
A Condensed Goal-Independent Bottom-Up

Fixpoint Semantics Modeling the Behavior of

tccp

M. Comini, L. Titolo, A. Villanueva

Abstract

In this paper, we present a new compositional bottom-up semantics
for the Timed Concurrent Constraint Language (tccp in short). Such se-
mantics is defined for the full language. In particular, is able to deal
with the non-monotonic characteristic of the language, which constitutes
a substantial additional technical difficulty w.r.t. other compositional de-
notational semantics present in literature (which do not tackle the full
language).

The semantics is proved to be (correct and) fully abstract w.r.t. the
full behavior of tccp, including infinite computations. This is particularly
important since tccp has been defined to model reactive systems.

The overall of these features makes our proposal particularly suitable
as the basis for the definition of semantic-based program manipulation
tools (like analyzers, debuggers or verifiers), especially in the context of
reactive systems.

1 Introduction

The concurrent constraint paradigm (ccp in short; [23]) is a simple but powerful
model for concurrent systems. It is different from other programming paradigms
mainly due to the notion of store-as-constraint that replaces the classical store-
as-valuation model. In this way, the languages from this paradigm can easily
deal with partial information: an underlying constraint system handles con-
straints on system variables.

In the literature, much effort has been devoted to the development of appro-
priate denotational semantics for languages in the ccp paradigm (e.g. [13, 8, 14]).
Compositionality and fully abstraction are two highly desirable properties for
a semantics, since they are needed for many purposes (for example as the ba-
sis for program analysis or verification tasks). A fully abstract model can be
considered the semantics of a language [13].

In [8], the difficulties for handling nondeterminism and infinite behavior in
the ccp paradigm was investigated. The authors showed that the presence of
nondeterminism and synchronization require relatively complex structures for
the denotational model of (non timed) ccp languages. In most ccp languages,
nondeterminism is defined in terms of a global choice, which poses more diffi-
culties than a local-choice model [14].

1

Within the ccp family, [10] introduced the Timed Concurrent Constraint
Language (tccp in short) by adding to the original ccp model the notion of time
and the ability to capture the absence of information. With these features,
it is possible to specify behaviors typical of reactive systems such as timeouts
or preemption actions, but they also make the language non-monotonic. For
timed concurrent constraint languages, the presence of non-determinism, local
variables and also of timing constructs which are able to handle negative infor-
mation significantly complicates the definition of compositional, fully-abstract
semantics. Moreover, infinite behaviors (which become natural in the timed
extensions) are an additional nightmare.

For the definition of a compositional semantics, the solutions to all the men-
tioned difficulties (both for ccp and tccp) has been traditionally based on the
introduction of severe restrictions on the language. However, since we are inter-
ested in applying the semantics to develop (semantics-based) program manipu-
lation tool (like debuggers, verifiers and analyzers) for us this solution is simply
not feasible.

Thus we have developed a new (small-step) compositional semantics which is
(correct and) fully abstract w.r.t. the small-step behavior of full tccp. It is based
on the evaluation of agents over a denotation for a set of process declarations
D, obtained as least fixpoint of a (continuous) immediate consequence operator
DJDK. The key idea to be able to handle tccp’s non-monotonicity actually
comes from a tentative to define a condensed semantics for tccp. In the context
of ccp a semantics is condensed if the denotation AJAK of an agent A contains
the minimal information such that the semantics of A for any initial store c can
be obtained by merging c into AJAK.

The resulting idea is to enrich behavioral timed traces with information
about the essential conditions that the store must (or must not) satisfy in order
to make the program proceed with one or another execution branch. Thus,
we associate conditions to the store of each computation step and then we
collect (only) the most general hypothetical computations. These conditions
are constructed by using the information in the guards of the ask and now
constructs of a program.

In this way, we obtain a condensed semantics which deals with non-monotonicity,
since into denotations we have the minimal information that has to be used to
exploit computations arising from absence of information.

Note that, like it has been done in all proposals for semantics of ccp, to
define our semantics we make the assumption of closed world. This means that
the specified system models also the environment so that no information can be
added by an external element during the computation (apart from the initial
store). In practice, this assumption means that, for example, if we are defining
a system that interacts with users, the actions that the user can perform must
be modeled in advance, usually as an additional process declaration.

Since tccp was originally defined to model reactive systems, that many times
include systems that do not terminate with a purpose, we have developed our
semantics to distinguish among terminating computations, suspending computa-
tions, and non-terminating computations. This improves the original semantics
for tccp defined in [10] which merges suspending and non-terminating compu-
tations. In particular, terminating computations are those that reach a point
in which no agents are pending to be executed. In such cases, we can consider
(as [10] does) that the last computed store is the output of the computation.

2

Suspending computations are those that reach a point in which there are some
agents pending to be executed, but there is not enough information in the store
to entail the conditions that would make them evolve. In [10], these compu-
tations are identified with terminating computations, thus the last computed
store is also considered the output of the computation. We (can and want)
distinguish these two kinds of computations since, conceptually, a suspended
computation has not completely finished its execution, and, in some cases, it
could be a symptom of a system error. Finally, non-terminating computations
are those that do not suspend and do not terminate, i.e., those that continue
to have agents to be executed (e.g. a loop with a true condition). Also in this
case, we are able to distinguish these computations from the suspended compu-
tations, in particular in the case when the non-terminating computation does
not modify the store (and thus one could think that it is suspended).

To conclude, we also define a big-step semantics (by abstraction of our small-
step semantics) which tackles also outputs of infinite computations. We prove
that its fragment for finite computations is (essentially) isomorphic to the tradi-
tional big-step semantics of [10]. Moreover, we also formally prove that it is not
possible to have a correct input-output semantics which is defined solely on the
information provided by the input/output pairs (i.e., some more information
into denotations is needed).

Organization of the paper. The rest of the paper is organized as follows.
Section 2 recalls the foundations of the tccp language. Section 3 introduces our
small-step denotational semantics. It also includes illustrative examples for the
main concepts. Then Section 4 introduces our big-step semantics for tccp and
formally relates it to the (original) one of [10]. Finally, Section 5 concludes.

To improve readability of the paper, the most technical results and the proofs
(of all results) are shown in Appendix A.

2 Preliminaries

The languages defined within the ccp paradigm (as extensions of the original
model of Saraswat in [26]) are parametric w.r.t. a cylindric constraint system.
The constraint system handles the data information of the program in terms of
constraints.

2.1 Cylindric constraint systems

The notion of constraint systems able to handle queries with existential quan-
tified variables was first described in [23]. A more elegant formalization, the
cylindric constraint systems, was introduced in [26], where a hiding operator is
defined in terms of a general notion of existential quantifier. However, since we
are dealing with tccp, in this work we prefer to use the formalization of [10].

A cylindric constraint system is an algebraic structure of the form C =
⟨C,⪯,⊗, tt ,ff ,Var ,∃⟩ where Var is a denumerable set of variables and such that:

1. (C, ⪯) is a complete algebraic lattice where ⊗ is the lub operator, and ff
and tt are respectively the greatest and least element of C.

3

2. For each x ∈ Var there exist a cylindric operator ∃x∶C → C such that, for
any c, d ∈ C,

c ⊢ ∃x c c ⊢ d⇒ ∃x c ⊢ ∃x d

∃x(∃y c) = ∃y(∃x c) ∃x(c⊗ ∃x d) = ∃x c⊗ ∃x d

Following the standard terminology and notation, instead of ⪯ we often use
its inverse relation, denoted ⊢ and called entailment. Moreover, ⊕ denotes the
glb of (C, ⪯).

We also abuse of notation and, given C ⊆ C, write ∃xC for {∃x c ∣ c ∈ C}.
We can find in the literature several examples of cylindric constraint systems

that are useful when modeling data structures, logic programs or other specific
domains [27, 8, 9, 2]. In the illustrative examples throughout the paper we
will use, for the sake of simplicity, the following classical cylindric constraint
system. Constraints of L are formed by taking equivalence classes, modulo
logical equivalence ⇔, of finite conjunctions of either linear disequalities (strict
and not) or equalities over Z and Var = {x, y, . . .} (e.g. x > 4, y ≥ 10 ∧ w < −3,
. . .). The entailment relation is implication ⇒ (thus, the order in the lattice
is ⇐). The lub is conjunction ∧ and ∃x is the operation which removes, after
information has been propagated within a constraint, all conjuncts referring
to variable x (e.g. ∃x(x = y ∧ x > 3) = y > 3). It can be easily verified that
L ∶= ⟨L,⇐,∧, true, false,Var ,∃⟩ is a cylindric constraint system.

2.2 Timed Concurrent Constraint Programming

The tccp language, introduced in [10], is particularly suitable to specify both
reactive and time critical systems. In tccp, the computation progresses as the
concurrent and asynchronous activity of several agents that can (monotonically)
accumulate information in a store, or query information from that store. The
notion of time is introduced by defining a discrete and global clock1 and pro-
gresses depending on the kind of agents as defined in the following.

Given a cylindric constraint system C = ⟨C,⪯,⊗, tt ,ff ,Var ,∃⟩ and a set of
process symbols Π, the syntax of agents is given by the following grammar:

A ∶∶= skip ∣ tell(c) ∣ A ∥ A ∣ ∃xA ∣
n

∑
i=1

ask(ci)→ A ∣ now c then A else A ∣ p(x1 , . . . , xm)

where c, c1, . . . , cn are finite constraints in C; p/m ∈ Π and x,x1, . . . , xm ∈ Var .
A tccp program P is an object of the form D.A, where A is an agent, called

initial agent, and D is a set of process declarations of the form p(x⃗) ∶− A (for
some agent A), where x⃗ denotes a generic tuple of variables.

The following definition introduces the operational semantics of the lan-
guage. It is slightly different from the original one in [10]. In particular, we
have introduced conditions in specific rules (namely Rules R2, R4 and R10)
in order to detect when the store becomes ff . This modification follows the
philosophy of computations defined in [27], where computations that reach an
inconsistent store are considered failure computations. In [10], this check is not
explicitly done. In our context, we are interested in detecting when a computa-
tion reaches ff ; however, once ff is reached, no action can modify the store (ff

1Differently from other languages where time is explicitly introduced by defining new timing
agents.

4

⟨tell(c), d⟩→ ⟨skip, c⊗ d⟩
d ≠ ff (R1)

⟨∑
n
i=1 ask(ci)→ Ai, d⟩→ ⟨Aj , d⟩

j ∈ [1, n], d ⊢ cj , d ≠ ff (R2)

⟨A, d⟩→ ⟨A′, d′⟩

⟨now c then A else B, d⟩→ ⟨A′, d′⟩
d ⊢ c (R3)

⟨A, d⟩ /→

⟨now c then A else B, d⟩→ ⟨A, d⟩
d ⊢ c, d ≠ ff (R4)

⟨B, d⟩→ ⟨B′, d′⟩

⟨now c then A else B, d⟩→ ⟨B′, d′⟩
d ⊬ c (R5)

⟨B, d⟩ /→

⟨now c then A else B, d⟩→ ⟨B, d⟩
d ⊬ c (R6)

⟨A, d⟩→ ⟨A′, d′⟩ ⟨B, d⟩→ ⟨B′, c′⟩

⟨A ∥ B, d⟩→ ⟨A′ ∥ B′, d′ ⊗ c′⟩
(R7)

⟨A, d⟩→ ⟨A′, d′⟩ ⟨B, d⟩ /→

⟨A ∥ B, d⟩→ ⟨A′ ∥ B, d′⟩
(R8)

⟨A, l ⊗ ∃x d⟩→ ⟨B, l′⟩

⟨∃lxA, d⟩→ ⟨∃l′xB, d⊗ ∃x l′⟩
(R9)

⟨p(x), d⟩→ ⟨A, d⟩
p(x⃗) ∶− A ∈D, d ≠ ff (R10)

Figure 1: The transition system for tccp.

is the greatest element in the domain), and the guards in the program agents
are always entailed, thus the computation from that instant has little interest.

Definition 2.1 (Operational semantics of tccp) The operational semantics
of tccp is formally described by a transition system T = (Conf ,→). Configura-
tions in Conf are pairs ⟨A, c⟩ representing the agent to be executed (A) and the
current global store (c). The transition relation → ⊆ Conf × Conf is the least
relation satisfying the rules of Figure 1. Each transition step takes exactly one
time-unit. In the sequel →∗ denotes the reflexive and transitive closure of the
relation →.

As usually done, we assume that the tccp system is closed under the usual
structural equivalence relation where the parallelism operator is commutative and
associative, and agents A ∥ skip and A are equivalent.

As can be seen from the rules, the skip agent represents the successful termi-
nation of the computation. The tell(c) agent adds the constraint c to the current
store and then stops. It takes one time-unit, thus the constraint c is visible to
other agents from the following time instant. The store is updated by means of
the ⊗ operator of the constraint system. The choice agent∑

n
i=1 ask(ci)→ Ai con-

sults the store and non-deterministically executes (at the following time instant)
one of the agents Ai whose corresponding guard ci is entailed by the current

5

store; otherwise, if no guard is entailed by the store, the agent suspends.
The conditional agent now c then A else B behaves in the current time instant

like A (respectively B) if c is (respectively is not) entailed by the store. Note
that, because of the ability of tccp to handle partial information, d ⊬ c is not
equivalent to d ⊢ ¬c. Thus, the else branch is taken not only when the condition
is falsified, but also when there is not enough information to entail the condition.
This characteristic is known in the literature as the ability to process “negative
information” [24, 25].

A ∥ B models the parallel composition of A and B in terms of maximal
parallelism (in contrast to the interleaving approach of ccp), i.e., all the enabled
agents of A and B are executed at the same time. The agent ∃xA makes variable
x local to A. To this end, it uses the ∃ operator of the constraint system. More
specifically, it behaves like A with x considered local, i.e., the information on x
provided by the external environment is hided to A, and the information on x
produced by A is hided to the external world. In [10], an auxiliary construct
∃dx is used to explicitly show the store local to A. In particular, in Rule R9,
the store d in the agent ∃dxA represents the store local to A. This auxiliary
construct is linked to the hiding one by setting the initial local store to tt , thus
∃xA ∶= ∃ttxA.

Finally, the agent p(x) takes from D a declaration of the form p(x⃗) ∶− A
and then executes A at the following time instant. For the sake of simplicity,
we assume that sets of declarations D are closed w.r.t. renaming of parameter
names, i.e., if p(x⃗) ∶− A ∈D then, for any y ∈ Var , also p(x⃗) ∶− A{x⃗/y⃗} ∈D 2.

3 Modeling the small-step operational behavior
of tccp

In this section, we introduce a new condensed, compositional, bottom-up de-
notational semantics which is correct (and fully abstract) w.r.t. the small-step
(operational) behavior of tccp (Definition 3.1).

In order to introduce such semantics, we need first to define some (technical)
notions. In the sequel, all definitions are parametric w.r.t. a cylindric constraint
system C = ⟨C,⪯,⊗, tt ,ff ,Var ,∃⟩. We denote by AΠ

C the set of agents and DΠ
C the

set of sets of process declarations built on signature Π and constraint system C.
By ε we denote the empty sequence; by last(s) the last element of a non-empty
sequence s; by s1 ⋅ s2 the concatenation of two sequences s1, s2. We also abuse
notation and, given a set of sequences S, by s1 ⋅ S we denote {s1 ⋅ s2 ∣ s2 ∈ S}.

Let us formalize first the notion of behavior of a set D of process declarations
in terms of the transition system described in Figure 1. It collects all the small-
step computations associated to D as the set of (all the prefixes of) the sequences
of computation steps (in terms of sequences of stores), for all possible initial
agents and stores.

Definition 3.1 The small-step (observable) behavior of D ∈ DΠ
C is defined as:

BssJDK ∶= ⋃
∀c∈C,∀A∈AΠ

C

BssJD . AKc where

2This assumption is equivalent to use the diagonal elements of the constraint system: given
the agent p(x) and a declaration of the form p(y⃗) ∶− A, we diagonalize the agent A before

execution, i.e., we execute ∃dx1y1
⊗⋅⋅⋅⊗dxnyn x⃗A at the following time instant.

6

BssJD . AKc ∶= {c ⋅ c1 ⋅ ⋅ ⋅ ⋅ ⋅ cn ∣ ⟨A, c⟩→ ⟨A1, c1⟩→ . . .→ ⟨An, cn⟩} ∪ {ε}

and → is the transition relation given in Figure 1.
We call the sequences in BssJD.AKc behavioral timed traces or simply traces

(when clear from the context).
We denote by ≈ss the equivalence relation between process declarations in-

duced by Bss , namely D1 ≈ss D2 ⇔ B
ssJD1 K = BssJD2 K.

Our goal is to define a semantics S which is fully abstract w.r.t. ≈ss (i.e.,
S JD1 K = S JD2 K ⇐⇒ D1 ≈ss D2) and has all the properties mentioned in
the introduction (i.e., being compositional, condensed, goal-independent and
bottom-up). Usually, a condensed (collecting) semantics is obtained by defining
denotations based only on the most general traces (i.e., those for the weakest
store). Thanks to this, the size of denotations is reduced significantly. The
problem in following this approach in the tccp case is that Bss is not condensing
since not all behavioral sequences can be retrieved from the most general ones.
This is due to the ask, now and hiding constructs. For instance, consider the
agent A ∶= now x = 3 then tell(z = 0) else tell(z = 1). Given the initial store
x ≥ 3, we obtain the trace x ≥ 3 ⋅ (x ≥ 3 ∧ z = 1), while for the stronger initial
store x = 3 we obtain the trace x = 3 ⋅ (x = 3 ∧ z = 0), which is not comparable
to the former (since z = 0 ⇏ z = 1 and z = 1 ⇏ z = 0). Hence, the latter
trace cannot be obtained from the former trace, which has been generated for
a more general store. Indeed, in general, in tccp, given X ∶= BssJD . AKc (the
set of traces for an agent A with initial store c), if we compute BssJD .AKd with
a stronger initial store d (d ⊢ c), then some traces of X may disappear and,
what is more critical, new traces, which are not instances of the ones in X, can
appear. This characteristic is known, in the community of the ccp paradigm
[8, 25], as “non-monotonicity of the tccp language” but it can also be expressed
as “the tccp language is not condensing”.

Because of non-monotonicity of tccp, Bss is also not compositional. For
instance, consider the agents A1 ∶= tell(x = 1) and

A2 ∶= ask(true)→ now (x = 1) then tell(y = 0) else tell(y = 1)

For each c, BssJ∅ . A1Kc = {c ⋅ (x = 1 ∧ c)}. Moreover, for each c that implies3

x = 1, BssJ∅ . A2Kc = {c ⋅ c ⋅ (y = 0 ∧ c)} while, when c⇏ (x = 1), BssJ∅ . A2Kc =
{c ⋅ c ⋅ (y = 1 ∧ c)}. Now, for the parallel composition of these agents A1 ∥ A2,
BssJ∅ . A1 ∥ A2Ktrue = {true ⋅ (x = 1) ⋅ (x = 1∧ y = 0)} which cannot be computed
by merging the traces of A1 and A2.

Thus, it does not come as a surprise that for all non-monotonic languages of
the ccp paradigm, the compositional semantics that have been written [27, 24,
8, 9, 14, 20, 16, 21, 15] are not defined for the full language, either because they
avoid the constructs that cause non-monotonicity or because they restrict their
use. Hence, the ability to handle non-monotonicity (and thus the full language
without any limitation) is certainly one of the strengths of our proposal.

The examples above shows why, due to the non-monotonicity of tccp, in or-
der to obtain a compositional (and condensed) semantics for the full language
it is not possible to follow the traditional strategy and collect in the semantics
the traces associated to the weakest initial store. Note that, having a seman-
tics with these properties, besides the theoretical interest, it is also a matter

3In this Cylindric Constraint System the entailment is logical implication.

7

of pragmatical relevance since they are the key factors for having an effective
implementation which computes the semantics.

Actually, we have found the solution to the problem just mentioned by try-
ing to solve another (related) problem. Since in a top-down (goal-dependent)
approach the (initial) current store is propagated, then the decisions regard-
ing a conditional or choice agent (where the computation evolves depending on
the entailment of the guards in the current store) can be taken immediately.
However, if we want to define a fixpoint semantics which builds the denotations
bottom-up we have the problem that, while we are building the fixpoint, we do
not know the current store yet. Thus, it is impossible to know which execution
branch has to be taken in correspondence of a program’s guard.

Our idea is to enrich behavioral timed traces with information about the
essential conditions that the store must (or must not) satisfy in order to make
the program proceed with one or another execution branch. Thus, we associate
conditions to the store of each computation step and then we collect (only) the
most general hypothetical computations. These conditions are constructed by
using the information in the guards of the ask and now constructs of a program.
We will see that this solves both the problem of constructing the semantics
bottom-up and of having a compositional and condensed semantics coping with
non-monotonicity.

3.1 The semantic domain

Let us start by introducing the notion of condition, that is the base to build our
denotations. Intuitively, we need “positive conditions” for branches related to
the entailment of guards and “negative conditions” for non-entailment, i.e., for
the branches where the current store does not entail the associated condition.

Definition 3.2 (Conditions) A condition η is a pair η = (η+, η−) where

• η+ ∈ C is called positive condition, and
• η− ∈ ℘(C) is called negative condition.

Additionally, a condition is valid when η+ ≠ ff , tt ∉ η− and ∀c ∈ η−. η+ ⊬ c.
We denote ΛC the set of all conditions and ∆C the subset of valid ones.
The conjunction of two conditions η1 = (η+1 , η

−
1) and η2 = (η+2 , η

−
2) is defined

(by abuse of notation) as η1 ⊗ η2 ∶= (η+1 ⊗ η
+
2 , η

−
1 ∪ η

−
2).

Two conditions are called incompatible if their conjunction is not valid.
A store c ∈ C is consistent with η, written c ≫ η, if η+ ⊗ c ≠ ff and ∀h ∈

η−. c ⊬ h. Moreover, we say that c satisfies η, written c ⊫ η, when c ⊢ η+ and
∀h ∈ η−. c ⊬ h.

We extend the existential quantification operator of the constraint system to
conditions as ∃x(η

+, η−) ∶= (∃x η
+,∃x η

−).

Due to the partial nature of the constraint system, for negative conditions we
cannot use the disjunction ⊕n

i=1 ci instead of {c1, . . . , cn} since we can have a
store c such that c ⊢ ⊕n

i=1 ci while ∀i. c ⊬ ci. For instance, we can have two
guards x > 2 and x ≤ 2 and it may happen that the current store does not
satisfy any of them, but their disjunction (true) is entailed by any store.

Clearly, if a store different from ff satisfies a condition, then it is also consis-
tent with that condition. If two conditions are incompatible, then there exists
no constraint c ∈ C ∖ {ff } that entails simultaneously both conditions.

8

Now we are ready to enrich with conditions the notion of trace.

Definition 3.3 (Conditional state) A conditional state is either

conditional store: a pair η ↣ c, for each η ∈ ΛC and c ∈ C, or

stuttering: the construct stutt(C), for each finite C ⊆ C ∖ {tt}, or

end of a process: the construct ⊠.

In a conditional store t = η ↣ c, the constraint c is the store of t.
We say that η ↣ c is valid if η is valid.
We extend ∃x to conditional states as ∃x ((η

+, η−)↣ c) ∶= ∃x(η
+, η−)↣ ∃x c,

∃x stutt(C) ∶= stutt(∃xC) and ∃x ⊠ ∶= ⊠.

The conditional store η ↣ c is used to represent a hypothetical computation
step where η is the condition that the current store must satisfy in order to
make the computation proceed. Moreover, c represents the information that is
added by the agent to the global store up to the current time instant.

The stuttering stutt(C) is needed to model the suspension of the computa-
tion due to an ask construct, i.e., it represents the fact that there is no guard in
C (the guards of a choice agent) entailed by the current store. This construct
allows us to distinguish a suspended computation from an infinite loop that
does not modify the store.

Definition 3.4 (Conditional trace) A conditional trace is a (possibly infi-
nite) sequence t1⋯tn⋯ of valid conditional states (where ⊠ can be used only as
a terminator) that respects the following properties:

Monotonicity: for each ti = ηi ↣ ci and tj = ηj ↣ cj such that j ≥ i, cj ⊢ ci.
Consistency: for each ti = ηi ↣ ci and ti+1 either (η+i+1, η

−
i+1) ↣ ci+1 or

stutt(η−i+1), ∀c− ∈ η−i+1. ci ⊬ c
−.

We denote by CT the set of all conditional traces.
The limit store of a (finite or infinite) trace s is the lub of the stores (of the

conditional stores) of s.
A finite conditional trace that is ended with ⊠ as well as an infinite condi-

tional trace is said, respectively, failed or (finitely) successful depending if its
limit store c is ff or not. Such c is called computed result.

A sequence (of conditional states) that does not satisfy these properties is
called an invalid trace.

Each conditional trace models a hypothetical tccp computation where the
initial store is implicitly tt and, for each time instant, we have a conditional
state where each condition represents the information that the global store has
to satisfy in order to proceed to the next time instant.

The Monotonicity property is needed since in tccp, as well as in ccp but not in
all its extensions, each store in a computation entails the successive ones. Note
that because of this, for any finite conditional trace t1, . . . , tn whose sequence of
stores (of the conditional stores) is c1, . . . , cm (m ≤ n), the limit store ⊗mi=1ci = cm
and thus the computed answer is just the last store cm.

The Consistency property affirms that the store of a given conditional store
cannot be in contradiction with the condition associated to the successive con-
ditional state.

9

Note that finite conditional traces not ending in ⊠ are partial traces that
can still evolve and thus they are always a prefix of a longer conditional trace.

Example 3.5
It is easy to verify that the sequence r1 ∶= (true,∅) ↣ y = 0 ⋅ (x > 2,∅) ↣
y = 0 ∧ z = 3 ⋅ ⊠ is a valid conditional trace. The first component of the trace
states that in the first time instant the store y = 0 is computed in any case
(the condition (true,∅) is always satisfied). The second component requires
the constraint x > 2 to be satisfied by the (global) store in order to proceed by
adding to the next state the information z = 3.

Instead, the conditional trace r2 ∶= (true,∅) ↣ x = 0 ⋅ (x = 0,∅) ↣ tt ⋅ ⊠ is
invalid since the Monotonicity property does not hold because tt ⊬ x = 0. Also
r3 ∶= (true,∅) ↣ x = 0 ⋅ stutt({x ≥ 0}) ⋅ ⊠ is an invalid conditional trace: it
does not satisfy the Consistency property since x = 0 implies the (only) negative
condition in the successive conditional state (x ≥ 0).

Definition 3.6 (Semantic domain) A set R ⊆ CT is closed by prefix if for
each r ∈ R, all the prefixes p of r (denoted as p ≤pref r) are also in R.

We denote the domain of non-empty sets of conditional traces that are closed
by prefix as P (i.e., P ∶= {R ⊆ CT ∣R ≠ ∅, r ∈ R⇒ ∀p ≤pref r. p ∈ R}).

We order elements in P by set inclusion ⊆.

It is worth noting that (P, ⊆, ⋃, ⋂, CT, {ε}) is a complete lattice.
This conceptual representation is pretty simple, especially to understand the

lattice structure, considered the fact that we admit infinite traces. However,
each prefix-closed set contains a lot of redundant traces, which are quite incon-
venient for (some) technical definitions. Thus, we will often use an equivalent
representation obtained by considering the crown of prefix-closed sets. Namely,
given P ∈ P, we remove all the prefixes of a trace in the set with the function
maximal(P) ∶= {r ∈ P ∣ ∄p ∈ P ∖ {r}. r ≤pref p}. Let M ∶= maximal(CT),
M ∶= {maximal(P) ∣P ∈ P} and call maximal conditional trace sets the elements
of M. The inverse of maximal is, for each M ∈M,

prefix(M) ∶= {p ∣p ≤pref r, r ∈M}} (3.1)

The order of M is induced from the one in P as M1 ⊑ M2 ⇔ prefix(M1) ⊆
prefix(M2) which is equivalent to say thatM1 ⊑M2 ⇔ ∀r1 ∈M1 ∃r2 ∈M2. r1 ≤pref

r2. We define the lub ⊔ and the glb ⊓ of M analogously. It can be proven that

(P, ⊆) −−−−−−−−−−→Ð→←←Ð−−−−−−−−−−
maximal

prefix
(M, ⊑) is an order-preserving isomorphism, so (M, ⊑, ⊔, ⊓, M, {ε})

is also a complete lattice.
Although this second representation is very convenient for technical defini-

tions, it is not very suited for examples. For instance, different maximal traces
have frequently (significant) common prefixes; hence, some parts have to be
written twice and, more important, it can be difficult to visualize the repeti-
tion (obfuscating the comprehension). Thus, in our examples we will use an
equivalent representation in terms of prefix trees. Namely, we will use trees
with (non root) nodes labeled with conditional states. Given P ∈ P, tree(P)
builds the prefix tree of P , obtained by combining all the sequences that have
a prefix in common in the same path. Let T ∶= {tree(P) ∣P ∈ P}. The inverse
of tree is the function path ∶T → P which returns the set of all possible paths

10

starting from the root. Let ⊴ be the order on T induced by the order on P:
T1 ⊴ T2 ⇔ path(T1) ⊆ path(T2). We define the lub and glb of T in a similar way.

It can be proven that (P, ⊆) −−−−−−→Ð→←←Ð−−−−−−
tree

path
(T, ⊴) is an order-preserving isomorphism,

so also (T, ⊴) is a complete lattice. In the sequel we will use the representation
which is most convenient in each case.

3.2 Fixpoint Denotations of Programs

The technical core of our semantics definition is the agent semantics evaluation
function (Definition 3.16, page 15) which, given an agent A and an interpre-
tation I (for the process symbols of A), builds the maximal conditional traces
associated to A. To define it, we need first to introduce some auxiliary semantic
functions.

Definition 3.7 (Propagation Operator) Let r ∈ M and c ∈ C. We define
by structural induction the propagation of c in r, written r↓c, as ⊠↓c = ⊠, ε↓c = ε
and

((η+, η−)↣ d ⋅ r′)↓c =

⎧⎪⎪
⎨
⎪⎪⎩

(η+ ⊗ c, η−)↣ d⊗ c ⋅ (r′↓c) if c≫ (η+, η−), d⊗ c ≠ ff

(η+ ⊗ c, η−)↣ ff ⋅ ⊠ if c≫ (η+, η−), d⊗ c = ff

(stutt(η−) ⋅ r′)↓c = stutt(η−) ⋅ (r′↓c) if ∀c− ∈ η−. c ⊬ c−

We abuse notation and denote R↓h the point-wise extension of ↓h to sets of
conditional traces.

This operator is used in the semantics of constructs that add new information to
traces. By definition, the propagation operator ↓ is a partial function M×C→M
that instantiates a conditional trace with a given constraint and checks the
consistency of the new information with the conditional states in the trace.
This information needs to be propagated also to the successive (i.e., future)
conditional states in order to maintain the monotonicity of the store.

Example 3.8
Given the conditional trace r ∶= (true,∅) ↣ x > 10 ⋅ (true,∅) ↣ x > 20 ⋅ ⊠, the
propagation of y > 2 in r is (y > 2,∅)↣ x > 10∧y > 2⋅(y > 2,∅)↣ x > 20∧y > 2⋅⊠.

For r′ ∶= (true,{y > 0})↣ true ⋅⊠ the propagation of y > 2 in r′ is not defined
since y > 2 É (true,{y > 0}).

Finally, given the conditional trace r′′ ∶= (true,∅)↣ y < 0⋅⊠, the propagation
of y > 2 in r′′ produces the conditional trace (y > 2,∅) ↣ false ⋅ ⊠ since y > 2 ≫
(true,∅) and y < 0 ∧ y > 2 = false.

Note that the consecutive propagation of two constraints (r↓c)↓c′ is equiva-
lent to r↓(c⊗c′) (as stated formally in Lemma A.2).

Definition 3.9 (c-compatible) r ∈ M is said to be compatible w.r.t. c ∈ C
(r is c-compatible) if, for each (η+, η−) ↣ d in r, c ≫ (η+, η−), and for each
stutt(η−) in r, c ⊬ c− for all c− ∈ η−.

When r is not c-compatible w.r.t. c, the store c is in contradiction with a con-
dition of some conditional state of r and then r↓c is not defined.

The following auxiliary operator is used in the definition of the semantics of
the parallel construct. Intuitively, the parallel operator combines (with maximal

11

parallelism) the information coming from two conditional traces. It checks the
satisfiability of the conditions and the consistency of the resulting stores.

Definition 3.10 (Parallel composition) The parallel composition partial op-
erator ∥̄∶M×M→M is the commutative closure of the following partial opera-
tion defined by structural induction as: r ∥̄ ε ∶= r, r ∥̄ ⊠ ∶= r and

(stutt(η−1) ⋅ r
′
1) ∥̄ (stutt(η−2) ⋅ r

′
2) ∶= stutt(η−1 ∪ η

−
2) ⋅ (r

′
1 ∥̄ r

′
2)

Moreover, if η1 ⊗ η2 is valid, r′1 is c2-compatible and r′2 is c1-compatible, then

(η1 ↣ c1 ⋅ r
′
1) ∥̄ (η2 ↣ c2 ⋅ r

′
2) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

η1 ⊗ η2 ↣ c1 ⊗ c2 ⋅

((r′1↓c2) ∥̄ (r′2↓c1)) if c1 ⊗ c2 ≠ ff

η1 ⊗ η2 ↣ ff ⋅ ⊠ if c1 ⊗ c2 = ff ,

Finally, if ∀c− ∈ η−2 . η
+
1 ⊬ c

− and r′2 is c1-compatible, then

((η+1 , η
−
1)↣ c1 ⋅ r

′
1) ∥̄ (stutt(η−2) ⋅ r

′
2) ∶= (η+1 , η

−
1 ∪ η

−
2)↣ c1 ⋅ (r

′
1 ∥̄ (r′2↓c1))

Clearly, by definition, ∥̄ is commutative. Moreover, because of ⊗ associativity, ∥̄
is also associative. It is worth noting that, if one of the traces is not compatible
with the propagated constraint, then the parallel composition is not defined.

Example 3.11
Consider r1 ∶= (true,∅) ↣ y > 2 ⋅ (y > 2,∅) ↣ y > 2 ⋅ ⊠ and r2 ∶= (z = 1,
∅) ↣ z = 1 ⋅ ⊠. Since r1 and r2 do not share variables, the compatibility checks
always succeed and then r1 ∥̄ r2 = (z = 1,∅) ↣ y > 2 ∧ z = 1 ⋅ (y > 2 ∧ z = 1,
∅)↣ y > 2 ∧ z = 1 ⋅ ⊠.

Consider now r3 ∶= stutt({y > 0}) ⋅ (y > 0,∅) ↣ y > 0 ∧ z = 3 ⋅ ⊠. Traces r1

and r3 share the variable y, and it can be seen that the information regarding
y in the two traces is consistent, thus r1 ∥̄ r3 = (true,{y > 0}) ↣ y > 2 ⋅ (y > 2,
∅)↣ y > 2 ∧ z = 3 ⋅ ⊠.

Finally, consider r4 ∶= (true,∅)↣ true ⋅ (true,{y > 0})↣ true ⋅ ⊠. This trace,
in the second time instant, requires that the constraint y > 0 cannot be entailed
by the current store. However, the trace r1 states, at the same time instant,
that y > 2. This is the reason because r1 ∥̄ r4 is not defined.

Note that ↓ distributes over ∥̄, in the sense that (r1 ∥̄ r2)↓c = (r1↓c) ∥̄ (r2↓c)
(as stated formally in Lemma A.3).

The last auxiliary operator that we need is the hiding operator ∃̄∶Var ×
M →M which, intuitively, hides the information regarding a given variable in
a conditional trace.

Definition 3.12 (Hiding operator) Given r ∈ M and x ∈ V, we define the
hiding of x in r, written ∃̄x r, by structural induction:

∃̄x r ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∃x ((η
+, η−)↣ c) ⋅ ∃̄x r

′ if r = (η+, η−)↣ c ⋅ r′

stutt(∃x η
−) ⋅ ∃̄x r

′ if r = stutt(η−) ⋅ r′

r if r = ε or r = ⊠

We distinguish two special classes of conditional traces.

12

Definition 3.13 (Self-sufficient and x-self-sufficient conditional trace)
r ∈ M is said to be self-sufficient if the first condition is (tt ,∅) and, for each
ti = ηi ↣ ci and ti+1 = ηi+1 ↣ ci+1, ci ⊫ ηi+1 (each store satisfies the successive
condition).

Moreover, r is self-sufficient w.r.t. x ∈ V (x-self-sufficient) if ∃̄Var∖{x} r is
self-sufficient.

Definition 3.13 is stronger than Definition 3.4 since the latter does not require
satisfiability but just consistency of the store w.r.t. the conditions. Thus this
definition demands that for self-sufficient conditional traces, no additional in-
formation (from other agents) is needed in order to complete the computation.
In an x-self-sufficient conditional trace the same happens but only considering
information about variable x.

Example 3.14
The conditional trace r1 of Example 3.5 is not self-sufficient since y = 0⊯ x > 2.

Now consider a variation where we add the information x = 4 to the stores,
namely r2 ∶= (true,∅) ↣ y = 0 ∧ x = 4 ⋅ (x > 2,∅) ↣ y = 0 ∧ z = 3 ∧ x = 4 ⋅ ⊠. It
is easy to see that r2 is a self-sufficient conditional trace, essentially because we
add enough information in the first store to satisfy the second condition, i.e.,
y = 0 ∧ x = 4⊫ (x > 2,∅).

Moreover, r2 is also x-self-sufficient since ∃̄Var∖{x} r2 = (true,∅)↣ x = 4⋅(x >
2,∅)↣ x = 4 ⋅ ⊠, which is a self-sufficient trace.

3.2.1 Interpretations

Now we introduce the notion of interpretation, which is used to give mean-
ing to process calls, by associating to each process symbol a set of (maximal)
conditional traces “modulo variance”.

Definition 3.15 (Interpretations) Let MGC ∶= {p(x) ∣ p ∈ Π, x⃗ are distinct
variables}. We call any π ∈MGC most general call.

Two functions I, J ∶MGC → M are variants, denoted by I ≅ J , if for each
π ∈MGC there exists a variable renaming ρ such that I(π)ρ = J(πρ).

An interpretation is a function I ∶MGC→M modulo variance4.
The semantic domain IΠ (or simply I when clear from the context) is the

set of all interpretations ordered by the pointwise extension of ⊑ (which by an
abuse of notation we denote by ⊑).

Essentially, we define the semantics of each predicate in Π over formal parame-
ters whose names are actually irrelevant. It is important to note that MGC has
the same cardinality of Π (and is thus finite) and therefore each interpretation
is a finite collection (of possibly infinite elements).

In the following, any I ∈ IΠ is implicitly considered as an arbitrary function
MGC→M obtained by choosing an arbitrary representative of the elements of I
generated by ≅. Actually, in the following, all the operators that we use on IΠ are
also independent of the choice of the representative. Therefore, we can define
any operator on IΠ in terms of its counterpart defined on functions MGC →
M. Moreover, the application of an interpretation I to a most general call π,
denoted by I(π), is the application I(π) of any representative I of I which is

4i.e., a family of elements of M indexed by MGC modulo variance.

13

defined exactly on π. For example, if I = (λp(x, y).{(true,∅)↣ x = y})/≅ then
I(p(u, v)) = {(true,∅)↣ u = v}.

The partial order on I formalizes the evolution of the computation process.
(I, ⊑) is a complete lattice and its least upper bound and greatest lower bound
are the pointwise extension of ⊔ and ⊓, respectively. The bottom element is
�I ∶= λπ. {ε}.

Since MGC is finite, we will often explicitly write interpretations by cases,
like

I ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

π1 ↦ T1
⋮
πn ↦ Tn

representing
I(π1) ∶= T1

⋮

I(πn) ∶= Tn

3.2.2 Semantics Evaluation Function of Agents

We are finally ready to define the evaluation function of an agent A w.r.t.
an interpretation I , which computes the set of (maximal) conditional traces
associated to the agent A. It is important to note that the computation does
not depend on an initial store. Instead, the weakest (most general) condition
for each agent is (computed and) accumulated in the traces.

Definition 3.16 (Semantics Evaluation Function for Agents) Given A ∈
AΠ

C and I ∈ IΠ, we define the semantics evaluation AJAKI by structural induc-
tion as follows.

AJskipKI ∶= ⊠ (3.2)

AJtell(c)KI ∶= (tt ,∅)↣ c ⋅ ⊠ (3.3)

AJA ∥ BKI ∶=⊔{rA ∥̄ rB ∣ rA ∈ AJAKI , rB ∈ AJBKI} (3.4)

AJ∃xAKI ∶=⊔{ ∃̄x r ∣ r ∈ AJAKI , r is x-self-sufficient} (3.5)

AJp(x)KI ∶= (tt ,∅)↣ tt ⋅ I(p(x)) (3.6)

AJ
n

∑
i=1

ask(ci)→ AiKI ∶= lfpM λR. (stutt({c1, . . . , cn}) ⋅R ⊔ (3.7)

⊔{(ci,∅)↣ ci ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKI , r ci-compatible}) (3.8)

AJnow c then A else BKI ∶=
{(c,∅)↣ c ⋅ ⊠ ∣ ⊠ ∈ AJAKI} ⊔ (3.9a)

⊔{(η+ ⊗ c, η−)↣ d⊗ c ⋅ (r↓c) ∣ (η+, η−)↣ d ⋅ r ∈ AJAKI ,
d⊗ c ≠ ff , ∀c− ∈ η−. η+ ⊗ c ⊬ c−, r c-compatible} ⊔

(3.9b)

⊔{(η+ ⊗ c, η−)↣ ff ⋅ ⊠ ∣ (η+, η−)↣ d ⋅ r ∈ AJAKI ,
d⊗ c = ff , ∀c− ∈ η−. η+ ⊗ c ⊬ c−, r c-compatible} ⊔

(3.9c)

⊔{(c, η−)↣ c ⋅ (r↓c) ∣ stutt(η−) ⋅ r ∈ AJAKI ,
∀c− ∈ η−. c ⊬ c−, r c-compatible} ⊔

(3.9d)

⊔{(tt ,{c})↣ tt ⋅ ⊠ ∣ ⊠ ∈ AJBKI} ⊔ (3.9e)

⊔{(η+, η− ∪ {c})↣ d ⋅ r ∣ (η+, η−)↣ d ⋅ r ∈ AJBKI , η+ ⊬ c} ⊔ (3.9f)

⊔{(tt , η− ∪ {c})↣ tt ⋅ r ∣ stutt(η−) ⋅ r ∈ AJBKI} (3.9g)

14

We now explain in detail each (non immediate) case of the definition.

(3.3) For the tell(c) agent we have condition (tt ,∅) since c must be added to
the store in any case (in the current time instant). Next the computation
terminates (with the end of process symbol ⊠).

(3.5) The hiding construct must hide the information about x from all traces
that cannot be altered by the presence of external information about x,
thus the hiding operation is applied just to x-self-sufficient conditional
traces.

(3.6) The semantics of process call p(x) simply delays by one time instant the
traces for p(x) in interpretation I by prefixing them with (tt ,∅)↣ tt .

(3.8) The semantics for the non-deterministic choice collects, for each guard ci,
a conditional trace of the form (ci,∅)↣ ci ⋅(r↓ci). This trace requires that
ci has to be satisfied by the current store (positive part of the condition
in the first state). Then the constraint ci is propagated to the trace r (the
continuation of the computation, which belongs to the semantics of Ai).
Note that the requirement of ci-compatibility ensures that r↓ci is defined.

Furthermore, we collect the stuttering traces, which correspond to the
case when the computation suspends. Traces representing this situation
are of the form stutt({c1, . . . , cn}) ⋅ r where r is, recursively, an element of
the semantics of the choice agent.

(3.9) The definition for the conditional agent now c then A else B is in principle
similar to the previous case. However, since the now construct must be
instantaneous, in order to correctly model the timing of the agent we have
seven cases depending on the possible forms of the first conditional state
of the semantics of A (respectively B), on the value of the resulting store
(ff or not) and on the fact that the guard c is satisfied or not in the current
time instant.

(3.9a)–(3.9d) represent the case in which the guard c is satisfied by the
current store. In this case, the agent now must behave instantaneously
as A. For this reason, we distinguish four different cases corresponding
to the possible form of conditional traces associated to A. In particular,
(3.9a) corresponds to the case when the computation of A ends, thus
also the computation of the conditional must be ended. In (3.9b), the
information added (in one step) by A is compatible with the condition
and with the rest of the computation and, moreover, does not produce
ff when merged with the current store d. (3.9c) stops the conditional
trace since the the information produced by A added to the current store
produces the inconsistent store ff . Finally, (3.9d) corresponds to the case
when A suspends.

(3.9e)–(3.9g) consider the cases when c is not entailed by the current store.
In this situation, the agent now must behave instantaneously as B, and
the definition follows the same reasoning as for (3.9a), (3.9b) and (3.9d).
The main difference is that instead of adding c to the positive condition
in the first conditional state, we add {c} to the negative condition.

15

(y ≥ 0,∅)↣ y ≥ 0

(y ≥ 0,∅)↣ y ≥ 0 ∧ z ≤ 0

stutt({y ≥ 0})

⊠

(y ≥ 0,∅)↣ y ≥ 0

(y ≥ 0,∅)↣ y ≥ 0 ∧ z ≤ 0

stutt({y ≥ 0})

⊠

Figure 2: Tree representation of AJA4KI of Example 3.17

(y ≥ 0,∅)↣ y ≥ 0

(y ≥ 0,∅)↣ y ≥ 0 ∧ z ≤ 0

stutt({y ≥ 0})

⊠

Figure 3: Graph representation of AJA4KI of Example 3.17

Example 3.17
In this example we compute the semantics for the tccp agent A1 ∶= A2 ∥ A3

where

A2 ∶= tell(y = 2) ∥ tell(x = y)

A3 ∶= ask(true)→ now (x = 0) then tell(z > 0) else A4

A4 ∶= ask(y ≥ 0)→ tell(z ≤ 0)

Since there are no process calls, the interpretation I is irrelevant for the result.
We start by computing the semantics for A4. Let r ∶= (y ≥ 0,∅)↣ y ≥ 0 ⋅ (y ≥ 0,
∅)↣ y ≥ 0 ∧ z ≤ 0 ⋅ ⊠. Then

AJA4KI = lfpM(λR.{r} ⊔ stutt({y ≥ 0}) ⋅R)

= {r, stutt({y ≥ 0}) ⋅ r, stutt({y ≥ 0}) ⋅ stutt({y ≥ 0}) ⋅ r, . . .}

= {(stutt({y ≥ 0}))
n
⋅ r ∣n ∈ N} ⊔ {stutt({y ≥ 0}) ⋯ stutt({y ≥ 0}) ⋯}

Figure 2 graphically represents AJA4KI , which consists of a trace for the case in
which the guard is satisfied, and a set of traces for the case in which it suspends.
As it can be observed, the tree in Figure 2 consists of an infinite replication of the
same pattern. We can depict such infinite trees as finite graphs, as in Figure 3.
The back-loop arc is just a graphical shortcut which represents the (infinite)
tree that is obtained by unrolling the loop. It is important to note that nodes
reached by a path of length 2 (via the back-loop arc) have to be considered as a
single arc, thus corresponding just to a 1 time instant delay. With the semantics
of A4, we compute AJA3KI = {r1, r2} ∪R where

r1 ∶= {(true,∅)↣ true ⋅ (x = 0,∅)↣ x = 0 ∧ z > 0 ⋅ ⊠

16

r2 ∶= (true,∅)↣ true ⋅ (y ≥ 0,{x = 0})↣ y ≥ 0 ⋅ (y ≥ 0,∅)↣ y ≥ 0 ∧ z ≤ 0 ⋅ ⊠

R ∶= (true,∅)↣ true ⋅ (true,{y ≥ 0, x = 0})↣ true ⋅AJA4KI

All the traces of AJA3KI start with the conditional store (true,∅) ↣ true cor-
responding to the ask agent with guard true. The trace r1 corresponds to the
case when (in the current time instant) the guard x = 0 is satisfied; the trace
r2 corresponds to x = 0 not satisfied and y ≥ 0 satisfied; while we have R when
none is satisfied and A4 is executed.

Now we can compute the semantics for A1 by parallel composition of AJA3KI
with AJA2KI = {(true,∅)↣ (y = 2∧x = y) ⋅⊠}. We recall that when the parallel
operator composes two conditional traces, it checks their compatibility, thus if
two traces have inconsistent stores or conditions then nothing is produced.

AJA1KI ={(true,∅)↣ (y = 2 ∧ x = y) ⋅ (y = 2 ∧ x = y,{x = 0})↣ (y = 2 ∧ x = y)⋅

(y = 2 ∧ x = y,∅)↣ (y = 2 ∧ x = y ∧ z ≤ 0) ⋅ ⊠}

In detail, the combination of the first conditional trace in AJA3KI (let us call
it r1) and the conditional trace in AJA2KI does not produce contributes since
the constraint y = 2, when propagated to the second component of r1 is in
contradiction with the positive part of the condition (y = 2∧x = y∧x = 0 ≡ false).
Indeed, (true,∅)↣ (y = 2∧x = y)⋅((x = 0,∅)↣ x = 0∧z > 0⋅⊠)↓(y=2∧x=y) = (true,
∅) ↣ (y = 2 ∧ x = y) ⋅ (false,∅) ↣ false is not a trace since (false,∅) is not a
valid condition.

The combination of the set of traces corresponding to the suspension of the
agent (third trace in the semantics of A3) and the tell agent, also produces no
trace. The definition Definition 3.16 prescribes to compute (true,∅) ↣ y =
2∧x = y ⋅⊔{((true,{y ≥ 0, x = 0})↣ true ⋅ r′)↓(y=2∧x=y) ∣ r

′ ∈ AJA4KI}, which is
empty, since y = 2 ∧ x = y É (true,{y ≥ 0, x = 0}) because y = 2 ∧ x = y ⇒ y ≥ 0.
These traces would correspond to the suspension of the agent ask, and this can
happen only when y ≥ 0 is not satisfied, but the first component of the parallel
agent tells y = 2, thus y ≥ 0 is satisfied. Therefore, only the combination of the
trace r2 in AJA3KI and the trace of AJA2KI produces a conditional trace.

Example 3.18
Consider the agent A ∶= ∃xA1, where A1 is defined in Example 3.17.

In order to apply the definition of the evaluation function for the hiding
agent, let us first check that the trace r ∈ AJA1KI is x-self-sufficient. To this
end, we hide all the information that is not concerned with x and the resulting
conditional trace

(true,∅)↣ x = 2 ⋅ (x = 2,{x = 0})↣ x = 2 ⋅ (x = 2,∅)↣ x = 2 ⋅ ⊠

is indeed x-self-sufficient. Therefore, as Definition 3.16 states, the trace ∃̄x r
belongs to the semantics of A. Namely

AJAKI = {(true,∅)↣ y = 2 ⋅ (y = 2,∅)↣ y = 2 ⋅ (y = 2,∅)↣ (y = 2 ∧ z ≤ 0) ⋅ ⊠}

Let us now consider the agent A′ ∶= tell(x ≤ 0) ∥ A. We have

AJA′KI = {(true,∅)↣ y = 2 ∧ x ≤ 0⋅

(y = 2 ∧ x ≤ 0,∅)↣ y = 2 ∧ x ≤ 0⋅

(y = 2 ∧ x ≤ 0,∅)↣ (y = 2 ∧ x ≤ 0 ∧ z ≤ 0) ⋅ ⊠}

17

It is easy to see that the information on the variable x added by the tell agent
does not affect the internal execution of the agent A, as expected.

There are some technical decisions that ensure the correctness of the defined
semantics. Due to the partial nature of the constraint system, the combination
of the hiding operator with non-determinism can make the language behavior
non-monotonic (i.e., non-condensing). As already mentioned, this is the reason
because for all non-monotonic languages of the ccp paradigm, the compositional
semantics that have been written either avoid non-monotonic constructs or re-
strict their use. Let us show now that we are able to handle the following
example, which is an adaptation to tccp of the one used in [9, 20] to illustrate
the non-monotonicity problem.

Example 3.19
Consider the non-monotonic agent

A ∶= ask(x = 1)→ tell(true) + ask(true)→ tell(y = 2).

It is easy to see that for the initial store true just the second branch can be taken,
whereas for the (greater) initial store x = 1, the two branches can be executed.
Since there are no process calls, for any interpretation I , AJAKI = {r1, r2},
where

r1 ∶= (x = 1,∅)↣ x = 1 ⋅ (x = 1,∅)↣ x = 1 ⋅ ⊠

r2 ∶= (true,∅)↣ true ⋅ (true,∅)↣ y = 2 ⋅ ⊠

We have two possible traces depending on whether the initial store is strong
enough to entail x = 1 or not.

Now, let us consider A′ ∶= tell(x = 1) ∥ ∃xA. Since

∃̄Var∖{x} r1 = (x = 1,∅)↣ x = 1 ⋅ (x = 1,∅)↣ x = 1 ⋅ ⊠

∃̄Var∖{x} r2 = (true,∅)↣ true ⋅ (true,∅)↣ true ⋅ ⊠

only r2 is x-self-sufficient and, by Definition 3.16,

AJ∃xAKI ={(true,∅)↣ true ⋅ (true,∅)↣ y = 2 ⋅ ⊠}.

By composing we have

AJA′KI = {(true,∅)↣ x = 1 ⋅ (x = 1,∅)↣ y = 2 ∧ x = 1 ⋅ ⊠}.

It is easy to see that the information on the variable x added by the tell agent
does not affect the internal execution of the agent A, as expected.

In the definition of the propagation operator (Definition 3.7), the propagated
information is added not only to the store of the state, but also to the (positive
part of the) condition. This means that the positive part of the conditions in a
trace contains the information that had to be satisfied up to that computation
step, but also the constraints that have been added during computation in the
previous time instants. From the computations in the examples above, it may
seem that the propagation of the accumulated information in the conditions of
the states could be redundant. However, it is necessary in order to have full
abstraction w.r.t. the behavior, otherwise we would distinguish agents whose
behavior is actually the same as shown in the following example.

18

Example 3.20
Consider the following two (very similar) agents:

A1 ∶= ask(x > 2)→ tell(y = 1) A2 ∶= ask(x > 4)→ tell(y = 1)

We have similar but different semantics. Namely,

AJA1KI = {(stutt({x > 2}))
n
⋅ r1 ∣n ∈ N} ⊔ {stutt({x > 2}) ⋯ stutt({x > 2}) ⋯}

r1 = (x > 2,∅)↣ true ⋅ (x > 2,∅)↣ y = 1 ⋅ ⊠

AJA2KI = {(stutt({x > 4}))
n
⋅ r2 ∣n ∈ N} ⊔ {stutt({x > 4}) ⋯ stutt({x > 4}) ⋯}

r2 = (x > 4,∅)↣ true ⋅ (x > 4,∅)↣ y = 1 ⋅ ⊠

However, consider now the following two agents, which embed A1 and A2 in the
same context:

A′
1 ∶= tell(x = 7) ∥ ask(true)→ A1 A′

2 ∶= tell(x = 7) ∥ ask(true)→ A2

Then, the two traces corresponding to the satisfaction of the guards are, respec-
tively:

r3 = (true,∅)↣ x = 7 ⋅ r1↓(x=7) r4 = (true,∅)↣ x = 7 ⋅ r2↓(x=7)

Since the propagated constraint is stronger than the guards in both the agents,
the resulting compositions are the same. In fact, thanks to the accumulation of
the store in the condition, we do not distinguish them:

r1↓(x=7) = r2↓(x=7) = (true,∅)↣ x = 7⋅

(x = 7,∅) ↣ x = 7 ⋅ (x = 7,∅) ↣ x = 7 ∧ y = 1 ⋅ ⊠

If the constraint x = 7 is not added to the condition, but only to the store of
the state, then we have two different conditional traces for these two agents.

3.2.3 Fixpoint Denotations of Process Declarations

Now we can finally define the semantics for a set of process declarations D.

Definition 3.21 (Fixpoint semantics) Given D ∈ DΠ
C, we define DJDK∶ I →

I as

DJDKI (p(x)) ∶=⊔{AJAKI ∣p(x⃗) ∶− A ∈D}.

The fixpoint denotation of D is F JDK ∶= lfp(DJDK) = DJDK↑ω.
We denote with ≈F the equivalence relation on DΠ

C induced by F . Namely,
D1 ≈F D2 ⇔ F JD1 K = F JD2 K.

The semantics of a tccp program D . A is PJD . AK ∶= AJAKF JDK .

F JDK is well defined sinceDJDK is continuous (as stated formally in Lemma A.5).
Let us show how the semantics for a set of process declarations is computed

by means of some examples.

19

(x = 4,∅)↣ x = 4 stutt({x = 4})

(x = 4,∅)↣ x = 4

I(p(x))↓x=4

Figure 4: Graph representation for AJAKI of Example 3.22

(x = 4,∅)↣ x = 4 stutt({x = 4})

(x = 4,∅)↣ x = 4

(x = 4,∅)↣ x = 4

Figure 5: Graph representation of the fixpoint F JDK for the Example 3.22

Example 3.22
Let D ∶= {p(x) ∶− A} where A ∶= ask(x = 4) → p(x). First we need to compute,
for each I ∈ I, the evaluation of the body of the process declaration. Namely,

AJAKI ={(stutt({x = 4}))
n
⋅ r̄ ⋅ s ∣n ∈ N, s ∈ I(p(x))} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}

where r̄ ∶= (x = 4,∅) ↣ x = 4 ⋅ (x = 4,∅) ↣ x = 4. It is worth noticing that the
second conditional state of r̄ corresponds to the delay that is introduced each
time that a process call is run. AJAKI is graphically represented in Figure 4.

The iterates of DJDK are

DJDK↑1 = {
p(x)↦ {(stutt({x = 4}))n ⋅ r̄ ∣n ∈ N} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}

DJDK↑2 = {
p(x)↦ {(stutt({x = 4}))n ⋅ r̄ ⋅ r̄ ∣n ∈ N} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}

⋮

DJDK↑ω = {
p(x)↦ {(stutt({x = 4}))n ⋅ r̄ ⋯ r̄ ⋯ ∣n ∈ N} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}

The limit F JDK(p(x)) = (DJDK↑ω)(p(x)) is graphically represented in Figure 5.
Note that the application of the propagation operator to the previous iterates
removes all the stuttering sequences, and this is the reason because just the first
sequence remains.

20

(x > 2,∅)↣ x > 2 ∧ y < 0

⊠ (true,{x > 2})↣ true

Figure 6: Graph representation of the fixpoint F JDK of Example 3.23

(y > x,∅)↣ y > x

(y ≤ x,∅)↣ y ≤ x
stutt({y > x, y ≤ x})

⊠

(y > x,∅)↣ y > x

I(p(x + 1))↓y>x

Figure 7: Graph representation for AJAKI in Example 3.24

Example 3.23
Let D ∶= {q(x , y) ∶− A} where

A ∶= now (x > 2) then tell(y < 0) else q(x, y)

Then

DJDK↑1 = {q(x, y)↦ {r̄, (true,{x > 2})↣ true}

DJDK↑2 = {
q(x, y)↦ {r̄, (true,{x > 2})↣ true ⋅ r̄,

(true,{x > 2})↣ true ⋅ (true,{x > 2})↣ true}

⋮

F JDK = {
q(x, y)↦ {((true,{x > 2})↣ true)

n
⋅ r̄ ∣n ∈ N}

⊔{(true,{x > 2})↣ true ⋯ (true,{x > 2})↣ true ⋯}

where r̄ ∶= (x > 2,∅)↣ x > 2∧y < 0 ⋅⊠. F JDK(q(x, y)) is graphically represented
in Figure 6.

Example 3.24
Let D ∶= {p(x , y) ∶− A} where

A ∶= ask(y > x)→ p(x + 1, y) + ask(y ≤ x)→ skip

As usually done in tccp community, we assume that we can use expressions
of the form x + 1 directly in the arguments of a process call. We can simulate
this behavior by writing ∃x′ (tell(x′ = x + 1) ∥ p(x′, y)) instead of p(x+1, y) (but
introducing a delay of one time unit). We have

AJAKI = {(y > x,∅)↣ y > x ⋅ (y > x,∅)↣ y > x ⋅ r ∣ r ∈ I(p(x + 1, y))} ⊔

21

(y > x,∅)↣ y > x

(y ≤ x,∅)↣ y ≤ x

stutt({y > x, y ≤ x})

⊠(y > x,∅)↣ y > x

Figure 8: Graph representation of DJDK↑1 in Example 3.24

(y > x,∅)↣ y > x (y ≤ x,∅)↣ y ≤ x

⊠

stutt({y > x, y ≤ x})

(y > x,∅)↣ y > x

(y = x + 1,∅)↣ y = x + 1(y > x + 1,∅)↣ y > x + 1

(y > x + 1,∅)↣ y > x + 1
⊠

Figure 9: Graph representation of f DJDK↑2 in Example 3.24

{(y ≤ x,∅)↣ y ≤ x ⋅ ⊠} ⊔

{(stutt({y > x, y ≤ x}))n ⋅ (y > x,∅)↣ y > x⋅

(y > x,∅)↣ y > x ⋅ r ∣ n ∈ N, r ∈ I(p(x + 1, y))} ⊔

{(stutt({y > x, y ≤ x}))n ⋅ (y ≤ x,∅)↣ y ≤ x ⋅ ⊠ ∣ n ∈ N} ⊔

{stutt({y > x, y ≤ x}) ⋯ stutt({y > x, y ≤ x}) ⋯}

which is graphically shown in Figure 7. For this agent, we have three branches,
one for each condition of the choice and one corresponding to the stuttering
possibility. The first iteration of DJDK is

DJDK↑1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(x, y)↦ {(y > x,∅)↣ y > x ⋅ (y > x,∅)↣ y > x} ⊔
{(y ≤ x,∅)↣ y ≤ x ⋅ ⊠} ⊔
{(stutt({y > x, y ≤ x}))n ⋅ (y > x,∅)↣ y > x⋅

(y > x,∅)↣ y > x ∣ n ∈ N} ⊔
{(stutt({y > x, y ≤ x}))n ⋅ (y ≤ x,∅)↣ y ≤ x ⋅ ⊠ ∣ n ∈ N} ⊔
{stutt({y > x, y ≤ x}) ⋯ stutt({y > x, y ≤ x}) ⋯}

which is graphically represented in Figure 8. Figure 9 represents the second
iteration, whereas Figure 10 is the limit of the fixpoint computation. In the
semantics, it can be easily observed that the process stops in one time instant
when y ≤ x and in 1 + 2(y − x) time instants otherwise. This process can be
combined with other processes to be used as a kind of timer since it forces the
time passing during a given time interval.

22

(y > x,∅)↣ y > x (y ≤ x,∅)↣ y ≤ x

⊠

stutt({y > x, y ≤ x})

(y > x,∅)↣ y > x

(y = x + 1,∅)↣ y = x + 1(y > x + 1,∅)↣ y > x + 1

(y > x + 1,∅)↣ y > x + 1

(y = x + 2,∅)↣ y = x + 2(y > x + 2,∅)↣ y > x + 2

⊠

⊠

Figure 10: Graph representation of F JDK in Example 3.24.

Example 3.25
Consider the following process declaration, presented in [17], which models a
subsystem of a microwave controller. The underlying constraint system is the
well-known Herbrand constraint system [8].

microwave(Door , Button, Error) ∶− ∃D ∃B ∃E

(tell(Error = [∣ E]) ∥ tell(Door = [∣D]) ∥ tell(Button = [∣ B])

∥ (now(Door = [open ∣D] ∧Button = [on ∣ B])

then ∃E1 tell(E = [1 ∣ E1]) ∥ ∃B1 tell(B = [off ∣ B1])

else ∃E1 tell(E = [0 ∣ E1]))

∥ microwave(D ,B ,E))

This process declaration detects if the door is open while the microwave is
turned on. In that case, it forces that in the next time instant the microwave is
turned-off and it emits an error signal (1); otherwise, the agent emits a signal of
no error (0). Due to the monotonicity of the store, streams are used to model
imperative-style variables [10]. In the example, the streams Error , Door and
Button store the values that these variables get along the computation. The first
three tell agents link the future values of the streams with the future streams E,
D and B. Then, when it is detected a possible risk (characterized by the guard
of the now agent), the microwave is turned off and an error signal is emitted
(by the then branch of the conditional agent). The final recursive call restarts
the same control at the next time instant.

The fixpoint semantics F (microwave(D ,B ,E)) is graphically represented in
Figure 11, where:

riskk ∶= ∃D ∃B(Door = [open ∣ . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

∣D] ∧Button = [on ∣ off ∣ on ∣ . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−1 times

∣ B])

23

(risk1,∅)↣ state1

(true,{risk1})↣ state0

(risk2,∅)↣ state01

(true,{risk2})↣ state00

(risk2,∅)↣ state11

(risk1,{risk2})↣ state10

Figure 11: Tree representation of F JDK in Example 3.25.

stateb1...bn ∶= ∃E1 ∃D ∃B1(Error = [∣ b1 ∣ . . . ∣ bn ∣ E1] ∧Door = [∣D]∧

Button = [∣ on ∣ off ∣ . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Σn

i=1bi times

∣B1])

We have coded the indices of stores in the conditional states with a binary
number in order to make the figure readable. It is worth noticing that the
stores labeled with stateb where the last digit of b is 1 correspond to states
where an error is emitted.

All the conditional sequences in the semantics of this process are infinite
sequences. This is consistent with the fact that we are modeling a process that
is intended to be active forever, checking whether the risky situation holds. It is
worth noticing that this kind of processes can be handled only if the semantics
is able to capture infinite computations, which is one of the main features of
our proposal.

3.2.4 Full abstraction of F semantics

Our semantics F is fully abstract w.r.t. the operational behavior. This subsec-
tion is dedicated to prove this fact. First, we need to define an auxiliary operator
which, taken a “real” initial store c, instantiates the “hypothetical” states of a
conditional trace r producing the corresponding “real” behavioral timed trace.
Intuitively, this operator works by consistently adding to each conditional state
the information given by the initial store c, discarding those sequences which
falsify conditions.

Definition 3.26 (Instantiation operator) The instantiation operator ⇓∶M×
C→ C∗ is a partial function defined by structural induction as: ε⇓c ∶= ε; other-
wise r⇓ff ∶= ff ; otherwise ⊠⇓c ∶= c,

(stutt(η−) ⋅ r′)⇓c ∶= c if ∀c− ∈ η−. c ⊬ c−

(η ↣ d ⋅ r′)⇓c ∶= c ⋅ (r
′⇓c⊗d) if c⊫ η and (c⊗ d) ≠ ff

We abuse notation by denoting with R⇓c the extension of ⇓c to M: R⇓c ∶=
{r⇓c ∣ r ∈ R and r⇓c is defined}.

24

The instantiation operator is consistent w.r.t. the propagation operator (Def-
inition 3.7), in the sense that, for any c′ that entails c, r⇓c = (r↓c′)⇓c (as stated
formally in Lemma A.6). Moreover, the instantiation operator ⇓ “distributes”
over the parallel composition operator ∥̄ (Definition 3.10) (as stated formally in
Lemma A.8).

The key result to prove correctness of F w.r.t. ≈ss is the following theorem
which shows that the behavior of a program P can be determined by instanti-
ation of the semantics PJP K.

Theorem 3.27 For each program P and each c ∈ C, prefix(PJP K⇓c) = BssJP Kc.

The following theorem is the key result to prove full abstraction of F w.r.t. ≈ss .

Theorem 3.28 Let P1, P2 be two programs. Then PJP1K = PJP2K ⇔ ∀c ∈
C.PJP1K⇓c = PJP2K⇓c.

Full abstraction follows directly from Theorems 3.27 and 3.28 and Proposi-
tion 3.29.

Proposition 3.29 Let D1, D2 ∈ DΠ
C. Then D1 ≈F D2 ⇔ ∀A ∈ AΠ

C.PJD1 . AK =
PJD2 . AK.

Corollary 3.30 (Correctness and full abstraction of F) Let D1, D2 ∈ DΠ
C.

Then D1 ≈ss D2 if and only if D1 ≈F D2.

4 Big-step semantics

In the literature, many authors (like [10]) call observables all the abstractions
of the behavioral timed traces (including behavioral timed traces themselves as
the degenerate identity abstraction). Moreover, they typically use this same
name for the collection of all observables of a program.

Many other authors use the term observable (property) for an abstraction
function φ which, when applied to the set of traces of a program, delivers the
observations of interest and the observation of program P is just the application
of φ to the traces of P .

We prefer to use the latter nomenclature and, in the sequel, we call φ(BssJQK)
observable behavior of a program Q w.r.t. observable φ (or simply φ-observable
behavior of Q) and we denote it by BφJQK.

The observable property which is usually considered in papers dealing with
semantics of ccp languages (e.g. see [13]) is the one that collects the input/output
pairs of terminating computations, including deadlocked ones. Indeed, using the
(original version of the) transition system of Definition 2.1, [10] defines the no-
tion of input-output observables as Oio(A) ∶= {⟨c0, cn⟩ ∣ ⟨A0, c0⟩→

∗ ⟨An, cn⟩ /→}.
In this definition, there is an implicit reference to a set of declarations D. Since
in the sequel we need to state some formal results for two (different) sets of
declarations, we use the explicit notation OioJD . AK instead of Oio(A).

As we already mentioned, in tccp also infinite computations must be con-
sidered, for example when we are modeling reactive systems. Thus, we do not
restrict only to terminating computations. However, we nevertheless want to be
able to distinguish if an input-output pair refers to a finite or infinite compu-
tation. Thus, we will use input-output pairs with associated termination mode

25

of the form ⟨c0, mode(cn)⟩, where c0 ∈ C is the input store of the computation,
cn ∈ C is the output store (which is the lub of the stores of the computation)
and mode is either fin or inf for finite or infinite computations, respectively.

Definition 4.1 (Input-output behavior of programs) Given c, c′ ∈ C such
that c ⊢ c′, an input-output pair with termination mode is either ⟨c, fin(c′)⟩ or
⟨c, inf (c′)⟩.

We denote by IO the set of input-output pairs with termination mode and
by IO the domain ℘(IO), ordered by set inclusion.

Let D ∈ DΠ
C and A0 ∈ AΠ

C. The input-output behavior of the program D .A0

is defined as

BioJD . A0K ∶={⟨c0, fin(cn)⟩ ∣ c0 ∈ C, ⟨A0, c0⟩→
∗ ⟨An, cn⟩ /→} ∪

{⟨c0, inf (⊗i≥0ci)⟩ ∣ c0 ∈ C, ⟨A0, c0⟩→ ⋯→ ⟨Ai, ci⟩→ ⋯}

where → is the transition relation of Figure 1.
We denote by ≈io the equivalence relation between process declarations in-

duced by Bio, namely D1 ≈io D2 ⇔ ∀A ∈ AΠ
C. B

ioJD1 . AK = BioJD2 . AK.

We denote by πIO
F the projection which selects just the pairs whose mode is

fin and by IOF we denote πIO
F (IO).

Moreover we denote by Bio
F JD . AK the finite fragment of BioJD . AK i.e.,

πIO
F (BioJD . AK).

Clearly, (IO, ⊆, ⋃, ⋂, IO, ∅) is a complete lattice.
In the sequel, we define an abstract interpretation [7] of the small-step se-

mantics PJD.AK (Section 3.2.3) which gives BioJD.AK. Then we prove that the
finite fragment of this abstraction (i.e., Bio

F JD .AK) is isomorphic to OioJD .AK
(modulo the changes in the definition of the small-step semantics).

As suggested by the abstract interpretation approach, we proceed as fol-

lows. First, we define a Galois Insertion (M, ⊑) −−−−→Ð→←−−−−−
α

γ
(IO, ⊆) and then we

lift it over interpretations I −−−−→Ð→←−−−−−
α̇

γ̇
[MGC → IO] by function composition as

α̇(f) = α ○f . The optimal abstract version of the semantics DJDK is simply
obtained as DαJDK ∶= α̇ ○DJDK ○ γ̇. Abstract interpretation theory assures that
FαJDK ∶= lfp(DαJDK) is the best correct approximation of F JDK. Correct be-
cause α(F JDK) ⊆ FαJDK and best because it is the minimum (w.r.t. ⊆) of all
correct approximations.

4.1 Input-output semantics with infinite outcomes

Now we formally define the Galois Insertion which abstracts conditional traces
to input-output pairs with infinite outcomes.

Definition 4.2 (Input-Output abstraction) Given any R ∈M, we define

αio(R) ∶= {⟨c0, fin(cn)⟩ ∣ c0 ∈ C, r ∈ R, last(r⇓c0) = cn} ∪

{⟨c0, inf (⊗i≥0ci)⟩ ∣ c0 ∈ C, r ∈ R, r⇓c0 = c0 . . . ci . . .}

(4.1)

γio(P) ∶= ⊔{r ∈ CT ∣ ⟨c0, fin(cn)⟩ ∈ P, last(r⇓c0) = cn} ⊔

⊔{r ∈ CT ∣ ⟨c0, inf (c)⟩ ∈ P, r⇓c0 = c0 . . . ci . . . , c = ⊗i≥0ci}

(4.2)

We abuse notation and denote with the same symbols the lifting to interpreta-
tions (αio(I) ∶= αio ○I , γio(I

α) ∶= γio ○I
α).

26

(M, ⊑, ⊔, ⊓, M, {ε}) −−−−−→Ð→←−−−−−−−
αio

γio

(IO, ⊆, ⋃, ⋂, IO, ∅) is a Galois insertion (as stated

formally in Lemma A.9).
The input-output behavior of a program is indeed obtainable by abstraction

of its (concrete) semantics.

Theorem 4.3 Let D ∈ DΠ
C and A ∈ AΠ

C. Then αio(PJD . AK) = BioJD . AK.

Now (as anticipated), following the abstract interpretation theory, we define
the optimal abstract version of D as Dio ∶= αio ○ D ○ γio ,5 and thus the best
correct approximation w.r.t. αio of the semantic function F is the least fixpoint
of Dio , i.e., F ioJDK ∶= lfp(DioJDK). Unfortunately, F ioJDK turns out to be
very imprecise, mainly because the information contained in the input-output
pairs is not enough to keep the synchronization between parallel processes. This
means that sets of declarations with the same behavior Bio could have different
F io semantics, as shown by the following example.

Example 4.4
Consider the two sets of declarations D1 ∶= {d1, d2} and D2 ∶= {d1, d3} where

d1 ∶= p(x , y) ∶− q(x) ∥ ask(true)→ now x = 2 then tell(y = 0) else tell(y = 1)

d2 ∶= q(x) ∶− tell(x = 2)

d3 ∶= q(x) ∶− ask(true)→ tell(x = 2)

Clearly, D2 differs from D1 just because of the delay in adding the constraint
x = 2 to the store. This difference shows up in the input-output behavior of
p(x , y). Indeed,

αio(PJD1 . p(x, y)K) = {⟨c, fin(c ∧ x = 2 ∧ y = 0)⟩ ∣ c ∈ L}

αio(PJD2 . p(x, y)K) = {⟨c, fin(c ∧ y = 0)⟩ ∣ c ∈ L, c⇒ x = 2} ∪

{⟨c, fin(c ∧ x = 2 ∧ y = 1)⟩ ∣ c ∈ L, c⇏ x = 2}

and then (by Theorem 4.3) D1 /≈io D2 . However, the abstract fixpoint seman-
tics F io does not distinguish D1 from D2 . Indeed,

F ioJD1K = F ioJD2K =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

q(x)↦ {⟨c, fin(c ∧ x = 2)⟩ ∣ c ∈ L}

p(x, y)↦ {⟨c, fin(c ∧ y = 0)⟩ ∣ c ∈ L, c⇒ x = 2}} ∪

{⟨c, fin(c ∧ x = 2 ∧ y = 1)⟩ ∣ c ∈ L, c⇏ x = 2}

This example proves that the declarations equivalence induced by fixpoint se-
mantics F io is not correct w.r.t. ≈io (the input-output behavior declarations
equivalence).

Given that F io is the best possible approximation, this also formally proves
that it is not possible to have a correct input-output semantics defined solely
on the information provided by the input/output pairs (some more information
in denotations is needed). This also formally justifies (a posteriori) why [10]
defined Oio(A) as a filter of a more concrete semantics instead of using a direct
definition.

5A direct (expanded) definition of Dio is not relevant for our present purposes.

27

4.2 Modeling the input-output semantics of [10]

In this section, we (formally) show that the (original) input-output semantics
of tccp OioJD .AK (defined in [10]) is (essentially) isomorphic to Bio

F JD .AK (the
finite fragment of the semantics introduced in the previous section).

Theorem 4.5 Let P1 and P2 be two tccp programs such that no trace in PJP1K ⊔PJP2K
is a failed conditional trace. Then OioJP1K = OioJP2K ⇐⇒ πIO

F (αio(PJP1K)) =
πIO

F (αio(PJP2K)).

This theorem does not hold for any pair of tccp programs because of the dif-
ference in the definition of small-step transition relation → (as shown by the
following example). Namely, we do not have the same input-output pairs (ex-
cept for the tag fin) only when a program reaches ff (along some execution
path). This explains why we use the adjective “essentially” when mentioning
the isomorphism between OioJD . AK and Bio

F JD . AK.

Example 4.6
Let P1 ∶= D . loop and P2 ∶= D . tell(false), where D ∶= {loop ∶− tell(false) ∥
loop}. We have that Bio

F JP1K = Bio
F JP2K = {⟨c, fin(false)⟩} while OioJP1K = ∅ ≠

OioJP2K = {⟨c, fin(false)⟩}.

The difference is due to the change we made in the definition of the small-
step operational semantics. More specifically, in the operational semantics that
we use (Definition 2.1), when the store ff is reached, the transition relation
→ is not defined. We devised → in this way to be conform with the original
rationale of the ccp paradigm. As a consequence, when a sequence computes
ff , it is considered as a failure computation with output ff . In contrast, in the
operational semantics of [10], the transition relation → does not consider the
ff store as a special case and then it is possible to execute an agent on the
ff store. This means that for finite computations that reach the ff store both
notions coincide, but for infinite computations which are definitively ff , in the
operational semantics of [10], the two notions are different.

By considering the special case for ff , it is straighforward to modify Defini-
tion 4.2 to compute exactly OioJP K.

To conclude, it is interesting to note that Bio
F JP K can be equivalently ob-

tained by first appropriately filtering the conditional traces and after applying
the abstraction αio . Formally, given M ∈M, let πIO

F (M) ∶= {r ∈M ∣ r ends with

⊠ or it contains a stuttering} and let MF ∶= πIO
F (M). Note that this domain

correspond to sequences such that the application of the ⇓ operator produces
only finite sequences of stores. It can be proved that the following diagram
commutes

(IO, ⊆) (IOF , ⊆)

(M, ⊑) (MF , ⊑)
πM

F

πIO
F

γ
io

α
io

γ
io

α
io

28

5 Conclusions

In this work, we have presented a small-step semantics that is fully abstract
w.r.t. the tccp language behavior and that is suitable to be used as the basis of
analysis techniques such as abstract diagnosis. The task of defining a compo-
sitional fully-abstract semantics for the language has shown to be difficult due
to the non-monotonic nature of the language, which is a characteristic shared
with other concurrent languages of the ccp family.

However, by defining a more elaborated semantic domain (that uses condi-
tions to model hypothetical computations) and a suitable interpretation of the
agents’ behavior, we have encompassed these difficulties.

To our knowledge, this is the first denotational semantics for a language in
the ccp family that is compositional and fully abstract and that covers the whole
language (including the non monotonic behavior of the languages).

We have also defined a big-step semantics for the language as an abstrac-
tion of the small-step one. This semantics collects the limit store of (finite
and infinite) computations. We proved that its fragment for finite computa-
tions is precise enough to recover the original input-output semantics of the
language. Moreover, we also proved that it is not possible to have a correct
input-output semantics which is defined solely on the information provided by
the input/output pairs.

A Proofs

In the sequel, to avoid a proliferation of parenthesis, we assume that ↓c and ⇓c
have priority over ⋅ and ∥̄.

A.1 Proofs of Section 3

By construction, we can see that the conditional traces computed by A always
satisfy that the store in a given time instant entails the positive condition.
Formally,

Property A.1 Let A ∈ AΠ
C, I ∈ IΠ and r ∈ AJAKI . For each conditional tuple

(η+, η−)↣ a occurring in r, a ⊢ η+.

Proof.
This property is directly verified by (3.8) and (3.9) of Definition 3.16: when a
guard is added to the positive condition, it is also added to the correspondent
store, and propagated to the subsequent trace.

There exists a relation between the propagation operator ↓ and the merge ⊗
of the constraint system: the consecutive propagation of two constraints (r↓c)↓c′

is equivalent to r↓(c⊗c′).

Lemma A.2 Let c, c′ ∈ C and r ∈ M such that (r↓c′)↓c is defined. Then r↓(c⊗c′)
is defined and (r↓c′)↓c = r↓(c⊗c′).

Proof.
We proceed by the structural induction on r.

r = ε and r = ⊠ Straightforward.

29

r = (η+, η−)↣ d ⋅ r′ By hypothesis, (r↓c′)↓c is defined, thus, c ≫ (η+ ⊗ c′, η−)
and (r′↓c′)↓c is defined. It follows directly that c ⊗ c′ ≫ (η+, η−) and, by
inductive hypothesis, (r′↓c⊗c′) is defined. Thus, (r↓c⊗c′) is defined too.

(r↓c′)↓c =(((η
+, η−)↣ d ⋅ r′)↓c′)↓c

[by Definition 3.7]

=((c′ ⊗ η+, η−)↣ c′ ⊗ d ⋅ r′↓c′)↓c

[by Definition 3.7]

=(c⊗ c′ ⊗ η+, η−)↣ c⊗ c′ ⊗ d ⋅ (r′↓c′)↓c

[by Inductive Hypothesis]

=(c⊗ c′ ⊗ η+, η−)↣ c⊗ c′ ⊗ d ⋅ r′↓c⊗c′

=r↓c⊗c′

r = stutt(η−) ⋅ r′ By hypothesis, (r↓c′)↓c is defined, thus, for all c− ∈ η− c ⊬ c−

and c′ ⊬ c−. Furthermore, (r′↓c′)↓c is defined. It follows directly that
for all c− ∈ η− c ⊗ c′ ⊬ c−, moreover, by inductive hypothesis, (r′↓c⊗c′) is
defined. Thus, (r↓c⊗c′) is defined too.

(r↓c′)↓c =((stutt(η−) ⋅ r′)↓c′)↓c

[by Definition 3.7]

=(stutt(η−) ⋅ r′↓c′)↓c

[by Definition 3.7]

= stutt(η−) ⋅ (r′↓c′)↓c

[by Inductive Hypothesis]

= stutt(η−) ⋅ r′↓c⊗c′

=r↓c⊗c′

There exists a relation between the parallel composition and the operator of
propagation as stated by the following lemma.

Lemma A.3 Let r1, r2 ∈ M and c ∈ C such that r1↓c and r2↓c are defined.
Then r1↓c ∥̄ r2↓c is defined and r1↓c ∥̄ r2↓c = (r1 ∥̄ r2)↓c.

Proof.

r1 = ε (or r1 = ⊠) and any r2 The statement follows directly from Definitions
3.7 and 3.10.

r1 = (η+1, η−1)↣ d1 ⋅ r′1 and r2 = (η+2, η−2)↣ d2 ⋅ r′2 Since r1↓c and r2↓c are de-
fined, it follows that η1 = (η+1 , η

−
1) and η2 = (η+2 , η

−
2) are c-compatible. We

have to distinguish two cases.

c⊗ d1 ≠ ff and c⊗ d2 ≠ ff By hypothesis, since r1↓c and r2↓c are de-
fined, we have that c is consistent with both η1 and η2, and therefore
with their conjunction (η1 ⊗ η2). Furthermore, r′1↓c and r′2↓c are de-
fined as well. By inductive hypothesis (r′1 ∥̄ r

′
2)↓c is defined too, thus,

we can conclude that also (r1 ∥̄ r2)↓c is defined.

r1↓c ∥̄ r2↓c =((η
+
1 , η

−
1)↣ d1 ⋅ r

′
1)↓c ∥̄ ((η+2 , η

−
2)↣ d2 ⋅ r

′
2)↓c

[by Definition 3.7]

30

=((η+1 ⊗ c, η
−
1)↣ d1 ⊗ c ⋅ r

′
1↓c) ∥̄ ((η+2 ⊗ c, η

−
2)↣ d2 ⊗ c ⋅ r

′
2↓c)

[by Definition 3.10]

=(η+1 ⊗ η
+
2 ⊗ c, η

−
1 ∪ η

−
2)↣ d1 ⊗ d2 ⊗ c ⋅ (r

′
1↓c ∥̄ r

′
2↓c)

[by Inductive Hypothesis]

=(η+1 ⊗ η
+
2 ⊗ c, η

−
1 ∪ η

−
2)↣ d1 ⊗ d2 ⊗ c ⋅ (r

′
1 ∥̄ r

′
2)↓c

[by Definition 3.7]

=(r1 ∥̄ r2)↓c

c⊗ d1 = ff or c⊗ d2 = ff In this case r1↓c ∥̄ r2↓c reaches the store ff in
one step, as also occurs when we compute (r1 ∥̄ r2)↓c:

r1↓c ∥̄ r2↓c =((η
+
1 , η

−
1)↣ d1 ⋅ r

′
1)↓c ∥̄ ((η+2 , η

−
2)↣ d2 ⋅ r

′
2)↓c

[by Definition 3.7 and Definition 3.10]

=(η+1 ⊗ η
+
2 ⊗ c, η

−
1 ∪ η

−
2)↣ ff ⋅ ⊠

[by Definition 3.7 and Definition 3.10]

=(r1 ∥̄ r2)↓c

r1 = (η+1, η−1)↣ d1 ⋅ r′1 and r2 = stutt(η−2) ⋅ r′2 By hypothesis, since r1↓c and
r2↓c are defined, we have that c is consistent with η1 and does not en-
tail any constraint belonging to η−2 , and therefore it is consistent with
(η+1 , η

−
1 ∪ η

−
2). Furthermore, r′1↓c and r′2↓c are defined as well. By induc-

tive hypothesis (r′1 ∥̄ r
′
2)↓c is defined too, thus, we can conclude that also

(r1 ∥̄ r2)↓c is defined.

r1↓c ∥̄ r2↓c =((η
+
1 , η

−
1)↣ d1 ⋅ r

′
1)↓c ∥̄ (stutt(η−2) ⋅ r

′
2)↓c

[by Definition 3.7]

=((η+1 ⊗ c, η
−
1)↣ d1 ⊗ c ⋅ r

′
1↓c) ∥̄ (stutt(η−2) ⋅ r

′
2↓c)

[by Definition 3.10]

=(η+1 ⊗ c, η
−
1 ∪ η

−
2)↣ d1 ⊗ c ⋅ (r

′
1↓c ∥̄ r

′
2↓c)

[by Inductive Hypothesis]

=(η+1 ⊗ c, η
−
1 ∪ η

−
2)↣ d1 ⊗ c ⋅ (r

′
1 ∥̄ r

′
2)↓c

[by Definition 3.7]

=(r1 ∥̄ r2)↓c

r1 = stutt(η−1) ⋅ r′1 and r2 = stutt(η−2) ⋅ r′2 By hypothesis, since r1↓c and r2↓c
are defined, we have that c does not entail any constraint in η−1 ∪ η−2 ,
furthermore r′1↓c and r′2↓c are defined as well. By inductive hypothesis
(r′1 ∥̄ r

′
2)↓c is defined too, thus, we can conclude that also (r1 ∥̄ r2)↓c is

defined.

r1↓c ∥̄ r2↓c =(stutt(η−1) ⋅ r
′
1)↓c ∥̄ (stutt(η−2) ⋅ r

′
2)↓c

[by Definition 3.7]

=(stutt(η−1) ⋅ r
′
1↓c) ∥̄ (stutt(η−2) ⋅ r

′
2↓c)

[by Definition 3.10]

31

= stutt(η−1 ∪ η
−
2) ⋅ (r

′
1↓c ∥̄ r

′
2↓c)

[by Inductive Hypothesis]

= stutt(η−1 ∪ η
−
2) ⋅ (r

′
1 ∥̄ r

′
2)↓c

[by Definition 3.7]

=(r1 ∥̄ r2)↓c

An important technical result states that the evaluation function for agents
A is closed under context embedding.

Lemma A.4 Let A1,A2 ∈ AΠ
C and I ∈ I. Then AJA1KI = AJA2KI if and only

if, for all context C[], AJC[A1]KI = AJC[A2]KI .

Proof.
⇐ Directly holds.

⇒ This implication follows from Definition 3.16. The evaluation function A
is defined by composition of the semantics of its subagents. In particular,
the semantics of both, C[A1] and C[A2], is computed from the semantics
of A1 and A2, respectively. Since A1 and A2 are equivalent, then also the
semantics of C[A1] and C[A2] coincide.

Lemma A.5 For each A ∈ AΠ
C and each D ∈ DΠ

C, AJAK and DJDK are contin-
uos.

Proof.
Consider A ∈ AΠ

C and D ∈ DΠ
C, to prove the continuity of AJAK, we have to

verify two properties: monotonicity and finitarity. The continuity of DJDK
follows directly from the continuity of AJAK and from Definition 3.21.

Monotonicity. It is sufficient to show that for each I1,I2 ∈ I and and for each
A ∈ AΠ

C, I1 ⊑ I2 ⇒ AJAKI1
⊑ AJAKI2

. Observe that the only case in which
A depends on the interpretation is the case of the process call.

By definition of ⊑, I1(p(x)) ⊑ I2(p(x)), thus:

AJp(x)KI1
=⊔{(tt ,∅)↣ tt ⋅ r ∣ r ∈ I1(p(x))}

⊑⊔{(tt ,∅)↣ tt ⋅ r ∣ r ∈ I2(p(x))} = AJp(x)KI2

Finitarity. Again, it is sufficient to consider the evaluation function A for the
case of the process call. AJAKI depends on a finitary subset of I , in par-
ticular on the subset regarding p(x) which is a finitary set of conditional
traces closed by prefix.

Lemma A.6 Let r ∈ M and c, c′ ∈ C such that c ⊢ c′ and r⇓c is defined. Then
(r↓c′)⇓c is defined and r⇓c = (r↓c′)⇓c.

Proof.
By hypothesis, r⇓c is defined, thus c is compatible with all the conditions oc-
curring in r. Since c ⊢ c′, it is easy to notice that also c′ is compatible with all
the conditions occurring in r, thus r↓c′ is defined. Then, (r↓c′)⇓c is defined as
well. If c = ff , by Definition 3.26, r⇓ff = ff = (r↓c′)⇓ff . Otherwise, if c ≠ ff , we
proceed by induction on the structure of r.

32

r = ε and r = ⊠ The statement follows directly from Definitions 3.7 and 3.26.

r = (η+, η−)↣ d ⋅ r′ We distinguish three subcases:

1. If d⊗ c ≠ ff , it follows that d⊗ c′ ≠ ff , thus:

(r↓c′)⇓c = (((η+, η−)↣ d ⋅ r′)↓c′)⇓c

[by Definition 3.7]

= ((η+ ⊗ c′, η−)↣ d⊗ c′ ⋅ r′↓c′)⇓c

[by Definition 3.26]

= c ⋅ (r′↓c′)⇓c⊗d⊗c′

[by Inductive Hypothesis]

= c ⋅ r′⇓c⊗d⊗c′

[since c ⊢ c′]

= c ⋅ r′⇓c⊗d

By Definition 3.26, r⇓c = (η+, η−) ↣ d ⋅ r′⇓c = c ⋅ r
′⇓c⊗d, thus r⇓c =

(r↓c′)⇓c.

2. If d⊗ c = ff and d⊗ c′ ≠ ff :

(r↓c′)⇓c = ((η+, η−)↣ d ⋅ r′↓c′)⇓c

[by Definition 3.7]

= ((η+ ⊗ c′, η−)↣ d⊗ c′ ⋅ r′↓c′)⇓c

[by Definition 3.26]

= c ⋅ ff

By Definition 3.26, r⇓c = ((η+, η−) ↣ d ⋅ r′)⇓c = c ⋅ ff , thus r⇓c =
(r↓c′)⇓c.

3. If d⊗ c′ = ff , it follows that d⊗ c = ff :

(r↓c′)⇓c = (((η+, η−)↣ d ⋅ r′)↓c′)⇓c

[by Definition 3.7]

= ((η+ ⊗ c′, η−)↣ ff ⋅ ⊠)⇓c

[by Definition 3.26]

= c ⋅ ff

By Definition 3.26, it follows that r⇓c = c ⋅ ff = (r↓c′)⇓c.

r = stutt(η−) ⋅ r′ By Definition 3.26, it follows that:

(r↓c′)⇓c = ((stutt(η−) ⋅ r′)↓c′)⇓c

[by Definition 3.7]

= (stutt(η−) ⋅ r′↓c′)⇓c

[by Definition 3.26]

= c

By Definition 3.26, r⇓c = (stutt(η−) ⋅ r′)⇓c = c, thus r⇓c = (r↓c′)⇓c.

33

In order to formulate the following Lemma A.8, we need to introduce the
counterpart of ∥̄ on behavioral timed traces.

Definition A.7 Let s, s1, s2 ∈ C∗. ∥̆∶C∗ × C∗ → C∗ is defined by structural
induction as:

s ∥̆ ε ∶= s ε ∥̆ s ∶= s (A.1a)

(c1 ⋅ s1) ∥̆ (c2 ⋅ s2) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(c1 ⊗ c2) ⋅ (c2 ⊗ s1 ∥̆ c1 ⊗ s2) if c1 ⊗ c2 ≠ ff

ff if c1 ⊗ c2 = ff
(A.1b)

where, by abusing notation, c⊗ (c1⋯cn) denotes (c⊗ c1)⋯(c⊗ cn).

Lemma A.8 Let c ∈ C; A1,A2 ∈ AΠ
C; I ∈ I; r1 ∈ AJA1KI and r2 ∈ AJA2KI

such that r1 ∥̄ r2, r1⇓c and r2⇓c are defined. Then, (r1 ∥̄ r2)⇓c is defined and

r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

Proof.
Since both r1⇓c and r2⇓c are defined, c satisfies all the conditions in r1 and r2.
It is easy to notice from Definition 3.10 that c satisfies also the conditions of
r1 ∥̄ r2, thus, (r1 ∥̄ r2)⇓c is defined as well.

We proceed to prove that r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c by induction on the struc-
ture of r1.

r1 = ε and any r2 By Definition 3.10, (r1 ∥̄ r2)⇓c = (ε ∥̄ r2)⇓c = r2⇓c. By Def-

inition 3.26 and by Equation (A.1a), we obtain: r1⇓c ∥̆ r2⇓c = ε ∥̆ r2⇓c =

r2⇓c. Thus, r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

r1 = ⊠ and any r2 By Definition 3.10, (r1 ∥̄ r2)⇓c = (⊠ ∥̄ r2)⇓c = r2⇓c. By

Definition 3.26 and by Equation (A.1b), r1⇓c ∥̆ r2⇓c = c ∥̆ r2⇓c = r2⇓c.

Thus, r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

r1 = η1 ↣ d1 ⋅ r′1 and r2 = η2 ↣ d2 ⋅ r′2
d1 ⊗ d2 ≠ ff

(r1 ∥̄ r2)⇓c = ((η1 ↣ d1 ⋅ r
′
1) ∥̄ (η2 ↣ d2 ⋅ r

′
2))⇓c

[by Definition 3.10]

= (η1 ⊗ η2 ↣ d1 ⊗ d2 ⋅ (r
′
1↓d2 ∥̄ r

′
2↓d1))⇓c

[by Definition 3.26]

= c ⋅ (r′1↓d2 ∥̄ r
′
2↓d1)⇓c⊗d1⊗d2

[by Inductive Hypothesis]

= c ⋅ ((r′1↓d2
)⇓c⊗d1⊗d2

∥̆ (r′2↓d1)⇓c⊗d1⊗d2)

[by Lemma A.6]

= c ⋅ (r′1⇓c⊗d1⊗d2 ∥̆ r
′
2⇓c⊗d1⊗d2)

[d1 (resp. d2) is entailed by the stores in r′1 (resp. r′2)]

34

= c ⋅ (r′1⇓c⊗d1 ∥̆ r
′
2⇓c⊗d2)

[by Equation (A.1b)]

= (c ⋅ r′1⇓c⊗d1) ∥̆ (c ⋅ r′2⇓c⊗d2)

By Definition 3.26, r1⇓c ∥̆ r2⇓c = (c ⋅ r′1⇓c⊗d1) ∥̆ (c ⋅ r′2⇓c⊗d2); there-

fore, we conclude r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

d1 ⊗ d2 = ff

(r1 ∥̄ r2)⇓c = ((η1 ↣ d1 ⋅ r
′
1) ∥̄ (η2 ↣ d2 ⋅ r

′
2))⇓c

[by Definition 3.10]

= (η1 ⊗ η2 ↣ ff ⋅ ⊠)⇓c

[by Definition 3.26]

= c ⋅ ff

By Definition 3.26 and by Equation (A.1b), r1⇓c ∥̆ r2⇓c = c ⋅ ff , thus

r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

r1 = η1 ↣ d1 ⋅ r′1 and r2 = stutt(η−2) ⋅ r′2

(r1 ∥̄ r2)⇓c = ((η1 ↣ d1 ⋅ r
′
1) ∥̄ (stutt(η−2) ⋅ r

′
2))⇓c

[by Definition 3.10]

= ((η+1 , η
−
1 ∪ η

−
2)↣ d1 ⋅ (r

′
1 ∥̄ r

′
2↓d1))⇓c

[by Definition 3.26]

= c ⋅ (r′1 ∥̄ r
′
2↓d1)⇓c⊗d1

[by Inductive Hypothesis]

= c ⋅ (r′1⇓c⊗d1 ∥̆ (r′2↓d1)⇓c⊗d1)

[by Lemma A.6]

= c ⋅ (r′1⇓c⊗d1 ∥̆ r
′
2⇓c⊗d1)

[by Equation (A.1b)]

= (c ⋅ r′1⇓c⊗d1) ∥̆ (c ⋅ r′2⇓c)

By Definition 3.26, r1⇓c ∥̆ r2⇓c = (c ⋅ r′1⇓c⊗d1) ∥̆ (c ⋅ r′2⇓c), thus r1⇓c ∥̆ r2⇓c =
(r1 ∥̄ r2)⇓c.

r1 = stutt(η−1) ⋅ r′1 and r2 = stutt(η−2) ⋅ r′2

(r1 ∥̄ r2)⇓c = ((stutt(η−1) ⋅ r
′
1) ∥̄ (stutt(η−2) ⋅ r

′
2))⇓c

[by Definition 3.10]

= (stutt(η−1 ∪ η
−
2) ⋅ (r

′
1 ∥̄ r

′
2))⇓c

[by Definition 3.26]

= c ⋅ (r′1 ∥̄ r
′
2)⇓c

[by Inductive Hypothesis]

= c ⋅ (r′1⇓c ∥̆ r
′
2⇓c)

[by Equation (A.1b)]

35

= (c ⋅ r′1⇓c) ∥̆ (c ⋅ r′2⇓c)

By Definition 3.26, r1⇓c ∥̆ r2⇓c = (c ⋅ r′1⇓c) ∥̆ (c ⋅ r′2⇓c), thus r1⇓c ∥̆ r2⇓c =
(r1 ∥̄ r2)⇓c.

Proof of Theorem 3.27.
Let d ∈ C and P = D.A with D ∈ DΠ

C and A ∈ AΠ
C, we proceed by structural

induction on A.

skip The proof in this case is straightforward.

prefix(AJskipKF JDK)⇓d = prefix({⊠})⇓d = {ε, d} = BssJD . skipKd

tell(c)

prefix((AJtell(c)KF JDK⇓d) = prefix((tt ,∅)↣ c ⋅ ⊠)⇓d)

= prefix(d ⋅ (d⊗ c))

= BssJD . tell(c)Kd

A=∑n
i=1 ask(ci)→Ai We prove the two directions independently.

⊆ We show that, given a conditional trace r ∈ AJAKF JDK , it holds that
∀d ∈ C.prefix(r⇓d) ⊆ B

ssJD . AKd. We have to distinguish two cases.

1. Let r = (cj ,∅) ↣ cj ⋅ rj↓cj with 1 ≤ j ≤ n and rj ∈ AJAjKF JDK
that is cj-compatible. Consider d ∈ C such that r⇓d is defined,
thus d ⊢ cj and (rj↓cj)⇓d⊗cj is defined too; assume d ≠ ff , then

prefix(r⇓d) =prefix({((cj ,∅)↣ cj ⋅ rj↓cj)⇓d ∣1 ≤ j ≤ n, rj ∈ AJAjKF JDK})

[by Definition 3.26]

=prefix({d ⋅ (rj↓cj)⇓d⊗cj ∣1 ≤ j ≤ n, rj ∈ AJAjKF JDK})

[by Lemma A.6 and since d ⊢ cj]

=prefix({d ⋅ rj⇓d ∣1 ≤ j ≤ n, rj ∈ AJAjKF JDK})

[by Equation (3.1)]

={ε, d} ∪ {d ⋅ s ∣1 ≤ j ≤ n, s ∈ prefix(AJAjKF JDK⇓d)}

[by Inductive Hypothesis]

⊆{ε, d} ∪ {d ⋅ s ∣1 ≤ j ≤ n, s ∈ BssJD . AjKd}

The element ε directly belongs to BssJD .AKd. Since d ⊢ cj , also
d belongs to BssJD . AKd (at least one step is performed in the
computation). Finally, the set {d ⋅ s ∣1 ≤ j ≤ n, ∈ BssJD .AjKd} is
also contained in BssJD . AKd. In particular, following Rule R2,
the agent ∑

n
i=1 ask(ci)→ Ai (executed with a store d that entails

one of the guards, e.g. cj) behaves, in the next time instant, as
the corresponding agent Aj over the store (which is not modified
in that step). If d = ff , by definition of ⇓ (Definition 3.26),
we have that prefix(r⇓ff) = {ε, ff } which corresponds to the set
BssJD . AKff since the transition relation → is not defined for
the configuration ⟨A, ff ⟩. For the case d ⊬ cj , the operator ⇓d
computes no trace from r, thus ∅ ⊆ BssJD . AKd holds.

36

2. Let r = stutt({c1, . . . , cn}) ⋅ r
′ such that r′ ∈ AJAKF JDK and for

all 1 ≤ j ≤ n, cj ≠ tt . Consider d ∈ C such that for all 1 ≤ j ≤ n,
d ⊬ cj , then prefix(r⇓d) = {ε, d} ⊆ BssJD . AKd. Otherwise, if
it exists 1 ≤ j ≤ n such that d ⊢ cj , then the operator ⇓d is not
defined on r, thus prefix(r⇓d) = ∅ ⊆ BssJD . AKd.

⊇ For each d ∈ C, it exists a conditional trace r ∈ AJAKF JDK such that
prefix(r⇓d) ⊇ B

ssJD . AKd. There are three cases to be considered:

1. when the store d does not satisfy any guard (in this case, the
agent does not run any computation step),

2. when there exists a guard cj such that d ⊢ cj and d ≠ ff , and
finally

3. when d = ff .

Let us prove them.

1. Suppose that for all 1 ≤ j ≤ n, d ⊬ cj ; then, the small-step
behavior is BssJD . AKd = {ε, d}. Thus, it exists a conditional
trace r ∈ AJAKF JDK such that r = stutt({c1, . . . , cn}) ⋅ r

′ with
r′ ∈ AJAKF JDK . Moreover, by Definition 3.26 and Definition 3.1,
it follows that prefix(r⇓d) = {ε, d} ⊇ BssJD . AKd.

2. Suppose that there exists 1 ≤ j ≤ n such that d ⊢ cj and d ≠ ff .
One of the conditional traces computed by the semantics evalu-
ation function A is r = (cj ,∅) ↣ cj ⋅ rj↓cj with rj ∈ AJAjKF JDK .
Then, we have:

prefix(r⇓d) =prefix(((cj ,∅)↣ cj ⋅ rj↓cj)⇓d)

[by Definition 3.26]

=prefix({d ⋅ (rj↓cj)⇓d⊗cj ∣ rj ∈ AJAjKF JDK})

[by Lemma A.6 and since d ⊢ cj]

=prefix({d ⋅ rj⇓d ∣ rj⇓d ∈ AJAjKF JDK⇓d})

[by Equation (3.1)]

={ε, d} ∪ {d ⋅ s ∣ s ∈ prefix(AJAjKF JDK⇓d)}

[by Inductive Hypothesis]

⊇{ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . AjKd}
[by Rule R2]

⊇BssJD . AKd

3. Suppose that d = ff . As seen before, r = (cj ,∅) ↣ cj ⋅ rj↓cj with
rj ∈ AJAjKF JDK and 1 ≤ j ≤ n belongs to AJAKF JDK . Then, we
have:

prefix(r⇓ff) =prefix(((cj ,∅)↣ cj ⋅ rj↓cj)⇓ff)

[by Definition 3.26]

={ε, ff }

[by Definition 3.1]

⊇BssJD . AKff

Therefore, we can conclude that prefix(AJAKF JDK⇓d) = B
ssJD . AKd.

37

now c thenA1 elseA2 We prove the two directions independently. We abbre-
viate the conditional agent and call it A (A ∶= now c then A1 else A2).

⊆ There are seven possible cases, one for each type of trace r in (3.9).

1. Consider r = (c,∅) ↣ c ⋅ ⊠, and assume that ⊠ ∈ AJA1KF JDK ,
which means, by Definition 3.16, that A1 = skip. We consider
now the three possible cases:

(a) If d ⊢ c and d ≠ ff , then it is straightforward that prefix(r⇓d) =
prefix(d ⋅ d) = {ε, d, d ⋅ d}. On the behavioral part, we know
from Rule R4 that the observable of A is the set of all pre-
fixes of d ⋅ d, so we can conclude prefix(r⇓d) ⊆ B

ssJD . AKd.
(b) If d = ff , the small-step behavior is BssJD . AKff = {ε, ff }.

Since ff ⊢ c it is straightforward that prefix(r⇓ff) = {ε, ff } =
BssJD . AKff .

(c) If d ⊬ c, then the application of ⇓d to the agent semantics
does not compute any behavioral timed trace. Therefore,
prefix(r⇓d) = ∅ ⊆ BssJD . AKd.

2. Consider r = (η+ ⊗ c, η−) ↣ a ⊗ c ⋅ r′↓c with (η+, η−) ↣ a ⋅ r′ ∈
AJA1KF JDK , r′ being d-compatible, a⊗ c ≠ ff and ∀h− ∈ η−. η+ ⊗
c ⊬ h−. Let d ∈ C such that d ⊫ (η+ ⊗ c, η−). This implies
that d ⊢ c since c belongs to the positive condition. Under these
conditions, we have:

prefix(r⇓d) =

=prefix({((η+ ⊗ c, η−)↣ a⊗ c ⋅ r′↓c)⇓d ∣ (η
+, η−)↣ a ⋅ r′ ∈ AJA1KF JDK})

[by Definition 3.26]

=prefix({d ⋅ (r′↓c)⇓d⊗a⊗c ∣d ⋅ r
′⇓d⊗a ∈ AJA1KF JDK⇓d})

[by Lemma A.6 since d ⊢ c]

=prefix({d ⋅ r′⇓d⊗a ∣d ⋅ r
′⇓d⊗a ∈ AJA1KF JDK⇓d})

=prefix(AJA1KF JDK⇓d)

[by Inductive Hypothesis]

⊆BssJD . A1Kd
[by Rule R3]

⊆BssJD . AKd

For the case when d ⊯ (η+ ⊗ c, η−) (and also when r′ is not d-
compatible), prefix(r⇓d) = ∅ which is directly included in BssJD.
AKd.

3. Consider the conditional trace r = (η+⊗c, η−)↣ ff ⋅⊠. Let d be a
store such that d ⊫ (η+ ⊗ c, η−). This implies that d ⊢ c. Under
these conditions, we get:

prefix(r⇓d) =prefix(((η+ ⊗ c, η−)↣ ff ⋅ ⊠)⇓d)

[by Definition 3.26]

={ε, ff }

[by Definition 3.1]

38

⊆BssJD . AKd

For the case when d ⊯ (η+ ⊗ c, η−), prefix(r⇓d) = ∅ which is
directly included in BssJD . AKd.

4. Let be r = (c, η−) ↣ c ⋅ r′ with stutt(η−) ⋅ r′ ∈ AJA1KF JDK and
r′ d-compatible. Assume that d ⊫ (c, η−) and d ≠ ff . Then, we
have:

prefix(r⇓d) =prefix({((c, η−)↣ c ⋅ r′)⇓d ∣ stutt(η−) ⋅ r′ ∈ AJA1KF JDK})

[by Definition 3.26]

prefix({d ⋅ r′⇓d⊗c ∣ stutt(η−) ⋅ r′ ∈ AJA1KF JDK})

[since d ⊢ c]

=prefix({d ⋅ r′⇓d ∣ stutt(η−) ⋅ r′ ∈ AJA1KF JDK})

[by Definition 3.16]

=prefix({d ⋅ r′⇓d ∣ r′ ∈ AJA1KF JDK})

[by Equation (3.1)]

={ε, d} ∪ {d ⋅ s ∣ s ∈ prefix(AJA1KF JDK⇓d)}

[by Inductive Hypothesis]

⊆{ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . A1Kd}
[by Rule R4]

⊆BssJD . AKd

The third step follows from the definition of the semantics A
(Definition 3.16). The construct stutt is introduced only by an
ask agent. Thus, we know that A1 is an ask agent. The Equa-
tion (3.8), states that stutt(η−) is always followed by a condi-
tional trace which belongs to the semantics of the ask , which
can be reduced to say that r′ belongs to AJA1KF JDK .
If d = ff we have that prefix(r⇓ff) = {ε, ff } which corresponds to
the behavior BssJD . AKff since the transition relation → is not
defined for the agent A starting with store ff .
If d ⊯ (c, η−) (and also when r′ is not d-compatible) we have
that prefix(r⇓d) = ∅ ⊆ BssJD . AKd.

5. Let be r = (tt ,{c})↣ tt ⋅ ⊠ with ⊠ ∈ AJA2KI . By Definition 3.16,
it follows that A2 is a skip agent. If d ⊬ c, it is straightforward
that prefix(r⇓d) = prefix(d ⋅ d) = {ε, d, d ⋅ d}. From Rule R6,
we know that the observable of the agent A consists of the set of
all prefixes of d ⋅ d. Therefore, prefix(r⇓d) ⊆ B

ssJD .AKd. On the
contrary, if d ⊢ c, r⇓d does not compute any trace because d does
not satisfy the condition, thus prefix(r⇓d) = ∅ ⊆ BssJD . AKd.

6. Consider now r = (η+, η− ∪ {c}) ↣ c′ ⋅ r′ such that (η+, η−) ↣
c′ ⋅ r′ ∈ AJA2KF JDK and c′ ⊬ c. If d⊫ (η+, η− ∪{c}), we know also
that d ⊬ c. Under these conditions, we have:

prefix({r⇓d) =prefix({((η+, η− ∪ {c})↣ c′ ⋅ r′)⇓d ∣ (η
+, η−)↣ c′ ⋅ r′ ∈ AJA2KF JDK})

[by Definition 3.26]

=prefix({d ⋅ r′⇓d⊗c′ ∣d ⋅ r
′⇓d⊗c′ ∈ AJA2KF JDK⇓d})

39

=prefix(AJA2KF JDK⇓d)

[by Inductive Hypothesis]

⊆BssJD . A2Kd
[by Rule R5]

⊆BssJD . AKd

Otherwise, if d ⊯ (η+, η− ∪ {c}), then prefix(r⇓d) = ∅, which is
directly contained in BssJD . AKd.

7. Finally, let us now consider the case when r = (tt , η−∪{c})↣ tt ⋅r′

with stutt(η−) ⋅ r′ ∈ AJA2KF JDK . Assume that d ⊫ (tt , η− ∪ {c}).
Then, we have:

prefix(r⇓d) =prefix({((tt , η− ∪ {c})↣ tt ⋅ r′)⇓d ∣ stutt(η−) ⋅ r′ ∈ AJA2KF JDK})

[by Definition 3.26]

prefix({d ⋅ r′⇓d ∣ stutt(η−) ⋅ r′ ∈ AJA2KF JDK})

[by Definition 3.16]

=prefix({d ⋅ r′⇓d ∣ r
′ ∈ AJA2KF JDK})

[by Equation (3.1)]

={ε, d} ∪ {d ⋅ s ∣ s ∈ prefix(AJA2KF JDK⇓d)}

[by Inductive Hypothesis]

⊆{ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . A2Kd}
[by Rule R6]

⊆BssJD . AKd

The third step, similarly to case Point 4, can be done since each
construct stutt(η−) is introduced by a choice agent, and Equa-
tion (3.8) states that it is always followed by a conditional trace
r′ belonging recursively to the semantics of A2.
If the initial assumption does not hold (e.g. if d⊯ (tt , η− ∪{c})),
we have that prefix(r⇓d) = ∅ ⊆ BssJD . AKd.

⊇ We have four cases, one for each rule defining the operational seman-
tics for the conditional agent in Figure 1.

Rule R3 Let us recall the conditions to apply Rule R3: it must
occur ⟨A1, d⟩ → ⟨A′

1, d
′⟩ and d ⊢ c. In this case, we have that

BssJD.AKd = BssJD.A1Kd. By inductive hypothesis, we know that
prefix(AJA1KF JDK⇓d) ⊇ B

ssJD.A1Kd, thus also prefix(AJA1KF JDK⇓d) ⊇
BssJD.AKd. Next, we prove the inclusion prefix(AJAKF JDK⇓d) ⊇
prefix(AJA1KF JDK)⇓d. We proceed by induction on the structure
of a generic r1 ∈ AJA1KF JDK in order to find r ∈ AJAKF JDK such
that prefix(r1⇓d) ⊆ prefix(r⇓d).

1. If r1 = ⊠, then by Equation (3.9) the conditional trace r = (c,
∅) ↣ c ⋅ ⊠ ∈ AJAKF JDK . We know that ⊠⇓d = d and r⇓d =
d ⋅ (d⊗ c) = d ⋅d, since d ⊢ c. It is easy to see that the prefixes
of d are all included in the prefixes of d ⋅ d.

2. If r1 = (η+, η−) ↣ c′ ⋅ r′, then, by definition, the conditional
trace r = (η+ ⊗ c, η−) ↣ c′ ⊗ c ⋅ r′↓c ∈ AJAKF JDK . Let us

40

now assume that d ⊫ (η+, η−). Then, r1⇓d = d ⋅ r
′⇓d⊗c′ and,

since d ⊢ c by the initial assumptions, r⇓d = d ⋅ r′⇓d⊗c′⊗c =
d ⋅ r′⇓d⊗c′ = r1⇓d, thus the inclusion of the prefixes directly
holds. Otherwise, if d ⊯ (η+, η−), then the operator ⇓d is
undefined in both cases.

3. Finally, if r1 = stutt(η−) ⋅ r′, then, by definition, r = (c, η−)↣
c ⋅ r′↓c ∈ AJAKF JDK . Assume that for all h− ∈ η−, d ⊬ h−.
Then, r1⇓d = d and it holds that its prefixes are all included
in the prefixes of r⇓d = d⋅r⇓d⊗c. Otherwise, if it exists h− ∈ η−

such that d ⊢ h−, then the ⇓d operator is undefined in both
cases.

Rule R4 The conditions to apply this rule are ⟨A1, d⟩ /→, d ⊢ c
and d ≠ ff , in which case the small-step behavior is defined as
BssJD . AKd = prefix(d ⋅ d). There are two cases in which it may
happen that ⟨A1, d⟩ /→: (1) when A1 is a skip agent or (2) if A1 is
a choice agent whose guards are not satisfied by d. Let us discuss
them independently.

1. If A1 = skip, then by Equation (3.2), ⊠ ∈ AJA1KF JDK and
r = (c,∅) ↣ c ⋅ ⊠ ∈ AJAKF JDK . We now have that r⇓d =
d ⋅ (d⊗ c) = d ⋅ d, whose prefixes coincide with BssJD . AKd.

2. If A1 = ∑
n
i=1 ask(ci) → Bi and for all 1 ≤ i ≤ n ⊬ ci, by Equa-

tion (3.8) stutt({c1, . . . , cn}) ⋅ r
′ ∈ AJA1KF JDK and, as a con-

sequence, r = (c,{c1, . . . , cn}) ↣ c ⋅ r′ belongs to AJAKF JDK .
Now we compute r⇓d and we get the trace d ⋅r′⇓d⊗c = d ⋅r

′⇓d.
By definition of the evaluation function A, r′ is different
from the empty conditional trace ε (by Equation (3.8) a stutt
construct is always followed by another conditional state).
Therefore, r′⇓d = d ⋅ d ⋅ s for some behavioral trace s. As a
consequence, the behavior of the agent BssJD . AKd = d ⋅ d is
included in the set of prefixes of r⇓d = d ⋅ d ⋅ s.
In case d = ff we are not allowed to apply any rule in Figure 1,
so the small-step behavior is BssJD . AKff = {ε,ff }. In this
case, A1 = skip since ff is strong enough to entail any guard
of a generic agent ∑

n
i=1 ask(ci) → Bi. As explained above,

⊠ ∈ AJA1KF JDK and r = (c,∅) ↣ c ⋅ ⊠ ∈ AJAKF JDK , thus
r⇓ff = ff , and it is easy to note that BssJD.AKff ∈ prefix(ff).

Rule R5 This case is analogous to the case for Rule R3 but, in-
stead executing the then branch (A1), the else branch of the
conditional agent (A2) is taken, under the condition that d ⊬
c. More specifically, the conditions imposed for the applica-
tion of the rule are ⟨A2, d⟩ → ⟨A′

2, d
′⟩ and d ⊬ c, in which case

BssJD.AKd = BssJD.A2Kd. By inductive hypothesis, we know that
prefix(AJA2KF JDK⇓d) ⊇ B

ssJD.A1Kd, thus also prefix(AJA2KF JDK⇓d) ⊇
BssJD.AKd. In the following, we prove that prefix(AJAKF JDK⇓d) ⊇
prefix(AJA2KF JDK⇓d) when d ⊬ c. We proceed by induction on
the structure of a generic r2 ∈ AJA2KF JDK in order to find a con-
ditional trace r ∈ AJAKF JDK such that prefix(r2⇓d) ⊆ prefix(r⇓d).

1. If r2 = ⊠, then the conditional trace r = (tt ,{c}) ↣ tt ⋅ ⊠
belongs to AJAKF JDK . We have ⊠⇓d = d, whose prefixes are

41

included in those of r⇓d = d ⋅ d.

2. If r2 = (η+, η−) ↣ c′ ⋅ r′, then the conditional trace r = (η+,
η− ∪ {c}) ↣ c′ ⋅ r′ ∈ AJAKF JDK . Let us now assume that d ⊫
(η+, η−); then, r2⇓d = d ⋅ r′⇓d⊗c′ . In addition, since by the
initial assumptions d ⊬ c, r⇓d = d ⋅ r

′⇓d⊗c′ , thus the inclusion
of the prefixes directly holds. Otherwise, if d ⊯ (η+, η−),
then the operator ⇓d is undefined in both cases.

3. Finally, if r2 = stutt(η−)⋅r′, then by definition the conditional
trace r = (tt , η− ∪ {c}) ↣ tt ⋅ r′ ∈ AJAKF JDK . Assume that
for all h− ∈ η−, d ⊬ h−. Then, r2⇓d = d, and it holds that
its prefixes are all included in the prefixes of r⇓d = d ⋅ r

′⇓d.
Otherwise, if it exists h− ∈ η− such that d ⊢ h− the ⇓d operator
is undefined in both cases.

Rule R6 This case is analogous to the case for Rule R4. Now, the
conditions to apply the rule are that ⟨A2, d⟩ /→ and d ⊬ c. In this
case, the small-step behavior is BssJD .AKd = prefix(d ⋅d). There
are two cases in which it may happen that ⟨A2, d⟩ /→:

1. when A2 is a skip agent or
2. if A2 is a choice agent whose guards are not satisfied by d.

Let us discuss them independently.

1. If A2 = skip, by Equation (3.2) ⊠ ∈ AJA2KF JDK and r = (tt ,
{c}) ↣ tt ⋅ ⊠ ∈ AJAKF JDK . Then, since d ⊬ c, we have that
r⇓d = d ⋅ d which coincides with BssJD . AKd.

2. If A2 = ∑
n
i=1 ask(ci) → Bi and for all 1 ≤ i ≤ n ⊬ ci, then,

by Equation (3.8), stutt({c1, . . . , cn}) ⋅ r
′ ∈ AJA2KF JDK and,

as a consequence, r = (c,{c1, . . . , cn}) ↣ c ⋅ r′ belongs to
AJAKF JDK . Now, we compute r⇓d and we get as result the
trace d ⋅r′⇓d. Since, by definition of the semantics evaluation
function A, a stutt is always followed by another conditional
tuple, then r′ is different from the empty trace. Therefore,
r′⇓d = d ⋅ s for some trace s. As a consequence, the behavior
of the agent BssJD.AKd = d⋅d is included in the set of prefixes
of r⇓d = d ⋅ d ⋅ s.

A1 ∥A2 For this case, we need to use the operator of parallel composition
between behavioral timed traces defined in Definition A.7. We extend
the parallel composition to sets of behavioral timed traces as: S1 ∥̆ S2 =

{s1 ∥̆ s2 ∣ s1 ∈ S1 and s2 ∈ S2}. Furthermore, we abuse of notation and
use the symbol ⊗ for the merge of a store with the stores of behavioral
timed traces. Intuitively, given c ∈ C and s ∈ C∗, c ⊗ s means that we
add the information c to each store in s. We prove the two directions
independently.

⊆ We distinguish five different cases.

1. Let r1 be a generic conditional trace and r2 = ⊠ (or r2 = ε).
By Definition 3.10, r1 ∥̄ r2 = r1. In other words, the conditional
trace r2 is associated to an agent that adds no information:

prefix((r1 ∥̄ r2)⇓d) =prefix(r1⇓d)

42

=AJA1KF JDK⇓d

[by Inductive Hypothesis]

⊆BssJD . A1Kd
=BssJD . A1 ∥ A2Kd

Since A2 does not modify the store, we can conclude that the
two behaviors BssJD . A1Kd and BssJD . A1 ∥ A2Kd coincide.

2. Let be r = stutt(η−1 ∪ η−2) ⋅ r
′ and assume that d ⊬ h− for all

h− ∈ (η− ∪ δ−). Then,

prefix(r⇓d) =prefix(d) = {ε, d} ⊆ BssJD . A1 ∥ A2Kd

If the initial assumption does not hold, then the set prefix(r⇓d)
is empty and the inclusion directly holds.

3. Let r = (η⊗ δ)↣ c1⊗ c2 ⋅ (r
′
1↓c2 ∥̄ r

′
2↓c1) be a conditional trace in

AJA1 ∥ A2KF JDK such that r1 = η ↣ c1 ⋅r
′
1 ∈ AJA1KF JDK , r2 = η ↣

c2 ⋅ r
′
2 ∈ AJA2KF JDK and (c1 ⊗ c2) ≠ ff . Assume that d ⊫ (η ⊗ δ)

and d ≠ ff . Moreover, due to the form of r1 and r2, we know that
there exist two agents A′

1 and A′
2 such that ⟨A1, d⟩→ ⟨A′

1, d⊗c1⟩
and ⟨A2, d⟩→ ⟨A′

2, d⊗ c2⟩, respectively. Then,

prefix(r⇓d) =

= prefix({d ⋅ (r′1↓c2 ∥̄ r
′
2↓c1)⇓d⊗c1⊗c2 ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA′

2KF JDK})

[c1 and c2 are already in the stores of r1 and r2, respectively]

= prefix({d ⋅ (r′1↓c1⊗c2 ∥̄ r
′
2↓c1⊗c2)⇓d⊗c1⊗c2 ∣ r′1 ∈ AJA′

1KF JDK and r′2 ∈ AJA′
2KF JDK})

[by Lemma A.3]

= prefix({d ⋅ (r′1 ∥̄ r
′
2)↓c1⊗c2⇓d⊗c1⊗c2 ∣ r′1 ∈ AJA′

1KF JDK and r′2 ∈ AJA′
2KF JDK})

[by Lemma A.6]

= prefix({d ⋅ (r′1 ∥̄ r
′
2)⇓d⊗c1⊗c2 ∣ r′1 ∈ AJA′

1KF JDK and r′2 ∈ AJA′
2KF JDK})

[by Lemma A.8]

= prefix({d ⋅ (r′1⇓d⊗c1⊗c2 ∥̆ r
′
2⇓d⊗c1⊗c2) ∣ r′1 ∈ AJA′

1KF JDK and r′2 ∈ AJA′
2KF JDK})

[by Equation (3.1)]

= {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ prefix(AJA′

1KF JDK⇓d⊗c1⊗c2),

s′2 ∈ prefix(AJA′
2KF JDK⇓d⊗c1⊗c2)}

[by Inductive Hypothesis]

⊆ {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ B

ssJD . A′
1Kd⊗c1⊗c2 , s

′
2 ∈ B

ssJD . A′
2Kd⊗c1⊗c2}

[by Definition A.7 and by Definition 3.1]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . A′
1 ∥ A

′
2Kd⊗c1⊗c2}

[by Rule R7]

⊆ BssJD . A1 ∥ A2Kd

If d = ff we have that ⟨A1, ff ⟩ /→ and ⟨A2, ff ⟩ /→, thus BssJD.A1 ∥
A2Kff = {ε, ff }. Since d ⊫ (η ⊗ δ) we have that prefix(r⇓ff) =

43

{ε, ff } which corresponds to the small-step behavior BssJD.A1 ∥
A2Kff .
If d ⊯ (η ⊗ δ), then the set prefix(r⇓d) is empty since ⇓d is not
defined under these conditions, thus it is directly included in
BssJD . A1 ∥ A2Kd.

4. Let us consider now a conditional trace of the form r = (η⊗ δ)↣
ff ⋅ ⊠ such that r1 = η ↣ c1 ⋅ r

′
1, r2 = δ ↣ c2 ⋅ r

′
2 and c1 ⊗ c2 = ff .

Let us assume that d⊫ (η ⊗ δ) and d ≠ ff . Then:

prefix(r⇓d) =prefix(d ⋅ c1 ⊗ c2)

=prefix(d ⋅ ff)

={d ⋅ s ∣ s ∈ BssJD . A′
1 ∥ A

′
2Kff }

[by Rule R7]

⊆BssJD . A1 ∥ A2Kd

In fact, also the second component of the behavior is the store ff .
This case represents the situation in which the contribution of
the two conditional traces results in an inconsistent conditional
trace.
If d = ff we proceed similarly to the previous case.
If d ⊯ (η ⊗ δ), then the operator ⇓d is undefined on r, thus we
have that ∅ ⊆ BssJD . A1 ∥ A2Kd.

5. Let r = (η+, η− ∪ δ−) ↣ c1 ⋅ (r
′
1 ∥̄ r

′
2↓c1) be a conditional trace in

AJA1 ∥ A2KF JDK such that r1 = η ↣ c1 ⋅ r
′
1 ∈ AJA1KF JDK , r2 =

stutt(δ−) ⋅ r′2 ∈ AJA2KF JDK with r′2 that recursively belongs to
AJA2KF JDK and for all h− ∈ δ−, η+ ⊬ h−. Let us assume that d⊫
(η+, η− ∪ δ−). Then,

prefix(r⇓d) =

= prefix({d ⋅ (r′1 ∥̄ r
′
2↓c1)⇓d⊗c1 ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA2KF JDK})

[c1 is already contained in the stores of r1]

= prefix({d ⋅ (r′1 ∥̄ r
′
2)↓c1⇓d⊗c1 ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA2KF JDK})

[by Lemma A.6]

= prefix({d ⋅ (r′1 ∥̄ r
′
2)⇓d⊗c1 ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA2KF JDK})

[by Lemma A.8]

= prefix({d ⋅ (r′1⇓d⊗c1 ∥̆ r
′
2⇓d⊗c1) ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA2KF JDK})

[by Equation (3.1)]

= {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ prefix(AJA′

1KF JDK⇓d⊗c1), s
′
2 ∈ prefix(AJA2KF JDK⇓d⊗c1)}

[by Inductive Hypothesis]

⊆ {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ B

ssJD . A′
1Kd⊗c1 , s

′
2 ∈ B

ssJD . A2Kd⊗c1}
[by Definition A.7 and by Definition 3.1]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . A′
1 ∥ A2Kd⊗c1}

[by Rule R8]

⊆ BssJD . A1 ∥ A2Kd

44

If d = ff , then we proceed as in the first case (Point 3).
If d⊯ (η+, η− ∪ δ−), then we have that prefix(r⇓d) = ∅ ⊆ BssJD .
A1 ∥ A2Kd.

⊇ In the following, we show that if s ∈ BssJD . A1 ∥ A2Kd, then s ∈
AJA1 ∥ A2KF JDK⇓d, i.e., we can find a conditional trace r ∈ AJA1 ∥ A2KF JDK
such that s = r⇓d. We have four possible cases, depending on the rules
defining the operational semantics for the agent.

1. If ⟨A1, d⟩ → ⟨A′
1, d

′
1⟩ and ⟨A2, d⟩ → ⟨A′

2, d
′
2⟩, the behavior

of the parallel composition is: BssJD . A1 ∥ A2Kd = {d ⋅ s′ ∣ s′ ∈
BssJD . A′

1 ∥ A
′
2Kd′1⊗d′2}. Let s be an element of that set. By

inductive hypothesis we know that there exist the conditional
traces r1 ∈ AJA1KF JDK and r2 ∈ AJA2KF JDK such that r1⇓d =
d ⋅ s′1 and r2⇓d = d ⋅ s

′
2, with s′1 ∈ BssJD . A′

1Kd and s′2 ∈ BssJD .
A′

2Kd. Now, consider r = r1 ∥̄ r2; this conditional trace belongs to
AJA1 ∥ A2KF JDK whenever r1 and r2 are compatible via parallel

composition (i.e., r1 ∥̄ r2 is a valid conditional trace). We show
that s = (r1 ∥̄ r2)⇓d.

(r1 ∥̄ r2)⇓d =

[by Lemma A.8]

= r1⇓d ∥̆ r2⇓d

[by Definition 3.26]

= (d ⋅ s′1) ∥̆ (d ⋅ s′2) with s′1 ∈ B
ssJD . A′

1Kd′1 and s′2 ∈ B
ssJD . A′

2Kd′2
[by Definition A.7]

= d ⋅ s′1 ∥̆ s
′
2 with s′1 ∈ B

ssJD . A′
1Kd′1 and s′2 ∈ B

ssJD . A′
2Kd′2

[by Definition A.7 and by Definition 3.1]

= d ⋅ s′ with s′ ∈ BssJD . A′
1Kd′1 ∥̆ B

ssJD . A′
2Kd′2

[by Rule R7 and Equation (A.1)]

= d ⋅ s′ with s′ ∈ BssJD . A′
1 ∥ A

′
2Kd′1⊗d′2

= s

2. If ⟨A1, d⟩→ ⟨A′
1, d

′
1⟩ and ⟨A2, d⟩ /→, then Rule R8 is applied and

we have that BssJD .A1 ∥ A2Kd = {d ⋅ s′ ∣ s′ ∈ BssJD .A′
1 ∥ A2Kd′1}.

Let s be an element of that set. By inductive hypothesis, we know
that it exists a conditional trace r1 ∈ AJA1KF JDK such that r1⇓d =
d ⋅ s′1 with s′1 ∈ BssJD . A′

1Kd. Moreover, it exists a conditional
trace r2 ∈ AJA2KF JDK such that r2⇓d = d. We distinguish two
cases (corresponding to the two agents that can make the agent
A2 not to proceed) in order to prove that s = (r1 ∥̄ r2)⇓d.
A2 = skip In this case, the behavior of the parallel composition

is that of A1 since A2 makes no contribution to the com-
putation. Then, (r1 ∥̄ ⊠)⇓d = d ⋅ s

′ with s′ ∈ BssJD . A′
1Kd =

BssJD . A′
1 ∥ A2Kd, thus (r1 ∥̄ ⊠)⇓d = s.

A2 = ∑n
i=1 ask(ci)→Bi Consider r2 = stutt({c1, . . . , cn})⋅r

′
2 with

r′2 ∈ AJA1KF JDK . We can assume that d ⊬ ci for all ci, other-

45

wise, the agent A2 would proceed.

(r1 ∥̄ stutt(c1, . . . , cn) ⋅r
′
2)⇓d =

= d ⋅ (r′1 ∥̄ r
′
2)⇓d′1 with r′1 ∈ AJA1KF JDK and r′2 ∈ AJA2KF JDK

[by Lemma A.8]

= d ⋅ (r′1⇓d′1) ∥̆ (r′2⇓d′1) with r′1 ∈ AJA1KF JDK and r′2 ∈ AJA2KF JDK

[by Inductive Hypothesis]

= d ⋅ s′1 ∥̆ s
′
2 with s′1 ∈ B

ssJD . A′
1Kd′1 and s′2 ∈ B

ssJD . A2Kd′1
[by Definition A.7 and by Definition 3.1]

= d ⋅ s′ with s′ ∈ BssJD . A′
1Kd′1 ∥̆ B

ssJD . A2Kd′1
[by Rule R7, Rule R8 and Equation (A.1)]

= d ⋅ s′ with s′ ∈ BssJD . A′
1 ∥ A2Kd′1

= s

3. If ⟨A1, d⟩ /→ and ⟨A2, d⟩ → ⟨A′
2, d

′
2⟩, then the situation is sym-

metric to the previous case, so we can conclude thatAJA1 ∥ A2KF JDK⇓d ⊇
BssJD . A1 ∥ A2Kd.

4. Finally, if ⟨A1, d⟩ /→ and ⟨A2, d⟩ /→, then we can reason similarly
to Point 2, considering, for both A1 and A2, the two cases in
which they cannot proceed. We can conclude that BssJD . A1 ∥
A2Kd = {ε, d} ⊆ AJA1 ∥ A2KF JDK⇓d.

∃xA1 We prove the two directions independently.

⊆ We show that: prefix(AJ∃xA1KF JDK⇓d) ⊆ BssJD . ∃xA1Kd. Let r =
∃̄x r1 such that r1 ∈ AJA1KF JDK and r1 is x-self-sufficient. We show
that the prefixes of (∃̄x r1)⇓d are included in the behavior BssJD .
∃xA1Kd, by induction on the length of r1.

length(r1) = 0 If r1 = ε the statement directly holds.
length(r1) ≥ 1 We distinguish three cases depending on the form of

the first state:

1. If r1 = ⊠, then ⊠⇓d = d which belongs to the behavior.

2. Consider r1 = η ↣ l ⋅ r′1 with r′1 ∈ AJA′
1KF JDK and such that,

by inductive hypothesis, there exists a transition ⟨A1, d⟩ →
⟨A′

1, d
′⟩. Since r1 is x-self-sufficient, also r′1 is x-self-sufficient.

Now, assume that d⊫ ∃x η and d ≠ ff :

prefix(r⇓d) =

= prefix({∃̄x(η ↣ l ⋅ r′1)⇓d ∣ r
′
1 ∈ AJA′

1KF JDK and r′1 x-self-sufficient})

[by Definition 3.26]

= prefix({d ⋅ (∃̄x r
′
1)⇓d⊗∃x l ∣ r

′
1 ∈ AJA′

1KF JDK and r′1 x-self-sufficient})

[r′1 ∈ AJA′
1KF JDK and r′1 x-self-sufficient]

= prefix({d ⋅ s ∣ s ∈ (AJ∃xA′
1KF JDK)⇓d⊗∃x l})

[by Equation (3.1)]

46

= {ε, d} ∪ {d ⋅ s ∣ s ∈ prefix(AJ∃xA′
1KF JDK⇓d⊗∃x l)}

[by Inductive Hypothesis]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . ∃xA′
1Kd⊗∃x l}

[by Rule R9]

⊆ BssJD . ∃xA1Kd

If d = ff we have that ⟨∃xA1, ff ⟩ /→, thus BssJD . ∃xA1Kff =
{ε, ff }. On the other hand, since d ⊫ ∃x η we have that
prefix(r⇓ff) = {ε, ff } which corresponds to the small-step
behavior BssJD . ∃xA1Kff .
If d ⊯ ∃x η, then the operator ⇓d is undefined for the condi-
tional trace, thus prefix(r⇓d) = ∅ ⊆ BssJD . ∃xA1Kd.

3. Consider r1 = stutt({c1, . . . , cn})⋅r
′
1, with r′1 ∈ AJ∑ii=1 ask(ni)→ BiKF JDK .

Assume that it exists no index 1 ≤ j ≤ n such that d ⊢ cj .
This implies that d ⊢ ∃x cj . Then, we have

prefix(r⇓d) = prefix(∃̄x(stutt({c1, . . . , cn}) ⋅ r
′
1)⇓d)

= prefix(stutt({∃x c1, . . . ,∃x cn}) ⋅ ∃̄x r
′
1⇓d)

[by Definition 3.26]

= d ⊆ BssJD . ∃xA1Kd

If it exists an index j such that d ⊢ cj , then r⇓d is undefined,
thus prefix(r⇓d) = ∅ ⊆ BssJD . ∃xA1Kd.

⊇ From Rule R9, we know that, if d ≠ ff , then BssJD . A1Kl⊗∃x d =
l′ ⋅ BssJD . A′

1Kd, where l and l′ are local stores. Moreover, l = tt
because it is the initial (local) store for A1. In the following, we
show that d ⋅ BssJD . ∃xA′

1Kd⊗∃x l ∈ AJ∃xA1KF JDK⇓d, i.e., it exists
a trace r ∈ AJ∃xA1KF JDK such that r⇓d = d ⋅ s with s ∈ BssJD .
∃xA′

1Kd⊗∃x l. By inductive hypothesis, we know that BssJD.A1K∃x d ⊆
prefix(AJA1KF JDK⇓∃x d), and by Rule R9 it holds that there exists
a conditional trace r1 ∈ AJA1KF JDK such that r1⇓∃x d = ∃x d ⋅ B

ssJD .
∃xA′

1Kl′ .
Now, r1 is x-self-sufficient since the only external information is pro-
vided by ∃x d, which in fact does not contain information about x.
Moreover, r1 is of the form η ↣ l′ ⋅r′1 with r′1 ∈ AJA′

1KF JDK . Therefore,
it exists a conditional trace r ∈ AJ∃xA1KF JDK such that r = ∃̄x r1.
Then,

r⇓d = (∃̄x η ↣ l′ ⋅ r′1)⇓d

= (∃x η ↣ ∃x l
′ ⋅ ∃̄x r

′
1)⇓d

[by Definition 3.26]

= d ⋅ (∃̄x r
′
1)⇓∃x l′⊗d

[by Definition 3.26]

= d ⋅ s with s ∈ AJ∃xA′
1KF JDK⇓∃x l′⊗d

[by Inductive Hypothesis]

= d ⋅ s with s ∈ BssJD . ∃xA′
1K∃x l′⊗d

47

If d = ff , then we have that prefix(r⇓ff) = {ε, ff }, which corresponds
to the small-step behavior BssJD . ∃xA1Kff since the transition rela-
tion → is not defined for ⟨∃xA1, ff ⟩.

p(x) If d ≠ ff , then

AJp(x)KF JDK⇓d = {(tt ,∅)↣ tt ⋅ r′ ∣ r′ ∈ F JDK(p(x))}⇓d

[since F JDK = DJDKF JDK]

= {(tt ,∅)↣ tt ⋅ r′ ∣ r′ ∈ DJDKF JDK(p(x))}⇓d

[by Definition 3.21]

= {(tt ,∅)↣ tt ⋅ r′ ∣ r′ ∈ AJBKF JDK , p(x⃗) ∶− B ∈D}⇓d

= {d ⋅ s′ ∣ s′ ∈ (AJBKF JDK)⇓d, p(x⃗) ∶− B ∈D}

[by Inductive Hypothesis]

= {d ⋅ s′ ∣ s′ ∈ BssJD . BKd, p(x⃗) ∶− B ∈D}

[by Rule R10]

= BssJD . p(x)Kd

Notice that, in the second last equality, the structural induction hypothesis
cannot be applied because B can be structurally greater than p(x⃗). For
this reason, we have to introduce a second induction on the number of
p(x⃗) present on B. If B does not contain any process call p(x⃗), then we
can directly apply structural induction. Otherwise, if the agent contains
one process call p(x⃗), it is sufficient to replace the call with the body of
the declaration. In this way, B has less process calls p(x⃗) than A and we
can apply the inductive hypothesis.

If d = ff , then the transition relation → is not defined for the configuration
⟨p(x), ff ⟩, hence

BssJD . p(x)Kff = {ε, ff }

= prefix({(tt ,∅)↣ tt ⋅ r′⇓ff ∣ r′ ∈ F JDK(p(x))})

= AJp(x)KF JDK⇓ff

Proof of Theorem 3.28.
⇒ Follows directly from Definition 3.26.

⇐ It is sufficient to show that PJP1K ≠ PJP2K ⇒ ∃c̄ ∈ C. PJP1K⇓c̄ ≠ PJP2K⇓c̄.
Without loss of generality, assume that PJP1K ⊃ PJP2K, thus, it exists
a conditional trace r1 ∈ PJP1K that does not belong to PJP2K. We can
distinguish two cases: PJP2K is empty or PJP2K contains at least one
conditional trace.

If PJP2K = ∅, then PJP2K⇓c is empty for any possible c ∈ C. Now, if we
choose c̄ to be the merge (⊗) of all the positive conditions occurring in r1,
then r1⇓c̄ is a valid trace. Therefore, PJP1K⇓c̄ ⊇ {r1⇓c̄} ≠ ∅.

If PJP2K ≠ ∅, by the initial assumptions, it exists a conditional trace
r2 ∈ PJP2K such that r1 ≠ r2. Without loss of generality, assume that
length(r1) ≤ length(r2) and that r1 differs from r2 at position k, with

48

k ∈ [1, length(r1)]. The index k is guaranteed to exist.7 We consider the
six possible cases, corresponding to the possible forms of the conditional
state at position k, in order to prove that there exists a store c̄ such that
PJP1K⇓c̄ ≠ PJP2K⇓c̄. In the following, the stores c̄1 and c̄2 correspond
to the merge (⊗) of all the positive conditions occurring in r1 and r2,
respectively.

1. Let be (η+1 , η
−
1) ↣ d1 and (η+2 , η

−
2) ↣ d2 the k-th conditional tuple in

r1 and r2, respectively. There are three possible ways in which these
two tuples can differ:

(a) Case η+1 ≠ η+2 . Let us assume that η+1 ⊢ η
+
2 and η+2 ⊬ η

+
1 . No-

tice that r1 has to come from the semantics of an ask or a now
construct since they are the only tccp agents that can add in-
formation to the positive condition (see Definition 3.16). Hence,
there exists also a conditional trace r̄1 ∈ PJP1K in which η+1 oc-
curs in a negative condition (corresponding to the else branch of
a now agent) or in a stutt construct (corresponding to the sus-
pension of an ask agent) of the sequence. There are two cases
in which r̄1 does not exists, but both are in contradiction with
the hypothesis: (1) when η+1 = tt , but this contradicts η+2 ⊬ η

+
1 or

(2) when a constraint d stronger than η+1 (d ⊢ η+1) is propagated.
In this last case, the trace r̄1 does not exists since the condition
is in contradiction with the propagated store. However, since
η+1 ⊢ η

+
2 , it follows that d entails also η+2 (d ⊗ η+1 = d ⊗ η+2 = d).

Therefore, the propagation of d makes r1 and r2 equal. Since
they were supposed to be different only at this point, this is a
contradiction with the hypothesis r1 ≠ r2. Therefore, r̄1 exists
and belongs to PJP1K. Furthermore, r̄1 differs from any trace in
PJP2K for at least the negative part of a condition or the body of
a stutt , otherwise, reasoning in a similar way as above, r1 would
also belong to PJP2K, and this is not possible.
If η+1 ⊬ η

+
2 and η+2 ⊢ η

+
1 , we can reason in a symmetric way, thus

concluding that it exists r̄2 ∈ PJP2K that differs from any trace
in PJP1K for at least the negative part of a condition or the body
of a stutt .
Finally, if η+1 ⊬ η+2 and η+2 ⊬ η+1 , we can reason as before and
deduce that there exist two traces r̄1 ∈ PJP1K and r̄2 ∈ PJP2K,
which contains respectively η+1 and η+2 in the negative part of the
condition, and such that r̄1 /∈ PJP2K and r̄2 /∈ PJP1K.
In case r̄1 (respectively r̄2) comes from an ask agent we remand
to the Points 2, 3 and 4 where we deal with the conditional traces
containing stutt constructs. Otherwise, if r1 comes from a now
agent we can reduce to the following Point 1b where we deal with
the negative part of the conditions (η−1 ≠ η−2).

(b) Case η−1 ≠ η−2 . Let us first assume that η−1 ⊂ η−2 . This means that
the store at position k in r2 has to satisfy a stronger condition
than the one in r1. Let c̄ ∶= c̄1⊗h

−
2 , with h−2 ∈ η−2 ∖η

−
1 . Under these

7There are two cases in which k does not exist, but both are in contradiction with the
initial hypothesis: (1) r1 = r2 or (2) one of the traces is a prefix of the other.

49

conditions, r1⇓c̄ computes a behavioral timed trace whereas r2⇓c̄
computes no trace since, at position k, c̄ entails one of the stores
in the negative condition.
For the case in which η−2 ⊂ η−1 we choose c = c̄2 ⊗ h

−
1 , with h−1 ∈

η−1 ∖ η
−
2 and reason in an symmetric way.

Finally, if η−1 ⊈ η−2 and η−2 ⊈ η−1 , we can choose indifferently c̄ =
c̄1⊗h

−
2 or c̄ = c̄2⊗h

−
1 and conclude that r1⇓c̄ computes a behavioral

timed trace but r2⇓c̄ is not defined, or vice-versa.
Thus, we can conclude that PJP1K⇓c̄ ≠ PJP2K⇓c̄.

(c) Case d1 ≠ d2. Consider c̄ = c̄1 = c̄2. There are two possible
cases. Assume first that c̄ ⊬ d1 and c̄ ⊬ d2. Both r1 and r2

must be compatible with their own conditions, thus, being the
store monotonic, it happens that r1⇓c̄ and r2⇓c̄ are both defined.
Moreover, we know that η+1 = η+2 and from Property A.1 d1 ⊢ η

+
1

and d2 ⊢ η+1 . Since c̄ ⊬ d1 and c̄ ⊬ d2, we can conclude that
in r1⇓c̄ at position k we have the store d1, whereas in r2⇓c̄ at
the same position we find the store d2 that is different from
d1 by the initial assumptions. Thus r1⇓c̄ ≠ r2⇓c̄. Assume now
that c̄ contains more information than the store d1 (respectively
d2). Then, we know that, at certain point in r1 (respectively
r2), the positive condition is stronger than d1 (respectively d2).
Therefore, we can reason as in Point 1a where η+1 ≠ η+2 and r1

(respectively r2) are produced by the semantics of an ask or a
now agent.

2. Let stutt(η−1) (respectively stutt(η−2)) be the k-th conditional state in
r1 (respectively r2). It is sufficient to proceed as in Point 1b to show
that there exists a store c̄ such that r1⇓c̄ is well defined while r2⇓c̄ is
not. For instance, if η−1 ⊂ η−2 we set c̄ = c̄1⊗h

−
2 , with h−2 ∈ η−2 ∖η

−
1 . It is

easy to notice that r1⇓c̄ computes a behavioral timed trace but r2⇓c̄
recovers no trace since at position k the constraint h−2 belongs to the
negative part of the condition. Therefore, PJP1K⇓c̄ ≠ PJP2K⇓c̄.

3. Let η1 ↣ d1 be the k-th conditional tuple in r1 and stutt(η−2) the
k-th element in r2. Consider c̄ = c̄1. Up to instant k, r1⇓c̄ and r2⇓c̄
coincide and, as r1 and r2 differ only at position k, c̄ satisfies all the
conditions in r1 and in r2 till up that position. The behavioral timed
trace r2⇓c̄ ends at position k since a stutt has been encountered (see
Definition 3.26). However, since r1 is maximal, r1⇓c̄ does not end
at position k but continues with at least another state, otherwise we
would have found an ending symbol ⊠. In conclusion, r2⇓c̄ is at least
one store longer than r1⇓c̄ and we conclude that PJP1K⇓c̄ ≠ PJP2K⇓c̄.

4. If η2 ↣ d2 is the k-th element in r2 and stutt(η−1) that in r1, then the
proof is symmetric to Point 3.

5. Let ⊠ and η2 ↣ d2 be the k-th states of r1 and r2, respectively. We
can reason similarly to Point 4, choosing c̄ = c̄2. By hypothesis, r1

and r2 differ only at position k, thus, r1⇓c̄ and r2⇓c̄ compute the
same behavioral timed trace up to position k-th. However, while
r1⇓c̄ stops at instant k (an ending symbol ⊠ is found), r2⇓c̄ is at least
one store longer. Thus, PJP1K⇓c̄ ≠ PJP2K⇓c̄.

50

6. Let ⊠ be the k-th element of r1 and stutt(η2) the conditional state
occurring in r2 at the same position. We set c̄ = c̄1 ⊗ h

−
2 , with h−2 ∈

η−2 ∖η
−
1 . In this way, r1⇓c̄ is defined but r2⇓c̄ computes no trace, since,

at position k, the constraint h−2 is required not to be entailed by the
current store. Thus, PJP1K⇓c̄ ≠ PJP2K⇓c̄.

In conclusion, we can always choose an adequate c̄ which differentiates
PJP1K⇓c̄ from PJP2K⇓c̄.

Proof of Proposition 3.29.
⇒ Straightforward.

⇐ By Definition 3.21, PJD1 . AK = AJAKF JD1K and PJD2 . AK = AJAKF JD2K .
We have to check that F JD1K = F JD2K. The only case depending on the
interpretation is when A = p(x); by hypothesis:

AJp(x)KF JD1K =⊔{(true,∅)↣ true ⋅ r ∣ r ∈ F JD1K(p(x))}

=⊔{(true,∅)↣ true ⋅ r ∣ r ∈ F JD2K(p(x))} = AJp(x)KF JD2K

We have to check that F JD1K(p(x)) and F JD2K(p(x)) coincide for each
p(x) ∈ MGC. Since F JD1K (respectively F JD2K) is the least fixpoint of
DJD1K� (respectively DJD2K�), we know that it contains only information
regarding the procedure calls in D1 (respectively D2). So we can conclude
that F JD1K = F JD2K.

Proof of Corollary 3.30.
Consider D1, D2 ∈ DΠ

C:

D1 ≈F D2 ⇔ F JD1K = F JD2K
[by Proposition 3.29]

⇔ ∀A ∈ AΠ
C.PJD1 . AK = PJD2 . AK

[by Theorem 3.28]

⇔ ∀A ∈ AΠ
C∀c ∈ C.prefix(PJD1 . AK⇓c) = prefix(PJD2 . AK⇓c)

[by Theorem 3.27]

⇔ ∀A ∈ AΠ
C∀c ∈ C.BssJD1 . AKc = BssJD2 . AKc

⇔D1 ≈ss D2

A.2 Proofs of Section 4

Lemma A.9 (M, ⊑, ⊔, ⊓, M, {ε}) −−−−−→Ð→←−−−−−−−
αio

γio

(IO, ⊆, ⋃, ⋂, IO, ∅)

Proof.
1. The function αio is monotonic. Let R1,R2 ∈ M such that R1 ⊑ R2, thus,
αio(R1) ⊆ αio(R2). Otherwise, if there exists an input-output pair belong-
ing to αio(R1) but not to αio(R2), this would mean that the associated
sequence belongs to R1 and not to R2 and this contradicts the hypothesis.

51

2. The function γio is monotonic. Let P1, P2 ∈ IO such that P1 ⊆ P2. If
γio(P1) ⋢ γio(P2) there would exists r1 ∈ γio(P1) but not a sequence
r2 ∈ γio(P1) that extends r1 (r1 is a prefix of r2). It is easy to see that
this situation is impossible since, by the definition of γio , r1 has to belong
also to γio(P2) (since P1 ⊆ P2) and r1 trivially extends itself.

3. (γio ○αio) is extensive, i.e., for all R ∈M.R ⊑ γio(αio(R)). We show that
r ∈ R⇒ r ∈ γio(αio(R)), we distinguish three cases:

(a) If r = η1 ↣ c1 ⋅ ⋅ ⋅ ⋅ ⋅ηn ↣ cn ⋅ ⊠ we have that αio(R) ⊇ {⟨c0, fin(c)⟩ ∣ c0 ∈
C and last(r⇓c0) = c}. Thus, by (4.2) it follows that r ∈ γio(αio(r)).

(b) If r = η1 ↣ c1 ⋅ ⋅ ⋅ ⋅ ⋅ stutt(η−n) ⋅ . . . we have that αio(R) ⊇ {⟨c0, fin(c)⟩ ∣
c0 ∈ C and last(r⇓c0) = c}. From (4.2) it follows that r ∈ γio(αio(r)).

(c) If r = η1 ↣ c1 . . . ηn ↣ cn . . . is an infinite sequence that does not
contain any stutt , then we have that αio(R) ⊇ {⟨c0, inf (c)⟩ ∣ c0 ∈
C, r⇓c0 = c′0 . . . c

′
i . . . , and ⊗i≥0 c

′
i = c}. By (4.2) we have that

r ∈ γio(αio(r)).

4. (αio ○γio) is the identity for IO, i.e., given P ∈ IO. P = αio(γio(P)). We
first show that p ∈ P ⇒ p ∈ αio(γio(P)).

(a) If p = ⟨c0, fin(cn)⟩ then γio(P) contains all the conditional traces r
such that last(r⇓c0) = cn. By (4.1), p ∈ αio(γio(P)).

(b) If p = ⟨c0, inf (c)⟩ then γio(P) contains all the conditional state
sequences r such that r⇓c0 = c0 . . . ci . . . and ⊗i≥0 = c. By (4.1),
p ∈ αio(γio(P)).

Now we show the other inclusion i.e., p ∈ αio(γio(P))⇒ p ∈ P .

(a) If p = ⟨c0, fin(cn)⟩, then it exists r ∈ γio(P) such that last(r⇓c0) = cn.
Obviously, p ∈ P , otherwise r would not belong to γio(P).

(b) If p = ⟨c0, inf (c)⟩, then it exists r ∈ γio(P) such that r⇓c0 = c0 . . . ci . . .
and ⊗i≥0 = c. It is easy to notice that p ∈ P , otherwise by using γio

we would not obtain r.

Proof of Theorem 4.3.
Consider D ∈ DΠ

C and A ∈ AΠ
C, then αio(PJD . AK) = BioJD . AK. We show the

two inclusions independently.

⊆ Let r ∈ PJD . AK and c0 ∈ C such that r⇓c0 is defined. In order to show
that αio({r}) ⊆ B

ioJD . AK, we distinguish two cases.

1. In case r⇓c0 is finite, let us define cn ∶= last(r⇓c0). By (4.1) ⟨c0, fin(cn)⟩ ∈
αio(PJD .AK). By Definitions 3.21, 3.16 and 3.26 it is easy to notice
that r can be of three different forms:

(a) r ends with ⊠,

(b) r contains a stutt or

(c) r contains a conditional store η ↣ d such that there is no stutt
before and c0 ⊗ d = ff .

Now, we show that r takes one of those form when A, with initial store
c0, behaves in the following way: ⟨A, c0⟩ →

∗ ⟨An, cn⟩ /→. Looking to
the agent semantics A (Definition 3.16) we observe that:

52

(a) we obtain a sequence that ends with ⊠ if a subagent of A is
equal to skip or tell, this means that, starting from an initial
store c0 such that last(r⇓c0) is well defined, the operational se-
mantics cannot perform any step from the configuration reached
⟨skip, cn⟩ /→;

(b) when A contains an agent ∑
n
i=1 ask(gi) → Ai and ∀i ∈ [1, n]. gi ≠

ff , then a stutt(∪ni=1) is introduced. Since we assume that r⇓c0
is well defined, it holds that the guards are not entailed by c0
(merged with the store produced by the sequence up to that
position), thus the operational semantics cannot perform any
step from the configuration reached ⟨∑

n
i=1 ask(gi)→ Ai, cn⟩ /→;

(c) when r contains a conditional state η ↣ d (that occurs before any
stutt) such that c0 ⊗ d = ff , we can deduce that, starting from
⟨A, c0⟩, we reach in a finite number of operational steps the state
⟨An, ff ⟩ /→, from which no further derivation is possible since an
inconsistent store has been produced.

Thus, by Definition 4.1 ⟨c0, fin(cn)⟩ ∈ B
ioJD . AK.

2. In case r⇓c0 = c0 . . . ci . . . is infinite, let us define c ∶= ⊗i≥0ci. By (4.1)
⟨c0, inf (c)⟩ ∈ αio(PJD . AK). By Theorem 3.27, it is easy to notice
that r⇓c0 ∈ BssJD . AKc0 , thus A with initial store c0 behaves in the
following way: ⟨A, c0⟩→ . . .→ ⟨Ai, ci⟩→. By Definition 4.1 it follows
that ⟨c0, inf (c)⟩ ∈ BioJD . AK.

⊇ Let p ∈ IO, we show that p ∈ BioJD . AK ⇒ p ∈ αio(PJD . AK). Let us
distinguish two cases.

1. In case p = ⟨c0, fin(cn)⟩, by Definition 4.1 it follows that ⟨A, c0⟩ →
. . . → ⟨An, c0⟩ /→, and by Definition 3.1, c0 . . . cn ∈ BssJD . AKc0 . By
Theorem 3.27, it exists r ∈ PJD.AK such that c0⇓r = c0 . . . cn, and by
(4.1) it follows that ⟨c0, fin(cn)⟩ ∈ αio(PJD . AK).

2. In case p = ⟨c0, fin(c)⟩, by Definition 4.1 it follows that ⟨A, c0⟩ →
. . . → ⟨Ai, ci⟩ →, and by Definition 3.1, c0 . . . ci ⋅ ⋅ ⋅ ∈ B

ssJD . AKc0 . By
Theorem 3.27, it exists r ∈ PJD .AK such that c0⇓r = c0 . . . ci . . . , and
by (4.1) it follows that ⟨c0, inf (c)⟩ ∈ αio(PJD . AK).

Proof of Theorem 4.5.
We prove the two directions separately.

⇒ We show the equivalent implication: πIO
F (αio(PJP1K)) ≠ πIO

F (αio(PJP2K))⇒
OioJP1K ≠ OioJP2K. Let us assume, without loss of generality, that πIO

F (αio(PJP1K)) ⊂
πIO

F (αio(PJP2K)), this means that there exist r2 ∈ PJP2K and c0 ∈ C
such that r2⇓c0 = c0 . . . cn, but it does not exist r1 ∈ PJP1K such that
r1⇓c0 = c0 . . . cn. Furthermore, cn ≠ ff , since, by hypothesis, r2 is not a
failed conditional trace. By Theorem 3.27, c0⋯cn ∈ B

ssJP2K and, by Defi-
nition 4.1, ⟨c0, cn⟩ ∈ B

io
F JP2K. Since Bio

F and OioJK differ only on sequence
terminating in ff and cn ≠ ff , it follows directly that ⟨c0, cn⟩ ∈ O

ioJP2K.
On the other hand, we have that c0⋯cn ∉ B

ssJP1K, thus ⟨c0, cn⟩ ∉ B
io
F JP1K.

Since it is easy to notice that, given a tccp program P , OioJP K ⊆ Bio
F JP K,

we have that ⟨c0, cn⟩ ∉ O
ioJP1K. Thus, ⟨c0, cn⟩ ∈ O

ioJP2K ∖OioJP1K and
we can conclude that OioJP1K ≠ OioJP2K.

53

⇐ We show the equivalent implication: OioJP1K ≠ OioJP2K ⇒ πIO
F (αio(PJP1K)) ≠

πIO
F (αio(PJP2K)). Without loss of generality, assume that OioJP1K ⊂
OioJP2K, thus, there exists ⟨c0, cn⟩ ∈ O

ioJP2K such that ⟨c0, cn⟩ ∉ O
ioJP1K.

Since no trace in PJP1K ⊔PJP2K is failed, we can assume that cn ≠ ff .
This means that, by using the transition relation defined in [10], we have
a derivation of the form ⟨A2, c0⟩ → . . . ⟨A′

2, cn⟩ /→, with A2,A
′
2 ∈ AΠ

C,
D2 ∈ DΠ

C and P2 = D2 . A2; Furthermore, a derivation, with initial con-
straint c0, ending in cn does not exists for P1. On the other hand, it can
be noticed that by using the transition relation of Figure 1, for P1 there
is no derivation starting with c0 and ending in cn. Thus we have that
⟨c0, cn⟩ ∈ B

io
F JP2K and ⟨c0, cn⟩ ∉ B

io
F JP1K. From Theorem 4.3 it follows

that ⟨c0, cn⟩ ∈ π
IO
F (αio(PJP2K)) ∖ πIO

F (αio(PJP1K)) and we can conclude

that πIO
F (αio(PJP1K)) ≠ πIO

F (αio(PJP2K)).

References

[1] M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and S. Lucas. Abstract
Diagnosis of Functional Programs. In M. Leuschel, editor, Logic Based
Program Synthesis and Transformation – 12th International Workshop,
LOPSTR 2002, Revised Selected Papers, volume 2664 of Lecture Notes in
Computer Science, pages 1–16, Berlin, 2003. Springer-Verlag.

[2] A. Aristizábal, F. Bonchi, C. Palamidessi, L. F. Pino, and F. D. Valencia.
Deriving Labels and Bisimilarity for Concurrent Constraint Programming.
In 14th International Conference on Foundations of Software Science and
Computational Structures (FOSSACS 2011), volume 6604 of Lecture Notes
in Computer Science, pages 138–152. Springer, 2011. 2.1

[3] G. Bacci and M. Comini. Abstract Diagnosis of First Order Functional
Logic Programs. In M. Alpuente, editor, Logic-based Program Synthesis
and Transformation, 20th International Symposium, volume 6564 of Lecture
Notes in Computer Science, pages 215–233, Berlin, 2011. Springer-Verlag.

[4] M. Comini. An Abstract Interpretation Framework for Semantics and Di-
agnosis of Logic Programs. PhD thesis, Dipartimento di Informatica, Uni-
versitá di Pisa, Pisa, Italy, 1998.

[5] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract Diagnosis.
Journal of Logic Programming, 39(1-3):43–93, 1999.

[6] M. Comini, L. Titolo, and A. Villanueva. Abstract Diagnosis for Timed
Concurrent Constraint programs. Theory and Practice of Logic Program-
ming, 11(4-5):487–502, 2011.

[7] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frame-
works. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, San Antonio, Texas, January 29–31,
pages 269–282, New York, NY, USA, 1979. ACM Press. 4

[8] F. S. de Boer, A. di Pierro, and C. Palamidessi. Nondeterminism and
infinite computations in constraint programming. Theoretical Computer
Science, 151:37–78, 1995. 1, 2.1, 3, 3.25

54

[9] F. S. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving
Concurrent Constraint Programs Correct. ACM Trans. Program. Lang.
Syst., 19(5):685–725, 1997. 2.1, 3, 3.2.2

[10] F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Timed Concurrent Con-
straint Language. Information and Computation, 161(1):45–83, 2000. 1, 1,
2.1, 2.2, (document), 3.25, 4, 4.1, 4.2, 4.2, A.2

[11] F. S. de Boer, J. N. Kok, C. Palamidessi, and J. J. M. M. Rutten. The
Failure of Failures in a Paradigm for Asynchronous Communication. In
J. C. M. Baeten and J. F. Groote, editors, Proceedings of the 2nd Inter-
national Conference on Concurrency Theory (CONCUR’91), volume 527,
pages 111–126. Springer-Verlag, 1991.

[12] F. S. de Boer, J. N. Kok, C. Palamidessi, and J. J. M. M. Rutten. On
Blocks: locality and asynchronous communication (Extended Abstract). In
Proceedings of Sematics: Foundations and Applications, REX Workshop,
volume 666, pages 73–90. Springer-Verlag, 1992.

[13] F. S. de Boer and C. Palamidessi. A Fully Abstract Model for Concurrent
Constraint Programming. In S. Abramsky and T. S. E. Maibaum, editors,
Proceedings of TAPSOFT’91, volume 493 of Lecture Notes in Computer
Science, pages 296–319, Berlin, 1991. Springer-Verlag. 1, 4

[14] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Conflu-
ence in concurrent constraint programming. Theoretical Computer Science,
183:281–315, 1997. 1, 3

[15] M. Falaschi, C. Olarte, and C. Palamidessi. A framework for abstract
interpretation of timed concurrent constraint programs. In A. Porto and
F. Javier López-Fraguas, editors, PPDP, pages 207–218. ACM, 2009. 3

[16] M. Falaschi, C. Olarte, C. Palamidessi, and F. D. Valencia. Declarative
Diagnosis of Temporal Concurrent Constraint Programs. In V. Dahl and
I. Niemelä, editors, Logic Programming, 23rd International Conference,
ICLP 2007, Proceedings, volume 4670 of Lecture Notes in Computer Sci-
ence, pages 271–285. Springer-Verlag, 2007. 3

[17] M. Falaschi and A. Villanueva. Automatic verification of timed concurrent
constraint programs. Theory and Practice of Logic Programming, 6(3):265–
300, 2006. 3.25

[18] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras. Part I and II.
Elsevier Science Publishers, North Holland, 1971.

[19] M. Nielsen, C. Palamidessi, and F. D. Valencia. On the expressive power of
temporal concurrent constraint programming languages. In PPDP, pages
156–167. ACM, 2002.

[20] M. Nielsen, C. Palamidessi, and F. D. Valencia. Temporal concurrent con-
straint programming: Denotation, logic and applications. Nordic Journal
of Computing, 9(1):145–188, 2002. 3, 3.2.2

55

[21] C. Olarte and F. D. Valencia. Universal concurrent constraint programing:
symbolic semantics and applications to security. In R. Wainwright and
H. Haddad, editors, Proceedings of the 2008 ACM Symposium on Applied
Computing (SAC08), pages 145–150. ACM, 2008. 3

[22] D. Park. Fixpoint Induction and Proofs of Program Properties. Machine
Intelligence, 5:59–78, 1969.

[23] V. A. Saraswat. Concurrent Constraint Programming. The MIT Press,
Cambridge, Mass., 1993. 1, 2.1

[24] V. A. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of Timed Con-
current Constraint Programming. In Proceedings of the Ninth Annual IEEE
Symposium on Logic in Computer Science, pages 71–80. IEEE Computer
Press, 1994. (document), 3

[25] V. A. Saraswat, R. Jagadeesan, and V. Gupta. Timed Default Concur-
rent Constraint Programming. Journal on Symbolic Computation, 11:1–42,
1999. (document), 3

[26] V. A. Saraswat and M. Rinard. Concurrent constraint programming. In
POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 232–245, New York, NY,
USA, 1990. ACM. 2, 2.1

[27] V. A. Saraswat, M. Rinard, and P. Panangaden. The Semantic Foundations
of Concurrent Constraint Programming. In Proceedings of the 18th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 333–352, New York, NY, USA, 1991. Acm. 2.1, 2.2, 3

56

	Introduction
	Preliminaries
	Cylindric constraint systems
	Timed Concurrent Constraint Programming

	Modeling the small-step operational behavior of tccp
	The semantic domain
	Fixpoint Denotations of Programs
	Interpretations
	Semantics Evaluation Function of Agents
	Fixpoint Denotations of Process Declarations
	Full abstraction of [] semantics

	Big-step semantics
	Input-output semantics with infinite outcomes
	patch

	Conclusions
	Proofs
	Proofs of Section 3
	Proofs of Section 4

