Contents

Contents	- 3 -	
Index of Tables 5 -		
Index of figures 8 -		
Summary .		
Chapter 1		
	General Introduction: 27 -	
	Objectives 79 -	
Chapter 2		
	Genotyping strategies for genomic selection in small dairy	
	cattle populations 85 -	
Chapter 3		
	Comparison of methods for the implementation of	
	genome-assisted evaluation of Spanish dairy cattle 117 -	
Chapter 4		
	The gradient boosting algorithm and random Boosting for	
	genome-assisted evaluation in large data sets 147 -	
Chapter 5		
	Predictive ability of dairy cattle genotypes imputed from	
	different density platforms 177 -	

- 3 -

Chapter 6

General Discussion	207 -
Final Conclusions	229 -

- 4 -

Index of Tables

TABLE 2.1. AVERAGE DIFFERENCES IN THE ACCURACY OF PREDICTED GBVS
AND STANDARD DEVIATIONS (IN PARENTHESIS) FOR EACH SELECTIVE
Genotyping strategy ^a versus the $SiresDYD^{B}$ strategy based on
THE HERITABILITY AND USE OF DIFFERENT FEMALE TRAINING SETS AND
population sizes from a contemporary population of $40,000$
ANIMALS 100 -
TABLE 2.2. BIAS AND MEAN SQUARE ERROR (MSE) OF GENOMIC PREDICTIONS
IN THE TESTING SET FOR DIFFERENT GENOTYPING STRATEGIES, TRAINING
SET SIZE AND HERITABILITY
TABLE 2.3. AVERAGES AND STANDARD DEVIATIONS OF INTERCEPTS, OF
GENOMIC PREDICTIONS IN THE TESTING SET, FOR DIFFERENT GENOTYPING
strategy, training set size and heritability regressions 103 -
TABLE 2.4. AVERAGES AND STANDARD DEVIATIONS OF SLOPES OF GENOMIC
PREDICTIONS IN THE TESTING SET, FOR DIFFERENT GENOTYPING
strategy, training set size and heritability regressions 103 -
TABLE 2.5. AVERAGES AND STANDARD DEVIATIONS OF COEFFICIENTS OF
DETERMINATION OF GENOMIC PREDICTIONS IN THE TESTING SET, FOR
DIFFERENT GENOTYPING STRATEGY, TRAINING SET SIZE AND
HERITABILITY REGRESSIONS 105 -
TABLE 3.1. ACCURACY, STANDARDIZED BIAS IN MEANS, BIAS IN REGRESSION
coefficients and mean squared error (MSE) of genomic
PREDICTIONS FOR DIFFERENT EVALUATION METHODOLOGIES AND FIVE
TRAITS OF ECONOMIC INTEREST IN SPANISH DAIRY CATTLE 133 -
TABLE 4.1. PEARSON CORRELATION 1 between predicted and observed
RESPONSES IN THE TESTING SET USING THE ORIGINAL GRADIENT
boosting algorithm (mtry=100%) or its modified version
"RANDOM BOOSTING", FOR DIFFERENT VALUES OF PERCENTAGE OF SNPS
SAMPLED AT EACH ITERATION (MTRY) AND SMOOTHING PARAMETER (V) 171 -

- 5 -

- TABLE 4.2. ESTIMATED BIAS¹ (MEASURED AS AVERAGE DIFFERENCE BETWEEN PREDICTED AND OBSERVED RESPONSES IN STANDARD DEVIATION UNITS) IN THE TESTING SET USING THE ORIGINAL GRADIENT BOOSTING ALGORITHM (MTRY=100%) OR ITS MODIFIED VERSION "RANDOM BOOSTING", FOR DIFFERENT VALUES OF PERCENTAGE OF SNPS SAMPLED AT EACH ITERATION (MTRY) AND SMOOTHING PARAMETER (V)......-172 -
- TABLE 4.3. COMPUTATION TIME¹ (IN HOURS) TO RUN 10-FOLD CROSS VALIDATIONS (A COMPLETE GENOMIC ASSISTED EVALUATION CYCLE) REGARDING THE VALUE OF THE SMOOTHING PARAMETER (V) AND THE PROPORTION OF SNPS SAMPLED AT EACH ITERATION (*MTRY*)- 173 -
- TABLE 5.1. ACCURACY FOR THE GENOMIC ESTIMATION OF TWO EVALUATION METHODS INDEXED FOR FOUR TRAITS OF ECONOMIC INTEREST IN DAIRY CATTLE AFTER THE IMPUTATION FROM 3K, 6K AND 50K TO 50K AND HD. MEAN OF THE 1000 REPLICATES AFTER BOOTSTRAPPING AND CONFIDENCE INTERVALS CONSIDERED AS THE NARROWEST GAP CONTAINING 95% OF THE REPLICATES- 191 -
- TABLE 5.2. REGRESSION COEFFICIENTS FOR THE GENOMIC ESTIMATION OF TWO EVALUATION METHODS INDEXED FOR FOUR TRAITS OF ECONOMIC INTEREST IN DAIRY CATTLE AFTER THE IMPUTATION FROM 3K, 6K AND 50K TO 50K AND HD. MEAN OF THE 1000 REPLICATES AFTER BOOTSTRAPPING AND CONFIDENCE INTERVALS CONSIDERED AS THE NARROWEST GAP CONTAINING 95% OF THE REPLICATES- 193 -
- TABLE 5.3. MEAN SQUARED ERRORS FOR THE GENOMIC ESTIMATION OF TWO EVALUATION METHODS INDEXED FOR FOUR TRAITS OF ECONOMIC INTEREST IN DAIRY CATTLE AFTER THE IMPUTATION FROM 3K, 6K AND 50K TO 50K AND HD. MEAN OF THE 1000 REPLICATES AFTER BOOTSTRAPPING AND CONFIDENCE INTERVALS CONSIDERED AS THE NARROWEST GAP CONTAINING 95% OF THE REPLICATES- 194 -

- 6 -

TO 50K AND HD.....- 198 -

- 7 -

Index of figures

Figure 2.1 Distribution of simulated QTL effects: (a) 0.30	
HERITABILITY TRAIT SCENARIO AND (B) 0.10 HERITABILITY TRAIT	
SCENARIO 93 -	
Figure 2.2. Distribution of the number of daughters per sire in (a)	
0.30 heritability trait scenario and (b) 0.10 heritability trait	
SCENARIO 95 -	
FIGURE 2.3. DISTRIBUTION OF R ² BETWEEN SINGLE-NUCLEOTIDE	
polymorphism (SNP) pairs and physical distance: (a)	
CHROMOSOME 1 FOR THE 0.10 HERITABILITY TRAIT AND (B)	
CHROMOSOME 7 FOR THE 0.30 HERITABILITY TRAIT.	
FIGURE 2.4 ESTIMATED ACCURACIES FOR GENOMIC BREEDING VALUES FOR	
TWO DIFFERENT HERITABILITIES $(0.10 \text{ and } 0.30)$ in testing sets when	
1000, 2000, or 5000 females in the training set were genotyped.	
THE FOLLOWING GENOTYPING STRATEGIES WERE USED: COWS AT	
RANDOM (RND), TOP YIELD DEVIATION COWS (TOPYD), TOP BREEDING	
VALUE COWS (TOPBV), TWO-TAILED YIELD DEVIATION COWS (TTYD),	
TWO-TAILED BREEDING VALUE COWS (TTBV), ALL SIRES (SIRESDYD),	
and pedigree index without GS99 -	
FIGURE 3.1. NUMBER OF GENOTYPED BULLS BY YEAR OF BIRTH 131 -	
FIGURE 3.2. DISTRIBUTION OF MINOR ALLELE FREQUENCIES (MAF) OF THE	
SNPs after quality control 132 -	
Figure 3.3. Average linkage disequilibrium (measured as r^2) and	
confidence interval (estimated by R package gplots) between	
SYNTENIC MARKERS WITH RESPECT TO THEIR PHYSICAL DISTANCE 133 -	
FIGURE 5.1. DIAGRAM OF THE DESIGN OF REFERENCE AND VALIDATION SETS	
AND PROCESS OF IMPUTATION ACCURACY EVALUATION FROM $3K$ and $6K$	
то 50К 185 -	
FIGURE 5.2. PERCENTAGE OF COMMON BULLS IN THE OBSERVED AND	
predicted rankings when less or equals than top 10% of	
GENOMICALLY EVALUATED BULLS ARE SELECTED REGARDING FAT	
percentage. Comparison between 50K (—) and HD (×) genotypes 196 -	

- 8 -