‘9 TEXAS
INSTRUMENTS

Over Air Download
For CC2530 SoC

Document Number: SWRA257

Version 1.3

TABLE OF CONTENTS

O o U 1 4 0 1] 4
2. FUNCTIONAL OVERVIEW. ... oottt ettt e ettt et e s et e e s st e e s s tbe s e senane e s sabeee s 4
KT NS 110 11V | I 1 N1 4
N O L 11 1Y/ TSR 4
LT = €= = N[= 4
(ST = A YA T [AV o 1 I3 1O] 720 4
T. DESIGN CONSTRAINTS ..ottt e e e e e e e e e e s e e e st b e e e sebeeeessabeeesasbeesssbaeesssrreeeas 5
7.1 EXTERNAL CONSTRAINTS / FEATURES ...ocittiiitiiitiiesitee sttt e st s site s stessaba s stessabessstassstassstessnbassbassnbasans 5
7.2 INTERNAL CONSTRAINTS / REQUIREMENTS .. veiitiiiitieiereesiteessres s stesesbesssbesssbesssbessssesssrassssesssressnnesssees 5
R B 1] €1\ TR 5
8.1 (07N B N O] N1 1 =5 E T ORRRRR 5
8.2 FUNCTIONAL DESCRIPTION L.uuutttiiiiieiiiiititttitieessesstbtessesssssatbssssesssssasbbssssssesssasssssssssesssssssssesssessssssnns 5
8.2.1 20 0) A OLa Yo [T 5
8.2.2 (@7 Y o] o] 1 To7= 4 o S 6
9. PRODUCING OAD BOOT CODE TO BE PROGRAMMED.cooiiiciie et 6
9.1 SEPARATE BUILD & DEBUG OF BOOT CODE.........occtttiiiieei ittt e ettt s e e s s e sibbats s e e s s s sabbaneseeesssannes 6
10. PRODUCING OAD APPLICATION CODE TO DEBUG OR SEND OAD.......ccccccevieeiiiieeens 7
10.1 CONFIGURE LINKER OPTIONS FOR THE OAD FUNCTIONALITY . .iiiiittiiiiieiiiiiitiiee e ssiirieee s e s s snnsvaens 7
10.1.1 Configure the linker to generate extra OULPUL.cccceiiveieieeieie e 7
10.1.2 Configure the linker extra output file fOrmat............cccceecveieieie i 8
10.1.3 Configure the linker command file for OAD-compliant mapping.cccoceveveniereiincieienennns 9
10.2 CONFIGURE BUILD ACTIONS TO INVOKE THE OAD POST-PROCESSING TOOL...uuvvviieeiiiiiirrieieeeessiinnns 10
10.3 CONFIGURE C/C++ COMPILER DEFINES FOR OAD.......ciiiiiiitiiiitie ettt 11
10.4 ADD THE OAD APPLICATION TO THE IAR PROJECT . c.vvviiiitiie ettt ettt ave e 12
10.4.1 Add three OAD Application Source files that are found here:cccceveveie i, 12
10.4.2 Define Proprietary Preamble Fields. ... 12
10.4.3 Add the OAD OSAL COMPONENTS.everieiirieieiesieieie ettt sttt 13
10.4.4 Add the OAD HAL COMPONENL. ...viiiitiitiiieitieiieie ettt sttt sb e se b e b e 14
10.5 BUILDING THE APPLICATION CODE.uuttiiiieiiiiiitiiiiiiee e et iiiisties s e st ssibareessessssssatbasssesssasssbasseesssssnsnes 15
10.6 DEBUGGING THE APPLICATION CODE.......ciiiuiieiitiiieieteee s eteeeeeitte e e esateeessabeeessbaesssnseesessabesessssesesnns 15
11. PRODUCING OAD APPLICATION CODE WITH BOOT CODE TO BE PROGRAMMED.16
11.1 BUILD THE APPLICATION CODE HEX IMAGE. ...cuutviiiieeiiiiititiieee e e s ssibtreeesesssssatseessesssesssbesssesssssnnes 16
11.1.1 Configure the linker to generate Intel-hex QULPUL.ccoeiiiiiiiiiin 16
11.1.2 Configure the linker control file to generate output compatible for the SmartRF
LT =V] 40T (o PSSP 17
11.1.3 Re-build the Application Code to generate the .hex file. ... 17
11.2 PRE-PEND THE BOOT CODE HEX IMAGE TO THE APPLICATION CODE HEX IMAGE.cccvvvvireeeeiinnns 17
12. PRODUCING OAD DONGLE CODE.......cootiii ittt ettt 18
12.1 SEPARATE BUILD & DEBUG OF OAD DONGLE CODE......cccuviiiiiiiiiiiiiiiiie e siiitieee e sssiiireesse e s s sannns 18
13. OAD HIGH LEVEL CUSTOMER INTERACTION ..ottt 18
13.1 OAD EVENT CALLBACK = OPTIONAL. ..uuvttiiittieeeitteeeeeteeesiseesssssseesssssesssssesesssssessssssessssssesesssssesesnns 18
13.2 RESULTS OF THE BUILD. .ciiietttiiiiieeiietitittteeessesstbetssesssssesbbasasssesssasssasssssesssasssssesssesssessssbesssessssssses 18
13.3 CAVEATS AND ADDITIONAL INFORMATION.ciiiutriiiieeeisiitbtiieesessiebbbreessessssssasbssssesssesssbesssesssssssnns 19
11/11/2010 Page 2 of 19

Over Air Download for CC2530 SoC

TABLE OF FIGURES

Figure 1: Architectural Placement of the OAD Z-Stack COMPONENL.ccoveivevieieiiii e 6
Figure 2: Configuring the linker to generate an extra output file.cccccooveeviic v 7
Figure 3: Configuring the linker extra output file FOrmat............ccocooiiiiiiiiii e 8
Figure 4: Changing the linker command file to implement OAD-compliant mapping.cccccceevevencenenenne. 9
Figure 5: Configuring the build actions to invoke the OAD post-processing tool.ccccceveveiievieiieinennas 10
Figure 6: Configuring the C/C++ Compiler OPLiONS.cccviiviieieiieie et nne s 11
Figure 7: Adding the OAD Application source files to the IAR Project.........c.ccoveveinienennienerseneeeee 12
Figure 8: Adding external function declarations to0 OSAL_GeneriCAPP.C.oververerierereeieieenieseseesie e 13
Figure 9: Adding the OAD VENT 10 OSAL......ccviiiiiiiiiiecese ettt st st re e sresbesresre s 13
Figure 10: Adding the OAD initialization fuNCtion t0 OSAL.ccccviviiiieeie s 14
Figure 11: Adding the OAD HAL file to the IAR Project.cccoviiiiniiieieeee e 14
Figure 12: Preserving boot code While debugging.ccouieiiriiiiie e 15
Figure 13: Configuring the linker to generate Intel-hexX OULPUL..........cccociiiiciiicic i 16
Figure 14: Enabling —M option for SmartRF Programmer t00l.ccccuvvveveienesie e 17
11/11/2010 Page 3 of 19

Over Air Download for CC2530.doc

1. Purpose

The purpose of this document is to provide a developer’s guide to enable the proprietary
T1 OAD functionality in any sample or proprietary Z-Stack Application using the CC2530.

2. Functional Overview

OAD is an extended stack feature (US Patent 7814478) provided as a value-enhancing
solution for updating code in fielded devices without the cost of physically accessing
them. OAD is effected as a managed client-server mechanism which requires three
logical components:

1. A Commissioner component to initiate and control the deployment of images to
devices and to activate them when appropriate.

2. A Client component on any device that is to receive and activate a new image.

3. A Server component to supply client devices with a new image.

3. Assumptions

1. Off-chip NV assumes the use of the Numonyx NV storage device, connected by SPI
to the CC2530 SoC, and provided by reference design of the SmartRF05 board.

4. Acronyms

Term Definition

NV Non-Volatile (memory that persists through power cycles.)
OAD Proprietary Texas Instruments Over Air Download

OTA ZigBee Alliance Over The Air download

5. References

[1] Z-Stack Developer’s Guide (SWRA176)
[2] Zz-Stack User's Guide For SmartRFO5EB and CC2530 (SWRU189)

6. Revision History

Date Revision | Description of changes

11/07/08 0.1 New document — used “OAD for MSP430” as a template.

02/18/09 0.2 Internal only with minimal update to enable testing of a 2.2 Beta release.

03/10/09 0.3 Finish updates for OAD in 2.2 release code.

04/03/09 1.0 Finalize for release.

02/17/10 1.1 Add requirement to define MAKE_CRC_SHDW.

07/28/10 1.2 Emphasized that this is the proprietary TI OAD and removed obsolete references.

11/11/10 1.3 Updated “patent pending” statement, removed use of OTA term for OAD functionality.
11/11/2010 Page 4 of 19

Over Air Download for CC2530 SoC

7. Design Constraints

7.1 External Constraints / Features

An off-chip NV device must be used to store the new OAD image when code size
exceeds the available internal flash® - the means by which this occurs is beyond the
scope of this document.

7.2 Internal Constraints / Requirements

The OAD image must be a complete and integral Z-Stack Application (i.e. only sending
the stub Application layer is not supported.)

8. Design

8.1 OAD Context

The OAD system is comprised of two images: the ‘Boot Code’ and the Z-Stack with the
OAD Application (as well as any other application(s)) — the ‘Application Code’. The
placement of each of the two images into the internal flash is handled by the unique IAR
linker command file used by each.

8.2 Functional Description

8.2.1 Boot Code

The OAD solution requires the use of boot code to check the integrity of the active image
before jumping to it. This check guards against an incomplete or incorrect programming
of the active image. The OAD boot code provides the following functionality:

1. Boot Code will be the target of the reset vector and therefore contain startup code.
2. When the active image indicates, Boot Code will program the download image into the

active image area and will thusly complete the final step of an OAD process: code
instantiation.

3. Boot Code will guard against interrupted programming of the active image area by
checking the validity of the active image. If the image is not valid the boot code will again
program the download image into the active image area.

The Boot Code requires the first flash page so that it can intercept the startup vector.

The Boot Code can only be physically downloaded.

! The available internal flash is half of the subtotal of the total flash pages less the page used by
the OAD boot code and less the pages reserved for NV and less the last page used for flash lock
bits.

11/11/2010 Page 5 of 19
Over Air Download for CC2530.doc

8.2.2 OAD Application

The OAD Z-Stack component is implemented as a standard ZigBee Application:

User Application OAD Application

Z-Stack

Figure 1: Architectural Placement of the OAD Z-Stack Component.

Thus, the OAD Application must be included in the build of the sample or proprietary
application in order to enable OAD functionality (the Client and Server logical
components only — the Commissioner component is implemented in a ZigBee tool such
as Daintree Professional as well as in the Dongle sample application which is included
with the Z-Stack distribution.)

9. Producing OAD Boot Code to be programmed.

9.1 Separate Build & Debug of Boot Code

The Boot Code is separately built and debugged or programmed via the IAR IDE
by opening the OAD Boot Project here:

SINSTALL_DIRS$\Projects\zstack\Utilities\OAD\CC2530DB\Boot.eww

The default configuration is with the download option to erase flash in order to
start a CC2530 SoC with clean flash (and thus clean NV). Before debugging or
physically programming the OAD Application code produced in the next section,
this OAD Boot code must first be programmed into the flash (but only this once,
since, as the following section mentions, the default option for application code is
to preserve this OAD Boot code on successive debugging or programming.)

11/11/2010 Page 6 of 19
Over Air Download for CC2530 SoC

10. Producing OAD Application Code to debug or send OAD.

The “RouterEB” build of the Z-Stack sample application known as GenericApp is used
below for demonstration purposes only - the Customer would apply the following steps in
her own, proprietary Z-Stack application and make the corresponding changes to all of
the paths below that are specific to GenericApp. The RouterEB is also used below for
demonstration only — these same steps apply to any of the CC2530 targets supported by

the Z-Stack release. It is only requisite that the paths specific to the RouterEB target be
changed accordingly.

10.1 Configure linker options for the OAD functionality.

10.1.1 Configure the linker to generate extra output.

Check the checkbox to “Allow C-SPY-specific extra output file” as shown below.

Options for node “GenericApp™

Categony: Factory Settings |

General Cptions
C/C++ compiler Output I Extra Elutputl ﬂdefinel Diagnn:nstin:sl Lizt I En:nnfigl Proce_4 I "I
Assembler

Cu.stcum Eu“d Secandary autput file:
Build Ackions

ml :
IEeneric.ﬁ.pp.dalS [Mone for the selected format)

Cebugger
FET Debugger
Simulatar

— Format
" Debug information for C-5P
I with runtime control modules
I wiith |0 emulation modules
™| Buffered terminal output
v fllow C-5P-specific extra output file
" Other

[0 bpat Farrmat: I zimple

Format variant: I MHane

L L L

Module-lozal syrbals: IInu:qu:Ie all

] | Cancel |

Figure 2: Configuring the linker to generate an extra output file.

11/11/2010 Page 7 of 19
Over Air Download for CC2530.doc

10.1.2 Configure the linker extra output file format.

Check the checkbox to “Generate extra out file” and choose the “Output format:.” as

simple-code as shown below.

Options for node “GenericApp™

Cateqgary:

General Options

Bssembler
Cuskom Build

v Generate extra output file

Factary Setting= |

CJC++ compiler Output Extra Output | ﬂdefinel Diagnusticsl List I Eu:unfigl Proce 4 I 'I

Build Ackions — Dutput file

[Owvenide default

Debugoger

Genenctpp.zim
FET Debugger I o

Simulator

— Format

Clutput farmat; Isimple-u:u:ude

Format wariant: I Maone

Led Lo

o |

Cancel

Figure 3: Configuring the linker extra output file format.

11/11/2010
Over Air Download for CC2530 SoC

Page 8 of 19

10.1.3 Configure the linker command file for OAD-compliant mapping.

Use the following line for the “Override default” command string:
$PROJ_DIRS\. .\..\. \Tools\CC2530DB\oad. xcl

Options for node “GenericApp™ ﬂ

Category: Factary S ettings |

General Options
CJC++ Compiler
Assermbler

Custom Build Output I Extra Dutput I Hdefine I Diagnostics I List Canfig | F'n:u:eﬂ_"l
Build Actions Linker command file
W iveride defaii
D?Eit'dgf;rw Driver [$PROJ_DIRS:. A\ AT 00ls\CC2530DB Yoad 1cl J
Texas Instrument:
Infineon
ROIM-Manitar [T Ovenide default program entry
Analog Devices % Entry label I_pru:ugram_start
Silabs | Defined by application
Simulator Search paths: [one per ling]

$TOOLKIT_DIR$SLIBY -

-

— Baw binary image
File: Symbal; Segment: Align:

-]

k. I Cancel |

Figure 4: Changing the linker command file to implement OAD-compliant mapping.

11/11/2010 Page 9 of 19
Over Air Download for CC2530.doc

10.2 Configure build actions to invoke the OAD post-processing tool.

Use the following line for the “Post-build command line:”

"$PROJ_DIRS\. .\. .\..\Tools\CC2530DB\oad.exe"
"$PROJ_DIR$\RouterEB\Exe\GenericApp.sim"
""$PROJ_DIR$\RouterEB\Exe\GenericApp.bin"

The above lines must be pasted as a single line into the dialog box with one space
separating each block in parenthesis.

Options for node "GenericApp™

Categony:

General Cptions
C/C4++ Compiler
Assembler
Custom Build
Build Actions
Linker
Cebugger

Third-Party Driver
Texas Instrumenk:
Infineon
RCM-Monitar
Analog Devices
Silabs

Sirnulakor

X

Build Actions Configuration

Pre-build command line;

Pozt-build cormmand line:

L

||"$F'H CJ_DIR$L A A AT oolsh\CC26300E\oad exe’ "$PROJ_DIR$AE _I

Ok

Cancel

Figure 5: Configuring the build actions to invoke the OAD post-processing tool.

11/11/2010

Over Air Download for CC2530 SoC

Page 10 of 19

10.3 Configure C/C++ Compiler Defines for OAD.

Add the following to the C/C++ Compiler Preprocessor defined symbols:

MAKE_CRC_SHDW

Options for node "GenericApp”

Categary:

|General Cptions

Assembler

Custom Build

Build Actions

Linker

Debugoer
Third-Party Driver
Texas Instrument:
Infineon
RCM-Monitar
Analog Devices
Silabs
Sirnulakor

Factory Sethings |

[Multi-file Compilation
[

Language] Code] Dptimizatiuns] Elutput] Ligt

Preprocesszor l D4 »

[lgnore standard include directories

$TOOLEIT_DIRFNMC
FTOOLEIT_DIR$AMCWCLIEY

Additional include directaries: [one per ling]

tPROJ_DIR% rS
$PROJ_DIRE, NSOURCE

$PROJ_DIR$, A A AEMAIMATI2530DE

$PROJ_DIR$A A A A ACOMPOMENTSAMT v

Preinclude file:

| |

Defined symbols: [one per ling]

MT_S%'S_FUMC A [Preprocessor output ta file
MT_ZD0_FUNC [
LCD SUPPORTED=DEBUG [~

bAKE CHC SHDMW bl

o]

Cancel

Figure 6: Configuring the C/C++ Compiler options.

11/11/2010

Page 11 of 19
Over Air Download for CC2530.doc

10.4 Add the OAD Application to the IAR Project.

10.4.1 Add three OAD Application Source files that are found here:
$INSTALL_DIR$\Projects\zstack\Utilities\OAD\Source

A1 18R Embedded Workbench IDE

File Edit Wiew Project Tools Window Help

DS EHE@ E] 3 B R o o [oshd

Workspace x
IFh:uterEE j
Files e
B () GenericApp - RouterEB v
—&1 (1 App
1 GenericApp.c .
F— [GenericApp.h
e B RN R
1 EEER I
iload_ .
0SAL_GenericApp.c .
COHAL -
CMAC *

Figure 7: Adding the OAD Application source files to the IAR Project.

10.4.2 Define Proprietary Preamble Fields.

There are six bytes available for unique identification of an image in the file
oad_preamble.h. Although the macros are given names in the header file, the fields carry
no semantics other than the object type (uint16). The fields are identifying information
that may be used in any way desired for identification purposes.

11/11/2010 Page 12 of 19

Over Air Download for CC2530 SoC

10.4.3 Add the OAD OSAL components.
Edit the OSAL_GenericApp.c file as follows:
1. Add the following two external function declarations as shown in hi-light:

extern void oadApplnit(uint8 id);
extern uintl6 oadAppEvt(uint8 id, uintl6 evts);

#7 TAR Embedded Workbench IDE

File Edit Yiew Project Emulator Tools Window Help

DEEHE & L BRlo o

0SAL_Generic |

65 #include "Genericiapp.h”

1)

Rextern void oadippInitiuintd id):
Hgextern uintle cadippEvti{uints id, uintle ewvts):

—m

Figure 8: Adding external function declarations to OSAL_GenericApp.c.

2. Add the following line to the data structure tasksArr[] exactly as shown in hi-light.
oadAppEvt,
Eile Edit Yew Project Tools indow Help

DG & % B R| o o |[odaddmme S mEE

0SAL_Generich |

D 87 #1f defined (ZIGBEE_FREQ_AGILITY | || defined | ZIGEEE_PANTD CONFLICT |
E 48 ZIDNwkMgr ewent loop,
89 gendif

0) oadippEve,
E 91 Genericdpp ProcessEwent
L9z

93

Figure 9: Adding the OAD event to OSAL.

11/11/2010 Page 13 of 19
Over Air Download for CC2530.doc

3. Add the following line to the function osallnitTasks() exactly as shown in hi-light.
oadApplInit(tasklD++);

1AR Embedded Workbench IDE

File Edit Wiew Project Tools Window Help

e Y S J4Y w0 s
DSAL_GenericAf |
127 ZDapp_Init| taskIDH):

125 #if defined { ZIGEBEE_FREQ_AGILITY) || defined | ZIGEEE_PANID CONFLICT)
129 ZDNwkMgr_Tnit(taskID+):
130 #endif

RN cadippInit| taskIDH) :

132 Genericipp Init{ taskID):
133}

134

135 -{ff**i-fff**ifif**ifif*iifif*iifif*iifif*iiffi*iiff**iiff**iiff**iifi**i

136 #HFFLLLL LI LLLLA L LLLA LS ALLA LA AL LS LA AL L LA A SIS LS AL L S SLLLLSSLLLLEE 5

Figure 10: Adding the OAD initialization function to OSAL.

10.4.4 Add the OAD HAL component.

Add one OAD HAL file that is found here:
$PROJ DIRS$N\..\..\..\..\..\Components\hal\target\CC2530EB\hal_oad.c

7 1AR Embedded Workbench IDE

File Edit Wiew Project Tools window Help

D@ & %R0 |

Wiorkspace x E

I CoordinatorE B j
Files || R
B (JGenericApp - CoordinatorEB v
—E (0 App *
= LI HAL
@ Comman *
& Ca Include
LA Target
= (0 CC2530ER
3 (0 Config
& (O Drivers
[hal_adc.c
[hal_dma.c *

[hal_flash.c
[hal_key.c
[hal_lcd.c
[hal_led c

hal_oad.c
[hal_sleep.c
hal_startup.c *
[hal_timer.c x
[hal_uart.c *
—H JIncludes
8 (1 MAC *

Figure 11: Adding the OAD HAL file to the IAR Project.

11/11/2010 Page 14 of 19
Over Air Download for CC2530 SoC

10.5 Building the Application Code.
Simply build from the IAR IDE as you normally would.

The binary file produced, which is to be sent over-the-air, is found here:
$PROJ_DIR$\RouterEB\Exe\GenericApp.bin

10.6 Debugging the Application Code.

In order to run or debug the Application Code, a Boot Code image must have already been
downloaded to the CC2530 SoC (see the previous section.) So as not to destroy the Boot
Code image, preserve the space by checking the “Retain unchanged memaory” option as follows:

Options for node "GenericApp™ x|

Category: Factary Settings |

General Options
C/C++ Compiler

Assembler

Zustom Euild Download I Target |

Build Actions ;
Linker [T Eraze flash — Flazh Lack Protection
Cebugger [Boot block lock

[v Betain unchanged memmony

Third-Party Driver

[T Debug interface lock
Texas Instrument ™| Suppress download -

[Lock flazh memary

Infineon ;

ROM-Monikor I Werify downinad IL::u:k bitz 000b [all pages) j
.ﬁ..nall:ug Devices CRCA16 |<page zize info. mizsings

Silabs ™ Read back memary

Simulator

[Retain flash pages

k. I Cancel |

Figure 12: Preserving boot code while debugging.

Now simply build and debug the code from the IAR IDE (running with breakpoints, etc.) as you
normally would.

11/11/2010 Page 15 of 19
Over Air Download for CC2530.doc

11. Producing OAD Application Code with Boot Code to be programmed.

For mass-production programming, it will be important to have a single image containing
both the OAD Boot and Application code so that the part must only be programmed once.
The following example assumes that the SmartRF Programming Tool will be used for
programming an Intel-hex formatted file into the CC2530 SoC.

11.1 Build the Application Code hex image.

11.1.1 Configure the linker to generate Intel-hex output.

Check the checkbox to “Override default” and make the suffix “.hex” Also check the radio
button for “Other” Output file Format and choose the Output format drop-down selection
for ‘intel-extended’ as shown below.

Options for node “GenericApp™

Categony:

X

General Cptions
C/C4++ Compiler
Assembler
Custom Build
Build Actions

Cebugger
Third-Party Driver
Texas Instrumenk:
Infineon
RCM-Monitar
Analog Devices
Silabs
Sirnulakor

Ouitput I Extra Elutputl ﬂdefinel Diagnusticsl List I Eu:unfigl Froce 4 I *I

Factary Settings |

— Dutput file
v Overide default

Secondary output file:

Genencipp. hey [Mane for the zelected format]

— Format
" Debug information for C-5P
¥ | wiith muntime contiol modules
¥ | wiith |00 emulation modules
™| Buffered terminal output
¥ | &l C-5F-specifiic extra output file
" [Other

Clutput Farmat: Iintel-extended

Farmat variant: I MHaone

todule-lozal syrbals: IInclude all

L L Le

o |

Cancel |

Figure 13: Configuring the linker to generate Intel-hex output.

11/11/2010

Over Air Download for CC2530 SoC

Page 16 of 19

11.1.2 Configure the linker control file to generate output compatible for the
SmartRF Programmer tool.

Remove the comments from the —M option in oad.xcl as shown in hi-light.

A1 18R Embedded Workbench IDE

File Edit “Wiew Project Tools Window Help

D2 S 8 Belo«|n MRS AR E-X

 oadnclf]
212 77
213 /¢4 Include these two lines when generatihg a .hex f£ile for banked code model:

216 //-ww69=1
217 //
218 /7

Figure 14: Enabling —M option for SmartRF Programmer tool.

11.1.3 Re-build the Application Code to generate the .hex file.

Having already been built, just pressing the ‘F7’ key and linking will be sufficient

11.2 Pre-pend the Boot Code hex image to the Application Code hex image.

11/11/2010

1)

2)

3)

4)

5)

6)

Use any text editor to open the Application Code file produced here:
$PROJ_DIR$\RouterEB\Exe\GenericApp.hex

Delete this first line from the file:

:020000040000FA

Use any text editor to open the Boot Code file produced here:
$PROJ_DIR$\OAD-Boot\Exe\Boot.hex

Delete these last two lines from the file:

:040000050000079E52

:00000001FF

Copy the edited contents of the Boot Code file to the top of the Application Code
file and save it.

Use the SmartRF Programmer to install the edited Application Code hex image
into the CC2530 SoC.

Page 17 of 19
Over Air Download for CC2530.doc

12. Producing OAD Dongle Code.

12.1 Separate Build & Debug of OAD Dongle Code

The OAD Dongle is just a Z-Stack Sample Application that is built and debugged
or programmed like any other; the project is found here:

SINSTALL_DIRS$\Projects\zstack\Utilities\OAD\CC2530DB\Dongle.eww

A PC Tool is required to drive the OAD Dongle via the serial port and effect the
‘Commissioner’ component of the OAD trilogy; it is found here:

$INSTALL_DIR$\Tools\ZOAD\ZOAD.exe

13. OAD High Level Customer Interaction

13.1 OAD Event Callback - optional.

Significant time is required to store the new image as it is downloaded. Typical
programming times for flash parts are on the order of 10-15 milliseconds per page. So to
help maintain stability, the capability is provided for an application to be alerted when an
OAD session is in progress. This is done through a callback function that has registered
to be invoked when any of the tracked OAD events occur.

The registration prototype and OAD event bitmap defines can be found in hal_oad.h. The
registration prototype is presented below as well. The call registers a void function that
takes a uint16 argument. The named function will be invoked when the events marked in
the bit map indicated in the eventMask occur. The argument to the callback function will
indicate the event that occurred:
void ZLOADApp_RegisterOADEventCallback(void(*pCBFunction)(uintl6),

uintl6é eventMask)

The events supported are defined in the hal_oad.h interface header. There will be no
race conditions inherent in the sequence because the callback is done in the same
thread as the event itself. The begin event callbacks occurs before file transfer begins
and the end event callbacks occur after completion. The reset event callback occurs just
before the platform is reset. In each case the process will not proceed until the callback
returns.

Only a single callback can be registered. Only the most recent callback function and
event set registration is respected. Deregistration can be accomplished by providing
either a null function pointer or a null event mask.

13.2 Results of the build.

After a project is built with the OAD Application as described above, the target Exe
directory will contain three files:

1. A monolithic binary file with the extension .bin. This is the file that is used as the image to
be downloaded over-the-air in subsequent OAD procedures. The image will be OAD-
capable so that it too can be updated via OAD.

2. AnIAR debug file with the extension .d43. This file is used by the IAR IDE for debugging.

3. A file with the extension .sim. This file is input to the IAR post-processing tool which
produces the monolithic binary file above.

11/11/2010 Page 18 of 19
Over Air Download for CC2530 SoC

13.3 Caveats and additional information.

=

If anything changes that will affect the boot code, then the boot code must be re-compiled
and then must be physically downloaded — OAD is impossible with parameters that are
not identical to the fielded boot code. The applicable parameters are
HAL_NV_PAGE_CNT when HAL_OAD_XNV_IS_INT and everything within the
hal_board_cfg.h section labeled “Xtra-NV (used by OAD) implemented by internal flash
or SPIl eeprom.”

2. The image identification fields (defined in the file oad_preamble.h) are not used to
validate a downloaded image. That is, they are not used as part of any sanity check for
the legality of an image. They have no semantics associated with them.

3. During an OAD transfer session there is a timeout constant of 1 second for retries on the
client side. There are 10 retries before the client gives up. Therefore, if the End Device
polling rate is 10 seconds or longer, it is likely that the client side will quit during an image
transfer. So ensure compatible network settings between the polling rate and OAD retry
rate and retry count to ensure OAD success.

4. The OAD event callback can be used to synchronize the OAD session with other
platform functionality. This can be important when the platform is in the client role. The
image download process can generate significant interruptions in processing when the
downloaded image is being written. The callback offers an opportunity to add discipline
before and after a download session. These run-time adjustments should probably be
done in the callback thread rather than using the task messaging interface. This will
guarantee that the adjustments occur before the OAD session continues, as the session
is blocked until the callback returns. If it is not important to make the runtime adjustments
precisely before or after the session then the more disciplined OSAL messaging method
can be used.

5. To save on sending unused flash pages over-the-air, those pages can be removed from the
image to send by OAD by shortening the end of available flash to only what is required
for the particular application. After building the code image, inspect the .map file
produced to find the number of filler pages at the end of the image. These are not
necessary, so remove them by subtracting the size of the filler at the end of the image
from these 3 places:

. #define HAL_OAD_DL_SIZE
i -P(CODE)BANKED_CODE=0x0800-0x7FFF,0x18000-0x1FFFF,... (in oad.xcl).
i -J2,crc16,= 800-887,88C-7C7FF (in oad.xcl).

When using only internal flash for OAD (i.e. external NV is not available), there is a very
strong and perhaps undesired side-effect to reducing the operational code image to less
than half of the available internal flash. The side-effect is that it is never possible to
instantiate a code image larger than this reduced size (even though the device can
participate in OAD with larger image sizes, it cannot instantiate them.) A minor change
in the boot code could ameliorate this side-effect, but not eliminate it completely.

11/11/2010 Page 19 of 19
Over Air Download for CC2530.doc

	1. Purpose
	2. Functional Overview
	3. Assumptions
	4. Acronyms
	5. References
	6. Revision History
	7. Design Constraints
	7.1 External Constraints / Features
	7.2 Internal Constraints / Requirements

	8. Design
	8.1 OAD Context
	8.2 Functional Description
	8.2.1 Boot Code
	8.2.2 OAD Application

	9. Producing OAD Boot Code to be programmed.
	9.1 Separate Build & Debug of Boot Code

	10. Producing OAD Application Code to debug or send OAD.
	10.1 Configure linker options for the OAD functionality.
	10.1.1 Configure the linker to generate extra output.
	10.1.2 Configure the linker extra output file format.
	10.1.3 Configure the linker command file for OAD-compliant mapping.

	10.2 Configure build actions to invoke the OAD post-processing tool.
	10.3 Configure C/C++ Compiler Defines for OAD.
	10.4 Add the OAD Application to the IAR Project.
	10.4.1 Add three OAD Application Source files that are found here:
	10.4.2 Define Proprietary Preamble Fields.
	10.4.3 Add the OAD OSAL components.
	10.4.4 Add the OAD HAL component.

	10.5 Building the Application Code.
	10.6 Debugging the Application Code.

	11. Producing OAD Application Code with Boot Code to be programmed.
	11.1 Build the Application Code hex image.
	11.1.1 Configure the linker to generate Intel-hex output.
	11.1.2 Configure the linker control file to generate output compatible for the SmartRF Programmer tool.
	11.1.3 Re-build the Application Code to generate the .hex file.

	11.2 Pre-pend the Boot Code hex image to the Application Code hex image.

	12. Producing OAD Dongle Code.
	12.1 Separate Build & Debug of OAD Dongle Code

	13. OAD High Level Customer Interaction
	13.1 OAD Event Callback - optional.
	13.2 Results of the build.
	13.3 Caveats and additional information.

