Q‘ TEXAS
INSTRUMENTS

Z-Stack
HAL Porting Guide

Document Number: SWRA199

Texas Instruments, Inc.
San Diego, California USA

Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide SWRA199 Version 1.1

Revision Description Date
1.0 Initial release. 03/14/2007
1.1 Updated for ZStack 2.2.0 release 04/02/2009

i Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide SWRA199 Version 1.1

TABLE OF CONTENTS

I INEPOAUCTION.ooiiiiiiiiie ettt ettt et et e et e s aeeeabeesabeenbeesnseenseesnneas 1
Lde SCOPE.....i ettt h e ettt ettt e bt e aaeebeas 1

) O U7 T PSPPSR 1

) G T Ve 1) 1) 4 11 USRS 1

R V- N DU PRSP 1
2.1. HAL Component FOIAErs.............cccooiiiiiiiiiiiieiie et 1
2.1.1. HAL Common Foldercccooiiiiiiiiiiiieieeeee et 1
2.1.2. HAL Include FOIAer.............cccoioiiiiiiiiieieeee ettt 3
2.1.3. HAL Target FOIAerccoooiiiiiiiceeeeee et 3

2.2. HAL Drivers Compile OPtions..............c.ccooviiiiiiiiiiiieiiiieeiee e 4
2.2.1. Default Compile OPtions................oocoiiiiiiiiiiiiceeeeeee e 4
2.2.2. Compiling IN DIIVEISccooviiiiiieeiiecieeee et 4
2.2.3. Compiling OUT DIAVerS.........cooooviiiiiiieiiiicceeee et 5

2.3. HAL Drivers CuStomizationcccoovviiiiiiiiiiiieeiieeciee e eane e 6
2.3.1. Modifying Existing HAL DIriversc.ccccooiiiiiiiiiiiieeeeeeeeeee e 6
2.3.2. Adding Drivers For New Target.............c.ccoooviiiiiiiiiiieiieceeeeeeee e 6

3. GPIO and Radio/MCU Pin Interface................cccooouiiiiiiiiiiiiiiiieieee e 8
3.1. HAL Drivers GPIO Pin Interface Modificationccccooeiiniiininiinnneenen. 9
3.2. Radio/MCU GPIO Pin Interface Modificationc..ccccccoriiiniiniiininniee, 9
4. Interrupt Service ROULINE.c..cooooiiiiiiiiiii e 9
4.1. HAL ISR Function MACTO...........cccoooiiiiiiiiiiiieie ettt 9
4.2. Modifying Existing ISR For GPIO Interruptcccccoooiiiiiniiinniiniiiicnieeee 9
4.2.1. Example : Modifying ISR in a CC2430 projectcccceeeevieiciiennieeeieens 9

4.3. Adding New ISR For GPIO Interrupt............ccccccoiiiiiiiiiiniiiiiniceeeeeeeeeeeeee e 9
4.3.1. Example 1: Creating an ISR for a CC2430 target.............c...ccccveeeevvrennreennnenn. 10
4.3.2. Example 2: Creating an ISR for a MSP430 targetcooceiiiininnennn 10

ii Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide SWRA199 Version 1.1

1. Introduction
1.1. Scope
This document provides information on how to take a Z-Stack™ release and customize the
HAL layer so that Z-Stack can run on the user’s own target hardware.

1.2. Usage
Each section will provide the user the information and options to customize it if possible.
This document covers the following:

- HAL component folders (compiling options, customization)
- GPIO pin interface (HAL drivers, Radio, and MCU)
- External Interrupt ISR handling

1.3. Acronyms

ADC Analog to Digital Conversion

API Application Programming Interface.
GPIO General Purpose Input Output

HAL Hardware Abstraction Layer

MAC Medium Access Control.

OSAL Operating System Abstraction Layer.

2. HAL
HAL is the layer that provides hardware services without exposing too much hardware
related material so that the users can focus more on their application. Majority of the HAL is
the drivers that control LEDs, LCD, ADC, KEYs, Timers and UART. These services are
abstracted by simple APIs which allow users to use these services without worrying about
setting up these services at GPIO level.

2.1. HAL Component Folders
HAL Component folders contain HAL drivers and HAL related files. HAL Component
folders are organized into 3 different folders under \Component\hal.

Common
e Include
Target

2.1.1. HAL Common Folder
HAL common folder contains files that can be used in stack, MAC and drivers but
they are HAL related in some way. There are 2 files in this folder: hal_assert.c and
hal_driver.c.

2.1.1.1. hal_assert.c

1 Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide SWRA199 Version 1.1

This file contains routines that HAL_ ASSERT and HAL._ASSERT_ SIZE macros
used to debug and/or verify data. These macros are used by MAC (high, low level)
and HAL drivers.

halAssertHandler()

This routine controls the behavior of the assertion. If ASSERT_RESET is defined,
the system will reset by calling HAL_SYSTEM_RESET macro, otherwise, the
halAssertHazardLights () will be called and this will flash available LEDs.

halAssertHazardLights ()
This routine controls how the LEDs flash. Depends on different platforms, the
number of available LEDs are different.

HAL_ASSERT ()

This macro is for use during debugging. The given expression must evaluate as
"true" or else a fatal error occurs. From here, the call stack feature of the debugger
can pinpoint where the problem occurred. This feature can be disabled for optimum
performance and minimum code size (ideal for finalized, debugged production code).
To disable, define the preprocessor symbol HALNODEBUG at the project level.

HAL_ASSERT _SIZE ()

This macro compares the size of the first parameter to the integer value of the second
parameter. If they do not match, a compile time error for negative array size occurs
(even gnu chokes on negative array size). This compare is done by creating a typedef
for an array. No variables are created and no memory is consumed with this check.
The created type is used for checking only and is not for use by any other code.

2.1.1.2. hal _driver.c
This file contains initializing and event processing routines for all HAL drivers.
This is where hal driver related events are processed. It also contains polling
mechanism for the drivers such as Timer and UART.

Hal_Init ()

This is called by osalTaskAdd () to register HAL drivers as a task in the OSAL.
This will allow HAL drivers messages and events to be processed by the OSAL
accordingly. User can add non hardware related initializations in here. These will be
initialized by the OSAL when the HAL driver task is created.

HalDriverlnit ()

This is called by main () to initialize the hardware of the drivers. User can add
hardware related initializations in here. All these initializations will be done at the
beginning of the program.

Hal_ProcessEvent ()

2 Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide SWRA199 Version 1.1

This file is registered to OSAL to handle HAL related events coming from the
drivers such as keys, leds, and power saving. Users can add their own HAL related
events in here. The event id must be unique and must be defined in hal_driver.h

For example: These are some of the predefined events

HAL Event Description
HAL_KEY_EVENT This event is issued by hal_key to handle
key polling and de-bounce
HAL _LED BLINK EVENT This event is issued by hal_led to handle
blinking leds
HAL_SLEEP_TIMER_EVENT | This event is issued by Power Saving

Hal_ProcessPoll ()
This file is called by osal_start_system () in the main infinite loop to process polling
events for the HAL Timer and HAL UART drivers.

2.1.2. HAL Include Folder
HAL Include folder contains header files for HAL drivers and HAL related files.

For example: These are the typical files for a target under Include folder.

File Type
hal_adc.h Driver
hal_key.h Driver
hal lcd.h Driver
hal_led.h Driver
hal_timer.h Driver
hal_uart.h Driver
hal_defs.h Macros and Type Definitions
hal_driver.h Driver
hal_sleep.h Sleep/Power Saving
hal_assert.h Debug
hal_board.h Configuration
hal_flash.h Flash interface
hal_ccm.h Security interface

2.1.3. HAL Target Folder
HAL Target folder contains target specific files. This folder can include drivers, board
configuration, MCU information and data types that associate to the specific target only.

For example: These are the files for CC2430EB target under Target folder.

File Type
hal_adc.c Driver

3 Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide SWRA199 Version 1.1

hal_key.c Driver
hal_lcd.c Driver
hal_led.c Driver
hal_timer.c Driver
hal_uart.c Driver
hal_mcu.c MCU Configuration specific to the target

hal_board_cfg.h Drivers Configuration — Contains hardware/GPIO
configuration for the drivers specific to the target

hal_mac_cfg.c MAC Configuration specific to the target
hal_mac_cfg.h

hal_sleep.h Sleep/Power Saving specific to the target
hal_target.c Reserved

hal_target.h

hal_types.h Typedefs and keywords specific to the target

2.2. HAL Drivers Compile Options
The following compiling options allow the user to compile IN or OUT certain HAL driver.
Currently when a driver is compiled OUT, the API routines are still accessible but the
body of the routines will not be compiled and executed. When a routine is not called from
within the application, this routine will not be linked into the application at all. This means
that it not will occupy any code space

Symbol Definition
HAL_ADC ADC driver
HAL_LCD LCD driver
HAL LED LED driver
HAL_KEY Key driver
HAL_UART | UART driver
HAL DMA DMA driver
HAL_ FLASH | Flash driver
HAL_AES Security driver
HAL _SPI SPI driver
HAL _TIMER | Timer driver

2.2.1. Default Compile Options
Depends on the target, certain Hal drivers are turn ON or OFF. These are defined in
\Components\hal\target\XXX\hal_board_cfg.h where XXX is the target
(CC2430DB, CC2430EB, CC2420DB...etc)

2.2.2. Compiling IN Drivers
To compile the project with a certain HAL driver
1. Open a project
2. Right click on project

4 Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide SWRA199 Version 1.1

Select Options

Select C/C++ Options

Select Preprocessor

Go to Defined Symbols

Enter HAL,__ XXX=TRUE where XXX is ADC, LCD, LED, KEY or
UART

Options for node "msa_cc24305rc™ ﬂ

Categary: Factory Settings |

General Optiohs

Nk w

Languagel Code I Dptimizatinnsl Elutputl List Freprocessor | DA | "l

Assembler] Include pathz: [one per ling)
Custom Build $TOOLKIT_DIFSWINGS B
Build &ctions $TOOLKIT_DIR$SINCACLIB
Lirk.er FPROJ_DIR$A. N5 A AComponentsihalvinclude
Diebugger $PROJ_DIR$L. 5 A AComponentshhalstargeth CC2430EB ;I
Th!'d'Pa't-'" Driver Defined symbals: [one per line]
Chipcon CC2430EE |
Chipcon POWER_SaVING
ROM-Monitor Hal_LED=TRUE|
Analog Devices LI
Silabs Preinclude file;

Sirnulatar I J

[Preprocessor output ta fils
" Eresere comments
™| Generate #line directives

0K I Cancel

2.2.3. Compiling OUT Drivers
To compile a project without a certain HAL driver

1. Open a project
Right click on project
Select Options
Select C/C++ Options
Select Preprocessor
Go to Defined Symbols
Enter HAL_XXX=FALSE where XXX is ADC, LCD, LED, KEY,
UART

ok wd

5 Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide SWRA199 Version 1.1

Options for node "msa_cc24305rc™ x|

Categon: Factary Settings |

General Options
Languagel Code I Dptimizatiunsl Elutputl List Preprocessor | DA | "l

Assembler] Include pathz: [one per ling)
Custorn Build $TOOLKIT_DIRFYINGS B
Build Actions $TOOLKIT_DIR$MNCACLIB
Linker $PROJ_DIR$S S5 ACompanentsshalinclude
Diebugger $PROJ_DIR$S. 558 A MComponentshhaltargethCC2430EB LI
Th!rd-F'art_l.J Driver Defined symbols: [one per line]
Chipcon CC2430EE o
Chipcan POWER_SAVING
ROk -t otitior HelL LED=FaL5E|
Analog Devices LI
Silabs Preinclude file:
Sirnulatar I J
[~ Ereprocessor output ta file
™ Fresere commets
™| Generate Hline diectives

0k I Cancel

2.3. HAL Drivers Customization
Even though HAL drivers are flexible, there is time when the user decides to customize
their HAL drivers to do a specific thing that fits their needs. Users can either modify the
existing drivers to work with their hardware or simply add their own drivers as they see fit.

2.3.1. Modifying Existing HAL Drivers
When the user decides to modify the drivers to support different features that are not
provided by default, the following rules should be followed:

1. All the header files located at \Components\hal\include should remain the
same. These prototypes are called by different parts of the program and should
not be modified.

2. The functionality of the each driver can be changed by modifying corresponding
function in \Components\hal\target\XXX where XXX is the target. Driver files
are hal_adc.c, hal_key.c, hal_lcd.c, hal_led.c, hal_timer.c, and hal_uart.c.

3. Drivers hardware configuration can be modified through hal_board_cfg.h

2.3.2. Adding Drivers For New Target
Users can add new drivers or custom drivers to support their own hardware.

1. All the new header files go to \Components\hal\include.

6 Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide SWRA199 Version 1.1

2. All the files that contain the actual functions/routines go to
\Components\hal\target\XXX where XXX is the user’s defined target.

3. If GPIO pins conflict or are unwanted, certain provided drivers can be compiled
OUT using compile flags. Check HAL Drivers Compiling Options section for
more details.

4. Verify GPIO pins are correctly setup by checking hal_board_cfg.h for
conflicts. Board specific configuration GPIO for hal drivers is located here.

5. Project file has to be modified accordingly. New target must be added under
HAL folder in the project file together with all the new files.

% IAR Embedded Workbench IDE

Ele Edit View Project Tools Window Help

DEEdg & % B8 | = o |[halerocesskeyn
x

Workspace

| rorsner
[cCz430E8 Source =l
Files I

=] msaﬁcl:243l]Slc - CC2430EB Source = '
(23 &pplication
= CaHAL

(Z3 Common

(A Ineluds

I—E‘ (C Target

[CC243008
(1 CC2a0ER

CaMAT
CaosaL
(2 Services
(23 Output

6. For project that includes multiple targets, un-used or old targets must be
excluded from build to prevent conflicts. This can be done by right click on the
target, select options and then check “Exclude from build”.

Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide

SWRA199 Version 1.1

|CC2430ER Source

= msa_cc243l]5m - CC2430EB Source =
[&pplication
—& LI HAL
(3 Camman
A Inchude
L1 3 Target
() EERE
(1 CC2430ER
L Cam yw Target
CaMaC
Ca0%aL
[Services
(3 Output

Options for node "msa_cc24305rc"

v Euxclude from build

Files I

x|

Categary: [Owenide inherited settings

C/C++ Compiler

Azzembler Language |C0de | Dptimizationsl Dutputl List | Preprocessorl DA | ’I
Cuistom Build
 Language
=

" Embedded T
" Extended Embedded Crr
) Sutomatic (extension bazed)

[T Bequite pratotupes

— Language confarmance
& sllowlAF extensions
) Bielared |S0/AMHE]

Blain 'char iz
€ Signied
& [nsigned

Factary Settings |

€ Shict [SO/ENS]

[T Enatble mulibpte support

[T Enatble (4R migration preprocessor extensions

Cancel

3. GPIO and Radio/MCU Pin Interface

GPIO and Radio/MCU pin definitions are located at different places/files depending on
which purpose the pins serve. If the user decides to alter the GPIO configuration, to use a

8 Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide SWRA199 Version 1.1

different pin-out between the MCU and Radio, these are the files in the following locations
need to be modified:

3.1. HAL Drivers GPIO Pin Interface Modification
HAL drivers pin definitions are located in
\Components\hal\target\XXX\hal_board_cfg.h where XXX is the target.

3.2. Radio/MCU GPIO Pin Interface Modification

Radio/MCU pin definitions are located in \Components\hal\target\XXX\hal_mac_cfg.h
and \Components\hal\target\XXX\hal_mac_cfg.c where XXX is the target.

4. Interrupt Service Routine.

This section shows the user where to modify an existing Interrupt Service Routine (ISR) and
how to create a new ISR for an interrupt.

4.1. HAL ISR Function Macro

To abstract the differences between compilers a macro defined as HAL_ISR FUNCTION (f,v)
in \Components\hal\target\XXX\hal_mcu.h (where XXX is the target) is used to declare
the ISR. For more detail please check hal_mcu.h.

To use the macro, simply declare:

HAL ISR FUNCTION (prototype, vector)
{

/* Do something when this interrupt happens!!! */

}

Where prototype is the name of the ISR and vector is the interrupt vector.

4.2. Modifying Existing ISR For GPIO Interrupt

To modify an existing ISR for a GPIO interrupt, simply go to the where the ISR routine is
declared and modify it.

4.2.1. Example : Modifying ISR in a CC2430 project
Example: Modify PIINT_VECTOR interrupt service routine in a CC2430 project.

P1INT_VECTOR interrupt service routine is declared in hal_key.c.

HAL ISR FUNCTION (halKeyPortlIsr, P1INT VECTOR)
{

halProcessKeyInterrupt ();
}

4.3. Adding New ISR For GPIO Interrupt
To add a new ISR, the user must be provided with a header file that contains information
of the target’s microcontroller. This file provides information about the interrupt vector
definition and/or byte address of the specific GPIO port that will be used. This

information often is provided by the MCU manufacturer. The user also needs to know the
prototype of the ISR.

Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide

SWRA199 Version 1.1

10

4.3.1. Example 1: Creating an ISR for a CC2430 target
Create an ISR for timer 1 (T1_VECTOR)

Step 1: For CC2430, the interrupt vector definitions locate in i0CC2430.h and it

partially looks like this:

/*

*k
*

Interrupt Vectors

*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

RFERR_VECTOR VECT(0, 0x03)

ADC_VECTOR
URXO0_VECTOR
URX1_VECTOR
ENC_VECTOR
ST_VECTOR
P2INT_VECTOR
UTXO0_VECTOR
DMA_VECTOR
T1_VECTOR
T2_VECTOR
T3_VECTOR
T4_VECTOR
POINT_VECTOR
UTX1_VECTOR
P1INT_VECTOR
RF_VECTOR
WDT_VECTOR

VECT(1, 0x0B)
VECT(2,0x13)
VECT(3,0x1B)
VECT(4,0x23)
VECT(5, 0x2B)
VECT(6, 0x33)
VECT(7,0x3B)
VECT(8, 0x43)
VECT(9, 0x4B)
VECT(10, 0x53)
VECT(11, 0x5B)
VECT(12, 0x63)
VECT(13, 0x6B)
VECT(14, 0x73)
VECT(15, 0x7B)
VECT(16, 0x83)
VECT(17, 0x8B)

Step 2: Use the macro, define the ISR.

€ Timer 1 vector

HAL ISR FUNCTION (My Timerl ISR, T1_VECTOR)

{

/* Do something when this timer 1 happens!!! */

}

4.3.2. Example 2: Creating an ISR for a MSP430 target
Create an ISR for USARTOTX_VECTOR

Stepl: For MSP430, the interrupt vector definitions locate in msp430x16x.h and it

partially looks like this:

/**

* Interrupt Vectors (offset from OxFFEO)
**/

#define DACDMA_VECTOR

#define PORT2_VECTOR

#define USART1TX_VECTOR
#define USART1RX_VECTOR

#define PORT1_VECTOR

#define TIMERA1_VECTOR

(0 * 2u)
(1% 2u)
(2 * 2u)
(3 * 2u)
(4 * 2u)
(5 * 2u)

Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack HAL Porting Guide SWRA199 Version 1.1

11

#define TIMERAO_VECTOR (6 *2u)
#define ADC12_VECTOR (7 *2u)
#define USARTOTX_VECTOR (8 *2u) € UARTO Transmit vector
#define USARTORX_VECTOR (9 *2u)

#define WDT_VECTOR (10 * 2u)
#define COMPARATORA_VECTOR(11 * 2u)
#define TIMERB1_VECTOR (12 * 2u)
#define TIMERBO_VECTOR (13 *2u)
#define NMI_VECTOR (14 * 2u)
#define RESET_VECTOR (15 *2u)

Step 2: Use the macro, define the ISR

HAL_ISR_FUNCTION (MyTx0Isr, UARTOTX_VECTOR)
{

/* Do something when this UARTOTX_VECTOR happens!!! */
}

Copyright © 2007-2009 Texas Instruments, Inc. All rights reserved.

