3 Other Conferences

• E. Del Val, M. Rebollo and V. Botti. Composition of Temporal Bounded Ser-

vices in Open MAS. International Symposium on Distributed Computing, Ar-

tificial Intelligence, Bioinformátics, Soft Computing, and Ambient Assisted

Living Vol. 5518 pp. 146-154. (2009)

• M. Navarro, E. Del Val, M. Rebollo and V. Julian. Agent Negotiation Proto-

cols in Time-Bounded Service Composition. Intelligent Data Engineering and

Automated Learning N. 5788 pp. 527-534. (2009)

8.3.4 Workshops

• E. Del Val, M. Rebollo and V. Botti. Strategies for cooperation emergence in

distributed service discovery. Proceedings of the Workshop on Conflict Reso-

lution in Decision Making 2013. In press (2013)

• E. Del Val, M. Rebollo and V. Botti. Semantic Service Discovery in MAS

Using Social Networks. Proceedings of the Workshop on Agreement Tech-

nologies 2010 Vol. 657 pp. 23-34. (2010)

• E. Del Val, M. Rebollo and V. Botti. Decentralized Semantic Service Dis-

covery in Preferential Attachment Networks. Proceedings of the Workshop

on Agent-based Technologies and applications for enterprise interOPerability

(ATOP 2010) pp. 71-82. (2010).

8.3.5 Book Chapters

• E. Del Val, M. Rebollo and V. Botti. Decentralized Semantic Service Discov-

ery in Preferential Attachment Networks. Agent-Based Technologies and Ap-

plications for Enterprise Interoperability. Lecture Notes in Business Informa-

tion Processing, 2012, Volume 98, Part 2, 130-150, DOI: 10.1007/9783642285639 8
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• Bonatti, P., del Val, E., Fernandez, A., Florea, A.M., Jezic, G., Paprzycki,

M., Polleres, A., Rebollo, M., Vouros, G., Zimmermann, A. White Paper: Se-

mantics in Agreement Technologies. Distributed Computing, Artificial Intelli-

gence, Bioinformátics, Soft Computing, and Ambient Assisted Living (2010)
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