
 Copyright  2010 Texas Instruments, Inc. All rights reserved.

Application Note:

Power Management

For The CC2530

Document Number: SWRA248

Texas Instruments, Inc.

San Diego, California USA

CC2530 Power Management SWRA248 Version 1.1

i Copyright  2010 Texas Instruments, Inc. All rights reserved.

Version Description Date

1.0 Initial release 01/09/2009

1.1 Updated for ZStack-2.2.0 release 04/02/2009

CC2530 Power Management SWRA248 Version 1.1

ii Copyright  2010 Texas Instruments, Inc. All rights reserved.

Table of Contents

1. PURPOSE...1

2. DEFINITIONS...1

3. WHAT IS POWER MANAGEMENT?...1

4. HOW DOES Z-STACK CONTROL SLEEP MODES?...1

5. SLEEP TIMER CONSIDERATIONS ...4

6. APPLICATION CONSIDERATIONS ..4

7. HARDWARE CONSIDERATIONS ..5

CC2530 Power Management SWRA248 Version 1.1

1 Copyright  2010 Texas Instruments, Inc. All rights reserved.

1. Purpose

This document describes power management concepts for the Texas Instruments CC2530 for use by an application

built upon the Texas Instruments Z-Stack™ ZigBee protocol stack. Power management is typically employed by

battery powered devices to extend battery life through use of various sleep modes during periods of inactivity.

2. Definitions

The following terms are used in this document:

MAC – Media Access Control software that implements the IEEE 802.15.4 communication functions.

MCU – Micro Controller Unit – an 8051 processor embedded in CC2530 SoC on the CC2530EB board.

OSAL – Operating System Abstraction Layer – the platform independent task handler provided with Z-Stack.

Sleep – An MCU mode of operation in which certain functions are disabled in order to reduce power

consumption. The CC2530 provides three different sleep modes, two of which are used by Z-Stack.

End-Device – A ZigBee device that joins a network without routing capabilities and normally turns off its

receiver when idle. This requires its parent to hold messages until the End-Device polls for its messages.

3. What Is Power Management?

Power management is used by battery powered End-Devices to minimize power consumption between brief periods

of radio communications. Normally, an End-Device disables power consuming peripherals and enters a sleep mode

during idle periods. Z-Stack provides two sleep modes, designated TIMER sleep and DEEP sleep. TIMER sleep is

used when the system needs to wake up to perform an activity related to a scheduled time delay. DEEP sleep is used

when no future activity is scheduled, requiring external stimulus (such as a button press) to wake up the device.

TIMER sleep generally reduces power consumption to a few milliamps, while DEEP sleep reduces it to a few

microamps. Examples of sleeping End-Devices include sensors that wake up periodically to report their readings and

remote control devices that wake up to send a message when a user presses a button. The common characteristic of

these types of devices is that they spend most of their time in a sleep mode, minimizing consumption of power.

4. How Does Z-Stack Control Sleep Modes?

Power management is used by battery powered End-Devices to minimize power consumption between brief periods

of scheduled activity (TIMER sleep) or during long periods of inactivity (DEEP sleep). System activity is monitored

in the OSAL main control loop after each task finishes its processing. If no task has an event scheduled, and power

management capability is enabled, the system will decide whether to sleep. All of the following conditions must be

met in order for the device to enter a sleep mode:

• Sleep enabled by the POWER_SAVING compile option

• ZDO node descriptor indicates “RX is off when idle”. This is done by

setting RFD_RCVC_ALWAYS_ON to FALSE in f8wConfig.cfg.

• All Z-Stack tasks “agree” to permit power savings

• Z-Stack tasks have no scheduled activity

• The MAC has no scheduled activity

CC2530 Power Management SWRA248 Version 1.1

2 Copyright  2010 Texas Instruments, Inc. All rights reserved.

End-Device projects in the Z-Stack package are configured, by default, without power management. To enable this

feature, the POWER_SAVING compile option must be specified when the project is built. As shown below, this

option is placed in the Defined symbols box under the Preprocessor tab of the C/C++ Compiler options:

In order to reduce power consumption to minimum levels, an End-Device needs to turn off as much electronic

circuitry as possible before entering a sleep mode. This includes peripheral devices, radio receiver and transmitter,

and significant portions of the MCU itself. To avoid loss of messages while sleeping, the End-Device’s parent needs

to hold its messages until the End-Device polls for them. The parent device “knows” that the End-Device will poll

for messages when the capabilities in the End-Device’s association request has CAPINFO_RCVR_ON_IDLE turned

off. In Z-Stack projects, default settings for device capabilities are specified in the ZDO_Config_Node_Descriptor

structure, located in the ZDConfig.c file. The default End-Device only specifies CAPINFO_DEVICETYPE_RFD,

indicating that it is battery-powered and will turn off its receiver when idle:

CC2530 Power Management SWRA248 Version 1.1

3 Copyright  2010 Texas Instruments, Inc. All rights reserved.

The decision whether to attempt power conservation is made at the end of the main OSAL loop. If all Z-Stack tasks

were checked and none had any processing to do, the compile option POWER_SAVING determines whether the

osal_pwrmgr_powerconserve() function gets called:

At this point, two more checks are performed before attempting to enter a sleep mode. First, the pwrmgr_device

variable is checked to be set to be a battery device. This setting is established after the device joins the network – see

ZDApp.c for examples. Second, the pwrmgr_task_state variable is checked to see that no task has “put a hold” on

power conservation. This mechanism allows each Z-Stack task to disable sleep during critical operations. When both

of these conditions are met, the desired sleep time is determined by the next expiration time of the OSAL timers. If

the next expiration time is greater than zero and less than MIN_SLEEP_TIME, TIMER_SLEEP mode is selected. In

this mode, the system timer is adjusted to provide a “wake up” interrupt for the timer event that is due to expire first.

The MIN_SLEEP_TIME, defined in hal_sleep.c, is used to prevent very short sleep “thrashing”. The DEEP_SLEEP

mode is selected when there are no Z-Stack events or timers scheduled; therefore the next expiration is zero,

allowing for maximum power savings:

The OSAL_SET_CPU_INTO_SLEEP macro is called to begin the sleep process. For the CC2530, this macro calls

the halSleep() function that performs the sequence of shutting down the MAC, turning off peripherals, entering the

MCU sleep mode, waking up the MCU after sleep, turning on peripherals, and finally restarting the MAC. Since the

Z-Stack OSAL loop runs independently of the MAC scheduler, Z-Stack does not know the processing state of the

MAC. The call to MAC_PwrOffReq() will request a MAC shutdown. It should be noted that the MAC will not shut

down for sleep when the receiver is enabled when idle, therefore preventing the device from sleeping.

On the CC2530, DEEP sleep mode only terminates by an external interrupt or from an MCU reset. So on the

SmartRF05EB, the two GPIO’s that will trigger this external interrupt are the joystick press down or the S1. This

mode would be used by remote control type devices which sleep until externally stimulated, such as by button press.

TIMER sleep mode is terminated by any interrupt event, including the external events, as well as timer events. If an

external interrupt wakes up the MCU while in the TIMER sleep mode (timer not expired), the Z-Stack timing system

adjusts for the elapsed fraction of the scheduled wake-up time delay.

CC2530 Power Management SWRA248 Version 1.1

4 Copyright  2010 Texas Instruments, Inc. All rights reserved.

5. Sleep Timer Considerations

TIMER sleep mode on the CC2530 is implemented in a 24-bit hardware timer (SLEEP_TIMER) driven by 32.768

kHz crystal clock source. Power manager uses sleep timer to keep track of elapsed time and to wake up MCU after

timer expires. The sleep timer has a 24-bit counter and a 24-bit comparator. CC2530 sleep timer is capable of

keeping track network time during sleep for up to 512 seconds (2
24

 / 32768). The longest sleep time is therefore 510

seconds (rounded). The OSAL uses a 16-bit timer structure. Therefore, the OSAL timer has a limitation of 65

seconds based on 1 ms timer tick.

The SLEEP_TIMER compare value is set by the following equation where timeout is the next OSAL/MAC timer

expiration in 320 usec unit and ticks is the current SLEEP_TIMER count:

ticks += (timeout * 671) / 64

The ratio of 32 kHz ticks to 320 usec ticks is 32768/3125 = 10.48576. This is nearly 671/64 = 10.484375. When the

SLEEP_TIMER counts up to the compare value, an interrupt is generated and wakes up the MCU. After waking up

from sleep, the elapsed time in milliseconds is calculated as ticks*1000/32768 or:

ticks * 125 / 4096

6. Application Considerations

End-Devices in the Z-Stack sample applications are setup initially with power management disabled and automatic

polling for messages enabled. Three different polling options are supported, each controlled by a time delay

parameter. When power management is enabled (POWER_SAVING compile option), along with any of the polling

options, sleep modes will be affected. Specifically, time delays scheduled for polling preclude DEEP sleep, therefore

limiting power conservation. The three time-delay polling options include:

• Data Request Polling – periodically sends a data request to the parent device to poll for queued messages.

The time interval between messages can be altered by storing the desired time in zgPollRate or set

immediately by calling the function NLME_SetPollRate(). Calling this function will start polling if it has

been previously disabled. Calling with a time interval of 1 will poll immediately, one time.

• Queued Data Polling – polls the parent device for queued messages after receipt of a data indication. The

time delay can be changed by calling the function NLME_SetQueuedPollRate() or by storing it in

zgQueuedPollRate This feature permits rapid “unloading” of queued messages, irregardless of the Data

Request Poll rate.

• Response Data Polling – polls the parent device for response messages after receipt of a data confirmation.

The time delay can be changed by calling the function NLME_SetResponseRate() or storing it directly in

zgResponsePollRate. This feature permits rapid “unloading” of response messages, such as APS

Acknowledgements, irregardless of the Data Request Poll rate.

The default settings for these polling rates are defined and initialized in the nwk_globals.c source file, specifying

that the End-Device will automatically poll for messages. If POWER_SAVING is enabled with these default polling

rates, power conservation will be limited to TIMER sleep mode. To minimize power consumption by creating a

DEEP sleeping device, repetitive polling should be disabled by setting the zgPollRate to zero. Various polling

strategies can be achieved by setting the values of these three polling rates appropriately. For example, for a device

that never needs to receive messages once it has joined the network should set all three polling rates to zero. If APS

acknowledge is utilized, then polling needs to be enabled after each message transmission at least until the ACK is

received. In some systems, it may be useful to vary the polling rate, depending on specific application activity.

Another polling activity is the key polling. The key polling is enabled at 100 millisecond rate by default. To disable

key polling, change OnboardKeyIntEnable to HAL_KEY_INTERRUPT_ENABLE:

CC2530 Power Management SWRA248 Version 1.1

5 Copyright  2010 Texas Instruments, Inc. All rights reserved.

7. Hardware Considerations

Unused I/O pins should have a defined level and not be left floating. One way to do this is to leave the pin

unconnected and configure the pin as a general purpose I/O input with pull-up resistor. Alternatively the pin can be

configured as a general purpose I/O output. In both cases the pin should not be connected directly to VDD or GND

in order to avoid excessive power consumption.

If the unused I/O pins are left floating in CC2530, the interrupt flag may not be cleared by software and constant

interrupt from the unused pin may occur.

Power consumption on the CC2530EM+SmartRF05 combo board during sleep cycles is determined by the SoC

sleep modes and various external components located on the board. To measure the power consumption, remove the

“Power source” jumper (lower left corner in picture below). Connect an ampere meter between pins 2 and 3 if

external power is used; connect an ampere meter between pins 1 and 2 if battery power is used. The measurement is

the total current consumption of the CC2530 SoC and IO peripherals. Jumpers P13 “V_IO”, P10 “P4 IO”, P1 “P1

USB”, and “RS232 Enable” switch, allow enable/disable of individual peripheral and IO pins. Refer to SmartRF05

schematics for details.

