
 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved.  

 

 

 

 

 

 

 
Z-Stack 

HAL Porting Guide 
 

 

 

 
Document Number: SWRA199 

 

 

 

 
Texas Instruments, Inc. 

San Diego, California USA 

 



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. i 

 

Revision   Description Date 

1.0   Initial release. 03/14/2007 

1.1   Updated for ZStack 2.2.0 release 04/02/2009 



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. ii 

TABLE OF CONTENTS 
 

1. Introduction............................................................................................................................1 

1.1. Scope............................................................................................................................... 1 

1.2. Usage .............................................................................................................................. 1 

1.3. Acronyms ....................................................................................................................... 1 

2. HAL .........................................................................................................................................1 

2.1. HAL Component Folders ............................................................................................. 1 

2.1.1. HAL Common Folder........................................................................................... 1 

2.1.2. HAL Include Folder.............................................................................................. 3 

2.1.3. HAL Target Folder ............................................................................................... 3 

2.2. HAL Drivers Compile Options .................................................................................... 4 

2.2.1. Default Compile Options ...................................................................................... 4 

2.2.2. Compiling IN Drivers ........................................................................................... 4 

2.2.3. Compiling OUT Drivers ....................................................................................... 5 

2.3. HAL Drivers Customization ........................................................................................ 6 

2.3.1. Modifying Existing HAL Drivers ........................................................................ 6 

2.3.2. Adding Drivers For New Target.......................................................................... 6 

3. GPIO and Radio/MCU Pin Interface...................................................................................8 

3.1. HAL Drivers GPIO Pin Interface Modification ........................................................ 9 

3.2. Radio/MCU GPIO Pin Interface Modification .......................................................... 9 

4. Interrupt Service Routine. ....................................................................................................9 

4.1. HAL ISR Function Macro............................................................................................ 9 

4.2. Modifying Existing ISR For GPIO Interrupt ............................................................ 9 

4.2.1. Example : Modifying ISR in a CC2430 project ................................................. 9 

4.3. Adding New ISR For GPIO Interrupt ........................................................................ 9 

4.3.1. Example 1: Creating an ISR for a CC2430 target ........................................... 10 

4.3.2. Example 2: Creating an ISR for a MSP430 target .......................................... 10 



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 1 

1. Introduction 

1.1. Scope 
This document provides information on how to take a Z-Stack™ release and customize the 

HAL layer so that Z-Stack can run on the user’s own target hardware.  

 

1.2. Usage 
Each section will provide the user the information and options to customize it if possible. 

This document covers the following: 

 

- HAL component folders (compiling options, customization) 

- GPIO pin interface (HAL drivers, Radio, and MCU) 

- External Interrupt ISR handling 

 

1.3. Acronyms 

 

ADC Analog to Digital Conversion 

API Application Programming Interface. 

GPIO General Purpose Input Output 

HAL Hardware Abstraction Layer 

MAC Medium Access Control. 

OSAL Operating System Abstraction Layer. 

 

 

2. HAL  
HAL is the layer that provides hardware services without exposing too much hardware 

related material so that the users can focus more on their application. Majority of the HAL is 

the drivers that control LEDs, LCD, ADC, KEYs, Timers and UART. These services are 

abstracted by simple APIs which allow users to use these services without worrying about 

setting up these services at GPIO level. 

 

2.1. HAL Component Folders 
HAL Component folders contain HAL drivers and HAL related files. HAL Component 

folders are organized into 3 different folders under \Component\hal.  

 

• Common  

• Include 

• Target 

 

2.1.1. HAL Common Folder 
HAL common folder contains files that can be used in stack, MAC and drivers but 

they are HAL related in some way. There are 2 files in this folder: hal_assert.c and 

hal_driver.c. 

 

2.1.1.1. hal_assert.c 



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 2 

This file contains routines that HAL_ASSERT and HAL_ASSERT_SIZE macros 

used to debug and/or verify data. These macros are used by MAC (high, low level) 

and HAL drivers. 

 

halAssertHandler() 
This routine controls the behavior of the assertion. If ASSERT_RESET is defined, 

the system will reset by calling HAL_SYSTEM_RESET macro, otherwise, the 

halAssertHazardLights () will be called and this will flash available LEDs. 

 

halAssertHazardLights () 
This routine controls how the LEDs flash. Depends on different platforms, the 

number of available LEDs are different.     

 

HAL_ASSERT () 
This macro is for use during debugging.  The given expression must evaluate as 

"true" or else a fatal error occurs.  From here, the call stack feature of the debugger 

can pinpoint where the problem occurred. This feature can be disabled for optimum 

performance and minimum code size (ideal for finalized, debugged production code).  

To disable, define the preprocessor symbol HALNODEBUG at the project level. 

 

HAL_ASSERT_SIZE () 
This macro compares the size of the first parameter to the integer value of the second 

parameter.  If they do not match, a compile time error for negative array size occurs 

(even gnu chokes on negative array size). This compare is done by creating a typedef 

for an array.  No variables are created and no memory is consumed with this check.  

The created type is used for checking only and is not for use by any other code. 

 

2.1.1.2. hal_driver.c 
This file contains initializing and event processing routines for all HAL drivers. 

This is where hal driver related events are processed. It also contains polling 

mechanism for the drivers such as Timer and UART.  

 

Hal_Init () 
This is called by osalTaskAdd () to register HAL drivers as a task in the OSAL. 

This will allow HAL drivers messages and events to be processed by the OSAL 

accordingly. User can add non hardware related initializations in here. These will be 

initialized by the OSAL when the HAL driver task is created. 

 

HalDriverInit () 
This is called by main () to initialize the hardware of the drivers. User can add 

hardware related initializations in here. All these initializations will be done at the 

beginning of the program. 

 

Hal_ProcessEvent () 



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 3 

This file is registered to OSAL to handle HAL related events coming from the 

drivers such as keys, leds, and power saving. Users can add their own HAL related 

events in here. The event id must be unique and must be defined in hal_driver.h 

 
For example: These are some of the predefined events 

HAL Event Description 

HAL_KEY_EVENT This event is issued by hal_key to handle 

key polling and de-bounce 

HAL_LED_BLINK_EVENT This event is issued by hal_led to handle 

blinking leds 

HAL_SLEEP_TIMER_EVENT This event is issued by Power Saving 

 

Hal_ProcessPoll () 
This file is called by osal_start_system () in the main infinite loop to process polling 

events for the HAL Timer and HAL UART drivers. 

 

 

2.1.2. HAL Include Folder 
HAL Include folder contains header files for HAL drivers and HAL related files. 

 

For example: These are the typical files for a target under Include folder. 

 

File Type 

hal_adc.h Driver 

hal_key.h Driver  

hal_lcd.h Driver 

hal_led.h Driver 

hal_timer.h Driver 

hal_uart.h Driver 

hal_defs.h Macros and Type Definitions 

hal_driver.h Driver 

hal_sleep.h Sleep/Power Saving 

hal_assert.h Debug 

hal_board.h Configuration 

hal_flash.h Flash interface  

hal_ccm.h Security interface 

 

 

2.1.3. HAL Target Folder 
HAL Target folder contains target specific files. This folder can include drivers, board 

configuration, MCU information and data types that associate to the specific target only. 

 

For example: These are the files for CC2430EB target under Target folder. 

 

File Type 

hal_adc.c Driver 



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 4 

hal_key.c Driver 

hal_lcd.c Driver 

hal_led.c Driver 

hal_timer.c Driver 

hal_uart.c Driver 

hal_mcu.c MCU Configuration specific to the target 

hal_board_cfg.h Drivers Configuration – Contains hardware/GPIO 

configuration for the drivers specific to the target 

hal_mac_cfg.c 

hal_mac_cfg.h 

MAC Configuration specific to the target 

hal_sleep.h Sleep/Power Saving specific to the target 

hal_target.c 

hal_target.h 

Reserved 

hal_types.h  Typedefs and keywords specific to the target 

 

 

2.2. HAL Drivers Compile Options 
The following compiling options allow the user to compile IN or OUT certain HAL driver. 

Currently when a driver is compiled OUT, the API routines are still accessible but the 

body of the routines will not be compiled and executed. When a routine is not called from 

within the application, this routine will not be linked into the application at all. This means 

that it not will occupy any code space 

 

Symbol Definition 

HAL_ADC ADC driver 

HAL_LCD LCD driver 

HAL_LED LED driver 

HAL_KEY Key driver 

HAL_UART UART driver 

HAL_DMA DMA driver 

HAL_FLASH Flash driver 

HAL_AES Security driver 

HAL_SPI SPI driver 

HAL_TIMER Timer driver 

 

 

2.2.1. Default Compile Options 
Depends on the target, certain Hal drivers are turn ON or OFF. These are defined in 

\Components\hal\target\XXX\hal_board_cfg.h where XXX is the target 

(CC2430DB, CC2430EB, CC2420DB…etc) 

 

2.2.2. Compiling IN Drivers 
To compile the project with a certain HAL driver 

1. Open a project 

2. Right click on project 



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 5 

3. Select Options 

4. Select C/C++ Options 

5. Select Preprocessor  

6. Go to Defined Symbols 

7. Enter HAL_XXX=TRUE where XXX is ADC, LCD, LED, KEY or 

UART 

 

 
 

2.2.3. Compiling OUT Drivers 
To compile a project without a certain HAL driver 

1. Open a project 

2. Right click on project 

3. Select Options 

4. Select C/C++ Options 

5. Select Preprocessor  

6. Go to Defined Symbols 

7. Enter HAL_XXX=FALSE where XXX is ADC, LCD, LED, KEY, 

UART 

 



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 6 

 
 

 

2.3. HAL Drivers Customization 
Even though HAL drivers are flexible, there is time when the user decides to customize 

their HAL drivers to do a specific thing that fits their needs. Users can either modify the 

existing drivers to work with their hardware or simply add their own drivers as they see fit.  

 

2.3.1. Modifying Existing HAL Drivers 
When the user decides to modify the drivers to support different features that are not 

provided by default, the following rules should be followed: 

 

1. All the header files located at \Components\hal\include should remain the 

same. These prototypes are called by different parts of the program and should 

not be modified. 

 

2. The functionality of the each driver can be changed by modifying corresponding 

function in \Components\hal\target\XXX where XXX is the target. Driver files 

are hal_adc.c, hal_key.c, hal_lcd.c, hal_led.c, hal_timer.c, and hal_uart.c. 

 

3. Drivers hardware configuration can be modified through hal_board_cfg.h 

 

2.3.2. Adding Drivers For New Target 
Users can add new drivers or custom drivers to support their own hardware. 

 

1. All the new header files go to \Components\hal\include.  



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 7 

 

2. All the files that contain the actual functions/routines go to 

\Components\hal\target\XXX where XXX is the user’s defined target. 

 

3. If GPIO pins conflict or are unwanted, certain provided drivers can be compiled 

OUT using compile flags. Check HAL Drivers Compiling Options section for 

more details. 

  

4. Verify GPIO pins are correctly setup by checking hal_board_cfg.h for 

conflicts. Board specific configuration GPIO for hal drivers is located here. 

 

5. Project file has to be modified accordingly. New target must be added under 

HAL folder in the project file together with all the new files. 

 

 
 

 

6. For project that includes multiple targets, un-used or old targets must be 

excluded from build to prevent conflicts. This can be done by right click on the 

target, select options and then check “Exclude from build”. 

 



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 8 

 
 

 
 

 

 

 

 

3. GPIO and Radio/MCU Pin Interface 
GPIO and Radio/MCU pin definitions are located at different places/files depending on 

which purpose the pins serve. If the user decides to alter the GPIO configuration, to use a 



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 9 

different pin-out between the MCU and Radio, these are the files in the following locations 

need to be modified: 

 

3.1. HAL Drivers GPIO Pin Interface Modification 
HAL drivers pin definitions are located in 

\Components\hal\target\XXX\hal_board_cfg.h where XXX is the target. 

 

3.2. Radio/MCU GPIO Pin Interface Modification 
Radio/MCU pin definitions are located in \Components\hal\target\XXX\hal_mac_cfg.h 

and \Components\hal\target\XXX\hal_mac_cfg.c where XXX is the target. 

 
4. Interrupt Service Routine. 

This section shows the user where to modify an existing Interrupt Service Routine (ISR) and 

how to create a new ISR for an interrupt. 

 

4.1. HAL ISR Function Macro    

To abstract the differences between compilers a macro defined as HAL_ISR_FUNCTION(f,v) 

in \Components\hal\target\XXX\hal_mcu.h (where XXX is the target) is used to declare 

the ISR. For more detail please check hal_mcu.h. 

 

To use the macro, simply declare:  

 
HAL_ISR_FUNCTION (prototype, vector) 

{ 

/* Do something when this interrupt happens!!! */ 

} 

 

Where prototype is the name of the ISR and vector is the interrupt vector. 

 

4.2. Modifying Existing ISR For GPIO Interrupt 
To modify an existing ISR for a GPIO interrupt, simply go to the where the ISR routine is 

declared and modify it. 

 

4.2.1. Example : Modifying ISR in a CC2430 project 
Example: Modify P1INT_VECTOR interrupt service routine in a CC2430 project. 

 

P1INT_VECTOR interrupt service routine is declared in hal_key.c.  

 
HAL_ISR_FUNCTION (halKeyPort1Isr, P1INT_VECTOR) 

{ 

  halProcessKeyInterrupt (); 

} 

4.3. Adding New ISR For GPIO Interrupt 
To add a new ISR, the user must be provided with a header file that contains information 

of the target’s microcontroller. This file provides information about the interrupt vector 

definition and/or byte address of the specific GPIO port that will be used. This 

information often is provided by the MCU manufacturer. The user also needs to know the 

prototype of the ISR. 



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 10 

 

4.3.1. Example 1: Creating an ISR for a CC2430 target 
Create an ISR for timer 1 (T1_VECTOR) 

 

Step 1: For CC2430, the interrupt vector definitions locate in ioCC2430.h and it 

partially looks like this: 

 
/* ------------------------------------------------------------------------------------------------ 

 *                                        Interrupt Vectors 

 * ------------------------------------------------------------------------------------------------ 

 */ 

#define  RFERR_VECTOR   VECT(  0, 0x03 )    

#define  ADC_VECTOR VECT(  1, 0x0B )    

#define  URX0_VECTOR      VECT(  2, 0x13 )    

#define  URX1_VECTOR      VECT(  3, 0x1B )    

#define  ENC_VECTOR        VECT(  4, 0x23 )    

#define  ST_VECTOR           VECT(  5, 0x2B )    

#define  P2INT_VECTOR     VECT(  6, 0x33 )    

#define  UTX0_VECTOR      VECT(  7, 0x3B )    

#define  DMA_VECTOR       VECT(  8, 0x43 )    

#define  T1_VECTOR         VECT(  9, 0x4B )   ���� Timer 1 vector 
#define  T2_VECTOR           VECT( 10, 0x53 )    

#define  T3_VECTOR           VECT( 11, 0x5B )    

#define  T4_VECTOR           VECT( 12, 0x63 )    

#define  P0INT_VECTOR     VECT( 13, 0x6B )    

#define  UTX1_VECTOR     VECT( 14, 0x73 )    

#define  P1INT_VECTOR    VECT( 15, 0x7B )    

#define  RF_VECTOR       VECT( 16, 0x83 )    

#define  WDT_VECTOR      VECT( 17, 0x8B )    

 

Step 2: Use the macro, define the ISR.  
 

HAL_ISR_FUNCTION (My_Timer1_ISR, T1_VECTOR) 

{ 

 /* Do something when this timer 1 happens!!! */ 

} 

 

4.3.2. Example 2: Creating an ISR for a MSP430 target 
Create an ISR for USART0TX_VECTOR      

 

Step1: For MSP430, the interrupt vector definitions locate in msp430x16x.h and it 

partially looks like this: 

 
/************************************************************ 

* Interrupt Vectors (offset from 0xFFE0) 

************************************************************/ 

 

#define DACDMA_VECTOR        (0 * 2u)   

#define PORT2_VECTOR  (1 * 2u)   

#define USART1TX_VECTOR      (2 * 2u)   

#define USART1RX_VECTOR      (3 * 2u)   

#define PORT1_VECTOR         (4 * 2u)   

#define TIMERA1_VECTOR       (5 * 2u)   



 Z-Stack HAL Porting Guide  SWRA199 Version 1.1 
 

 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 11 

#define TIMERA0_VECTOR       (6 * 2u)   

#define ADC12_VECTOR           (7 * 2u)  

#define USART0TX_VECTOR      (8 * 2u)  ���� UART0 Transmit vector 
#define USART0RX_VECTOR     (9 * 2u)   

#define WDT_VECTOR           (10 * 2u)  

#define COMPARATORA_VECTOR (11 * 2u)  

#define TIMERB1_VECTOR       (12 * 2u)  

#define TIMERB0_VECTOR       (13 * 2u)  

#define NMI_VECTOR           (14 * 2u)  

#define RESET_VECTOR        (15 * 2u)  

 

Step 2: Use the macro, define the ISR 

 
HAL_ISR_FUNCTION (MyTx0Isr, UART0TX_VECTOR) 
{ 

 /* Do something when this UART0TX_VECTOR happens!!! */ 

} 

 


