
 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved.  

 

 

 

 

 

 

 

Simple API for Z-Stack 
 

 

 

 
Document Number:  SWRA196 

 

 

 

 
Texas Instruments, Inc. 

San Diego, California USA 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

i Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved.  

 

Version   Description Date 

1.0 Initial Release. 05/22/2007 

1.1 Updated for 1.4.3 release. 11/30/2007 

1.2 Added MSP2618 platform. 04/19/2008 

1.3 

Corrected function names for zb_BindDevice, zb_AllowBind, and 

zb_PermitJoiningRequest. 02/09/2009 

1.4 Updated for 2.2.0 release 4/2/2009 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

ii Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

Table of Contents 
1. INTRODUCTION ......................................................................................................................................................... 1 

1.1 PURPOSE .............................................................................................................................................................. 1 
1.2 SCOPE .................................................................................................................................................................. 1 

2. INTRODUCTION TO ZIGBEE.................................................................................................................................... 2 

2.1 WHAT IS ZIGBEE................................................................................................................................................... 2 
2.2 DEVICE TYPES ...................................................................................................................................................... 2 

2.2.1 Coordinator.................................................................................................................................................... 2 
2.2.2 Router ............................................................................................................................................................ 3 
2.2.3 End-device...................................................................................................................................................... 3 

2.3 ADDRESSING ........................................................................................................................................................ 3 

3. OVERVIEW OF Z-STACK’S SIMPLE API ................................................................................................................ 4 

3.1 WHAT IS Z-STACK ................................................................................................................................................ 4 
3.2 HOW TO COMMISSION DEVICES INTO A NETWORK ..................................................................................................... 4 
3.3 HOW TO BIND DEVICES .......................................................................................................................................... 5 
3.4 HOW TO DEVELOP A SIMPLE PRIVATE APPLICATION PROFILE ...................................................................................... 5 

4. EXAMPLE APPLICATIONS ....................................................................................................................................... 8 

4.1 SENSOR DATA COLLECTION APPLICATION ................................................................................................................ 8 
4.2 PRECONFIGURED IN-HOME NETWORK ...................................................................................................................... 9 
4.3 USING THE SAMPLE APPLICATIONS .........................................................................................................................10 

5. API REFERENCE GUIDE...........................................................................................................................................12 

5.1 API FUNCTIONS ...................................................................................................................................................12 
5.1.1 zb_SystemReset..............................................................................................................................................12 
5.1.2 zb_StartRequest .............................................................................................................................................12 
5.1.3 zb_PermitJoiningRequest ...............................................................................................................................13 
5.1.4 zb_BindDevice...............................................................................................................................................13 
5.1.5 zb_AllowBind.................................................................................................................................................14 
5.1.6 zb_SendDataRequest......................................................................................................................................14 
5.1.7 zb_ReadConfiguration ...................................................................................................................................16 
5.1.8 zb_WriteConfiguration...................................................................................................................................16 
5.1.9 zb_GetDeviceInfo ..........................................................................................................................................17 
5.1.10 zb_FindDeviceRequest ...................................................................................................................................18 

5.2 CALLBACK FUNCTIONS .........................................................................................................................................18 
5.2.1 zb_StartConfirm.............................................................................................................................................18 
5.2.2 zb_BindConfirm.............................................................................................................................................19 
5.2.3 zb_AllowBindConfirm....................................................................................................................................19 
5.2.4 zb_SendDataConfirm.....................................................................................................................................19 
5.2.5 zb_ReceiveDataIndication..............................................................................................................................20 
5.2.6 zb_FindDeviceConfirm ..................................................................................................................................20 
5.2.7 zb_HandleKeys ..............................................................................................................................................21 
5.2.8 zb_HandleOsalEvent......................................................................................................................................21 

5.3 CONFIGURATION PARAMETERS ..............................................................................................................................21 
5.3.1 Network specific parameters ..........................................................................................................................22 
5.3.2 Device specific parameters.............................................................................................................................23 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

1 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

1. Introduction 

1.1 Purpose 

This document is a tutorial and reference guide for the SimpleApp sample application distributed with the 

Texas Instruments Z-Stack ™ ZigBee protocol stack (ZigBee Compliant Platform). 

The SimpleApp sample application is intended to present a simplified ZigBee API for the application 

developer. 

• Reduced set of API functions and callback events 

• Simplified stack startup procedure 

• Runtime stack configuration through the use of Z-Tool for Windows 

 

1.2 Scope 

This document is limited to developing applications using the Simple API for Texas Instruments Z-Stack 
ZigBee compliant Protocol Stack. Additional documentation provided with the Z-Stack package such as 

the Z-Stack Developer’s Guide and the Z-Stack API Guide take a more in depth look at application 

development with Z-Stack’s standard programming model. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

2 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

 

2. Introduction to ZigBee 

2.1 What is ZigBee 

ZigBee is an open and global standard for wirelessly networked control and monitoring solutions that are 

reliable, cost-effective, low-power. ZigBee utilizes IEEE 802.15.4 compliant radios operating in the 2.4 

GHz, 915 MHz, and 868 MHz ISM, Industrial, Scientific and Medical, radio bands.  Applications of 
ZigBee include home and building automation, industrial controls, energy management and automated 

metering. 

A ZigBee network is a self-configuring, multi-hop network with battery-powered devices. This means 

that two devices that wish to exchange data in a ZigBee network may have to depend on other 

intermediate devices to be able to successfully do so. Because of this cooperative nature of the network, it 
is required that each device perform certain networking functions. These functions are determined by the 

logical device type. 

 

2.2 Device Types 

There are three logical device types in a ZigBee network – (i) Coordinator (ii) Router and (iii) End-
device. A ZigBee network consists of a Coordinator node and multiple Router and End-device nodes. 

Note that the device type does not in any way restrict the type of application that may run on the 

particular device. 

   

                                                   

 

An example network is shown in the diagram above, with the ZigBee coordinator ( in black ), the routers 

( in red ) and the end devices ( white ).  

2.2.1 Coordinator 

This is the device that “starts” a ZigBee network. It is the first device on the network. The coordinator 
node chooses a channel and a network identifier ( also called PAN ID ) and then starts the network.  

The coordinator node can also be used, optionally, to assist in setting up security and application-level 
bindings in the network. 

Note that the role of the Coordinator is mainly related to starting up and configuring the network. Once 
that is accomplished, the Coordinator behaves like a Router node ( or may even go away ). The continued 

operation of the network does not depend on the presence of the Coordinator due to the distributed nature 

of the ZigBee network. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

3 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

2.2.2 Router 

A Router performs functions for (i) allowing other devices to join the network (ii) multi-hop routing (iii) 

assisting in communication for its child battery-powered end devices. 

In general, routers are expected to be active all the time and thus have to be mains-powered. 

A router caches messages destined for its children until a child wakes and requests data.  When a child 

needs to transmit a message, the child sends the data to the parent router.  The router then takes 

responsibility for delivering the message, performing any associated retransmission, and awaits 
acknowledgement if necessary.  This frees the end device to return to sleep. 

It is important to note that a router is allowed to be the originator or destination of network traffic.  

Therefore, a router can play a dual role serving as an end application and as a router.  Due to the 

requirement that routers must be constantly ready to relay data, they are generally mains powered rather 

then run on batteries.  If an application does not call for battery powered devices, it can be advantageous 
to implement all of the end applications as routers. 

2.2.3 End-device 

An end-device has no specific responsibility for maintaining the network infrastructure, so it can sleep 

and wake up as it chooses. End-devices only wake periodically to send and/or receive data to/from their 

parent. Therefore end devices can be powered by batteries for long periods of time. 

 

2.3 Addressing  

ZigBee devices have two types of addresses. A 64-bit IEEE address (also called MAC address or 

Extended address) and a 16-bit network address (also called logical address or short address).  

The 64-bit address is a globally unique address and is assigned to the device for its lifetime. It is usually 

set by the manufacturer or during installation. These addresses are maintained and allocated by the IEEE. 

More information on how to acquire a block of these addresses is available at 
http://standards.ieee.org/regauth/oui/index.shtml 

The 16-bit address is assigned to a device when it joins a network and is intended for use while it is on the 
network. It is only unique within that network. It is used for identifying devices and sending data in the 

network. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

4 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

 

3. Overview of Z-Stack’s Simple API 

3.1 What is Z-Stack 

Z-Stack is Texas Instrument’s implementation of the ZigBee specification. It is certified as a ZigBee 

Compliant Platform ( ZCP ) by the ZigBee Alliance. It consists of the following components. 

• HAL ( Hardware abstraction layer )  

• OSAL ( Operating system abstraction layer ) 

• ZigBee Stack + IEEE 802.15.4 MAC 

• User Application 

• MT ( Monitor Test ) – Used to communicate with a PC-based test tool via the UART. 

 

The following services are provided by the simplified ZigBee API ( see API Reference Guide for more 

details ) 

• Initialization 

o zb_SystemReset 

o zb_StartRequest 

• Configuration 

o zb_ReadConfiguration 

o zb_WriteConfiguration 

o zb_GetDeviceInfo 

• Discovery ( device, network and service discovery ) 

o zb_FindDeviceRequest 

o zb_BindDevice 

o zb_AllowBind 

o zb_PermitJoiningRequest 

• Data transfer 

o zb_SendDataRequest 

o zb_ReceiveDataIndication 

 

3.2 How to commission devices into a network 

Each device has a set of configuration parameters ( see Configuration parameters  ) that can be configured 

( for example, by a PC tool or an external microcontroller ). The configuration parameters have default 

values that are defined in code.  

Each “network-specific” configuration parameter should be set to the same value in all devices that will 

be part of the network. 

The “device-specific” configuration parameters can be set to different values for each device. But the 

ZCD_NV_LOGICAL_TYPE must be set so that (i) there is exactly one device configured as a 
coordinator (ii) all battery powered devices are configured as end-devices. 

Once this done, the devices can be powered-up in any order. The coordinator device will start the network 

and the other devices will find and join it. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

5 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

The coordinator device will scan all channels specified in the ZCD_NV_CHANLIST configuration 

parameter and pick a channel that has the least energy level. If more than one channel has low energy 
level, the coordinator will pick the channel with the least number of existing ZigBee networks. The 

coordinator will choose the network identifier specified in the ZCD_NV_PANID parameter. 

The routers and end-devices will scan the channels specified in ZCD_NV_CHANLIST configuration 

parameter and try to find the network with the identifier specified in the ZCD_NV_PANID parameter. 

 

3.3 How to bind devices 

A binding is a logical link between two devices at the application layer. Multiple bindings can be created 
on a device, one for each type of data packet. In addition, a binding may have more than one destination 

device ( one-to-many bindings ).  

For example, in a lighting network with multiple switches and lights, each switch will control one or more 

light. In that case, a binding should be created in each switch. This allows the application to send the data 

packets without knowing the actual destination address. 

Once a binding is created on the source device, the application can send data without specifying a 
destination address (in the call to zb_SendDataRequest(), the invalid address - 0xFFFE should be used as 

the destination ). This will cause the stack to look up the destination in its internal binding table based on 

the command identifier of the packet.  

There can be more than one destination in the binding entry. In that case, the stack will automatically send 

a copy of the packet to each destination specified in the binding entry. 

Also, if the NV_RESTORE compile option is enabled when building the image, the stack will save the 

binding entries to non-volatile ram This is useful in the device has an accidental reset ( or if the batteries 
need to be changed on the device ), the device can recover automatically without the user having to setup 

the bindings again. 

 

There are two mechanisms available to configure device bindings. If the extended address of the 

destination device is known, the zb_BindDevice() can be to create a binding entry. 

If the extended address is not known, a “push button” strategy may be employed. In this case, the 

destination device is first put in a state where it will respond to match requests by issuing the 

zb_AllowBindResponse(). Then the zb_ BindDevice() is issued on the source device with a null address. 

In addition, bindings can be setup by using an external commissioning tool. 

Note that bindings can only be created between “complementary” devices. That is, the binding will only 

succeed if both devices have registered the same command_id in their simple descriptor structures and 

one device has the command as an “output” while the other device has it as an “input”. 

 

3.4 How to develop a simple private application profile  

The following is a way to use the simple api to develop an application. 

 

• Identify all the devices in the application 

– e.g. temperature sensor, occupancy sensor, thermostat, heating unit and remote control 

– assign a device_id ( unique 16bit identifier ) to each of them 

 

• Identify the “commands” that need to be exchanged between these devices and assign a unique 

16bit command_id to each of them. For example, 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

6 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

– temperature reading 

– occupancy reading 

– thermostat setting object 

– heating/cooling unit control object 

 

• For each “command”, identify the devices that “produce” ( output ) and “consume” ( input ) it 

– The temperature reading is “output” from the temp sensor and “input” to the thermostat 

– The occupancy reading command is “output” from the occupancy sensor device and 

“input” to the thermostat 

– etc. 

–  

• Create the simple descriptor structures for each of the devices. This includes 

– Assigning a device identifier and device version to each of the devices 

– Specifying the list of “output” and “input” command’s for that device. 

– Specify a profile id. This is a 16-bit value that identifies uniquely the application profile. 

These are assigned by the ZigBee Alliance. 

 

• For each “command” 

– define the format of the message being exchanged and its interpretation 

– e.g. temperature value can be exchanged as  

• ( format ) “an 8bit value” 

• ( interpretation ) “0 indicates 0oC and 255 indicates 64oC in steps of 0.25o C ” 

 

 

 

 

 

 

 

• Write the device application for each device 

 

 
Occupancy 

sensor object 

Occ reading 

Control 

Temp sensor 

object 

Temp reading 

 
Heating/cooling 

object 

 Configuration object 

 Thermostat 

object 
Temp reading 

Occ. reading 

Config. 
Control 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

7 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

– Device with “output” commands should be able to generate the packet either periodically 

or when an external event occurs. 

– Device with “input” commands should handle the reception of these packets and parse 

the payload. 

 

• Identify a binding strategy so that the devices will be able to exchange packets correctly. See the 

example sample application on how to do this. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

8 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

 

4. Example applications 

4.1 Sensor data collection application 

A collection of sensor nodes record temperature and battery level readings and send them to a collection 

node for off-line processing. Typically there will be a single collector node for a network that will receive 

sensor readings from all devices and either display them or send them offline for further processing. To 
enhance reliability and to do load-balancing, some networks may have more than one collector node that 

will accept reports from the sensor devices. 

The application must be able to  

• Form a network automatically. 

• Sensor devices must be able to discover and bind to a collector node automatically upon joining 

the network. 

• Sensor devices must send data periodically to the collector node with end-to-end 

acknowledgement. 

• If sensor device does not receive an acknowledgement from its collector node, it will remove its 

binding to that collector. It will then rediscover and rebind to (possibly another) collector node. 

Devices:  

The Sample application project has two device configurations that demonstrate this network - the 

SimpleSensor device and the SimpleCollector device. 

The SimpleSensor device is configured as an end-device since sensors are typically battery powered. The 
SimpleCollector device is configured as coordinator/router device. 

Commands:  

There is a single application command – a SENSOR_REPORT_CMD_ID command. This is defined as 

an “output” for the sensor and as an “input” for the collector device. This command message has a two 
byte payload. The first byte indicates the type of reading ( temperature or battery reading in this case ). 

The second byte indicates the sensor reading level. The temperature value is in degrees centigrade with a 

range of 0 to 99. The battery level reading is in units of 0.1V and in the range of 0 to 3.75V  ( on the 
cc2430 devices ) or 3.0V ( for the msp430 devices ). 

Note that the temperature and battery readings will not be very accurate since the parameters have to be 

calibrated for the hardware. See the source code of the SimpleSensor to adjust the calibration parameters. 

Discovery and Binding:  

After joining the network, the SimpleSensor device tries to discover and bind itself to a collector. If it 

discovers more than one collector device, it will pick the first one that responds. If it cannot find a 

collector node, it will continue searching periodically. 

After joining/starting the network, a SimpleCollector device has to be placed in the Allow Bind mode to 

respond to binding requests from the sensor device. This is achieved in the sample application by pressing 

SW1 on the device. This will enable the Allow Bind mode on the device and turn on LED1. The device 
can be removed from this mode by pressing S2 which will disable the Allow Bind mode and turn off 

LED1. 

Packet transmission and reception 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

9 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

After successfully binding, a sensor device will being reading two types of sensor inputs – a temperature 

reading and a battery level reading and transmit the data in a REPORT command packet to the collector. 

The reporting of values is done with the end-to-end acknowledgment turned on. If an ack is not received 

for any packet, this will be indicated to the application via the zb_SendDataConfirm. Then the sensor 

device application will remove its existing binding to the collector and try to bind again. 

The collector node that receives the sensor packets will send over the serial port. These can be viewed on 
a PC through HyperTerminal by connecting a serial ( or usb-to-serial ) cable. 

Sample application usage 

Program some devices in the SimpleCollector and SampleSensor configurations as described in section 
5.3. Make sure that only one of the SimpleCollector is configured as a coordinator while the rest are 

routers. 

After the devices have powered-up and formed a network, place one of the SimpleCollector devices in the 
Allow Bind mode by pressing SW1. This will turn on LED1 on that device. 

The sensor devices will automatically discover and bind to this device. They will begin reporting 

temperature and battery readings to this device. The LED1 is turned ON when the device is reporting 

sensor readings to a collector. 

On the SimpleCollector device, any received sensor reports are written to the serial port. By connecting a 

serial ( or usb-to-serial ) cable to the collector device and opening HyperTerminal, the sensor reports can 

be viewed on a PC. 

Place another SimpleCollector  device in the Allow Bind mode and turn off ( power-off ) the original 

device that was in this mode. This will cause the sensors to lose communication to their collector node. 

They will then remove bindings to their collector node and will find the new collector node. By 
connecting the second collector node to the PC, it can be seen that the sensors will now send their reports 

to it. 

 

4.2 Preconfigured in-home network 

The application consists of a set of light controller devices and light switch. The user must be able to 

• Setup these devices into a network automatically. 

• Create bindings from each switch to one or more lights. 

• Toggle the light by issuing commands from the switch device. 

• Reassign bindings for a switch to different lights. 

• Add new lights or switches purchased later to the network. 

 

Devices: There are two application device types to demonstrate this sample application – light switch and 

light controller.  

The sample application project has the SimpleSwitch configuration that is configured as an end-device 

and the SimpleController configuration that is configured as a coordinator/router device. 

When the device is first turned on, it comes up in a “HOLD” state with LED1 flashing. 

For the light controller device in this state, pressing SW1 will cause the device to startup as a coordinator 
while pressing SW2 will cause it startup as a router. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

10 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

For the light switch device in this state, pressing either SW1 or SW2 will cause it come as an end-device. 

 

Commands: There is a single application command – a TOGGLE command. This is defined as an 

“output” for the switch and as an “input” for the controller. This command message has no other 

parameters besides the command identifier. 

Binding: The “push button” binding is used.  

To create a binding between a switch and a controller, the controller is first put in an Allow Bind mode. 

This is followed by issuing a Bind request on the switch (within the timeout period). This will create a 

binding from the switch to the controller. 

A switch can be bound to more than one controller by repeating the above process.  

To reassign the bindings for a switch, the Bind request is issued with a delete parameter. This will remove 

all bindings for that switch. It can now be bound to other controllers by following above procedure. 

Sample application usage 

Program some devices in the SimpleController and SimpleSwitch configurations as described in section 

5.3. Make sure that only one of the SimpleController is configured as a coordinator while the rest are 

routers. 

After the devices have joined to the network, the controls are used in following manner to creating 

bindings. 

Place a controller in the Allow Bind mode by pressing SW1 on that device. On the light switch, press 
SW1 (within 10 seconds) to issue the bind request. This will cause it to bind to the controller device that 

was in the Allow Bind mode. When the switch has successfully created the binding, LED1 is turned ON 

(or blinking if POWER_SAVING is turned on) for that device. 

After that, S2 can be pressed on the switch device to send the TOGGLE command. This will cause LED1 

on the corresponding controller device to be toggled. 

If S3 is available on the switch device, it can be used to remove all bindings for that device. 

 

4.3 Using the sample applications 

The sample applications can be found in the Z-Stack installation folder under: 

• Projects\zstack\Samples\SimpleApp\xxxx, where xxxx represents the hardware platform 

o SimpleApp.eww – IAR Embedded Workspace workspace file 

o SimpleApp.ewp– IAR Embedded Workspace project file 

• Source 

o Implementation of the sample application. 

 

See the Z-Stack user’s guide document corresponding to the appropriate hardware platform for 

details on building the IAR projects and downloading the code and configuring the Z-Stack. 

The sample applications utilize two buttons for user input. The joystick is used to give user input. 

SW1 is the joystick Up position and SW2 is the joystick Right position. 

To give indication to the user, two LED’s are used. Upon device power-up, the following LED 

indications are available. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

11 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

- LED1 is blinking: On the CC2430 platforms, this happens when the device powers-up and 

finds that the IEEE address is uninitialized (all F’s). The device then waits in a loop for the user 

to press SW5 (pushing down on the joystick). This will cause the device to pick a random 

address. 

- LED2 is blinking: The device has powered-up but not yet started the ZigBee functionality. It is 

in an idle state waiting for user input for configuration.  

On the end-device’s (sensor and switch devices), pressing either SW1 or SW2 will cause the 

devices to start the ZigBee functionality. 

On the coordinator/router devices (controller and collector), pressing SW1 will cause the device 

to configure itself as a coordinator while SW2 will cause it to configure itself as a router. After 

the configuration, the device will start the ZigBee functionality. 

After successfully starting/joining a ZigBee network, LED3 (on the CC2x30 platforms) or LED2 

(on the msp430 platform) will be turned on to give user indication. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

12 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

 

5. API Reference Guide 

This section consists of the following parts: 

• API Functions 

• Callback functions 

• Configuration Properties 

 

5.1 API Functions 

5.1.1 zb_SystemReset 

The zb_SystemReset function resets the device. The device reads the configuration properties at this time. 

The ZCD_NV_STARTUP_OPTION configuration property controls the behavior of the device at 

startup.  

If it indicates an erase of the configuration properties (ZCD_STARTOPT_CLEAR_CONFIG is set), the 

configuration properties will be erased and written with their default values. 

If it indicates an automatic ZigBee start (ZCD_STARTOPT_AUTO_START is set), the ZigBee stack 
will also be started.  

Note: The zb_ SystemReset function can be called after a call to zb_WriteConfiguration to restart the 
device with the updated configuration. 

Note: When zb_ SystemReset is called, all volatile memory in the system is reset. 

 

5.1.1.1 Prototype 

void zb_SystemReset ( void ) 

 

5.1.1.2 Parameters 

None 

 

5.1.1.3 Return Value 

None 

 

5.1.2 zb_StartRequest 

The zb_StartRequest function starts the ZigBee stack. If the startup options indicated that previous 
network state should be restored (ZCD_STARTOPT_CLEAR_CONFIG is set), then the device will 

simply load the previously saved network state and being functioning on the ZigBee network. 

Otherwise, the device will either start a new network or attempt to join an existing network depending on 

whether it is configured to be a coordinator or router/end-device. In this case, the device will delay the 

startup by a value indicated in the configuration property ZCD_NV_START_DELAY.  

The zb_StartConfirm callback function is called at the end of the startup process. After the successful 

completion of this process, the device is ready to send, receive and route packets in the ZigBee network. 

 

5.1.2.1 Prototype 

void zb_StartRequest ( void ) 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

13 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

 

5.1.2.2 Parameters 

None 

 

5.1.2.3 Return Value 

None 

 

5.1.3 zb_PermitJoiningRequest 

The zb_PermitJoiningRequest function is used to control the joining permissions and thus allow or 

disallow new devices from joining the network. 

 

5.1.3.1 Prototype 

void zb_PermitJoiningRequest ( uint16 destination, uint8 timeout ) 

 

5.1.3.2 Parameters 

destination 

The destination parameter indicates the address of the device for which the joining permissions 

should be set. This is usually the local device address or the special broadcast address that 

denotes all routers and coordinator ( 0xFFFC ). This way the joining permissions of a single 
device or the whole network can be controlled. 

timeout 

The timeout parameter indicates the amount of time in seconds for which the joining permissions 

should be turned on. 

If timeout is set to 0x00, the device will turn off the joining permissions indefinitely. If it is set to 
0xFF, the joining permissions will be turned on indefinitely.  

 

5.1.3.3 Return Value 

ZB_SUCCESS or an error parameter 

 

5.1.4 zb_BindDevice 

The zb_BindDevice function establishes or removes a ‘binding’ between two devices.  Once bound, an 

application on the source device can send messages to the destination device by referencing the 
commandId for the binding. The bindings are stored in the non-volatile memory and restored upon a reset 

( unless the startup option explicitly requests otherwise ). This way, an accidental reset or temporary 

power loss will not affect the application. 

 

5.1.4.1 Prototype 

uint8 zb_BindDevice ( uint8 create, uint16 commandId, uint8 *pDestination ) 

 

5.1.4.2 Parameters 

create 

The create parameter is TRUE to create a new binding, or FALSE to delete an existing binding. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

14 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

 

commandId  

The commandId identifies message for which this binding should apply.  Once a binding is setup, 

the commandId can be used in calls to zb_SendDataRequest to send data. 

 

pDestination 

When adding a binding, the pDestination parameter indicates the 64-bit IEEE address of the 
device to establish the binding with.  If the pDestination is NULL, then the device will bind with 

any other device that is in the Allow Binding Mode.  For more information about the Allow 

Binding Mode, see Section 5.1.5. 

The pDestination should be set to NULL when deleting a binding.   

 

5.1.4.3 Return Value 

None 

 

5.1.5 zb_AllowBind 

The zb_AllowBind function puts the device into the Allow Binding mode for a given period of time.  A 
peer device can establish a binding to a device in the Allow Binding mode by calling zb_BindDevice with 

a destination address of NULL. 

 

5.1.5.1 Prototype 

void zb_AllowBind ( uint8 timeout ) 

 

5.1.5.2 Parameters 

timeout 

The timeout parameter indicates the amount of time in seconds to remain in the Allow Binding 
Mode. 

If timeout is set to 0xFF, the device will be in the Allow Bind mode for this commandId without 
any timeout. 

If timeout is set to 0x00, the device will cancel the Allow Bind mode for this commandId. 

Otherwise, the device will be in the Allow Bind mode for this commandId for the specified time. 

The maximum timeout value is 64 (values larger than that are truncated to 64). Only a single 

commandId may use the Allow Bind mode with the timeout at any time. 

 

5.1.5.3 Return Value 

None 

 

5.1.6 zb_SendDataRequest 

The zb_SendDataRequest function initiates transmission of a data packet to a peer device.  The 

destination of the transmission may be the 16-bit short address of the peer device or an invalid address. In 

the latter case, the data packet would be sent to device(s) with which bindings were previously established 
for this particular commandId. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

15 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

The zb_SendDataRequest function returns immediately. The status of the send data operation is returned 

to the Application Task via the zb_SendDataCnf callback function.   

 

5.1.6.1 Prototype 

void zb_SendDataRequest ( uint16 destination, uint16 commandId, uint8 len, uint8 

*pData, uint8 handle, uint8 txOptions, uint8 radius ) 

 

5.1.6.2 Parameters 

destination 

The destination parameter indicates the device in the ZigBee network to transmit the data to.  The 

destination parameter can be specified in one of three ways: 

• Short Address (value from 0x0000 through 0xFFF8) – The 16-bit short address of the 

actual destination device. 

• A Broadcast address with following valid values 

o 0xFFFF  - Broadcast to all devices 

o 0xFFFD - Broadcast only to devices with receiver turned ON 

o 0xFFFC - Broadcast only to coordinator and all routers 

• An invalid address ( 0xFFFE ) – In this case, the destination device is not specified by the 

application. Instead, the stack will read the destination address from a previously 

established binding for the commandId, 

commandId 

The commandId parameter specifies the type of command being issued to the peer device.  

dataLength 

The dataLength parameter contains the number of bytes in the pData buffer. 

pData 

The pData parameter is a pointer to the data to be transmitted.  

handle 

The handle parameter contains an identifier for the data transmission.  This handle is used in the 

zb_SendDataConfirm callback by the stack to identify the transmission.  

txOptions 

This is a bit mask of the transmission options. 

ZB_ACK_REQUEST ( 0x10 )- End-to-end acknowledgement and retransmission should be 

employed in the transmission of this packet. When using acknowledged transmission, the 

zb_SendDataConfirm callback is delayed until the acknowledgement is received.  If the ack 
parameter is FALSE, the zb_SendDataConfirm callback is called after the radio transmits the 

data. The ack parameter is ignored if the destination is a broadcast address. 

radius 

The radius parameter indicates the maximum number of hops the data can be relayed in the 
ZigBee network.  Setting the radius parameter to 0 indicates a default radius of 15 hops. This can 

be used to limit the propagation of the data packet in a mesh network. 

 

5.1.6.3 Return Value 

None 

 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

16 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

5.1.7 zb_ReadConfiguration 

The zb_ReadConfiguration function is used to get a Configuration Property from Nonvolatile memory.   

 

5.1.7.1 Prototype 

void zb_ReadConfiguration( uint8 configId, uint8 len, void *pValue ) 

 

5.1.7.2 Parameters 

configId 

The configId parameter indicates the configuration property to read.  A list of configuration 

properties and their identifiers can be found in section 5.3 

 

len 

The len parameter indicates the size of the pValue buffer in bytes. 

 

pValue 

The pValue parameter is a pointer to a buffer that will contain the configuration property. 

 

5.1.7.3 Return Value 

None 

 

5.1.8 zb_WriteConfiguration 

The zb_WriteConfiguration function is used to write a Configuration Property to nonvolatile memory. 

 

5.1.8.1 Prototype 

void zb_WriteConfiguration( uint8 configId, uint8 len, void *pValue ) 

 

5.1.8.2 Parameters 

configId 

The configId parameter indicates the configuration property to write.  A list of configuration 

properties and their identifiers can be found in section 5.3 

 

len 

The len parameter indicates the size of the pValue buffer in bytes. 

 

pValue 

The pValue parameter is a pointer to a buffer that contains value to write to the configuration 

property. 

 

5.1.8.3 Return Value 

None 

 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

17 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

5.1.9 zb_GetDeviceInfo 

The zb_GetDeviceInfo function retrieves a Device Information Property. 

 

5.1.9.1 Prototype 

void zb_GetDeviceInfo ( uint8 parameter, void *pValue ) 

 

5.1.9.2 Parameters 

parameter 

The parameter indicates the device information property to read.  A list of Device Information 

Properties an 

 

Property Identifier Type Description 

ZB_INFO_DEV_STATE 0x00 8-bit  The current state of the ZigBee 

device. This can take one of the 

values in the devStates_t 

enumeration in ZDApp.h file. 

ZB_INFO_IEEE_ADDR 0x01 64-bit The 64-bit IEEE address of the 

device ( globally unique ). 

ZB_INFO_SHORT_ADDR 0x02 16-bit The 16-bit short address of the 

device (unique within the 

network). 

ZB_INFO_PARENT_SHOR

T_ADDR 

0x03 16-bit The 16-bit short address of the 

parent of this device. 

ZB_INFO_ PARENT 

_IEEE_ADDR 

0x04 64-bit The 64-bit IEEE address of the 

parent of this device. 

ZB_INFO_CHANNEL 0x05 8-bit The channel on which this device 

is operating. There are 16 channels 
in the 2.4GHz band numbered 

from 11 through 26. 

ZB_INFO_PAN_ID 0x06 16-bit The identifier of the ZigBee 

network that this device is a part 

of. 

ZB_INFO_EXT_PAN_ID 0x07 64-bit The 64-bit IEEE address of the 

ZigBee coordinator device for this 
network. 

 

 

pValue 

The pValue parameter is a pointer to a buffer that will contain the Device Information Property. 

Note that the application must ensure that the buffer has sufficient size to allow the property to be 

copied over.  

 

5.1.9.3 Return Value 

None 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

18 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

   

5.1.10 zb_FindDeviceRequest 

The zb_FindDeviceRequest function is used to determine the short address for a device in the network.  
The device initiating a call to zb_FindDeviceRequest and the device being discovered must both be a 

member of the same network.  When the search is complete, the zv_FindDeviceConfirm callback function 

is called. 

 

5.1.10.1 Prototype 

void zb_FindDeviceRequest( uint8 searchType, uint8 *searchKey ) 

 

5.1.10.2 Parameters 

searchType 

The searchType parameter indicates the method of search.  The following search types can be 
used: 

• ZB_IEEE_SEARCH 

 

searchKey 

The searchKey parameter contains information unique to the device being discovered. The 
searchKey parameter is dependant on the searchType.  The content of the searchKey for each 

searchType follows: 

• ZB_IEEE_SEARCH – The searchKey is the 64-bit IEEE address of the device being 

discovered. 

 

5.1.10.3 Return Value 

None 

 

5.2 Callback Functions 

This section is a reference for the Simple API callback functions implemented by a ZigBee application 

and called by the ZigBee stack. 

 

5.2.1 zb_StartConfirm 

The zb_StartConfirm callback is called by the ZigBee stack after a start request operation completes.  The 

Start Confirm Callback notifies the Simple Application Task of the status of the start operation. 

If the status is ZB_SUCCESS, the device has successfully started or joined the ZigBee network depending 

on whether it is programmed as a coordinator or router/end-device. 

 

5.2.1.1 Prototype 

void zb_StartConfirm( uint8 status ) 

 

5.2.1.2 Parameters 

status 

 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

19 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

5.2.2 zb_BindConfirm 

The zb_BindConfirm callback is called by the ZigBee stack after a bind operation completes.  The bind 

confirm callback contains the status of the bind operation. 

 

5.2.2.1 Prototype 

void zb_BindConfirm( uint16 commandId, uint8 status ) 

 

5.2.2.2 Parameters 

commandId 

The commandId parameter identifies the binding.  This parameter matches the commandId passed 

into the zb_BindDevice function to which this callback is in confirmation of. 

status 

The status parameter contains the result of the bind operation.  

 

5.2.3 zb_AllowBindConfirm 

The zb_AllowBindConfirm callback is called by the ZigBee stack if a device is in the Allow Bind mode 

and it responded to a bind request from another device. 

 

5.2.3.1 Prototype 

void zb_AllowBindConfirm( uint16 source ) 

 

5.2.3.2 Parameters 

source 

The source parameter contains the address of the source device that requested a binding with this 

device. 

 

5.2.4 zb_SendDataConfirm 

The zb_SendDataConfirm callback function is called by the ZigBee when a send data operation 

completes 

.   

When sending data with acknowledgment enabled, the Send Data Confirm Callback is not returned until 

acknowledgement is received, or a timeout occurs.  The latency between zb_SendDataRequest and 
zb_SendDataConfirm with acknowledgement enabled varies depending on network conditions and the 

number of hops to deliver the message. 

 

5.2.4.1 Prototype 

void zb_SendDataConfirm( uint8 handle, uint8 status ) 

 

5.2.4.2 Parameters 

handle 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

20 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

The handle parameter identifies the send data operation.  The value of the handle matches the 

value of the handle passed into the zb_SendDataRequest function that this callback is in 
confirmation of. 

status 

The status parameter contains the status of the Send Data operation. 

 

5.2.5 zb_ReceiveDataIndication 

The zb_ReceiveDataIndication callback function is called asynchronously by the ZigBee stack to notify 
the application when data is received from a peer device.   

 

5.2.5.1 Prototype 

void zb_ReceiveDataIndication(uint16 source, uint16 command, uint8 len, uint8 *pData) 

 

5.2.5.2 Parameters 

source 

The source parameter contains the 16-bit short address of the device that transmitted the data. 

commandId 

The commandId parameter contains the command identifier of the binding that the transfer 
originated from. 

len 

The len parameter contains the size of the pData buffer in bytes. 

pData 

The pData parameter points to the received data. 

 

5.2.6 zb_FindDeviceConfirm 

The zb_FindDeviceConfirm callback function is called by the ZigBee stack when a find device operation 

completes.   

 

5.2.6.1 Prototype 

void zb_FindDeviceConfirm( uint8 searchType, uint8 *searchKey, uint8 *result ) 

 

5.2.6.2 Parameters 

searchType  

The search type that was requested for this search operation. 

searchKey 

The searchKey parameter contains information unique to the device being discovered. The 
searchKey parameter is dependant on the searchType.  The content of the searchKey for each 

searchType follows: 

• ZB_IEEE_SEARCH – The searchKey is the 64-bit IEEE address of the device being 

discovered. 

result 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

21 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

A pointer to data containing the result of the search. If the search type was ZB_IEEE_SEARCH, 

then this is a 16-bit address of the device that matched the search. 

 

5.2.7 zb_HandleKeys 

The zb_HandleKeys function is called by the operating system when a key event is set. This happens if a 
key press happens on the development board. 

 

5.2.7.1 Prototype 

void zb_HandleKeys( uint8 shift, uint8 keys ) 

 

5.2.7.2 Parameters 

shift 

True if the shift key is pressed down while the key has been pressed. The shift key is only 

available some hardware development boards. 

keys 

This indicates the key that has been pressed. 

 

5.2.8 zb_HandleOsalEvent 

The zb_HandleOsalEvent function is called by the operating system when a task event is set.  An 

application can set a task event using the osal_set_event or the osal_start_timer functions.  For more 

information about OSAL functions, see the “Z-Stack OS abstraction layer ( OSAL ) API” document. 

 

5.2.8.1 Prototype 

void zb_HandleOsalEvent( uint16 event ) 

 

5.2.8.2 Parameters 

event 

The event parameter contains a bitmask.  Each bit in the bitmask corresponds to a task event. 

 

 

5.3 Configuration parameters 

The following list of configuration properties can be written and read from nonvolatile memory using the 

zb_WriteConfiguration and zb_ReadConfiguration functions. 

Each of the configuration parameters have “default” values that are defined in the code. Once an image is 

downloaded onto the device, the configuration parameters are initialized to these values. 

After a device is programmed with an image, these parameters can be changed by the application or by an 

external PC tool or an external micro controller. Any changes to the parameters will not take effect unless 

the device is reset and restarted. 

It is possible to erase all the configuration settings and restore them to the initial default settings by 

setting the startup option parameter appropriately. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

22 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

The configuration parameters are divided into “network-specific” and “device-specific” parameters. The 

“network-specific” configuration parameters should be set to the same value for all devices in a network. 
The “device-specific” parameters can be set to different values on each device. 

 

5.3.1 Network specific parameters 

ZCD_NV_PANID  

Configuration ID: 0x0083; Size: 2bytes; Default value: ZDAPP_CONFIG_PAN_ID in f8wConfig.cfg file. 

This parameter identifies the ZigBee network. This should be set to a value between 0 and 0xFFFE. 
Networks that exist in the same vicinity must have different values for this parameter. It can be set to a 

special value of 0xFFFF to indicate “don’t care”. 

 

ZCD_NV_CHANLIST  

Configuration ID: 0x0084; Size: 4bytes; Default value: DEFAULT_CHANLIST in f8wConfig.cfg file. 

This parameter is a bit mask of the channels on which this network can operate.  Multiple networks that 

exist in the same vicinity are encouraged to have different values. 

 

ZCD_NV_PRECFGKEY 

Configuration ID: 0x0062; Size: 16bytes; Default value: defaultKey[] in nwk_globals.c file. 

The 128-bit key that is used for packet security if that functionality is enabled. 

 

ZCD_NV_PRECFGKEYS_ENABLE 

Configuration ID: 0x0063; Size: 1byte; Default value: zgPreConfigKeys in ZGlobals.c file. 

If security functionality is enabled, there are two options to distribute the security key to all devices in the 

network.  

If this parameter is true, the security keys must be pre-configured on all devices in the network.  

If it is set to false, then the key only needs to be configured on the coordinator device. In this case, the key 

is distributed to each device upon joining by the coordinator. This key distribution will happen in the 

“clear” on the last hop of the packet transmission and constitutes a brief “period of vulnerability” when a 
malicious device can capture the key. Hence it is not recommended unless it can be ensured that there are 

no malicious devices in the vicinity at the time of network formation. 

 

ZCD_NV_SECURITY_LEVEL 

Configuration ID: 0x0061; Size: 1byte; Default value: SECURITY_LEVEL in nwk_globals.h file. 

The amount of security applied to each packet if the functionality is enabled. It takes values from 1 

through 7. 

In levels 1 through 3, the packets are not encrypted but they are authenticated with the authentication code 

of 4, 8 or 16 bytes for each packet.  

In level 4, the packet is encrypted but not authenticated. This setting is not recommended. 

In levels 5 through 7, the packets are encrypted, In addition, they are authenticated with codes of length 4, 

8 and 16 bytes for each packet. 

 

ZCD_NV_BCAST_RETRIES 

Configuration ID: 0x002E; Size: 1byte; Default value: MAX_BCAST_RETRIES in ZGlobals.h file. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

23 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

The maximum number of retransmissions that a device will attempt when transmitting a broadcast packet. 

The typical range is from 1 through 3. 

 

ZCD_NV_PASSIVE_ACK_TIMEOUT 

Configuration ID: 0x002F; Size: 1byte; Default value: PASSIVE_ACK_TIMEOUT in ZGlobals.h file. 

The amount of time ( in units of 100milliseconds ) a device will wait to hear from it neighbor nodes 
before retransmitting a broadcast packet. 

 

ZCD_NV_BCAST_DELIVERY_TIME 

Configuration ID: 0x0030; Size: 1byte; Default value: BCAST_DELIVERY_TIME in ZGlobals.h file. 

The amount of time ( in units of 100ms ) that it takes for a  broadcast packet to propagate through the 

entire network. 

Note: This parameter must be set with caution. It must be set to a value of atleast  

(ZCD_NV_BCAST_RETRIES + 1) * ZCD_NV_PASSIVE_ACK_TIMEOUT 

To be safe, the actual value should be higher than the above minimum by about 500ms or more. 

 

ZCD_NV_ROUTE_EXPIRY_TIME 

Configuration ID: 0x002C; Size: 1byte; Default value: ROUTE_EXPIRY_TIME in f8wConfig.cfg file. 

The amount of time ( in seconds ) for which a route must be idle ( i.e. no packets are transmitted on that 

route ) before the route entry is marked as expired. An expired entry is not deleted unless that space for a 

new routing entry.  

This can be set to a special value of 0 to turn off route expiry. In this case, route entries are not expired. 

 

5.3.2 Device specific parameters 

5.3.2.1 Startup parameters 

ZCD_NV_STARTUP_OPTION 

Configuration ID: 0x0003; Size: 1byte; Default value: 0 

This parameter controls the device startup logic. This is a bit mask of the following values 

 

• ZCD_STARTOPT_CLEAR_CONFIG ( 0x01 ) – If this option is set, the device will overwrite all 

its configuration parameters ( except this one ) with the “default” settings that it is programmed 
with. This is used to erase the existing configuration and bring the device into a known state. 

Note: Whe the configuration parameters are overwritten, the ZCD_NV_STARTUP_OPTION itself 
is not overwritten except for clearing the ZCD_STARTOPT_CLEAR_CONFIG bit.  

 

• ZCD_STARTOPT_CLEAR_STATE ( 0x02 ) – If this option is set, the device will attempt to 

clear its network state prior to the reset. This is used if the device was already part of the network 
and had saved its previous network state.  

Note: The NV_RESTORE compile flag must be turned on to use this feature. In that case, this 
option will be automatically cleared by the stack after the device joins a network. This is so that 

an accidental reset of the device does not prevent loss of network state. The application has to 

explicitly set this option before issuing a reset in order to erase the network state. 

 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

24 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

• ZCD_STARTOPT_AUTO_START ( 0x04 ) – If this option is set, the device will start the 

ZigBee network functions immediately upon powerup. Otherwise, the device will wait until the 

application explicitly requests a startup. 

 

ZCD_NV_START_DELAY 

Configuration ID: 0x0004; Size: 1byte; Default value: START_DELAY in ZGlobals.c file 

The minimum delay ( in milliseconds ) after the zb_StartRequest() is called ( or after power-up if the 
auto-start bit is set in the startup options configuration parameter ) before the ZigBee functions are 

started. 

 

ZCD_NV_EXTADDR 

Configuration ID: 0x0004; Size: 8bytes; Default value: Invalid ( All F’s ) 

The 64bit extended address of the device. 

 

ZCD_NV_LOGICAL_TYPE 

Configuration ID: 0x0087; Size: 1byte; Default value: DEVICE_LOGICAL_TYPE in ZGlobals.h file  

The logical type of the device in the ZigBee network. This can be set to one of the following values 
ZG_DEVICETYPE_COORDINATOR ( 0x00 ), ZG_DEVICETYPE_ROUTER ( 0x01 ) or 

ZG_DEVICETYPE_ENDDEVICE ( 0x02 ). 

If the end-device project is used to build the image, the type will be automatically selected. Otherwise, the 

type can be configured by the application to either coordinator or router. 

 

5.3.2.2 Poll parameters 

(These are only applicable to a battery powered end-device.) 

ZCD_NV_POLL_RATE 

Configuration ID: 0x0024; Size: 1byte; Default value: POLL_RATE in f8wConfig.cfg 

If set to a non-zero value, an end-device will wake up periodically with this duration to check for data 

with their parent device. The value is specified in milliseconds and can range from 1 to 65000.  

If set to zero, the device will not automatically wake up to check for data. Instead, an external trigger or 

an internal event ( set, for example, via the OSAL timer or event interface ) can be used to wake up the 
device. 

 

ZCD_NV_QUEUED_POLL_RATE 

Configuration ID: 0x0025; Size: 1byte; Default value: QUEUED_POLL_RATE in f8wConfig.cfg 

When an end-device checks for data with its parent and finds that it does have data, it can poll again with 

a shorter duration in case there is more data queued for it at its parent device.  

This feature can be turned off by setting the value to zero. 

 

ZCD_NV_RESPONSE_POLL_RATE 

Configuration ID: 0x0026; Size: 1byte; Default value: in RESPONSE_POLL_RATE in f8wConfig.cfg 

When an end-device sends a data packet, it can poll again with a shorter duration if the application is 

expecting to receive a packet in response. 

This feature can be turned off by setting the value to zero. 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

25 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

 

Note: The setting of the queued and response poll rates has to be done with caution if the device is 

sending and receiving at the same time or if the device is sending data too fast. 

If the device is sending data too fast, setting a queued poll rate with a higher duration than the sending 

rate will cause the poll event to be continuously rescheduled to the future. Then the device will never poll 

for data with its parent and consequently it may miss any packets destined for it. 

 

ZCD_NV_POLL_FAILURE_RETRIES 

Configuration ID: 0x0029; Size:1byte; Default value: MAX_POLL_FAILURE_RETRIES in 

f8wConfig.cfg file. 

The number of times an end-device will fail contacting its parent before invoking mechanism to find a 

new parent. 

 

ZCD_NV_INDIRECT_MSG_TIMEOUT 

ConfigurationID: 0x002B; Size:1byte; Default value: NWK_INDIRECT_MSG_TIMEOUT in 

f8wConfig.cfg file. 

The amount of time ( in seconds ) that a router or coordinator device will buffer data meant for its end-

device children. It is recommended that this is atleast greater than the poll rate to ensure that end-device 

will have a chance to wakeup and poll for the data. 

 

5.3.2.3 End-to-end acknowledgement parameters 

End-to-end acknowledgements and retransmissions are only applicable if the application explicitly 

requested it when sending a data packet by setting the appropriate bit in the txOptions parameter in the 

zb_SendDataRequest() call. 

 

ZCD_NV_APS_FRAME_RETRIES 

Configuration ID: 0x0043; Size: 1bytes; Default value: APSC_MAX_FRAME_RETRIES in f8wConfig.cfg  

The number of restransmissions performed on a data packet at the application layer if the packet was 
transmitted with the end-to-end ack option enabled. 

 

ZCD_NV_APS_ACK_WAIT_DURATION 

Configuration ID: 0x0044; Size: 2bytes; Default value: APSC_ACK_WAIT_DURATION_POLLED in 

f8wConfig.cfg file. 

The amount of time ( in milliseconds ) a device will wait after transmitting a packet with end-to-end 
acknowledgement option set for the acknowledgement packet from the destination device. If the 

acknowledgement packet is not received by this time, the sending device will assume failure and 

attempting another retransmission. 

Note: This must be set with caution if the destination ( or source ) device is an end-device, since those 

devices will not wake up often and hence will add an additional delay of the packet ( data or 
acknowledgement packet ) beyond what is caused normally by the network. 

 

5.3.2.4 Miscellaneous 

 

ZCD_NV_BINDING_TIME 



 Simple API for Z-Stack                                              SWRA196 Version 1.4 

 

26 Copyright © 2007-2009 Texas Instruments, Inc.  All rights reserved. 

Configuration ID: 0x0046; Size: 2bytes; Default value: APS_DEFAULT_MAXBINDING_TIME in 

ZGlobals.h 

The amount of time ( in milliseconds ) a device will wait for a response to a binding request. 

 

ZCD_NV_USERDESC 

Configuration ID: 0x0081; Size: 17bytes; Default value: zero  

An optional 16bytes ( plus 1 byte of overhead ) of user-defined data that can be configured in a device so 
that it can easily identified or described later. 


