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Abstract

In the work presented, a computational tool used for the dynamic simulation of rail-
way vehicle systems is developed using multibody systems formulation based on the
multibody techniques proposed by Shabana. With respect to other existing methodo-
logies, the developed model uses a combined frame of references that permit the use
of independent coordinates, without the possibility to have singularity configurations
depending on the rotation sequence. The combined frames of reference used as a base
for the formulation and modelling of wheel-rail contact problem with high precision.
The program is designed in a flexible form that permits the study of different confi-
gurations of the railway vehicles as well as various track combinations. The main
structure of the program has the ability of making changes for enhancement of the
wheel-rail contact model or the implementation of dynamic structure of the track.
An efficient contact model is implemented in the current work to precisely detect the
coordinates of the contact points located at the wheel-rail interface. The developed
simulation tool is applied for different case tests in order to validate the suitability
of the proposed methodology for the analysis of railway systems. A comparison is
made between the obtained results by the simulation tool presented in this work and
the results offered by various simulation packages for the analysis of the Manchester
Benchmark Vehicle. The tool is used to carry out the dynamical analysis for TGV 001
locomotive vehicle and the results obtained are compared with these offered by SIM-
PACK package for the same vehicle model, at the same operating conditions. From
the quality of the obtained results, it can be concluded that the presented simulation
tool is reliable and efficient to be used in the dynamic analysis of different railway
systems.
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Resumen

En este trabajo se ha llevado a cabo el desarrollo de una herramienta computacio-
nal para la simulación dinámica de veh́ıculos ferroviarios. El modelo está basado en
técnicas multicuerpo debidas a Shabana. Con respecto a otras metodoloǵıas exis-
tentes, la propuesta hace uso de un conjunto de sistemas de referencia que permite
el empleo de coordenadas independientes sin la posibilidad de configuraciones singu-
lares debidas a grandes giros. El conjunto de sistemas de referencia sirve de base para
formular de manera precisa el problema de contacto rueda-carril. El programa está
diseñado para considerar de forma flexible distintas configuraciones de veh́ıculo, aśı
como diversas geometŕıas de trazado. La estructura del programa está abierta a cam-
bios orientados a la mejora del modelo de contacto rueda-carril o a la implementación
de la dinámica estructural de la v́ıa. Se ha implementado un modelo eficiente que
permite detectar con precisión las coordenadas de los puntos en contacto localizados
en la interfase entre la rueda y el carril. La herramienta de simulación desarrollada
en esta tesis se ha aplicado para diferentes casos-estudio con el objetivo de validar
la idoneidad de la metodoloǵıa propuesta en el análisis del sistema ferroviario. Se
ha realizado una comparación entre los resultados obtenidos por la herramienta de
simulación presentada y los resultados ofrecidos por varios programas comerciales de
simulación dinámica en el análisis del veh́ıculo del Manchester Benchmark. Además,
la herramienta se ha empleado para desarrollar un análisis dinámico de la locomotora
de un TGV 001, y los resultados obtenidos se han comparado con los ofrecidos por el
programa comercial SIMPACK para el mismos modelo de veh́ıculo, bajo las mismas
condiciones de operación. Finalmente, sobre la base de la calidad de los resultados, se
puede concluir que la herramienta de simulación es fiable y eficiente para emplearse
en el análisis dinámico de los diferentes sistemas ferroviarios.
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Resum

En este treball s’ha portat a terme el desenrotllament d’una ferramenta computacional
per a la simulació dinàmica de vehicles ferroviaris. El model està basat en tècniques
multi-cos degudes a Shabana. Respecte a altres metodologies existents, la proposta
fa ús d’un conjunt de sistemes de referència que permet l’ocupació de coordenades
independents sense la possibilitat de configuracions singulars degudes a grans girs.
El conjunt de sistemes de referència servix de base per a formular de manera pre-
cisa el problema de contacte roda-carril. El programa està dissenyat per a considerar
de forma flexible distintes configuracions de vehicle aix́ı com a diverses geometries
de traçat. L’estructura del programa està oberta a canvis orientats a la millora del
model de contacte roda-carril o a la implementació de la dinàmica estructural de la
via. S’ha implementat un model eficient que permet detectar amb precisió les coor-
denades dels punts en contacte localitzats en la interfase entre la roda i el carril. La
ferramenta de simulació desenrotllada en esta tesi s’ha aplicat per a diferents casos-
estudi amb l’objectiu de validar la idonëıtat de la metodologia proposada en l’anàlisi
del sistema ferroviari. S’ha realitzat una comparació entre els resultats obtinguts per
la ferramenta de simulació presentada i els resultats oferits per diversos programes
comercials de simulació dinàmica en l’anàlisi del vehicle del Manchester Benchmark.
A més, la ferramenta s’ha emprat per a desenrotllar una anàlisi dinàmica de la loco-
motora de un TGV 001 i els resultats obtinguts s’han comparat amb els oferits pel
programa comercial SIMPACK per als mateixos models de vehicle i baix les mateixes
condicions d’operació. Finalment, sobre la base de la qualitat dels resultats, es pot
concloure que la ferramenta de simulació és fiable i eficient per a emprar-se en l’anàlisi
dinàmica dels diferents sistemes ferroviaris.
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mediante sus amplios conocimientos y experiencia profesional. De él he aprendido que
para llegar lejos en la investigación hay que trabajar de manera incansable. He sido un
privilegiado al haberlo tenido como director de Tesis, habiéndome beneficiado de sus
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Chapter 1

Introduction

1.1 Introduction

Modelling and simulation in the field of railway dynamics is a complex interdisci-
plinary topic. The necessity for the enhancement of the performance of the railway
vehicles and obtaining more safety and comfort conditions of the railway vehicles leads
to more complex definition and description for all parameters affecting the model si-
mulation of the railway vehicle systems.

Then it was necessary to define a computational tool capable of the accurate descrip-
tion of such systems. The existing computational tools used in the dynamic analysis
required not only in the purposes of enhancement of these systems, including also
facing the fast progress in the other means of transportation systems, but also for
the design purposes and maintenance operations of the railway systems in order to
avoid the time and material loses used in making prototypes for the studying of the
simulation of parts and systems under study.

Now it is easy to use the simulation solutions provided with the computational simu-
lation programs to predict and make the necessary design modifications on the models
before and during the operation of these parts in realistic working conditions of the
railway systems [38]. The aim of the work, is to introduce a computational tool used
for the dynamic analysis of the railway systems with in the multibody system formu-
lations, that consider the railway vehicles and rail guided systems as a connection of
rigid bodies.

In the presented work the dynamic analysis includes as a first stage, the track para-
meterizations and definition of the track geometry, the second stage is the dynamic
analysis of the railway systems using the multibody formulations for rigid bodies, then
a model of a railway vehicle is presented to validate the multibody program used in
the dynamic simulation of the railway vehicle systems and the computational results

1
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are obtained.

1.2 Work motivation

The dynamic analysis of railway or other types of rail guided vehicles requires an
accurate description of the track geometry. During the research and development
of the new transportation solutions, the computational tools can be used to study
problems related to the maintenance and operation of existing railway vehicles. The
use of profiled- flanged steel wheels running on steel track in order to simultaneously
support, guidance and traction was a brilliant concept in the early days in this indus-
try. Nevertheless, the simplicity of the concept masked the complexity of the contact
phenomenon [51, 52, 58].

The complex contact forces developed in the wheel-rail interface strongly influence
the dynamic behaviour of the rail guided vehicle. Also the characteristics of the sus-
pensions, the masses and inertia properties of the system elements and the geometry
of the track play an important role in this issue. The previously mentioned reasons
and more reasons related to the ride comfort, wheel-rail wear and vehicle stabilities
were a strong motivation for making such work presented. The main objective is to
develop a simulation tool capable of making the dynamic analysis of railroad vehicles
regarding the following topics.

• Development of a parameterized track model that allows the realistic analysis
of the railroad guided vehicles.

• Definition of the mathematical formulations that describe and characterize the
wheel-rail contact model.

• Definition of the creepage and calculation of the creepage forces and moments
affecting the wheel-rail interaction model.

• Dynamic analysis of a railroad vehicle using multibody relations.

• Dynamic simulation for a vehicle moving on the proposed track model in deferent
operation scenarios.

1.3 Literature review

Simulation of the dynamic behaviour of railway vehicles is a complex topic in the
railway dynamic field. Modern general-purpose softwares for the simulation of railway
vehicle systems have included features that enable efficient dynamic analysis of the
railway vehicles and vehicle-track interaction [3, 48, 65]. The dynamic behaviour
of railway vehicles relates to the motion or vibration of all the parts of the vehicle
and is influenced by the vehicle design, particularly the suspension and the track
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on which the vehicle runs. Due to this issue, several models of simulation schemes
were developed in which all the factors affecting the dynamics of a railway vehicle
were studied, such as the model developed by Iwinicki and Wickens [25], in which
a Matlab computer program was developed in order to validate the results obtained
by experimental measurements from a 1/5 scale roller rig used to evaluate the design
change of the vehicle suspension system in Manchester Metropolitan University.

The model used in the simulation and implemented in the Matlab code was, a four-
axel vehicle with a car body and two bogies have been used. Each bogie has a frame
including two wheelsets. All the bogies and the wheelsets are assumed to be rigid
bodies connected by mass less suspension elements. The instability in 1/5 roller rig
has clearly been detected by the linear MATLAB program used and the model has
provided more thorough re-examination of the effects of the errors due to the scaling
and finite radius of the roller used, and usefulness of a roller rig analysis of railway
behaviour.

During the last decades, the techniques using multibody approaches have evolved
from manual graphics art to a highly specialized research field where the kinema-
tics and dynamics of general mechanical systems are analyzed [48, 57, 61]. More
efficient and reliable computer codes were developed to allow the formulation and
the analysis of the dynamic behaviour of railway systems and solving the equations
of motion of mechanical systems included with increasing the degree of complexity.
Multibody computational methods can be used to simulate the dynamic effects of
vehicle components and the track, and the use of multibody algorithms which allow
for the analysis of the nonlinear models, linearization schemes currently employed in
railroad vehicle-track can be evaluated [58].

J. Pombo and J. Ambrósio [48, 50] have developed and implemented a computatio-
nal tool suitable to study the dynamic behaviour of rail guided vehicles in realistic
operation conditions. An efficient multibody methodology was suggested and its com-
putational implementation was discussed. The methodology proposed can be sum-
marized in several points: the description of a three dimensional track model used
for a roller coaster application [49, 50] and railway vehicle; obtaining realistic track
conditions by definition and implementation of the track irregularities; development
of a new methodology [51, 52] for the accurate prediction of the location of the contact
points between the wheel and the rail surfaces; implementation of several creep force
models in order to compute all the tangential forces at the contact patch defined in
the wheel-rail interaction area; finally validation of the multibody code presented in
this work with modelling of a railway vehicle used by Lisbon metro company, and
its performance was studied in real operation conditions and in different operation
scenarios.

The numerical results obtained from the computational tool proposed and the results
obtained from ADAMS/RAIL computer package used to study and simulate the per-
formance of two railway vehicles in real operation conditions, were compared with
experimental tests made on the railway vehicles to validate the obtained results.
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Shabana et al. [60] presented a nonlinear finite element formulation for modelling the
rail structural flexibility in multibody railroad vehicle systems, it was considered to
use two types of interpolations in the kinematic equations developed in the study;the
geometry interpolation and the deformation interpolation. The coupling between the
rail deformation and geometry, contact coordinates and nonlinear vehicle dynamics
was considered.

The main aim of the analysis, was developing a new procedure that allows building
complex track model which is used as an input to general purpose multibody computer
program used in the dynamic analysis of railroad vehicle systems. This was achieved
by the following consequence; first the track geometry was defined in a pre-processor
computer program which produces an output geometry file including all information
about the track elements of the space curve of the track and the left and right rail
in terms of position coordinates and rotations defined at the selected nodal points;
as a second step, making a finite element model of the track in a finite element pre-
processor computer based on the track material properties and geometry and the
output is a finite-element ; finally the geometry file and the finite-element were used
as an input to a general purpose multibody computer program in which the wheel-
rail contact models are implemented to study the dynamic behaviour of the railroad
vehicle.

E. Meli et al. [39] has developed a numerical model which reproduces the complete
three-dimensional dynamics of a railway vehicle running on a generic track. The mo-
del has been developed with the objective of real-time implementation, in order to
use the results to control the actuators of Hardware In the Loop (HIL) test rigs. The
numerical model in the test rig has been realised in Matlab− SimulinkTM environ-
ment. The module was applied to a Benchmark vehicle (The Manchester wagon). A
comparison between the obtained results and the those obtained using a commercial
multibody software package ADAMS/RAIL was shown. In the work presented by
Meli, it was highlighted that the models used evaluate the deformation of the wheel
and the rail in the contact zone by means of two different approaches. With respect
to the existing models of railway multibody models, its features were more detailed
modelling of wheel-rail contact problems. The track geometry description represents
the first step in the solution of the dynamic analysis problem. In this step, the pre-
processing operation for the track geometry is made using the input data provided by
the manufacturing or the industry to be the input for the track geometry program.
Afterwards the output data generated in such step provided to the next step which
include the multibody dynamic analysis program used to simulate the behaviour of
the rail guided vehicle.

The track model used in the current work for the dynamic simulation is presented as
a parameterized track in order to obtain the required information of the track. All the
kinematic and dynamic parameters are parameterized as a function of the parameter
used here which is the distance covered by the vehicle or the track length. There are
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two main approaches used in the parameterization of the track centreline: the first
one uses a combination of analytical segments, straight, transition and plane curve
segments to form the track model used in the analysis. The second approach depends
on the use of piece wise cubic interpolation schemes to make an interpolation between
provided data points representing the track to find the parameterized track centreline
curve.

In both approaches it was necessary to define the cant angle of the track to provide
a complete definition of the track. In the methodology presented in the work, it is
proposed to use analytical segments to form the designed track. The track model
introduced in this work which consists of tangent or straight line segment, followed
by transition curve segment, and finally the plane curve segment with constant radius
R. The pre-processed data defined in the track geometry step was provided to a mul-
tibody program used for the dynamic analysis of the railroad vehicle, starting with
the study and the analysis of a general solid moving along the proposed track. As a
next step, the analysis of wheelset moving along the track and then the combination
between the two solids in the step of the definition of the train vehicle model proposed
in the work in the proceeding context.

J. Pombo [49, 50] developed an appropriate methodology for the accurate description
of the track centreline geometry, in the frame work of multibody dynamics. A pre-
processing step was made to achieve the computational efficiency for the definition of
spatial geometry of the centreline based on the data given by the user. Starting with
the roller coaster application, four different interpolation schemes were used in the
definition of the spatial track centreline. All the information and the data of the right
and left rail were stored in a tabulated manner in which interpolation between the
entires were made to obtain the required information. The application was extended
to be used in the definition of railway track application in which the rail irregularities
were implemented and piecewise interpolation schemes were used to parameterize the
track irregularities, as well as the input data, to obtain the track centreline as a
function of the track length.

Shabana et al. [61] use an analytical track description defined by three step procedure:
i)Projection, which defines the planar curve obtained by projecting the track centre-
line onto the horizontal plane; ii) Development, which defines an elevation angle; iii)
Super-elevation, which defines the track cant angle. In his formulation, a relationship
between the arc-length of actual curve and arc-length of the projected curve is stated.

Then, the track centreline is defined by providing information about the horizontal
curvature as a function of the projected arc-length, the vertical development angle
as a function of actual arc-length and the cant angle as a function of the projected
arc-length. During the dynamic analysis, the rail space curve are obtained by means
of absolute nodal coordinate formulation, leading to an isoperimetric beam element
that can be conveniently used to describe curved rigid and flexible rails.

The method considers each rail as a separate body in order to account for relative
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motion. The method used by Shabana [60] in the definition of the track pre-processing
step, basically depends on the definition of the geometry file, in which the input data
for this program use the industry data such as the curvature, super-elevation and
development. The output data of the pre-processing stage was used in the next
stage which is the development of a finite element pre-processor computer program.
Description of the rail deformation was discussed which based on the finite element
floating frame of reference formulation [57]. The use of this formulation allows for
arbitrary rigid body displacement of the track structure, it also allows treating the
two rails as one body or two separate bodies.

The fundamental component common to all conventional railway vehicles is the wheel-
set [48]. The movement of the wheelset over the track is characterized by a complex
interaction [3, 58] where lateral translation as well as yaw and roll rotations are ob-
served. The formulation of the problem of contact between the wheel and the rail
is complex task and has been the subject of several investigations which presented
different solutions [51, 52, 59].

Two approaches can be used for solving the problem of wheel-rail contact [61] in
railroad dynamics. The first is the commonly called constraint approach, in which
non-linear kinematic contact constraint equations are introduced. In this approach,
the contact surfaces are represented in a parametric form using the differential geo-
metry methods. The coordinates of the contact points can be predicted online during
the dynamic simulation by introducing surface parameters that describe the contact
surface geometries.

The second is the elastic approach, in which the wheelset is assumed to have six
degrees of freedom with respect to the rails. The local deformation of the contact
surface at the contact point is allowed and the normal contact forces are defined using
normal contact theories or in terms of assumed stiffness and damping coefficients.
This type of approach allows the separation between the wheel and the rail and
allows multiple contact points to be managed. One of the main problems related to
this approach is the definition of the contact point location online.

In most elastic force models, the three-dimensional contact problem is reduced, for
the sake of efficiency, to a two-dimensional problem when the location of the contact
points is searched for. Both of these approaches allow the component of the contact
force normal to the surfaces to be defined. In the constraint method these forces are
calculated as the Lagrange multipliers that, together with the system generalized co-
ordinates and the surface parameters time derivatives, constitute the unknown vector
of the differential algebraic equation system that describes the vehicle dynamics.

In the elastic approach, the normal component of the contact force at the contact
point is calculated as a function of the penetration between the surfaces. The contact
problem can be divided into three distinct but related tasks: the contact geometry,
the contact kinematics and contact mechanics. Contact geometry is the problem of
defining the location of the contact point on the profiled surfaces taking into account
the geometric contact constraints which impose constraints upon the relative displa-
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cements and orientations of the contacting bodies. Contact kinematics defines the
creepages (normalized relative velocities) at the point of contact. Contact mecha-
nics determines the tangential creep forces and spin moment on the basis of three-
dimensional rolling contact theories.

Shabana et al. [59] developed a new elastic force contact formulation for the dynamic
simulation of the wheel-rail interaction. In this contact formulation, four surface pa-
rameters are introduced in order to be able to describe the geometry of the surfaces of
the two bodies that come in contact. The method developed in the mentioned inves-
tigation exploits features of multibody computational algorithms that allow adding
arbitrary first order differential equations.

A differential equation, associated with the rail arc length and expressed in terms
of the wheel generalized co-ordinates and velocity, is used to accurately predict the
location of the points of contact between the wheel and the rail. This first order dif-
ferential equation is integrated simultaneously with the dynamic equations of motion
of the wheel-rail system, thereby defining the rail arc length travelled by the wheel.
This arc length is used with an optimized search algorithm to determine all possible
contact regions.

Pombo [51, 52] presented a new general formulation for the accurate prediction of
the location of the contact points on the wheel and rail surfaces. The mentioned
model has been proposed and implemented in a general multibody program used in
the dynamic analysis of railway vehicles. The coordinates of the contact points are
predicted online during the dynamic analysis by introducing the surface parameters
that describe the geometry of the contact surfaces.

This method was applied to study specific problems inherent to the railway dynamics
such as the two points of contact scenario. The methodology to look for the candi-
dates for contact points is fully independent for the wheel tread and for the wheel
flange. The used formulation also allowed for investigations related to hunting insta-
bility and prediction of wheel climbing, which are very important to study derailment
phenomena. The methodology used [48] for the parameterization of the wheel and
rail surfaces and for the description of the wheel-rail contact phenomenon was gene-
ral, since it was able to represent any spatial configuration of the wheels and rails
and any wheel and rail profiles, even the ones obtained from direct measurements.
Because the wheels are treated separately, the used approach allowed dealing with
railway vehicles either with conventional wheelsets, like trains, or with independent
wheels, such as in many of the trams in operation.

In the contact model used by E. Meli et al. [39] the contact point position is calcu-
lated offline by means of a procedure based on the simplex method. This procedure
was used to generate a three dimensional lookup table used in the real-time simula-
tion to find the position of the contact points as a function of wheelset-rail relative
displacement, described by three coordinates (the lateral wheelset displacement, the
roll and yaw wheelset angle). The procedure was numerically sufficiently efficient and
allows multiple contact points to be managed.
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The method used in this thesis for solving the wheel-rail contact problem is based on
the elastic approach, in which the wheel is considered to have six DOF with respect
to the rail and the normal contact forces are defined in terms of the indentation
between the surfaces and using Hertz contact theory. The main problem encountered
when using the elastic approach, is the determination of the contact points. For the
sake of efficiency, the three dimensional contact problem is usually reduced to a two
dimensional problem [39] when searching for the contact points.

In the dynamic analysis of railway vehicles, the evaluation of the wheel-rail contact
forces is repeated many times. Then, short calculation time algorithm should be
used taking into account the computational cost of the model implemented in the
multibody computer program used in the analysis. The method used in the presented
work for calculating the tangential contact forces and moments is Kalker linear theory
of rolling contact [30, 31, 33, 58], this theory based on the assumptions that the
existence of small creepages and spin creep, and the area of slip is so small that its
influence can be neglected. Under these assumptions, the adhesion zone is assumed to
cover the entire area of contact. This method doesn’t include the saturation effect of
the friction force and, therefore, it is limited to contact problems with small creepage
values.

Due to the simplicity and computational implementation easiness, Cartesian coordi-
nates are used [61] in this work to formulate the equations of motion of the multibody
systems. No kinematic constraints are added to the formulation, to avoid the com-
plexity produced from the Differential Algebraic Equations (DAE) see [16], also the
instabilities in the integration process, produced from the substitution of the algebraic
equations of the system by their counterpart (ODE), are avoided.

The equations of motion developed in this work are set of Ordinary Differential Equa-
tions (ODE) solved by numerical integration algorithms. Two approaches are often
used to formulate the dynamic equations of motion of a mechanical systems: the New-
tonian and the Lagrangian approaches. In the Newtonian approach, vector mechanics
is used to develop the dynamic equations, in this approach the equilibrium position of
each body is first studied separately, and it can be used relatively for simple systems
and is not suited for the analysis of complex systems such as railroad vehicles.

In the Lagrangian approach, scalar quantities such as the virtual work and the kinetic
and potential energies are used to develop the equations of motion of the body. In this
case there is no need to study the equilibrium of the bodies in the system separately
[2, 61]. In this work the Lagrangian approach is used to develop the equations of
motion of the multibody systems.

The concept of the generalized coordinates is fundamental in the Lagrangian formu-
lation of the equations of motion. For unconstrained motion proposed here in the
formulation, six degrees of freedom are used for each body used in the multibody sys-
tem; three coordinate are used to describe the translation of a point on the body and
the other three are used to describe the orientation of the body frame of reference.
The parameterization of the finite rotation used in this work is the set of Euler angles,
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where the orientation of a point on the rigid body is defined using three successive
rotations. To avoid singularity problems that may exist in the formulation, the final
rotation in the successive rotations proposed was assigned to the higher values of
rotation angles.

1.4 Scope and work organization

The main objective of the work is to develop an appropriate method using the mul-
tibody approach to realize dynamic analysis for the railway vehicle system. The
developed computational tool is applied in different application scenarios using a ge-
neral multibody program developed in MATLAB environment, to achieve the required
tasks. The importance of the work can be illustrated in the demonstration of railway
system application modelling and make the necessary analysis for the studied systems
to analyze the dynamic behaviour of the railway vehicle. The multibody simulation
tool developed in this work has some extra capabilities which include:

• The full description of the track configuration used in the simulation of railway
applications.

• Including any modifications carried on the track configuration and the use of
flexible track models.

• The accurate detection of the contact location of the contact points between
the wheel and rail surfaces .

• Implementation of several creep force models to compute the tangential forces
which develop in the wheel-rail interface

An important purpose of the developed work is the validation of the presented si-
mulation tool. To achieve this goal, a procedure is followed to validate the results
obtained by the simulation tool which includes the following steps: The first step
is making a comparison between the results of the simulation tool and the results
obtained by different simulation packages used to analyze the dynamic behaviour of
the Manchester Benchmark vehicle; the second step is making a comparison between
the analysis and results obtained by the developed simulation tool in this work and
the results obtained by the commercial simulation package SIMPACK for TGV001
locomotive vehicle in different operation scenarios.

The work proposed here is presented in the following five chapters. The dynamic
analysis of railway systems requires the construction of the equation of motion of the
vehicle model and the accurate description of the vehicle kinematic structure. For this
purpose, a multibody formulation using Cartesian coordinates is presented in Chapter
(2). The formulation allows for general three dimensional unconstrained multibody
systems to be modelled and the respective equation of motion to be assembled and
solved.
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Chapter (3) presents an overview of the information needed to perform design ana-
lysis of railway vehicles. The track issues and track terminologies are presented as
well as the design requests for the track segments characterization including the cant
design and the description of the transition curve modelling. The wheel rail contact
problem plays an important role in the dynamic analysis of the railway vehicles. A
discussion of the theories used to solve the geometrical contact problem is presented.
Special emphasis are presented by three wheel-rail contact force models to solve the
tangential contact problem, which include the Kalker linear theory, FASTSIM algo-
rithm and finally Polach nonlinear creep force model. The three contact force models
are implemented in the multibody simulation tool developed in this work.

Chapter (4) devoted the proposed methodology used to develop the equation of motion
for railway multibody systems. Beginning with the definitions of the reference frames
used in the formulation, followed by a description of the track model which is defined
to be used in the simulation purposes. A wheel-rail contact model is implemented
through the proposed algorithm in this work. The model detects the coordinates of
the contact points between wheel-rail surfaces in such way that permits the detection
of multi contact points. Afterwards, the normal contact forces are calculated at the
detected contact areas, then the tangential contact forces are calculated using the
creep force models explained in Chapter (3). The mathematical multibody model is
presented in Chapter (4) which presents the base model for the developed simulation
tool.

In Chapter (5), the main structure of the multibody simulation tool is presented.
The simulation tool proposed by this work is used to analyze the dynamic behaviour
of railway systems. In the early design of the tool, a simplified contact models are
implemented to study the contact between the wheel and rail. This simplified contact
model is used in the analysis of a single bogie of the TGV001 locomotive vehicle,
negotiating a straight and curved tracks. Afterwards, the simulation is carried out on
a complete vehicle with the same operating scenarios. The geometry of the contact
profiles of the rail and the wheel is replaced from the simplified to the real geometry
using the standard UIC60 rail profile and S1002 wheel profile in the contact model
implemented in the multibody program. The simulation tool is then used to analyze
the dynamic behaviour of the Manchester Benchmark vehicle. A comparison has been
made between the obtained results by the tool proposed in this work and various com-
mercial packages used in the simulation of the Benchmark. To validate the capability
of the simulation tool in the analysis of railway systems, another comparison is made
between the obtained results for the dynamic behaviour of TGV001 locomotive vehicle
and the results obtained by SIMPACK commercial package for railway applications.

Finally, in Chapter (6), overall conclusions are presented and perspective future work
in the railway dynamics that are a sequence of this work are suggested.



Chapter 2

Multibody system analysis

The mechanical systems included under the definition of multibodies comprise rail-
way systems, robots, spacecraft, automobile suspensions and steering systems, gra-
phic arts, machine tools and others. Normally, the mechanisms used in all these
applications are subjected to large displacements, hence, their geometric configura-
tion undergoes large variations under normal service conditions. Moreover, in recent
years operating speeds have been increased, and consequently, there has been an in-
crease in accelerations and inertia forces. These large forces inevitably lead to the
appearance of dynamic problems that one must be able to predict and control.

Basic concept in any presentation of multibody mechanics is the understanding of
the motion of subsystems (bodies or components). The need for a better design, in
addition to the fact that many mechanical and structural systems operate in hostile
environments, has made necessary the inclusion of many factors that have been igno-
red in the past. In the systems such as mentioned the neglect of the deformation
effect, for example, when these systems are analyzed leads to a mathematical model
that poorly represents the actual system

Railway vehicles and roads represent the most important types of the application of
the multibody approach. A multibody system can be defined as a collection of rigid
and/or flexible bodies interconnected by kinematic joints and/or force elements [48].
The relative motion between the bodies forming the multibody systems is controlled
by the kinematic joints. On the other hand, the force elements represent the internal
forces which are produced due to the relative motion between the connected bodies.

The dynamic analysis of the multibody systems [1, 2, 57] includes the formation as
well as the solution of second order differential equations which present the equations
of motion of the rigid or flexible body. The solution of the equations of motion set
may involve the solution of a set of algebraic equations which can be formed due to
the existence of kinematic constraints.

11
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The number of degrees of freedom DOF is defined for the rigid bodies to be six.
For flexible bodies, each body has six DOF plus the generalized flexible coordinates
necessary to describe the deformation [48, 57]. The number of coordinates required
may be lager than the number of DOF of the multibody system depending on the
type of the modelled system as well as the type of the used coordinates.

In the presented work, Cartesian coordinates are used to facilitate the implementation
of the developed methodology for the analysis of the multibody systems and to be
implemented in the multibody simulation tool presented by the thesis. Lagrangian
approach is used, which leads to a number of generalized coordinates equal to the
number of DOF of the system, so there is no need to define constraint equations in
the formulation of the proposed methodology. By this way, the solution an algebraic
set of equations presenting the kinematic constraints, is avoided as well as the need
of the stabilization techniques used for the solution of such system of equations [10].
In the presented work the connection between the car body and the bogies as well as
the connection between the bogie and the wheelsets can be modelled realistic form
by viscous elements without the need of any kinematic constraints.

In the following sections, the multibody basic concepts and formulations are presented.
The formulations are adopted in specific form that supports the implementation of
such formulations in the proposed methodology used to construct the simulation tool
VIA which has been used to realize the dynamic simulation of railway systems.

2.1 Multibody systems and joints

A multibody system can be defined as an assembly of two or more rigid bodies joined
together imperfectly. A kinematic pair or joint is defined as the imperfect part which
is joining two rigid bodies. A joint in multibody system permits certain DOF of the
relative motion and restricts or prevents others, based on the joint type. For example,
a revolute joint allows only relative rotations, prismatic joint allows relative rotation
and translation as well.

On the other hand, force elements such as spring damper systems can be used to
interrelate internal forces between two bodies. Multibody systems can be divided
into main branches open-chain systems and closed chain systems. For example, if
a system is composed of bodies without branches, then it is called open-chain other
wise it is called closed-chain [2].

2.2 Dependent and independent coordinates

For the description of the position and motion of a body, it is necessary to define
a set of coordinates that will allow one to completely define the position, velocity
and acceleration of the body at all times. The selection of the set of coordinates or
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parameters that can be used to define the system depending on the modelled system
and type of coordinates used.

The selection of the type of the coordinates depends on the easiness of the imple-
mentation of the coordinates and whether it is efficient to be used as well as offers
high computational. The different dynamic formulations may also benefit from the
characteristics of a particular set of coordinates.

The selection of the coordinates type presents the solution of the first problem in a
time modelling of multibody systems [26]. Existing two options for the coordinate
selection:

• The first is the use of the independent coordinates, whose number coincides
with the number of DOF of the multibody system.

• The second is the use of dependent coordinates, whose number is greater than
the number of DOF of the multibody system. The selection of such type of
coordinates requires the definition of a set of constraint equations equal to the
difference between the number of dependent coordinate and the DOF of the
system.

Independent coordinates can be very useful to describe with a minimum data set
the actual velocities or accelerations and small variations in the position, with the
unique limitations that they may lead to the highest computational efficiency. The
independent coordinates are used in the presented work in the determination of the
position, velocity and acceleration of a rigid bodies forming the multibody systems of
railway vehicles.

2.3 Kinematic analysis of multibody systems

Kinematics is the study of position, velocity and acceleration of a system without the
need of the forces definition. In principle, the analysis of complex systems that has N
DOF, it is assumed to use a simple model to obtain realistic solutions. The rigid body
concept is a good presentation of a body which doesn’t deform under the influence
of external forces. In the following sections, the kinematic quantities describing the
motion of a rigid body are presented.

2.3.1 Frames of reference for a multibody system

In the description of a multibody system, measurable quantities are used to define
the motion of the body. These quantities have to be measured with respect to a
specific frame of reference [57]. The frame of reference is defined by three orthogonal
coordinates rigidly connected in a point which defines the frame of reference origin.
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Figure 2.1. Body corrdinate systems

In figure (2.1), two types of coordinate systems are defined. The first is the fixed
coordinate system (XYZ) which represents the unique standard frame for all the
bodies used in a multibody system. The second is the body or the local frame of
reference (Xi,Yi,Zi) defined for a body i. The local frame of reference of the body
i translates and rotates with the body; therfore its translation and orientaion with
respect to the fixed frame is changing with time.

Assuming that i1, i2, i3 three unit vectors acting along the axes X, Y and Z, respec-
tively. A vector ui can be defined in the fixed frame by the following expression:

ui = ui i1 + ui i2 + ui i3 (2.1)

The same by defining i1, i2, i3 to represent three unit vectors acting along the axes
Xi,Yi and Zi, the unit vector ui

ūi = ūi i1 + ūi i2 + ūi i3 (2.2)

By this way, we have two different representations for the same vector ui . Since it
is easier to define a vector in the local frame of reference, so it is necessary to define
the relationship between the local and global frame of reference. A transformation
matrix Ai is defined to demonstrate the orientation of a local reference frame with
respect to the fixed frame. So that a unit vector ui in the fixed frame of reference
can be defined in the local frame by using the following expression

ui = Ai ūi (2.3)
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2.3.2 Transformation matrix

In many dynamical problems, especially in multibody dynamics [19, 53], it is useful
to express the motion of rotating bodies, using a set of inertial frames attached to the
bodies and a fixed frame. It is also known that any rotating frame fixed to a rigid
body can be related to the fixed inertial frame by three successive rotations. The
transformation matrix is obtained by the definition of consecutive rotations with the
system rotation angles. So it is necessary to define the rotation matrix used in the
formulation of the transformation matrix.

In the kinematic analysis of multibody systems, the bodies forming the system may
undergo large relative displacements and rotations. The location of each point on a
body i for example forming a component of the multibody system, can be defined by
three translational parameters representing the origin of the body i with respect to
the fixed frame as seen in figure (2.1), and three relative rotations representing the
orientation of body i with respect to the fixed frame.

To represent the concept of the transformation from a local frame to a fixed frame,
we first assume that the two frame of references are parallel as seen in figure (2.2)

Figure 2.2. Fixed and local frame of references

A vector n is represented by its three orthogonal components along the inertia frame
of reference as seen in the previous figure. Assuming that the body frame of reference
(Xi,Yi,Zi) rotates with an angle φ about the Xi axes, so the vector n can be defined
in the new reference frame (Xi1,Yi1,Zi1) after the first rotation by the following
expressions
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Figure 2.3. Successive rotations about the inertial axes of the body

n1 = n̄1

n2 = n̄2 cosφ+ n̄3sinφ

n3 = −n̄2 sinφ+ n̄3 cosφ

(2.4)

which can be written in a matrix form as follow:







n1

n2

n3






=







1 0 0

0 cosφ sinφ

0 −sinφ cosφ













n̄1

n̄2

n̄3






(2.5)

which drive us to the following expression

n = Aφn̄ (2.6)

where Aφ is the matrix of rotation about Xi axis with an angle φ, see figure (2.3a).
The same is realized by making a rotation about the Yi1 axis with an angle θ as seen
in figure (2.3a), then we obtain

n = Aθn̄ (2.7)

where Aθ is the rotation matrix defined by the following expression:

Aθ =







cos θ 0 −sinθ
0 1 0

sinθ −sinφ cos θ






(2.8)

and finally by making the last rotation about Zi2, a new reference fram (Xi3,Yi3,Zi3)
as seen in figure (2.3c) is defined and the vector n can be represented by

n = Aψn̄ (2.9)
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where the rotation matrix Aψis defined by

Aψ =







cosψ sinψ 0

−sinψ cosψ 0

0 0 1






(2.10)

Finally the transformation matrix produced from the successive rotations, explained
in figure (2.3), can be obtained by

A = AφAθAψ (2.11)

where the three angles φ, θ and ψ are the rotation angles that define the orientation
of the frame of reference. The concept of Euler angles is used in the presented work in
the way that the rotation sequences are selected by special way explained in Chapter
(4) that avoid the singularity problems.

2.4 Rigid body kinematics

The term rigid body implies that the deformation of the body under consideration
is assumed small such that the body deformation has no effect on the gross body
motion. Hence, for a rigid body, the distance between any two of its particles remains
constant at all times and all configurations [26, 53, 57]. The motion of a rigid body
in space can be completely described by using six generalized coordinates.

In the formulations presented by this work, only rigid bodies are considered. When
dealing with rigid body systems, the kinematics of the body is completely described
by the kinematics of its coordinate system because the particles of a rigid body do
not move with respect to a body-fixed coordinate system. The local position of a
particle on the body can then be described in terms of fixed components along the
axes of this moving coordinate system.

2.4.1 General displacement

The spatial transformation used in this work is expressed by three independent coor-
dinates which present the orientation of a body i that forms a part of the multibody
system, with respect to the fixed reference frame. The general displacement of a body
i in the multibody system is described by rotation and translation. As seen by figure
(2.1), if the body undergoes pure rotation, then a vector ui of a point p on the body
can be defined by equation (2.3).

If the body i translates in addition to rotation. Then the complete definition of the
body motion is described by: the definition of the translation of the body which is
defined by the vector Ri that presents the global position vector of the local reference
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frame origin; in addition, the definition of the orientation described by the transfor-
mation matrix Ai. The global position vector of an arbitrary point on a generic body
i is definced by rp, given by

rp = Ri +Ai ūi (2.12)

2.4.2 Velocity analysis

The absolute velocity vector on a point on a rigid body is obtained by differentiating
the position vector with respect to time. From equation (2.12), the velocity vector of
an arbitrary point p on the rigid body i is obtained by

ṙp = Ṙi + Ȧi ūi (2.13)

where ṙp is the absolute velocity vector of a point p and Ṙi is the absolute velocity
vector of the origin of the body reference frame.

From the orthogonality property defined for the transformation matrix [57] the follo-
wing expression can be used

ȦAT = −AȦT (2.14)

A matrix which is equal to the negative of its transpose must be skew symmetric
matrix then we find that:

ȦAT = ω̃ (2.15)

where ω̃ is a skew symmetric matrix that defines the absolute angular velocity vector of
the body in the fixed frame of reference. Equation (2.15), provides another definition
of the time derivative of the transformation matrix given by

Ȧ = A ˜̄ω (2.16)

where ˜̄ω is a skew symmetric matrix defines the angular velocity vector in the local
frame of reference of the body

From both equations (2.15)and (2.16) the absolute angular velocity of the system is
given by

ω̃ = A ˜̄ωAT (2.17)

Substituting the vector Ȧi ūi defined in equation (2.13) by the obtained expressions
for the time derivative of the transformation matrix

ṙp = Ṙi + ω̃Ai ūi

ṙp = Ṙi + A ˜̄ω ūi
(2.18)
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2.4.3 Acceleration analysis

The absolute acceleration of an arbitrary point on a rigid body in multibody systems
can be obtained by differentiating the velocity vector obtained by equation (2.13)
which can be given by

r̈p = R̈i + ωi ×
(

ωi × ui
)

+αi × ui (2.19)

where R̈i is the absolute acceleration of the origin of the body reference, ωi and αi

are, respectively, the angular velocity and angular acceleration vectors defined in the
global coordinate system, and ui can be replaced by the expression given by equation
(2.3) then we find that

r̈p = R̈i +Ai
[

ω̄i ×
(

ω̄i × ūi
)]

+Ai
(

ᾱi × ūi
)

(2.20)

where ω̄i and ᾱi are, respectively, the angular velocity vector and angular acceleration
vector defined in the body coordinate system.

The vector r̈p representing the acceleration of an arbitrary point on a rigid body in
multibody system can be written on the form

r̈p = al + ac + at + an (2.21)

where
al = Ai ¨̄rp ; ac = 2ωi × vG

at = αi × rp ; an = ω̄i ×
(

ω̄i × rp
) (2.22)

al represents the local acceleration defined in the global coordinate system. ac is the
Coriolis acceleration, at is the tangential acceleration and an is the normal accelera-
tion. vG is the velocity vector of the centre of mass of the body.

By the definition of the previous acceleration components, we can get the magnitudes
and the direction of each acceleration from the following table

Component Magnitude Direction

an θ̇2r Along the vector (−r)

at θ̈ r Perpendicular to both α and r

ac 2 θ̇ vG Perpendicular to both ωi and vG

Table 2.1. Acceleration components difined for the acceleration of an arbitrary point on a

rigid body

where vG is the norm of the velocity vector vG and r is the length of the vector r.
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2.5 Dynamic analysis of multibody systems

The dynamic analysis of multibody systems consists in the study of their motion as
a response to external applied forces and moments. The motion of the system is
generally not prescribed. The calculation of the body motion is one of the principle
objectives of the dynamic analysis. This type of analysis also provides a process
to estimate external forces which depends on the relative position between the sys-
tem components, such as those generated by springs, dampers and actuators. Also
external forces which generated as a consequence of the system interaction with the
surrounding environment, such as contact and friction forces, are considered. Another
significant result provided by this type of analysis, is the calculation of the internal
reaction forces, generated in the kinematic pairs.

2.5.1 Generalized coordinates

The generalized coordinates are defined as the set of variables that define the mul-
tibody system configuration. A rigid body in the space is defined by using three
coordinates that describe the translation of the particle with respect to the three axes
of the fixed frame. In addition to the translational set of coordinates, it is important to
define other three coordinates that define the orientation of the body with respect to
the fixed frame of reference. Once the set of coordinates defining the six independent
coordinates for the rigid body is identified, the global position of an arbitrary point
on the body can be expressed in terms of these coordinates.

A multibody system as shown in figure (2.1), which consists of nb interconnected rigid
bodies, requires 6nb coordinates in order to describe the system configuration in space.
To understand and control the motion of the multibody system, it is important to
identify a set of independent generalized coordinates called degrees of freedom (DOF).

For convenience, we will use the notation qi to denote the generalized coordinates of
the body reference, that is

qi =
[

RiT θi
T
]T

(2.23)

where Ri represents the set of the translational generalized coordinates, and θi defines
the set of the generalized rotational coordinates of the rigid body

2.5.2 Virtual work

In the following section, the generalized forces are introduced by the definition of the
principle of the virtual wok in both static and dynamic analysis
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In case of static equilibrium, we assume a system composed of np particles in three
dimensional space. A force vector Fi represents the sum of the external and constraint
forces affecting particle i.

Fi = Fie + Fic (2.24)

In the presented work, no kinematic constraint is used, so that the term of the
constraint forces is null then Fi = Fie. In case of static equilibrium we find that

Fie
T
δri = 0 (2.25)

then the virtual work of the external applied forces is calculated by

δW = Fie
T
δri = 0 (2.26)

Equation (2.26) is the principle of virtual work for static equilibrium.

The displacement of a particle i can be defined by means of the particle generalized
coordinates as

ri = ri
(

qi
)

(2.27)

where qi is the set of generalized coordinates defined for the system. Then the virtual
work of an arbitrary point i can be written on the form

δri =

n
∑

j

∂ri

∂qj
δqj (2.28)

where n is the number of the generalized coordinates of the system. by substituting
in equation (2.26), then the virtual work can be defined as

δW =

np
∑

i

n
∑

j

Fie
T ∂ri

∂qj
δqj (2.29)

In the case of dynamic equilibrium, according to Newton’s second law. The resultant
force applied on a particle i is equal to the rate of change in the momentum of the
particle, that is,

Fi − Ṗi = 0 (2.30)

where Pi is the momentum of a particle i. When the particle is assumed to be in
equilibrium, then

np
∑

i

(

Fi − Ṗi
)T

δri = 0 (2.31)

The force vector Fi is replaced with the external forces only applied to the system as
the constraint forces term is null
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np
∑

i

(

Fie − Ṗi
)T

δri = 0 (2.32)

substituting with the virtual displacement value obtained by equation (2.28) we find
that

δW =

np
∑

i

n
∑

j

(

Fie − Ṗi
) ∂ri

∂qj
δqj (2.33)

The generalized forces are introduced by applying the principle of virtual work in
both cases of static and dynamic analysis. The virtual work and generalized forces
can also be derived for rigid body systems with constraints. This can be achieved by
identifying the system-independent coordinates, and try to determine the generalized
forces associated with these coordinates. A systematic approach that can be followed
is to develop firstly the virtual work in terms of the system Cartesian coordinates
that can be written, from both equations (2.29) and (2.33), in vector form as

δW = QTδq (2.34)

where q is the vector of system independent coordinates or degrees of freedom and Q
is the vector of generalized forces associated with the coordinates q.

2.5.3 Equations of motion of multibody system

Lagrange introduced the Lagrange function which depends on a set of generalized
coordinates and velocities of a system [56]. The general work of Euler and Lagrange
also led to the principle of least action, where differential equations are obtained by
minimizing the action over an interval of time. The Lagrange equations represent a
set of nonlinear n second-order differential equations known as equations of motion.
Lagrange’s equation of motion can be written as

d

dt

(

∂T i

∂q̇i

)

− ∂T i

∂qi
−QT = 0 (2.35)

where T i is the total kinetic energy of the system, which can be defined by the
following expression

T i =
1

2
(q̇i)T Mi q̇i (2.36)

where the mass matrix Mi is given by
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Mi =

[

mi
RR mi

Rθ

Symmetric mi
θθ

]

(2.37)

where the matrix mi
RR associated with the translation of the body reference is a

constant diagonal matrix, the matrix mi
Rθ represents the inertia coupling between

the translation and rotation of the body reference and the matrix mi
θθ associated

with the rotational coordinates of the body reference

In the special case in which the origin of the coordinate system of the rigid body is
rigidly attached to the centre of mass, the sub-matrix mi

Rθ is the null matrix and the
body i mass matrix reduces to

Mi =

[

mi
RR 0

0 mi
θθ

]

(2.38)

by substituting with the value of the generalized coordinate vector expressed by equa-
tion (2.23), the total kinetic energy of the system can be written on the form

T i =
1

2
(Ṙi)T Mi Ṙi +

1

2
(θ̇
i
)T Mi θ̇

i
(2.39)

substituting in the Lagrange’s equation of motion, then we can define the quadratic
velocity vector as

∂T i

∂q̇i
= [(Ṙi)T mi

RR (θ̇
i
)T mi

Rθ] (2.40)

which can be written on the form

d

dt

(

∂T i

∂q̇i

)

= [(R̈i)T mi
RR

(

(θ̈
i
)T mi

θθ + (ω̄i)TĪiθθ
˙̄G
i
)

] (2.41)

where ω̄i is the angular velocity vector defined in the body coordinate system and Ḡi

is the matrix that relates the angular velocity vector to the time derivatives of the
orientation coordinates1 and Īiθθ is the mass moment of inertia matrix.

The derivative of the kinetic energy with respect to the generalized coordinates qi is

∂T i

∂qi
=

1

2

∂

∂qi

[

(θ̇
i
)T mi

θθθ̇
i
]

(2.42)

Substituting with equation(2.41) and equation (2.42) in the Lagrange’s equation
(2.35), we obtain two uncoupled matrix equations. The first equation associated

1Appendix A
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to the translation of the rigid body i centre of mass which can be defined by the
following equation

mi
RRR̈

i = Q̄i
R (2.43)

while the second equation associated with the rotation of the body, is obtained by
the following expression

mi
θθ θ̈

i = Q̄i
θ − 2 ˙̄G

i
Īiθθ ω̄i (2.44)

where subscripts R and θ refer, respectively, to the body translation and rotation.
The set of equations (2.43) and (2.43) represent the deferential equation of motion of
a rigid body in the multibody system.

The multibody formulation is introduced using a general approach for the dynamic
analysis of non constrained multibody system. The formulation presented in this
chapter is detailed for the type of coordinates adopted. The mathematical modelling
of multibody systems presented in this chapter is used in the development of the
mathematical model of the methodology proposed in chapter (4) for the dynamic
analysis of railway systems.



Chapter 3

Dynamics of railway systems

3.1 Introduction

The study of the railroad vehicle systems and the dynamic analysis of railway vehicle
systems generally divided into two main stages. The first stage is a pre-processing
stage at which the track geometry and the wheel and rail profiles are defined. The
second stage is developing the equations of motion of the multibody vehicle system, in
this stage all the parameters required to define the wheel and rail surfaces are defined
as well as the track geometry parameters which enter the formulations of the contact
conditions and the system equations of motion.

The first stage in the methodology proposed for the analysis of a railroad vehicle, is
to define the track geometry and make modeling for the track to provide the required
data in the next step of the dynamic analysis of the problem [61]. The introduction of
the track irregularities is not considered here in the current work. The track models for
multibody analysis must be in the form of parameterized curves, where the nominal
geometry is obtained as a function of a parameter associated to the track curve length
[48].

The parameterizations of the track can be done by two approaches. The first ap-
proach is the use of analytical segments for the track parametrization including the
definition of the track. This is generally done by putting together straight and cir-
cular curves interconnected by transition track segment that ensure the continuity of
the first and second derivatives of the railway in the transition points. The transi-
tion curve definition and popular curves used in the mathematical representation of
the transition curve are presented in this Chapter. In railway dynamics, solving the
problem of wheel-rail contact constitutes a key step in obtaining results in relation to
the vehicle’s dynamic behaviour. Precise calculation of wheel-rail contact parameters
requires a high computational cost, since this calculation has to be made in each step
of the time integration.

25
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The localization of the contact point presents the first step in the solution of the
contact problem, followed by the determination of the contact kinematics in which
the creepages are calculated at the contact area located at the wheel rail interface.
Finally, the contact force determination presents the final step in the solution of the
contact problem, by finding the normal and tangential contact forces affecting the
contact patch.

A description of the solution of geometrical contact problem can be presented by three
different methods, namely, The visible profile method [36, 37], Contact points detection
using geometric relational properties [48] and finally the wheel rail differential contact
method [39], are included in this chapter to highlight the importance of the precise
determination of the contact problem in the railway dynamic analysis. The solution
of the geometrical contact problem in the presented work is defined in Chapter (4)
by means of contact algorithm based on the virtual penetration between the contact
surfaces.

The solution of dynamic contact problem is presented in this Chapter by the definition
of normal contact force determination which in our case is presented by Hertz normal
contact model. Finally, the tangential contact forces in the current work are solved
by means of three different algorithms implemented in the dynamic multibody code
used to realize the dynamic simulation of the railway vehicles.

In the early stages of the development of the proposed multibody methodology pre-
sented in Chapter (4), kalker linear contact theory is used to calculate the tangential
forces between the wheel and rail contact profiles. The FASTSIM algorithm is imple-
mented in the multibody simulation tool proposed in the current work. FASTSIM is
a simple and fast program that calculates the total force in rolling contact from given
creepages and spin.

The last algorithm used is Polach nonlinear creep force law which is used to study the
tangential contact problem. The method is used to analyze the contact forces produ-
ced in the interaction between the wheel and rail. It also allows the determination of
nonlinear creep forces taking into account the effect of the spin creepage. Moreover,
it offers lower computational cost compared with FASTSIM algorithm. This method
has been tested and used in different programs and simulation tools with good results
in the dynamic analysis of railway systems. Polach method is implemented in the cur-
rent work and the main characteristics and theoretical development of the algorithm
are presented in this Chapter.

3.2 Track geometric description

The accurate description of the track is essential for the dynamic analysis of railway
systems. The dynamic behaviour of the railway vehicles is dependent on the track
conditions, also the loads transmitted to the vehicle from the track and the corres-
ponding forces transmitted from the vehicle to the track are mainly depending on the
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track geometry. The track pre-processor uses industry input data such as the curva-
ture, super -elevation and development [60]. Then all the necessary data required as
input informations for the track model are provided in a separated input data file,
and then the output data of the track geometry programs will be provided to the
dynamic simulation program. In the following section, some of the physical aspects
relevant to the design geometry of the track are presented.

3.2.1 Terminology of railway tracks

In this section, the basic definitions and terminology used in the railway systems are
discussed as well as the design issues required for the common track systems

3.2.1.1 Track gauge

Generally the track gauge G figure (3.1) is defined as the distance between the two
rails, more specifically the distance between the inside railheads measured 14 mm
below the surface of the rail [15]. The measure of the track gauge was taken 14 mm
below so that the measurement is less influenced by lateral wear on the rail head.

14 mm

G

Figure 3.1. Track gauge description

The following table presents a summary for the track gauge types and the countries
where they are applied:

Track Gauge Type Measured Value (mm) Examples for countries where it is found

750 Parts of Indonesia

Narrow Gauge 1000 Switzland

1067 Suoth Africa - Japan -Indonesia

Standard Gauge 1435 Most commonly used

1524 Russia - Finland

Broad Gauge 1600 Ireland - Australia

1668 Spain - Portugal

Table 3.1. Variation of track gauge type
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3.2.1.2 Horizontal curves

The railway tracks are in general composed of straight (or tangent) sections, transition
curves and circular curves. The horizontal curves have constant radius and are defined
in the tracks described in the horizontal plane. The radius of the curve used is defined
with respect to the track centreline as shown in figure (3.2).

R=constant

Outer rail

Inner rail

Track centreline

Figure 3.2. Horizontal circular curve

3.2.1.3 Track width

Track width D figure (3.4), is defined as the distance between the points of contact
of the mean wheel circles with the rails, the nominal value for the track width is 1500
mm.

3.2.1.4 Super-elevation

Track super-elevation ht is defined as the vertical distance between the right and left
rail as shown in figure (3.4)

3.2.1.5 Track grad

Track grad is defined as the ratio between the vertical elevation and the longitudinal
distance.

3.2.2 Cant angle definition in the track model

When travelling in horizontal curves, railway vehicles are influenced by centrifugal
forces, which act in a direction away from the centre of the curve to over turn the
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F = mcar
V 2

R

mcar g

Figure 3.3. Centrifugal force affecting a circulating railway vehicle

vehicle. The sum of a vehicle weight and its centrifugal forces produced a resultant
force directed to the outer rail see figure (3.3). When exceeding the friction force
limit acting in the opposite direction, additional load is added on the outer rails due
to contact between the wheel flange and the interior face of the rail producing the
following risks:

• Derailment risks.

• Railway track ripping.

• Premature wear of rails specially the outer rail profile.

• Affecting the passengers ride comfort.

In order to counteract this force, the outer rail in a curve is raised [24, 48, 61]. The
difference in height between the outer and the inner rail plane is called the cant or
the super elevation ht, which can be defined as shown in figure (3.4).

Then the cant angle φ as shown in the figure can be defined as [48, 61]

φ = arcsin

(

ht
D

)

(3.1)

The cant angle for zero track plane acceleration, at a given radius of curvature R and
vehicle speed V can be defined as equilibrium cant angle [48] which can be found by

φeq = arctan

(

V 2

Rg

)

(3.2)
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Inner Rail

Outer Rail

Track Plane

Horizontal Plane

ht

D

φ

φ

Figure 3.4. Cant and Cant angle

To define the track cant angle, we have first to define the plane at which the cant
angle is defied in. So in the case of the flat tracks, the horizontal plane is the plane at
which the cant angle is defined. But in case of the full spatial geometry track model,
it is proposed to use the osculating plane Fig.(3.5), to be the reference plane at which
the cant angle should be defined [50, 51].

3.2.3 Spatial track centreline

Z

X

Y

Osculating plane

t

n
ncant

bbcant

φ

φ

σ

Figure 3.5. Frenet Principle vectors and spatial definition of the cant angle

In this section we may use the definitions of the principle vectors (t n b) [39, 50],
which are the tangent, normal, and binormal vector, respectively, defining Frenet
frame that is attached to the spatial curve presenting the track centreline and we
find the tangent, normal and binormal unit vectors. Finding the relations between
them after the rotation with the cant angle (φ), the vectors will be defined as (tcant
ncant bcant). It has to be said that if piecewise cubic interpolation was used to
make the parameterization of the spatial curve then the user must set the cant angle
corresponds to each one of the nodal points which is used to parameterize the track.
If it supposed to use the analytical representation of the track model using analytical
functions, the user must set the cant angle at the extremities of each track segment
[48, 51]. In our case, the cant angle can be defined by the angle of rotation of the
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track frame of reference about the XT-axis pointing to the direction of motion of the
railway vehicle figure (3.6).

Z T

YT
xq

xq

Figure 3.6. Railway track cant angle

3.2.4 Transition curves and super-elevation ramps

Tangent
track

Curvature

Transition
Curve

Circular Curve

Track Centerline

Ramp

Cant

Outer Rail

Inner Rail

(1/R)

htmax

hto S(m)

S(m)

Figure 3.7. Transition Curves and Super-elevation Ramps

When trains operated at normal speeds, a circular curve with cant cannot be followed
directly by a tangent track, and vice-versa [48]. A transition curve is needed to
guarantee the curvature continuity and minimize the change in the lateral acceleration
of the vehicle. In general transition curves and super-elevation ramps figure (3.7), have
the same start and the same end points.

The curvature and the cant in transition curves corresponds to each other. The
length of the transition curves varies directly with the amount of curve super-elevation
required. The maximum allowable rate of change of the super-elevation determines the
minimum length of the transition for a given vehicle speed and curve super-elevation.
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Figure (3.7) illustrates the main stages used in the simulation proposed in the current
work, where a track composed of three stages is used. The track proposed in the
thesis presents a simple configuration which composed of a straight track segment
followed by a transition curve connecting the straight track with a circular curve with
constant radius. R is the radius of curvature used in each stage which has an infinite
value for the straight track and increases during the transition stage until it reaches
the constant value at the circular curve stage as shown. hto and htmax are the height
of the track in the straight stage and the final or circular curve stage respectively

3.2.4.1 Transition curves

The transition curves can be defined as the curves adopted to change the track radius
of curvature between the straight track to circular curves. The curvature radius of
transition curves decreases from infinity value at the straight track stage to the value
of the circular curve radius R in the form that the cant height is changing according
to the following relation

h =
D

g

V 2

R
(3.3)

where h is the cant height. D is the track width. V is vehicle velocity. The transition
curves should have the following properties when used in the connection between
straight and circular curves as well as the change from circular to straight curve:

• The transition curve has to be tangent to both straight line and circular curve
arc.

• The curvature value of transition curve is null at the straight stages.

• The curvature value of transition curve should equal to the curvature value of
the circular curve stage (1/R).

• The transition curve should have a progressive curvature between straight and
circular curve stages.

3.2.4.2 Transition curves in the space

Figure (3.8) depicts a curve in the space. The curve can approximately be replaced
by its projection in the plane (OXY ). This means taking the projection OA1. The
radius of curvature takes the corresponding value of curvatures at this point. The
plane (OXZ) is considered to be the elevation and the plane (OXY ) is considered to
be the top plane. In the presented curve in figure(3.8), the circular curve starts at
the point A. At the point B the equilibrium conditions are always verified between
the centrifugal force and the cant height calculated by equation (3.3).
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Figure 3.8. Spatial presentation of the transition curve

3.2.4.3 Mathematical definition of the transition curves

Existing various forms to define the transition curves used to connect the different
track segments. In the following section, the popular curves used to define the tran-
sition curves are presented.

I) Clothoid curves

The equation that presents the planer definition of the Clothoid can be written
in the form

y′′

(1 + y′2)
3
2

K1 = s =

x
∫

0

(

1 + y′2
)

1
2 dx (3.4)

By solving the previous equation we can obtain:

y = s3

6K1
− 1

336
s7

K3
1

+ 1
6240

s11

K5
1

− ........

x = s− 1
40

s5

K2
1

+ 1
3456

s9

K5
1

− .....

(3.5)

If only the first term in the equations presenting the cubic term is selected, the
following expression is obtained
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Figure 3.9. Planar definition of the Clothoid curve

y =
x3

6K1
(3.6)

II) Oval curves

0

K

Ḱ

X

Y

Figure 3.10. Planar definition of Oval curve
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This type of curves can be represented by the following equation

y′′

(1 + y′2)
3/2
K2 = x (3.7)

substituting with the following variables in the previous equation

Y =
y√
2K2

; X =
x√
2K2

(3.8)

we get the following

Y =
X3

3

(

1 +
1

2

3

4
X4 + ......+

1.3..... (2n− 3) (2n− 1)

1.4.... (2n− 2) 2n (4n+ 3)
X4n

)

(3.9)

The same as explained in the previous sections, the first term is selected only
giving the expression

y =
x3

6K2
(3.10)

III) Lemniscate curves

0

K

Ḱ

X

Y

Figure 3.11. Planar definition of Lemniscate curve

This type of curves used in the planer definition of the transition curves as seen
in figure (3.11) is represented mathematically by the following equation
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y′′

(1 + y′2)
3
2

K3 =
(

x2 + y2
)

1
2 (3.11)

by substituing with the following expressions in the previous equation

Y =
y

(2K3)
1
2

; X =
x

(2K3)
1
2

(3.12)

we get the following expression

Y =
X3

3

(

1 + 2
X4

9
+ 9

X8

92
+ 52

X12

93
+ 343

X16

94
+ ..

)

(3.13)

The same for the Lemniscate curve, we take the first term in the equation, then
the curve is defined by

y =
x3

6K3
(3.14)

After the definition of the different types of the transition curves, it is necessary to
highlight that the selected transtion curve in the presented work is the Clothoid curve.
By the complete definition of the track used in the multibody code implemented in
the program used in simulation purposses of the rail way vehicles, it was necessay to
define the wheel interaction phenomenon which presents one of the important steps
in the study of the dynamics of railroad vehicles. In the following section, a definition
of the contact problem is presented as well as the proposed methodologies used to
solve both normal and tangential contact problems.

3.3 Wheel-rail interaction phenomenon

The importance of the modelling of the contact problem has a great influence on
the vehicle dynamics because all the forces produced of reaction on the vehicle are
transmitted through the contact forces. The simulation results are affected by the
procession of the contact model. The dynamic behaviour of the railway vehicle is
totally affected by the solution of the contact problem.

The exact definition of the contact problem leads to better results for the simulation
of critical cases such as: Derailment process [11]; Dynamic instability problems; Wear
process for the wheel-rail surfaces[27]; Squeal noise problems. The determination of
the rolling contact problem [28] requires the definition of the relations between the
deformation, pressure distribution and creepages.

Since all the forces supporting and guiding the railway vehicle result from the inter-
action between the wheel and rail. A good contact model must provide an accurate
description of the global and local contact phenomena and a general handling of the
multiple contact situations. The model has also to assure high numerical efficiency
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(in order to be implemented directly online within multibody models) as well as a
good compatibility with multibody simulation tools.

The solution of the contact problem is divided into three different but correlated tasks:
the solution of the geometrical contact problem; the solution of the normal contact
problem and the solution of the tangential contact problem. The first task involves
the determination of the contact points locations on the interface between the wheel
and rail surfaces. The second task is related with the contact kinematics and consists
in the calculation of the velocity vector and creepages values at the contact points.
The last step is the accurate definition of the contact mechanics by the calculation of
the wheel-rail contact forces.

The required data for solving the contact problem can be summarized in the following
points:

• The contact geometry: requires the definition of the transversal geometry of the
track as well as the geometrical properties of the wheel and rail surfaces.

• The mechanical properties of the surfaces in contact.

• The relative displacements of the wheelset with respect to the track.

• The kinematics of the contact: this includes the determination of the contact ve-
locity vector at each contact point as well as the determination of the creepages
by knowing the value of the forward velocity of the vehicle.

According to the used theory for the solution of the contact problem, the extracted
data from the contact problem solution are:

• Number of contact areas.

• Shape and size of the contact area.

• Position vector of the contact points.

• The main principle unit vectors acting at the contact area which are calculated
by the definition of the conicity value at each contact patch.

• Normal contact forces, tangential contact forces and spin creep moment at each
contact area.

3.3.1 Classification of the wheel-rail contact theories

During the past decades, Kalker developed a number of wheel-rail contact theories
that can be used to determine the tangential forces and spin moment between the
wheel and the rail. The most important classification procedure for the contact pro-
blem was that used by Kalker[32, 33]. In the following section, a general classification
for the wheel rail contact theories is presented.
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• According the applied elasticity theory; the contact models are classified into
exact and simplified. The exact theory is based on the infinite half space at
which the displacement at a certain point depends on all applied forces at all
the points of the belonging to the same domain [30], and this can be explained
by the following expression

u(x, y) =

∫

Ω

H (ξ, η)p (ξ, η) dξ dη (3.15)

where u is the displacement vector produced from the elastic deformation at the
(x ,y) point. H is the flexibility matrix. p is the contact traction distribution.
Both magnitudes are function of the local coordinates (ξ, η) inside the generic
domain Ω defining the contact area.

On the other hand, the simplified contact theory assumes that the displacement
at a certain point is directly produced by the application of the forces at the
same point.

• According to the consideration of the dynamic effects at the contact; the contact
theories are classified into dynamic and quasi-static theories. The dynamic
theories include the inertial effects in formulating the contact problem. But
in the quasi-static theories, the inertial effects are not included in the contact
solution.

• According to the dimensions used in the model; the theories can be classified
according to the dimension into two dimensional and three dimensional contact
theories. In the three dimensional contact theories, the displacement and the
pressure distribution in the contact zone depend on three coordinates x, y and
z. On the other hand, the two dimensional contact theories are independent
of the variable y. For this reason the two dimensional contact theories have a
limited application in the dynamic analysis of railway vehicles.

• According to the saturation conditions of the contact forces; the existing theories
are divided into linear an non-linear theories. In the linear contact theory, it was
assumed that the tangential forces at the contact areas are linear with respect
to the creepage values. For non-linear theory, the Coulomb law of saturation
was considered which indicates that the tangential force is limited by the normal
contact force and the coefficient of friction at the contact points.

3.4 Geometrical contact problem

The determination of the contact points at the wheel-rail interface is a complicated
task since both surfaces are profiled. The large amount of parameters that involve
the shape of surfaces in contact, relative contact velocities, contact forces, and phy-
sical properties of the materials, lead to complex algorithm for solving the wheel-rail
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contact problem[48, 52]. The first problem faced in the solution of the contact is the
accurate prediction of the contact points location. Once the location of the contact
points is determined, then the normal and tangential contact forces can be calculated
at the detected contact points.

In the following section, all the aspects related to the wheel-rail contact geometry are
presented. For the proposed wheel rail surface, the solution of the geometric contact
problem consists of obtaining the following data:

• The number of contact areas between the wheel and rail surfaces.

• Position vector of each contact point representing each area of contact.

• Conicity value of the wheel and rail profiles at each contact point.

• Geometrical properties for both surfaces in contact in order to be used in the
solution of the normal contact problem, such as the curvature values of both
surfaces at the contact point.

3.4.1 Proposed solutions for the geometric contact problem

In the literature, existing various methods proposed by many authers to deal with
the wheel rail interaction as well as finding the contact geometrical properties at the
wheel rail interface. In the following section, the most effective models used to solve
the geometrical contact problem are presented.

3.4.2 The visible profile method

The method was presented by Kik et al. [37]. The method was used to study the
effect of the angle of attack on the contact parameters [11]. For a given value of the
wheelset angle of attack ψ, the wheel profile is substituted by the projection of the
three dimensional wheel surface along the direction parallel to the track centreline.
The projected profile is obtained as the envelope of n ellipses (n being the number of
points that define the wheel profile) that are the traces of n circumferential sections
of the wheel in the plane orthogonal to the rails as shown in figure (3.12).

By the change in the angle of attack of the wheel, the visible wheel profiles are
computed. In the next step, by changing the values of the lateral displacement the
corresponding roll angle φ is computed by equating the profile distance on the left
wheel ul to the profile distance of the right wheel ul

ul (ψ, yrel, φ) = ur (ψ, yrel, φ) (3.16)

where yrel is the relative lateral displacement of the wheel profile. The profile distance
is measured in the vertical direction representing the minimum distance between the
visible wheel profile and the rail.
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Figure 3.12. Wheel profile projection: (a) ψ=0 (b) ψ 6= 0

Solving the above nonlinear equation presented by equation (3.16), the roll rotation φ
of the wheelset is determined. Then, the wheelset is displaced in vertical direction by
an amount equal to the previously computed profile distances ul=ur, so that the two
visible wheel profiles come into contact with the rail without any compenetration, and
a single contact point (called ’geometric’ contact point) is obtained on the left and
right profiles. Finally, a search is performed for other points along the profiles that
might enter into contact due to the elastic deformation of wheel and rail surfaces in
the contact patch. These are the locations of potential multiple contacts between the
wheel and the rail. In order to detect these locations, the distance between the visible
wheel profile and the rail along the normal direction is computed, and a potential
multiple contact point is associated with each position where a local minimum of this
distance occurs, in association with a value of the normal distance lower than the
maximum elastic deformation allowed for the contacting bodies. For all the contact
points, the following contact parameters relevant to the computation of wheel-rail
forces obtained :

• The difference between the rolling radius for the left and right wheel in the
contact point and the nominal rolling radius of the wheel.

• The inclination of the contact with respect to the railhead plane.

• The undeformed distance between the wheel and rail surfaces.

• The longitudinal displacement d of the contact point with respect to the vertical
plane of the wheelset

As seen in figure (3.13), r is the distance in lateral direction between the longer
semi-axis of the contacting ellipse and the contact point P in the projection plane.

The method provides a reasonable results for the applications in the simulation tools
as it was mentioned in the presented work of F. Braghin et al. [11], where the method
was used to generate bidimensional contact table as function of the relative wheel-rail
lateral displacement yrel and of the wheelset angle of attack ψ.
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Figure 3.13. Contact point forward movement; extracted from [11]

3.4.3 Contact points detection using geometric relational pro-
perties

The method was used by J. Pombo et al. [52]. The methodology proposed depends on
finding the contact points between two parametric surfaces by knowing the geometric
relational properties between the two surfaces.

The methodology composed of two steps to find the coordinates of the contact points
between the two surfaces: The first is to find the coordinates of the possible candidate
points that may be in contact on both surfaces, that was found by solving a set of
geometric equations for the surfaces; The second is to calculate the minimum distance
between the candidate points and make the check whether penetration exists or not.

The solution of the problem can be illustrated by figure (3.14), where two generic
surfaces i and j are defined by two parametric functions p (u,w) and q (s, t).

The vector of the minimum distance between the two surfaces can be defined as:

d = p (u,w)− q (s, t) (3.17)

By defining the normal vectors ni and nj as well as the tangent vectors t
u
i , t

w
i for the

surface i and tsj and ttj for the surface j, respectively. The vector of normal distance
d has to be parallel to the normal vectors of both surfaces, which is represented by
the following equations

d× ni = 0 (3.18)

d× nj = 0 (3.19)

Finding the minimum distance between the two surfaces is not sufficient to determine
all the possible candidate points for all the situations that can be found in the wheel-
rail contact which can be presented as shown in figure (3.15)
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Figure 3.14. Candidate points for contact between two parametric surfaces, extracted

frome [52]

Figure 3.15. Candidate points for contact between two parametric surfaces, extracted from

[52]

Existing three possible situations for the wheel rail contact points detection secnario
as shown in the previous figure:

a) There is no penetration between the two surfaces, means that the wheel is lifted.

b) Contact exists in one single point.

c) Amount of penetration is found between the wheel and rail surfaces and the contact
points are selected with in the interpenetration volume.

The contact points are these points that have the maximum elastic deformation mea-
sured in the normal direction to the contact patch. Two sets of equations are added
to completely present the possible contact situations between wheel and rail to detect
all candidate points for contact between the two surfaces:
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nTj × tui = 0

nTj × twi = 0

}

(3.20)

dT tui = 0

dT twi = 0

}

(3.21)

Equation (3.20) means that the two normal vectors for both surfaces are parallel. On
the other hand, equation (3.21) means that the minimum distance vector has to be
parallel to the normal vector of the surface i.

As mentioned in the first step in the methodology proposed, the two sets of equations
(3.20) and (3.21) are solved to find the coordinates of the candidates contact points
to be stored out.

The second step in the methodology is presented here by the search for the minimum
distance d defined by equation (3.22) between the candidate points

d = ‖d‖ (3.22)

Afterwards, check was made to find whether there is penetration or not by verifying
the condition presented by the equation (3.23)

dTnj ≤ 0 (3.23)

If there is no penetration between the two surfaces, the candidate points are eliminated
from the selection process. By this way the location of the contact point between the
two generic surfaces is determined. This method was applied for the wheel-rail contact
problem with the only condition that the parameterized wheel and rail surfaces must
be convex [48, 52].

3.4.4 The wheel-rail differential contact method

The method was presented by Meli et al. [39], where a 3D differential contact model
was used to solve the geometrical contact problem.

The wheel and rail surfaces are defined as seen in figure (3.16). Two reference frames
are used in the formulation: the first (Ow, Xw, Yw, Zw) is attached to the wheel profile
while the second reference frame (Or, Xr, Yr, Zr) is attached to the rail profile. The
model was presented as a closed box with input and output data

The input data to the model are the following :

• The relative position vector between the wheel and rail Or
w.

• The relative orientation between the wheel and rail Rr
w.

• The absolute velocity vector Ȯr
w.
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• The absolute angular velocity of the wheel system ωr
w.

The output data of the contact model are:

• The contact patches AwC and ArC.

• The contact forces FwC and FrC.

• The contact stresses σw and σr.

• The displacement of the wheel uw as well as the displacement of the rail ur.

Figure 3.16. Domains, boundaries and contact areas, extracted from [39]

In the model proposed, the wheel and rail bodies are presented as elastic bodies Ωw

and Ωr. The size contact patch is considered to be small compared with the wheel
and rail dimensions [64].

The boundaries of the wheel and rail are split into two disjoint regions. The contact
boundaries ΓwC and ΓwD are defined for the wheel profile. The boundaries ΓrC and
ΓrD are defined for the rail profile.

The position of the undeformed configurations is determined by knowing the wheel-
rail kinematics as well as the location of the Dirichlet boundaries. In case of contact,
by defining the geometrical intersection between ΓwC and ΓrC allows us to determine
the penetration areas ÃwC and ÃrC which can be considered as a first estimation for
the real contact areas AwC and ArC.

By this way, the real contact areas are known for the model and have to be calculated.
For this issue a contact map Φ is defined. Considering the wheel profile as a master
surface, a generic point on the wheel surface Xr

w is connected with a point on the
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rail surface Φ (Xr). So the distance between the undeformed contact surfaces can be
defined as:

d (Xr
w) = (ur

w − ur) · nr
w − (Φ (Xr

w)−Xr) · nr
w (3.24)

where

• Xr
w is the relative position vector between wheel and rail profiles.

• ur is the displacement of the rail.

• Φ(Xr
w) is a generic point on the wheel surface.

• Xr generic point on the rail profile.

• nr
w is the normal versor to the surface ΓWC.

In the case of penetration between the wheel and rail surfaces, the distance d takes
a positive value. Then by this way the real contact areas AwC and ArC are defined
by knowing the wheel rail relative kinematics as well as the wheel and rail displace-
ments. According to that, the contact geometrical problem was solved by knowing
the penetration value as well as the contact patch location on the wheel-rail interface.

3.5 Normal contact problem

Generally in the wheel-rail interaction problem, if there is no penetration between
the wheel and the rail, the contact forces are assumed to be null. The occurrence
of the penetration is used as the basis to develop a procedure to evaluate the local
deformation of the bodies in contact. These forces are calculated as being equivalent
to those that would appear if the bodies in contact were pressed against each other by
external static force [48, 60]. This means that the contact forces are treated as elastic
forces expressed as functions of the co-ordinates and velocities of the two bodies.

Existing two different models for the calculation of the normal contact force. The
first deals with the theoretical contact point and the second is based on the virtual
interpenetration between the surfaces. The Hertz model for the calculation of the
normal contact problems is considered to be one of the models that uses the theoretical
contact point to estimate all the characteristics of the contact area.

The procedure proposed here in the current work for the calculation of the normal
contact force depends on Hertz contact model for calculating the normal force applied
at the contact point between the wheel and the rail. The direction of the normal force
is determined from the normal vector to the wheel and rail surfaces at the point of
contact.
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3.5.1 Hertz normal contact force

The Hertz theory [18] is used for the solution of the normal contact force between
contact bodies under the following assumptions [28, 44]:

• All the produced deformations in the contact zone are considered to be elastic.

• The size of the contact patch is very small compared with the radius of curvature
of the contact surfaces. If this condition is applied, the Boussinesq equations
can be used in the definition of the pressure displacement relation.

• Frictionless contact is assumed between the contact surfaces, so the normal and
tangential contact problems can be solved independently.

• All the bodies in contact are assumed to have a smooth surfaces without surface
roughness.

• The undeformed distance between the contact bodies can be represented by a
quadratic function:

h (x, y) = C1x
2 + C2y

2 (3.25)

Under these conditions, the contact area is defined by an ellipse and the normal
contact pressure distribution is considered to have ellipsoidal shape as well. It is
necessary to highlight that the Hertz solution is used in most of the railway simulators
as it offers a good estimation of the normal contact force with small computational
cost.

Wheel

R3

R4

Wheel

Rail R1

R2

Figure 3.17. Wheel and rail radii of curvatures

Figure (3.17), shows the interaction between the rail and the wheel, and the radius of
curvature of both the wheel and the rail is defined as shown in the same figure. The
principle rolling radius of the wheel is R1, R3 is the transversal radius of curvature
of the wheel at the point of contact, R2 is the transversal radius of curvature of the
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rail which usually has infinity value, and R4 is the principal rolling radius of the rail
at point of contact. The normal contact force produced at the point of contact can
be calculated through the following expression

Fz =
δ

3
2

√

r3
(

3
4 (Kw +Kr)

)2 (A−B
2

)

(3.26)

where Fz is the normal contact force, δ is the amount of indentation or the penetration
between the wheel and the rail, Kw and Kr are the material parameters of the wheel
and the rail respectively, and can be calculated through the expression

Kw =
1− ν2w
Ew

; Kr =
1− ν2r
Er

(3.27)

where νw and νr are the poisson’s ratio for the wheel and rail materials respectively,
Ew and Er are young’s modulus of elasticity of the wheel and rail materials. The
parameter r in equation (3.26) can be found from Hertz’s table 2, by interpolation
between the values of the angular parameter Θ [48, 61], which can be calculated by
the following expression

Θ = arccos

(

B −A

B +A

)

(3.28)

where A and B are geometrical functions related to the principle and transversal radii
of curvature of the wheel and the rail, which can be found by

A =
1

2
(κ1 + κ2)

B =
1

2
(κ3 + κ4)











(3.29)

Where κ is the curvature which can be calculated through the following equation

κ =
1

Rn
; n = 1, 2, 3 and 4 (3.30)

3.5.2 Size and shape of the contact patch

When two elastic bodies are pressed against each other by normal force, a contact
region is formed around the point of contact. The shape and size of the contact patch
between the two bodies are given by Hertz contact theory [17, 24, 33, 48]. In this
section we will describe the necessary expressions required to calculate the size of

2Appendix B
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the contact patch. In most of the railway applications the contact ellipse is a good
approximation of the real contact patch, and in the current simulation it was sufficient
to use Hertz theory in the analysis of the normal contact problem. The contact patch
takes the shape of an ellipse shown in figure (3.18)

X

Y
a

b

Figure 3.18. Longitudinal and transversal semi axes of the contact ellipse

The longitudinal and transversal semi axis of the contact ellipse can be calculated
by knowing the radii of curvature, the properties of the both wheel and the rail, and
the normal contact force between them. The formulations used in the bibliography
[12, 24], to calculate the contact ellipse semi axes can be written as

a = m 3

√

3

4
Fz

(

Kw +Kr

A+B

)

(3.31)

b = n 3

√

3

4
Fz

(

Kw +Kr

A+B

)

(3.32)

where m and n are constants can be found by the interpolation between the values
illustrated in Hertz table 2, for the corresponding values of the angle Θ which vary
from 0 to 180 ◦.

3.6 Tangential contact problem

The last step in the complete definition of the contact problem is the solution of the
tangential contact problem. In the study of the wheel rail interaction phenomenon,
it was found that lateral instability, hunting motion, ride quality and derailment
problems are directly affected by the creep forces that occur at the contact patch.
Many theories have been described in the literature presenting the different ways
used to deal with the tangential forces.

2Appendix B
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Some of the theories are used in the case where the contact area take the form of
ellipse or circular shape, and others deal with any shape of the contact areas. Other
differences can be illustrated between such theories, where some theories permit the
use of variable coefficient of frictions and others use only constant value for the friction
coefficient. On the other hand, some algorithms are designed to be used with high
values for the creepages and others deal with small values of the creepages.

The selection between the tangential theories depends mainly on the case where the
theory is applied whether existing multi point contact cases and determining whether
the calculated values of the creepages are high or small. The precision of the solution
obtained as well as the computational cost are considered to have an important effect
in the selection of the tangential contact theory.

In the proceeding section, a three dimensional rolling contact model is illustrated, to
present the wheel rail interaction and used to calculate the creep forces at the contact
patch [48]. According to Hertz theory, an elliptical contact area was produced due
to the contact between the wheel and the rail, normal stress distribution was formed.
Due to the rotation of the wheel over the rail, a friction is presented in addition to the
normal stress. Shear stress may occur in the contact area which results a longitudinal
and lateral tangential forces. The rotation axis of the wheel is not required to be
parallel to the rail lateral axis, so a relative angular velocity about the normal axis
is produced. So the contact interface tends to twist which produces tangential stress
and slip, due to the spin produced by angular velocity at the contact area [58].

In the presented work, three different methods are defined to be used in the solution
of the tangential problem. The used theories are:

• The Linear Theory of rolling contact

• FASTSIM algorithm

• Polach nonlinear creep force model

3.6.1 Creepage phenomenon

The creep phenomenon, also known as creepage, exists when two bodies are pressed
against each other with normal forces and are allowed to roll over each other. Creep
may be described as a part elastic and part frictional behaviour in which an elastic
body, rolls over another elastic body, shares an area of contact where both slip and
adhesion occur simultaneously. Therefore, a creep region of contact may be regarded
as transition state between pure rolling and pure sliding. The creepages are crucial
in the calculation of the creep forces and moments which develop in the wheel rail
contact interface, for this purpose the accurate description of the creep phenomenon
associated to the wheel-rail interaction is essential. In railway vehicle dynamics,
the creep is used to characterize the relative difference in velocities between ideally
rolling wheel [23, 40], having no slip in the contact, and the real one. The slip velocity
between the wheel and the rail can be defined as a function of the longitudinal, lateral
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and spin creep which known as the creepages. For better understanding of the creep
phenomenon, a wheel rolling over a rail is presented in the figure below, illustrating
the longitudinal and lateral creepages as shown in figure (3.19)

Z

Y Y

X

Vcir
Vcir

V

V

Wheel

Rail

X

a) b)

w

ψ

Figure 3.19. Wheel rolling over rail:a) Longitudinal creepage; b) Lateral creepage

3.6.1.1 Longitudinal Creepage

In case of rolling without slipping, the distance travelled by the wheel in one revolution
is equal to the circumference of the wheel. But when torque is applied to the wheel, the
distance travelled by the wheel in the forward direction is less than the circumference.
Since the wheel profile is coned, then the longitudinal creep is arised when there is
a difference in the rolling radii of the two wheels of the wheelset. The longitudinal
creepage can be defined as [60].

ξx =
Forward velocity of the wheel - Forward velocity of the rail

Pure rolling forward velocity
(3.33)

by finding the contact point velocity vector. The longitudinal creepage can be written
as

ξx =
VT
c l

V
(3.34)

where Vc is the velocity vector of the contact point represented in the intermediate
system of reference associated with the wheelset, V is the rolling velocity [40], l is
the principle vector in the longitudinal direction at the point of contact on the wheel
profile as shown in figure (3.20).

3.6.1.2 Lateral Creepage

The lateral creepage ξy occurs when the wheelset is forced to move in a direction
that makes a yaw angle ψ with respect to the rolling plane Figure (3.19), it is defined
as the quotient between the lateral component of the relative velocity of the contact
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Figure 3.20. The principle tangent, normal, and longitudinal vector at the left wheel

represented by number(1) and at the right wheel represented by number(2)

points, i.e the lateral slip velocity, and the wheel forward velocity [48], lateral creepage
generally can be defined as:

ξy =
Lateral velocity of the wheel - Lateral velocity of the rail

Pure rolling forward velocity
(3.35)

Lateral creepage has a significant influence on the rails corrugations caused by the
lateral creepage forces. Furthermore, the stick -slip phenomenon can be supposed to
be induced between a resultant of mainly lateral and longitudinal creepage forces [20].
Lateral creepage is thus likely to exist in combination with longitudinal creepage and
the influence of longitudinal creepage on the mechanism of squeal noise behaviour,
specifically the creepage/creep force relationship, is of interest [40]. To calculate
the lateral creepage in the current model in the dynamic simulation of the wheelset
system, the following expression is used

ξy =
VT
c t

V
(3.36)

where t is the tangential unit vector at the point of contact on the wheel profile as
shown in figure (3.19).

3.6.1.3 Spin Creepage

The spin creepage is due to the component of the relative angular velocity of the two
bodies normal to the contact surfaces. The angular velocity of a wheel relative to the
rail can be decomposed into three components; one of them is perpendicular to the
contact plane, while the other two are tangent to the plane of contact [58]. However
pure rolling occurred when the rolling occurs without sliding or spin [48]. The normal
angular velocity is the instantaneous rate at which the wheel turns on the contact
plane relative to rail, the normal component of the relative angular velocity acting
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through the normal direction to the contact surface represented by the unit normal
vector ~n shown in figure (3.21), causes the spin.
Since the wheel profiles are coned, the rolling angular velocity of the wheel ~ω is not

n

~ωn

~ω

Figure 3.21. Spin creepage

perpendicular to the vector normal to the contact area ~n as shown in figure (3.21)
the consequence is that the wheel has an angular velocity ~ωn relative to the rail in
the contact patch. The spin creepage is given by the angular velocity of the wheel,
about the normal to the contact region and can be defined by the following equation

ξsp =
Wheel angular velocity -Rail angular velocity

Pure rolling forward velocity
(3.37)

which can be written as:

ξsp =
ωT n

V
(3.38)

Where ω
¯

is the angular velocity of the wheelset represented in the intermediate re-
ference frame and n

¯
is the unit normal vector at the contact point. Longitudinal

and lateral creepages are dimensionless, but the spin creep has the dimension of
(

length−1
)

. The longitudinal creepage ξx is related with the difference between the
rolling forward velocity and the circumferential velocity |V −Vcir|, the lateral cree-
page ξy characterizes the non alignment of the wheel with respect to the rail, while
the spin creepage ξsp is related with the concity of the wheel [32].

3.6.2 The Linear Theory of rolling contact

In addition to the normal contact forces acting on the contact patch, the tangential
forces acting at the contact area must be determined. The creep forces and the spin
creep moment are resulting from the tangential motion of the wheel relative to the rail
in the contact region, therefore they depend on the creepages. The dimension of the
contact ellipse and the normal contact force calculated by Hertz formulation expressed
by equation(3.26), are required to calculate the creep forces. The relationship between
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the creepages quantities, longitudinal creepage ξx, lateral creepage ξy and the spin
creep moment ξsp and the creep forces can be determined by the creep force law
[23, 30, 33].

It was proposed to use the linear theory of rolling contact proposed by Kalker [29] to
calculate the tangential contact forces at the contact patch, the name linear is directly
joined to the application of Coulomb’s law and the application of the conditions of
Coulomb’s theory for the saturation of the tangential stress. Then the linear theory
is an approximation, because for large creepages, the tangential traction expressed
by Coulomb’s law can be violated[33, 40, 48]. For small creepages ξx , ξy and spin
ξsp, the area of slip is so small that its influence can be neglected. The adhesion
zone, therefore, can be assumed to cover the area of contact. Kalker’s linear creep
force-creepages relation [12, 23, 30] are given for the longitudinal creep force as

Fx = −f33 ξx (3.39)

and for the lateral creep force

Fy = −f11 ξy − f12 ξsp (3.40)

finally for the spin creep moment can be expressed as

Msp = f12 ξy − f22 ξsp (3.41)

The minus sign indicates that the creep force acts in the opposite direction to the cree-
pages [33, 40], where the coefficients appeared in equations(3.39), (3.40) and (3.41),
f11, f12, f22 and f33 are Kalker’s creep coefficient which can be determined by the
following expressions.

f11 = Ga bC22 f12 = G
√
a3b3 C23

f22 = Ga2b2 C22 f33 = Ga bC11

}

(3.42)

Then the creep force law can be written in matrix form as
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a bC23 a bC33
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ξsp











(3.43)

Where G is the combined shear modulus of rigidity of rail and wheel materials, cij
are the creepage and spin coefficients which are calculated for the exact theory can be
obtained from Kalker’s table, and these coefficients depend on the combined poisson’s
ratio and the ratio between the longitudinal and transversal axis (a/b) of the contact
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Figure 3.22. Creepages velocities and tangential forces on the contact patch

ellipse2. All these forces are acting in local normal and tangential coordinate direc-
tions defined by the orientation of the contact ellipse figure (3.22). By appropriate
transformations they may be expressed as acting and counter acting forces on the
wheel and the rail in their interference systems. Finally the contact loads can mainly
be divided into contact forces and contact moments shown in the equation of motion
for the wheel set and the track [3].

2Appendix B
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3.6.3 FASTSIM algorithm

FASTSIM algorithm was developed by Kalker [32]. The main principle of the algo-
rithm is the use of the relation between the tangential stresses and the displacement
based on the simplified elasticity theory instead of the use of the elasticity theory
developed by Cerruti.

In Cerruti’s equations, the displacement at a specific point in the contact area in a
determined direction depends, not only, on the pressure applied at the point, but
also, on all pressure values applied on the rest of the points of the contact area in all
directions.

In the simplified elasticity theory [33], it is assumed that the displacement at a specific
point in the contact area is produced only due to the pressure applied at this point
in the deformation direction. Also, the theory proposed that existing linear relation
between the pressure applied and the produced displacement, and the proportionality
parameter that relates the displacements and the stresses at the contact patch is the
flexibility parameter L.

FASTSIM algorithm has a low computational cost compared with CONTACT [33],
with an acceptable degree of precision that is permitted in the analysis and simulation
of railway systems. In addition to the simplifications proposed by the linear elasticity
theory, the following assumptions are used in the analysis presented by the algorithm:

• The normal and tangential contact problem are treated independently [28].

• The contact area has an elliptic shape, this is applied only when the Hertz
conditions are verified.

• The friction coefficient is constant all over the contact area

3.6.3.1 Mathematical development of FASTSIM algorithm

To solve the tangential contact problem, the following equation has to be solved

S (x, y) = N (x, y) − ∂

∂x
u (x, y) (3.44)

where N (x, y) is the dimensionless rigid slip vector. The previous equation can be
written in the form

[

Sx

Sy

]

=

[

ξx − ξspy

ξy + ξspx

]

− ∂

∂x

[

ux

uy

]

(3.45)

where

* Sx : relative slip in the rolling direction x.
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* Sy : relative slip in the lateral direction y.

* ξx: longitudinal creepage.

* ξy: lateral creepage.

* ξsp: spin creepage.

* ux: deformational displacement in the longitudinal direction.

* uy: deformational displacement in the lateral direction.

By the definition of the tangential stress values in the contact zone Ptan, the equations
are applied with the following conditions

Adehsion zone |Ptan| < µPnorm and |S (x, y)| = 0

Slip zone |Ptan| = −µPnorm
S(x,y)
|S(x,y)| and |S (x, y)| 6= 0

}

(3.46)

By applying the simplified elasticity equations presented to relate the tangential
stresses with the displacements, we find that:

u (x, y) = LPtan (3.47)

substituting in equation (3.45) then we get :

[

Sx

Sy

]

=

[

ξx − ξspy

ξy + ξspx

]

− L
∂

∂x

[

Px

Py

]

(3.48)

∂

∂x

[

Px

Py

]

=
1

L

[

ξx − ξsp y

ξy + ξsp x

]

− 1

L

[

Sx

Sy

]

(3.49)

The tangential stress at a point x+ dx can be found by the following expression

[

Px (x+ dx)− Px (x)

Py (x+ dx)− Py (x)

]

=
dx

L

[

ξx − ξspy

ξy + ξspx

]

− dx

L

[

Sx

Sy

]

(3.50)

Both equations (3.45) and (3.50) are used to calculate the tangential stress as well as
the slip value at a specific point in the contact area by means of the value stresses
at a known point. In our case, the known point at which the tangential stress, is the
point (x+ dx).

For solving both equations, it is assumed that the point x initially located in the
adhesion zone. Under this assumption, the tangential pressure is known as Padh. In
the case of adhesion at the pint x, then the relative slip is null at this point and
equation (3.50) can be written as
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[

Px,adh

Py,adh

]

=

[

Px (x+ dx)

Py (x+ dx)

]

− dx

L

[

ξx − ξsp y

ξy + ξsp x

]

(3.51)

Once the tangential stress at the point x is calculated, then a check has been made
for the tangential stress value if it is less than the saturation limit as defined by the
following equation

Padh < µPnorm (3.52)

If the condition is verified, then the tangential stress at the point x is replaced by the
value of the adhesion tangential stress. If the last condition is not verified, then the
point x is defined to be located in the slip zone.

In the case of slipping, the algorithm assumes that the direction of the tangential
stress is the same direction of the adhesion stress Padh. The absolute value of the
tangential stress should be equal to the product of the frication coefficient by the
normal pressure as it was established by Columb’s law [4]

Ptan = µPnorm · Padh

|Padh|
(3.53)

3.6.3.2 Calculation of the flexibility parameter

For obtaining the flexibility parameter L used in equation (3.48), the results obtai-
ned by FASTSIM algorithm for small slip values, defined as exact values, should be
equated to results obtained by the linear theory [29]

The tangential force vector obtained by the linear theory can be written in the follo-
wing form [4, 12]

FLinear Theory =

[

Ga bC11ξx

Ga b
(

C22ξy +
√
a b
)

C23ξsp

]

(3.54)

To obtain the value of the tangential forces at the contact zone at small slip values
where the area of contact can be completely in adhesion, the tangential stress equation
(3.48) can be written in the form:

[

ξx − ξspy

ξy + ξspx

]

− L
∂

∂x
Ptan =

[

0

0

]

(3.55)

Then the tangential forces are found by
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FFASTSIM =







8 a2b ξx
3L

8 a2b ξy
3L +

π a2b ξsp
4L






(3.56)

By equating both equations (3.54) and (3.56) the flexibility parameters can be found
as :

L1 = 8 a
3C11G

L2 = 8 a
3C22G

L3 = π a3/2

4
√
bC23G































(3.57)

3.6.4 Polach nonlinear creep force model

The method was proposed by O. Polach [47]. The objective of the presented work
was the development of a new algorithm used to calculate the tangential contact
forces, with a computational cost lower than that offered by FASTSIM. In spite of
the simplifications used in the formulation, the spin effect has been taken into account
in the work presented by Polach.

The mathematical development of the proposed algorithm was explained in details,
in addition he presented a FORTRAN code and some test results were included to
facilitate the implementation of the code.

3.6.4.1 Mathematical development of Polach algoritm

In the method presented, the contact area is assumed to be elliptical with semi axes
a and b. The normal pressure distribution has an ellipsoidal shape according to Hertz
theory as seen in figure (3.23).

The friction coefficient is assumed to be constant in the whole contact area. Then,
the maximum tangential stress can be obtained according to Coulumb’s law by the
following:

Ptan = µPnorm (3.58)

Freibauer has calculated the for this case, the force displacement curve using a propo-
sed transformation for the ellipsoidal distribution of the tangential stresses to spherical
distribution. This transformation can be realized by the following expressions
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Slip area Adhesion area

Direction
of motion

Y

X

X

Ptan = µPnorm

Ptan ,Pnorm

tangential strees limit

Ptan < µPnorm

a

b

Figure 3.23. Normal and tangential stress destribution in the contact area according to

Polach model [47]

y∗ = a
b y

P∗
tan = a

µ Pnorm|
max

Ptan











(3.59)

The tangential stresses are proportional to the trailing edge distance as well as the slip
value at the centre of the contact area. The proportionality coefficient is presented
by the parameter C, and the tangential stress gradient is known as εp, which can be
found by the following expression

εp = C
a

µ Pnorm|max

ξ (3.60)

According to Polach approach, The resultant tangential force caused by the longitudi-
nal and lateral creepages can be obtained by integrating the tangential stress equation
on the whole contact area obtaining the following expression

F = −2µFz
π

(

εp
1 + εp

+ arctan εp

)

(3.61)
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where Fz is the normal contact force calculated by Hertz theory. To obtain the
tangential forces in x and y directions, the following formulation is used

Fx = F ξx
ξ

Fy = F
ξy
ξ

}

(3.62)

where ξx and ξy are the creepages in the longitudinal and lateral direction, respec-
tively. ξ represents the resultant translational creepage which can be defined by the
following expression

ξ =
√

ξ2x + ξ2y (3.63)

Once the tangential problem is solved without taking into account the spin creepage.
The wheel rail contact is now solved when the spin effect considered to be used in
Polach method. Then the creepage value at the contact area, is now modefied to
include the effect of spin creepage as follow

ξc =
√

ξ2x + ξ2yc (3.64)

where ξc is the modefied translational creepage, and ξyc is the modefied lateral cree-
page defined as

ξyc =

{

ξy ; |ξy + ξsp a | ≤ |ξy |
ξy + ξsp a ; |ξy + ξsp a | > |ξy |

(3.65)

The spin effect is accounted by considering the lateral tangential force given by:

Fys = − 9

16
aµFzKM

(

1 + 6.3
(

1− e−a/b
))

(3.66)

where KM is a constant calculated by

KM = |εs|
(

δ3s
3

− δ2s
2

+
1

6

)

− 1

3

(

1− δ2s
)3/2

(3.67)

where δs defined as

δs =
ε2s − 1

ε2s + 1
(3.68)

in case of including the spin influence, then the tangential gradient εs is obtained by
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εs =
2

3

Cs π a
2 b

µFz

ξyc

1 + 6.3
(

1− e−a/b
) (3.69)

The rigidity parameters C and Cs are calculated for both cases in which the spin
effect is not taken into account as well as the case where the spin effect is included,
respectively. The logival form used to obtain the values of C and Cs is equating
the obtained results from Polach mehtod at small creepage values with the results
obtained by Klaker linear theory as it can be shown by the following

• In case that the longitudinal and lateral creepages are only included the rigidity
parameter can be calculated by:

C =
3

8

G

a

√

(

C11
ξx
ξ

)2

+

(

C22
ξy
ξ

)

(3.70)

• In case that the spin effect is considered, then the following expression is used:

Cs =
4

π

G
√
b√

a3
C23 (3.71)

Finally Polach model can be written in the form

Fx = F ξx
ξc

Fy = F
ξy
ξc

+ Fys
ξsp
ξc











(3.72)

According to Polach, the creep moment caused by the spin creepage or the lateral
creepage is too small compared with the moment affecting the vehicle, so it can be
neglected and the spin creep moment is obtained as

Msp ≈ 0 (3.73)





Chapter 4

Multibody methodology for

railway analysis

4.1 Introduction

Multibody methodologies are not widely used despite the fact that such methodologies
can be applied to develop more detailed and general models for railroad vehicle-track
systems [58]. In the proceeding context of this chapter, the geometric, kinematics
and dynamic aspects of a general rigid body moving along parameterized track re-
presenting the railroad are discussed. Equations of motion presenting the multibody
systems are formulated for a system consists of multiple rigid bodies each with six
DOF [57, 61].

The use of any kinematic constraint on the motion is avoided in order to overcome
the difficulties produced when using such constraints. These difficulties appear in the
need of solving a set of differential algebraic equations [48, 50] or the transformation of
the system of differential algebraic equations (DAE) to ordinary differential equations
(ODE), and then the use of stabilization techniques for the constraint equations in
the solution is avoided.

In this chapter, the multibody formulations used in the dynamic analysis of railway
systems are presented in order to be used in the computational tool developed to
carry out the simulation for the railway vehicles. Starting with the definition of the
reference frames used in the multibody model, a complete description of the reference
frames is presented in order to give a detailed definition for all the variables and
identities used in the mathematical model used in the dynamic simulation of the
railway systems.

Each reference frame is clearly defined, starting from the fixed frame of reference, the
track frame of reference which represents the frame that follows the motion of the

63
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body [50, 61] and finally the body reference frame. The local coordinate frame for
each body is introduced to identify the position and orientation of each point on the
body with respect to each local frame. The origin of each locale frame is attached to
the body center of mass. The transformation between the reference frames is defined
by calculating the necessary transformation matrix required, using Euler angles with
a specified rotation sequence that avoid the singularity problem [19, 61].

Track geometry plays an important rule in the dynamic analysis of railway vehicles.
The track models for multibody analysis must be in the form of parameterized curves,
where the nominal geometry is obtained as a function of a parameter associated to
the track curve length [50, 51].

The parameterizations of the track can be done by two approaches, the first approach
is the use of analytical segments where the track definition is generally done by putting
together straight and circular curves interconnected by transition track segment that
ensure the continuity of the first and second derivatives of the railway in the transition
points. The second approach depends on the parameterization of the track using
piecewise cubic interpolation schemes. These methods require the definition of control
points representing the track and provide the interpolation between these points to
represent the parameterized track path.

Undesired oscillations produced by using the mentioned interpolation schemes which
can be avoided in such case of the horizontal track geometry for railway application. In
the work presented, the track parameterization is done by using analytical segments.
As an example for the track comfiguration possibility offered by the wrk here, the
proposed track is defined as a straight line segment, followed by a transition curve
connecting the straight line stage with the final stage presented by a plane curve with
a constant radius. The methodology defined in the presented work permits any track
configuaration to be used in the dynamic simulation purposes.

The fundamental component common to all conventional railway vehicles is the wheel-
set. In general, it consists of two wheels rigidly fixed to a common axle. The move-
ment of the wheelset over the track is characterized by a complex interaction where
appreciable lateral translations as well as yaw and roll rotations are observed. The
simulation of railroad vehicle-track systems using Multibody computer algorithms
requires the use of a module for the wheel-rail interaction [3, 34]. This interaction,
which is due to the rolling and slipping contact between the profiled surfaces of the
rail and the wheel, has a significant effect on the vehicle dynamics and stability [58].

The determination of the contact point position is a crucial part in the solution of
the geometrical contact problem. In the work presented a reliable model is used to
accurately detect the position vector of the contact points by knowing the relative
position and orientation between the wheel and rail profiles. The contact model used
by the investigation group showed a satisfactory results in the detection of the contact
patch at the wheelrail interface. The procedure used can be summarised in the way
that the wheel surface is assumed to be formed by a small conical segments formed
by the revolution of the straight segments, defined between the wheel profile points,
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around the transversal axis perpendicular to the direction of motion of the wheelset.

The rail profile is assumed to be produced by the extrusion of the rail profile points
measured in the longitudinal direction. The contact patch is defined by longitudinal
strips which define the intersection between the conical segment representing the
wheel profile with the rail straight line. The strips forming intersection area, which
are produced by the virtual interpenetration between the two contact bodies, are
characterized by: the position vector defining the entrance and exit points; strip
length; strip thickness; conicity value at each strip; rolling and indentation radius
and the maximum penetration.

The contact model used permits multi points of contact detection, between the wheel
and rail surfaces. This advantage allows us to define each contact patch separately.
The position vector of each contact point on left and right wheel profile is detected
in the formulation presented in this chapter. The velocity vector of the contact point
is calculated and then the creepages introduced at the wheel-rail contact point are
determined.

Lagrangian approach is used to determine the system equations of motion. The
method mainly depends on the definition of the system generalized coordinates, then
determining the generalized force vector affecting the body under study. Kinematic
analysis of a general rigid body is presented followed by the dynamic analysis of
such body, and then the formulations extended to include the kinematic and dynamic
analysis of the wheelset.

4.2 Reference frames description

In this section, the complete description of the reference frames is presented in order
to give a detailed definition for all variables and identities used in the mathematical
formulation of the models used in the dynamic simulation of the railway multibody
systems. The main reference frames used in the analysis are presented in the following
section. An important remark in the present work, is the use of an intermediate frame
of reference in case of dealing with the wheelset analysis. The use of such frame of
reference permits the precise definition of the contact point position as it will be
shown in the definiton and analysis of the wheelset.

Cartesian coordinates are supposed to be used in the formulation used due to the
simplicity of its implementation in the multibody program used in the railway vehicles
dynamic analysis. Rotation sequences are defined for the track frame of reference,
as a successive rotation about Z-axis, followed by rotation about Y-axis and finally
a rotation about X-axis. But the rotation sequences used for general rigid body is
defined as a successive rotation about Z-axis, then about X-axis and finally, the pitch
motion with a rotation about Y-axis.
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4.2.1 Reference frames

In this section all the frame of references used in the formulations are defined, giving
more details about each reference frame used as well as its combination with the
overall system. Starting with the description of the system used in the analysis of
rigid body as shown figure (4.1). Three main reference frames are used, the first one
is the fixed frame of reference (X Y Z), the second one is the track frame of reference
(XT YT ZT) identefied by the subindex T and the third frame of reference is the rigid
body frame of reference (XS YS ZS) identefied by the subindex S.

Z T

OT

O

YT

Zs

Ys

p

w

u

Z

Y

X

p

Os

rp

Figure 4.1. Reference frames combination
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4.2.2 Fixed reference frame

A system that can be located at any fixed point with respect to the systems and bodies
used in the analysis. The frame is defined by three orthogonal axes X, Y and Z, that
are rigidly connected in one point called the origin O. In this reference frame, all the
measurable quantities that can define the configuration of the body are represented
with respect to the fixed fram such as: displacements, velocities and accelerations.

Figure (4.2) shows a combination of three orthogonal coordinates defining the fixed
frame. The Z-axis is pointing to the vertical direction, X and Y-axis forming the
horizontal plane. The vector u can be written in terms of its components in the fixed
fram of reference as follow:

u =
[

ux uy uz

]T

(4.1)

Z

Y

X

O

u

p

Figure 4.2. Fixed Reference Frame

4.2.3 Track reference frame

Track reference frame is defined with three orthogonal coordinates axis XT ,YT , and
ZT as shown in figure (4.3). The track reference frame is located at the track centre-
line between the left and right rail profiles and moves at the nominal vehicle velocity.
The direction of the XT-axis is pointing to the longitudinal direction referring to the
rolling direction of the moving body along the track, ZT-axis pointing to the vertical
direction normal to the track horizontal plane and the Y-axis located normal to (ZT

XT) plane. The number of the track reference frame is selected to be equal to the
number of the wheelsets in the vehicle model. Each wheelset has its own track system
of reference, by this way the small displacements and rotations of each wheelset with
respect to the track frame are detected to determine the contact problem with high
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precision.

Z T

Y
T

X
T

Figure 4.3. Track Reference Frame

A point p located in the track reference frame has a position vector ū which can be
expressed in the local track frame of reference as shown in figure (4.4).

Z T

YT

u

p

Figure 4.4. Local position of point p in Track reference frame

ū =
[

ūx ūy ūz

]T

(4.2)

The upper bar sign means that the vector is presented in the track reference frame.
This notation is used to distinguish the difference between the vectors presented in
the track frame of reference and the fixed frame of reference.

4.2.4 Body reference frame

The same as the track reference frame is defined in the previous section, the body
reference frame is represented in this section by defining three orthogonal coordinate
axes XS, YS, and ZS coinciding with the axes of inertia of the body. The body frame
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of reference attached to the center of mass of the rigid body figure (4.5). The local
position vector of a point p located in the body reference frame can be defined as:

u

Zs

Xs

Ys

p

Figure 4.5. Local position of point p in the body reference frame

¯̄u =
[

¯̄ux ¯̄uy ¯̄uz

]T

(4.3)

The double upper bar sign means that the vector is presented in the body frame.

4.3 Reference frame transformations

In this section, it was necessary to define how to make the transformation from one
reference system to another in order to present the necessary formulations used in the
frames transformation in the proceeding context.

4.3.1 Transformation from track to fixed reference frame

Figure (4.6) shows the combination of the track frame (XT YT ZT) with the fixed
reference frame (X Y Z). The global reference frame can be located at any fixed point
selected by the user. The track reference frame is located as seen in the same figure
at the track centerline between the right and left rail.

A point p in the track reference frame can be defined by the position vector rp, which
represents the location of point p with respect to the fixed reference frame (X Y Z)
as follow

rp = p+ u = p+Aū (4.4)

where p is the global position vector of the of origin OT of the track reference frame. u
is the global position vector of the point p with respect to the fixed frame of reference.
ū is the position vector of the point p with respect to the track frame of reference.
A is the transformation matrix form the track frame of reference (XT YT ZT) to the
fixed frame (X Y Z). This matrix can be written as [57]:
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rp

Figure 4.6. Transformation from Solid to Track reference frame

A = AzAyAx (4.5)

The selected sequence of rotations was achieved by making three consecutive rotations
about Z-axis and then rotation about Y-axis and finally rotation about X-axis. For
large rotation angles, the use of Euler angles in the calculation of the transformation
matrix may cause singularity problems [3, 61]. To avoid these problems, the selection
of the rotation sequence for the track frame is chosen by making the largest rotation
values at the extremes of the rotation sequence. In the present case, the rotation
about Z-axis is selected in the beginning and the rotation about X-axis presenting
the roll rotation or the cant angle of the track [19, 57] was selected in the end of
the rotation sequence. The expression of the transformation matrix A illustrated in
details in the included appendix1.

4.3.2 Transformation from body to fixed reference frame

The description of the transformation from the fixed reference frame to the body
frame is illustrated by defining the three main reference frames required to present the
general rigid body which rather than the wheelset. Figure (4.7) shows the sequence
of the transformation, from the body to the track frame of reference. Afterwards,
transformation from track to global frame of reference. The point p located on the
rigid body can be defined by defining the position vector with respect to the global
reference frame as:

1Appendix A
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YT
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p
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Z
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p

rp

G

Figure 4.7. Transformation from Body reference frame to Fixed reference frame

rp = rG + u

= p+ Aw̄ + AB ¯̄u
(4.6)

where rG is the global position vector of the center of mass of the body which coincides
with the origin of the body reference frame. w̄ is the position vector of the reference
frame origin G with respect to the track reference frame. B is the transformation
matrix required to define the orientation of the rigid body reference frame (XS YS

ZS) with respect to the track reference frame. ¯̄u is the position vector of the point p
with respect to the rigid body reference frame.

The transformation matrix B is obtained by three consecutive rotations using Euler
angles principle, but with the difference that the rotation sequence in our case in-
cludes: rotation about Z-axis with an angle θz, then a rotation about X-axis with an
angle θx, and finally as the largest value for the rotation angles used in the transfor-
mation is the rotation about Y-axis with an angle θy which represents the rotation
of the wheelset. The selection of the rotation sequence here is used to avoid the sin-
gularity problems that may be appeared in case of dealing with high values for the
rotation angles used during the motion.

To conclude the previous idea for the transformation frome a system of refrence to
another, Figure (4.8) is demonestrating transformation matrices requiered for the
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identities used in the formulations applied to the the multibody methodology proposed
for making dynamic simulation for railway vehicles.
It is appeared from the figure shown, the matrix A is used to define the orientation

YT

O

Z

Y

X

Z T

Fixed reference frame Track reference frame Solid reference frame

A B

A B

Zs

Xs

XT Ys

Figure 4.8. Successive transformations between frame of references

of the track reference frame with respect to the fixed reference frame. The matrix
B is used to define the orientation of the rigid body reference frame with respect
to the track reference frame. To define the orientation of the rigid body reference
frame with respect to the global reference frame, it was necessary to represent two
successive transformation represented by the multiplication of the two matrices A
and B respectively.

4.4 Track model

The first step used in the track centerline parameterization is the selection of the
approach used in the parameterization. One of the most common approaches used is
the parameterization using the analytical segments [49, 50] for representation of the
track parameters. In this procedure the track is built using a combination of tangent
track, transition curve and circular curve segments. The second approach that can
be used is the parameterization of the track centreline using cubic splines [41, 50],
between the control points that can be used as an input data, defined by the user and
the corresponding cant angle at each control point.

Once we have clearly defined the approach that will be used to make the parame-
terization, the centreline can be easily parameterized as a function of the parameter
σ, which represent the point that define the location of the wheelset along the track
centerline. The cant angle is parameterized as function of the track distance covered
by the vehicle σ and the frame of reference associated to the track centreline after
the cant angle rotation can be calculated. so the procedure followed is summarized
in the following steps:

• Definition of the approach used for parameterization of the track centreline
whether it is analytical segments or cubic splines, this part is defined by the
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user.

• The track centreline is parameterized as function of the parameter σ.

• The cant angle is parameterized as a function of the parameter σ. Then, the
orientation of the track frame of reference is completely defined by the determi-
nation of the cant angle.

• The output data is defined to all the necessary parameters required to define the
track centreline geometry. This data is used online during the dynamic analysis
of the multibody systems.

The method used in the current work for parameterization of the track centreline
is the analytical segments approach [39, 48, 49] . The track is defined by using a
combination of tangent or straight line segment, followed by transition curve segment
to ensure the smooth transition between the tangent part and the circular curve
segment.

4.4.1 Track modelling using analytical segments

In this section, a detailed description is provided for designed track used in the dyna-
mic simulation. The mathematical presentation of the track at each point is represen-
ted in the section below to give position vector and then all the kinematic variables
at each distance σ on the track. In the work, presented the track segments are selec-
ted to form special case-without loss of generality-for the designed path used in the
simulation presented in the following order:

1. Straight line track.

2. Transition curve.

3. Circular curve with constant radius R.

The proposed methodology in the definition of the track configuration can be applied
for any path designed for the track as well as including the track defects and irregu-
larities. The track reference frame represented by the three orthogonal axes (XT YT

ZT) will be assigned to the centreline between the left rail and the right rail as shown
in Figure (4.9). The XT axis is pointing to the rolling direction, as seen in section
(4.2.3) which can be shown in figure (4.10)

4.4.2 Straight line stage

The track presented is started with a straight segment as shown in Figure (4.11). The
starting point of the straight segment of the track is the distance point σ = 0. The
end point of the straight segment is the point σ = l1. This can be represented by the
simple straight line equation of first order as
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ZT

YT XT

Figure 4.9. Track model used in the dynamic simulation

Circular curve
with radius R

Straight Transition

Figure 4.10. Track segments definitions

x (σ) = asσ + bs (4.7)

where as ,bs are constants of the straight line equation. This stage is considered to
be the first stage in the track simulation. Then the track can be parameterized as a
function of the track distance covered as

p (σ) =







x (σ)

y (σ)

z (σ)






(4.8)

substituting with the values of σ = 0 at the beginning of the straight stage and σ = l1
at the end of the straight stage, also by substituting with the value of the cant height
hto for obtaining the z position at the straight track stage, we find that
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Circular curve
with radius R

Straight Transition

XT

YT

0 l1 l2 l3

Figure 4.11. Track segment lengths

x (σ) = σ (4.9)

z (σ) = hto (4.10)

then the position vector of a point on the track in the straight line stage can described
by

p (σ) =







σ

0

hto






(4.11)

4.4.3 Transition curve stage

The transition curve is known mathematically as Euler spiral, fitted between a straight
line and circular curve. The transition curve starts with a radius equal to the infinity
and ends with a radius equal to the radius of curvature of the adjacent curve. In the
proposed track model, a transition curve of the type Clothoid as shown in the Figure
(4.12) is used to define the transition curve stage.

The transition curve is presented by the Clothoid curve connects the straight and
circular tracks to ensure the continuity in the first and second derivatives of the railway
in the transition points. The transition curves are responsible for smooth variation
of the lateral acceleration of the vehicle, when it moves from a straight track to a
circular track or between two track segments of the same type with different radius
or orientation [50].

To represent the transition between the straight line stage and the circular curve
stage a Clothoid is defined. The tracing method used for the transition curve used is
the conserved radius method, which leads to the parabolic equation of the Clothoid
obtained given by the following expression

y (σ) =
x3 (σ)

6 lcloR
(4.12)
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Figure 4.12. Transition curve presented by Clothoid curve

where lclo is the Clothoid length, and R is the radius of the circular curve of the follo-
wing stage. Using Fresnel integral, we can represent the coordinates of the Clothoid
as a function of the distance σ as follow:

x (σ) = σ − 1

10

σ5

π2
K2 (4.13)

y (σ) =
1

6
σ3K − 1

84

σ7

π2
K3 (4.14)

where K is a constant can be calculated as:

K =
1

lcloR
(4.15)

The transition curve in our simulation is started at the point σ = l1 and is ended at
the point of connection to the constant radius curve at the point σ = l1 + l2, where
l2 is the Clothoid length lclo.

It is necessary to define the cant value at the starting and at the end of each stage.
So for the transition cure stage here represented by the Clothoid, the hight at the
beginning is hto and at the end of the stage is htmax. By assuming linear cant through
the transition stage we find that the elevation of any point on the track can be found
by

z (σ) = hto +
htmax − hto

lclo
σ (4.16)
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The value of hto is equal to zero in case of the straight track, then the position
vector of any point on the Clothoid curve can be written in matrix form in the planer
representation as follow

S (σ) =

















σ − 1
10

σ5

π2K
2

1
6 σ

3K − 1
84

σ7

π2K
3

htmax−hto

lclo
σ

















(4.17)

4.4.4 Circular curve stage

This is the third stage in the proposed track geometry. In this stage, the track take
a circular path with a constant radius of curvature R, the stage is started at the end
point of the Clothoid which can be assigned to the point σ = l1 + l2, and is ended at
the point at which σ = l1 + l2 + l3, where l3 is the circular curve length . By defining
the Clothoid angle that can be written as:

Φ (σ) = arctan

(

dy/dσ

dx/dσ

)

(4.18)

We can ratiocinate that the initiation angle of the circular curve is the angle of the
Clothoid when the value of σ is equal to the Clothoid length lclo and this can be
calculated by the following expression:

Φ (σ) = Φ (σ = lclo) (4.19)

then the angle of the circular curve segment at any point σ on the circular curve, can
be calculated by the expressions:

ΦP = Φ(σ) +
σ

R
(4.20)

where R is the circular segment radius of curvature. The position vector of the of the
circular curve initiation point is indicated by the subscript i, can be written as:

xi (σ) = x (lclo) (4.21)

yi (σ) = y (lclo) (4.22)

Finally the components of the position vector of a point on the circular curve indicated
by the subscript cir are found through the next expression:

xcir (σ) = sin
( σ

R
+Φi

)

− sin (Φi) R + xi (4.23)
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ycir (σ) = − cos
( σ

R
+Φi

)

+ cos (Φi) R + yi (4.24)

zcir (σ) = htmax (4.25)

then the position vector of any point on the palne curve can be written in matrix as:

S (σ) =







xcir (σ)

ycir (σ)

zcir (σ)






(4.26)

4.5 Theoretical development of the proposed me-

thodology

In the following section, the main formulations for the proposed simulation tool are
presented in order to obtain the equations that permit the modelling of the railway
vehicle using multibody technique. This technique permits the precise simulation of
grand displacements of the rigid bodies, without the simplifications associated to the
linearization methods such as in vibration. The developed methodology considers va-
rious configurations of the railway vehicle and different designs for the track segments.
The bibliographic revision shows a great work done by various investigation groups
and earlier development was developed by A. Shabana [61], P. Fisette [55] and J.
Pombo [48]. The mentioned authors developed other techniques based on dependent
coordinate systems using ( Euler parameters and Rodriguez formula), which have a
principle advantage that there is no singular configuration can be obtained. In this
work:

• Singularity problems were solved by the selection of the rotation sequence, ta-
king into account that only the roll angle of the wheelset and the rotation of
the curve may reach or exceed 90o.

• Intermediate reference frame was used to define the contact with better precise.

4.5.1 Kinematic analysis of rigid body system

The kinematic analysis deals with the study of the system motion independently
of the forces that cause such motion of the body. The kinematic analysis is done
to obtain the system position and velocity vectors as well as determination of the
system generalized coordinates [2, 57]. Reaching to this point, we can define the
position vector of a point located on the rigid body as shown in figure (4.7) using
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equation (4.6). Taking the first time derivative for the position vector, we can obtain
the velocity vector of an arbitrary point located on the rigid body as

ṙp = ṗ+ Ȧ w̄ +A ˙̄w +
(

ȦB+AḂ
)

¯̄u (4.27)

where ṙp is the velocity vector of an arbitrary point p. ṗ is the velocity of the
origin of the track reference frame. Ȧ first time derivative of the transformation
matrix required to transform from the track frame to the fixed reference frame1. ˙̄w
is the relative velocity of the of body reference frame coincides with the body inertial
frame of reference located in G. Ḃ is first time derivative of the transformation matrix
required to transform from the body frame of reference to the track frame of reference1.

4.5.2 Total kinetic energy of the system

The kinetic energy of a general rigid body can be found by the form [57]

T =
1

2
q̇T Ms q̇ (4.28)

where q is the vector of the generalized coordinates of the rigid body given by the
equation:

q =
[

w̄T θT
]T

(4.29)

where w̄ is the vector of displacements of the body reference frame. θ is the vector
of the rotation angles determining the orientation of the body. According to the
portioning of the generalized coordinates of the rigid body, the kinetic energy can be
found by the following equation

T = Tw̄w̄ + Tw̄ θ + Tθθ (4.30)

where T is total kinetic energy of the body. Tw̄w̄ is the translational kinetic energy
term, Tw̄θ represents the coupling between the translational kinetic energy and the
rotational kinetic energy term. Tθθ is the rotational kinetic energy term. For the rigid
body system we have in our case, the term that represents the coupling between the
translational and rotational kinetic energy Tw̄θ, is null because the rigid body frame
of reference (XS YS ZS) is located at center of mass of the rigid body. Then the total
kinetic energy of the system in this case will be written as

T = Tw̄w̄ + Tθθ (4.31)

1Appendix A
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4.5.3 Translational kinetic energy of the system

The translational kinetic energy term of the rigid body can be written as

Tw̄w̄ =
1

2
ṙTGMs ṙG (4.32)

where rG is the position vector of the center of mass of the rigid body figure (4.7)
which can be found by

rG = p + Aw̄ (4.33)

and Ms is the mass matrix of the rigid body1 can be written as

Ms = ms I3×3 (4.34)

where ms is the mass of the rigid body. The vector representing the velocity of the
center of mass is found by calculating the time derivative for the position vector of
the body mass center presented by the equation (4.33) as shown:

ṙG = ṗ+ Ȧ w̄ +A ˙̄w (4.35)

substituting in the translational kinetic energy term we obtain

Tw̄w̄ = 1
2 ṗ

T Ms ṗ+
(

ṗT + 1
2
˙̄w
T
AT + w̄T ȦT

)

MsA ˙̄w

+
(

ṗT + 1
2w̄

T ȦT
)

Ms Ȧ w̄
(4.36)

4.5.4 Rotational kinetic energy of the system

The rotational kinetic energy of the rigid body can be written as

Tθθ =
1

2
¯̄ω

T
Jθθ ¯̄ω (4.37)

where Jθθ is the inertia matrix of the rigid body1, ¯̄ω is the angular velocity of the
rigid body represented in the rigid body reference frame which can be written as

¯̄ω = ¯̄τ + ¯̄L θ̇ (4.38)

where ¯̄τ is the track angular velocity vector represented in the body reference frame.
The term ¯̄L θ̇ represents the relative angular velocity of the rigid body with respect

1Appendix A
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to the track frame of reference. L2 represents the matrix that relates the angular
velocity vector of the rail to the time derivatives of the orientation parameters [60].
By substitution in the rotational kinetic energy equation (4.37) it is found that

Tθθ =
1

2
¯̄τ
T
Jθθ ¯̄τ +

(

¯̄τ
T
+

1

2
θ̇
T ¯̄LT

)

Jθθ
¯̄L θ̇ (4.39)

By substitution with equation (4.36) and equation (4.39), the total kinetic energy
term represented can be found by

T = 1
2 ṗ

T Ms ṗ+
(

ṗT + 1
2
˙̄w
T
AT + w̄T ȦT

)

MsA ˙̄w

+
(

ṗT + 1
2w̄

T ȦT
)

Ms Ȧ w̄ + 1
2
¯̄τ
T
Jθθ ¯̄τ +

(

¯̄τ
T
+ 1

2 θ̇
T ¯̄LT

)

Jθθ
¯̄L θ̇

(4.40)

4.5.5 Dynamic analysis of rigid body system

The dynamic analysis of multibody systems consists of the study of their motion as
response to the external applied forces as well as the moments [1, 26, 57]. The motion
of the system is generally not prescribed, being its calculation one of the principle
objectives of the dynamic analysis. This type of analysis also provides a process
to estimate external forces that are dependent on the relative position between the
system components, such as those type of forces generated by springs, dampers and
actuators. Also the external forces generated as a consequence of the interaction
between the system and its surrounding environment, such as contact and friction
forces are considered.

The primary stage in setting up a computer model for the railway dynamic analysis is
to prepare the mathematical equations that represent the vehicle-track system. These
set of equations are called the equation of motion and they are usually a second
order differential equations. The equations of motions are prepared depending on
the complexity of the vehicle model and the components of the system. The railway
system is considered to be a connection of rigid bodies and mass less elements, this
is called MBS [24] and the degree of complexity of the simulation carried out on
the system varies depending on the required results. In the proceeding context, the
equation of motions of the MBS used in the computer model were developed assuming
that all the bodies are rigid bodies with 6 DOF.

4.5.5.1 Lagrangian approach for calculating the equations of motion

In this section, the dynamic equation of motion of rigid body is derived. To determine
the configuration of the rigid body system, it was first necessary to define generalized
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coordinates q [61], as defined in the previous section of the kinematic analysis as
defined in equation (4.29), that specifies the position and orientation of each point of
any body in the multibody system shown by figure (4.7).

In the Lagrangian approach, scalar quantities such as the virtual work and the kinetic
and potential energies are used to develop the equations of motion of the body and
in this case there is no need to study the equilibrium of the bodies in the system
separately [43, 61]. Due to the linear independency of the generalized coordinates, the
application of D’Alembert- lagrange’s equation leads to Lagrange’s Equation which is
given by the equation

(

d

dt

(

∂T

∂q̇

)

− ∂T

∂q

)T

−Q = 0 (4.41)

where q, q̇ are vectors of generalized coordinate and velocities respectively. Q is the
generalized force vector associated to the generalized coordinate vector [57, 61], which
can be written as follow

Q =

[

Qw̄

Qθ

]

(4.42)

4.5.5.2 Quadratic velocity vector

By definition of the time derivative of the generalized coordinates vector q̇ associated
to the rigid body, we can find that the coordinates are the time derivative of the
displacements included in the vector ˙̄w and the time derivatives of the rotation angles
of the rigid body included in the vector θ̇.

Starting with the translational component of the generalized coordinate vector, we
get the derivative of the kinetic energy with respect to the velocity vector ˙̄w so

∂T

∂ ˙̄w
=
(

ṗT + ˙̄w
T
AT + w̄T ȦT

)

MsA (4.43)

by finding the time derivative term for the previous equation

d

dt

(

∂T

∂ ˙̄w

)

= ¨̄w
T
AT MsA+ 2 ˙̄w

T
ȦT MsA+ ˙̄w

T
AT Ms Ȧ+

p̈T MsA+ ṗTMs Ȧ+ w̄T ÄT MsA+ w̄T ȦTMs Ȧ (4.44)

The same by finding the time derivative term for rotational component of the gene-
ralized coordinate vector, we can get the derivative of the kinetic energy with respect
to θ̇

∂T

∂θ̇
=
(

θ̇
T ¯̄L

T
+ ¯̄τ

T
)

Jθθ
¯̄L (4.45)
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by finding the time derivative term for the previous equation

d

dt

(

∂T

∂θ̇

)

=

(

θ̈
T ¯̄L

T
+ θ̇

T ˙̄̄
L

T

+ ˙̄̄τ
T
)

Jθθ
¯̄L+

(

θ̇
T ¯̄L

T
+ ¯̄τ

T
)

Jθθ
˙̄̄
L (4.46)

4.5.5.3 Derivatives of the K.E with respect to generalized coordinates

Finding the derivative of the kinetic energy of the system with respect to the displa-
cement w̄ vector, it is found that

∂T

∂w̄
=
(

ṗT + w̄T ȦT + ˙̄w
T
AT
)

Ms Ȧ (4.47)

In the rotational kinetic energy equation, the term ¯̄τ is represented in the rigid body
frame of reference. The same term can be written in the track frame of reference
using the relations defined in Chapter (4.2) as

¯̄τ = BT τ̄ (4.48)

Then the kinetic rotational energy can be found by

Tθθ =
1

2
τ̄T BJθθB

T τ̄ + τ̄T BJθθ
¯̄L θ̇ +

1

2
θ̇
T ¯̄L

T
Jθθ

¯̄L θ̇ (4.49)

The same for the rotational part, finding the derivative of the kinetic energy of the
system with respect to the rotation angles vector θ. The rotation angles are included
only in both matrices B and ¯̄L corresponding to the rotation sequence of the rigid
body, then

∂T

∂θi
= τ̄T ∂B

∂θi

(

Jθθ ¯̄τ + Jθθ
¯̄L θ̇
)

+
(

¯̄τ
T
+ θ̇

T ¯̄L
T
)

Jθθ
∂ ¯̄L

∂θi
θ̇ (4.50)

4.5.6 Generalized forces associated to the generalized coordi-
nates

The generalized forces are introduced by application of the principle of virtual work
[2, 57] in both cases of static and dynamic analysis
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4.5.6.1 Virtual displacement

From equation (4.6) describing the position vector of an arbitrary point on the rigid
body body, the virtual displacement can be written as

δrp = Aδ w̄ +A
∂B

∂θ
¯̄u δθ (4.51)

4.5.6.2 Generalized force corresponding to generic force vector applied
on the body

Assuming that there is a generic force vector F affecting the rigid body. This type
of forces can be friction forces, external or internal forces generated by force elements
such as springs or dampers. This force vector can be written with respect to the track
reference frame as

F̄ = ATF (4.52)

4.5.6.3 Virtual work

The virtual work produced from the application of the external force vector can be
written as follow

δW = FT A δw̄ + FTA
∂B

∂θ
¯̄u δθ (4.53)

substituting from equation (4.52) in equation (4.53), then the virtual work can be
calculated through the following expression:

δW = F̄
T
δw̄ + F̄

T ∂B

∂θ
¯̄u δθ (4.54)

4.5.6.4 Generalized force

Comparing this expression with the definition of the virtual work [57, 61] that can be
expressed as

δW =
[

QT
w̄ Qθ

T
]

[

δw̄

δθ

]

(4.55)

where Qw̄ is called the generalized force vector associated to the translational vector
w̄, and Qθ is the generalized coordinate vector associated to the rotational angles
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vector θ. Furthermore the generalized forces associated to the mentioned generalized
coordinates can be written as:

Qw̄ = F̄ (4.56)

Qθx = F̄
T ∂B

∂ θx
¯̄u (4.57)

Qθy = F̄
T ∂B

∂ θy
¯̄u (4.58)

Qθz = F̄
T ∂B

∂ θz
¯̄u (4.59)

4.6 Equations of motion development

Once the contribution of the translational and rotational kinetic energy has been
determined, then the corresponding equations of motion could be found by the im-
plementation of the Lagrangian techniques as shown in details in the next section

4.6.1 Translational equation of motion

From equations (4.44) and (4.47) in Lagrange’s formula we get that

¨̄w
T
AT MsA+ 2 ˙̄w

T
ȦT MsA+ p̈T MsA+ w̄T ÄT MsA−Qw̄ = 0 (4.60)

using the identities explained in the appendix, we replace the first and second time
derivative of the track transformation matrix1, also the mass matrix replaced with its
value, we get that

ms

(

¨̄w +AT P̈+ 2 ˜̄τ ˙̄w + ˜̄τ ˜̄τ w̄ + ˙̄̃τ w̄
)

−Qw̄ = 0 (4.61)

4.6.2 Rotational equation of motion

The same for the rotational angles vector, from equations (4.45) and (4.50) in La-
grange’s formula we get that

¯̄L
T
Jθθ

¯̄L θ̈ + ¯̄L
T
Jθθ ˙̄̄τ +

˙̄̄
L

T

Jθθ ¯̄τ + ¯̄L
T
Jθθ

˙̄̄
L θ̇ +

˙̄̄
L

T

Jθθ
¯̄L θ̇ − ∂T

∂θi
−Qθ = 0 (4.62)

where the value of the term ∂T
∂θi

can be obtained from equation.(4.50)
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4.6.3 Equations of motion of wheelset

The application for studying a rigid body moving on the track, can be represented here
by a wheelset system moving along the track model designed for the simulation of the
movement for general rigid body system defined in the previous section. The wheelset
system should be defined and all the forces acting on the wheelset system including all
the contact forces, moments and all forces transmitted from the suspension elements
conecting the wheelset to the bogie frame and conecting the bogie frame with the car
body.

4.6.3.1 Wheelset

Wheelset
Flange

Wheelset
Tread

Wheelset
Axle

Figure 4.13. Conventional wheelset

The fundamental component common in all conventional railway vehicles is the wheel-
set, it consists of two wheels rigidly fixed to a common axle [58], as shown in figure
(4.13). Since the wheels are not free to rotate independently, they have the same
rotational speed and a constant distance between the two wheels. The wheels treads
are conical and profiled, in order to allow them to negotiate curves without slipping.
The wheelsets have steering capabilities and are one of the most components that
affect the vehicle stability and its curving performance [24, 48]. The wheel profile
is composed of two parts, the wheel tread and the wheel flange. The wheel tread
is usually conned at 1/20 or 1/40 and is in contact with the rail head. The wheel
flange is provided on the inside edge of the tread. For lateral displacement, it be-
comes in contact with the rail edge, limiting the wheel lateral motion and reducing
the probability to derailment.
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4.6.3.2 Wheelset frame of reference

For the wheelset system represented, it is considered to use an intermediate system
of reference represented before making the final rotation about the Y- axis which is
the axis of rotation of the wheelset. The considered intermediate system of reference
will be defined after two consecutive rotations about Z-axis and X-axis respectively.
The importance of the use of the intermediate system of reference appeared in the
definition of the contact forces and the angular velocity vectors before making the
rotation of the wheelset about Y-axis to provide the simplicity of the representation
of the angular velocity vector[57], in the intermediate reference frame. Figure (4.14)
shows a description of the intermediate reference frame, which consists of three or-
thogonal coordinates (X

¯
Y
¯
Z
¯
). The Z

¯
-axis is pointing to the vertical direction, Y

¯
-axis

is parallel to the axis of rotation of the wheelset, and finally the X
¯
-axis is normal to

the two other axes and pointing to the direction of motion of the wheelset.

Z

X

Y

u

p

Figure 4.14. Intermediate reference system associated to wheelset system

For an arbitrary point located on the wheel profile, the position vector be written as
follow

u
¯
=
[

u
¯x

u
¯y

u
¯z

]T

(4.63)

The lower bar sign means that the quantity represented in the intermediate frame
of reference. Then by defining the wheelset frame of reference in combination with
the track and fixed reference frames figure (4.15), all the kinematic and dynamic
quantities calculated for the wheelset can be represented in the global reference frame
as well as the track reference frames.

Contact problem for the wheel rail interaction forms a crucial part in the simulation of
the MBS representing the wheelset and this problem can be divided in three distinct
but related tasks [39]. The first is the contact geometry which is the problem of
finding the location of the contact points on the profiled surfaces taking into account
the relative displacements and orientation of the contact bodies. The second is the
contact kinematics in which the creepages are defined at the point of contact. Finally
the contact mechanics in which the contact tangential creep forces and spin moments
are calculated.
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Figure 4.15. Representation of the Wheelset, Track and Fixed reference frame combination

4.6.3.3 Kinematic analysis of wheelset system

The kinematic analysis means the determination of the system position and velocity
vectors as well as the definition of the generalized coordinates of the system under
study. Reaching to this point, we can define the position vector of a point located on
the wheelset system. The most important points when dealing with wheelset systems
are the contact points between the wheel and rail interface, where all the contact
forces and moments are defined.

The position vector of the contact points can be determined only after the solution
of the geometrical contact problem. The velocity vector at the contact points will be
determined by obtaining the first derivative for the contact position vector. In the
following section the selected point for the analysis is the contact point located on
the wheel tread as demonstrated in figure (4.15). The geometrical contact problem is
solved in the current work by using a special procedure explained in the next section
for detecting the contact points between the wheel and rail.
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4.7 Wheel-rail contact model

In the presentation of the wheel and rail models used in the formulations. Both of
them is considered to be a rigid body, so that the contact zone could be reduced to
a contact point. In reality when two bodies are in contact, the elastic deformation
of both surfaces causes the contact to be spread over a finite area, rather than to be
concentrated in a point. This finite area is known as the contact patch. In railway
vehicle dynamics, when a wheel rolls over the rails exists a micro-slip in the contact
zone, which is called creep.

This micro-slip together with the normal contact forces, cause the tangential contact
forces, known as creep forces [12, 17, 48]. In the wheel-rail contact problem, the
dimension of the contact area is small when compared with the typical dimensions of
the contacting bodies. Hence, the normal contact force developed in the contact area
can be reduced to a single normal force. According to Hertz theory proposed here
to study the wheel-rail contact problem, the dimension of the contact area are only
dependent of the normal force, the material properties and the surface curvature of
the contact bodies, being independent of the tangential forces that developed in the
contact interface. The normal and tangential contact problems are decoupled and
their solutions are treated sequentially.

4.7.1 Contact geometric problem

The procedure followed to solve the geometrical contact problem will be presented.
The main requests, that should be found in the model used for the determination of
the geometrical contact problem are summarised in the following points:

I) Having high computational efficiency; as the application of the procedure used
in solving the contact problem is the implementation of the model used in the
dynamic simulation of the railway vehicles. The computational cost should
be minimized as the contact problem is solved at each time step during the
numerical integration used in the simulation.

II) Neglecting the transitory effects in the contact model; due to the main use of the
contact model in the simulation program. And including the transitory effects
will slow down the solution and then the simulation time will increase.

III) Capable of estimation of the contact area with high precision; by the precise
determination of the number of contact area at each time step, the shape and
size of the contact patch and the amount of penetration produced during the
simulation of the wheel-rail contact phenomena.
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4.7.1.1 Procedure used in the solution of the geometrical contact problem

The steps used in the solution of the geometrical problem are explained in the following
steps:

I) Definition of the wheel and rail surfaces, by the definition of the profiles in the
transversal plane of the track. The wheel surface is defined by the rotation of the
wheel profile around the axis parallel to the contact plane and the rail surface
is defined by means of the extrusion of the points forming the rail profile along
the longitudinal direction.

II) Calculating the intersection area between the wheel and rail surfaces in contact,
resulting from the relative position of the two contact bodies.

III) Obtaining the amount of the maximum penetration at the each contact area,
and determination of the local position of the point of the maximum penetration
value.

IV) Calculating the pressure distribution in the contact area that follows the ellip-
tical pressure distribution used by Hertz.

4.7.1.2 Assumptions

I) The model used is based on the virtual interpenetration between the wheel
and rail profiles; the use of the virtual interpenetration method instead of the
use of the models based on the theoretical point of contact has the following
advantages:

• The use of the method offers better estimation for the contact area as the
real geometries of the contact bodies are considered in all the domain of
the potential contact area.

• High computational efficiency, this can be shown by the precise results
obtained for the same computational cost offered by the methods based on
the theoretical point of contact.

• The methods based on the virtual interpenetration between surfaces in
contact are more reliable as the contact characteristics are estimated by
means of the definition of the intersection area.

II) The distribution of the normal pressure in the contact area follows Hertz model;
after the definition of the contact ellipse semi axis as the same procedure followed
in Hertz normal theory. The normal pressure distribution takes ellipsoidal shape
as in Hertz model. The model offers low computational cost with acceptable
precision in the obtained results compared with those obtained analytically.

The solution of the geometrical contact problem starts by the definition of the re-
lative position between the two bodies in contact. In the current case, the relative
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displacements are defined between the wheel and the rail to find the interpenetration
between the wheel and rail surfaces as well as the number of contact areas.

For the modelling of the wheel-rail contact problem, two reference systems are used:
the first one is the track system of reference (XT YT ZT) and the second is the wheel-
set system of reference (XYZ) as it was shown in section (4.2).

To solve the geometrical contact problem, the next steps have to be followed:

• Defining the contact surfaces for the wheel and the rail.

• Defining an appropriate method that finds the intersection between the two
contact surfaces.

• Defining the mathematical model defining the intersection between a straight
line with a cone segment.

• Defining the interpenetration areas defined by strips.

4.7.1.3 Contact surfaces definitions

The interpenetration areas can be obtained by the intersection between the wheel
and rail surfaces. These surfaces are obtained by the definition of the wheel and rail
profiles. The rail surface is obtained by the intersection of the rail surface with the
plane (YT ZT), and the wheel profile is defined by the intersection of the wheel surface
with the plane(XY).
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Figure 4.16. Measured Wheel and Rail profiles

By the definition of the wheel and rail profiles in 2D as shown in figure (4.16), the
wheel surface can be generated by the revolution of the wheel profile around the Y
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axis. On the other hand, the rail profile can be generated by the extrusion of the rail
profile point along (XT) axis.

Once the wheel and rail surfaces are obtained, it is supposed that both of the contact
bodies are considered as rigid bodies and existing a penetration between them. By
this end, the geometrical contact problem is defined by the determination of the
interpenetration between the wheel and rail surface by knowing the relative position
between the two surfaces.

The interpenetration area is defined as the projection of the interpenetration volume
in the tangential plane to the contact. The interpenetration area in this case represents
the potential contact area, this assumption was used in the contact models used by
Pitrowiski[35, 45, 46] and Ayasse and Chollet [5], respectively. Once we have defined
the surfaces in contact, it is necessary to establish suitable procedure to obtain the
intersection between them.

4.7.1.4 Procedure used to obtain the intersection between contact sur-
faces

According to the model used in this work to define the contact surfaces, it was explai-
ned in the previous section that the wheel surface is obtained by the revolution of the
wheel profile about the axis parallel to the contact plane. Therefore, each segment
on the wheel profile will define a conical segment forming the wheel surface. Each
point on the rail profile will define a straight line in the longitudinal (XT) direction.
To obtain the interpenetration area starts by obtaining the intersection between the
straight lines presenting the rail surface with the conical segments presenting the
wheel surface as seen in figure (4.17).

Simulating the rail surface with straight line even in the curved tracks doesn’t intro-
duce excessive errors in the solution, taking into account that the the contact area
dimension and the radius of curvature of curved tracks.

By this end, the geometrical contact problem between the wheel and rail surfaces is
reduced to a problem where we search for the intersection between a straight line
presenting the rail, and a conical segment presenting the wheel as shown in figure
(4.18) with the following characteristics:

• Each point of the rail profile represented in the (Y Z) plane, defines a longitu-
dinal straight line i. A point belongs to the straight line i has the coordinates
(x, yri , z

r
i ) . The sub index r indicates that the point belongs to the rail profile.

x parameter indicates the position of the point along the straight line.

• A conical segment j is defined by two consecutive points on the wheel profile pre-
sented in the wheelset system of reference that have the coordinates (0, ywj , z

w
j )

and (0, ywj+1, z
w
j+1) . The super index w indicates that the point belongs to the

wheel profile. An important parameter ζ is defined to present the angle of the
wheel profile segment about Y axis, and its value vary from 0 to 2π.
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Figure 4.17. System of references of the wheel and rail surfaces used in the definition of

the contact geometry problem

• By defining the relative position between the wheel and rail surfaces, the position
of a conical segment belongs to the rigid body presenting the wheel profile, is
determined by three translational coordinates (wx,wy,wz): in the longitudinal,
transversal and vertical direction respectively; and three rotational coordinates:
roll angle φw , pitch angle θw and finally yaw angle ψw.

Figure 4.18. Wheel and rail segments used to find the intersection between the wheel-rail

surfaces
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4.7.1.5 Intersection between straight line and conical segment

In this section, a system of nonlinear equations will be defined to solve the intersection
between a straight line and a conical segment in the space and the solution of these
equations will be presented.

Figure 4.19. Determination of a generic point on a segment on the wheel profile

Figure (4.19), presents a segment on the wheel profile defined by two consecutive
points (0, ywj , z

w
j ) and (0, ywj+1, z

w
j+1) which defines a conical part by the revolution of

the segment about Y axis to form the wheel surface. A new parameter α was defined
to generally describe a point on the wheel segment. The value of α is varying from
α = 0 to α = 1 at the extreme points of the segment. A point P on the segment
presenting a generic point on the wheel profile can be defined in the wheelset reference
system by the following expression

P = BY







0

αyw
j+1

+ (1− α) yw
j

αzw
j+1

+ (1− α) zw
j






(4.64)

where BY is the transformation matrix produced from rotation about the transversal
axis Y with an angle ζ. By pre multiplying the last expression by the transforma-
tion matrix Bzx, the point P can be represented in the track system of reference as
mentioned in chapter (4.2)

P = Bzx BY







0

αyw
j+1

+ (1− α) yw
j

αzw
j+1

+ (1− α) zw
j






(4.65)

The modifications made on the model mark a significant modefication which can
be noted here by taking the variation in the longitudinal direction as an additional
coordinate for the wheelset to add a new degree of freedom to the problem that was
not included in the model.
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The intersection problem between the wheel and rail can be presented by finding the
intersection between the conical segment forming part of the wheel and the straight
line presenting the extruded point on the rail profile taking into account the displace-
ment (wx,wy,wz) of the wheelset in X, Y and Z direction respectively as well as the
rotations α and ψ. The intersection can be found by equating the position vector of
a generic point on the conical segment j with a point on the straight line i on the rail
profile. And by this way a system of three nonlinear equations with three unknown
parameters (x, ζ, α)







x

yri
zri






= BzxBY







0

αyw
j+1

+ (1− α) yw
j

αzw
j+1

+ (1− α) zw
j






+







wx

wy

wz






(4.66)

The solution of this system of equations will give intersection points between the
conical segment and straight line in the space as shown in figure (4.20)
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Figure 4.20. 3D view for the intersection between a straight line i with a conical segment j

Existing three possible solutions for the given system of equations:

• No solution existing; in this case the line doesn’t intersect with the conical
segment.

• Existing one double solution; in case that the line is tangent to the conical
segment.
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• Existing two solutions; this represents the general case in which the two points
of intersection will represent the entrance and exit points of the line with the
conical segment.

The solution of the system of nonlinear algebraic equations will reach the following
expression

A cos(ζ) +B sin(ζ) + C = 0 (4.67)

solving the previous equation 4.67, we can obtain the value of the parameter ζ

(

ζ1

ζ2

)

=









2 arctan
(

−B+
√
B2−A2−C2

C−A

)

2 arctan
(

−B−
√
B2−A2−C2

C−A

)









(4.68)

taking the positive value for ζ1 and the negative value for ζ2. The three possible
solutions can be obtained by solving equation (4.68)

• If the discriminant is negative, this means that there is no real solution and this
case presents the case where no intersection can be found because the wheel
surface is located above the rail surface.

• If the discriminant is equal to zero, this means that the straight line presenting
the rail is tangent to conical segment and in this case ζ1 = ζ2.

• In the general case, existing two real solutions representing the entrance and
exit points giving two values for ζ1 and ζ2 .

For each value of ζ, a new value for the parameter α has to be calculated which
indicates the longitudinal position where the straight line i intersects with the conical
segment j. The values of α can be calculated from equation (4.66) by solving the
equation in Y or Z directions giving two values αy and αz as follow

αy =
a1 sin(ζ) + a2 cos(ζ) + a3
a4 sin(ζ) + a5 cos(ζ) + a6

(4.69)

where:

a1 = sin(ψ)zwj
a2 = − cos(ψ) sin(φ)zwj
a3 = −yri + cos(ψ) cos(φ)ywj +wy

a4 = sin(ψ)
(

zwj − zwj+1

)

a5 = cos(ψ) sin(φ)
(

zwj+1 − zwj
)

a6 = cos(ψ) cos(φ)
(

ywj − ywj+1

)
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The same we can obtain the value of αz

αz =
b1 sin(ζ) + b2 cos(ζ) + b3
b4 sin(ζ) + b5 cos(ζ) + b6

(4.70)

where:
b1 = 0 ; b2 = cos(φ)zwj
b3 = sin(φ)ywj − zri +wz ; b4 = 0

b5 = cos(φ)
(

zwj − zwj+1

)

; b6 = sin(φ)
(

ywj − ywj+1

)

The value of αy is measured in the horizontal projection, on the other hand the value
of αz is measured in the vertical projection. Generally in the case that the conical
segment is located in a vertical direction, this means that the denominator in the
expression of αy will be zero and the value α can be found by the expression of αz.
The same as if the conical segment is located in the horizontal direction , this means
that the denominator in αz expression will be null then the value of α will be found
by the equation representing αy.

If the value of α within the defined limits 0 ≤ α ≤ 1 this means that the straight line
i is in intersection with the cone segment j. If α < 0 this means that it will search for
the intersection between the line i with the con segment j − 1. If α > 1 this means
that it will search for the intersection between the line i with the segment j + 1.

Finally each of the entrance and exit points produced from the intersection between
the line with the conical segment can be found depending on the obtained values of
the parameter ζ and can be determined from equation (4.66) as follow:

x = (sin (ψ) cos (φ) cos (ζ) + cos (ψ) sin (ζ))
(

α zwj+1 + (1− α ) zwj
)

− sin (ψ) cos (φ)
(

α ywj+1 + (1− α ) ywj
)

+wx

(4.71)

4.7.1.6 Strip definition

The intersection between the wheel profile and the rail profile is presented by means of
longitudinal strips resulted from the interpenetration between the two contact surfaces
of the wheel and rail respectively. The produced strip figure (4.21) can be defined by
the following characteristics:

I) Position vector of the leading intersection point (xiL, yil, ziL) and trailing in-
tersection point (xiT , yiT , ziT ) resulting from the intersection between a conical
segment with the straight line segment presenting the rail

II) The strip length ls

The strip length can be defined as the distance between the trailing and leading
intersection points

ls = |xiL − xiT | (4.72)
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Figure 4.21. Definition of a strip forming the interpenetration area

III) Strip thickness dy

The strip thickness dy can be calculated by knowing the coordinates of the strip
i and the strip i+ 1.

IV) Strip conicity γs

The value of the conicity taken to be the value of the conicity at the wheel profile
figure (4.22) at the wheel conical segment intersecting with the rail and can be
calculated as follow

γs = arctan

(

zj+1 − zj
yj+1 − yj

)

(4.73)

V) Rolling radius passing through the strip rs

To calculate the rolling radius corresponding to the strip s, the parameter α will
be used to linearly interpolate the values of the rolling radius at the extreme
points of the cone segment

rs(α)= (α rj+1 − (1− α) rj) (4.74)

where rj , rj+1 are the values of the rolling radius at the extreme points of the
conical segmentj. In case of the entrance and the exit of the straight segment i
is not at the same conical segment j, then the value of the rolling radius will be
taken as the mean value of the rolling radius that calculated by equation (4.74)

VI) Indentation radius Rs

The indentation radius can be calculated by knowing the values of the rolling
radius and the conicity at the corresponding strip [24]

Rs(α) =
rs(α)

cos( γs)
(4.75)
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Figure 4.22. Determination of the rolling raduis of each strip

VII) Maximum penetration of the strip δmax

The value of the maximum indentation is calculated by the assumption that
the wheel is making a circular indentation with a radius Rs for each strip figure
(4.23)

δmax=Rs(α)−

√

R2
s(α)−

(

ls
2

)2

(4.76)
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Figure 4.23. Determination maximum penetration between wheel and rail profiles

4.7.2 Position vector of the contact point

The contact model implemented in the simulation tool to solve the geometric contact
problem is capable of detecting multiple contact point cases. Each contact area can
be separately defined by its own strips forming the intersection between the wheel and
rail profiles. By the determination of the interpenetration area between the contact
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surfaces, the contact point is selected at the strips having the maximum penetration
values between the wheel and rail profiles. The point of contact is identified as the mid
point between the extreme points which characterize the strips with the maximum
penetration value. Then the local position vector having the coordinates of the contact
can be defined by

¯̄uc =
¯̄uLP + ¯̄uTP

2
(4.77)

where ¯̄uc is the local position vector of the contact point. ¯̄uLP is the position vector
of the leading intersection point. ¯̄uTP is the position vector of the trailing intersection
point of the strip with the maximum penetration value, all defined in the wheelset
reference frame.

The position vector of the point of contact can be written with respect to the global
reference frame as

rc = p+Aw̄ +ABzx u
¯c

(4.78)

where Bzx is the intermediate transformation matrix required to transform from the
intermediate to track reference frame, it is the matrix produced from two successive
rotations about Z-axis and X-axis respectively. u

¯c
is the position vector of the contact

point with respect to the intermediate reference frame. By defining the overall motion
of the wheelset by realising the final rotation about Y-axis. The transformation from
the intermediate transformation reference frame to the general rigid body reference
frame can defined by introducing the transformation matrix By. Now all the trans-
formation matrices are introduced between all the system of references used in the
formulation of the wheelset system, and these can be explained by the figure (4.24).

(Fixed)

(Body)

(Intermediate)

(Track)

B y

A

B

B
zx

u

u

u

u

Figure 4.24. Transformation schem between the different reference frames
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Figure(4.24) indicates that, it is necessary to define the transformation matrix A to
transform from the track reference frame to the fixed reference frame. To transform
from the rigid body reference frame to the track reference frame the matrix B was
defined. The transformation from the rigid body to track reference frame was achieved
by two steps in which the intermediate reference system is defined. The first step is to
make a transformation from rigid body to intermediate by defining the transformation
matrix By and then the second step is defined in the definition of the matrix Bzx

required to transform from intermediate to track reference frame. Finally the position
vector of the contact point can be expressed by the equation:

rc = p+Aw̄ +AB ¯̄uc (4.79)

4.7.3 Velocity vector of the contact point

By making the first time derivative for the position vector equation (4.78), we can
obtain the velocity vector of the contact point as:

ṙc = ṗ+ Ȧ w̄ +A ˙̄w +
(

ȦB+AḂ
)

¯̄uc (4.80)

The velocity of a point on the wheel profile consists of the summation of the total
wheelset velocity and the circumferential contact point velocity. The wheelset total
velocity which represents the velocity of the wheelset reference frame origin, it can be
written as:

ṙ = ṗ+ Ȧ w̄ +A ˙̄w (4.81)

The circumferential velocity of a point on the wheel profile can be written as

ṙCir =
(

ȦB+AḂ
)

¯̄uc (4.82)

ṙCir =
(

A ˜̄τ B+AḂzxBy +ABzx Ḃy

)

¯̄uc (4.83)

ṙCir = A ˜̄τ Bzx u
¯c

+AḂzx u
¯c

+ABzx Ḃy ¯̄uc (4.84)

By recalling the identities used in the calculation of the time derivative of the trans-
formation matrices A and Bzx

1, the global velocity vector of the contact point can
be written as

1Appendix A
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ṙc = ṗ+A ˜̄τ w̄ +A ˙̄w +A ˜̄τ Bzx u
¯c

+AḂzx u
¯c

+ABzx
∂By

∂ θy
θ̇yB

T
y u
¯c

(4.85)

The contact point velocity is represented in the intermediate reference frame in the
form

ṙc = BT
zxA

Tṗ+BT
zx

˜̄τ w̄ +BT
zx

˙̄w +BT
zx

˜̄τ Bzx u
¯c

+BT
zx Ḃzx u

¯c
+
∂By

∂ θy
θ̇yB

T
y u
¯c

(4.86)

4.8 Wheelset dynamic analysis

The same as the dynamic analysis for a rigid body explained in section.(4.5.5) we
can find the equations of motion for the wheelset defined in the previous section,
the only difference is the values of the generalized force associated to the wheelset
generalized coordinates. For calculating the generalized force, it was supposed to use
the virtual work principle [2, 57, 61] as it was explained, in the previous sections, for
the calculations of the generalized forces associated to the generalized coordinates of
the rigid body. The virtual work can be found for a wheelset system by determining
the virtual displacement of a point on the wheel profile, then the calculation of the
force applied at this point. Reaching to the end of the determination of the contact
forces and moments at the contact patch resulting from wheel-rail interaction, also
the force applied to the wheelset system due to the spring element mounted between
the wheel axle and the bogie, one can find the virtual work due to these types of
forces as it can be illustrated in the following sections.

4.8.1 Generalized forces corresponding to contact forces

For the contact forces applied at the contact patch, including the normal contact
force, longitudinal and lateral creepage forces, by knowing the virtual displacement
that can be calculated from the position vector of the contact point represented by
equation (4.78) which can be written as

δ rc =
∂ rc
∂ w̄

δ w̄ +
∂ rc
∂ θ

δ θ (4.87)

Then the virtual work due to the contact force can be found by

δW = FT
c δ rc (4.88)
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δW = FT
c A δ w̄ + FT

c A
∂Bzx

∂ θ
u
¯c δ θ (4.89)

by defining the contact force vector resulting from the wheel-rail interaction and
determined by equation (3.39), equation (3.40) and equation (3.26), which can be
written as

F c =
[

Fx Fy Fz

]T

(4.90)

where Fx is the longitudinal creep force, Fy lateral creep force and Fz is the normal
contact force. From equation.(4.55), the generalized forces due to the contact force
can be written as

Qw̄ = F̄ c (4.91)

Qθx = F̄ c
T ∂B

∂ θx
¯̄u (4.92)

Qθy = F̄ c
T ∂B

∂ θy
¯̄u (4.93)

Qθz = F̄ c
T ∂B

∂ θz
¯̄u (4.94)

where F
¯ c is the contact force vector represented in the intermediate coordinate sys-

tem associated to the wheelset and Bzx is the transformation matrix from interme-
diate to fixed or global frame of reference.

4.8.2 Generalized forces corresponding to the spin contact mo-
ment

The contact moment at the contact patch is produced from the spin creepage moment
M sp. The virtual work due to this momentM c may be replaced by an equivalent pair
of forces, f1 and f2, of equal magnitudes and opposite direction, acting on a plane
perpendicular to the direction of M c [26] and both supposed to be acting through the
longitudinal direction defined by the unit vector l

¯
, and separated by the lateral unit

vector t
¯
, figure (4.25) which represents the lateral vector. If the two forces applied at

the contact point can be found by:

f
¯ 1

= −f l
¯

f
¯ 2

= f l
¯

}

(4.95)

Then the moment at the contact point can be found by
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Figure 4.25. Concentrated contact moment M c acting on contact area

M
¯ c = t

¯
× f

¯ 2
(4.96)

Furthermore, the virtual work due to the contact moment can be now found by the
following expression

δW = f
¯ 1

δrf1 + f
¯ 2

δrf2 (4.97)

From equation (4.96), we find that

f
¯ 2

= −M l
¯

(4.98)

but we know that f1 = −f2, then the virtual work due to these forces reduced to

δW = −M l
¯
TBT

zx

∂Bzx

∂ θ
t
¯c
δ θ (4.99)

Qθx = −M l
¯
TBT

zx

∂Bzx

∂ θx
t
¯c

(4.100)

Qθy = −M l
¯
TBT

zx

∂Bzx

∂ θy
t
¯c

(4.101)

Qθz = −M l
¯
TBT

zx

∂Bzx

∂ θz
t
¯c

(4.102)

4.8.3 Generalized forces corresponding to internal forces

The internal forces that may affect the wheelset such as the spring element forces ac-
ting on the wheelset connection with the bogie frame through the primary suspension
springs. These Springs are elements capable of storing elastic potential energy, as
well as, exerting forces that are a function of their positions[26]. In addition, springs
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play an important role in all but the kinematic problems. Modelling of the suspension
element is a crucial part in the multibody dynamic program used for the simulation of
the railway vehicle. To represent the forces transmitted by the suspension element we
have to define the amount of change in the relative position vector between the two
connection points which represent the amount of change between the undeformed and
deformed spring length, and for this issue we use the model shown in figure (4.26),
which represent a suspension element connecting two rigid bodies i and j.
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Figure 4.26. Position vector of two connection points of a spring element between two

bodies i and j.

The suspension is attached to the body i at the point 1 and to the body j through
the point 2. By defining the position vector of the reference frame of each body we
found that, the position vector of the origin of the frame of reference of the rigid body
i can be found by the following expression

riG = pi + Ai w̄i (4.103)

and the position vector of the origin of the reference frame of the rigid body j can be
written as follow

rjG = pj + Aj w̄j (4.104)

The position vector of the first connection point of the spring with the rigid body i
can be written as
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r1 = riG +AiBi ¯̄u
i
1 (4.105)

The position vector of the first connection point of the spring with the rigid body j
can be written as

r2 = rjG +Aj Bj ¯̄u
j
2 (4.106)

the relative position vector representing the deformed length of the spring element
from point 1 to point 2 can be written as

r12 = r2 − r1 (4.107)

r12 = rjG − riG +Aj Bj ¯̄u
j
2 −AiBi ¯̄u

i
1 (4.108)

where Ai and Aj are the transformation matrices required to transform from the
track frame corresponding to the body i and body j respectively, to the fixed frame
of reference. Bi and Bj are the transformation matrices required to transform from
the local frame of of body i and body j to each corresponding track frame of reference.
¯̄u
i
1 is the position vector of the first connection point 1 with respect to the local frame

of reference of body i. ¯̄u
j
2 is the position vector of the second connection point 2 with

respect to the local frame of reference of body j. By the relative position vector
between the spring connection points with respect to the local frame of reference of
the first body i the we find that it can be written as

¯̄r
i
12 = BiT AiT

(

rjG − riG +Aj Bj ¯̄u
j
2

)

− ¯̄u
i
1 (4.109)

The relative vector between the two connection points can be written with respect to
the second body j as follow

¯̄r
j
21 = BjT AjT(riG − rjG +AiBi ¯̄u

i
1)− ¯̄u

j
2 (4.110)

From equation (4.105) the velocity vector of the point 1 can be written as

ṙ1 = ṙiG + ȦiBi ¯̄u
i
1 +Ai Ḃi ¯̄u

i
1 (4.111)

The same from equation (4.106) the velocity vector of the point 2 can be written as

ṙ2 = ṙjG + Ȧj Bj ¯̄u
j
2 +Aj Ḃj ¯̄u

j
2 (4.112)

Also, the relative velocity vector between the two connection points can be expressed
with respect to the local frame of reference of body i as follow
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˙̄̄r
i

12 = BiT AiT
(

ṙj2 − ṙi1

)

(4.113)

The same can be found with respect to the reference frame of the second rigid body
j as

˙̄̄r
j

21 = BjT AjT
(

ṙi1 − ṙj2

)

(4.114)

By knowing the undeformed vector between the two connection points ¯̄r12O, the force
vector of the spring element can be calculated at the first connection point on the
body i, by knowing the stiffness vector k and the damping coefficient vector c of
the spring element which will have constant values if the spring and the damper are
linear, in addition to the force vector representing the actuator force fa, as follow

¯̄F
i

s = k
(

¯̄r
i
12 − ¯̄r12O

)

+ c
(

˙̄̄r
i

12

)

+ fa (4.115)

and the same for the force vector of spring element affecting the body j can be written
with respect to its local frame as

¯̄F
j

s = k
(

¯̄r
j
21 − ¯̄r21O

)

+ c
(

˙̄̄r
j

21

)

− fa (4.116)

Then, after the calculation of the element forces. We can apply the same virtual
work principle defined by equation (4.53) to calculate the generalized force vector
coressponding to to the spring element force

δW = F̄ s
T
δw̄ + F̄ s

T ∂B

∂θ
¯̄u δθ (4.117)

Qw̄ = F̄ s (4.118)

Qθ = F̄ s
T ∂B

∂ θ
¯̄u (4.119)

The proposed multibody methodlogy presented in this works permits grand displace-
ment values and the main contribution of the method that it allows the replacement
of the contact model by advanced contact models without any changes in the main
structure of the methodology.





Chapter 5

Simulation results

5.1 Introduction

The importance of simulation is increased in the last decades as it can be used as part
of the vehicle acceptance process and vehicle testing purposes. Modern multibody
software packages are used as an essential part of the design process for new vehicles
and for investigating service problems with existing vehicles. So it is necessary to
build a reliable simulation tool to perform the dynamic analysis for railway vehicles,
as well as testing the developed simulation tool to ensure that the obtained results
are valid and optimized.

In this chapter, the main construction of the simulation tool Vehicle track Interaction
Analysis “VIA” is explained starting from the data entry to the program and ending
by the steps followed to run the program and extract the required results. The vehicle
model used in the multibody program developed in the current work is described and
its dynamic behaviour is studied in different operation scenarios. Afterwards the flow
chart of the multibody program implemented in MATLAB environment is described.

A procedure is used to test and validate the obtained results from VIA program.
Starting with a simplified model for the contact problem known in the bibliography as
Knife edge model, the multibody simulation tool VIA is used to analyze the behaviour
of a single bogie as well as a complete vehicle running in different simulation scenarios.
As a second step after using the simplified model for the contact problem, the contact
model is replaced by real contact model. The model is implemented to be used in the
analysis of the Manchester Benchmark vehicle 1 negotiating the track case number
1. The obtained results are compared with those obtained by the different simulation
packages used to analyze the Benchmark [21].

The analysis of the results depicts a good agreement between the results obtained by
the VIA program and SIMPACK program [54]. As a continuation for the procedure
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used to validate the simulation tool, a comparison is made between results obtained
by VIA and SIMPACK programs for TGV 001 vehicle. The model is built in SIM-
PACK environment for the vehicle model during the exchange period realised during
the formation of the presented work in the mechanical engineering department, Po-
litecnico di Milano. The results demonstrate an agreement between both analysis
achieved by the simulation tools VIA and SIMPACK.

The contact problem plays an important role in the dynamic analysis of railway
vehicles and the computation of wheel- rail contact forces is repeated many times.
A methodology is used in the construction of the designed simulation tool presented
in this work that permits the change of the contact model and contact calculation
method without making any change on the main structure of the program. By this
way the Kalker’s FASTSIM model [32] used in the calculation of the tangential contact
forces, is substituted by Polach model presented in [47]. The main objective is to test
the ability of the simulation tool proposed in the current work to achieve such changes
in fundamental parts of the multibody model like the changes made in the contact
model. A comparison is made between the simulation analysis realised by the VIA
program, using FASTSIM model to calculate the tangential forces at the contact
patch, and that analysis realised using Polach contact model. The quality of the
obtained results presented in this chapter conclude the validity of the implementation
of the developed multibody methodology to be used in the dynamic analysis of railway
vehicle systems in different operation conditions.

5.2 General description of the simulation tool

Using modern simulation packages, it is possible to carry out realistic simulation of
the dynamic behaviour of railway vehicles. In most of the simulation tools used, the
theoretical basis of the mathematical modelling is mature and reliable. User friendly
graphical interfaces are used nowadays in the simulation packages to allow the users to
test the effect of making changes on the dynamic analysis of the railway systems. For
the developed simulation tool in the presented work, the code is written in Matlab
environment and text-based interface is used to describe all the data and output
parameters of the simulation realised. The program is designed in a flexible form that
permits the implementation of different models for the contact problem as well as
incorporating the models developed by the group fo the analysis of railway vehicles.
The description of the simulation tool is illustrated in the following points below.

5.2.1 Data entry to the simulation tool

In this part of the program, all the required simulation data are entered to program
in form of text that defines the following:

• Track data
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Starting with the information regarding the track data; the type of the track
used is defined in this stage whether a rigid or flexible track is used. In the
proposed simulation tool, only rigid tracks are used to study the interaction
between the railway vehicle and the track. The parameterization method used,
is the analytical segments method. Where the track in the presented work here
is completely defined as:

I Straight line stage parameters

Where the length of the straight line stage is introduced as well as the cant
height. The coordinates of the beginning and the end points of the straight
track are defined with respect to the global frame of reference.

II Transition curve stage parameters

In this section, the type of transition curve is clearly defined as a clothiod
curve. The value of the cant height at the start of the transition curve
is equal to that value in the straight curve stage and the Clothoid length
lclo. The cant height at the transition curve stage id defined to be equal
to the maximum cant height at the beginning of the plane curve stage.
The staring point coordinates of the clothiod stage is assigned to the same
point of the end of the straight line stage. Also the end point coordinates
coincide with starting point of the full curve stage.

III Plane curve stage parameters

The stage length is defined as well as the radius of curvature of the stage
R is presented as it is considered to use a constant radius curve.

• Vehicle model components

Regarding the vehicle data entry, starts by the definition of specific numbers that
determine: the number of the rigid bodies used in the vehicle model including
the car bodies, bogie frames and wheelsets; the number of suspension elements
in each stage including the primary suspensions and the secondary suspensions;
the number of the reference frames used in the simulation which related to the
number of the moving track reference frames. The number of reference frames
used in the current work is taken equal to the number of the wheelsets in the
vehicle model. For the definition of the vehicle model, we have to distinguish
between the both main components in the vehicle: the body components and
the suspension components.

I The body components

The definition of the body components which hold the mass of the vehicle
are of interest. As a second stage in the data entry, is the definition of
the solids inertia properties (mass and moment of inertia), followed by
the coordinates of the points where each track reference frame used in the
simulation is located.
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The third step, is to assign the solids to the track frame of reference taking
into account the selection of the nearest track frame in order to avoid the
leaks in the calculations of the relative displacements between the connec-
ting bodies. The centre of mass coordinates for each rigid body is defined
with respect to its corresponding track frame of reference.

The fourth step, is the determination of the external forces and torques
affecting the rigid bodies presented in the global reference frame and the
forces affecting the rigid bodies in the track frame of references.

II The suspension components

The suspension elements play important roles in reducing the bogie frame
and car body accelerations as well as the dynamic wheel-rail forces. They
also allow for proper curve negotiation, but a too soft suspension causes
problems with the vehicle gauging and instability. Traction rods attaching
the bogie frame to the car body are treated as longitudinal springs to
transfer the longitudinal forces during the acceleration and deceleration.

The proposed suspension models used in the simulation purposes in the
present work, are passive models, so the suspension forces are only related
to the relative motion at the interface with the connected bodies. The
spring models used are linear spring models consist of 3D model of three
perpendicular linear springs [13].

The last step in the vehicle model data entry is to describe the models of
the suspension elements used in the vehicle model. The suspensions used
in the simulation are of the type of linear suspension elements composed
of spring and viscous dampers. The suspension elements properties are
organized as follow:

a) The definition of the suspension topology, where the springs connec-
ting the bodies are defined by assigning each spring to the correspon-
ding bodies connected by this spring as it will be illustrated in section
(5.3.2).

b) The definition of the spring stiffness and damping coefficients for the
primary spring system as well as the secondary spring system.

c) The definition of the position vector of spring connection points, on
both bodies connected, with respect to the rigid frame of reference
which in the simulation model here coincides with the body centre of
mass.

d) The preload for the suspensions are predefined by calculating the
amount of the normal load carried by each spring. The values of
the preload forces are initially calculated in the pre-processing stage
before the simulation beginning.
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• Contact model data entry

In the current work, two types of contact profiles have been used in the si-
mulation, beginning with the simplified model used in the early design of the
simulation tool presented, and ending with the standard contact profiles for the
wheel and rail geometries, where the UIC60 rail profile is used for the rail and
S1002 profile is used for the wheels. For each geometry used in the simulation,
a special pre-processing function is used as to prepare the geometry used in the
simulation before the program run. This can be illustrated for the standard
wheel rail profiles mentioned. In the pre-processing step, the contact surfaces is
first entered from the measured points of the rail and wheel profile as shown in
figure (5.1). Then both profiles are brought to be in touch by putting the wheel
profile just in touche with the rail profile as shown in the following figure.
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Figure 5.1. S1002 wheel profile in contact with UIC60 rail profile

In the pre-processing stage, the curvature value at all points of the wheel and
rail is defined for both surfaces. The calculated curvature values for the left and
right wheel profiles can be presented as shown in the figure below:
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Figure 5.2. Curvature values for the left and right wheel profile



Simulation results 114

Figure (5.2) shows the values of the curvature for both left and right wheel.
The convex surface of the wheel profile has a positive radius of curvature and
negative sign is assigned to concave surface on the wheel profile [28].
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Figure 5.3. Curvature values for the UIC60 rail profile

For the UIC60 rail profiles, the curvature values for the rail profile points can be
obtained as shown in figure (5.3). The sudden change in the radius of curvature
of the rail head and rail corner causes sharp change in the curvature values. The
change in the radius of curvature causes a numerical problems in the calculation
of the normal contact forces using Hertz theory because of the change in the
curvature values in these regions is not smooth enough to ensure the continuity
in solution. This problem can be solved by using techniques for smoothing the
curvature values of the rail at the zones where the sharp change occurs. The
curvature values used in the simulation are plotted by the dashed line as seen
in figure 5.4.

The contact model data entry process includes the definition of the procedure
used in the solution of the normal and tangential contact problems. The normal
contact problem is solved in the proposed methodology explained in chapter 4,
based on Hertz theory. The required Hertz table is entered and registered to
the input data in the pre-processing step.

The tangential contact problem is solved by using three different methods: the
first method used in the simulation is the Kalker’s linear method [30], the me-
thod is based on linear creep force-creepages relation and the results obtained
by the method can be shown in the simulation results of the simplified Knife
edge model; the second method is based on the determination of the tangential
contact forces using FASTSIM algorithm [32], the model is used in the simula-
tion of Manchester Benchmark and the simulation of TGV 001 model as it will
be shown in the proceeding context; The last method used in the simulation
purposes in the presented work here is the algorithm proposed by Polach [47].
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Figure 5.4. Smoothed curvature values for the UIC60 rail profile

The use of different contact models shows the flexibility in the simulation tool
proposed in this work that permits the changes that made on the contact model
without making any changes in the main structure of the program.

5.2.2 Program flow chart

In the following figure (5.5), the general flow chart of the multibody program develo-
ped in this thesis is explained. Starting with the input data for the model figure (5.5-
a) all the required data for the program is entered and registered in organized struc-
tural way that permits the easy access to the data when it is necessary. As a second
stage the track parameterization step is defined as seen in figure (5.5- b), in which the
track segment if defined and all the kinematic parameters of the track are provides
depending on the position of the selected vehicle body. The rigid body analysed is
distinguished whether it is a wheelset or a bogie frame or a car body figure (5.5- c)
and search for the type of connection between them and calculate the corresponding
force associated to the connection type. The contact geometry is defined during the
calculation of the contact forces at the wheel-rail interface (5.5- d). The forces asso-
ciated to the coneection between each two rigid body is calculated in the next step,
figure (5.5- e). Finally the system of ODE is solved and the response of the system is
obtained (5.5- f).
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General Input Data File

1- Common input data
•Simulation time.
• Train Velocity.
• Number of :    - Bodies.

- Wheelsets.
- Reference frames. 
- Spring elements.
- Degrees of freedom.

• Spring stiffness and damping coeeficients.
• Topology of the connection points of the spring elements.
• Springs undeformed length. 
• External forces affecting the bodies in Track frame.
• External forces affecting the bodies in Fixed frame.

2- Input data of the Track pre-processing step
• The first stage length( straight stage).
• The second stage lenght (Transition curve).
• Third stage lenght ( Plane curve).
• Raduis of curvature of the Plane curve.
• Cant ht at the straight and plane curve stages.
• Initial position vector of each solid frame with respect to the coressponding Track frame.

3- Input data of solids which are not wheelsets
• Solid mass.
• Solid inertia matrix.
• Geometrical properties of the solid.

4- Input data of wheelsets
• Wheelset mass.
• Wheelset inertia matrix.
• Wheelset parameters of the solid .
• Properties of the contact used for the contact theory.
• Geometry Parameters of the wheel and rail profiles.

G.I.D.F

General Input Data File

1- Common input data
• Simulation time.
• Train Velocity.
• Number of :    - Bodies.

- Wheelsets.
- Reference frames. 
- Spring elements.
- Degrees of freedom.

• Spring stiffness and damping coeeficients.
• Topology of the connection points of the spring elements.
• Springs undeformed length. 
• External forces affecting the bodies in Track frame.
• External forces affecting the bodies in Fixed frame.

2- Input data of the Track pre-processing step
• The first stage length( straight stage).
• The second stage lenght (Transition curve).
• Third stage lenght ( Plane curve).
• Raduis of curvature of the Plane curve.
• Cant ht at the straight and plane curve stages.
• Initial position vector of each solid frame with respect to the coressponding Track frame.

3- Input data of solids which are not wheelsets
• Solid mass.
• Solid inertia matrix.
• Geometrical properties of the solid.

4- Input data of wheelsets
• Wheelset mass.
• Wheelset inertia matrix.
• Wheelset parameters of the solid .
• Properties of the contact used for the contact theory.
• Geometry Parameters of the wheel and rail profiles.

G.I.D.F

Figure 5.5. Multibody program flow chart- a
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Multibody program flow chart- b
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Multibody program flow chart- c
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Multibody program flow chart- d
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Multibody program flow chart- e
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5.2.3 Program run and extracted data

This section demonstrates the way that the dynamic analysis for a railway vehicle is
achieved by the developed simulation tool including the procedure used to introduce
the initial conditions before the program run. The analysis starts by the definition of
the data file, from where the program reads the model data. The initial conditions
were defined before the program runs. The velocity and the simulation time as well
as the time step for the integration are defined for starting the analysis. Velocity
and simulation time are provided to the intergrated solver of the program and the
solution is obtained in vector form providing the displacements and velocities for the
Multibody model of the analyzed vehicle. The extracted data from the simulation
tool include a vector containing the displacements and rotations of each rigid body in
the multibody model as well as the translational velocities and rotational velocities.
In the current work, the number of the rigid bodies are seven bodies, each body has
six D.O.F. As a sample of the extracted data from VIA simulation tool, we can define
the following output:

I Displacements

a) Longitudinal displacement in X-direction.

b) Lateral displacement in Y-direction.

c) Vertical displacement in Z-direction.

II Rotations

a) Roll angle presenting the rotation about X-axis.

b) Pitch angle presenting the rotation about Y-axis.

c) Yaw angle presenting the rotation about Z-axis.

III Velocities

a) The time derivative of the coordinates in the X, Y and Z direction.

b) The time derivative of the rotation angle of the bodies.

IV Compenetrations

a) Compenetration at the left wheel.

b) Compenetration at the right wheel.

V Normal contact forces

a) Normal contact force value for the left wheel.

b) Normal contact force value for the right wheel.

VI Creepages

a) Longitudinal creep.
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b) Lateral creep.

c) Spin.

VII Tangential forces

a) Longitudinal creep forces.

b) Lateral creep forces.

c) Spin creepage moment.

VIII Total lateral guiding force

IX Ratio between the Lateral and vertical forces for both wheels (Y/Q)

5.3 Testing the simulation tool using simplified contact

model

In the following section, the geometrical aspects of the track used in the simulation
will be presented, then a full description for the multibody model for the French TGV
001 vehicle used in the simulation is defined. The simplified contact model used in the
early testing of the simulation tool known in the bibliography as Knife edge model, is
presented here to be used in the simulation purposes. Then the obtained results for
a single bogie as well as the obtained results for a complete vehicle negotiating the
proposed track model, were presented in different simulation scenarios.

5.3.1 Transversal geometry of the designed track

Circular curve
with radius R = 1000 m

Straight Transition

X

Y

σ = 0 σ = 1000 σ = 1200 σ = 4300

Figure 5.6. Track segments data for the designed track

According to the methods used in the characterization of the track centerline explai-
ned in Chapter (4), the model used in current work consists of a straight segmentwith
a length of 1000m, followed by a transition curve connecting the straight line stage
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to the plane curve stage, with a length of 200m, then the plane curve stage which
presents the final stage in the designed track model having a length of 3000m. The
fixed frame of reference is located at the starting point of the transition curve stage
as it is illustrated in figure (5.6). For the complete definition of the track paramete-
rization step in this part, it is necessary to define the cant angle at each track stage,
for this issue we define the track height at the start and end of the track stage under
study as shown in figure (5.7)

Tangent
track

Transition
Curve

Circular Curve

Track Centerline

Cant

50× 10−3

0
σ(m)

Figure 5.7. Track Super-elevation Ramps

The track height for the straight curve stage is defined as ht,o = 0, and the maximum
height of the track is defined as ht,max = 50 × 10−3 m, taking into account that the
value of the equilibrium cant angle can be obtained from the equation

φeq = arctan(
V 2

Rg
) (5.1)

Where V is the velocity of the vehicle, R is the radius of curvature of the plane curve
stage, g is the gravitational acceleration.

5.3.2 Multibody model for TGV 001 vehicle

Front wheelset
(Rigid body)

Front bogie frame
(Rigid body)

Rear bogie
(Rigid body)

frame

Car body(Rigid body)

Rear wheelset
(Rigid body)

Figure 5.8. Three dimensional model of railway vehicle
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Generally, a railway vehicle consists of a collection of bodies and mechanical elements
moving along the track. In the analysis proposed in this work, it is supposed to deal
with only rigid bodies, then the car body, bogie frames, wheelsets figure (5.8) all are
treated as rigid bodies due to their high structural stiffness. The rigid bodies are
connected by means of spring elements. A schematic diagram shown in figure (5.9)
represents the rigid bodies connection presenting the multibody vehicle model used
in the dynamic analysis achieved in the developed work.
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Figure 5.9. Schematic diagram of the rigid bodies used in the dynamic analysis

According to the schematic diagram in figure(5.9), the car body is connected to the
bogie frames by means of suspension elements usually known as the secondary sus-
pensions. The bogie frames are connected to the wheelsets by means of other spring
elements defined as the primary suspensions. The forces applied to the wheelset are
transmitted upwards through the spring elements. The vehicle performance and dy-
namic behaviour are affected by the characteristics of these elements. According to
the three-dimensional model presenting the vehicle proposed here figure (5.8), it can
be shown that the model consists of 7 rigid bodies: one car body; couple of bogie
frames; four wheelsets. Each rigid body has a 6 DOF, which means that there is no
restrictions made for the movement of the body in whatever direction. The multibody
model used in the dynamic analysis of 7 rigid bodies is a 42 DOF model.
The system of reference of each rigid (Xs Ys Zs) is attached to the CM of the rigid
body. The number of the rigid body frame of reference used coincides with the num-
ber of the solids, and the number of track reference frames used is equal to the number
of the wheelsets. The track reference frame of the bogie is selected to coincide with
the track frame of the front wheelset of each bogie connection. For the car body, it is
considered to be represented with respect to the track frame of the frontal wheelset
attached to the front bogie frame. The position of each track frame is considered to
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be centred in the track between left and right rail at a height equal to the nominal
radius of the wheel profile. Then the initial position of the each body is given by the
location of its centre of mass CM with respect to the corresponding track frame of
reference.

To represent the geometry properties and other inertia parameters for the solids used,
each rigid body is identified with a number. This step is used to facilitate the analysis
implemented in the multibody program, as shown in figure (5.10)

7

1

ZZ

Z

XX

X

52364

Figure 5.10. Identification of the solids numbers

Table (5.1) depicts the inertia properties of the solids used in the multibody model

ID Rigid body Mass Inertia properties (kg.m2)

(kg) Roll(Jx) Pitch (Jy) Y aw (Jz)

1 Front wheelset Front bogie 1500 799,35 93,75 799,35

2 Rear wheelset Front bogie 1500 799,35 93,75 799,35

3 Front wheelset Rear bogie 1500 799,35 93,75 799,35

4 Rear wheelset Rear bogie 1500 799,35 93,75 799,35

5 Front bogie frame 3020 2130,912 4063,712 4063,712

6 Rear bogie frame 3020 2130,912 4063,712 4063,712

7 Car body 43200 69677,28 2430000 2430000

Table 5.1. Mass and inertia properties of rigid bodies

The initial position vector of each rigid body can be determined here by knowing the
initial position vector of the moving track frame with respect to the fixed or the glo-
bal frame of reference which assigned only the X-component representing the distance
covered by the rigid body on the track (σ). The initial position vector of the rigid
body frame of reference with respect to the corresponding track frame of reference as
shown in table (5.2).
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Corresponding I.P of the Track F.O.R I.P of the Solid F.O.R

ID Track F.O.R w.r.t the Fixed F.O.R w.r.t the Track F.O.R

(x) (y) (z) (x) (y) (z)

1 1 σ1 0 0 0 0 ro

2 2 σ2 0 0 0 0 ro

3 3 σ3 0 0 0 0 ro

4 4 σ4 0 0 0 0 ro

5 1 − − − x1 0 hb

6 3 − − − x2 0 hb

7 1 − − − x3 0 hc

Table 5.2. Initial position vectors of the rigid bodies

The values of σ1. . .σ4 indicate X-component of the position vector of the track frame
of refrences used in the simulation with respect to the fixed frame of reference. x1 is
the X-component of the position vector of the front bogie frame with respect to the
first track fram of reference. x1 is the X-component of the position vector of the Rear
bogie frame with respect to the third track fram of reference. hb represents the hight
of the CM of each bogie frame measured from the track plane. hC is the hight of the
CM of the car body measured from the track plane.
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Special elements

In addition to the geometry problems and the definition of the bodies used in the
model, there are some special elements that distinguish railway vehicle from other
multibody system application. In this part, the spring elements existing in the model
are selected, which presented by translational spring, damper and actuator. The
coefficients used in the formulation define the type of these elements to be linear
functions of the relative motion and velocity between the two connected bodies by the
spring elements numbered with a sequence shown in figure (5.11). The stiffness and
the damping coefficients are defined in table (5.4),for the spring elements connecting
the wheelsets with the bogie frames as it can be shown by spring topology table .(5.3)

Spring First Second

number body body

1 1 5

2 1 5

3 2 5

4 2 5

5 3 6

6 3 6

7 4 6

8 4 6

Table 5.3. Topology of the springs connecting the wheelsets with the bogie frames

FRONT
BOGIE FRAME

CAR BODY

REAR
BOGIE FRAME 1

2

9

12 10

11

3

4

5

6

7

8 YS

XS

Figure 5.11. Identification of the spring numbers connecting the rigid bodies forming the

TGV 001 vehicle
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Spring Stiffness (N.m) Damping Coeff. (N.s.m−1)

number kx ky kz cx cy cz

1 3.90× 107 7.85× 106 9.75× 105 0 0 1.08× 104

2 3.90× 107 7.85× 106 9.75× 105 0 0 1.08× 104

3 3.90× 107 7.85× 106 9.75× 105 0 0 1.08× 104

4 3.90× 107 7.85× 106 9.75× 105 0 0 1.08× 104

5 3.90× 107 7.85× 106 9.75× 105 0 0 1.08× 104

6 3.90× 107 7.85× 106 9.75× 105 0 0 1.08× 104

7 3.90× 107 7.85× 106 9.75× 105 0 0 1.08× 104

8 3.90× 107 7.85× 106 9.75× 105 0 0 1.08× 104

Table 5.4. Springs stiffness and Damping coefficients for elements connecting the

wheelsets with the bogie frames

The same for the spring elements connecting the car body with the bogie frames. The
connection topology and the coefficients values of the springs and dampers used can
be shown in the following tables

Spring First Second

number body body

9 5 7

10 5 7

11 6 7

12 6 7

Table 5.5. Topology of the springs connecting the bogie frame with the car body

Spring Stiffness (N.m) Damping Coeff. (N.s.m−1)

number kx ky kz cx cy cz

9 1.73× 105 1.73× 105 5.3× 105 0 3.5× 104 1.50× 104

10 1.73× 105 1.73× 105 5.3× 105 0 3.5× 104 1.50× 104

11 1.73× 105 1.73× 105 5.3× 105 0 3.5× 104 1.50× 104

12 1.73× 105 1.73× 105 5.3× 105 0 3.5× 104 1.50× 104

Table 5.6. Springs stiffness and Damping coefficients for elements connecting the bogie

frames with the car body
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5.3.3 Simplified contact model

The most complex part in conventional railway vehicles is the wheelset. The wheelset
used in the model is composed of two conical wheels rigidly connected by the wheel
axle. The wheelset-rail interaction used in the simulation is the Knife Edge model
defining the shape and type of the interaction between the two surfaces of the wheel
and rail profiles as it can be shown in figure (5.12).

Z

Y

g

r0

e0

Figure 5.12. Knife edge model of the wheel-rail interaction

To represent the contact points and determine the geometry of the contact as an im-
portant step in the contact problem, the geometric parameter and contact parameters
that represent the model used here in the simulation figure (5.13 ) can be obtained
from the following table.

Parameter Symbol Value Unite

Conicity angle γ 0.1 rad

Semi distance e0 0.75 m

Nominal radius r0 0.45 m

Poisson’s ratio of wheel material νw 0.25

Modulus of elasticity of wheel material Ew 2.10× 1011 Pa

Poisson’s ratio of rail material νr 0.25

Modulus of elasticity of rail material Er 2.10× 1011 Pa

Table 5.7. Geometry and contact parameters of the wheelset

The simplified model as described in the figure having the reference frame (X
¯

Y
¯

Z
¯
)

in the centre of mass of the axle and the parameters illustrated on the figure can be
defined as follow:
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Figure 5.13. Contact penetration produced from the movement of the wheelset

• e0: is the lateral distance from the wheelset reference associated to the centre
of mass of the axle frame to the nominal contact point

• r0: is the nominal radius of rotation.

• γ : is the conicity angle of the wheel.

• y : is the lateral displacement of the wheelset.

• z : is the vertical displacement of the wheelset.

• δ : is the amount of the approach between the wheel and rail surfaces.

• φ : is the angle of rotation about the longitudinal x-axis

• e1 : is the normal distance between the rolling radius r1 and center of mass.

• r1 : is the new left wheel rolling radius.

• r2 : is the new right wheel rolling radius.

By shifting the wheelset with a lateral distance y to the right, the position of the
centre of mass of the axle is now changed and another point of contact produced due
to the rotation of the axle about its centre with an angle of rotation φ about the
x-axis. Producing a change in the rolling radius for the left and right wheel as shown
in figure (5.13).

By this way the surfaces in contact are examined after making the lateral shift with a
displacement y and the rotation angle φ. By making a magnification for the contact
zone for the left wheel contact at point 1 and also the same for the right wheel contact
at point 2 as seen in figure (5.14).
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Figure 5.14. Contact penetration calculation for the left and right wheel

Left wheel

The contact geometry and amount of approach of the left wheel can be determined
by the following equations

e0 = y + e1 cosφ+ r1 sinφ (5.2)

− r0 = z + e1 sinφ− r1 cosφ + δ cos (γ + φ) + δ tan (γ + φ) sin (γ + φ) (5.3)

tan γ =
r1 − r0
e0 − e1

(5.4)

Right wheel

The same as the left wheel, we can find the approach of the right wheel by solving
the following set of equations

e0 = y − e2 cosφ+ r2 sinφ (5.5)

− r0 = z − e2 sinφ− r2 cosφ+ δ cos (γ − φ) + δ tan (γ − φ) sin (γ − φ) (5.6)

tan γ =
r0 − r2
e2 − e0

(5.7)

5.3.4 Simulation scenarios and obtained results

The bogie model used for the simulation, is a single bogie with two axels running
through the proposed track explained in section (5.3.1). The following section de-
monstrates the multibody model that consists of three rigid bodies: bogie frame;
front wheelset; rear wheelset. The primary suspensions connect the bogies to the
wheelset figure (5.15) comprise the following elements:
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1. Four springs.

2. Four dampers (vertical dampers).

Zs

Xs

XT

ZTZT

XT

ω ω

V

Figure 5.15. Single bogie frame used in the simulation

The following table shows the inertia properties of the bogie frame used in the simu-
lation. The multibody model of the bogie frame is numbered as it can be seen n the
table, where the ID number refers to identification of each rigid body as shown in
table (5.8).

ID Rigid body Mass Inertia properties (kg.m2)

(kg) Roll(Jx) Pitch (Jy) Y aw (Jz)

1 Front wheelset 1500 799,35 93,75 799,35

2 Rear wheelset 1500 799,35 93,75 799,35

3 Bogie frame 3020 2130,912 4063,712 4063,712

Table 5.8. Mass and inertia properties of a single bogie

5.3.4.1 Single bogie negotiating a straight track

The simulation condition for the bogie frame can be defined primary by the descrip-
tion of the track geometry defined in section (5.3.1). The fixed frame of reference
presenting the observer of the body is located at the point of the beginning of the
transition curve. The bogie figure (5.15) including the bogie frame as a rigid body
and two wheelsets, is located initially on the track without any initial misalignments
or rotations that may develop any initial disturbance in the results.

The bogie frame is studied at the conditions of forward velocity 20m/s. For the model
shown of the bogie, a dynamic analysis is made to study the dynamic response of the
bogie firstly moving through straight line section. The model exhibits stable response
during the motion when it is moving with a velocity of 20m/s. Then it is supposed
to change the forward velocity to higher values to study the instability of the model
and hunting motion produced during the simulation.
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Figure 5.16. Lateral displacement and yaw angle of front wheelset

Figure (5.16) shows the lateral displacement and the yaw angle of the first wheelset
of the bogie frame under study. An initial misalignment with a value of 1mm is given
to first wheelset, and it is noted that the system returns to its stable position after 10
seconds, also this can be noted in figure (5.17) representing the lateral displacements
of front and rear wheelsets.
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Figure 5.17. Lateral displacement of the front and rear wheelset of the bogie

It can be seen that the lateral displacement of the rear wheelset is shifted from the
frontal one with an amount representing the distance between the centre of mass of
the front wheelset and the rear wheelset.
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To study the instability of the system of the wheelsets, it is considered to increase the
velocity to 40m/s with the same value of the initial misalignment.
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Figure 5.18. Lateral displacement of front wheelset and rear wheelset

In figure (5.18) the lateral displacement of first and second wheelset, is increasing
with the time and doesn’t return to its stable position. This means that the system
exceeds the critical velocity entering to the instability stage.
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Figure 5.19. Lateral displacement and yaw angle of the bogie frame
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Figure (5.19) shows the lateral displacement and the yaw angle change for the bogie
frame as it represents a different type of analysis for a rigid body which is not wheelset.

5.3.4.2 Single bogie negotiating a curved track

The second scenario here in the simulation is defined for a bogie frame moving through
a curved track. It is necessary to define the transition curve stage connecting the
tangent track to the constant radius circular track. The transition curve stage here
taking the form of a clothoid curve with a length of 200m. The transition curve in
the current work is designed to connect the tangent track defined in the previous to
a canted curve with a constant radius equal to 1000m. The cant is designed here for
a velocity of 100m/s and the equilibrium cant angle can be defined by knowing this
velocity using equation (3.2).
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Figure 5.20. Lateral displacement of front and rear wheelset negotiating transition curve

stage

Figure (5.20) shows that the wheelset displaced toward the outer rail during the
motion of the through the transition curve stage. The wheelsets systems return to
the stability positions after they enter the constant radius circular curve stage. Figure
(5.21) and figure (5.22) show the change in the roll angle and the change in yaw angle,
respectively of both wheelsets during the motion in the curved tracks provided by the
used track segments in this work.

Figure (5.23) shows unstable response for the lateral displacement of the front wheelset
of the frontal bogie presented in the vehicle model.
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Figure 5.21. Yaw angle of the front and rear wheelset of the bogie frame
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Figure 5.22. Roll angle of the front and rear wheelset of the bogie frame

5.3.4.3 Complete vehicle negotiating straight track

The multibody program used for the simulation issue here, is applied for the case of
a complete railway vehicle figure (5.8), composed as it is shown, of two bogie frames
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Figure 5.23. Lateral displacement and yaw angle of the front wheelset of the front bogie

frame of the complete vehicle model

and a car body. Each bogie frame contains front and rear wheelset. The same analysis
is defined here to represent the dynamic response of the complete vehicle in different
simulation scenarios. Starting with the motion of the vehicle systems through tangent
track stage. The stability conditions for the motion are studied and with the increase
in the velocity produces unstable response of the vehicle.

5.3.4.4 Complete vehicle negotiating curved track

The same analysis made for a single bogie frame along the transition curve stage,
is applied here for the case of complete vehicle. The lateral displacements of the
wheelsets is determined for the front and rear wheelset attached to both front and
rear bogie frames. The behaviour of the 1st wheelset of the front bogie exhibits is
the same as the 3rd wheelset which attached to the rear bogie frame. As well as both
wheelset number 2 and wheelset number 4 of the vehicle, depict the same behaviour.

It is also clear that there is a shift between the response of each wheelset from the
first wheelset, this is because the wheelset enters the curved track primary and then
followed by the other wheelsets separated with the amount of time required to move
from the origin of the system of reference of the first wheelset to the following one.
The rear wheelset for the front and rear bogie frame, is shifted by a lower amount
than the front wheelset toward the outer rail during the motion in the curved track
traying to make the bogie centered to the track to stabilise the motion in curved
sections of the track.
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Figure 5.24. Lateral displacement of the wheelsets attached to the front and rear bogie

frames
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Figure 5.25. Yaw angle variation of the wheelsets attached to the front and rear bogie

frames

Figure (5.24) and figure (5.25) depict the lateral displacement and the yaw angle
change, respectively for the front and rear wheelset systems of the vehicle during the
motion through the transition curve.
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Figure 5.26. Roll angle change of front and rear bogie frames
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Figure 5.27. Roll angle change of car body

The same for the bogie frames and the car body, the change in the roll angle figure
(5.26) and figure (5.27), can be shown for both systems during the period covered by
the vehicle through the transition curve stage which extends to 10s, with a velocity
of 20m/s.
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5.4 Comparison with the Manchester Benchmark

The Manchester Benchmark was presented at the International Workshop Computer
Simulation of Rail Vehicle Dynamics at Manchester Metropolitan university. The
details of the vehicles and the track cases which form the Benchmark were presented
in the work published in [21]. Where two simple vehicles and four matching track
cases have been defined to allow the comparison between various computer simulation
packages being used to model the dynamic behaviour of railway vehicles. The results
of the simulation carried by these packages were presented afterwards in [22]. Simula-
tions using the Benchmark were carried out with VAMPIRE, GENSYS, SIMPACK,
ADAMS/Rail, MEDYNA and NUCARS.

In the presented work in this thesis, a comparison has been made between the results
obtained by the developed simulation tool “VIA” and those obtained by the different
packages used in modelling and simulation of the Manchester Benchmark.

Objectives:

• Investigating the capability and suitability of the VIA program to analyse the
dynamic behaviour of railway vehicles.

• Study the possibility of the use of the developed simulation tool in various
applications of the railway dynamic field.

In the following sections, a brief description for the vehicle used in the comparison
will be provided as well as a complete definition of the selected track case used in the
simulation.

5.4.1 Track case definition

In the Manchester Benchmark statement, four track cases were defined to run with the
Benchmark vehicle models, providing real situations to allow the accurate behaviour
to be seen in the simulation. The selected track case here, is the track case 1 [21, 22]
which was used to study the following:

• Predict the quasi-static curving behaviour.

• Predicting the risk of derailment on curved twisted track for a simple bogie
vehicle.

Geometrical description of the track

The chosen part of the track composed of straight track with a length of 50m, followed
by a 30m linear transition into a curve of 150m radius with 100mm cant and lasts
60m as shown in figure (5.28).
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Figure 5.28. Track case 1 for the Manchester Benchmark

The wheel and rail profile are the common S1002 wheel profile and UIC60 rail profile.
Track gauge is 1435mm and the inclination of the rail is 1:40.

The track input is specially designed to match the geometry of the Benchmark vehicle
1, and running with a constant velocity of 4.4m/s.

5.4.2 Benchmark Vehicle 1

There are two vehicle models defined by the Manchester Benchmark to present typical
vehicles that designers and researchers are using. Both vehicles do not represent
the actual vehicles and both models are as simple as possible in order to remove
ambiguities that can appear during the use of the model by each simulation package.

The selected model for the simulation purposes presented in the current work is the
Benchmark vehicle 1. The vehicle is a general passenger coach with two bogies and a
simple primary suspension, without the asymmetry and without yaw dampers. Based
on the ERRI B176 Benchmark vehicle, for more details about the vehicle specifications
see [21].

The obtained results were presented for Benchmark vehicle 1, providing complete
description of the dynamic behaviour of the vehicle during the run of the vehicle
along the defined track case 1, previously mentioned.

The results obtained are compared with those presented in the Benchmark published
results for the predicted behaviour of the vehicle 1 in the constant radius and super-
elevation part of the track case 1 running at a speed of 4.4m/s.

In this section the movement of the vehicle number 1 of the Manchester Benchmark
is analyzed, and a comparison has been made between the current results and those
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obtained by the different simulation packages which used to achieve the dynamic
analysis for the Benchmark vehicle [22]

The results obtained by the simulation tool VIA in the present work are presented by
the black colour line as seen in the following figures which show the results obtained
by different commercial packages used in simulating the Benchmark.

The comparison starts with the analysis of the lateral shift figure (5.29), of the first
wheelset attached to the front bogie. According to the results published in [22], there
is a slight difference between the values obtained for the lateral displacement of the
first wheelset by the different simulation packages, where it reaches a value of 7.818
mm by NUCARS program, towards the outside direction of the rails.

Figure 5.29. Manchester Benchmark Vehicle 1, Case1 -Lateral displacement of Wheelset 1

The value of the lateral shift obtained by VIA program for the first wheelset, in the
straight line stage has a zero value like the values obtained by the other simulation
packages. The lateral shift starts to increase toward the outside direction during the
negotiation of the vehicle the transition curve stage until it reaches a constant value
of 6.51mm in the quasi-static position reached in the constant radius curve stage.
The obtained value by SIMPACK for the lateral displacement of the first wheelset
6.53mm as it can be seen in figure (5.29).
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VIA SIMPACK VAMPIRE GENSYS ADAMS NUCARS

Lateral shift/m e-3 e-3 e-3 e-3 e-3 e-3

Wheelset 1 -6.510 -6.53 -7.5097 -7.747 -7.189 -7.818

Wheelset 2 6.400 8.04 7.6397 8.003 7.402 8.030

Wheelset 3 -6.500 -5.83 -6.8079 -6.974 -6.408 -7.141

Wheelset 4 5.900 7.36 7.0069 7.315 6.458 7.388

Table 5.9. Lateral shift of each wheelset relative to the track

Table (5.9) shows the lateral shift values obtained by the different simulation packages
used in the dynamic analysis of the Manchester Benchmark. The simulation results
carried out by VIA program are highlighted by gray colour as shown in the table. The
lateral displacement variation for the vehicle wheelsets obtained by VIA program are
presented in the figure below
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A comparison has been made between VIA program and the different simulation pa-
ckages for the values of the yaw angle of the first wheelset as shown in figure (5.31).
The obtained result shows a good agreement with the yaw angle value obtained by
SIMPACK program and with in the same range of the other commercial packages
values as it can be verified in table (5.10).

Figure 5.31. Manchester Benchmark Vehicle 1, Case1 - Yaw angle Wheelset 1

VIA SIMPACK VAMPIRE GENSYS ADAMS NUCARS

Yaw angle/rad e-3 e-3 e-3 e-3 e-3 e-3

Wheelset 1 -15.10 -15.740 15.8316 -16.06 -15.422 -15.773

Wheelset 2 1.30 -0.830 0.7849 0.51 1.129 0.852

Wheelset 3 -12.40 -13.790 -13.8581 -14.18 -13.458 -13.905

Wheelset 4 2.00 2.781 2.7692 2.42 3.08 2.726

Table 5.10. Yaw angle of each wheelset relative to the track
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Figure 5.32. Manchester Benchmark Vehicle 1, Case1 - Yaw angle for each wheelset

The following figure (5.33) shows the variation of the roll angle for each wheelset in
the selected track section of the Manchester Benchmark case 1
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Figure 5.33. Manchester Benchmark Vehicle 1, Case1 - Roll angle for each wheelset

The comparison between the results of VIA program and the simulation packages used
in the analysis of the Benchmark is extended to include the variation of the contact
forces during the simulation time. Figures (5.34) and (5.35), show the variation of
total lateral guiding forces affecting the left and right wheel of the first wheelset of



Simulation results 147

the vehicle number 1 during the track negotiation. The oscillations appeared in the
results in the beginning of the constant curve stage are due to the transitory effects
produced from the exit from the transition curve to the constant radius curve where
it can be seen that these oscillations were damped and disappeared in the rest of the
stage and the vehicle reaches a quasi-static equilibrium condition.

Figure 5.34. Manchester Benchmark Vehicle 1, Case1 -Total Lateral Guiding Forces:

Wheelset 1- Left wheel

Figure 5.35. Manchester Benchmark Vehicle 1, Case1 - Total Lateral Guiding Forces:

Wheelset 1- Right wheel
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Figure 5.36. Manchester Benchmark Vehicle 1, Case1 - Ratio of Lateral to Vertical

Forces: Wheelset 1, Left Wheel
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Figure 5.37. Manchester Benchmark Vehicle 1, Case1 - Ratio of Lateral to Vertical

Forces: Wheelset 1, Left and Right Wheel

One of the most important indicators of the derailment potential is the lateral/vertical
(Y/Q) force ratio at each wheel. Critical for the evaluation of the safety of a wheelset
to derailment. It can be estimated by measurement, by numerical simulation, and
also by an analytical quasi-static model [24]. This subject has been treated by many
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researchers whose work led, in particular, to some derailment criteria like those by
Nadal [42], Weinstock [63] and Elkins and Wu [14]. Figure (5.36) depicts the Y/Q
ratio for the outer wheel of the first wheelset of the vehicle number 1 of the Manches-
ter Benchmark. The obtained results for the Y/Q ratio calculated by VIA program
are identical to that calculated by the other simulation packages as it is illusterated
in the presented comparison. While figure (5.37) shows the Y/Q ratio for the outer
and inner wheel respectively of the first wheelset of the vehicle 1.

VIA VAMPIRE GENSYS SIMPACK ADAMS NUCARS

Longitudinal force/N e3 e3 e3 e3 e3 e3

(Left wheel)

Wheelset 1 9.581 2.9643 2.357 2.87 4.6 2.652

Wheelset 2 -20.572 -15.763 -15.915 -16.89 -15.68 -15.685

Wheelset 3 10.487 1.5244 0.877 3.676 3.28 1.398

Wheelset 4 -20.142 -16.799 -16.958 -18.39 -17.13 -16.856

Longitudinal force/N

(Right wheel)

Wheelset 1 -11.950 -3.0732 -3.466 -3.548 -4.8 -3.811

Wheelset 2 20.109 15.2873 15.897 16.562 15.51 15.42

Wheelset 3 -12.261 -1.6562 -1.721 1.818 -3.49 -2.291

Wheelset 4 10.950 16.5176 16.876 18.054 16.98 16.57

Lateral force/N

(Left wheel)

Wheelset 1 32.453 31.2595 -31.330 32.667 29.68 30.538

Wheelset 2 2.8694 1.5463 1.177 1.571 1.2 1.519

Wheelset 3 19.860 18.9030 19.306 -20.737 17.57 18.692

Wheelset 4 5.448 4.1225 3.688 -4.241 3.8 3.999

Lateral force/N

(Right wheel)

Wheelset 1 -19.172 -22.6180 -22.480 -23.312 -21.93 -22.055

Wheelset 2 -19.811 -21.1322 -21.340 -22.247 -20.38 -21.269

Wheelset 3 -21.246 -24.8774 -24.724 -25.400 -23.99 -24.526

Wheelset 4 -4.888 -10.1868 -20.195 -11.535 -9.28 -9.856

Vertical force/N

(Left wheel)

Wheelset 1 -59.987 -54.4773 -53.740 55.42 -53.80 -54.811

Wheelset 2 -45.606 -39.8973 -40.150 -41.046 -39.67 -39.745

Wheelset 3 -54.146 -49.3711 -49.110 50.895 -49.23 -49.799

Wheelset 4 -47.203 -44.0811 -44.180 45.336 -44.00 -44.193

Vertical force/N

(Right wheel)

Wheelset 1 -48.526 -54.8336 -55.530 -53.728 -55.25 -54.506

Wheelset 2 -65.320 -68.5845 -68.62 -67.597 -69.14 -69.399

Wheelset 3 -53.374 -59.2295 -59.530 -57.989 -59.66 -59.34

Wheelset 4 -64.486 -65.3854 -64.930 -63.778 -64.95 -64.804

Table 5.11. Forces at each wheel

Table (5.11) provides the obtained values by VIA program for the forces at each wheel,
of the rest of the Manchester vehicle number 1 wheelsets, compared with the results
obtained by the other packages. The following figures demonstrate the obtained re-
sults of the forces on the rest of the vehicle wheelsets.
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Figure 5.38. Manchester Benchmark Vehicle 1, Case1 - Longitudinal force: Wheelset 1,

Left and Right Wheel
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Figure 5.39. Manchester Benchmark Vehicle 1, Case1 - Longitudinal force: Wheelset 2,

Left and Right Wheel
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Figure 5.40. Manchester Benchmark Vehicle 1, Case1 - Longitudinal force: Wheelset 3,

Left and Right Wheel
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Figure 5.41. Manchester Benchmark Vehicle 1, Case1 - Longitudinal force: Wheelset 4,

Left and Right Wheel
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Figure 5.42. Manchester Benchmark Vehicle 1, Case1 - Lateral force: Wheelset 1, Left

and Right Wheel
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Figure 5.43. Manchester Benchmark Vehicle 1, Case1 - Lateral force: Wheelset 3, Left

and Right Wheel
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Figure 5.44. Manchester Benchmark Vehicle 1, Case1 - Lateral force: Wheelset 4, Left

and Right Wheel

0 20 40 60 80 100 120 140
−80

−75

−70

−65

−60

−55

−50

−45

−40

−35

−30

−25

Distance Along Track (m)

N
or

m
al

 F
or

ce
 (

kN
)

 

 

WS1−Left wheel
WS1−Right wheel

Figure 5.45. Manchester Benchmark Vehicle 1, Case1 - Normal force: Wheelset 1, Left

and Right Wheel
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Figure 5.46. Manchester Benchmark Vehicle 1, Case1 - Normal force: Wheelset 2, Left

and Right Wheel
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Figure 5.47. Manchester Benchmark Vehicle 1, Case1 - Normal force: Wheelset 3, Left

and Right Wheel
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Figure 5.48. Manchester Benchmark Vehicle 1, Case1 - Normal force: Wheelset 4, Left

and Right Wheel

5.5 Application and comparison with SIMPACK pro-

gram

SIMPACK was developed by German Aerospace Research Organisation DLR and as
it was intended for road vehicles and other systems as well as rail vehicles it allowed
nonlinear kinematics from the start [24]. The equations of motion are formulated in
terms of relative coordinates and can be generated symbolically and numerically in an
implicit and explicit form. During the stay abroad distance realised in the Politecnico
di Milano, as a part of the presented work and as a continuation for the procedure
followed to validate the results of the simulation tool VIA.

Building the model by SIMPACK and realization of the simulation is achieved by
following three main steps: 1) Pre-Processing; 2) Processing; 3) Processing. In the
following context each process is explained separately in details

1) Pre-Processing

In the definition of the Pre-Processing step, a procedure is followed to define the
model and the operating conditions before starting the simulation including the
next points

• Track definition

An important step in the model building is the definition of the track. The
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SIMPACK definition of track alignment modelling element is used to describe
the geometry of railway or road vehicle tracks in three dimensional space.
Standard track model number 13 is used for the designed track in the current
work. The following data is provided to the program to completely define the
track properties:

- Length of Straight Track.

- Length of Transition Track.

- Radius, End of Transition Track.

- Super-elevation, End of Transition Track.

- Reference Length for Super-elevation.

- Length of the Circular Arc.

- Total Track Length.

• Body Definition

A complete model for the TGV 001 vehicle described in section (5.3.2). The
model is built in SIMPACK environment as it can be shown in figure (5.49).

Figure 5.49. TGV0 01 car model in SIMPACK environment

All the inertia properties of the bodies forming the vehicle model are intro-
duced to complete the body definition phase. The wheel and rail profiles are
defined as the standard profile UIC60 for the rail and S1002 for the wheel for
both left and right side. The wheel nominal radius is adjusted in according
to the radius used for the model defined in VIA program, as well as the semi
distance between the nominal contact points.
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• Joints Definition

All the joints defined are associated to railway joint type. The solution of
the contact problem includes the definition of the contact model and contact
approach used in the simulation. The following figure (5.50) illustrates the
main aspects of the definition of the contact models in SIMPACK program.

Figure 5.50. Contact Models in SIMPACK

The selected contact model, as it is highlighted in the previous figure with
gray colour, is a multipoint contact model that permits the definition of all
possible contact points that can be detected during the simulation, up to 3
contact points per wheel: tread, flange and flange2/back of wheel as seen in
figure (5.51)

Figure 5.51. Divisions of the wheel profile
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The elastic approach is selected to define the contact element type as it is
illustrated in the previous figure (5.50). Finally the evaluation is selected to
be on line evaluation to be in agreement with the procedure followed by VIA
program. Finally and for the complete definition of the contact problem, the
default method: Simplified theory of Kalker (FASTSIM) [32], is selected for
the calculation of the tangential contact forces with a constant coefficient of
friction equal to 0.45.

• Force Elements

The force elements here refers to the primary and secondary suspension ele-
ments. The selected element type 05: spring/damper parallel compact (Cmp)
is used for definition of the force type.

2) Processing

Online time integration is used to solve the system equation of motion. The
simulation time step is adjusted to 10−2s. The velocity is adjusted the same like
the simulation speed of 25.6m/s provided to VIA program and the total simulation
time is adopted to 15s, then the calculation started by the provided conditions.

3) Processing

The processing step deals with the final result plotting and extracted data from
the simulation. The SIMPACK program offers a detailed results for each body
forming the multibody model in the railway vehicle. An important part in the
extracted results related to the wheel-rail data which can be summarised in the
following:

- Wheelset lateral position in track

- Wheelset yaw angle .

- Creepage (longitudinal, lateral, spin).

- Normal force N, traction forces.

- Traction coefficients.

- Wheel forces Y, Q.

- Frictional power P.

- Contact point coordinates on wheel/on rail.

- Longitudinal contact point shift.

- Semi-axes a, b of the Hertzian ellipse.

- Area of the Hertzian ellipse.

- Ratio of the semi-axes a/b.
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- Current Kalker coefficients C11, C22, C23.

As a continuation for the procedure followed to validate the obtained results from VIA
simulation tool developed in the current work, a comparison is made for the simulation
data obtained from VIA program and the data from SIMPACK commercial package
for railway analysis, for a the TGV 001 vehicle model. The multibody model of the
vehicle is built as it is explained in chapter (4). The results obtained for a vehicle
model negotiating the designed track are explained in section (5.3.1). The vehicle wsa
located on the track to run 100m of the straight line stage of, followed by a transition
stage of 200m connecting the the straight stage to a plane curve stage with a constant
radius of 1000m.

The obtained results form VIA program are presented in solid lines in the following
figures and on the other hand the SIMPACK results are presented by means of dashed
lines as seen in the following section.
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Figure 5.52. Lateral shift of the leading and trailing wheelsets of the front bogie for a

forward velocity of 25.6m/s, using VIA and SIMPACK simulation tools

Figure (5.52) presents the comparison between the lateral shift value obtained by VIA
and SIMPACK for the first and second wheel set of TGV 001 vehicle. The value of
the lateral displacement of the first wheelset obtained by the developed simulation
tool is very similar to that obtained by SIMPACK because the lateral shifting process
is limited by the flange contact and it reaches a maximum value in the quasi-static
position reached in the constant radius curve stage.

As shown in both figure (5.52) and figure (5.53), the lateral shift value for the trailer
wheelset is always lower than the value reached by the leading wheelset as the trai-
ling is always trying to keep the bogie frame centred to the track during the curve
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Figure 5.53. Lateral shift of the leading and trailing wheelsets of the rear bogie for a

forward velocity of 25.6m/s, using VIA and SIMPACK simulation tools

negotiation.

0 50 100 150 200 250 300 350
−30

−25

−20

−15

−10

−5

0

5

10

Distance Along Track (m)

La
te

ra
l V

el
oc

ity
 (

m
m

/s
)

 

 

←  Transition ←  Circular curve

WS1−VIA
WS2−VIA
WS1−SIMPACK
WS2−SIMPACK

Figure 5.54. Lateral velocity of the leading and trailing wheelsets of the front bogie, using

VIA and SIMPACK simulation tools

Figure (5.54) as well as figure (5.55) shows the lateral velocity of the leading and
trailing wheelset conected the fornt and rear bogie frame, respictively. The obtained
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Figure 5.55. Lateral velocity of the leading and trailing wheelsets of the rear bogie, using

VIA and SIMPACK simulation tools

results by VIA show a good agreement for the velocity values with that obtained
by SIMPACK, Except for the oscilations produced in the exite from the transition
curve stage to the constant curve stage due to the oscilation in the contact position
detection in each stage.
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Figure 5.56. Yaw angle variation for the leading and trailing wheelsets of the front bogie,

using VIA and SIMPACK simulation tools
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In figure (5.56) a comparison between the obtained values for the yaw angle variation
of the front and rear wheelset of the front bogie frame, is presented. These results
obtained by both VIA and SIMPACK program for a forward velocities of 25.6m/s for
a vehicle running through the track are presented in section (5.3.1).
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Figure 5.57. Yaw angle variation for the leading and trailing wheelsets of the rear bogie,

using VIA and SIMPACK simulation tools

Figure (5.57) depicts the variation in the yaw angle for the font and rear wheelset
of the rear bogie frame. Another aspect shown in both figures is that the values of
yaw angle of the rear wheelsets is lower than the yaw angle for the front wheelsets.
As it was mentioned that the rear wheelset keeps the bogie in stable running during
the movment in curved tracks. It is evident that the leading wheelset reaches to a
maximum value for the yaw angle in the constant curve stage as the motion is limited
by the flange contact.
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Figure 5.58. Yaw velocity variation for the leading and trailing wheelsets of the front

bogie, using VIA and SIMPACK simulation tools
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Figure 5.59. Yaw velocity for both wheelsets attached to the rear bogie frame, using VIA

and SIMPACK simulation tools

Figures (5.58) and (5.59 ) present the change in the yaw velocity for the leading and
trailing wheelsets of the front and rear bogie frames respectively.
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Figure 5.60. Roll velocity for the first and second wheelsets
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Figure 5.61. Lateral velocity of the front and rear bogie frames

The plots (5.61) and (5.62) correspond to the dynamic analysis performed with initial
forward velocity of 25.6m/s. The figures present the variation in the yaw as well as
tha roll velocity, respictively of both bogie frames of the TGV 001 vehicle.

In the beginning of the constant radius curve stage, decaying oscillations are observed
during the oscillatory changes of the contact forces. The oscillations are decreased
directly as a result of the vehicle stability by reaching quasi-static equilibrium in the
constant curve stage.
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Figure 5.62. Yaw velocity of the front and rear bogie frames
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Figure 5.63. Longitudinal creep forces on the left and right wheels of the leading wheelset

attached to the front bogie, using VIA and SIMPACK simulation tools

In figure (5.63), the longitudinal contact forces on the left and right wheelset of the
leading wheelset are presented. The results are in close agreement with obtained
results for the simulation carried out by SIMPACK package. The longitudinal forces
affecting the right wheel has the highest value as the outer wheel is always subjected
to higher creep values during the curve negotiation
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Figure 5.64. Lateral guiding foces on the left wheel(L.W) and right wheel(R.W) of the

leading wheelset for a forward velocity of 25.6m/s, using VIA and SIMPACK simualtion

tools

Figure (5.64) depicts the comparison between the lateral creep forces obtained by
VIA and SIMPACK simulation tools. The leading wheelset always is focused as it is
subjected to high lateral guiding forces negotiating the track, and these results are in
agreement with the literatures[4, 24].

5.6 Application of Polach contact model

In the work presented, FASTSIM model is used for the calculation of the tangential
forces. In the following section, Polach contact model is introduced in the Multibody
simulation tool (VIA) proposed in the current work to replace the FASTSIM model.
The objective for the application of different model for the calculation of the tangential
forces is proposed to demonstrate the flexibility of the simulation tool to replace the
contact model and use others without the need for any modifications in the main
structure of the Multibody program used in the dynamic analysis of railway vehicles.

The comparisons between the results obtained using FASTSIM and Polach model are
presented in the following figures, starting by the displacements and ending by the
variation in the contact force calculation.
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←  Transition ←  Circular curve

WS1−FASTSIM
WS2−FASTSIM
WS1−Polach
WS2−Polach

Figure 5.65. Lateral shift of the leading and trailing wheelset of the fornt bogie for a

forward velocity of 25.6m/s, using FASTSIM and Polach models

In figure (5.65) the lateral shifts of the leading and trailing wheelset attached to the
front bogie frame of the TGV 001 vehicle are presnented. The results correspond to
a vehicle moving with a velocity of 25.6m/s, being the contact forces calculated by
FASTSIM and Polach creep force models. In the results, there is a good agreement
between both models for used in the determination of the tangential contact forces.
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Figure 5.66. Lateral shift of the leading and trailing wheelset of the rear bogie for a

forward velocity of 25.6m/s, using FASTSIM and Polach models
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Figure (5.66) depicts the variation in the lateral shift of the third and fourth wheelset
of the vehicle negotiating the designed track. The results obtained by both models
applied for the calculation of the tangential forces show a good agreement with each
otheres as well as a good agreement with the obtained results by the simulation carried
out using SIMPACK at the same operation conditions.
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Figure 5.67. Yaw angle variation for the leading and trailing wheelset of the fornt bogie

for a forward velocity of 25.6m/s, using FASTSIM and Polach models
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Figure 5.68. Yaw angle variation for the leading and trailing wheelset of the rear bogie for

a forward velocity of 25.6m/s, using FASTSIM and Polach models
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←  Transition ←  Circular curve
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Figure 5.69. Longitudinal creep forces on the left and right wheels of the leading wheelset

attached to the front bogie, using FASTSIM and Polach models
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←  Transition ←  Circular curve
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Figure 5.70. Lateral creep forces on the left and right wheels of the leading wheelset

attached to the front bogie, using FASTSIM and Polach models

Figures (5.70) and (5.69) correspond to the dynamic analysis carried out for the
TGV 001 vehicle model presented in section (5.3.2). The normal contact forces are
calculated through Hertz model. The creep forces are calculated by two creep force
law applied in the anlysis FASTSIM as well as Polach.

The obtained results show a close agreement with the obtained results by the FAST-
SIM creep model and Polach model as the spin creepage is not taken into account in
the calculation of the creep forces.





Chapter 6

Conclusions and Future works

6.1 Conclusions

In the presented work, a computational tool used for the dynamic analysis of railway
vehicle systems is developed using multibody system formulation. These techniques
of multibodies permit the precise analysis large displacements between the solids that
compose the railway vehicle systems without the need of linearization such as in
vibration methods. The simulation tool used in the dynamic analysis railway systems
is developed in MATLAB environment.

In order to integrate all the relevant characteristics inherent to railway systems, some
special capabilities are implemented in the multibody code. The presented develop-
ments include a methodology used in the parameterization of the track without taking
the effect of track irregularities into account. An efficient wheel-rail contact model
developed by the investigation group is proposed and implemented in order to detect
the location of the contact points online during the dynamic simulation with high
precision. The contact model not only capable of the detection of multiple contact
points, but also it has a high computational efficiency.

The mathematical model of the proposed code is created using multibody formulation.
Independent coordinates are used to define the general motion of a three dimensional
rigid body forming a component of the multibody system. Cartesian coordinates are
implemented in order to be easily used in the formulation of the developed multibody
code.

The equations of motion of the multibody system are obtained for non constrained
systems by means of Lagrange’s principles which is used to determine the equation
of motion of a rigid body. The solution of the algebraic set of equations are avoided
as there is no kinematic constrained applied for the multibody system.

In the dynamic analysis of the railway vehicles, the description of the track model is
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required. In the presented work, the track centreline is parameterized using analytical
segment approach which depends on the formation of the track using different seg-
ments interconnected by transition curves. The designed track in this thesis- without
loss of generality- is composed of straight line segment connected to circular curve
with constant radius, by means of a transition curve of Clothoid type.

An efficient methodology is implemented in the multibody code to accurately de-
tect the coordinates of the contact points. the wheel-rail contact model used in the
presented work, is based on the virtual interpenetration between the wheel and rail
surfaces. The intersection between the wheel and rail profiles is reduced into the so-
lution of the intersection problem between a straight line and conical segment, where
the wheel profile is presented as a conical segment produces from the revolution of the
wheel profile points about the axis parallel to the contact plane, and the rail profile
is obtained as an extrusion of the rail profile points along the direction of motion.

By knowing the relative motion of the wheel with respect to the rail, a set of nonlinear
equations areas are solved to find the points of intersection of the rail straight line
with the wheel conical segments. By this way the contact area is defined by set of
longitudinal strips produces by the solution of the geometrical contact problem at the
wheel-rail interface

The wheel-rail contact forces play a crucial rule in the vehicle dynamic behaviour.
In the presented work, the normal contact force is calculated using Hertz normal
contact model. On the other hand, the tangential contact problem is solved by means
of three creep force laws implemented in the multibody code ,namely: Kalker linear
theory; FASTSIM algorithm and Polach nonlinear creep force law. The use of dif-
ferent creep force models depicts the flexibility of the simulation tool in realizing
important changes on the contact model without the need of making changes on the
main structure of the developed code.

The developed simulation tool VIA is applied to different case tests in order to validate
the obtained results as well as the determination of the suitability of the proposed
methodology to achieve different type of analysis on railway systems. For this issue,
the VIA simulation tool is used to analyze the dynamic behaviour of the Manchester
Benchmark vehicle number one, negotiating track case number one. The obtained
results show a good agreement with the results obtained by the commercial packages
used in the analysis of the Benchmark.

A comparison has been made between the obtained dynamic results produce from the
simulation tool VIA for TGV001 locomotive vehicle in different operating scenarios,
and the results obtained during my exchange period realized in the Politecnico di
Milano, obtained by SIMPACK program. The results demonstrate good agreement
between both simulation tools at the same operating conditions.

The developed simulation tool presented in this thesis is designed in a flexible form
that permits the possibility to change and realize modifications taking into account
the following aspects:
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• The adaptation of the multibody formulation to railway systems in such form
that linearizations which correspond to the rotation of the systems forming the
vehicle is not included in the methodology proposed.

• Modelling the wheel-rail contact problem based on the virtual interpenetration
between the wheel and rail surfaces.

By this way it is possible to present an adopted model used in the dynamic analysis of
low frequency range. The proposed assumptions are the same assumptions adopted
by other commercial simulation packages like: SIMPACK, VAMPIRE, GENSYS. The
implementation of such assumptions in the developed simulation tool in this thesis
permits the application of new models and realization of important modifications like:

• The possibility of modelling and implementation of real wheel-rail contact mo-
dels such as non Hertezian models.

• The possibility of modelling and implementation of flexible tracks as well as the
implementation of bridge structures as the coupling between the vehicle equation
of motion and structure equation of motion is achieved by the transmitted forces
between both systems.

The simulation tools developed for low frequency range present an important utility
in the development of railway systems. The developed work in the thesis presents
the beginning of transferring process of the new technologies in the railway sector
from Spain to Egypt, and this was a principle motivation in the development of the
presented work and at the same time the ability of implementation of new developed
models developed by the research group in Valencia Technical University such as

• The implementation of flexible track models that consider the track dynamic
structure [6, 7] at the required frequency range.

• The implementation of the flexibility of the wheelset [9, 62]. As it is considered
as a fundamental tool in the study of the wheel flat problem as well as rail
corrugation.

• The implementation of advanced wheel rail contact models. For the calculation
of the normal force non Hertzian contact models are of interest, and on the
other hand the use of instationary contact models [8] for the tangential contact
force calculation.
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6.2 Future developments

The development of advanced railway vehicles is a complex research field that requires
new ideas and novel design solutions. So the future work in the field of railway
dynamics will not finish comparing with the large challenges can be faced by the
research efforts in the enhancement of passenger comfort and rapid transportation
using railway transportation methods. But the future work proposed by the end of
this work for the improvement of the vehicle models and enhancement methodologies,
can be summarized in the following points

• The use of a flexible multibody approach, in which the vehicle components can
be modelled as flexible bodies, can be an alternative technique to be used in the
future.

• The inclusion of nonlinear spring elements, with defined stiffness characteris-
tics and clearance, could lead to important improvements when modelling the
primary and secondary suspension elements.

• The use of advanced techniques for the calculations of the wheel-rail interaction
problem, including the non Hertzian contact models.

• The inclusion of track flexibility, and the coupling between the vehicle model
and track structure model.



Appendix A

Kinematic and Dynamic

Background

A.1 Introduction

In this appendix, all the matrices used in the mathematical formulations of the mo-
dels used in the kinematic presentation of the wheelset and general solid body, are
presented with accurate description for all the identities and variables used in each.
The calculation of each transformation matrix used in the formulation is explained in
this part, its time derivative is also derived, detailed description for the and inertia
matrices of the solids are also included.

A.2 Rotation matrix

A.2.1 Rotation matrix definition

In multibody systems, the components may undergo large relative translational and
rotational displacements. To define the configuration of a body in the multibody
system in space, one must be able to determine the location of every point on the
body with respect to a selected inertial frame of reference. To this end, it is more
convenient to assign for every body in the multibody system a body reference in which
the position vectors of the material points can be easily described. The position vec-
tors of these points can then be found in other coordinate systems by defining the
relative position and orientation of the body coordinate system with respect to the
other coordinate systems. Six variables are sufficient for definition of the position
and orientation of one coordinate system Xi Yi Zi with respect to another coordinate
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system X Y Z. As shown in figure (A.1), three variables define the relative transla-
tional motion between the two coordinate systems. This relative translational motion
can be measured by the position vector of the origin Oi of the coordinate system Xi

Yi Zi with respect to the coordinate system X Y Z. The orientation of one coordi-
nate system with respect to another can be defined in terms of three independent
variables[57].

Z

Zi

Y

Yi

O

X

Xi

Oi

Figure A.1. Two different coordinate systems X Y Z and Xi Yi Zi

A.2.2 Derivation of the rotation matrix

There are several formulations used to represent the rotation matrix such as Rodriguez
formula ,Euler parameters and finally Euler angles formulations. These forms are
used to determine the rotation matrix and here we use the last method depending on
the definition of Euler angles representing the required transformation

A.2.3 Euler angles

The third formulation that can be used for the representation of the rotation matrix
is using Euler angles. These angles are used to carry out the transformation from
one coordinate system to another using successive rotations performed in a known
sequence. Furthermore these angles used to determine the successive rotations about
three axes which are not orthogonal in general, so we consider the coordinate system
Z,Y and X, which represent our global frame of reference and we will show the rotation
matrices produced from rotation about X-axis with an angle θx, which can be defined
in the railway application field by the an angle φ which represent the cant angle,
rotation about Y-axis with angle θy that can be defined in the railway application
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by the pitch angle θ, and finally rotation about Z-axis with an angle θz that can be
defined in the railway application by the angle of attack ψ.

A.2.4 Basic rotations

As it was introduced the orientation of a body in the space may be defined by knowing
the rotations made by the body with respect to the spatial coordinates. In the follo-
wing part the rotation matrices about the main spatial coordinates are represented.

A.2.4.1 Rotation about X-axis

In notations used in the following context we will define the rotation matrix with the
symbol Ai, where i represents the corresponding axis of rotation (i.e i = x, y, and
z). The rotation matrix produced from the rotation about X-axis with an angle θx,
figure (A.2), can be defined as

Ax =







1 0 0

0 cos θx −sin θx

0 sin θx cos θx






(A.1)
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x

x

q

q

Figure A.2. Rotation about X-axis with angle θx

A.2.4.2 Rotation about Y-axis

The rotation matrix produced from the rotation about Y-axis with an angle θy figure
(A.3), can be defined as
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Ay =







cos θy 0 sin θy

0 1 0

−sin θy 0 cos θy






(A.2)
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Figure A.3. Rotation about Y-axis with angle θy

A.2.4.3 Rotation about Z-axis

The rotation matrix produced from the rotation about Z-axis with an angle θz figure
(A.4), can be defined as

Az =







cos θz − sin θz 0

sin θz cos θz 0

0 0 1






(A.3)
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Figure A.4. Rotation about Z-axis with angle θz

A.3 Successive rotations

In this part we will represent the final rotation matrix produced from a known se-
quence of successive rotations, here in this part we should have to know that there
are two procedures for the representation of the successive rotations, the first called
single-frame method and the other is called multiframe method.

A.3.1 Single-frame method

In this method fixed frame of reference is defined and after each rotation we define
the rotational axes and the unite vectors with respect to the fixed coordinate system.
Now if we consider a set of consecutive rotations using the following rotation angles
θ1, θ2... θn about the unite vectors v1, v2... vn respectively, the rotation matrices
produced after each rotation can be calculated using any formulation from the men-
tioned methods used to derive the rotation matrix and denoted as A1, A2... An .
After n successive rotations we can calculate the final transformation matrix as

A = AnAn−1...A2 A1 (A.4)

Where A1 is equal to the identity matrix.

A.3.2 Multiframe method

This method can be discussed by this simple example. Consider that the body shown
in figure(A.5) is subjected to two successive rotations, the first rotation is with an
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angle θ1 about Y-axis producing the configuration of coordinates shown in position(2),
and the second rotation with an angle θ2 about Z-axis producing the configuration of
the coordinate system shown in position(3).The orientation of coordinate system of
position(2) with respect to coordinate system shown in position(1) can be described
by defining the matrix A21, also the orientation of the coordinate system shown in
position(3) with respect to the coordinate system shown in position(2) by defining
the matrix A32. Where n is the number of position

A.4 Transformation matrices

It is the matrix required to present the different identities such as the kinematics
identities and the dynamic identities of a specified reference system with respect to
another frame of reference .

A.4.1 Track transformation matrix

This matrix is the matrix required to transform from the track reference frame to the
global reference frame and it is calculated here by making three consecutive rotation,
first rotation about Z-axis and then about Y-axis and finally about X-axis

A = AzAyAx (A.5)

A =







cos θz cos θy − sin θz cos θx + cos θz sin θy sin θx sin θz sin θx + cos θz sin θy cos θx

sin θz cos θy cos θz cos θx + sin θz sin θy sin θx − cos θz sin θx + sin θz sin θy cos θx

− sin θy cos θy sin θx cos θy cos θx







(A.6)
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Y
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Z
Z

Position(1) Position(2) Position(3)

Figure A.5. Successive rotation of a solid body about its reference coordinates
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A.4.2 Solid transformation matrix

This matrix is the matrix required to transform from the track reference frame to the
solid reference frame and it is calculated here by making three consecutive rotation,
first rotation about Z-axis and then about X-axis and finally about Y- axis.

B = Bz BxBy (A.7)

B =







cos θz cos θy − sin θz sin θx sin θy − sin θz cos θx cos θz sin θy + sin θz sin θx cos θy

sin θz cos θy + cos θz sin θx sin θy cos θz cos θx sin θz sin θy − cos θz sin θx cos θy

− cos θx sin θy sin θx cos θx cos θy







(A.8)

A.4.3 Intermediate transformation matrix

This matrix is the matrix required to transform from the track reference frame to the
intermediate reference frame and it is calculated here by making three consecutive
rotation, first rotation about Z-axis and then about X-axis.

B = Bz Bx (A.9)

Bzx =







cos θz − sin θz cos θx sin θz sin θx

sin θz cos θz cos θx − cos θz sin θx

0 sin θx cos θx






(A.10)

A.5 Angular velocity matrices

A.5.1 Absolute angular velocity matrix

ω = τ +Lθ̇ (A.11)

where τ is the absolute angular velocity of the track and it can be calculated knowing
the value of the angular velocity τ̄ represented in the track reference frame. The value
of τ̄ can be calculated by defining the skew symmetric matrix of the track angular
velocity vector represented in the track reference frame ˜̄τ .
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A.5.2 Skew symmetric matrix of the track angular velocity
vector

˜̄τ = AT Ȧ (A.12)

˜̄τ =







0 − cos θy θ̇z cos θx + sin θx θ̇y cos θy θ̇z sin θx + cos θx θ̇y

cos θy θ̇z cos θx − sin θx θ̇y 0 −θ̇x + sin θy θ̇z

− cos θy θ̇z sin θx − cos θx θ̇y θ̇x − sin θy θ̇z 0







(A.13)

A.5.3 Track angular velocity vector represented in track frame

τ̄ =







θ̇x − sin θy θ̇z

cos θy θ̇z sin θx + cos θx θ̇y

cos θy θ̇z cos θx − sin θx θ̇y






(A.14)

A.5.4 Absolute relative angular velocity of the solid

The value of the matrix L depends on the rotation sequence. It represents the matrix
that relates the absolute angular velocity vector of the rigid body defined in the
global reference frame to the time derivative of the orientation parameters[shabana,
chamarro- shabana railroad]. Then by definition of the unite vectors v1, v2, and v3
acting along the three axes of rotations Z, X, and Y respectively with respect to the
global reference frame figure. (A.6), we can define the matrix L̄ as it is represented
in the track reference frame.
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Figure A.6. Consecutive rotations of the solid
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v1 =
[

0 0 1
]T

(A.15)

v2 =
[

cos θz sin θz 0
]T

(A.16)

v3 =
[

− sin θz cos θx cos θz cos θx sin θx

]T

(A.17)

then the relative angular velocity matrix can be defined corresponding to figure (A.6)
as follow

L̄θ̇ =
[

v2 v3 v1

]

θ̇ (A.18)

the matrix L̄ defined in the track reference frame can be found by

L̄ =







cos θz − sin θz cos θx 0

sin θz cos θz cos θx 0

0 sin θx 1






(A.19)

By knowing the transformation matrix B we can express the matrix L in the solid
frame of reference as follow

¯̄L = BT L̄ (A.20)

¯̄L =







cos θy 0 − cos θx sin θy

0 1 sin θx

sin θy 0 cos θx cos θy






(A.21)
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A.6 Inertia properties of the solid body

A.6.1 Mass matrix of solid

Ms = ms I3×3 (A.22)

where ms is the mass of the solid and I is 3× 3 identity matrix.

A.6.2 Inertia matrix of solid

Jθθ =







Jxx 0 0

0 Jyy 0

0 0 Jzz






(A.23)

The elements Jij represent the mass moment of inertia of the solid body and for rigid
bodies these terms are constants, also when i 6= j then it called the product of inertia,
but for deformable bodies these terms are time independent.

A.7 Time derivative of transformation matrices

A.7.1 Time derivative of the track transformation matrix

Recalling the expression of the transformation matrix in the track frame of reference

A=AzAyAx (A.24)

the time derivative of the matrix A can be written as

Ȧ=
∂A

∂ t
(A.25)

but the matrix A is not a function of the time, then by using the chain rule, the time
derivative of the matrix A can be written as

Ȧ=
∂A

∂ θ

∂ θ

∂ t
(A.26)

Ȧ =
∂A

∂ θz
θ̇z +

∂A

∂ θy
θ̇y +

∂A

∂ θx
θ̇x (A.27)

the partial derivative of the matrix A with respect to the three rotation angles as
follow
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∂Ax

∂ θx
=







0 0 0

0 − sin θx − cos θx

0 cos θx − sin θx






(A.28)

∂Ay

∂ θy
=







− sin θy 0 cos θy

0 0 0

− cos θy 0 − sin θy






(A.29)

∂Az

∂ θz
=







− sin θz − cos θz 0

cos θz − sin θz 0

0 0 0






(A.30)

A.7.2 Time derivative of body transformation matrix

The same can be done for the transformation matrix B between the solid frame of
reference and the track frame of reference

B=Bz BxBy (A.31)

Ḃ=
∂B

∂ t
(A.32)

Ḃzx =
∂Bzx

∂ θz
θ̇z +

∂Bzx

∂ θx
θ̇x (A.33)

A.7.3 Time derivative of intermediate transformation matrix

The same for the transformation matrix Bzx

Bzx=Bz Bx (A.34)

Ḃzx=
∂Bzx

∂ t
(A.35)

Ḃzx =
∂Bzx

∂ θz
θ̇z +

∂Bzx

∂ θx
θ̇x (A.36)
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T
a
b
l
e
s
U
s
e
d

189
c11 c12 c23 c33

g ν = 0 0.25 0.5 ν = 0 0.25 0.5 ν = 0 0.25 0.5 ν = 0 0.25 0.5

(a/b)

0.1 2.51 3.31 4.85 2.51 2.52 2.53 0.334 0.473 0.731 6.42 8.28 11.7

0.2 2.59 3.37 4.81 2.59 2.63 2.66 0.483 0.603 0.809 3.46 4.27 5.66

0.3 2.68 3.44 4.80 2.68 2.75 2.81 0.607 0.715 0.889 2.49 2.96 3.72

0.4 2.78 3.53 4.82 2.78 2.88 2.98 0.720 0.823 0.977 2.02 2.32 2.77

0.5 2.88 3.62 4.83 2.88 3.01 3.14 0.827 0.929 1.07 1.74 1.93 2.22

0.6 2.98 3.72 4.91 2.98 3.14 3.31 0.930 1.03 1.18 1.56 1.68 1.86

0.7 3.09 3.81 4.97 3.09 3.28 3.48 1.03 1.14 1.29 1.43 1.50 1.60

0.8 3.19 3.91 5.05 3.19 3.41 3.65 1.13 1.25 1.40 1.34 1.37 1.42

0.9 3.29 4.01 5.12 3.29 3.54 3.82 1.23 1.36 1.51 1.27 1.27 1.27

(b/a)

1.0 3.40 4.12 5.20 3.40 3.67 3.98 1.33 1.47 1.63 1.21 1.19 1.16

0.9 3.51 4.22 5.30 3.51 3.81 4.16 1.44 1.59 1.77 1.16 1.11 1.06

0.8 3.65 4.36 5.42 3.65 3.99 4.39 1.58 1.75 1.94 1.10 1.04 0.954

0.7 3.82 4.54 5.58 3.82 4.21 4.67 1.76 1.95 2.18 1.05 0.965 0.852

0.6 4.06 4.78 5.80 4.06 4.50 5.04 2.01 2.23 2.50 1.01 0.892 0.751

0.5 4.37 5.10 6.11 4.37 4.90 5.56 2.35 2.62 2.96 0.958 0.819 0.650

0.4 4.84 5.57 6.57 4.84 5.48 6.31 2.88 3.24 3.70 0.912 0.747 0.549

0.3 5.57 6.34 7.34 5.57 6.40 7.51 3.79 4.32 5.01 0.868 0.674 0.446

0.2 6.96 7.78 8.82 6.96 8.14 9.79 5.72 6.63 7.89 0.828 0.601 0.341

0.1 10.7 11.7 12.9 10.7 12.8 16.0 12.2 14.6 18.0 0.795 0.526 0.228

Table B.1. Kalker’s creepage and spin coefficients
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