
 Copyright  2008-2009 Texas Instruments, Inc. All rights reserved.

Z-Stack

Sample Application

For SmartRF05 and CC2530

Document Number: SWRA232

Texas Instruments, Inc.

San Diego, California USA

Z-Stack Sample Application For CC2530EB SWRA232 Version 1.1

i Copyright  2008-2009 Texas Instruments, Inc. All rights reserved.

Version Description Date

1.0 Initial release. 09/08/2008

1.1 Updated for ZStack 2.2.0 release 04/02/2009

Z-Stack Sample Application For CC2530EB SWRA232 Version 1.1

ii Copyright  2008-2009 Texas Instruments, Inc. All rights reserved.

TABLE OF CONTENTS

I. ACRONYMS... III

1. Z-STACK CC2530EB SAMPLE APPLICATION ...1

1.1 INTRODUCTION ...1
1.1.1 Description ..1
1.1.2 User Application Development ..1

2. THE SAMPLE APPLICATION (SAMPLEAPP)...2

2.1 INTRODUCTION ...2
2.2 PROGRAM FLOW...2

2.2.1 Initialization...2
2.2.2 Event Processing ...3

2.3 MESSAGE FLOW..4

3. DEMO BUILD ...6

3.1 DEMO JUMPER SETTING..6

TABLE OF FIGURES

FIGURE 1: JUMPERS SETTING ON SMARTRF05 – REV 1.3 ...6
FIGURE 2: JUMPERS SETTING ON SMARTRF05 – REV 1.7 ...6

Z-Stack Sample Application For CC2530EB SWRA232 Version 1.1

iii Copyright  2008-2009 Texas Instruments, Inc. All rights reserved.

i. Acronyms

API Application Programming Interface

APL Application Layer

APS ZigBee Application Support Sublayer

BSP Board Support Package – taken together, HAL & OSAL comprise a rudimentary

operating system commonly referred to as a BSP.

EP Endpoint

HAL Hardware (H/W) Abstraction Layer

HA Home Automation (A Stack Profile, Profile Id 0x0104)

MT Monitor Test

NWK ZigBee Network Layer

OSAL Operating System (OS) Abstraction Layer

OTA Over-The-Air

PC Personal Computer

SAP Service Access Point

SPI Serial Port Interface

ZCL ZigBee Cluster Library

ZDO ZigBee Device Objects

Z-Stack Sample Application For CC2530EB SWRA232 Version 1.1

1 Copyright  2008-2009 Texas Instruments, Inc. All rights reserved.

1. Z-Stack CC2530EB Sample Application

1.1 Introduction

This document covers the Z-Stack™ Sample Application for the Texas Instruments SmartRF05EB and CC2530EM

boards, also known as the CC2530EB. This sample application is a simple head-start to using the TI distribution of

the ZigBee Stack in order to implement a specific Application Object.

1.1.1 Description

This sample application is a very simple demo application for the ZStack CC2530 Developer Boards.

Each application can send and receive 2 messages:

• Periodic Message – Each device will send this broadcast message every 10 seconds (plus a small random

number of milliseconds for jitter) after joining the network. The message’s payload is the sending device’s

periodic message counter.

• Flash Control Message – This message contains a counter (number of times this message has been sent from

a device) and the number of milliseconds to flash the LED (in milliseconds). This message is sent when

SW1 is pressed. This message is sent to APS Group 1 (this is a broadcast message that is filtered for

devices that belong to group 1).

All devices, during initialization, join group 1, then the user can remove the application from group 1 by pressing

SW2. SW2 works like a toggle to join and remove the device from group 1. So, by pressing SW2 the user can

disable the LED flashing (not accept Flash Control Messages).

1.1.1.1 Key Presses

• SW1: Sends a flash message to all devices in group 1.

• SW2: Toggles the device’s enrollment in and out of group 1.

1.1.2 User Application Development

Before continuing, please read section 1 of the Z-Stack Applications SWRA201 document.

This sample application uses the minimal subset of ZDO Public Interfaces that it would take to make a Device

reasonably viable in a ZigBee network. In addition, all sample applications utilize the essential OSAL API

functionality: inter and intra-task communication by sending and receiving messages, setting and receiving task

events, setting and receiving timer callbacks, using dynamic memory, as well as, others. In addition, every sample

application makes use of the HAL API functionality by controlling LED’s. Thus, any sample application serves as a

fertile example from which to copy-and-paste, or as the base code of the user’s application to which to add additional

Application Objects.

By definition, an Application Object can only support a single Profile; and each of the Z-Stack sample applications

implements an unofficial Private Profile. The Private Profile Id’s used by the sample applications have been

arbitrarily chosen and must not be used outside of the development laboratory.
1
 Although a Private Profile may use a

unique network configuration, Z-Stack sample applications have been implemented and tested with the network

configuration specified by the Stack Profile known as HomeControlLighting (0x0100.)

Any Application Object must sit overtop of a unique Endpoint; and any Endpoint is defined by a Simple Descriptor.

The numerical values used for the Endpoints in the Simple Descriptors in the sample applications have been chosen

arbitrarily.

Each sample application instantiates only one Application Object and therefore only supports the one corresponding

Profile. But, keep in mind that two or more Application Objects may be instantiated in the same Device. When

instantiating more than one Application Object in the same Device, each Application Object must implement a

unique Profile Id and sit overtop of a unique Endpoint number. The sample applications meet the unique Id’s and

Endpoint numbers requirement and could be combined into one Device with minor modifications.
2

Z-Stack Sample Application For CC2530EB SWRA232 Version 1.1

2 Copyright  2008-2009 Texas Instruments, Inc. All rights reserved.

2. The Sample Application (SampleApp)

2.1 Introduction

The SampleApp provides an example of the structure of an application and the program and message flow. It will be

illustrative to study the program and message flow in such a simple application.

2.2 Program Flow

2.2.1 Initialization

During system power-up and initialization, SampleApp_Init() will be invoked.

SampleApp_TaskID = task_id;

Notice that OSAL assigns the SampleApp its Task Id via the function parameter. This is the Task Id that

SampleApp must use to set a timer for itself, to set an event for itself, or to send an OSAL message to itself. Any

of the aforementioned operations might be done in order to divide a large chunk processing up into smaller chunks

that are executed on successive “time slots” from OSAL instead of taking too much time on any single time slot.

When a task divides a large chunk of work into smaller chunks that are executed one per time slot, a task is

effecting the “cooperative” behavior requisite of the OSAL Task design.

SampleApp_NwkState = DEV_INIT;

It is useful to maintain a local copy of the device’s network state. The network state at power-up is “not connected”

or DEV_INIT. An OSAL task will not get a ZDO_STATE_CHANGE message of this default state during or after

power-up, so it must be initialized locally. As soon as a new network state is achieved, the task will get the

ZDO_STATE_CHANGE message. Note that when a device is built with NV_RESTORE and is connected to a

network before a power cycle, the ZDO_STATE_CHANGE message will be received shortly after power-up with

no OTA traffic because the “network connected” state has been restored from non-volatile memory.

SampleApp_DstAddr.addrMode = (afAddrMode_t)AddrNotPresent;
SampleApp_DstAddr.endPoint = 0;
SampleApp_DstAddr.addr.shortAddr = 0;

The default destination address is initialized so that messages will be sent as bound messages; using

AddrNotPresent will force a binding table lookup for the destination address. If no matching binding exists, the

message will be dropped.

SampleApp_epDesc.endPoint = SAMPLEAPP_ENDPOINT;
SampleApp_epDesc.task_id = &SampleApp_TaskID;
SampleApp_epDesc.simpleDesc =
 SimpleDescriptionFormat_t *)&SampleApp_SimpleDesc;
SampleApp_epDesc.latencyReq = noLatencyReqs;

// Register the endpoint description with the AF

afRegister(&SampleApp_epDesc);

The SampleApp Application Object is instantiated by the above code. This allows the AF layer to know how to

route incoming packets destined for the SAMPLEAPP_PROFID / SAMPLEAPP_ENDPOINT – it will do so by

sending an OSAL SYS_EVENT_MSG-message (AF_INCOMING_MSG_CMD) to the SampleApp_TaskID.

 RegisterForKeys(SampleApp_TaskID);

The SampleApp registers for the exclusive system service of key press notification.

 SampleApp_Group.ID = 0x0001;

 osal_memcpy(SampleApp_Group.name, “Group1”);

 aps_AddGroup(SAMPLEAPP_ENDPOINT, &SampleApp_Group);

Flash Control messages are sent to group 1, so to receive messages for group 1, this device will be automatically

setup for group 1. Pressing SW1, will toggle the enrollment into group 1.

Z-Stack Sample Application For CC2530EB SWRA232 Version 1.1

3 Copyright  2008-2009 Texas Instruments, Inc. All rights reserved.

2.2.2 Event Processing

Whenever an OSAL event occurs for the SampleApp_TaskID, the SampleApp event processing function,

SampleApp_ProcessEvent(), will be invoked in turn from the OSAL round-robin task processing loop. The

parameter to SampleApp_ProcessEvent() is a 16-bit bit mask; one or more bits may be set in any invocation of the

function. If more than one event is set, it is strongly recommended that a task should only act on one of the events

(probably the most time-critical one, and almost always, the SYS_EVENT_MSG as the highest priority one.)

 if (events & SYS_EVENT_MSG)
 {
 MSGpkt = (afIncomingMSGPacket_t*)osal_msg_receive(SampleApp_TaskID);
 while (MSGpkt)
 {
 …

Notice that although it is recommended that a task only act on one of possibly many pending events on any single

invocation of the task processing function, it is also recommended (and implemented in the sample applications) to

process all of the possibly many pending SYS_EVENT_MSG messages all in the same “time slice” from the

OSAL.

 switch (MSGpkt->hdr.event)

Above it is shown how to look for the “type” of the SYS_EVENT_MSG message. It is recommended that a task

implement a minimum subset of all of the possible types of SYS_EVENT_MSG messages.
3
 This minimum subset is

implemented by the SampleApp and described below.

 case KEY_CHANGE:
 SampleApp_HandleKeys(((keyChange_t *)MSGpkt)->state,
 ((keyChange_t *)MSGpkt)->keys);
 break;

If an OSAL Task has registered for the key press notification, any key press event will be received as a

KEY_CHANGE system event message. There are two possible paths of program flow that would result in a task

receiving this KEY_CHANGE message.

The program flow that results from the physical key press is the following:

- HAL detects the key press state (either by an H/W interrupt or by H/W polling.)

- The HAL OSAL task detects a key state change and invokes the OSAL key change callback function.

- The OSAL key change callback function sends an OSAL system event message (KEY_CHANGE) to the

Task Id that registered to receive key change event notification (RegisterForKeys().)

 case AF_DATA_CONFIRM_CMD:
 // The status is of ZStatus_t type [defined in ZComDef.h]
 // The message fields are defined in AF.h
 afDataConfirm = (afDataConfirm_t *)MSGpkt;
 sentEP = afDataConfirm->endpoint;
 sentStatus = afDataConfirm->hdr.status;
 sentTransID = afDataConfirm->transID;

Any invocation of AF_DataRequest() that returns ZSuccess will result in a “callback” by way of the

AF_DATA_CONFIRM_CMD system event message.

The sent Transaction Id (sentTransID) is one way to identify the message. Although SampleApp only uses a single

Transaction Id (SampleApp_TransID), it might be useful to keep a separate Transaction Id for each different

EndPoint or even for each ClusterId within an EndPoint for the sake of message confirmation, retry, disassembly,

and reassembly, etc. Note that any Transaction Id state variable gets incremented by AF_DataRequest()upon

success (thus it is a parameter passed by reference, not by value.)

The return value of AF_DataRequest() of ZSuccess signifies that the message has been accepted by the

Network Layer which will attempt to send it to the MAC layer which will attempt to send it OTA. The sent Status

(sentStatus) is the OTA result of the message. ZSuccess signifies that the message has been delivered to the next-

Z-Stack Sample Application For CC2530EB SWRA232 Version 1.1

4 Copyright  2008-2009 Texas Instruments, Inc. All rights reserved.

hop ZigBee device in the network. If AF_DataRequest() was invoked with the AF_ACK_REQUEST flag,

then ZSuccess signifies that the message was delivered to the destination address. Unless the addressing mode of

the message was indirect (i.e. the message was sent to the network reflector to do a binding table lookup and resend

the message to the matching device(s)), in which case ZSuccess signifies that the message was delivered to the

network reflector. There are several possible sent status values to indicate failure.
4

 case ZDO_STATE_CHANGE:
 SampleApp_NwkState = (devStates_t)(MSGpkt->hdr.status);
 if ((SampleApp_NwkState == DEV_ZB_COORD)
 ||(SampleApp_NwkState == DEV_ROUTER)
 ||(SampleApp_NwkState == DEV_END_DEVICE))
 {
 // Update the LCD’s network indicator

 // Start sending "the" message in a regular interval.
 osal_start_timer(SAMPLEAPP_SEND_PERIODIC_MSG_EVT,
 SAMPLEAPP_SEND_PERIODIC_MSG_TIMEOUT);
 }
 break;

Whenever the network state changes, all tasks are notified with the system event message ZDO_STATE_CHANGE.

Notice that SampleApp is implemented to begin a running timer as soon as the device successfully joins a network.

When the network state changes to “joined”, it might also be useful to initiate an auto find so that devices can bind

without requiring user action.

 // Release the memory
 osal_msg_deallocate((uint8 *)MSGpkt);

Notice that the design of the OSAL messaging system requires that the receiving task re-cycle the dynamic memory

allocated for the message. If OSAL cannot enqueue a message (either the Task Id does not exist or the message

header is not correct), it will re-cycle the memory.

 if (events & SAMPLEAPP_SEND_PERIODIC_MSG_EVT)
 {
 // Send "the" message
 SampleApp_SendPeriodicMessage();

 // Setup to send message again
 osal_start_timer(SAMPLEAPP_SEND_PERIODIC_MSG_EVT,
 SAMPLEAPP_SEND_MSG_TIMEOUT);

 // return unprocessed events
 return (events ^ SAMPLEAPP_SEND_PERIODIC_MSG_EVT);
 }

The SampleApp has defined one of the 15 available bits in the Task Event Mask in SampleApp.h:
5

#define SAMPLEAPP_SEND_PERIODIC_MSG_EVT 0x0001

SampleApp uses its own Task Id implicitly in the call to osal_start_timer() when setting a timer for itself

for its SAMPLEAPP_SEND_MSG_EVT event. The timer was automatically started after receiving notification of

successfully joining a network (ZDO_STATE_CHANGE). Above, the timer is re-started after every expiration.

Every SAMPLEAPP_SEND_PERIODIC_MSG_EVT interval, there is also a data request made in
SampleApp_SendPeriodicMessage();

2.3 Message Flow

By using an OSAL timer, SampleApp sends a periodic message OTA.

void SampleApp_SendPeriodicMessage(void)
{

Z-Stack Sample Application For CC2530EB SWRA232 Version 1.1

5 Copyright  2008-2009 Texas Instruments, Inc. All rights reserved.

 afAddrType_t dstAddr;

 dstAddr. addrMode = afAddrBroadcast;
 dstAddr.addr.shortAddr = 0xFFFF; // Broadcast to everyone
 dstAddr. endpoint = SAMPLEAPP_ENDPOINT;

 if (AF_DataRequest(& dstAddr, &SampleApp_epDesc,
 SAMPLEAPP_PERIODIC_CLUSTERID,
 (uint8)sampleAppPeriodicCounter++,
 (uint8 *)&sampleAppPeriodCounter,
 &SampleApp_TransID, AF_DISCV_ROUTE,
 AF_DEFAULT_RADIUS) == afStatus_SUCCESS)
 {
 // Successfully requested to be sent.
 }
 else
 {
 // Error occurred in request to send.
 }
}

The Application Object data of the OTA message is a simple counter, that when received will be displayed on the

receiver’s LCD.

The call to AF_DataRequest()starts the process of passing the user message down through the layers of the

stack in order to prepare a message to go OTA. If the function returns ZSuccess, then a complete message has been

assembled to the point of having the network layer headers, footers, and optional security applied to the entire

message, and this assembled message has been enqueued in the network buffers waiting to send OTA. The network

layer will not attempt to pass this new message to the MAC until the Network Task runs again when it is invoked in

order by the OSAL Task processing loop. Even when the Network Task runs again, the new OTA message will

wait until any previously enqueued messages have been sent to the MAC to go OTA. Any return value of failure by

AF_DataRequest() signifies a failure at one of the stack layers and is almost always due to a lack of sufficient

heap space to enqueue another message; thus, there is no chance that the message went OTA.

When the Network Layer successfully passes the message to the MAC Layer and the MAC layer succeeds in

sending the message OTA, the message is routed, hop by hop, to the destination address specified in the call to

AF_DataRequest(). When the message finally arrives at the destination Network Address, the lower layers

strip off optional security and route the Application Object data payload to the destination EndPoint specified in

the destination Address of passed as the first parameter in the call to AF_DataRequest(). The receiving

Application Object will be notified by the SYS_EVENT_MSG message AF_INCOMING_MSG_CMD.

 case AF_INCOMING_MSG_CMD:
 SampleApp_MessageMSGCB(MSGpkt);
 break;

Above, the SampleApp receives the SYS_EVENT_MSG message in SampleApp_ProcessEvent() and

below, processes the user data sent OTA.

void SampleApp_MessageMSGCB(afIncomingMSGPacket_t *pkt)
{
 switch (pkt->clusterId)
 {
 case SAMPLEAPP_PERIODIC_CLUSTERID:
 // Display and increment a counter on the LCD in the periodic space
 break;
 case SAMPLEAPP_FLASH_CLUSTERID:
 flashTime = BUILD_UINT16(pkt->cmd.Data[1], pkt->cmd.Data[2]);
 HalLedBlink(HAL_LED_4, 4, 50, (flashTime / 4));
 break;
 }
}

Z-Stack Sample Application For CC2530EB SWRA232 Version 1.1

6 Copyright  2008-2009 Texas Instruments, Inc. All rights reserved.

The contents of the OTA data transfer are not used. SampleApp assumes that the OTA data contains a counter and

a flash timeout (for the flash control message).

3. Demo Build

Along with the usual ZigBee device configurations (Coordinator, Router and End-Device), this project includes a

“Demo” configuration. The “Demo” configuration(s) can become either a coordinator or router (from the same

build) depending on a hardware jumper setting. So, you can load the same (“Demo”) build on to all of your demo kit

boards, then set a jumper on one of the boards (to become the coordinator) before starting all the devices to form a

network.

3.1 Demo Jumper Setting

The “Coordinator” jumper for this application is located on the developer’s boards:

Board Jumper Location

SmartRF05 (Rev 1.3) + CC2530 Port 18 pin 7 & 9

SmartRF05 (Rev 1.7) + CC2530 Port 18 pin 9 & 11

Figure 1: Jumpers Setting on SmartRF05 – Rev 1.3

Figure 2: Jumpers Setting on SmartRF05 – Rev 1.7

1
 If your application will not be implementing a Standard or a Published Profile, then you must apply for a Private

Profile Id that can be used outside of the development laboratory. The process of obtaining a Private Profile Id is

outside the scope of this document

2
 The changes required to instantiate more than one sample application in the same device are discussed in the

document where the corresponding functionality is described.

3
 For a complete list of all of the types of SYS_EVENT_MSG messages, refer to “Global System Messages” in

ZComDef.h.

4
 See “MAC status values” in ZComDef.h.

5
 Note that one task event is reserved, see “Global System Events” in ZComDef.h:
#define SYS_EVENT_MSG 0x8000 // A message is waiting event

