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Summary

Distributional chaos was introduced by Schweizer and Smı́tal in [SS94] from

the notion of Li-Yorke chaos in order to imply positive topological entropy for

the mappings from the compact interval into itself. Distributional chaos for

linear operators was considered for the first time in [Opr06] and firstly studied

in the infinite-dimensional linear setting in [MGOP09].

The concept of distributional chaos for an operator (semigroup) consists

on the existence of an uncountable subset and a positive real number 𝛿 such

that for every pair of distinct elements of the uncountable set, both the upper

density of the set of iterations (times) in which the difference of the images by

the corresponding operator is greater than 𝛿, and the upper density of the set

of iterations (times) in which that difference is as small as we want, are equal

to one.

This thesis is divided into six chapters. In the first one, we do a summary

of the state of the art about chaotic dynamics for 𝐶0-semigroups of linear

operators.

In the second chapter, we show the equivalence between the distribu-

tional chaos of a 𝐶0-semigroup and the distributional chaos of each one of

its non-trivial operators. We also characterize the distributional chaos of a

𝐶0-semigroup in terms of the existence of a distributionally irregular vector.

The notion of hypercyclicity for an operator (semigroup) consists on the

existence of an element with dense orbit by the operator (semigroup). If, in

addition, the set of periodic points is dense, we say that the operator (semi-

group) is Devaney chaotic. One of the most useful tools to check whether an
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operator is hypercyclic is the Hypercyclicity Criterion, first stated by Kitai in

1982. In [BBMGP11], Bermúdez, Bonilla, Mart́ınez-Giménez and Peris intro-

duce the Criterion for Distributional Chaos (CDC) for operators. We state

and prove a version of the CDC for semigroups.

In addition, in the semigroup setting, Desch, Schappacher and Webb stud-

ied in [DSW97] hypercyclicity and Devaney chaos for 𝐶0-semigroups, giving

a criterion for Devaney chaos based on the spectrum of the infinitesimal gen-

erator of the 𝐶0-semigroup. In the third chapter, we establish a criterion for

the existence of a dense distributionally irregular manifold (DDIM) in terms

of the spectrum of the infinitesimal generator of the 𝐶0-semigroup.

In Chapter 4, some sufficient conditions for distributional chaos for the

translation 𝐶0-semigroup on weighted 𝐿𝑝-spaces are given in terms of the ad-

missible weight function. Moreover, we establish a complete analogy between

the study of distributional chaos for the translation 𝐶0-semigroup and for

backward shift operators on weighted sequence spaces.

The fifth chapter is devoted to the study of the existence of 𝐶0-semigroups

for which every non-zero vector is a distributionally irregular vector. We also

give an example of such 𝐶0-semigroups that is not hypercyclic.

In Chapter 6, the DDIM criterion is applied to several examples of 𝐶0-

semigroups. Some of them are the solution semigroup of a partial differential

equation, like the hyperbolic heat transfer equation or the von Foerster-Lasota

equation, and others are the solution of an infinite system of ordinary differ-

ential equations used to modelize the dynamics of a population of cells under

simultaneous proliferation and maturation.



Resum

El caos distribucional va ser introdüıt per Schweizer i Smı́tal en [SS94] a

partir de la noció de caos de Li-Yorke amb la finalitat d’implicar l’entropia

topològica positiva per a aplicacions de l’interval compacte en ell mateix. El

caos distribucional per a operadors va ser considerat per primera vegada en

[Opr06] i va ser analitzat en el context lineal de dimensió infinita en [MGOP09].

El concepte de caos distribucional per a un operador (semigrup) consisteix

en l’existència d’un conjunt no numerable i un nombre real positiu 𝛿 tal que per

a dos elements distints qualssevol del conjunt no numerable, tant la densitat

superior del conjunt d’iteracions (temps) en les quals la diferència entre les

òrbites dels elements esmentats és major que 𝛿, com la densitat superior del

conjunt d’iteracions (temps) en les quals dita diferència és tan menuda com

es vulga, és igual a u.

Aquesta tesi està dividida en sis caṕıtols. Al primer, fem un resum de

l’estat actual de la teoria sobre la dinàmica caòtica per a 𝐶0-semigrups d’opera-

dors lineals.

Al segon caṕıtol, mostrem l’equivalència entre el caos distribucional d’un

𝐶0-semigrup i el caos distribucional de cadascun dels seus operadors no triv-

ials. També caracteritzem el caos distribucional d’un 𝐶0-semigrup en termes

de l’existència d’un vector distribucionalment irregular.

La noció d’hiperciclicitat d’un operador (semigrup) consisteix en l’existència

d’un element l’òrbita per l’operador (semigrup) del qual siga densa. Si, a més,

el conjunt de punts periòdics és dens, direm que l’operador (semigrup) es caòtic
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en el sentit de Devaney. Una de les eines més útils per comprovar si un oper-

ador és hiperćıclic és el Criteri d’Hiperciclicitat, enunciat per primera vegada

per Kitai en 1982. En [BBMGP11], Bermúdez, Bonilla, Mart́ınez-Giménez i

Peris presenten el Criteri per a Caos Distribucional (CDC en anglès) per a

operadors. Enunciem i provem una versió del CDC per a 𝐶0-semigrups.

En el context de 𝐶0-semigrups, Desch, Schappacher i Webb també estudien

en [DSW97] la hiperciclicitat i el caos de Devaney per a 𝐶0-semigrups, donant

un criteri per a caos de Devaney basat en l’espectre del generador infinitesimal

del 𝐶0-semigrup. Al tercer caṕıtol, establim un criteri d’existència d’una va-

rietat distribucionalment irregular densa (DDIM en les seues sigles en anglès)

en termes de l’espectre del generador infinitesimal del 𝐶0-semigrup.

Al Caṕıtol 4, es donen algunes condicions suficients per a que el 𝐶0-

semigrup de translació en espais 𝐿𝑝 ponderats siga distribucionalment caòtic

en funció de la funció pes admissible. A més a més, establim una analogia com-

pleta entre l’estudi del caos distribucional per al 𝐶0-semigrup de translació i

per als operadors de desplaçament enrere o “backward shifts” en espais pon-

derats de successions.

El caṕıtol cinquè està dedicat a l’estudi de l’existència de 𝐶0-semigrups per

als quals tot vector no nul és un vector distribucionalment irregular. També

donem un exemple dels esmentats 𝐶0-semigrups que a més no és hiperćıclic.

Al Caṕıtol 6, el criteri DDIM s’aplica a diversos exemples de 𝐶0-semigrups.

Alguns d’aquests són els semigrups de solució d’equacions en derivades par-

ciales, com ara l’equació hiperbòlica de transferència de calor o l’equació de

von Foerster-Lasota i altres són la solució d’un sistema infinit d’equacions

diferencials ordinàries utilitzat per a modelitzar la dinàmica d’una població

de cèl·lules baix proliferació i maduració simultànies.



Resumen

El caos distribucional fue introducido por Schweizer y Smı́tal en [SS94] a

partir de la noción de caos de Li-Yorke con el fin de implicar la entroṕıa

topológica positiva para aplicaciones del intervalo compacto en śı mismo. El

caos distribucional para operadores fue estudiado por primera vez en [Opr06]

y fue analizado en el contexto lineal de dimensión infinita en [MGOP09].

El concepto de caos distribucional para un operador (semigrupo) consiste

en la existencia de un conjunto no numerable y un numero real positivo 𝛿

tal que para dos elementos distintos cualesquiera del conjunto no numerable,

tanto la densidad superior del conjunto de iteraciones (tiempos) en las cuales

la diferencia entre las órbitas de dichos elementos es mayor que 𝛿, como la

densidad superior del conjunto de iteraciones (tiempos) en las cuales dicha

diferencia es tan pequeña como se quiera, es igual a uno.

Esta tesis está dividida en seis caṕıtulos. En el primero, hacemos un re-

sumen del estado actual de la teoŕıa de la dinámica caótica para 𝐶0-semigrupos

de operadores lineales.

En el segundo caṕıtulo, mostramos la equivalencia entre el caos distribu-

cional de un 𝐶0-semigrupo y el caos distribucional de cada uno de sus op-

eradores no triviales. También caracterizamos el caos distribucional de un

𝐶0-semigrupo en términos de la existencia de un vector distribucionalmente

irregular.

La noción de hiperciclicidad de un operador (semigrupo) consiste en la

existencia de un elemento cuya órbita por el operador (semigrupo) sea densa.

Si además el conjunto de puntos periódicos es denso, diremos que el operador
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(semigrupo) es caótico en el sentido de Devaney. Una de las herramientas más

útiles para comprobar si un operador es hiperćıclico es el Criterio de Hiper-

ciclicidad, enunciado por primerza vez por Kitai en 1982. En [BBMGP11],

Bermúdez, Bonilla, Mart́ınez-Giménez y Peris presentan el Criterio para Caos

Distribucional (CDC en inglés) para operadores. Enunciamos y probamos una

versión del CDC para 𝐶0-semigrupos.

En el contexto de 𝐶0-semigrupos, Desch, Schappacher y Webb también es-

tudiaron en [DSW97] la hiperciclicidad y el caos de Devaney para 𝐶0-semigrupos,

dando un criterio para caos de Devaney basado en el espectro del generador

infinitesimal del 𝐶0-semigrupo. En el tercer caṕıtulo, establecemos un criterio

de existencia de una variedad distribucionalmente irregular densa (DDIM en

sus siglas en inglés) en términos del espectro del generador infinitesimal del

𝐶0-semigrupo.

En el Caṕıtulo 4, se dan algunas condiciones suficientes para que el 𝐶0-

semigrupo de traslación en espacios 𝐿𝑝 ponderados sea distribucionalmente

caótico en función de la función peso admisible. Además, establecemos una

analoǵıa completa entre el estudio del caos distribucional para el 𝐶0-semigrupo

de traslación y para los operadores de desplazamiento hacia atrás o “backward

shifts” en espacios ponderados de sucesiones.

El caṕıtulo quinto está dedicado al estudio de la existencia de 𝐶0-semigrupos

para los cuales todo vector no nulo es un vector distribucionalmente irregular.

También damos un ejemplo de uno de dichos 𝐶0-semigrupos que además no

es hiperćıclico.

En el Caṕıtulo 6, el criterio DDIM se aplica a varios ejemplos de 𝐶0-

semigrupos. Algunos de ellos siendo los semigrupos de solución de ecuaciones

en derivadas parciales, como la ecuación hiperbólica de transferencia de calor o

la ecuación de von Foerster-Lasota y otros son la solución de un sistema infinito

de ecuaciones diferenciales ordinarias usado para modelizar la dinámica de una

población de células bajo proliferación y maduración simultáneas.
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risultati esposti nel secondo e terzo capitolo sono tratti da un nostro articolo,

scritto in collaborazione con Alfred Peris.



viii Agräıments
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Rafelbunyol, a 6 d’abril de 2013.

Xavier Barrachina Civera



ix
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tica Pura i Aplicada de la Universitat Politècnica de València, durant el
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ra a Lecce, Itàlia (setembre-desembre de 2010, PAID-00-10) dirigida per la

professora Elisabetta Mangino i la segona a Mons, Bèlgica (setembre-octubre
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Chapter 1

Introduction

This thesis is devoted to the study of distributional chaos of 𝐶0-semigroups

defined on infinite-dimensional Banach spaces.

In this section we will present the notions of hypercyclicity, Devaney chaos,

the weakly mixing property, Li-Yorke chaos, and distributional chaos for op-

erators and 𝐶0-semigroups as well as some sufficient criteria that yield some

of these properties.

First of all we recall the definition of a 𝐶0-semigroup and some of its elemen-

tary properties.

1.1 𝐶0-semigroups

During last years, several notions have been used in order to describe the

dynamical behavior of linear operators on infinite-dimensional spaces, such

as hypercyclicity, chaos in the sense of Devaney, chaos in the sense of Li-

Yorke, subchaos, mixing and weakly mixing properties, and frequent hyper-

cyclicity, among others. These notions have been extended to the frame of

𝐶0-semigroups of linear and continuous operators as far as possible.
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Our study will be focused on dynamical systems defined on a separable

infinite-dimensional Banach space 𝑋. Within this frame, 𝐿(𝑋) denotes the

set of linear and continuous operators from 𝑋 to 𝑋, in the sequel we refer to

them just as operators.

We recall that a one–parameter family T = {𝑇𝑡 : 𝑋 → 𝑋 ; 𝑡 ∈ Δ}, where
Δ = R+

0 or R, is said to be a strongly continuous semigroup of operators

in 𝐿(𝑋) (briefly, 𝐶0-semigroup of operators) if the following conditions are

satisfied.

(1) 𝑇0 = 𝐼.

(2) 𝑇𝑡𝑇𝑠 = 𝑇𝑡+𝑠, for all 𝑠, 𝑡 ∈ Δ.

(3) lim
𝑡→𝑠

𝑇𝑡𝑥 = 𝑇𝑠𝑥, for all 𝑥 ∈ 𝑋 and 𝑠, 𝑡 ∈ Δ.

The third condition can be expressed saying that the map

Δ −→ 𝐿𝑆(𝑋)

𝑡 −→ 𝑇𝑡

is continuous for every 𝑠 ∈ Δ, where 𝐿𝑆(𝑋) denotes the space 𝐿(𝑋) endowed

with the strong operator topology, that is, the topology of the pointwise con-

vergence on the elements of 𝑋.

If the space 𝐿(𝑋) is endowed with the uniform convergence on the bounded

sets of𝑋, we will say that the semigroup is uniformly continuous. Whenever𝑋

is a normed space, this topology coincides with the topology of the convergence

of operators in the operator norm.

If T is a 𝐶0-semigroup in 𝐿(𝑋), then there exist 𝜔 ∈ R and 𝑀 ≥ 1 such

that ‖𝑇𝑡𝑥‖ ≤ 𝑀𝑒𝜔𝑡‖𝑥‖, for all 𝑡 ∈ Δ and 𝑥 ∈ 𝑋, and hence it is locally

equicontinuous, that is,

∀𝑁 > 0 ∃𝐶 > 0 such that ‖𝑇𝑡𝑥‖ ≤ 𝐶‖𝑥‖, ∀𝑡 ∈ [0, 𝑁 ], ∀𝑥 ∈ 𝑋.

We refer to [EN00] and [EN06] as basic references on 𝐶0-semigroups.



1.1 𝐶0-semigroups 3

The notion of a 𝐶0-semigroup can be viewed as the continuous time analog

of the discrete time case of iterations of a single operator. One of the main

interests on 𝐶0-semigroups is that they describe the asymptotic behaviour

of solutions to abstract linear Cauchy problems, which include linear partial

differential equations and infinite systems of linear ordinary differential equa-

tions.

1.1.1 Linear dynamics for operators and 𝐶0-semigroups

Two main research lines have been followed in the study of the linear dynamics

of 𝐶0-semigroups: On the one hand, to determine if the corresponding dynam-

ical behavior of a 𝐶0-semigroup was inherited by their non-trivial operators,

since this will let us import known results from the operator case. On the

other hand, to discover examples of 𝐶0-semigroups that present a chaotic be-

havior. The first survey papers in linear dynamics are due to Grosse-Erdmann

[GE99; GE03] and Bonet, Mart́ınez-Giménez and Peris [BMGP03]. The recent

monograph by Grosse-Erdmann and Peris [GEPM11] is a good reference for

researchers interested in the study of linear dynamics. Moreover, it contains a

chapter dedicated to analyse the dynamics of 𝐶0-semigroups. See also [BM09]

for further topics in the area.

In the sequel, let 𝑋 be an infinite-dimensional separable Banach space, and

let T = {𝑇𝑡 ; 𝑡 ∈ 𝐴 ⊆ Δ} be either a 𝐶0-semigroup or a sequence of operators

(A countable and unbounded) in a semigroup. We will pay special attention

when this sequence is given by the iterates of a fixed operator. In this case we

simply say that this operator verifies the corresponding properties.

Godefroy and Shapiro introduced in [GS91] the notion of chaos in linear

dynamics from the definition of Devaney chaos [Dev89]. We analyze the three

ingredients in the definition of chaos in the sense of Devaney, transitivity,

density of periodic points, and sensitive dependence on initial conditions, in

this frame.

T is transitive if for any pair of non-empty sets 𝑈, 𝑉 ⊂ 𝑋 there is some

𝑡 ∈ 𝐴 such that 𝑇𝑡(𝑈) ∩ 𝑉 ̸= ∅. Transitivity is equivalent to the existence of
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some element 𝑥 ∈ 𝑋 with dense orbit, i.e. {𝑇𝑡𝑥 ; 𝑡 ∈ 𝐴} = 𝑋, see for instance

[GS91; DSW97]. This phenomenon is usually known in Operator Theory as

hypercyclicity, and such a vector 𝑥 is said to be a hypercyclic vector for T.

We denote by 𝐻𝐶(T) the set of these vectors. There are plenty of hypercyclic

vectors for a hypercyclic operator: by the Birkhoff transitivity theorem for

operators [Bir22] or its analogous for 𝐶0-semigroups, it can be seen that the

set of these vectors is a dense 𝐺𝛿-set.

We recall that a vector 𝑥 ∈ 𝑋 is said to be a periodic point for T if there

exists some 0 ̸= 𝑡 ∈ 𝐴 such that 𝑇𝑡𝑥 = 𝑥. The set of periodic points for T is

denoted by 𝑃𝑒𝑟(T). We point out that the structure of the set of periods for

a 𝐶0-semigroup has been partially analyzed in [BB09; MFSSW12].

Sensitive dependence on initial conditions can be directly obtained from

hypercyclicity, see for instance [BBCDS92]. Therefore, hypercyclicity coincides

here with the notion of chaos in the sense of Auslander and Yorke (existence

of an element with dense orbit and sensitive dependence on initial conditions)

[AY80]. Hence T is said to be chaotic if it is hypercyclic and the set of periodic

points 𝑃𝑒𝑟(T) is dense in 𝑋.

Furthermore, hypercyclicity is a stronger notion than Li-Yorke chaos. We

recall that T is said to be Li-Yorke chaotic if there exists an uncountable

subset Γ ⊂ 𝑋, called the scrambled set, such that for every pair 𝑥, 𝑦 ∈ Γ of

distinct points we have that

lim inf
𝑡→∞
𝑡∈𝐴

‖𝑇𝑡𝑥− 𝑇𝑡𝑦‖ = 0 and lim sup
𝑡→∞
𝑡∈𝐴

‖𝑇𝑡𝑥− 𝑇𝑡𝑦‖ > 0.

Every hypercyclic operator or 𝐶0-semigroup is Li-Yorke chaotic, since we

have that for a hypercyclic vector 𝑥 we have that {𝑝(𝑇 )𝑥 ; 𝑝 ∈ K[𝑥], 𝑝 ̸= 0} is

a dense linear manifold of hypercyclic vectors, which is also a dense scrambled

set.

T is called topologically mixing if, for any pair 𝑈, 𝑉 of non-empty open

subsets of 𝑋, there exists some 𝑡0 ∈ 𝐴 such that 𝑇𝑡(𝑈)∩ 𝑉 ̸= ∅, for all 𝑡 ≥ 𝑡0.

T is topologically weakly mixing if {𝑇𝑡 ⊕ 𝑇𝑡 : 𝑋 ⊕ 𝑋 → 𝑋 ⊕ 𝑋 ; 𝑡 ≥ 0} is

transitive.
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1.2 Criteria for hypercyclicity and Devaney Chaos

The following criterion for hypercyclicity of 𝐶0-semigroups is inspired in the

Hypercyclicity Criterion given by Kitai [Kit82], in particular in its generaliza-

tion given by Bès and Peris [BP99].

Theorem 1.1. Hypercyclicity Criterion for 𝐶0-semigroups [CP09].

Let T be a 𝐶0-semigroup in 𝐿(𝑋). If there exist a sequence (𝑡𝑛)𝑛 ⊂ R+ with

lim
𝑛→∞

𝑡𝑛 = ∞, dense subsets 𝑌,𝑍 ⊂ 𝑋 and maps 𝑆𝑡𝑛 : 𝑍 → 𝑋, 𝑛 ∈ N such that

i. lim
𝑛→∞

𝑇𝑡𝑛𝑦 = 0 for all 𝑦 ∈ 𝑌 ,

ii. lim
𝑛→∞

𝑆𝑡𝑛𝑧 = 0 for all 𝑧 ∈ 𝑍,

iii. lim
𝑛→∞

𝑇𝑡𝑛𝑆𝑡𝑛𝑧 = 𝑧 for all 𝑧 ∈ 𝑍,

then T is hypercyclic.

In fact, T verifies this criterion if and only if T is weakly mixing [BP99].

1.2.1 Dynamics of autonomous discretizations

In linear dynamics there exist some results which relate the dynamical proper-

ties of a 𝐶0-semigroup with the corresponding properties of certain sequences

of its operators. For this purpose we introduce the following notion.

Definition 1.2. A discretization of a 𝐶0-semigroup {𝑇𝑡}𝑡≥0 is a sequence of

operators (𝑇𝑡𝑛)𝑛 in the semigroup, where lim
𝑛→∞

𝑡𝑛 = ∞ If there is 𝑡0 ̸= 0 such

that 𝑡𝑛 = 𝑛𝑡0 for each 𝑛 ∈ N, then (𝑇𝑡𝑛)𝑛 = (𝑇𝑛𝑡0)𝑛 is called an autonomous

discretization of {𝑇𝑡}𝑡≥0.

An easy observation yields that a 𝐶0-semigroup is hypercyclic if and only

if it admits a hypercyclic discretization. In fact all the autonomous discretiza-

tions are hypercyclic. (𝑇𝑡𝑛)𝑛.

Proposition 1.3 ([CP09; GEPM11]). Let {𝑇𝑡}𝑡≥0 be a 𝐶0-semigroup on a

separable Banach space 𝑋. The following are equivalent:

i. {𝑇𝑡}𝑡≥0 is mixing.
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ii. Every discretization of {𝑇𝑡}𝑡≥0 is mixing.

iii. Every discretization of {𝑇𝑡}𝑡≥0 is weakly mixing.

iv. Every discretization of {𝑇𝑡}𝑡≥0 is transitive.

v. There exists a mixing autonomous discretization of {𝑇𝑡}𝑡≥0.

Theorem 1.4 ([CP09; GEPM11]). Let {𝑇𝑡}𝑡≥0 be a 𝐶0-semigroup in 𝐿(𝑋).

The following are equivalent:

i. {𝑇𝑡}𝑡≥0 is weakly mixing.

ii. All autonomous discretizations are weakly mixing.

In the flavour of the last results, the following ones also refer to the dy-

namics of the autonomous discretizations in a 𝐶0-semigroup.

Theorem 1.5 (Conejero-Müller-Peris [CMP07]). Let T = {𝑇𝑡}𝑡≥0 be a hy-

percyclic 𝐶0-semigroup in 𝐿(𝑋), and let 𝑥 ∈ 𝐻𝐶(T). Then 𝑥 ∈ 𝐻𝐶(𝑇𝑡0) for

every 𝑡0 > 0.

This is equivalent to say that the restriction of the orbit of a hypercyclic

vector 𝑥 for T to the set {𝑇𝑘𝑡0𝑥 ; 𝑘 ∈ N} is still dense in 𝑋 for any 𝑡0 > 0.

As a direct consequence, if a 𝐶0-semigroup is weakly mixing, then all its non-

trivial operators are weakly mixing. We recall that every Devaney chaotic

𝐶0-semigroup is also weakly mixing, c.f. [BB09, Rem. 5].

However, we do not have an analogous result in the chaotic case.

Theorem 1.6 (Bayart-Bermúdez [BB09]). There exists a 𝐶0-semigroup {𝑇𝑡}𝑡≥0

on a separable Hilbert space 𝐻 and 𝑡0 ̸= 𝑡1 such that 𝑇𝑡0 is chaotic and 𝑇𝑡1 is

not chaotic.

One of the most striking results in linear dynamics was the example of De

la Rosa and Read of a hypercyclic operator which is not weakly mixing [RR09],

see also [BM07]. It is still unknown whether each hypercyclic 𝐶0-semigroup

satisfies the hypercyclicity criterion, that is:
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Question 1.7. Are all the non-trivial operators in a hypercyclic 𝐶0-semigroup

weakly mixing?

In fact, it will be enough with finding a single weakly mixing operator in

the 𝐶0-semigroup [CP09, Th. 2.4].

1.2.2 Spectral conditions

Let 𝑇 be an operator on a complex Banach space 𝑋. The spectrum 𝜎(𝑇 ) of

𝑇 is defined as

𝜎(𝑇 ) = {𝜆 ∈ C ; 𝜆𝐼 − 𝑇 is not invertible}.

The point spectrum 𝜎𝑝(𝑇 ) is the set of eigenvalues of 𝑇 .

The number

𝑟(𝑇 ) = sup
𝜆∈𝜎(𝑇 )

|𝜆|

is called the spectral radius of 𝑇 .

For the spectral radius we have that

𝑟(𝑇 ) = lim
𝑛→∞

‖𝑇𝑛‖1/𝑛.

The infinitesimal generator of a semigroup {𝑇𝑡}𝑡∈Δ is the operator 𝐴 given

by the following limit:

𝐴𝑥 := lim
𝑡→0
𝑡∈Δ

𝑇𝑡𝑥− 𝑥

𝑡
,

defined wherever that limit exists. It is known that the infinitesimal generator

of a 𝐶0-semigroup {𝑇𝑡}𝑡≥0 is a closed and densely defined operator in the

general setting of the Fréchet spaces, see for instance [Yos80, Thm. IX.3.1].

The infinitesimal generator of a 𝐶0-semigroup is important since it allows us

to “reconstruct” the semigroup in several cases.

In a Banach space 𝑋, it can be seen that every uniformly continuous

semigroup can be expressed as {𝑇𝑡}𝑡≥0 =
{︀
𝑒𝑡𝐴
}︀
𝑡≥0

, where

𝑒𝑡𝐴 :=
∞∑︁
𝑛=0

𝑡𝑛𝐴𝑛

𝑛!
.
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for a certain operator 𝐴 ∈ 𝐿(𝑋), see for instance [EN00, Thm. I.3.7].

Sometimes the Hypercyclicity Criterion is hard to be applied. In many

situations we can have the infinitesimal generator of a 𝐶0-semigroup but we

do not have the explicit representation of its operators. This situation is quite

common when we are dealing with the solution 𝐶0-semigroups associated to

certain partial differential equations. Desch, Schappacher, and Webb gave a

criterion which permits us to state Devaney chaos (and hypercyclicity) of a

𝐶0-semigroup in terms of the abundance of eigenvectors of the infinitesimal

generator.

Theorem 1.8. Desch-Schappacher-Webb Criterion [DSW97]. Let 𝑋

be a complex separable Banach space, and T be a 𝐶0-semigroup on 𝑋 with

infinitesimal generator (𝐴,𝐷(𝐴)). Assume that there exists an open connected

subset 𝑈 ⊂ C and a weakly holomorphic function 𝑓 : 𝑈 → 𝑋, such that:

i. 𝑈 ∩ 𝑖R ̸= ∅,

ii. 𝑓(𝜆) ∈ ker(𝜆𝐼 −𝐴) for every 𝜆 ∈ 𝑈

iii. for any 𝑥* ∈ 𝑋*, if ⟨𝑓(𝜆), 𝑥*⟩ = 0 for all 𝜆 ∈ 𝑈 , then 𝑥* = 0.

Then the semigroup T is chaotic.

Remark 1.9. Improvements and comments regarding the Desch-Schappacher-

Webb Criterion can be found in [CM08; CM10] and in [BM05], where the an-

alyticity of 𝑓 is dropped out if we replace the third condition by the following

one: for some 𝜆0 ∈ 𝑈 dim(ker(𝐴−𝜆0𝐼)) = 1, 𝑓(𝜆0) ̸= 0, and
⋃︁
𝑛≥1

ker(𝐴−𝜆0𝐼)𝑛

is dense in 𝑋.

Kalmes proved that if a 𝐶0-semigroup satisfies the Desch-Schappacher-

Webb Criterion, then all their non-trivial operators are Devaney chaotic [Kal06].

As an example, this holds for Devaney chaotic translation 𝐶0-semigroups on

weighted spaces of continuous and integrable functions [dE01]. However, this

chaotic behavior of a 𝐶0-semigroup is not always inherited by its operators.

Furthermore, there are examples of Devaney chaotic 𝐶0-semigroups whose op-

erators are never Devaney chaotic as we have noted in Theorem 1.6.
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1.3 Operators

In this section we introduce the notions of distributional chaos and distri-

butionally irregular vector for operators. In the paper [SS94], Schweizer and

Smı́tal introduced the notion of distributional chaos (it was called strong chaos

there). The main point was that, in the case of a self-map 𝑓 on a compact

interval, the existence of a distributionally chaotic pair implies that 𝑓 has

positive topological entropy. Actually, in [Li93] it is shown that the existence

of distributionally chaotic pairs implies, within this framework, a very strong

behaviour: distributional chaos, positive topological entropy, 𝜔-chaos, and the

existence of an infinite invariant subset on which 𝑓 exhibits chaos in the sense

of Devaney are equivalent properties for interval maps. This concept was gen-

eralized in [BSv05; Sv04]. We also refer to [Ov08; Opr09a; GKLOP09; Opr09b]

for some recent papers dealing with distributional chaos, and to [MGOP09;

BBMGP11] for distributional chaos in the linear infinite-dimensional setting,

which is the object of this dissertation.

We suppose here that the metric space 𝑋 has a finite diameter. For any

pair (𝑥, 𝑦) of points in 𝑋 and any positive integer 𝑛, a distribution function

𝛷
(𝑛)
𝑥𝑦 :]0,+∞[→ [0, 1] is defined by

𝛷(𝑛)
𝑥𝑦 (𝑡) =

|{0 ≤ 𝑖 ≤ 𝑛− 1 ; 𝑑(𝑓 𝑖(𝑥), 𝑓 𝑖(𝑦)) < 𝑡}|
𝑛

, 𝑡 > 0.

Then 𝛷
(𝑛)
𝑥𝑦 (𝑡) is a non-decreasing function and 𝛷

(𝑛)
𝑥𝑦 (𝑡) = 1 for 𝑡 greater than

the diameter of 𝑋. Let

𝛷𝑥𝑦(𝑡) = lim inf
𝑛→∞

𝛷(𝑛)
𝑥𝑦 (𝑡), and 𝛷*

𝑥𝑦(𝑡) = lim sup
𝑛→∞

𝛷(𝑛)
𝑥𝑦 (𝑡).

We say that 𝛷𝑥𝑦 is the lower distribution function, and 𝛷*
𝑥𝑦 the upper

distribution function of 𝑥 and 𝑦. Clearly, 𝛷𝑥𝑦(𝑡) ≤ 𝛷*
𝑥𝑦(𝑡) for any 𝑡 > 0. If

𝛷𝑥𝑦(𝑡) < 𝛷*
𝑥𝑦(𝑡) for all 𝑡 in an interval, we simply write 𝛷𝑥𝑦 < 𝛷*

𝑥𝑦. We are

interested in the case when there are an uncountable scrambled set 𝑆 ⊂ 𝑋

and 𝛿 > 0 such that, for any pair of different points 𝑥, 𝑦 ∈ 𝑆, we have
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(𝐷1𝐶) 𝛷
*
𝑥𝑦 ≡ 1 and 𝛷𝑥𝑦(𝛿) = 0.

(𝐷2𝐶) 𝛷
*
𝑥𝑦(𝑡) ≡ 1 and 𝛷𝑥𝑦 < 𝛷*

𝑥𝑦.

(𝐷3𝐶) 𝛷
*
𝑥𝑦 > 𝛷𝑥𝑦.

Then 𝑓 is said to exhibit distributional chaos of type 1-3, respectively and

will be denoted by (𝐷1𝐶), (𝐷2𝐶) or (𝐷3𝐶). Obviously, (𝐷1𝐶) implies (𝐷2𝐶)

and (𝐷2𝐶) implies (𝐷3𝐶). However, neither of the converses is true (see for

instance [BSv05; Sv04]).

From now on, to simplify, when we say distributional chaos we mean (𝐷1𝐶).

This notion can be expressed in terms of the abundance of pairs (𝑥, 𝑦) whose

orbits are as “close” as we want in certain times and far enough in other

occasions. This concept of distributional chaos can be rephrased in terms of

densities of sets of integers. The upper density dens(K) of a set K ⊂ N is

defined by

dens(K) := lim sup
𝑛→∞

|K ∩ {1, . . . , 𝑛}|
𝑛

,

and the corresponding lower density dens(K) by

dens(K) := lim inf
𝑛→∞

|K ∩ {1, . . . , 𝑛}|
𝑛

,

where |.| denotes the cardinality of a set. Thus, taking into account that

dens(K) + dens(N r K) = 1, 𝑓 : 𝑋 → 𝑋 is distributionally chaotic if there

is an uncountable scrambled set 𝑆 ⊂ 𝑋 and 𝛿 > 0 such that, for any pair of

different points 𝑥, 𝑦 ∈ 𝑆 and for every 𝜀 > 0, we have

dens{𝑛 ∈ N ; 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) > 𝛿} = 1, and

dens{𝑛 ∈ N ; 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) < 𝜀} = 1.

Such a pair (𝑥, 𝑦) is called a distributionally chaotic pair for 𝑓 .

Inspired by the concept of irregular vectors of Beauzamy [Bea88], the au-

thors of [BBMGP11] defined a vector 𝑥 ∈ 𝑋 to be distributionally irregular

for 𝑇 if there are increasing sequences of integers 𝐽 = (𝑛𝑘)𝑘 and 𝐾 = (𝑚𝑘)𝑘



such that dens(𝐽) = dens(𝐾) = 1, lim𝑘 ‖𝑇𝑛𝑘𝑥‖ = 0 and lim𝑘 ‖𝑇𝑚𝑘𝑥‖ = ∞,

or, equivalently, by Lemma 2.6, for every 𝛿 > 0

dens ({𝑛 ∈ N ; ‖𝑇𝑛𝑥‖ > 𝛿}) = 1 and dens ({𝑛 ∈ N ; ‖𝑇𝑛𝑥‖ < 𝛿}) = 1.

The set of all distributionally irregular vectors for 𝑇 is denoted by DI(𝑇 ).

A linear manifold 𝑌 ⊂ X is a distributionally irregular manifold for 𝑇 if

every non-zero vector 𝑦 ∈ 𝑌 is a distributionally irregular vector for 𝑇 , i.e.,

𝑌 ∖ {0} ⊂ DI(𝑇 ).

If 𝑥 is a distributionally irregular vector, then 𝑆 = span{𝑥} is a distribu-

tionally scrambled set for 𝑇 (see e.g. [BBMGP11]), hence 𝑇 is distributionally

chaotic.

In [BBMP12] the authors introduced the following criterion:

Theorem 1.10 (Criterion for Distributional Chaos (CDC)). Suppose that there

exist sequences (𝑥𝑚)𝑚, (𝑦𝑚)𝑚 ⊂ 𝑋 such that:

a) there exists a subset 𝐾 ⊂ N with dens(𝐾) = 1 such that lim
𝑛→∞
𝑛∈𝐾

𝑇𝑛𝑥𝑚 = 0

for all m;

b) 𝑦𝑚 ∈ span{𝑥𝑘 : 𝑘 ∈ N}, lim 𝑦𝑚 = 0 and there exist 𝛿 > 0 and a sequence of

positive integers (𝑁𝑚)𝑚 increasing to ∞ with

|{𝑛 ≤ 𝑁𝑚 ; 𝑑(𝑇𝑛𝑦𝑚, 0) > 𝛿}| ≥ 𝑁𝑚

(︂
1− 1

𝑚

)︂
for all 𝑚 ∈ N.

The authors have proved, as a matter of fact, that for a 𝑇 ∈ 𝐿(𝑋), to have

a distributionally irregular vector, to satisfy the (CDC) and to be distribu-

tionally irregular are actually equivalent:

Theorem 1.11. ([BBMP12]) Let 𝑇 : 𝑋 → 𝑋 be an operator on a Fréchet

space 𝑋. The following statements are equivalent.

(i) 𝑇 admits a distributionally chaotic pair.

(ii) 𝑇 has a distributionally irregular vector.

(iii) 𝑇 is distributionally chaotic.

(iv) 𝑇 satisfies the (CDC).





Chapter 2

Dynamic behaviour of the operators

of a 𝐶0-semigroup

The aim of this chapter is to introduce the notions of distributional chaos

and distributionally irregular vectors in the 𝐶0-semigroup setting, in order

to give a Criterion for Distributional Chaos for 𝐶0-semigroups and to study

the relation between these properties and the corresponding ones for the non-

trivial operators of the 𝐶0-semigroup.

2.1 Definitions

First we will extend the definition of upper and lower density to Lebesgue

measurable subsets.

Definition 2.1. If 𝐴 is a Lebesgue measurable subset of R+
0 , then the upper

density of 𝐴 is defined as

Dens(𝐴) := lim sup
𝑡→∞

𝜇(𝐴 ∩ [0, 𝑡])

𝑡
,

and its lower density by

Dens(𝐴) := lim inf
𝑡→∞

𝜇(𝐴 ∩ [0, 𝑡])

𝑡
,
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where 𝜇 denotes the Lebesgue measure on R.

Inspired in the notion of distributional chaos for operators we provide the

definition for 𝐶0-semigroups.

Definition 2.2. A 𝐶0-semigroup of operators T = {𝑇𝑡}𝑡≥0 on 𝑋 is said to be

distributionally chaotic if there exist an uncountable subset 𝑆 ⊂ 𝑋 and 𝛿 > 0

such that, for each pair of distinct points 𝑥, 𝑦 ∈ 𝑆 and for every 𝜀 > 0, we

have

Dens({𝑠 ≥ 0 ; ‖𝑇𝑠𝑥− 𝑇𝑠𝑦‖ > 𝛿}) = 1, and

Dens({𝑠 ≥ 0 ; ‖𝑇𝑠𝑥− 𝑇𝑠𝑦‖ < 𝜀}) = 1.
(2.1)

The set 𝑆 is said to be a distributionally 𝛿–scrambled set for T and the pair

{𝑥, 𝑦} a distributionally chaotic pair for T. If the scrambled set 𝑆 is dense on

𝑋, then we say that T is densely distributionally chaotic; and if 𝑆 = 𝑋, then

we say that T is completely distributionally chaotic.

Inspired by the Criterion for Distributional Chaos (CDC) for operators in-

troduced in [BBMP12], we give the corresponding concept for 𝐶0-semigroups.

Definition 2.3. Let T = {𝑇𝑡}𝑡≥0 be a 𝐶0−semigroup in 𝐿(𝑋). T satisfies the

(CDC) for 𝐶0−semigroups if there exist sequences (𝑥𝑚)𝑚, (𝑦𝑚)𝑚 ⊂ 𝑋 such

that:

a) There exists a Lebesgue measurable set 𝐴 ⊆ R+ with Dens(𝐴) = 1 such

that lim
𝑠→∞
𝑠∈𝐴

𝑇𝑠𝑥𝑚 = 0 for every 𝑚;

b) (𝑦𝑚)𝑚 ⊂ span{𝑥𝑘 : 𝑘 ∈ N}, lim
𝑚→∞

𝑦𝑚 = 0 and there exist 𝛿 > 0 and an

increasing sequence of positive real numbers (𝜌𝑚)𝑚 tending to ∞ with

𝜇({𝑠 ∈ [0, 𝜌𝑚] : ‖𝑇𝑠𝑦𝑚‖ > 𝛿}) ≥ 𝜌𝑚

(︂
1− 1

𝑚

)︂
for every 𝑚 ∈ N.

We can assume without loss of generality that (𝜌𝑚)𝑚 is a sequence of positive

integers.

As we mentioned in the Introduction, the notion of a distributionally ir-

regular vector plays an essential role for distributional chaos in the iterations

of a single operator. We will see that it is also the case for 𝐶0-semigroups.
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Definition 2.4. A vector 𝑥 ∈ 𝑋 is said to be distributionally irregular for the

𝐶0−semigroup T = {𝑇𝑡}𝑡≥0 if the following holds: for every 𝛿 > 0

Dens{𝑠 ≥ 0 ; ‖𝑇𝑠𝑥‖ < 𝛿} = 1, and (2.2)

Dens{𝑠 ≥ 0 ; ‖𝑇𝑠𝑥‖ ≥ 𝛿} = 1. (2.3)

The set of all distributionally irregular vectors for T is denoted by DI(T).

Remark 2.5. We will prove in Section 2.2 that our definition is equivalent to

the natural extension of the definition of distributionally irregular vector for

an operator.

A linear manifold 𝑌 ⊂ X is said to be a distributionally irregular manifold

for T if every non-zero vector 𝑦 ∈ 𝑌 is a distributionally irregular vector for

T, i.e., 𝑌 ∖ {0} ⊂ DI(T).

A 𝐶0-semigroup T is completely distributionally irregular if every vector

𝑥 ∈ 𝑋 ∖ {0} is distributionally irregular.

2.2 Distributionally chaotic dynamics of autonomous

discretizations

Motivated by the results in the Introduction, we are interested in finding

whether the distributional chaos of a 𝐶0-semigroup implies distributional chaos

for its non-trivial operators or not, and whether there exists a relation between

satisfying the (CDC) and the existence of a distributionally irregular vector.

First we include a Lemma about upper densities for the sake of complete-

ness.

Lemma 2.6. Let (𝑋, 𝑑) be a metric space, (𝑥𝑛)𝑛∈N be a sequence in 𝑋 and

𝑥 ∈ 𝑋. Then the following conditions are equivalent:

(i) there exists 𝐴 ⊆ N with dens(𝐴) = 1 such that

lim
𝑛→∞,𝑛∈𝐴

𝑥𝑛 = 𝑥 (respectively, lim
𝑛→∞,𝑛∈𝐴

𝑑(𝑥𝑛, 𝑥) = ∞),
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(ii) dens ({𝑛 ∈ N ; 𝑑(𝑥𝑛, 𝑥) < 𝛿}) = 1 for every 𝛿 > 0

(respectively, dens ({𝑛 ∈ N ; 𝑑(𝑥𝑛, 𝑥) > 𝛿}) = 1 for every 𝛿 > 0).

Let 𝑓 : R+ → 𝑋, 𝑥 ∈ 𝑋. Then the following conditions are equivalent:

(a) there exists 𝐴 ⊆ R+ with Dens(𝐴) = 1 such that

lim
𝑠→∞,𝑠∈𝐴

𝑓(𝑠) = 𝑥 (respectively, lim
𝑠→∞,𝑠∈𝐴

𝑑(𝑓(𝑠), 𝑥) = ∞),

(b) Dens ({𝑠 ∈ R+ ; 𝑑(𝑓(𝑠), 𝑥) < 𝛿}) = 1 for every 𝛿 > 0

(respectively, Dens ({𝑠 ∈ R+ ; 𝑑(𝑓(𝑠), 𝑥) > 𝛿}) = 1 for every 𝛿 > 0).

Proof. We will only show the discrete case. Suppose that (i) holds and let

𝛿 > 0. By assumption, there exists 𝜈 ∈ N such that for every 𝑛 ∈ 𝐴 with

𝑛 > 𝜈 we have 𝑑(𝑥𝑛, 𝑥) < 𝛿. Then 𝐴 ∩ [𝜈,∞[⊆ {𝑛 ∈ N ; 𝑑(𝑥𝑛, 𝑥) < 𝛿} and,

since 1 = dens(𝐴) = dens(𝐴 ∩ [𝑀,∞[), we get the assertion.

Conversely, for every 𝑘 ∈ N let

𝐴𝑘 =

{︂
𝑛 ∈ N ; 𝑑(𝑥𝑛, 𝑥) <

1

𝑘

}︂
.

By the assumption, dens(𝐴𝑘) = 1. We can construct inductively a strictly

increasing sequence (𝑚𝑘)𝑘∈N of natural numbers such that

|𝐴𝑘 ∩ [𝑚𝑘−1,𝑚𝑘[| > 𝑚𝑘

(︂
1− 1

𝑘

)︂
, ∀𝑘 ≥ 2. (2.4)

Let

𝐴 :=
⋃︁
𝑘≥2

(𝐴𝑘 ∩ [𝑚𝑘−1,𝑚𝑘[) .

Observe that dens(𝐴) = 1, since, by (2.4),

|𝐴 ∩ [1,𝑚𝑘]| ≥ |𝐴𝑘 ∩ [𝑚𝑘−1,𝑚𝑘[| > 𝑚𝑘

(︂
1− 1

𝑘

)︂
, ∀𝑘 ≥ 2. (2.5)

We can write 𝐴 as a suitable strictly increasing sequence of positive integers

(𝑛𝑗)𝑗∈N. We claim that 𝑑(𝑥𝑛𝑗 , 𝑥) tends to 0 as 𝑗 → ∞. If we fix any 𝑗 ∈ N,
there exists 𝑘𝑗 such that 𝑛𝑗 ∈ 𝐴𝑘𝑗 ∩ [𝑚𝑘𝑗−1,𝑚𝑘𝑗 [, consequently,

𝑑(𝑥𝑛𝑗 , 𝑥) ≤
1

𝑘𝑗

Therefore, letting 𝑗 → ∞, we obtain the assertion. y
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We want to establish a relation between distributional chaos for a 𝐶0-

semigroup {𝑇𝑡}𝑡≥0 and for their operators 𝑇𝑡. To this aim we also need a

lemma that connects some upper densities of subsets of R with upper densities

of suitable subsets of N.

Lemma 2.7. Let T = {𝑇𝑡}𝑡≥0 be a 𝐶0-semigroup of operators on a Banach

space 𝑋, 𝑡0 > 0, 𝑥 ∈ 𝑋. Let 𝐶𝑡0 := sup0≤𝑡≤𝑡0 ‖𝑇𝑡‖. Then for every 𝜀, 𝛿 > 0

and for all 𝑁 > 0:

1. 𝜇 ({𝑡 ∈ [0, 𝑁 ] ; ‖𝑇𝑡𝑥‖ > 𝛿}) ≤ 𝑡0

⃒⃒⃒{︁
𝑘 ∈ N ; 𝑘 ≤ 𝑁

𝑡0
+ 1, ‖𝑇 𝑘−1

𝑡0
𝑥‖ > 𝛿

𝐶𝑡0

}︁⃒⃒⃒
.

2. 𝑡0|{𝑘 ∈ N ; 𝑘 ≤ 𝑁, ‖𝑇 𝑘𝑡0𝑥‖ > 𝛿}| ≤ 𝜇
(︁{︁
𝑡 ∈ [0, 𝑁𝑡0] ; ‖𝑇𝑡𝑥‖ > 𝛿

𝐶𝑡0

}︁)︁
.

3. 𝜇({𝑡 ∈ [0, 𝑁 ] ; ‖𝑇𝑡𝑥‖ < 𝜀}) ≤ 𝑡0

⃒⃒⃒{︁
𝑘 ∈ N ; 𝑘 ≤ 𝑁

𝑡0
+ 1, ‖𝑇 𝑘𝑡0𝑥‖ < 𝜀𝐶𝑡0

}︁⃒⃒⃒
.

4. 𝑡0|{𝑘 ∈ N ; 𝑘 ≤ 𝑁 : ‖𝑇 𝑘𝑡0𝑥‖ < 𝜀}| ≤ 𝜇 ({𝑡 ∈ [0, (𝑁 + 1)𝑡0] ; ‖𝑇𝑡𝑥‖ < 𝜀𝐶𝑡0}).

In consequence,

1’. Dens({𝑡 ≥ 0 ; ‖𝑇𝑡𝑥‖ > 𝛿}) ≤ dens
(︁{︁
𝑘 ∈ N ; ‖𝑇 𝑘𝑡0𝑥‖ >

𝛿
𝐶𝑡0

}︁)︁
.

2’. dens({𝑘 ∈ N ; ‖𝑇 𝑘𝑡0𝑥‖ > 𝛿}) ≤ Dens
(︁{︁
𝑡 ≥ 0 ; ‖𝑇𝑡𝑥‖ > 𝛿

𝐶𝑡0

}︁)︁
.

3’. Dens({𝑡 ≥ 0 ; ‖𝑇𝑡𝑥‖ < 𝜀}) ≤ dens({𝑘 ∈ N ; ‖𝑇 𝑘𝑡0𝑥‖ < 𝜀𝐶𝑡0}).

4’. dens({𝑘 ∈ N ; ‖𝑇 𝑘𝑡0𝑥‖ < 𝜀}) ≤ Dens({𝑡 ≥ 0 ; ‖𝑇𝑡𝑥‖ < 𝜀𝐶𝑡0}).

Proof. 1. Let 𝐴 = {𝑡 ≤ 𝑁 ; ‖𝑇𝑡𝑥‖ > 𝛿} and

𝐾 = {𝑘 ∈ N ; ∃𝑡 ∈ 𝐴 ∩ [(𝑘 − 1)𝑡0, 𝑘𝑡0[}.

Then

𝐾 ⊆
{︂
𝑘 ∈ N ; 1 ≤ 𝑘 ≤ 𝑁

𝑡0
+ 1, ‖𝑇(𝑘−1)𝑡0𝑥‖ >

𝛿

𝐶𝑡0

}︂
.

Indeed, if there exists 𝑡 ∈ [(𝑘− 1)𝑡0, 𝑘𝑡0[ such that 𝑡 ≤ 𝑁 and ‖𝑇𝑡𝑥‖ > 𝛿, then

1 ≤ 𝑘 ≤ 𝑁
𝑡0

+ 1 and

𝛿 < ‖𝑇𝑡𝑥‖ = ‖𝑇𝑡−(𝑘−1)𝑡0
𝑇(𝑘−1)𝑡0𝑥‖ ≤ 𝐶𝑡0‖𝑇 𝑘−1

𝑡0
𝑥‖.
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Therefore

𝜇(𝐴) ≤
∑︁
𝑘∈𝐾

𝜇 ([(𝑘 − 1)𝑡0, 𝑘𝑡0[) ≤ 𝑡0|𝐾|

≤ 𝑡0

⃒⃒⃒⃒{︂
𝑘 ∈ N ; 𝑘 ≤ 𝑁

𝑡0
+ 1, ‖𝑇 𝑘−1

𝑡0
𝑥‖ > 𝛿

𝐶𝑡0

}︂⃒⃒⃒⃒
.

2. Let 𝐾 ′ = {𝑘 ∈ N ; 𝑘 ≤ 𝑁, ‖𝑇 𝑘𝑡0𝑥‖ > 𝛿}. Then, for every

𝑡 ∈ [(𝑘 − 1)𝑡0, 𝑘𝑡0[, we have that

𝛿 < ‖𝑇 𝑘𝑡0𝑥‖ = ‖𝑇𝑘𝑡0−𝑡𝑇𝑡𝑥‖ ≤ 𝐶𝑡0‖𝑇𝑡𝑥‖.

Hence ⋃︁
𝑘∈𝐾′

[(𝑘 − 1)𝑡0, 𝑘𝑡0[⊆
{︂
𝑡 ∈ [0, 𝑁𝑡0] ; ‖𝑇𝑡𝑥‖ >

𝛿

𝐶𝑡0

}︂
,

thus

𝑡0|𝐾 ′| ≤ 𝜇

(︂{︂
𝑡 ∈ [0, 𝑁𝑡0] ; ‖𝑇𝑡𝑥‖ >

𝛿

𝐶𝑡0

}︂)︂
.

3. Let 𝐴 = {𝑡 ≤ 𝑁 ; ‖𝑇𝑡𝑥‖ < 𝜀} and𝐾 = {𝑘 ∈ N ; ∃𝑡 ∈ 𝐴∩[(𝑘−1)𝑡0, 𝑘𝑡0[}.
Then

𝐾 ⊆
{︂
𝑘 ∈ N ; 1 ≤ 𝑘 ≤ 𝑁

𝑡0
+ 1, ‖𝑇𝑘𝑡0𝑥‖ < 𝜀𝐶𝑡0

}︂
.

Certainly, if 𝑘 ∈ 𝐾

‖𝑇𝑘𝑡0𝑥‖ = ‖𝑇𝑘𝑡0−𝑡 − 𝑇𝑡𝑥‖ ≤ 𝐶𝑡0‖𝑇𝑡𝑥‖ < 𝜀𝐶𝑡0 .

It follows that

𝜇(𝐴) ≤
∑︁
𝑘∈𝐾

𝜇 ([(𝑘 − 1)𝑡0, 𝑘𝑡0[) ≤ 𝑡0|𝐾|

≤ 𝑡0

⃒⃒⃒⃒{︂
𝑘 ∈ N ; 𝑘 ≤ 𝑁

𝑡0
+ 1, ‖𝑇 𝑘𝑡0𝑥‖ < 𝜀𝐶𝑡0

}︂⃒⃒⃒⃒
.

4. Let 𝐾 ′ = {𝑘 ∈ N ; 𝑘 ≤ 𝑁, ‖𝑇 𝑘𝑡0𝑥‖ < 𝜀}. Then, for every 𝑠 ∈
[𝑘𝑡0, (𝑘 + 1)𝑡0[ with 𝑘 ∈ 𝐾, we obtain that

‖𝑇𝑠𝑥‖ = ‖𝑇𝑠−𝑘𝑡0𝑇𝑘𝑡0𝑥‖ ≤ 𝐶𝑡0‖𝑇𝑘𝑡0𝑥‖ < 𝜀𝐶𝑡0 .
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Hence ⋃︁
𝑘∈𝐾′

[𝑘𝑡0, (𝑘 + 1)𝑡0[⊆ {𝑡 ∈ [0, (𝑁 + 1)𝑡0] ; ‖𝑇𝑡𝑥‖ < 𝜀𝐶𝑡0},

therefore

𝑡0|𝐾 ′| ≤ 𝜇 ({𝑡 ∈ [0, (𝑁 + 1)𝑡0] ; ‖𝑇𝑡𝑥‖ < 𝜀𝐶𝑡0}) .

1’. By 1., we have that

Dens({𝑡 ≥ 0 ; ‖𝑇𝑡𝑥‖ > 𝛿}) = lim sup
𝑁→∞

𝜇 ({𝑡 ∈ [0, 𝑁 ] ; ‖𝑇𝑡𝑥‖ > 𝛿})
𝑁

≤

≤ lim sup
𝑁→∞

𝑡0
𝑁

⃒⃒⃒⃒{︂
𝑘 ∈ N ; 𝑘 ≤ 𝑁

𝑡0
+ 1, ‖𝑇 𝑘−1

𝑡0
𝑥‖ > 𝛿

𝐶𝑡0

}︂⃒⃒⃒⃒
=

= lim sup
𝑏→∞

⃒⃒⃒{︁
𝑘 ∈ N ; 𝑘 − 1 ≤ 𝑏, ‖𝑇 𝑘−1

𝑡0
𝑥‖ > 𝛿

𝐶𝑡0

}︁⃒⃒⃒
𝑏

= dens

(︂{︂
𝑘 ∈ N ; ‖𝑇 𝑘𝑡0𝑥‖ >

𝛿

𝐶𝑡0

}︂)︂
.

2’. By 2 it follows that

dens({𝑘 ∈ N ; ‖𝑇 𝑘𝑡0𝑥‖ > 𝛿}) = lim sup
𝑁→∞

|𝑘 ∈ N ; 𝑘 ≤ 𝑁, ‖𝑇 𝑘𝑡0𝑥‖ > 𝛿|
𝑁

= lim sup
𝑁→∞

𝑡0|𝑘 ∈ N ; 𝑘 ≤ 𝑁, ‖𝑇𝑘𝑡0𝑥‖ > 𝛿|
𝑡0𝑁

≤ lim sup
𝑁→∞

𝜇

(︂{︂
𝑡 ∈ [0, 𝑁𝑡0] ; ‖𝑇𝑡𝑥‖ >

𝛿

𝐶𝑡0

}︂)︂
𝑁𝑡0

≤ lim sup
𝑏→∞

𝜇

(︂{︂
𝑡 ∈ [0, 𝑏] ; ‖𝑇𝑡𝑥‖ >

𝛿

𝐶𝑡0

}︂)︂
𝑏

=Dens

(︂{︂
𝑡 ≥ 0 ; ‖𝑇𝑡𝑥‖ >

𝛿

𝐶𝑡0

}︂)︂
.

The other inequalities follow analogously. y

The following lemma will be used several times.

Lemma 2.8. Let 𝐴 ⊆ R+ be a measurable subset with Dens(𝐴) = 1, 𝛼 ∈]0, 1[,
and let K𝛼 = {𝑘 ∈ N ; 𝜇(𝐴 ∩ [𝑘, 𝑘 + 1]) > 𝛼}. Then dens(K𝛼) = 1.
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Proof. If we suppose that dens(K) < 𝑐 < 1, then dens(NrK) ≥ 1−𝑐 and hence

there exists 𝑛0 ∈ N such that for every 𝑛 ≥ 𝑛0, |(NrK)∩{1, . . . , 𝑛}| ≥ 𝑛(1−𝑐).
For each 𝑗 ∈ N r K there exists a measurable set 𝐵𝑗 ⊆ [𝑗, 𝑗 + 1] such that

𝜇(𝐵𝑗) ≥ 1 − 𝛼 and 𝐴 ∩ 𝐵𝑗 = ∅. Define B =
⋃︁

𝑗∈NrK

𝐵𝑗 ⊂ R+ r 𝐴. Then for

each 𝑛 ≥ 𝑛0

𝜇(B ∩ [1, 𝑛+ 1])

𝑛
≥ (1− 𝛼)

|(NrK) ∩ {1, . . . , 𝑛}|
𝑛

> (1− 𝛼)(1− 𝑐) > 0.

Thus Dens(B) > 0, that gives

Dens(𝐴) = 1−Dens(R+ r𝐴) ≤ 1−Dens(B) < 1,

which is a contradiction. Consequently, dens(K) = 1. y

Now we are ready to offer the interplay between the continuous and the

discrete cases concerning distributional chaos.

Theorem 2.9. Let T := {𝑇𝑡}𝑡≥0 be a 𝐶0−semigroup in 𝐿(𝑋). Then the

following properties are equivalent.

(i) T is distributionally chaotic.

(ii) 𝑇𝑡 is distributionally chaotic for all 𝑡 > 0.

(iii) There exists 𝑡0 > 0 such that 𝑇𝑡0 is distributionally chaotic.

Proof. (i) implies (ii). Let 𝑆 ⊂ 𝑋 be a distributionally 𝛿–scrambled set for T.

By definition we know that for every two distinct points 𝑓, 𝑔 ∈ 𝑆 we have that

Dens({𝑠 ≥ 0 ; ‖𝑇𝑠(𝑓 − 𝑔)‖ > 𝛿}) = 1.

Then for every 𝑡0 > 0, by Lemma 2.7

dens

(︂{︂
𝑘 ∈ N ; ‖𝑇 𝑘𝑡0(𝑓 − 𝑔)‖ > 𝛿

𝐶𝑡0

}︂)︂
= 1.

Let 𝜀 > 0. By assumption

Dens

(︂{︂
𝑠 ≥ 0 ; ‖𝑇𝑠(𝑓 − 𝑔)‖ < 𝜀

𝐶𝑡0

}︂)︂
= 1,
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hence

dens
(︁{︁
𝑘 ∈ N ; ‖𝑇 𝑘𝑡0(𝑓 − 𝑔)‖ < 𝜀

}︁)︁
= 1,

by Lemma 2.7. Thus 𝑆 is a 𝛿′-scrambled set for 𝑇𝑡0 , where 𝛿
′ = 𝛿/𝐶𝑡0 .

(ii) implies (iii) is trivial.

(iii) implies (i) is analogous to the first implication by Lemma 2.7. y

Remark 2.10. Observe that we have indeed proved that the 𝐶0-semigroup

T = {𝑇𝑡}𝑡≥0 and each operator 𝑇𝑡 share the scrambled set, and hence the

distributionally chaotic pairs. In particular, T is dense distributionally chaotic

if and only if every (some) operator 𝑇𝑡 is dense distributionally chaotic.

This result can be compared with Theorems 1.5 and 1.6. In this matter,

distributional chaos behaves more similarly to hypercyclicity than to Devaney

chaos.

The next corollary will be useful, specially in Chapter 6, as it will simplify

some proofs.

Corollary 2.11. Two 𝐶0-semigroups T := {𝑇𝑡}𝑡≥0 ⊂ 𝐿(𝑋), S := {𝑆𝑡}𝑡≥0 ⊂
𝐿(𝑌 ) are conjugate if there exists a homeomorphism 𝜑 : 𝑋 −→ 𝑌 such that

𝜑∘𝑇𝑡 = 𝑆𝑡 ∘𝜑 for every 𝑡 ≥ 0. If 𝜑 is uniformly continuous, T is distributional

chaotic if and only if S is distributionally chaotic.

Proof. If T is distributionally chaotic, by Theorem 2.9, every non-trivial oper-

ator 𝑇𝑡 is distributionally chaotic. Since distributional chaos for operators is

preserved under uniform conjugacy, as it is shown in [MGOP09], then every

operator 𝑆𝑡 is distributionally chaotic and by Theorem 2.9 S is distributionally

chaotic. y

By a quasi-conjugacy of a linear operator 𝑆 : 𝑌 −→ 𝑌 to a linear operator

𝑇 : 𝑋 −→ 𝑋 we mean the existence of a continuous map 𝜑 : 𝑋 → 𝑌 with

dense range such that 𝑆 ∘ 𝜑 = 𝜑 ∘ 𝑇 .

Proposition 2.12. [BMGP03; GEPM11] Hypercyclicity, mixing, and weakly

mixing property are preserved under quasi-conjugacy.

The following result is also a connection between continuous and discrete

cases with respect to the Criterion for Distributional Chaos (CDC).
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Proposition 2.13. Let T = {𝑇𝑡}𝑡≥0 be a 𝐶0-semigroup in 𝐿(𝑋). Then the

following properties are equivalent.

(i) T satisfies the (CDC) for semigroups.

(ii) 𝑇𝑡 satisfies the (CDC) for operators for all 𝑡 > 0.

(iii) There exists 𝑡0 > 0 such that 𝑇𝑡0 satisfies the (CDC) for operators.

Proof. (i) implies (ii): Let 𝐴 ⊆ R+ be according to the (CDC) property for

semigroups. For the sake of simplicity, let 𝑡 = 1 and 𝐶 = sup0≤𝑡≤1 ‖𝑇𝑡‖. Let

𝐾 = {𝑛 ∈ N ; ∃𝑠 ∈ 𝐴 ∩ [𝑛− 1, 𝑛[}.

Then dens(𝐾) = 1. Then, since for every 𝑛 ∈ 𝐾 there exist 𝑠 ∈ 𝐴 with

‖𝑇𝑛1 𝑥𝑚‖ ≤ ‖𝑇𝑛−𝑠+𝑠𝑥𝑚‖ = ‖𝑇𝑛−𝑠𝑇𝑠𝑥𝑚‖ ≤ 𝐶‖𝑇𝑠𝑥𝑚‖,

it is clear that lim
𝑛→∞
𝑛∈𝐾

𝑇𝑛1 𝑥𝑚 = 0 for every 𝑚 ∈ N. Also, Lemma 2.7 easily

implies that, for 𝑁𝑚 := 𝜌𝑚 with 𝑚 ∈ N,⃒⃒⃒⃒{︂
1 < 𝑛 ≤ 𝑁𝑚 ; ‖𝑇𝑛1 𝑦𝑚‖ >

𝛿

𝐶

}︂⃒⃒⃒⃒
≥ 𝑁𝑚(1−

1

𝑚
),

for each 𝑚 ∈ N, and 𝑇1 satisfies the (CDC).

(ii) implies (iii): Trivial.

(iii) implies (i): Assume that 𝑇1 satisfies condition (CDC) for operators

and let (𝑥𝑚)𝑚 and (𝑦𝑚)𝑚 be sequences in 𝑋 according to the definition of

(CDC). Let 𝐾 ⊆ N, with dens(𝐾) = 1 and lim𝑛→∞,𝑛∈𝐾 𝑇𝑛𝑥𝑚 = 0. Let us

define

𝐴 :=
⋃︁
𝑛∈𝐾

[𝑛, 𝑛+ 1[⊆ R+.

Clearly Dens(𝐴) = 1.

Again, since for every 𝑡 ∈ 𝐴 there exists 𝑛 ∈ 𝐾 with 𝑡− 𝑛 < 1, then

‖𝑇𝑡𝑥𝑚‖ = ‖𝑇𝑡−𝑛𝑇𝑛𝑥𝑚‖ ≤ 𝐶‖𝑇𝑛1 𝑥𝑚‖;

which gives lim
𝑡→∞
𝑡∈𝐴

‖𝑇𝑡𝑥𝑚‖ = 0, for all 𝑚 ∈ N, and by Lemma 2.7

𝜇

(︂{︂
𝑡 ≤ 𝜌𝑚 ; ‖𝑇𝑡𝑦𝑚‖ >

𝛿

𝐶

}︂)︂
≥ 𝜌𝑚

(︂
1− 1

𝑚

)︂
for 𝜌𝑚 := 𝑁𝑚, 𝑚 ∈ N, which concludes the result. y
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Proposition 2.14. If the 𝐶0−semigroup T = {𝑇𝑡}𝑡≥0 admits a distribution-

ally irregular vector, then T is distributionally chaotic.

Proof. It follows immediately from the definition of irregular vector that 𝑆 :=

span{𝑥} is a distributionally 𝛿−scrambled set for every 𝛿. Indeed, let 𝑥 ∈
DI(T). Then properties (2.2) and (2.3) hold for every 𝛿 > 0. Set 𝑆 := span{𝑥}.
If 𝑦, 𝑧 ∈ 𝑆 with 𝑦 ̸= 𝑧, then 𝑦−𝑧 = 𝛼𝑥 with 𝛼 ̸= 0. So, ‖𝑇𝑠𝑦−𝑇𝑠𝑧‖ = |𝛼|‖𝑇𝑠𝑥‖
for all 𝑠 ≥ 0. By (2.2) and (2.3) we obtain, for each 𝛿 > 0 and 𝑡 > 0, that

𝜇 ({𝑠 ∈ [0, 𝑡] ; ‖𝑇𝑠𝑦 − 𝑇𝑠𝑧‖ < 𝛿})
𝑡

=
𝜇
(︀
{𝑠 ∈ [0, 𝑡] ; ‖𝑇𝑠𝑥‖ < 𝛿|𝛼|−1}

)︀
𝑡

and

𝜇 ({𝑠 ∈ [0, 𝑡] ; ‖𝑇𝑠𝑦 − 𝑇𝑠𝑧‖ ≥ 𝛿})
𝑡

=
𝜇
(︀
{𝑠 ∈ [0, 𝑡] ; ‖𝑇𝑠𝑥‖ ≥ 𝛿|𝛼|−1}

)︀
𝑡

.

Letting 𝑡→ +∞, it follows that

lim sup
𝑡→+∞

𝜇 ({𝑠 ∈ [0, 𝑡] ; ‖𝑇𝑠𝑦 − 𝑇𝑠𝑧‖ < 𝛿})
𝑡

= 1 and

lim sup
𝑡→+∞

𝜇 ({𝑠 ∈ [0, 𝑡] ; ‖𝑇𝑠𝑦 − 𝑇𝑠𝑧‖ ≥ 𝛿})
𝑡

= 1.

Hence, 𝑆 is a distributionally 𝛿-scrambled set for T for every 𝛿 > 0.

y

Actually, the existence of a distributional irregular vector and distribu-

tional chaos for a semigroup are equivalent, as we will prove in a while. We

first prove, in analogy to Theorem 2.9, that there is an equivalence between

the continuous and the discrete case concerning the distributionally irregu-

lar vectors, which should also be compared with [CMP07] about hypercyclic

vectors.

Proposition 2.15. Let T = (𝑇𝑡)𝑡≥0 be a 𝐶0-semigroup of operators on 𝑋 and

let 𝑥 be a vector on 𝑋. Then the following properties are equivalent:

(i) 𝑥 is a distributionally irregular vector for T.

(ii) there exist 𝐴,𝐵 ⊂ R+ with Dens(𝐴) = 1 = Dens(𝐵) such that:

lim
𝑠→+∞
𝑠∈𝐴

‖𝑇𝑠𝑥‖ = 0 and lim
𝑠→+∞
𝑠∈𝐵

‖𝑇𝑠𝑥‖ = ∞.
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(iii) 𝑥 is a distributionally irregular vector for 𝑇𝑡 for all 𝑡 > 0.

(iv) There exists 𝑡0 > 0 such that 𝑥 is a distributionally irregular vector for

𝑇𝑡0.

The Proposition can be proved applying Lemma 2.6 for the equivalence of

(i) and (ii) and using the proof of Lemma 2.7 to prove (ii) implies (iii) and (iv)

implies (ii). Alternatively, we provide a constructive proof without reducing

it.

Proof. (i) implies (ii). Assume that 𝑥 ∈ 𝑋 is a distributionally irregular vector

for T. Let (𝜀𝑘)𝑘 ⊂]0, 1] be a sequence decreasing to 0 (i.e., 𝜀𝑘 → 0). Define

𝐴𝜀𝑘 := {𝑠 ∈ R+ ; ‖𝑇𝑠𝑥‖ < 𝜀𝑘}.

Then 𝐴𝜀𝑘+1
⊆ 𝐴𝜀𝑘 and dens(𝐴𝜀𝑘) = 1 for all 𝑘 ∈ N. Hence, for each 𝑘 ∈ N

there exists a sequence (𝑚𝑙,𝑘)𝑙 such that

𝜇(𝐴𝜀𝑘 ∩ [0,𝑚𝑙,𝑘])

𝑚𝑙,𝑘
> 1− 1

𝑙
, 𝑙 ∈ N. (2.6)

Taking subsequences if necessary, we have that 𝑚2,2 > 0 and 𝑚𝑘,𝑘 < 𝑚𝑘+1,𝑘+1

for all 𝑘 ∈ N. So, the sequence (𝑡𝑘)𝑘 defined by

𝑡𝑘 :=

⎧⎨⎩0 if 𝑘 = 1,

𝑚𝑘,𝑘 if 𝑘 > 1

is strictly increasing.

Next, set

𝐴 :=
⋃︁
𝑘≥1

(𝐴𝜀𝑘 ∩ [𝑡𝑘, 𝑡𝑘+1[) .

Observe that Dens(𝐴) = 1, because by (2.6) we have, for all 𝑗 > 1, that

𝜇(𝐴 ∩ [0, 𝑡𝑗 ])

𝑡𝑗
≥
𝜇(𝐴𝜀𝑗 ∩ [0, 𝑡𝑗 ])

𝑡𝑗
> 1− 1

𝑗
.

For every 𝑠 ∈ 𝐴, there exists 𝑘 such that 𝑠 ∈ [𝑡𝑘, 𝑡𝑘+1[ and ‖𝑇𝑠𝑥‖ < 𝜀𝑘. If we

make 𝑠 tend to infinity, then 𝑘 tends to infinity and ‖𝑇𝑠𝑥‖ to zero.
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Now, let (𝛿𝑘)𝑘 be a sequence increasing to∞. Define 𝐵𝛿𝑘 := {𝑠 ∈ R+ : ‖𝑇𝑠𝑥‖ >
𝛿𝑘}. Then 𝐵𝛿𝑘+1

⊂ 𝐵𝛿𝑘 and Dens(𝐵𝛿𝑘) = 1 for all 𝑘 ∈ N. Moreover, proceeding

as before one shows that there exists a strictly increasing sequence (𝑟𝑘)𝑘 of

positive integers such that the set

𝐵 :=
⋃︁
𝑘≥1

(𝐵𝛿𝑘 ∩ [𝑟𝑘, 𝑟𝑘+1[) .

has Dens(𝐵) = 1 and that for every 𝑠 ∈ 𝐵, ‖𝑇𝑠𝑥‖ → ∞.

Therefore, we have obtained that

lim
𝑠→+∞
𝑠∈𝐴

‖𝑇𝑠𝑥‖ = 0 and lim
𝑠→+∞
𝑠∈𝐵

‖𝑇𝑠𝑥‖ = ∞.

(ii) implies (i). For each 𝛿 > 0 there exists 𝑟 ∈ R+ such that for every 𝑠 ∈ 𝐴

with 𝑠 > 𝑟, we have that ‖𝑇𝑠𝑥‖ < 𝛿. It follows that

Dens({𝑠 ∈ R+ ; ‖𝑇𝑠𝑥‖ < 𝛿}) = 1.

Analogously we obtain that

Dens({𝑠 ∈ R+ ; ‖𝑇𝑠𝑥‖ > 𝛿}) = 1,

and hence 𝑥 is a distributionally irregular vector for T.

(ii) implies (iii). The proof is given only for 𝑡 = 1 since the other cases are

similar.

Define 𝐽 = {𝑗 ∈ N ; ∃𝑠 ∈ 𝐴 s.t. 𝑠 ∈ [𝑗 − 1, 𝑗[} and 𝐾 = {𝑘 ∈ N ; ∃𝑠 ∈
𝐵 s.t. 𝑠 ∈ [𝑘, 𝑘 + 1[}, since

𝜇(𝐴) ≤ 𝜇

⎛⎝⋃︁
𝑗∈𝐽

[𝑗 − 1, 𝑗[

⎞⎠ = |𝐽 |,

and there exists (𝑛𝑙)𝑙∈N such that

lim
𝑙→∞

𝜇(𝐴 ∩ [0, 𝑛𝑙])

𝑛𝑙
= 1, then lim

𝑙→∞

|𝐽 ∩ [0, 𝑛𝑙]|
𝑛𝑙

= 1,

so dens(𝐽) = 1. In the same manner, we can see that dens(𝐾) = 1. For every

𝑗 ∈ 𝐽 we have that ‖𝑇 𝑗1𝑥‖ = ‖𝑇𝑗−𝑠𝑇𝑠𝑥‖ ≤ 𝐶‖𝑇𝑠𝑥‖ where 𝐶 = sup
0≤𝑡≤1

‖𝑇𝑡‖,
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which is finite since T is locally equicontinuous and it’s greater than 0 by the

definition of semigroup. Therefore

lim
𝑗→+∞
𝑗∈𝐽

‖𝑇 𝑗1𝑥‖ ≤ lim
𝑠→+∞
𝑠∈𝐴

𝐶‖𝑇𝑠𝑥‖ = 0.

For every 𝑘 ∈ 𝐾 we have that ‖𝑇𝑠𝑥‖ = ‖𝑇𝑠−𝑘𝑇𝑘𝑥‖ ≤ 𝐶‖𝑇 𝑘1 𝑥‖ and hence

lim
𝑘→+∞
𝑘∈𝐾

‖𝑇 𝑘1 𝑥‖ ≥ lim
𝑠→+∞
𝑠∈𝐵

𝐶−1‖𝑇𝑠𝑥‖ = ∞.

Since 𝐽,𝐾 ⊆ N, we can write 𝐽 = (𝑛𝑘)𝑘 and 𝐾 = (𝑚𝑘)𝑘 with (𝑛𝑘)𝑘, (𝑚𝑘)𝑘 two

suitable strictly increasing sequences of positive integers with upper density

equal to 1 , with

lim
𝑘→+∞

‖𝑇𝑛𝑘
1 𝑥‖ = 0 and lim

𝑘→+∞
‖𝑇𝑚𝑘

1 𝑥‖ = ∞.

(iii) implies (iv). Trivial.

(iv) implies (ii). For the sake of simplicity we suppose that 𝑡0 = 1. Let

𝑥 ∈ 𝑋 be a distributionally irregular vector for 𝑇1. Then there exist two

sequences 𝐽 = (𝑛𝑘)𝑘, 𝐾 = (𝑚𝑘)𝑘 with dens(𝐽) = dens(𝐾) = 1 such that

‖𝑇𝑛𝑘
1 𝑥‖ → 0 and ‖𝑇𝑚𝑘

1 𝑥‖ → +∞ as 𝑘 → +∞.

Define the sets 𝐴 = {𝑠 ∈ R+ ; ∃𝑗 ∈ 𝐽 : 𝑠 ∈ [𝑗, 𝑗+1[} and 𝐵 = {𝑠 ∈ R+ ; ∃𝑘 ∈
𝐾 : 𝑠 ∈ [𝑘 − 1, 𝑘[}. Since

𝜇(𝐴) = 𝜇

⎛⎝⋃︁
𝑗∈𝐽

[𝑗, 𝑗 + 1[

⎞⎠ = |𝐽 |,

and there exists (𝑛𝑙)𝑙∈N such that

lim
𝑙→∞

|𝐽 ∩ [0, 𝑛𝑙]|
𝑛𝑙

= 1, then lim
𝑙→∞

𝜇(𝐴 ∩ [0, 𝑛𝑙 + 1])

𝑛𝑙 + 1
= 1

we obtain that 𝐴 has upper density 1. A similar argument gives us that

Dens(𝐵) = 1. For every 𝑠 ∈ 𝐴 we have that ‖𝑇𝑠𝑥‖ = ‖𝑇𝑠−𝑗𝑇𝑗𝑥‖ ≤ 𝐶‖𝑇 𝑗1𝑥‖
and therefore

lim
𝑠→+∞
𝑠∈𝐴

‖𝑇𝑠𝑥‖ ≤ lim
𝑗→+∞
𝑗∈𝐽

𝐶‖𝑇 𝑗1𝑥‖ = 0.
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And for every 𝑠 ∈ 𝐵 we have that ‖𝑇 𝑘1 𝑥‖ = ‖𝑇𝑘−𝑠𝑇𝑠𝑥‖ ≤ 𝐶‖𝑇𝑠𝑥‖ and hence

lim
𝑠→+∞
𝑠∈𝐵

‖𝑇𝑠𝑥‖ ≥ lim
𝑘→+∞
𝑘∈𝐾

𝐶−1‖𝑇 𝑘1 𝑥‖ = ∞,

which concludes the proof. y

Remark 2.16. Note that we have thereby proved that the following are equiv-

alent.

(i) T has a (dense) distributionally irregular manifold.

(ii) 𝑇𝑡 has a (dense) distributionally irregular manifold for all 𝑡 > 0.

(iii) There exists 𝑡0 > 0 such that 𝑇𝑡0 has a (dense) distributionally irregular

manifold.

We can now state and prove the analogue of Theorem 1.11 for 𝐶0−semigroups.

Theorem 2.17. Let T = {𝑇𝑡}𝑡≥0 be a 𝐶0-semigroup in 𝐿(𝑋). Then the

following statements are equivalent.

(i) T has a distributionally irregular vector.

(ii) T is distributionally chaotic.

(iii) T admits a distributionally chaotic pair.

(iv) T satisfies the (CDC) for semigroups.

Proof. (i) implies (ii). Follows by Proposition 2.14.

(ii) implies (iii) is trivial by the definition of distributional chaos.

(iii) implies (iv). Assume that T admits a distributionally chaotic pair.

Then, by Remark 2.10 there exists 𝑡0 > 0 such that 𝑇𝑡0 admits a distribution-

ally chaotic pair. By Theorem 1.11 this means that 𝑇𝑡0 satisfies the (CDC)

for operators and hence, by Proposition 2.13, T satisfies the (CDC) for semi-

groups.
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(iv) implies (i). Suppose that T satisfies the (CDC) for semigroups. Then,

by Theorem 2.13, there exists 𝑡0 > 0 such that 𝑇𝑡0 satisfies the (CDC) for

operators. By Theorem 1.11 this means that 𝑇𝑡0 has a distributionally irregular

vector and hence, by Proposition 2.15, T has also a distributionally irregular

vector. y

To summarize, the diagram in Figure 2.1 provides an overview of the re-

sults presented in this chapter.

For the sake of completeness, we will provide here a proof without using

Theorem 1.11, but inspired by the proof from [BBMP12]. First we will need

the following propositions about the abundance of vectors with distributionally

unbounded orbits.

Definition 2.18. Let T = {𝑇𝑡}𝑡≥0 be a 𝐶0-semigroup, and take 𝑥 ∈ 𝑋. We

say that 𝑥 has a distributionally unbounded orbit for T if there exists a subset

𝐵 ⊂ R+
0 with Dens(𝐵) = 1 such that lim

𝑠∈𝐵
‖𝑇𝑠𝑥‖ = ∞. The orbit of 𝑥 is said

to be distributionally unbounded below or away from 0 if there exists a subset

𝐴 ⊂ R+
0 with Dens(𝐴) = 1 such that lim

𝑠∈𝐴
‖𝑇𝑠𝑥‖ = 0.

This definition is analogous to the definition of a vector with distribution-

ally unbounded (respectively, unbounded below) orbit for an operator from

[BBMP12], replacing 𝐴 and 𝐵 for subsets of N with upper density 1.

Remark 2.19. Note that, as a matter of fact, in Proposition 2.15, we have

proved that if 𝑥 has a distributionally unbounded (respectively, unbounded

below) orbit for T, then 𝑥 has a distributionally unbounded (resp., unbounded

below) orbit for each operator 𝑇𝑡 with 𝑡 > 0 orbit, and if 𝑥 has a distribu-

tionally unbounded (respectively, unbounded below) orbit for an operator of

T, then 𝑥 has a distributionally unbounded (respectively, unbounded below)

orbit for T.
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For every 𝑡 > 0.
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Figure 2.1: Overview of the results presented in this chapter
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The following two propositions have been proved for operators in [BBMP12].

Proposition 2.20. Let T = {𝑇𝑡}𝑡≥0 be a 𝐶0-semigroup and define 𝐶 :=

sup0≤𝑡≤1 ‖𝑇𝑡‖. The following statements are equivalent:

(i) for every 𝑘 ∈ N there exists 𝑦𝑘 ∈ 𝑋 with ‖𝑦𝑘‖ = 1 and 𝑛𝑘 > 𝑘 such that

𝜇 ({𝑠 < 𝑛𝑘 ; ‖𝑇𝑠𝑦𝑘‖ > 𝐶𝑘}) ≥ 𝑛𝑘
(︀
1− 𝑘−1

)︀
;

(ii) there exists 𝑥 ∈ 𝑋 with distributionally unbounded orbit for T;

(iii) the set of all 𝑥 ∈ 𝑋 with distributionally unbounded orbit for T is residual

in 𝑋.

Proof. (i) implies (iii). If (i) holds, by Lemma 2.7 it follows that

|({𝑚 ≤ 𝑛𝑘 ; ‖𝑇𝑚1 𝑦𝑘‖ > 𝑘})| ≥ 𝑛𝑘
(︀
1− 𝑘−1

)︀
.

Therefore, by the analogous for operators, the set of all 𝑥 ∈ 𝑋 with distribu-

tionally unbounded orbit for 𝑇1 is residual in 𝑋. By Remark 2.19, we obtain

(iii).

The implications (iii) implies (ii) and (ii) implies (i) are trivial. y

Proposition 2.21. Let T = {𝑇𝑡}𝑡≥0 be a 𝐶0-semigroup. Suppose that there

exists a dense subset 𝑋0 ⊂ 𝑋 such that each 𝑥 ∈ 𝑋0 has an orbit distribution-

ally unbounded below. Then the set of all vectors with orbits distributionally

unbounded below is residual.

Proof. The proof follows directly from the counterpart for operators of this

proposition and Remark 2.19. y

We will also make us of the following remark about the (CDC).

Remark 2.22. The condition b) in the definition of the (CDC) for 𝐶0-

semigroups is equivalent in a Banach space to (𝑦𝑚)𝑚 ⊂ span{𝑥𝑘 : 𝑘 ∈ N},
‖𝑦𝑚‖ = 1 and there exist an increasing sequence of positive real numbers

(𝜌𝑚)𝑚 tending to ∞ with

𝜇({𝑠 ∈ [0, 𝜌𝑚] ; ‖𝑇𝑠𝑦𝑚‖ > 𝑚}) ≥ 𝜌𝑚

(︂
1− 1

𝑚

)︂
for every 𝑚 ∈ N.
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Proof of the remark. We start by proving that this condition implies condition

b) of the (CDC). Take (𝑦𝑚)𝑚 ⊂ span{𝑥𝑘 : 𝑘 ∈ N}, satisfying that ‖𝑦𝑚‖ = 1

for every 𝑚 ∈ N. Define 𝑧𝑚 :=
𝑦𝑚
𝑚

, for 𝑚 ∈ N. It is clear that 𝑧𝑚 ∈

span{𝑥𝑘 : 𝑘 ∈ N} and lim𝑚→∞ ‖𝑧𝑚‖ = 0 for each 𝑚 ∈ N. Since

‖𝑇𝑠𝑧𝑚‖ =
⃦⃦⃦
𝑇𝑠
𝑦𝑚
𝑚

⃦⃦⃦
=

‖𝑇𝑠𝑦𝑚‖
𝑚

>
𝑚

𝑚
= 1,

it follows that (𝑧𝑚)𝑚∈N satisfies condition b) from the definition of the (CDC)

for 𝛿 = 1.

Conversely, suppose that (𝑦𝑚)𝑚 ⊂ span{𝑥𝑘 : 𝑘 ∈ N}, lim
𝑚→∞

𝑦𝑚 = 0 and

there exist 𝛿 > 0 and an increasing sequence of positive real numbers (𝜌𝑚)𝑚

tending to ∞ with

𝜇({𝑠 ∈ [0, 𝜌𝑚] ; ‖𝑇𝑠𝑦𝑚‖ > 𝛿}) ≥ 𝜌𝑚

(︂
1− 1

𝑚

)︂
for every 𝑚 ∈ N.

We can assume that 𝛿 ≥ 1. Otherwise we would take 𝑦′𝑚 =
𝑦𝑚
𝛿
. Passing to a

subsequences if necessary, we have ‖𝑦𝑚‖ <
1

𝑚
, and define 𝑧𝑚 :=

𝑦𝑚
‖𝑦𝑚‖

. It is

obvious that (𝑧𝑚)𝑚∈N ⊂ span{𝑥𝑘 : 𝑘 ∈ N} and ‖𝑧𝑚‖ = 1 for every 𝑚 ∈ N. By
the definition of 𝑧𝑚 we get

‖𝑇𝑠𝑧𝑚‖ =

⃦⃦⃦⃦
𝑇𝑠

𝑦𝑚
‖𝑦𝑚‖

⃦⃦⃦⃦
=

‖𝑇𝑠𝑦𝑚‖
‖𝑦𝑚‖

>
𝛿

𝑚−1
= 𝑚𝛿 ≥ 𝑚

and therefore there exist an increasing sequence of positive real numbers (𝜌𝑚)𝑚

tending to ∞ with

𝜇({𝑠 ∈ [0, 𝜌𝑚] ; ‖𝑇𝑠𝑧𝑚‖ > 𝑚}) ≥ 𝜌𝑚

(︂
1− 1

𝑚

)︂
for every 𝑚 ∈ N,

which is the desired conclusion. y

Proof of Theorem 2.17. (ii) implies (iii) and (iii) implies (i) as before.

(iv) implies (ii): Let

𝑋0 =

{︃
𝑥 ∈ 𝑋 ; lim

𝑠→∞
𝑠∈𝐴

‖𝑇𝑠𝑥‖ = 0

}︃
.

Then 𝑋0 is a subspace, 𝑇 (𝑋0) ⊂ 𝑋0, and 𝑇 (𝑋0) ⊂ 𝑋0 . Moreover, 𝑥𝑚 ∈ 𝑋0

and 𝑦𝑚 ∈ 𝑋0 for all 𝑚 ∈ N. By Proposition 2.21, the set of all vectors 𝑥 ∈ 𝑋0
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with orbits distributionally unbounded below is residual in𝑋0. By Proposition

2.20, the set of all vectors 𝑥 ∈ 𝑋0 with distributionally unbounded orbits is

residual in 𝑋0. So the set of all distributionally irregular vectors is residual in

𝑋0, too. In particular, there exists a distributionally irregular vector.

(i) implies (iv): Let 𝑓, 𝑔 ∈ 𝑋 be a distributionally chaotic pair, i.e., there

exists 𝛿 > 0 such that

Dens({𝑠 ≥ 0 ; ‖𝑇𝑠𝑥− 𝑇𝑠𝑦‖ > 𝛿}) = 1, and

Dens({𝑠 ≥ 0 ; ‖𝑇𝑠𝑥− 𝑇𝑠𝑦‖ < 𝜀}) = 1.

for every 𝜀 > 0. Set 𝑢 =
𝑥− 𝑦

𝛿
. Then

Dens({𝑠 ≥ 0 ; ‖𝑇𝑠𝑢‖ > 1}) = 1, and Dens({𝑠 ≥ 0 ; ‖𝑇𝑠𝑢‖ < 𝜀}) = 1.

for each 𝜀 > 0. So for each 𝑘 ∈ N there exists 𝑎𝑘 ∈ N such that

𝜇

(︂{︂
𝑠 ≤ 𝑎𝑘 ; ‖𝑇𝑠𝑢‖ <

1

𝑘

}︂)︂
≥ 𝑎𝑘

(︂
1− 1

𝑘

)︂

Define 𝐴𝑘 :=

{︂
𝑠 ≤ 𝑎𝑘 ; ‖𝑇𝑠𝑢‖ <

1

𝑘

}︂
and 𝐴 :=

⋃︀∞
𝑘=1𝐴𝑘. Then Dens(𝐴) = 1.

Set 𝑥𝑚 = 𝑇𝑚𝑢 for each 𝑚 ∈ N. Clearly lim𝑠∈𝐴 ‖𝑇𝑠𝑥𝑚‖ = 0 for each 𝑚 ∈ N.

For each 𝑚 ∈ N choose 𝑠𝑚 such that ‖𝑇𝑠𝑚𝑢‖ <
1

𝑚
and set 𝑦𝑚 =

𝑇𝑠𝑚𝑢

‖𝑇𝑠𝑚𝑢‖
. Let

𝑛𝑚 ∈ N satisfy 𝑛𝑚 > 2𝑚𝑠𝑚 and

𝜇 ({𝑠 ≤ 𝑛𝑚 ; ‖𝑇𝑠𝑢‖ > 1}) ≥ 𝑛𝑚

(︂
1− 1

2𝑚

)︂
.

Then

𝜇 ({𝑠𝑚 ≤ 𝑠 ≤ 𝑛𝑚 ; ‖𝑇𝑠𝑢‖ > 1}) ≥ 𝑛𝑚

(︂
1− 1

2𝑚

)︂
− 𝑠𝑚 ≥ 𝑛𝑚

(︂
1− 1

𝑚

)︂
.

If 𝑠𝑚 ≤ 𝑠 ≤ 𝑛𝑚 and ‖𝑇𝑠𝑢‖ > 1, then ‖𝑇𝑠−𝑠𝑚𝑢‖ > 𝑚. Therefore

𝜇 ({𝑠 ≤ 𝑛𝑚 ; ‖𝑇𝑠𝑦𝑚‖ > 𝑚}) ≥ 𝑛𝑚

(︂
1− 1

𝑚

)︂
and T satisfies the (CDC). y
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Propositions 2.20 and 2.21 and their counterparts for operators are really

strong. Having a residual set of distributionally irregular vectors gives the

curious case we address in the following example. One usual question formuled

in linear dynamics is if certain sets of operators have common hypercyclic,

frequently hypercyclic, irregular vectors, i.e. a vector that is hypercyclic, and

so on for to different operators.

Example 2.23 (Rolewicz’s operators). On the spaces 𝑋 := ℓ𝑝, 1 ≤ 𝑝 < ∞,

or 𝑋 := 𝑐0 we consider the multiple

𝑇 = 𝜆𝐵 : 𝑋 → 𝑋, (𝑥1, 𝑥2, 𝑥3, . . . ) → (𝜆𝑥2, 𝜆𝑥3, 𝜆𝑥4, . . . )

of the backward shift, with 𝜆 ∈ R. For any 𝑐 > 1, the set of common distribu-

tionally irregular vectors of family {𝜆𝐵}|𝜆|≥𝑐, that is,
⋂︁
|𝜆|≥𝑐

DI(𝜆𝐵) is residual

in 𝑋.

Proof. Since the Rolewicz operators satisfy the (Godefroy-Shapiro criterion),

we have that they admit a dense set 𝑋0 ⊂ 𝑋 with lim
𝑛→∞

(𝜆𝐵)𝑛𝑥 = 0, for each

𝑥 ∈ 𝑋 for every |𝜆| > 1. And

∞∑︁
𝑛=0

1

‖(𝜆𝐵)𝑛‖
=

∞∑︁
𝑛=0

1

|𝜆|𝑛
=

1

1− 1
|𝜆|

<∞.

Therefore, by [BBMGP11, Corollary 30], 𝜆𝐵 admits a dense distributionally

irregular manifold. Hence, by the version of Propositions 2.20 and 2.21 for

operators, DI(𝜆𝐵) is residual.

Let the sequence (𝜆𝑖)𝑖∈N, with |𝜆𝑖| > 1 be such that
⋃︁
𝑖∈N

[𝜆𝑖, 𝜆𝑖+1[ is a

partition of [𝑐,∞[. For any pair 𝜆𝑖, 𝜆𝑖+1 the set DI(𝜆𝑖𝐵) ∩ DI(𝜆𝑖+1𝐵) is

residual. Take 𝑥 ∈ DI(𝜆𝑖𝐵) ∩DI(𝜆𝑖+1𝐵) and 𝜆𝑞 ∈]𝜆𝑖, 𝜆𝑖+1[. Then there exist

two sequences (𝑛𝑘)𝑘∈N, (𝑚𝑘)𝑘∈N with upper density 1 such that

lim
𝑘→∞

‖(𝜆𝑖+1𝐵)𝑛𝑘𝑥‖ = 0 and lim
𝑘→∞

‖(𝜆𝑖𝐵)𝑚𝑘𝑥‖ = ∞.

And hence,

lim
𝑘→∞

‖(𝜆𝑞𝐵)𝑛𝑘𝑥‖ = lim
𝑘→∞

⃦⃦⃦⃦(︂
𝜆𝑞
𝜆𝑖+1

𝜆𝑖+1𝐵

)︂𝑛𝑘

𝑥

⃦⃦⃦⃦
=

= lim
𝑘→∞

⃒⃒⃒⃒
𝜆𝑞
𝜆𝑖+1

⃒⃒⃒⃒𝑛𝑘

‖(𝜆𝑖+1𝐵)𝑛𝑘𝑥‖ = 0

(2.7)
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and

lim
𝑘→∞

‖(𝜆𝑞𝐵)𝑚𝑘𝑥‖ = lim
𝑘→∞

⃦⃦⃦⃦(︂
𝜆𝑞
𝜆𝑖
𝜆𝑖𝐵

)︂𝑚𝑘

𝑥

⃦⃦⃦⃦
= lim

𝑘→∞

⃒⃒⃒⃒
𝜆𝑞
𝜆𝑖

⃒⃒⃒⃒𝑚𝑘

‖(𝜆𝑖𝐵)𝑚𝑘𝑥‖ = ∞.

(2.8)

Thus we have proved that⋂︁
𝜆𝑗∈[𝜆𝑖,𝜆𝑖+1]

DI(𝜆𝑗𝐵) = DI(𝜆𝑖𝐵) ∩DI(𝜆𝑖+1𝐵)

and therefore is residual.

Note that, by (2.7) and (2.8), DI(𝜆𝑟𝐵) = DI(𝜆𝑠𝐵) if |𝜆𝑟| = |𝜆𝑠|. Since

we have divided the set in a countable amount of intervals, and the countable

intersection of residual sets is residual, the proof is finished. y



Chapter 3

Sufficient conditions for distributional

chaos

It is not always easy to verify whether a 𝐶0-semigroup is distributionally

chaotic or not, even with the help of the notion of Distributional irregu-

lar vectors and the Criterion for Distributional Chaos. For that reason we

present some computable conditions for distributional chaos for operators and

for semigroups. We recall first the following useful criterion:

Theorem 3.1. ([BBMGP11, Corollary 30]) Let 𝑇 : 𝑋 → 𝑋 be an operator

such that there exist a dense subset 𝑋0 ⊂ 𝑋 with lim
𝑛→∞

𝑇𝑛𝑥 = 0, for each

𝑥 ∈ 𝑋0, and an increasing sequence of integers 𝐵 = (𝑚𝑘)𝑘 with dens(𝐵) = 1

satisfying

(i) either

∞∑︁
𝑘=1

1

‖𝑇𝑚𝑘‖
<∞,

(ii) or 𝑋 is a complex Hilbert space and

∞∑︁
𝑘=1

1

‖𝑇𝑚𝑘‖2
<∞.

Then 𝑇 has a dense distributionally irregular manifold.
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In order to prove the analogue of Theorem 3.1, we will need the following

proposition.

Proposition 3.2. Let T = {𝑇𝑡}𝑡≥0 be a 𝐶0-semigroup in 𝐿(𝑋) and let 𝛼 ≥ 1.

Then the following statements are equivalent.

(i) There exists an increasing sequence of positive integers 𝐵 = (𝑚𝑘)𝑘 with

dens(𝐵) = 1 such that the series

∞∑︁
𝑘=1

1

‖𝑇𝑚𝑘
1 ‖𝛼

is convergent.

(ii) There exists a Lebesgue measurable set 𝐴 ⊆ [0,∞[ with Dens(𝐴) = 1

such that the integral

∫︁
𝐴
‖𝑇𝑡‖−𝛼𝑑𝑡 is convergent.

Proof. Set 𝐶 := sup
𝑡∈[0,1]

‖𝑇𝑡‖. Then 𝐶 <∞ by the local equicontinuity of T. In

particular, we observe that if 𝑡 ∈ [ℎ− 1, ℎ] for some 𝑘 ∈ N, then we can write

ℎ = 𝑡 + (ℎ − 𝑡) with ℎ − 𝑡 ∈ [0, 1]. Consequently, ‖𝑇ℎ‖ = ‖𝑇ℎ−𝑡𝑇𝑡‖ ≤ 𝐶‖𝑇𝑡‖
and so ‖𝑇𝑡‖−1 ≤ 𝐶‖𝑇ℎ‖−1. On the other hand, if 𝑡 ∈ [ℎ, ℎ + 1] for some

ℎ ∈ N, then we can write 𝑡 = ℎ + (𝑡 − ℎ) with 𝑡 − ℎ ∈ [0, 1]. It follows that

‖𝑇𝑡‖ = ‖𝑇𝑡−ℎ𝑇ℎ‖ ≤ 𝐶‖𝑇ℎ‖ and so ‖𝑇ℎ‖−1 ≤ 𝐶‖𝑇𝑡‖−1.

(i) implies (ii). Set 𝐴 :=
⋃︀
𝑘∈N[𝑚𝑘 − 1,𝑚𝑘]. Then Dens(𝐴) = dens(𝐵) = 1

as it is easy to prove. Moreover, using the above inequalities, we have∫︁
𝐴
‖𝑇𝑡‖−𝛼𝑑𝑡 =

∑︁
𝑘∈N

∫︁ 𝑚𝑘

𝑚𝑘−1
‖𝑇𝑡‖−𝛼 𝑑𝑡 ≤ 𝐶𝛼

∑︁
𝑘∈N

∫︁ 𝑚𝑘

𝑚𝑘−1
‖𝑇𝑚𝑘

‖−𝛼 𝑑𝑡

= 𝐶𝛼
∑︁
𝑘∈N

‖𝑇𝑚𝑘
1 ‖−𝛼 <∞,

i.e., (ii) is satisfied.

(ii) implies (i). Set 𝐵 := {𝑘 ∈ N ; 𝜇(𝐴∩[𝑘, 𝑘+1]) ≥ 1
2}. Then dens(𝐵) = 1

by Lemma 2.8, and, using the above inequalities, we obtain

∞ >

∫︁
𝐴
‖𝑇𝑡‖−𝛼 𝑑𝑡 ≥

∑︁
𝑘∈𝐵

∫︁
𝐴∩[𝑘,𝑘+1]

‖𝑇𝑡‖−𝛼 𝑑𝑡

≥
∑︁
𝑘∈𝐵

∫︁
𝐴∩[𝑘,𝑘+1]

𝐶−𝛼‖𝑇𝑘‖−𝛼 𝑑𝑡 ≥
𝐶−𝛼

2

∑︁
𝑘∈𝐵

‖𝑇 𝑘1 ‖−𝛼,

i.e.,
∑︀

𝑘∈𝐵 ‖𝑇 𝑘1 ‖−𝛼 <∞. y
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We can now state the analogue of Theorem 3.1.

Theorem 3.3. Dense Distributionally Irregular Manifold Criterion

Let T = {𝑇𝑡}𝑡≥0 be a 𝐶0-semigroup in 𝐿(𝑋) such that there exist a dense

subset 𝑋0 ⊂ 𝑋 such that lim
𝑡→∞

𝑇𝑡𝑥 = 0, for each 𝑥 ∈ 𝑋0, and a Lebesgue

measurable set 𝐴 ⊆ [0,∞) with Dens(𝐴) = 1 satisfying

(i) either

∫︁
𝐴

1

‖𝑇𝑡‖
𝑑𝑡 <∞,

(ii) or 𝑋 is a complex Hilbert space and

∫︁
𝐴

1

‖𝑇𝑡‖2
𝑑𝑡 <∞.

Then T has a dense distributionally irregular manifold.

Proof. The assumptions (i) and (ii) ensure that the operator 𝑇1 satisfies condi-

tion (i) in Proposition 3.2. So, we can apply Theorem 3.1 to conclude that 𝑇1

has a dense distributionally irregular manifold. Finally, by Proposition 2.15,

T also has a dense distributionally irregular manifold. y

We need a technical result on the power growth of an operator based on

the eigenvectors associated to unimodular eigenvalues in the spirit of Ransford

[Ran05].

Proposition 3.4. Let 𝑋 be a complex separable Banach space and let 𝑇 ∈
𝐿(𝑋). Assume that there exists a Borel probability measure 𝑚 on T such that

𝑚(T∩𝜎𝑝(𝑇 )) > 0 and a bounded 𝑚–measurable function 𝑓 : T → 𝑋 satisfying

(i) 𝑓(𝜆) ∈ ker(𝜆𝐼 − 𝑇 ) for all 𝜆 ∈ T, and

(ii) 𝑓(𝜆) ̸= 0 if 𝜆 ∈ 𝜎𝑝(𝑇 ) ∩ T.

Then there exist 𝑛0 ∈ Z, 𝐷 > 0 such that, for every 𝑛 ∈ N,

1

‖𝑇𝑛‖
≤ 𝐷

⃦⃦⃦⃦∫︁
T
𝑓(𝑒𝑖𝜃)𝑒−𝑖(𝑛0+𝑛)𝜃𝑑𝑚(𝜃)

⃦⃦⃦⃦
.

Proof. The proof is inspired by the proof of Lemma 4.1 in [Ran05]. For every

𝑛 ∈ Z let

𝑥𝑛 =

∫︁
T
𝑓(𝑒𝑖𝜃)𝑒−𝑖𝑛𝜃𝑑𝑚(𝜃).
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Then there exists 𝑛0 ∈ Z such that 𝑥𝑛0 ̸= 0. Indeed, if 𝑥𝑛 = 0 for all 𝑛 ∈ Z,
then, given 𝜓 ∈ 𝑋 ′, we have∫︁

T
𝜓
(︁
𝑓(𝑒𝑖𝜃)

)︁
𝑒−𝑖𝑛𝜃𝑑𝑚(𝜃) = 0,

i.e., the Fourier coefficients of the measure 𝜓
(︀
𝑓(𝑒𝑖𝜃)

)︀
𝑑𝑚(𝜃) are all zero. It

follows that 𝜓 (𝑓(𝜆)) = 0 for every 𝜆 ∈ T ∩ 𝜎𝑝(𝑇 ) ∖ 𝐴𝜓 with 𝑚(𝐴𝜓) = 0. As

X is separable, there exists a sequence (𝜓𝑘)𝑘 ⊆ 𝑋 ′ such that if 𝜓𝑘(𝑥) = 0

for every 𝑘 ∈ N, then 𝑥 = 0. Setting 𝐴 =
⋃︀
𝑘 𝐴𝜓𝑘

, we get that 𝑚(𝐴) = 0

and 𝜓𝑘 (𝑓(𝜆)) = 0 for every 𝜆 ∈ T ∩ 𝜎𝑝(𝑇 ) ∖ 𝐴. Therefore 𝑓(𝜆) = 0 for every

𝜆 ∈ T ∩ 𝜎𝑝(𝑇 ) ∖𝐴, and this contradicts the assumption on 𝑓 .

Observe now that for every 𝑛 ∈ Z, by the properties of 𝑓 , 𝑇𝑥𝑛 = 𝑥𝑛−1. In

particular, 𝑇𝑛(𝑥𝑛+𝑛0) = 𝑥𝑛0 for every 𝑛 ∈ N. Hence

1

‖𝑇𝑛‖
≤ ‖𝑥𝑛+𝑛0‖

‖𝑥𝑛0‖
≤ 1

‖𝑥𝑛0‖

⃦⃦⃦⃦∫︁
T
𝑓(𝑒𝑖𝜃)𝑒−𝑖(𝑛0+𝑛)𝜃𝑑𝑚(𝜃)

⃦⃦⃦⃦
,

which is the desired conclusion. y

Remark 3.5. Lemma 4.1 in [Ran05] ensures that if 𝑋 is a separable Banach

space and 𝑇 ∈ 𝐿(𝑋), then there exists a function 𝑓 : T → 𝑋, which is

measurable with respect to every 𝜎-finite Borel measure on T, and satisfies

conditions (i) and (ii) of Proposition 3.4.

The following notion was introduced by Bayart and Grivaux [BG05].

Definition 3.6. Let 𝑋 be a complex separable infinite dimensional Banach

space, 𝑚 a probability measure on the unit circle T and 𝑇 ∈ 𝐿(𝑋). A family

(𝐸𝑗)𝑗∈𝐽 of 𝑚–measurable 𝑋–valued function defined on T is said to be a

spanning fields of unimodular eigenvectors of 𝑇 with respect to 𝑚 if 𝐸𝑗(𝜆) ∈
ker(𝜆𝐼 − 𝑇 ) and span

{︁⋃︀
𝑗∈𝐽{𝐸𝑗(𝜆) ; 𝜆 ∈ T r Ω}

}︁
is dense in 𝑋 for every

𝑚–measurable set Ω ⊆ T with 𝑚(Ω) = 0.

Proposition 3.7. Let 𝑋 be a complex separable infinite dimensional Banach

space and 𝑇 ∈ 𝐿(𝑋). If there exists a spanning eigenvector field (𝐸𝑗)𝑗∈𝐽 asso-

ciated to unimodular eigenvalues of 𝑇 with respect to a continuous probability

measure 𝑚 on T, then there exists a set 𝑋0 ⊆ 𝑋 such that 𝑋0 is dense in 𝑋

and lim𝑛→∞ 𝑇𝑛𝑥 = 0, for all 𝑥 ∈ 𝑋0.
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Proof. The proof can be found either in [GEPM11], Theorem 9.22 or in [BM09],

Theorem 5.41. y

Proposition 3.7 was recently strengthened by Grivaux in [Gri10].

Theorem 3.8. ([Gri10, Theorem 1.4]) Let 𝑋 be a complex separable infinite

dimensional Banach space and 𝑇 ∈ 𝐿(𝑋) be a bounded operator acting on X.

If there exists a family (𝐸𝑗)𝑗∈𝐽 of spanning fields of unimodular eigenvectors of

𝑇 with respect to a continuous probability measure 𝑚 on T, then 𝑇 is frequently

hypercyclic.

For the final results of this chapter we need to introduce some extra nota-

tion. We recall that a space 𝑋 has type 𝑝 for some 𝑝 ∈ [1, 2] if there exists a

constant 𝑀 > 0 such that for every choice {𝑥𝑖}𝑛𝑖=1 of vector in 𝑋∫︁ 1

0

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑟𝑖(𝑡)𝑥𝑖

⃦⃦⃦⃦
⃦ 𝑑𝑡 ≤𝑀

(︃
𝑛∑︁
𝑖=1

‖𝑥𝑖‖𝑝
)︃1/𝑝

,

where (𝑟𝑖)𝑖 are the Rademacher functions. Every Banach space has type 1,

while every Hilbert space has type 2. Moreover, if 1
𝑝 +

1
𝑞 = 1, with 1 < 𝑝 ≤ 2,

then the spaces 𝐿𝑝 and 𝐿𝑞 have type 𝑝.

Corollary 3.9. Let 𝑋 be a complex separable infinite dimensional Banach

space and 𝑇 ∈ 𝐿(𝑋). Assume that 𝜎𝑝(𝑇 )∩T has positive Lebesgue measure and

that there exists a family (𝐸𝑗)𝑗∈N of spanning fields of unimodular eigenvectors

of 𝑇 with respect to the Lebesgue measure on T. If

(i) 𝑋 is a Hilbert space, or

(ii) 𝑋 has type 𝑝 for some 𝑝 > 1 and one of the fields 𝐸𝑗 is Lipschitz-

continuous with 𝐸𝑗(𝑥) ̸= 0 for every 𝑥 ∈ 𝜎𝑝(𝑇 ) ∩ T,

then 𝑇 is frequently hypercyclic and has a dense distributionally irregular man-

ifold.

Proof. We first observe that the assumption that (𝐸𝑗)𝑗∈N is a family of span-

ning fields of unimodular eigenvectors of 𝑇 implies by Proposition 3.7 the

existence of a dense subspace 𝑋0 ⊂ 𝑋 such that lim
𝑛→∞

𝑇𝑛𝑥 = 0 for every

𝑥 ∈ 𝑋0. And by Theorem 3.8 𝑇 is frequently hypercyclic.
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(i): Let 𝑋 be a Hilbert space. By Proposition 3.4 and Remark 3.5 there

exist a bounded Lebesgue measurable function 𝑓 : T → 𝑋, 𝐷 > 0 and 𝑛0 ∈ Z
such that

1

‖𝑇𝑛‖2
≤ 𝐷2

⃦⃦⃦⃦∫︁
𝑓(𝑒𝑖𝜃)𝑒−𝑖(𝑛+𝑛0)𝜃𝑑𝜃

⃦⃦⃦⃦2
= 𝐷2

⃦⃦⃦
𝑓(𝑛+ 𝑛0)

⃦⃦⃦2
,

where, for every 𝑘 ∈ Z, ̂︀𝑓(𝑘) denotes the 𝑘 − 𝑡ℎ Fourier coefficient of 𝑓 . Since

𝑓 ∈ 𝐿2(T, 𝑋), we have that
∑︁
𝑛∈N

‖𝑓(𝑛)‖2 < ∞ , so the assertion follows by

Theorem 3.1.

(ii): Let 𝑋 have type 𝑝 for some 𝑝 > 1 and 𝑓 = 𝐸𝑗 be the Lipschitz

continuous field. Then 𝑓 satisfies the assumptions of Proposition 3.4 and by

[Kön91, Theorem 1], (‖𝑓(𝑛)‖)𝑛∈Z ∈ ℓ1, thereby implying that∑︁
𝑛∈N

1

‖𝑇𝑛‖
<∞.

So, again by Corollary 3.1, we get the assertion. y

At this point we can give a sufficient condition for distributional chaos of

a semigroup involving the point spectrum of the generator of the semigroup.

The importance of having this condition at hand is that, usually, one can com-

pute more easily properties on the generator of the semigroup (especially, for

generators associated with abstract Cauchy problems) than on the operators

of the semigroup itself.

Corollary 3.10. Let 𝑋 be a complex separable infinite dimensional Banach

space and T = {𝑇𝑡}𝑡≥0 a 𝐶0-semigroup in 𝐿(𝑋) with infinitesimal generator

𝐴. Assume that there exists a family (𝑓𝑗)𝑗∈Γ of locally bounded Lebesgue mea-

surable functions 𝑓𝑗 : 𝐼𝑗 → 𝑋 such that 𝐼𝑗 is an interval in R, 𝜎𝑝(𝐴) ∩ 𝑖𝐼𝑗

has positive Lebesgue measure, 𝐴𝑓𝑗(𝑡) = 𝑖𝑡𝑓𝑗(𝑡) for every 𝑡 ∈ 𝐼𝑗, 𝑗 ∈ Γ and

span{𝑓𝑗(𝑡) : 𝑗 ∈ Γ, 𝑡 ∈ 𝐼𝑗} is dense in 𝑋. If

(i) 𝑋 is a Hilbert space, or

(ii) 𝑋 has type 𝑝 for some 𝑝 > 1 and one of the functions 𝑓𝑗 is Lipschitz-

continuous,
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then T is frequently hypercyclic and has a dense distributional irregular man-

ifold.

Proof. We show that 𝑇1 has a dense distributional irregular manifold.

Extend each 𝑓𝑗 to R by setting 𝑓𝑗 = 0 in R ∖ 𝐼𝑗 . For each 𝜃 ∈ [0, 2𝜋],

𝑗 ∈ Γ, 𝑘 ∈ Z, set 𝐸𝑗,𝑘(𝑒𝑖𝜃) := 𝑓𝑗(𝜃 + 2𝑘𝜋). It is easy to verify that 𝜎𝑝(𝑇1) ∩ T
has positive Lebesgue measure and that (𝐸𝑗,𝑘)𝑗∈Γ is a family of spanning

fields of unimodular eigenvectors of 𝑇1 with respect to the Lebesgue measure.

Therefore, by Theorem 3.8, 𝑇1 is frequently hypercyclic and, by Corollary 3.9,

if 𝑋 is a Hilbert space, then 𝑇1 has a dense distributional irregular manifold.

Assume that 𝑋 has type 𝑝 for some 𝑝 > 1. Let 𝑓 = 𝑓𝑗 be the Lipschitz-

continuous function and suppose that [0, 2𝜋] ⊆ 𝐼𝑗 (otherwise we can rescale).

Let 𝜑 be a 𝐶1-function such that supp𝜑 = [0, 2𝜋], with 𝜑(0) = 𝜑(2𝜋) =

0. Define 𝑔 : T → 𝑋 by setting 𝑔(𝑒𝑖𝜃) := 𝑓𝑗(𝜃)𝜑(𝜃). Then 𝑔 is Lipschitz

continuous (since 𝑓𝜑(0) = 𝑓𝜑(2𝜋)) and the assertion follows as in Corollary

3.9. y

The following example shows the applicability of Corollary 3.10.

Example 3.11. Consider the linear perturbation of the one-dimensional

Ornstein-Uhlenbeck operator

A𝛼𝑢 = 𝑢′′ + 𝑏𝑥𝑢′ + 𝛼𝑢,

where 𝛼 ∈ R, with domain

𝐷(A𝛼) =
{︁
𝑢 ∈ 𝐿2(R) ∩𝑊 2,2

loc (R) ; A𝛼𝑢 ∈ 𝐿2(R)
}︁
.

In [CM10; MP11], it was proved that if 𝛼 > 𝑏/2 > 0, then the semigroup

generated by A𝛼 in 𝐿2(R) is chaotic and frequently hypercyclic. Actually,

every operator of the semigroup is densely distributionally chaotic. Indeed,

for every 𝜇 ∈ C, with ℜ𝜇 < − 𝑏
2 + 𝛼 the functions 𝑢1𝜇 and 𝑢2𝜇, whose Fourier

transforms are

̂︁𝑢1𝜇(𝜉) = 𝑒−𝜉
2/2𝑏𝜉|𝜉|−(2+(𝜇−𝛼)/𝑏), ̂︁𝑢2𝜇(𝜉) = 𝑒−𝜉

2/2𝑏|𝜉|−(1+(𝜇−𝛼)/𝑏),

are eigenfunctions of A𝛼 (see [CM10; Met01]).
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For every 𝑠 ∈ R, consider the functions 𝑓1(𝑠) = 𝑢1𝑖𝑠 and 𝑓2(𝑠) = 𝑢2𝑖𝑠. For

every 𝜑 ∈ 𝑋 ′ = 𝐿2(R) and 𝑗 = 1, 2, by Parseval equality, we have

⟨𝜑, 𝑓𝑗(𝑠)⟩ =
∫︁
R
𝜑(𝑥)𝑢𝑗𝑖𝑠(𝑥)𝑑𝑥 =

∫︁
R
̂︀𝜑(𝑥)̂︀𝑢𝑗𝑖𝑠(𝑥)𝑑𝑥 𝑠 ∈ R.

It is immediate to verify that ⟨𝜑, 𝑓𝑗(·)⟩ ∈ 𝐶(R) by Lebesgue theorem, hence

the 𝑓𝑗 are (weakly) measurable and locally bounded.

The argument of [CM10] shows that span{𝑓𝑖(𝑠) ; 𝑖 = 1, 2, 𝑠 ∈ R} is dense

in 𝐿2(R). Thus the assertion follows.



Chapter 4

Distributional chaos for translation

𝐶0-semigroups

For linear discrete dynamical systems the shift operators on sequence spaces

represent one of the most important classes of “test” operators. In the con-

tinuous case this role is played by the translation semigroup.

Firstly, let us introduce the weighted spaces of integrable functions where

we are going to consider the translation 𝐶0-semigroups. These spaces are

denoted as 𝐿𝑝𝜌([0,+∞[), with 1 ≤ 𝑝 <∞ and 𝜌 an admissible weight function.

Definition 4.1 ([DSW97]). By an admissible weight function on R+
0 we mean

a measurable function 𝜌 : R+ → R satisfying the following conditions:

i) 𝜌(𝜏) > 0 for all 𝜏 ∈ R+
0 ,

ii) there exist constants 𝑀 ≥ 1 and 𝜔 ∈ R such that 𝜌(𝜏) ≤ 𝑀𝑒𝜔𝑡𝜌(𝑡 + 𝜏)

for all 𝜏 ∈ R+
0 and all 𝑡 > 0.

The following is a useful property for admissible weights.

Lemma 4.2 ([DSW97]). Let 𝜌 be an admissible weight function on R+
0 . For

each 𝑙 > 0 there are constants 0 < 𝑚1 < 𝑀1 (depending on 𝜌 and 𝑙 only)
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such that for each 𝜎 ∈ R+
0 and each 𝜏 ∈ [𝜎, 𝜎 + 𝑙], we have 𝑚1𝜌(𝜎) < 𝜌(𝜏) <

𝑀1𝜌(𝜎 + 𝑙).

Let 1 ≤ 𝑝 < ∞, let 𝜌 be an admissible weight function on R+
0 and let

M([0,+∞[) denote the space of measurable functions on the interval [0,+∞[ in

the sense of Lebesgue. We consider the separable Banach infinite dimensional

space of p-integrable functions (in the Lebesgue sense) 𝐿𝑝𝜌(R+) as

𝑋 := {𝑓 ∈ M([0,+∞[) ; ‖𝑓‖𝑝 <∞}, where ‖𝑓‖𝑝 =

(︃∫︁
[0,+∞[

|𝑓(𝑠)|𝑝𝜌(𝑠)𝑑𝑠

)︃1/𝑝

.

The translation semigroup defined by (𝑇𝑡𝑓)(𝑥) = 𝑓(𝑥 + 𝑡), 𝑡, 𝑥 ≥ 0, is a

well-defined 𝐶0-semigroup by the definition of admissible weight.

This chapter is divided in three sections. In the first one we review some

known results on the dynamics of the translation 𝐶0-semigroup, later we state

and prove some sufficient conditions for distributional chaos for this semigroup.

Finally, in the third one, we establish a complete analogy between the study of

distributional chaos for the translation 𝐶0-semigroup and the corresponding

one for backward shifts on weighted sequence spaces.

4.1 Existing results on the dynamics of translation

𝐶0-semigroups

When studying linear dynamics on weighted spaces, the natural question that

arises is the relevance of the weight. We have compiled in this section some

characterizations of hypercyclic, mixing and Devaney chaotic translation 𝐶0-

semigroups in terms of the weight in order to be able to compare them later

with our sufficient condition.

Theorem 4.3 (Desch et al.[DSW97]). On 𝐿𝑝𝜌(R+) with 1 ≤ 𝑝 < ∞, the

translation semigroup {𝑇𝑡}𝑡≥0 is hypercyclic if and only if

lim inf
𝑡→∞

𝜌(𝑡) = 0.
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Theorem 4.4 (Desch et al.[DSW97]). On 𝐿𝑝𝜌(R) with 1 ≤ 𝑝 <∞, the trans-

lation semigroup {𝑇𝑡}𝑡≥0 is hypercyclic if and only if for each 𝜃 ∈ R there exist

a sequence (𝑡𝑗)𝑗∈N of positive real numbers tending to ∞ such that

lim
𝑗→∞

𝜌(𝑡𝑗 + 𝜃) = lim
𝑗→∞

𝜌(−𝑡𝑗 + 𝜃) = 0.

Theorem 4.5 (Bermúdez et al. [BBCP05]). We consider the translation

𝐶0-semigroup {𝑇𝑡}𝑡≥0 on the space 𝑋 = 𝐿𝑝𝜌([0,+∞[), 1 ≤ 𝑝 < ∞, for an

admissible weight 𝜌. Then {𝑇𝑡}𝑡≥0 is mixing if and only if

lim
𝑡→∞

𝜌(𝑡) = 0.

Theorem 4.6 (deLaubenfels, Emamirad [dE01]). Let 𝑋 = 𝐿𝑝𝜌([0,+∞[). The

following are equivalent:

i. The translation 𝐶0-semigroup {𝑇𝑡}𝑡≥0 on 𝑋 is chaotic.

ii.
∫︀∞
0 𝜌(𝑠)𝑑𝑠 <∞.

iii. sup
{︀
𝜈 ∈ R ;

∫︀∞
0 𝑒𝜈𝑠𝜌(𝑠)𝑑𝑠 <∞

}︀
> 0.

iv. 𝑇1 has a non-trivial periodic point.

v. 𝑇1 is chaotic.

Theorem 4.7 (Matsui et al. [MYT03]). Let 𝑋 = 𝐿𝑝𝜌(R+). The translation

𝐶0-semigroup {𝑇𝑡}𝑡≥0 on 𝑋 is chaotic if, and only if, for every 𝜀, 𝜃 > 0 there

exists 𝑡 > 0 such that
∞∑︁
𝑘=1

𝜌(𝜃 + 𝑘𝑡) < 𝜀.

4.2 Distributional chaos for translation 𝐶0-semigroups

From now on our space 𝑋 will be 𝐿𝑝𝜌(R+) with 1 ≤ 𝑝 < ∞, where 𝜌 is an

admissible weight, and 𝜏= {𝑇𝑡}𝑡≥0 will be the translation semigroup on 𝑋.

And 𝑑(𝑥, 𝑦) will be the metric induced by the norm of the corresponding space.

The following result provides characterizations of distributional chaos for

the translation semigroup.
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Theorem 4.8. Let 𝜏= {𝑇𝑡}𝑡≥0 be the translation semigroup on 𝑋 = 𝐿𝑝𝜌(R+).

The following are equivalent:

(1) There exist 𝑓 ∈ 𝑋 and 𝛿 > 0 such that

Dens{𝑠 ∈ R+ ; ‖𝑇𝑠𝑓‖𝑝 < 𝛿} = 0.

(2) There exists 𝑓 ∈ 𝑋 such that, for every 𝑁 > 0,

Dens{𝑠 ∈ R+ ; ‖𝑇𝑠𝑓‖𝑝 < 𝑁} = 0.

(3) 𝜏 is densely distributionally chaotic.

Proof. If (1) holds, we can find an increasing sequence (𝑚𝑘)𝑘 in N such that∫︁
[𝑚𝑘,+∞[

|𝑓(𝑡)|𝑝𝜌(𝑡)𝑑𝑡 < 1

2𝑘
.

We define ℎ by the formula

ℎ(𝑡) :=

{︃
(1 + 𝑘)𝑓(𝑡), 𝑚𝑘 < 𝑡 < 𝑚𝑘+1

𝑓(𝑡), 0 < 𝑡 < 𝑚1.

Let 𝑚0 := 0. Note that ℎ ∈ 𝑋, because

‖ℎ(𝑡)‖𝑝𝑝 =
∫︁
R+

|ℎ(𝑡)|𝑝𝜌(𝑡)𝑑𝑡 =
∑︁
𝑖≥0

∫︁
[𝑚𝑖,𝑚𝑖+1]

|ℎ(𝑡)|𝑝𝜌(𝑡)𝑑𝑡

=
∑︁
𝑖≥0

(1 + 𝑖)𝑝
∫︁
[𝑚𝑖,𝑚𝑖+1]

|𝑓(𝑡)|𝑝𝜌(𝑡)𝑑𝑡 <
∫︁
[0,𝑚0]

|𝑓(𝑡)|𝑝𝜌(𝑡)𝑑𝑡+
∑︁
𝑘≥1

(1 + 𝑘)𝑝

2𝑘
.

Fix an arbitrary 𝑁 > 𝛿 and 𝑘0 ∈ N with 𝑘0 > 𝑁/𝛿. For all 𝑡 > 𝑚𝑘0 ,

|𝑘0𝑓(𝑡)| ≤ |ℎ(𝑡)|. Then, since 𝑘0‖𝑇𝑠𝑓‖𝑝 ≤ ‖𝑇𝑠ℎ‖𝑝 for all 𝑠 > 𝑚𝑘0 , we have that

Dens
(︀
{𝑠 ∈ R+ ; ‖𝑇𝑠ℎ‖𝑝 < 𝑁}

)︀
≤ Dens

(︀
{𝑠 ∈ R+ ; 𝑘0‖𝑇𝑠𝑓‖𝑝 < 𝑘0𝛿}

)︀
= 0.

Hence we get that (1)⇒(2).

If (2) holds, we can find an increasing sequence (𝑛𝑘)𝑘∈N ⊆ N such that, for

every 𝑘 ∈ N,

𝜇({𝑠 ≤ 𝑛𝑘 : ‖𝑇𝑠𝑓‖𝑝 < 2𝑁}) < 𝑛𝑘
𝑘

for every 𝑁 > 0.
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We can find a sufficiently fast increasing sequence (𝑞𝑘)𝑘∈N in N such that, for

ℎ defined by the formula

ℎ(𝑡) :=

{︃
𝑓(𝑡), 𝑞2𝑘−1 < 𝑡 < 𝑞2𝑘;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

on the one hand we have that each 𝑘 ∈ N admits a 𝑗 = 𝑗(𝑘), with 𝑘 ≤ 𝑗, so

that 𝑘𝑞2𝑘−1 < 𝑛𝑗 < 𝑞2𝑘 and that for every 𝑁 > 0, there exists a 𝑘0 ∈ N such

that

‖𝑇𝑠ℎ− 𝑇𝑠𝑓‖𝑝 < 𝑁 for every 𝑠 ∈ [𝑞2𝑘−1, 𝑛𝑗(𝑘)],

with 𝑘 > 𝑘0. For instance, it suffices to have, for 𝑘 > 𝑘0,∫︁ ∞

𝑞2𝑘

|(𝑓 − ℎ)(𝑡)|𝑝𝜌(𝑡)𝑑𝑡 < 𝑁𝑝

𝑀𝑒𝜔𝑛𝑗(𝑘)
.

From this, and taking 𝑀 > 1 and 𝜔 > 0 satisfying that 𝜌(𝜏) ≤ 𝑀𝑒𝜔𝑡𝜌(𝑡+ 𝜏)

for all 𝜏 ∈ R+
0 and all 𝑡 > 0, we see that

‖𝑇𝑠𝑓 − 𝑇𝑠ℎ‖𝑝𝑝 =
∫︁ ∞

0
|(𝑓 − ℎ)(𝑡+ 𝑠)|𝑝𝜌(𝑡)𝑑𝑡 =

∫︁ ∞

𝑠
|(𝑓 − ℎ)(𝑟)|𝑝𝜌(𝑟 − 𝑠)𝑑𝑟 ≤

≤𝑀𝑒𝜔𝑠
∫︁ ∞

𝑠
|(𝑓 − ℎ)(𝑟)|𝑝𝜌(𝑟)𝑑𝑟

≤𝑀𝑒𝜔𝑛𝑗(𝑘)

(︃∫︁ 𝑞2𝑘

𝑞2𝑘−1

|(𝑓 − ℎ)(𝑟)|𝑝𝜌(𝑟)𝑑𝑟 +
∫︁ ∞

𝑞2𝑘

|(𝑓 − ℎ)(𝑟)|𝑝𝜌(𝑟)𝑑𝑟

)︃

≤𝑀𝑒𝜔𝑛𝑗(𝑘)

(︂
0 +

∫︁ ∞

𝑞2𝑘

|(𝑓 − ℎ)(𝑟)|𝑝𝜌(𝑟)𝑑𝑟
)︂
<
𝑁𝑝𝑀𝑒𝜔𝑛𝑗(𝑘)

𝑀𝑒𝜔𝑛𝑗(𝑘)

≤𝑁𝑝,

for every 𝑠 ∈ [𝑞2𝑘−1, 𝑛𝑗(𝑘)] with 𝑘 > 𝑘0.

Therefore, for each 𝑠 ∈ [𝑞2𝑘−1, 𝑛𝑗(𝑘)] with 𝑘 big enough, if ‖𝑇𝑠ℎ‖𝑝 < 𝑁 ,

then we have that

‖𝑇𝑠𝑓‖𝑝 = ‖𝑇𝑠𝑓 − 𝑇𝑠ℎ+ 𝑇𝑠ℎ‖𝑝 ≤ ‖𝑇𝑠𝑓 − 𝑇𝑠ℎ‖𝑝 + ‖𝑇𝑠ℎ‖𝑝 < 𝑁 +𝑁 = 2𝑁.

Thus we obtain

𝜇 ({𝑠 ∈ [𝑞2𝑘−1, 𝑛𝑗 ] ; ‖𝑇𝑠ℎ‖𝑝 < 𝑁}) ≤ 𝜇 ({𝑠 ∈ [𝑞2𝑘−1, 𝑛𝑗 ] ; ‖𝑇𝑠𝑓‖𝑝 < 2𝑁}) .
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Then,

𝜇 ({𝑠 ≤ 𝑛𝑗 ; ‖𝑇𝑠ℎ‖𝑝 < 𝑁}) ≤ 𝑞2𝑘−1 + 𝜇 ({𝑠 ∈ [𝑞2𝑘−1, 𝑛𝑗 ] ; ‖𝑇𝑠ℎ‖𝑝 < 𝑁})

< 𝑞2𝑘−1 +
𝑛𝑗
𝑗
.

And hence,

Dens
{︀
𝑠 ∈ R+ ; ‖𝑇𝑠ℎ‖𝑝 < 𝑁

}︀
≤ lim

𝑘→∞

𝜇
(︀{︀
𝑠 ≤ 𝑛𝑗(𝑘) ; ‖𝑇𝑠ℎ‖𝑝 < 𝑁

}︀)︀
𝑛𝑗(𝑘)

≤

≤ lim
𝑘→∞

𝑞2𝑘−1 +
𝑛𝑗(𝑘)

𝑗(𝑘)

𝑛𝑗(𝑘)
≤ lim

𝑘→∞

2

𝑗(𝑘)

= 0.

(4.1)

On the other hand, we have introduced in ℎ sufficiently large intervals of

0’s so that Dens{𝑠 ∈ R+ ; ‖𝑇𝑠ℎ‖𝑝 < 𝜀} = 1 for all 𝜀 > 0. For instance it

suffices that 𝑞2𝑘+1 > 𝑘𝑞2𝑘 and that∫︁ ∞

𝑞2𝑘+1

|ℎ(𝑡)|𝑝𝜌(𝑡)𝑑𝑡 < 1

𝑀𝑒𝜔𝑘2𝑞2𝑘
for 𝑘 big enough.

Then, there exist 𝑘0 ∈ N such that for every 𝑘 > 𝑘0 and for each 𝑠 ∈ [𝑞2𝑘, 𝑘𝑞2𝑘]

we have that

‖𝑇𝑠ℎ‖𝑝𝑝 =
∫︁ ∞

0
|ℎ(𝑡+ 𝑠)|𝑝𝜌(𝑡)𝑑𝑡 =

∫︁ ∞

𝑠
|ℎ(𝑟)|𝑝𝜌(𝑟 − 𝑠)𝑑𝑟

≤𝑀𝑒𝜔𝑠
∫︁ ∞

𝑠
|ℎ(𝑟)|𝑝𝜌(𝑟)𝑑𝑟

≤𝑀𝑒𝜔𝑘𝑞2𝑘

(︃∫︁ 𝑞2𝑘+1

𝑞2𝑘

|ℎ(𝑟)|𝑝𝜌(𝑟)𝑑𝑟 +
∫︁ ∞

𝑞2𝑘+1

|ℎ(𝑟)|𝑝𝜌(𝑟)𝑑𝑟

)︃

≤𝑀𝑒𝜔𝑘𝑞2𝑘

(︃
0 +

∫︁ ∞

𝑞2𝑘+1

|ℎ(𝑟)|𝑝𝜌(𝑟)𝑑𝑟

)︃
<

𝑀𝑒𝜔𝑘𝑞2𝑘

𝑀𝑒𝜔𝑘2𝑞2𝑘

≤ 𝑒−𝜔𝑘𝑞2𝑘(𝑘−1).

Therefore, since lim
𝑘→∞

𝑘𝑞2𝑘 − 𝑞2𝑘
𝑘𝑞2𝑘

= 1, we have obtained

Dens{𝑠 ∈ R+ ; ‖𝑇𝑠ℎ‖𝑝 < 𝜀} = 1, for all 𝜀 > 0.



4.2 Distributional chaos for translation 𝐶0-semigroups 49

We fix a dense sequence (𝑦𝑛)𝑛 in 𝑋 of functions with compact support,

and we define

𝑆 =
⋃︁
𝑛∈N

(︂
𝑦𝑛 +

{︂
𝛼ℎ ;

1

𝑛+ 1
< 𝛼 <

1

𝑛

}︂)︂
.

It is clear that 𝑆 is a dense subset of 𝑋. We will show that it is a distribu-

tionally 𝛿′-scrambled set for the translation semigroup.

Let 𝑥, 𝑥′ ∈ 𝑆 with 𝑥 ̸= 𝑥′. W.l.o.g., 𝑥 = 𝑦𝑚 + 𝛼ℎ and 𝑥′ = 𝑦𝑛 + 𝛽ℎ with

𝛼 < 𝛽 < 1. Since 𝑦𝑛 and 𝑦𝑚 are functions with compact support, we have

that

Dens({𝑠 ∈ R+ ; 𝑑(𝑇𝑠𝑥, 𝑇𝑠𝑥
′) < 𝜀}) = Dens({𝑠 ∈ R+ ; (𝛽−𝛼) ‖𝑇𝑠ℎ‖𝑝 < 𝜀}) = 1.

It only remains to show that

Dens{𝑠 ∈ R+ ; (𝛽 − 𝛼) ‖𝑇𝑠ℎ‖𝑝 < 𝛿′} = 0,

which is an easy consequence of equation (4.1).

For (3)⇒(1), we just take 𝑔, ℎ ∈ 𝑆 with 𝑔 ̸= ℎ where 𝑆 is a scrambled set

for 𝜏 . By definition of distributional chaos we have that exists 𝛿 > 0 such

that

Dens{𝑠 ∈ R+ ; 𝑑(𝑇𝑠𝑔, 𝑇𝑠ℎ) < 𝛿} = 0. (4.2)

Define 𝑓 := 𝑔 − ℎ, then ‖𝑇𝑠𝑓‖ = 𝑑(𝑇𝑠𝑔, 𝑇𝑠ℎ) and therefore

Dens{𝑠 ∈ R+ ; ‖𝑇𝑠𝑓‖𝑝 < 𝛿} = 0.

This completes the proof. y

The following result is the continuous version of a result for backward shifts

given in [MGOP09].

Theorem 4.9. The translation semigroup {𝑇𝑡}𝑡≥0 is densely distributionally

chaotic on 𝑋 if we can find a measurable subset 𝐴 ⊂ R+ such that Dens(𝐴) = 1

and
∫︀
𝐴 𝜌(𝑠)𝑑𝑠 <∞.
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Proof. Define 𝑓 as follows

𝑓(𝑡) :=

{︃
1, 𝑡 ∈ 𝐴,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

We know that 𝑓 ∈ 𝑋 because ‖𝑓(𝑡)‖𝑝𝑝 =
∫︀
𝐴 1𝑝𝜌(𝑠)𝑑𝑠 < ∞. Since 𝜌 > 0, by

the admissibility of the weight, let 𝛿 > 0 be such that 𝜌(𝑡) > 2𝛿 for every

𝑡 ∈ [0, 2]. Define the set K = {𝑘 ∈ N ; 𝜇(𝐴 ∩ [𝑘, 𝑘 + 1]) > 1
2}. By Lemma 2.8,

we know that dens(K) = 1. If we now define the set 𝐴′ =
⋃︀
𝑘∈K[𝑘− 1, 𝑘], then

Dens(𝐴′) = dens(K) = 1.

Hence if 𝑠 ∈ 𝐴′, then

‖𝑇𝑠𝑓‖𝑝𝑝 >
∫︁
[0,2]∩𝐴

|𝑇𝑠𝑓(𝑡)|𝑝𝜌(𝑡)𝑑𝑡 >
∫︁
[𝑠,𝑠+2]∩𝐴

𝑓(𝑡)2𝛿𝑑𝑡 > 2𝛿𝜇([𝑠, 𝑠+2]∩𝐴) > 𝛿.

Therefore Dens{𝑠 ∈ R+ ; ‖𝑇𝑠𝑓‖𝑝 < 𝛿1/𝑝} = 0, and by Theorem 4.8 the proof

is finished. y

As a consequence of Theorem 4.9 and the characterization of Devaney

chaos for the translation semigroup given in Theorem 4.6, we obtain the anal-

ogous implication of the discrete version given in [MGOP09].

Corollary 4.10. Let 𝑋 = 𝐿𝑝𝜌(R+). If the translation 𝐶0-semigroup {𝑇𝑡}𝑡≥0

is Devaney chaotic on 𝑋, then it is distributionally chaotic.

Despite the above result, Devaney chaos is far from being a characteriza-

tion of distributional chaos for the translation 𝐶0-semigroup, as the following

example shows.

Example 4.11. Let (𝑛𝑘)𝑘 be a sequence in N with 𝑛𝑘+1 > 𝑘𝑛𝑘, 𝑘 ∈ N. We

define the admissible weight by 𝜌(𝑡) = 𝑒𝑛𝑘−𝑡, 𝑡 ∈ [𝑛𝑘−1, 𝑛𝑘[, 𝑘 ∈ N, where

𝑛0 := 0. Let

𝑓(𝑡) :=

{︃
1
𝑘2
, 𝑡 ∈ [𝑛𝑘 − 1, 𝑛𝑘], 𝑘 ∈ N,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

The function 𝑓 ∈ 𝐿𝑝𝜌(R+) since∫︁
R+

|𝑓(𝑡)|𝑝𝜌(𝑡)𝑑𝑡 =
∑︁
𝑘∈N

∫︁ 𝑛𝑘

𝑛𝑘−1

𝜌(𝑡)

𝑘2𝑝
𝑑𝑡 ≤

∑︁
𝑘∈N

𝑒

𝑘2𝑝
<∞.
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Moreover,

‖𝑇𝑠𝑓‖𝑝𝑝 ≥
∫︁ 𝑛𝑘+1−𝑠

𝑛𝑘+1−𝑠−1
|𝑓(𝑠+ 𝑡)|𝑝𝜌(𝑡)𝑑𝑡 > 𝑒𝑘

(𝑘 + 1)2𝑝
,

for any 𝑠 ∈ [𝑘, 𝑘2], 𝑘 ∈ N. Therefore, Theorem 4.8 yields that the transla-

tion semigroup is distributionally chaotic. On the other hand, it cannot be

hypercyclic since 𝜌(𝑡) ≥ 1 for all 𝑡 ∈ R+.

4.3 Backward shifts and translation 𝐶0-semigroups

The final part of the chapter will be devoted to the interplay between the dis-

crete case (backward shifts) and the continuous case (translation 𝐶0-semigroup).

We note that Theorem 2.9 was a result of this kind for distributional chaos in

a general framework. During the recent years several results showing equiva-

lences between analogous behaviour in the discrete and continuous cases have

been obtained (see [CMP07] for hypercyclicity and [BBCP05] for the mixing

property). In contrast, this equivalence does not necessarily hold neither for

Devaney chaos [BB09], nor for hypercyclicity if we change the index semigroup

[CMP07].

Proposition 4.12. Let 𝜌 be an admissible weight. There exists K ⊂ N such

that dens(K) = 1 and
∑︀

𝑘∈K 𝜌(𝑘) <∞, if and only if we can find a measurable

𝐴 ⊂ R+ such that Dens(𝐴) = 1 and
∫︀
𝐴 𝜌(𝑡)𝑑𝑡 <∞.

Proof. Suppose that there exists K ⊂ N with dens(K) = 1 and
∑︀

𝑘∈K 𝜌(𝑘) <

∞. If we define 𝐴 :=
⋃︀
𝑘∈K[𝑘 − 1, 𝑘], then Dens(𝐴) = dens(K) = 1, and by

taking 𝑙 = 1 in Lemma 4.2 we have that∫︁
𝐴
𝜌(𝑡)𝑑𝑡 =

∑︁
𝑘∈K

∫︁
𝑡∈[𝑘−1,𝑘]

𝜌(𝑡)𝑑𝑡 ≤
∑︁
𝑘∈K

∫︁
𝑡∈[𝑘−1,𝑘]

𝑀1𝜌(𝑘)𝑑𝑡

=
∑︁
𝑘∈K

𝑀1𝜌(𝑘)

∫︁
𝑡∈[𝑘−1,𝑘]

𝑑𝑡 =𝑀1

∑︁
𝑘∈K

𝜌(𝑘) <∞.

Conversely, if we can find an 𝐴 ⊂ R+ such that Dens(𝐴) = 1 and
∫︀
𝐴 𝜌(𝑡)𝑑𝑡 <
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∞, we define the set K = {𝑘 ∈ N ; 𝜇(𝐴 ∩ [𝑘, 𝑘 + 1]) > 1
2} and

∞ >

∫︁
𝐴
𝜌(𝑡)𝑑𝑡 ≥

∑︁
𝑘∈K

∫︁
𝐴∩[𝑘,𝑘+1]

𝜌(𝑡)𝑑𝑡

≥
∑︁
𝑘∈K

∫︁
𝐴∩[𝑘,𝑘+1]

𝑚1𝜌(𝑘𝑛)𝑑𝑡 =
∑︁
𝑘∈K

𝑚1𝜌(𝑘)

∫︁
𝐴∩[𝑘,𝑘+1]

𝑑𝑡 ≥ 𝑚1

2

∑︁
𝑘∈K

𝜌(𝑘).

Therefore 𝑚1
2

∑︀
𝑘∈K 𝜌(𝑘) <∞ and

∑︀
𝑘∈K 𝜌(𝑘) <∞.

By Lemma 2.8 we obtain that dens(K) = 1, which concludes the proof. y

Corollary 4.13. If we can find a subset K ⊂ N such that dens(K) = 1 and∑︀
𝑘∈K 𝜌(𝑘) < ∞, then the translation semigroup {𝑇𝑡}𝑡≥0 is densely distribu-

tionally chaotic.

Proof. By the Proposition 4.12 if we have such a K, we can find an 𝐴 ⊂ R
such that Dens(𝐴) = 1 and

∫︀
𝐴 𝜌(𝑡)𝑑𝑡 <∞. Then we use Theorem 4.9 to finish

the proof. y

We define the weighted sequence space ℓ𝑝(𝑣) as follows.

ℓ𝑝(𝑣) :=

{︃
𝑥 = (𝑥𝑛)𝑛∈N ⊂ R ; ‖𝑥‖𝑝 :=

∑︁
𝑛∈N

|𝑥𝑛|𝑝𝑣𝑛 <∞

}︃
,

where the weight sequence (𝑣𝑛)𝑛∈N is such that for every 𝑛 ∈ N,
𝑣𝑛
𝑣𝑛+1

<∞.

Theorem 4.14. Let 𝜌 : [0,+∞[−→ R+ be an admissible weight function such

that the translation 𝐶0-semigroup 𝜏= {𝑇𝑡}𝑡≥0 is distributionally chaotic on

𝐿𝑝𝜌(R+). Then, for every sequence of weights 𝑣 = (𝑣𝑛)𝑛∈N such that there exist

0 < 𝑎 < 𝐴 <∞ with 𝑎𝜌(𝑛− 1) ≤ 𝑣𝑛 ≤ 𝐴𝜌(𝑛), 𝑛 ∈ N, the backward shift 𝐵 is

distributionally chaotic on ℓ𝑝(𝑣).

Proof. Let 𝑆′ be a distributionally scrambled set for 𝜏 . We pick 𝑓 ̸= 𝑔 ∈ 𝑆′

and we define 𝑥𝑛 =
(︁∫︀ 𝑛+1

𝑛 |𝑓(𝑡)− 𝑔(𝑡)|𝑝𝑑𝑡
)︁ 1

𝑝
. Let 𝑥 = (𝑥0, 𝑥1, . . .). Since 𝜌

is an admissible weight function, there exist 𝑚1,𝑀1 > 0 such that 𝑚1𝜌(𝑛) ≤
𝜌(𝑡) ≤𝑀1𝜌(𝑛+ 1), for every 𝑡 ∈ [𝑛, 𝑛+ 1], 𝑛 ≥ 0. Then,

‖𝑥‖𝑝𝑝 =
∞∑︁
𝑛=0

|𝑥𝑛|𝑝𝑣𝑛 ≤
∞∑︁
𝑛=0

(︂∫︁ 𝑛+1

𝑛
|𝑓(𝑡)− 𝑔(𝑡)|𝑝𝑑𝑡

)︂
𝐴𝜌(𝑛)

≤ 𝐴

𝑚1

∫︁ ∞

0
|𝑓(𝑡)− 𝑔(𝑡)|𝑝𝜌(𝑡)𝑑𝑡 ≤ 𝐴

𝑚1
𝑑(𝑓, 𝑔)𝑝 <∞ .
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So we have that 𝑥 ∈ ℓ𝑝(𝑣). Since {𝑇𝑡}𝑡≥0 is distributionally chaotic, 𝑇1 is

distributionally chaotic by Theorem 2.9. Then there exists 𝛿 > 0 such that

dens{𝑘 ≤ 𝑛 ; 𝑑(𝑇 𝑘1 𝑓, 𝑇
𝑘
1 𝑔) < 𝛿} = 0. We also have for each 𝑘 ∈ N that

𝑎

𝑀1
𝑑(𝑇 𝑘+2

1 𝑓, 𝑇 𝑘+2
1 𝑔)𝑝 =

𝑎

𝑀1

∞∑︁
𝑛=0

∫︁ 𝑛+1

𝑛
|𝑓(𝑡+ 𝑘 + 2)− 𝑔(𝑡+ 𝑘 + 2)|𝑝𝜌(𝑡)𝑑𝑡

≤ 𝑎
∞∑︁
𝑛=0

(︂∫︁ 𝑛+1

𝑛
|𝑓(𝑡+ 𝑘 + 2)− 𝑔(𝑡+ 𝑘 + 2)|𝑝𝑑𝑡

)︂
𝜌(𝑛+ 1)

= 𝑎

∞∑︁
𝑛=1

(︂∫︁ 𝑛+1

𝑛
|𝑓(𝑡+ 𝑘 + 1)− 𝑔(𝑡+ 𝑘 + 1)|𝑝𝑑𝑡

)︂
𝜌(𝑛)

≤
∞∑︁
𝑛=1

(︂∫︁ 𝑛+1

𝑛
|𝑓(𝑡+ 𝑘 + 1)− 𝑔(𝑡+ 𝑘 + 1)|𝑝𝑑𝑡

)︂
𝑣𝑛+1

=

∞∑︁
𝑛=2

(︂∫︁ 𝑛+𝑘+1

𝑛+𝑘
|𝑓(𝑠)− 𝑔(𝑠)|𝑝𝑑𝑠

)︂
𝑣𝑛

=
∞∑︁
𝑛=2

|𝑥𝑛+𝑘|𝑝𝑣𝑛 ≤ ‖𝐵𝑘𝑥‖𝑝𝑝 .

So that⃒⃒⃒⃒{︂
𝑘 ≤ 𝑛 ; ‖𝐵𝑘𝑥‖𝑝𝑝 <

𝑎 · 𝛿𝑝

𝑀1

}︂⃒⃒⃒⃒
≤
⃒⃒⃒{︁
𝑘 ≤ 𝑛+ 2 ; 𝑑(𝑇 𝑘1 𝑓, 𝑇

𝑘
1 𝑔) < 𝛿

}︁⃒⃒⃒
.

Therefore there exists 𝛿′ :=
𝛿 · 𝑎1/𝑝

𝑀
1/𝑝
1

> 0, and 𝑥 ̸= 0 such that

lim inf
𝑛→∞

|{𝑘 ≤ 𝑛 : ‖𝐵𝑘𝑥‖𝑝 < 𝛿′}|
𝑛

= 0,

and 𝐵 is distributionally chaotic by [MGOP09, Theorem 5]. y

Remark 4.15. The scrambled set for the operator 𝐵 in the previous theorem

can be obtained as it is shown in the proof of [MGOP09, Theorem 5]. First of

all, we can find increasing sequences (𝑚𝑘)𝑘∈N and (𝑛𝑘)𝑘∈N in N such that⎛⎝ ∞∑︁
𝑗=𝑚𝑘

|𝑥𝑗 |𝑝𝑣𝑗

⎞⎠1/𝑝

<
1

2𝑘
,
𝑚𝑘

𝑛𝑘
<

1

𝑘
, |{𝑠 ≤ 𝑛𝑘 : ‖𝐵𝑠𝑥‖𝑝 < 𝛿}| < 𝑛𝑘

𝑘
. (4.3)
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Now, let us define 𝑧 as follows:

𝑧𝑗 :=

{︃
(2 + 𝑘)𝑥𝑗 , 𝑚𝑘 ≤ 𝑗 < 𝑚𝑘+1,

𝑥𝑗 , 0 < 𝑗 < 𝑚0.

Using (4.3) we obtain that 𝑧 ∈ ℓ𝑝(𝑣). Given 𝑧, we can find a sufficiently fast

increasing sequence (𝑞𝑘)𝑘∈N in N such that, for 𝑧 defined as

𝑧𝑗 :=

{︃
𝑧𝑗 , 𝑞2𝑘−1 ≤ 𝑗 < 𝑞2𝑘, 𝑘 ∈ N,
0, otherwise,

we have that each 𝑘 ∈ N admits 𝑗 = 𝑗(𝑘) so that [𝑚𝑗 , 𝑛𝑗 ] ⊂ [𝑞2𝑘−1, 𝑞2𝑘]. These

elements 𝑧 and 𝑧 verify that 𝑑(𝐵𝑠𝑧,𝐵𝑠𝑧) < 𝛿
2 , for all 𝑠 ∈ [𝑚𝑗 , 𝑛𝑗 ].

Therefore the scrambled set 𝑆 for the backward shift in the previous the-

orem can be chosen as 𝑆 := {𝑧𝛼 := 𝛼𝑧 and 𝛼 ∈ [0, 1]}.

Theorem 4.16. Let 𝑣 = (𝑣𝑛)𝑛∈N be a sequence of positive weights such that

the backward shift 𝐵 is distributionally chaotic on ℓ𝑝(𝑣). Then for every ad-

missible weight function 𝜌 for which there are 0 < 𝑎 < 𝐴 < ∞ satisfying

𝑎𝑣𝑛 ≤ 𝜌(𝑡) ≤ 𝐴𝑣𝑛+1 for every 𝑡 ∈ [𝑛, 𝑛 + 1], the translation 𝐶0-semigroup is

distributionally chaotic on 𝐿𝑝𝜌(R+).

Proof. Let 𝑆 be the scrambled set for 𝐵. For every 𝑥 = (𝑥0, 𝑥1, 𝑥2, . . .) ∈ 𝑆 we

can associate a function 𝑓𝑥 =
∑︀∞

𝑛=0 𝑥𝑛+2𝜒[𝑛,𝑛+1[, which verifies that 𝑇1 acts

on 𝑓𝑥 as the backward shift does on the sequence 𝑥. Clearly, this function 𝑓𝑥

is in 𝐿𝑝𝜌(R+), since

∫︁ ∞

0
|𝑓(𝑡)|𝑝𝜌(𝑡)𝑑𝑡 ≤ 𝐴

∞∑︁
𝑛=0

∫︁ 𝑛+1

𝑛
|𝑥𝑛+2|𝑝𝑣𝑛+1𝑑𝑡 ≤ 𝐴𝑀

∞∑︁
𝑛=0

|𝑥𝑛+2|𝑝𝑣𝑛+2 <∞,

where
𝑣𝑛
𝑣𝑛+1

≤𝑀 <∞ for all 𝑛 ∈ N by the definition of positive weight.
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Let 𝑥, 𝑦 ∈ 𝑆 and 𝑓𝑥, 𝑓𝑦 be the corresponding elements in 𝐿𝑝𝜌(R+). We have

𝑑(𝐵𝑘+2𝑥,𝐵𝑘+2𝑦)𝑝 =

∞∑︁
𝑛=0

|𝑥𝑛+𝑘+2 − 𝑦𝑛+𝑘+2|𝑝𝑣𝑛

=
∞∑︁
𝑛=0

∫︁ 𝑛+1

𝑛
|𝑓𝑥(𝑡+ 𝑘)− 𝑓𝑦(𝑡+ 𝑘)|𝑝𝑣𝑛𝑑𝑡

≤ 1

𝑎

∞∑︁
𝑛=0

∫︁ 𝑛+1

𝑛
|T𝑘1𝑓𝑥(𝑡)− T𝑘1𝑓𝑦(𝑡)|𝑝𝜌(𝑡)𝑑𝑡

=
1

𝑎
𝑑(𝑇 𝑘1 𝑓𝑥, 𝑇

𝑘
1 𝑓𝑦)

𝑝

=
1

𝑎

∞∑︁
𝑛=0

∫︁ 𝑛+1

𝑛
|𝑓𝑥(𝑡+ 𝑘)− 𝑓𝑦(𝑡+ 𝑘)|𝑝𝜌(𝑡)𝑑𝑡

≤ 𝐴

𝑎

∞∑︁
𝑛=0

∫︁ 𝑛+1

𝑛
|𝑓𝑥(𝑡+ 𝑘)− 𝑓𝑦(𝑡+ 𝑘)|𝑝𝑑𝑡 𝑣𝑛+1

=
𝐴

𝑎

∞∑︁
𝑛=0

|𝑥𝑛+𝑘+2 − 𝑦𝑛+𝑘+2|𝑣𝑛+1

≤ 𝐴

𝑎
𝑑(𝐵𝑘+1𝑥,𝐵𝑘+1𝑦)𝑝.

Reasoning as in the proof of Theorem 4.14, we obtain that there exists a 𝛿 > 0

such that for every 𝑓𝑥, 𝑓𝑦 ∈ {𝑓𝑥 ; 𝑥 ∈ 𝑆} with 𝑓𝑥 ̸= 𝑓𝑦 we have

dens({𝑘 ∈ N ; 𝑑(𝑇 𝑘1 𝑓𝑥, 𝑇
𝑘
1 𝑓𝑦) < 𝛿}) = 0.

Then, since

|{𝑘 ≤ 𝑛+ 1 ; 𝑑(𝐵𝑘𝑥,𝐵𝑘𝑦) < 𝜀}| ≤ |{𝑘 ≤ 𝑛 ; 𝑑(𝑇 𝑘1 𝑓𝑥, 𝑇
𝑘
1 𝑓𝑦) < 𝐴1/𝑝𝜀}|,

and 𝐵 is distributionally chaotic with respect to the scrambled set 𝑆, we get

that

dens({𝑘 ∈ N ; 𝑑(𝑇 𝑘1 𝑓𝑥, 𝑇
𝑘
1 𝑓𝑦) < 𝜀}) = 1.

and therefore we conclude that 𝑇1 is distributionally chaotic with a scrambled

set {𝑓𝑥 ; 𝑥 ∈ 𝑆}. y

Remark 4.17. Obviously there exist weights as the ones in Theorems 4.14

and 4.16. In Theorem 4.14 we can define the weights 𝑣𝑛 := 𝜌(𝑛) for each

𝑛 ∈ N. In Theorem 4.16 we can take for instance the polygonal formed by the

sequence 𝑣 as an admissible weight function.





Chapter 5

Completely distributionally chaotic

𝐶0-semigroups

In [MGOP12], Mart́ınez-Giménez et al. give an example of a completely dis-

tributionally chaotic operator, consequently proving that there exist cases in

which the space 𝑋 is a scrambled set. They also provide an example of a non

hypercyclic completely distributionally chaotic operator, as well as sufficient

conditions for the bilateral forward and backward shifts for being completely

distributionally chaotic.

In this chapter, we will broaden the results from [MGOP12], exporting

them to the 𝐶0-semigroup setting, providing a detailed proof. With this mo-

tivation, we begin by looking for the existence of completely distributionally

irregular 𝐶0-semigroups .

Theorem 5.1. Let 𝜌 : R → R be an admissible weight in the sense of [DSW97]

that satisfies additionally the following conditions:

(i) there are sequences of integers (𝑛𝑗)𝑗∈Z and (𝑚𝑗)𝑗∈Z with 𝑛𝑗 < 𝑚𝑗 < 𝑛𝑗+1,

𝑗 ∈ Z, such that the supremum of the slope of 𝜌 outside the interval

[𝑚−𝑘,𝑚𝑘−1] satisfies (for every 𝑘 ∈ N):

𝑆𝑘 := sup

{︂
𝜌(𝑡)

𝜌(𝑡− 1)
; 𝑡 ̸∈ [𝑚−𝑘 + 1,𝑚𝑘−1]

}︂
∈]1,+∞[,
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(ii) there exists 𝐷 > 1 such that 𝐷𝜌(𝑚−𝑗) ≥ 𝜌(𝑠) for every 𝑠 ∈ [𝑚−𝑗 ,𝑚𝑗−1]

and that, for every 𝜀 > 0, we find 𝑘 ∈ N with 𝜌(𝑛𝑘) < 𝜀 and

𝑆
𝑘(𝑛𝑘−𝑚−𝑘)
𝑘 ≤ min

{︂
𝐷,

min{𝜌(𝑠); 𝑚−𝑘 ≤ 𝑠 ≤ 𝑚𝑘−1}
𝜌(𝑛𝑘)

}︂
,

(iii) for every 𝑁 ∈ N, we can find 𝑘 ∈ N such that 𝜌(𝑠) > 𝑁 , for 𝑘 ≤ 𝑠 ≤ 𝑁𝑘.

Then the forward translation semigroup F = (𝐹𝑡)𝑡≥0 on 𝐿
𝑝
𝜌(R), which is defined

by (𝐹𝑡𝑓)(𝑥) = 𝑓(𝑥− 𝑡), 𝑡 ≥ 0, 𝑥 ∈ R, is completely distributionally irregular.

Proof. We first outline the proof. We will show that for every non-zero 𝑓 ∈
𝐿𝑝𝜌(R), 𝛿 > 0, and 𝑙 ∈ [𝑛𝑘−𝑚−𝑘, 𝑘(𝑛𝑘−𝑚−𝑘)], with 𝑘 ∈ N satisfying condition

(𝑖𝑖), we obtain ‖𝐹𝑙𝑥‖𝑝 < 𝛿 (Steps 1 and 2). Later, we will construct the sets of

upper density 1, 𝐴 and 𝐵, that appear in the statement of Proposition 2.15,

thus proving that 𝑓 is distributionally irregular for (𝐹𝑡)𝑡≥0 (Step 3).

Let 𝑓 ∈ 𝐿𝑝𝜌(R) be an arbitrary non-zero vector. Let𝑀,𝜔 ∈ R, with𝑀 ≥ 1,

be such that 𝜌(𝑡) ≤ 𝑀𝑒𝜔𝜏𝜌(𝑡 + 𝜏). Define 𝐶 := 𝑀 max{1, 𝑒𝜔}. Given 𝐷 > 1

satisfying condition (ii), and an arbitrary 𝛿 > 0, we fix 𝑚 ∈ N such that∫︁
R∖[−𝑚,𝑚]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥 < 𝛿

2𝐶𝐷2
.

Next we take 𝑘 ∈ N satisfying condition (ii) with 𝜀 := 𝛿
min{𝜌(𝑠); |𝑠| ≤ 𝑚}

2𝐶𝐷 ‖𝑓‖𝑝𝑝
,

and such that [−𝑚,𝑚] ⊂]𝑚−𝑘,𝑚𝑘−1[.

Step 1. For any 𝑙 ∈ [𝑛𝑘 −𝑚−𝑘, 𝑘(𝑛𝑘 −𝑚−𝑘)] ∩ N we have

‖𝐹𝑙𝑓‖𝑝𝑝 =
∫︁
R
|𝑓(𝑦 − 𝑙)|𝑝𝜌(𝑦)𝑑𝑦 =

∫︁
R
|𝑓(𝑥)|𝑝𝜌(𝑥+ 𝑙)𝑑𝑥

=

∫︁
R
|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌(𝑥+ 𝑙)

𝜌(𝑥)
𝑑𝑥,

which can be split into the following three integrals:∫︁
𝑥∈[𝑚−𝑘,𝑚𝑘−1]
𝑥/∈[−𝑚,𝑚]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌(𝑥+ 𝑙)

𝜌(𝑥)
𝑑𝑥+

∫︁
𝑥/∈[𝑚−𝑘,𝑚𝑘−1]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌(𝑥+ 𝑙)

𝜌(𝑥)
𝑑𝑥

+

∫︁
𝑥∈[−𝑚,𝑚]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌(𝑥+ 𝑙)

𝜌(𝑥)
𝑑𝑥.

(5.1)
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Step 1.1. We start with the first integral from (5.1),∫︁
𝑥∈[𝑚−𝑘,𝑚𝑘−1]
𝑥/∈[−𝑚,𝑚]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌(𝑥+ 𝑙)

𝜌(𝑥)
𝑑𝑥 ≤

≤
∫︁
𝑥∈[𝑚−𝑘,𝑚𝑘−1]
𝑥/∈[−𝑚,𝑚]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥max

{︂
𝜌(𝑥+ 𝑙)

𝜌(𝑥)
; 𝑥 ∈ [𝑚−𝑘,𝑚𝑘−1]

}︂
= (*).

It is clear that the second factor from (*) can be bounded by the following

inequality

max

{︂
𝜌(𝑥+ 𝑙)

𝜌(𝑥)
; 𝑥 ∈ [𝑚−𝑘,𝑚𝑘−1]

}︂
≤ max{𝜌(𝑥+ 𝑙); 𝑥 ∈ [𝑚−𝑘,𝑚𝑘−1]}

min{𝜌(𝑥); 𝑥 ∈ [𝑚−𝑘,𝑚𝑘−1]}
.

For every 𝑥 ∈ [𝑚−𝑘,𝑚𝑘−1] we have that

𝜌(𝑥+ 𝑙) = 𝜌(𝑛𝑘)
𝜌(𝑥+ 𝑙)

𝜌(𝑛𝑘)
= 𝜌(𝑛𝑘)

𝜌(𝑥+ 𝑙)

𝜌([𝑥+ 𝑙] + 1)

[𝑥+𝑙]∏︁
𝑖=𝑛𝑘

𝜌(𝑖+ 1)

𝜌(𝑖)
.

Therefore

(*) ≤
𝐶𝑆𝑙𝑘

min{𝜌(𝑥); 𝑥 ∈ [𝑚−𝑘,𝑚𝑘−1]}
𝜌(𝑛𝑘)

∫︁
𝑥∈[𝑚−𝑘,𝑚𝑘−1]
𝑥/∈[−𝑚,𝑚]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥 ≤

≤ 𝐶

∫︁
𝑥∈[𝑚−𝑘,𝑚𝑘−1]
𝑥/∈[−𝑚,𝑚]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥.

(5.2)

Step 1.2. For the second integral from (5.1) we will decompose the complemen-

tary of [𝑚−𝑘,𝑚𝑘−1] as follows:

R ∖ [𝑚−𝑘,𝑚𝑘−1] =

=]−∞,𝑚−𝑘 − 𝑙[∪[𝑚−𝑘 − 𝑙,𝑚𝑘−1 − 𝑙[∪[𝑚𝑘−1 − 𝑙,𝑚−𝑘[∪]𝑚𝑘−1,∞[.

For 𝑥 in the intervals ]−∞,𝑚−𝑘− 𝑙[ and ]𝑚𝑘−1,∞[, 𝑥+ 𝑙 ̸∈]𝑚−𝑘,𝑚𝑘−1],

therefore, by condition (i) we obtain∫︁
]𝑚𝑘−1,∞[∪
]−∞,𝑚−𝑘−𝑙[

|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌(𝑥+ 𝑙)

𝜌(𝑥)
𝑑𝑥 ≤

≤
∫︁

]𝑚𝑘−1,∞[∪
]−∞,𝑚−𝑘−𝑙[

|𝑓(𝑥)|𝑝𝜌(𝑥)
𝑙∏︁

𝑖=1

𝜌(𝑥+ 𝑖)

𝜌(𝑥+ 𝑖− 1)
𝑑𝑥 ≤

∫︁
]𝑚𝑘−1,∞[∪
]−∞,𝑚−𝑘−𝑙[

|𝑓(𝑥)|𝑝𝜌(𝑥)𝑆𝑙𝑘.
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For 𝑥 in the interval [𝑚−𝑘−𝑙,𝑚𝑘−1−𝑙[, it follows from 𝑥+𝑙 ∈ [𝑚−𝑘,𝑚𝑘−1[

that condition (ii) yields
𝜌(𝑥+ 𝑙)

𝜌(𝑚−𝑘)
≤ 𝐷. From the election of 𝑙, we have

that 𝑥 is at most 𝑚−𝑘 +𝑚𝑘−1 − 𝑛𝑘, so [𝑥] ≤ 𝑥 < 𝑚−𝑘. Consequently,

by condition (i),

𝜌(𝑚−𝑘)

𝜌([𝑥])
=

𝑚−𝑘−[𝑥]∏︁
𝑖=1

𝜌([𝑥] + 𝑖)

𝜌([𝑥] + 𝑖− 1)
≤ 𝑆

𝑚−𝑘−[𝑥]
𝑘 < 𝑆𝑙𝑘.

Thus, by the definition of 𝐶 we get∫︁ 𝑚𝑘−1−𝑙

𝑚−𝑘−𝑙
|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌(𝑥+ 𝑙)

𝜌(𝑥)
𝑑𝑥 =

=

∫︁ 𝑚𝑘−1−𝑙

𝑚−𝑘−𝑙
|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌([𝑥])

𝜌(𝑥)

𝜌(𝑚−𝑘)

𝜌([𝑥])

𝜌(𝑥+ 𝑙)

𝜌(𝑚−𝑘)
𝑑𝑥

≤
∫︁ 𝑚𝑘−1−𝑙

𝑚−𝑘−𝑙
|𝑓(𝑥)|𝑝𝜌(𝑥)𝐶𝑆𝑙𝑘𝐷𝑑𝑥,

We can proceed analogously to bound the integral on the interval [𝑚𝑘−1−
𝑙,𝑚−𝑘[. With the following decomposition

𝜌(𝑥+ 𝑙)

𝜌(𝑥)
=
𝜌([𝑥])

𝜌(𝑥)

𝜌(𝑚−𝑘)

𝜌([𝑥])

𝜌(𝑥+𝑚𝑘−1 − ([𝑥] + 1))

𝜌(𝑚−𝑘)

𝜌(𝑥+ 𝑙)

𝜌(𝑥+𝑚𝑘−1 − ([𝑥] + 1))

it is easily seen that∫︁ 𝑚−𝑘

𝑚𝑘−1−𝑙
|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌(𝑥+ 𝑙)

𝜌(𝑥)
𝑑𝑥 ≤

≤
∫︁ 𝑚−𝑘

𝑚𝑘−1−𝑙
|𝑓(𝑥)|𝑝𝜌(𝑥)𝐶𝑆𝑚−𝑘−[𝑥]

𝑘 𝐷𝑆
𝑙−𝑚𝑘−1+[𝑥]+1
𝑘 𝑑𝑥

≤
∫︁ 𝑚−𝑘

𝑚𝑘−1−𝑙
|𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥

(︁
𝐶𝐷𝑆𝑙𝑘

)︁
.

In consequence, since by condition (ii), 𝑆𝑙𝑘 ≤ 𝐷 and, as 𝐷,𝐶 ≥ 1, we

have ∫︁
𝑥/∈[𝑚−𝑘,𝑚𝑘−1]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌(𝑥+ 𝑙)

𝜌(𝑥)
𝑑𝑥 ≤

∫︁
𝑥/∈[𝑚−𝑘,𝑚𝑘−1]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥
(︀
𝐶𝐷2

)︀
.

(5.3)
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Step 1.3. To bound the third integral from (5.1), using condition (ii) and by the

definition of 𝜀, we get∫︁ 𝑚

−𝑚
|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌(𝑥+ 𝑙)

𝜌(𝑥)
𝑑𝑥 ≤

∫︁ 𝑚

−𝑚
|𝑓(𝑥)|𝑝𝜌(𝑥)

𝜌(𝑛𝑘)𝐶𝑆
𝑘(𝑛𝑘−𝑚−𝑘)
𝑘

min{𝜌(𝑠); |𝑠| ≤ 𝑚}
𝑑𝑥

<
‖𝑓‖𝑝𝑝𝐶𝐷

min{𝜌(𝑠); |𝑠| ≤ 𝑚}
𝜀 ≤ 𝛿

2
.

Step 1.4. We combine (5.2) and (5.3), thus bounding the first two integrals from

(5.1). Since R ∖ [−𝑚,𝑚] = ([𝑚−𝑘,𝑚𝑘−1] ∖ [−𝑚,𝑚])∪ (R ∖ [𝑚−𝑘,𝑚𝑘−1]),

and we see that∫︁
𝑥∈[𝑚−𝑘,𝑚𝑘−1]
𝑥/∈[−𝑚,𝑚]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌(𝑥+ 𝑙)

𝜌(𝑥)
𝑑𝑥+

∫︁
𝑥/∈[𝑚−𝑘,𝑚𝑘−1]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝜌(𝑥+ 𝑙)

𝜌(𝑥)
𝑑𝑥

≤ 𝐶

∫︁
𝑥∈[𝑚−𝑘,𝑚𝑘−1]
𝑥/∈[−𝑚,𝑚]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥+ 𝐶𝐷2

∫︁
𝑥/∈[𝑚−𝑘,𝑚𝑘−1]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥

≤ 𝐶

∫︁
𝑥/∈[−𝑚,𝑚]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥+ (𝐷2 − 1)𝐶

∫︁
𝑥/∈[𝑚−𝑘,𝑚𝑘−1]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥

≤ 𝐶𝐷2

∫︁
𝑥/∈[−𝑚,𝑚]

|𝑓(𝑥)|𝑝𝜌(𝑥)𝑑𝑥 < 𝛿

2
,

by the selection of 𝑚.

So that, with the estimation obtained in Step 1.3, it follows that

‖𝐹𝑙𝑓‖𝑝𝑝 =
∫︁
R
|𝑓(𝑦 − 𝑙)|𝑝𝜌(𝑦)𝑑𝑦 < 𝛿

2
+
𝛿

2
= 𝛿.

Step 2. If 𝑙 ∈ [𝑛𝑘 − 𝑚−𝑘, 𝑘(𝑛𝑘 − 𝑚−𝑘)] ∖ N, then the definition of 𝐶, which is

nothing more than local equicontinuity, gives

‖𝐹𝑙𝑓‖𝑝𝑝 =
∫︁
R
|𝑓(𝑦 − 𝑙)|𝑝𝜌(𝑦)𝑑𝑦 =

∫︁
R
|𝑓(𝑥)|𝑝𝜌(𝑥+ 𝑙)𝑑𝑥 =

=𝐶

∫︁
R
|𝑓(𝑥)|𝑝𝜌(𝑥+ [𝑙] + 1)𝑑𝑥.

As [𝑙] + 1 ∈ [𝑛𝑘 −𝑚−𝑘, 𝑘(𝑛𝑘 −𝑚−𝑘)] ∩ N, we can proceed in the same

manner as Step 1, and so ‖𝐹𝑙𝑓‖𝑝𝑝 < 𝐶𝛿.

Step 3. Now we are going to construct the sets 𝐴 and 𝐵 of upper density 1 that

appear in the statement of Proposition 2.15, thus getting that 𝑓 is a

distributionally irregular vector for F.
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Step 3.1 Since we have proved that for any arbitrary 𝛿 > 0 we can construct

a sequence decreasing to zero (𝛿𝑗)𝑗∈N such that ‖𝐹𝑙𝑓‖𝑝𝑝 < 𝛿𝑗 for every

𝑗 ∈ N, and we define the sequence (𝜀𝑗)𝑗∈N by 𝜀𝑗 := 𝛿𝑗
min{𝜌(𝑠); |𝑠| ≤ 𝑚}

2𝐶𝐷 ‖𝑓‖𝑝𝑝
.

By condition (ii), we obtain a sequence of (𝑘𝑗)𝑗∈N such that 𝜌(𝑛𝑘𝑗 ) < 𝜀𝑗 .

If necessary, we can consider this sequence to be strictly increasing. We

define the set 𝐴 ⊂ R+
0 as follows:

𝐴 :=
⋃︁
𝑖∈N

[𝑛𝑘𝑖 −𝑚−𝑘𝑖 , 𝑘𝑖(𝑛𝑘𝑖 −𝑚−𝑘𝑖)].

If we set (𝑡𝑖)𝑖∈N := (𝑘𝑖(𝑛𝑘𝑖 −𝑚−𝑘𝑖))𝑖∈N, we have that for any 𝑖 ∈ N

𝜇(𝐴 ∩ [0, 𝑘𝑖(𝑛𝑘𝑖 −𝑚−𝑘𝑖)])

𝑡𝑖
≥ 𝜇([𝑛𝑘𝑖 −𝑚−𝑘𝑖 , 𝑘𝑖(𝑛𝑘𝑖 −𝑚−𝑘𝑖)])

𝑡𝑖

=
(𝑘𝑖 − 1)(𝑛𝑘𝑖 −𝑚−𝑘𝑖)

𝑘𝑖(𝑛𝑘𝑖 −𝑚−𝑘𝑖)
=

(𝑘𝑖 − 1)

𝑘𝑖
.

Consequently,

lim
𝑖→∞
𝑖∈N

𝜇(𝐴 ∩ [0, 𝑡𝑖])

𝑡𝑖
≥ lim

𝑘𝑖→∞
𝑖∈N

𝑘𝑖 − 1

𝑘𝑖
= 1.

Therefore we have that Dens(𝐴) = 1 and lim
𝑠→∞
𝑠∈𝐴

‖𝐹𝑠𝑓‖𝑝 = 0.

Step 3.2 Now, since 𝑓 ̸= 0, there are 𝑖0 ∈ R, 𝜏 ∈ R+ such that
∫︀ 𝑖0+𝜏
𝑖0

|𝑓(𝑠)|𝑝𝑑𝑠 ̸= 0.

By condition (iii), given any 𝑁 ∈ N there is 𝑘 ∈ N such that 𝜌(𝑠) > 𝑁

for all 𝑠 ∈ [𝑘,𝑁𝑘]. Since sup𝑠∈[𝑘,𝑁𝑘] 𝜌(𝑠) <∞, without loss of generality

we may assume that 𝑘 > 𝑖0. By the arbitrarity of 𝑁 we can construct

sequences (𝑁𝑗)𝑗∈N, (𝑘𝑗)𝑗∈N tending to infinity such that 𝜌(𝑠) > 𝑁𝑗 for

all 𝑠 ∈ [𝑘𝑗 , 𝑁𝑗𝑘𝑗 ].

We define the set 𝐵 =
⋃︀
𝑗∈N[𝑘𝑗 − 𝑖0, 𝑘𝑗𝑁𝑗 − (𝑖0 + 𝜏)] ⊂ R. Let us see

that Dens(𝐵) = 1: Take the sequence (𝑡𝑗)𝑗∈N := (𝑘𝑗𝑁𝑗 − (𝑖0 + 𝜏))𝑗∈N.

For every 𝑗 ∈ N we have

𝜇(𝐵 ∩ [0, 𝑘𝑗𝑁𝑗 − (𝑖0 + 𝜏)]

𝑡𝑗
≥ 𝜇([𝑘𝑗 − 𝑖0, 𝑘𝑗𝑁𝑗 − (𝑖0 + 𝜏)]

𝑡𝑗

=

𝑘𝑗

(︂
𝑁𝑗 −

𝜏

𝑘𝑗
− 1

)︂
𝑘𝑗𝑁𝑗 − (𝑖0 + 𝜏)

=

𝑁𝑗 −
𝜏

𝑘𝑗
− 1

𝑁𝑗 −
(𝑖0 + 𝜏)

𝑘𝑗

,
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and hence

lim
𝑗∈N

𝜇(𝐵 ∩ [0, 𝑡𝑗)])

𝑡𝑗
≥ lim

𝑗∈N

𝑁𝑗 −
𝜏

𝑘𝑗
− 1

𝑁𝑗 −
(𝑖0 + 𝜏)

𝑘𝑗

= 1.

Therefore lim
𝑠→∞
𝑠∈𝐵

‖𝐹𝑠𝑓‖𝑝 = ∞ and hence 𝑓 is distributionally irregular for

(𝐹𝑡)𝑡≥0. y

Remark 5.2. We can obtain an analogous result for the translation semigroup

considering the isometry 𝜙 : 𝐿𝑝𝜌(R) −→ 𝐿𝑝𝜙(𝜌)(R), where 𝜙(𝑓(𝑥)) = 𝑓(−𝑥).
Note that with 𝜙, the following diagram commutes:

𝐿𝑝𝜌(R)

	𝜙

��

𝑇𝑡 // 𝐿𝑝𝜌(R)

𝜙

��
𝐿𝑝𝜙(𝜌)(R) 𝐹𝑡

// 𝐿𝑝𝜙(𝜌)(R),

(5.4)

therefore 𝜙 conjugates F to 𝜏 .

Corollary 5.3. Let 𝜓 : R → R be and admissible weight that satisfies the

following conditions:

(i) There are sequences of integers (𝑢𝑗)𝑗∈Z and (𝑣𝑗)𝑗∈Z with 𝑣𝑗 < 𝑢𝑗 <

𝑣𝑗+1, 𝑗 ∈ Z, such that the infimum of the slope of 𝜌 outside the interval

[𝑢−𝑘, 𝑢𝑘−1] satisfies (for every 𝑘 ∈ N):

𝑠𝑘 := inf

{︂
𝜓(𝑡+ 1)

𝜓(𝑡)
; 𝑡 ̸∈ [𝑢−𝑘, 𝑢𝑘−1 − 1]

}︂
∈]0, 1[,

(ii) there exists 𝐷 > 1 such that 𝐷𝜓(𝑢𝑗−1) ≥ 𝜓(𝑟) for every 𝑟 ∈ [𝑢−𝑗 , 𝑢𝑗−1]

and that, for every 𝜀 > 0, we find 𝑘 ∈ N with 𝜓(𝑣−𝑘) < 𝜀 and

𝑠
𝑘(𝑣−𝑘−𝑢𝑘−1)
𝑘 ≤ min

{︂
𝐷,

min{𝜓(𝑟); 𝑢−𝑘 ≤ 𝑟 ≤ 𝑢𝑘−1}
𝜓(𝑣−𝑘)

}︂
, (5.5)

(iii) for every 𝑁 ∈ N, we can find 𝑘 ∈ N such that 𝜓(𝑟) > 𝑁 , for −𝑁𝑘 ≤
𝑟 ≤ −𝑘.
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Then the translation semigroup 𝜏= {𝑇𝑡}𝑡≥0 on 𝐿𝑝𝜓(R) is completely distribu-

tionally irregular.

Proof. Note that 𝜙−1 = 𝜙. Take 𝜌 := 𝜙(𝜓), 𝑢𝑘 = −𝑚(−𝑘)−1 and 𝑣𝑘 = −𝑛−𝑘
for every 𝑘 ∈ Z. Then 𝑛𝑗 < 𝑚𝑗 < 𝑛𝑗+1, for 𝑗 ∈ Z and, since

inf

{︂
𝜓(𝑡+ 1)

𝜓(𝑡)
; 𝑡 ̸∈ [𝑢−𝑘, 𝑢𝑘−1 − 1]

}︂
=

= inf

{︂
𝜓(𝑡+ 1)

𝜓(𝑡)
; 𝑡 ̸∈ [−𝑚𝑘−1,−𝑚−𝑘 − 1]

}︂
= inf

{︂
𝜓(−𝑟 + 1)

𝜓(−𝑟)
; −𝑟 ̸∈ [−𝑚𝑘−1,−𝑚−𝑘 − 1]

}︂
= inf

{︂
𝜓(−𝑟 + 1)

𝜓(−𝑟)
; 𝑟 ̸∈ [𝑚−𝑘 + 1,𝑚𝑘−1]

}︂
= inf

{︂
𝜌(𝑟 − 1)

𝜌(𝑟)
; 𝑟 ̸∈ [𝑚−𝑘 + 1,𝑚𝑘−1]

}︂

= inf

⎧⎨⎩ 1
𝜌(𝑟)
𝜌(𝑟−1)

; 𝑟 ̸∈ [𝑚−𝑘 + 1,𝑚𝑘−1]

⎫⎬⎭
=

1

sup
{︁

𝜌(𝑟)
𝜌(𝑟−1) ; 𝑟 ̸∈ [𝑚−𝑘 + 1,𝑚𝑘−1]

}︁ ,
we have that 𝑠𝑘 = 𝑆−1

𝑘 and if 𝑠𝑘 ∈]0, 1[, then 𝑆𝑘 ∈]1,+∞[.

By assumption there exists 𝐷 > 1 such that 𝐷𝜓(𝑢𝑗−1) ≥ 𝜓(𝑟) for every

𝑟 ∈ [𝑢−𝑗 , 𝑢𝑗−1]. By the definition of 𝜌, we have that 𝐷𝜌(−𝑢𝑗−1) ≥ 𝜌(−𝑟) for

every −𝑟 ∈ [−𝑢𝑗−1,−𝑢−𝑗 ]. Replacing 𝑢𝑗 by −𝑚(−𝑗)−1 and 𝑟 by −𝑠, we obtain
that 𝐷𝜌(𝑚−𝑘) ≥ 𝜌(𝑠) for every 𝑠 ∈ [𝑚−𝑗 ,𝑚𝑗−1].

Obviously, 𝜌(𝑛𝑘) = 𝜓(𝑣−𝑘) and therefore for every 𝜀 there is a 𝑘 such that

𝜌(𝑛𝑘) < 𝜀. We can repeat the same substitutions in (5.5). First we take

𝜌 := 𝜙(𝜓), 𝑢𝑘 = −𝑚(−𝑘)−1 and 𝑣𝑘 = −𝑛−𝑘 for every 𝑘 ∈ Z, so from

𝑠
𝑘(𝑣−𝑘−𝑢𝑘−1)
𝑘 ≤ min

{︂
𝐷,

min{𝜓(𝑟); 𝑢−𝑘 ≤ 𝑟 ≤ 𝑢𝑘−1}
𝜓(𝑣−𝑘)

}︂
,

we obtain

𝑠
𝑘(−𝑛𝑘+𝑚−𝑘)
𝑘 ≤ min

{︂
𝐷,

min{𝜌(−𝑟); −𝑚𝑘−1 ≤ −𝑟 ≤ −𝑚−𝑘}
𝜌(𝑛𝑘)

}︂
.
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Then we replace 𝑟 by −𝑠, thus getting

𝑠
−𝑘(𝑛𝑘−𝑚−𝑘)
𝑘 ≤ min

{︂
𝐷,

min{𝜌(𝑠); 𝑚−𝑘 ≤ 𝑠 ≤ 𝑚𝑘−1}
𝜌(𝑛𝑘)

}︂
.

Finally, since 𝑠𝑘 = 𝑆−1
𝑘 we conclude that

𝑆
𝑘(𝑛𝑘−𝑚−𝑘)
𝑘 ≤ min

{︂
𝐷,

min{𝜌(𝑠); 𝑚−𝑘 ≤ 𝑠 ≤ 𝑚𝑘−1}
𝜌(𝑛𝑘)

}︂
.

It suffices to make the following observation. If for every 𝑁 ∈ N, we can

find 𝑘 ∈ N such that 𝜓(𝑟) > 𝑁 , for −𝑁𝑘 ≤ 𝑟 ≤ −𝑘, the definition of 𝜌 and

taking 𝑠 = −𝑟 yield that 𝜌(𝑠) > 𝑁 for 𝑘 ≤ 𝑠 ≤ 𝑁𝑘; which completes the proof

since 𝜌 satisfies the conditions of Theorem 5.1. y

For the following example, the sequences (𝑛𝑗)𝑗∈Z and (𝑚𝑗)𝑗∈Z with 𝑛𝑗 <

𝑚𝑗 < 𝑛𝑗+1, 𝑗 ∈ Z are such that for every 𝑡 ∈ R we have:

𝜌(𝑡−1) ≤ 𝜌(𝑡) when 𝑛𝑘 < 𝑡 ≤ 𝑚𝑘, and 𝜌(𝑡−1) ≥ 𝜌(𝑡) when 𝑚𝑘 < 𝑡 ≤ 𝑛𝑘+1.

Example 5.4. We will choose 𝜌 such that F and 𝜏 are completely distri-

butionally irregular on 𝐿𝑝𝜌(R) but F is not hypercyclic. First, we put some

general conditions which will lead to inductively construct sequences of inte-

gers (𝑚𝑘)𝑘∈Z and (𝑛𝑘)𝑘∈Z with the desired properties. We will require that

sequences (𝑚𝑘)𝑘∈Z, (𝑛𝑘)𝑘∈Z increase fast enough so that they satisfy the fol-

lowing conditions (Fig. 5.1):

a) 𝑚0 = 1, 𝑛1 = 𝑒2, 𝜌(𝑚0) = 𝑒, 𝜌(𝑛1) = 𝑒−2,

b) 𝜌(𝑛𝑘) = 𝑒−2𝑘, 𝜌(𝑚𝑘) = 𝑒2𝑘+1, 𝑘 ∈ N, 𝜌(𝑠)/𝜌(𝑠 − 1) = 𝜌(𝑡)/𝜌(𝑡 − 1) if

𝑠, 𝑡 ∈ [𝑛𝑘 + 1,𝑚𝑘], or if 𝑠, 𝑡 ∈ [𝑚𝑘−1 + 1, 𝑛𝑘], 𝑘 ∈ N,

c) 𝑚𝑘 − 𝑛𝑘 > 2(𝑚𝑘−1 − 𝑛𝑘−1), 𝑛𝑘+1 −𝑚𝑘 > 2(𝑛𝑘 −𝑚𝑘−1), 𝑘 ∈ N, and

d) 𝜌(−𝑡) = 𝜌(𝑡)−1, 𝑡 ∈ R+, 𝑚𝑘 = −𝑛−𝑘, 𝑘 ∈ Z.

We will define our weight function as follows:

𝜌(𝑡) :=

⎧⎨⎩𝑒−2𝑘𝑒
(𝑡−𝑛𝑘)(4𝑘+1)

𝑚𝑘−𝑛𝑘 , for 𝑡 ∈ [𝑛𝑘,𝑚𝑘];

𝑒2𝑘+1𝑒
(𝑡−𝑚𝑘)(4𝑘+3)

𝑛𝑘+1−𝑚𝑘 , for 𝑡 ∈ [𝑚𝑘, 𝑛𝑘+1].
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Now we have two goals: to check if this weight function satisfies the conditions

in Theorem 5.1 and Corollary 5.3, and to be able of construct the sequences

(𝑚𝑘)𝑘∈Z and (𝑛𝑘)𝑘∈Z.

Observe that condition (b) yields that, for every 𝑘 ∈ Z, 𝜌(𝑛𝑘) will be a local
minimum, 𝜌(𝑚𝑘) will be a local maximum, and therefore, 𝜌(𝑡) will increase

from 𝑛𝑘 to 𝑚𝑘 and decrease from 𝑚𝑘 to 𝑛𝑘+1. Then (d) gives that

min{𝜌(𝑠); 𝑚−𝑘 ≤ 𝑠 ≤ 𝑚𝑘−1}
𝜌(𝑛𝑘)

=
𝜌(𝑛−𝑘+1)

𝜌(𝑛𝑘)
= 𝑒

for every 𝑘 ∈ N.
By condition (c) the slope of 𝜌 in the interval [𝑛𝑘+1,𝑚𝑘+1] is(︂

𝜌(𝑚𝑘+1)

𝜌(𝑛𝑘+1)

)︂ 𝑡−𝑛𝑘+1
𝑚𝑘+1−𝑛𝑘+1

= 𝑒
4𝑘+5

𝑚𝑘+1−𝑛𝑘+1 < 𝑒
4𝑘+5

2(𝑚𝑘−𝑛𝑘) < 𝑒
4𝑘+1

𝑚𝑘−𝑛𝑘 .

that is the slope in the interval [𝑛𝑘,𝑚𝑘]. So the supremum of the slope of

𝜌 outside the interval [𝑚−𝑘,𝑚𝑘−1] is 𝑆𝑘 = 𝜌(𝑡)/𝜌(𝑡 − 1) for any 𝑛𝑘 + 1 ≤
𝑡 ≤ 𝑚𝑘, 𝑘 ∈ N. In order to fulfil conditions (i) and (ii) in Theorem 5.1, we

set 𝐷 = 𝑒 and 𝑆𝑘 = 𝑒1/𝑘(𝑛𝑘−𝑚−𝑘) = 𝑒1/2𝑘𝑛𝑘 , 𝑘 ∈ N. Consequently we get

𝑆𝑚𝑘−𝑛𝑘
𝑘 = 𝜌(𝑚𝑘)/𝜌(𝑛𝑘) = 𝑒4𝑘+1, which implies 𝑚𝑘 = (8𝑘2 +2𝑘+1)𝑛𝑘, 𝑘 ∈ N.

Analogously,
min{𝜌(𝑠); 𝑚−𝑘 ≤ 𝑠 ≤ 𝑚𝑘}

𝜌(𝑛−𝑘)
=

𝜌(𝑛𝑘)

𝜌(𝑛−𝑘)
= 𝑒 for every 𝑘 ∈ N, and

the infimum of the slope outside the interval [𝑚−𝑘,𝑚𝑘−1] is 𝑠𝑘 =
𝜌(𝑡)

𝜌(𝑡− 1)
= 𝑒

for every 𝑚𝑘 + 1 ≤ 𝑡 ≤ 𝑛𝑘+1, 𝑘 ∈ N. Again to have condition (i) and (ii)

in Corollary 5.3, we set 𝐷 = 𝑒, 𝑠𝑘 = 𝑒1/𝑘(𝑛−𝑘−𝑚𝑘) = 𝑒1/(2𝑘𝑚𝑘), 𝑘 ∈ N. Thus

𝑠
𝑛𝑘+1−𝑚𝑘

𝑘 =
𝜌(𝑛𝑘+1)

𝜌(𝑚𝑘)
= 𝑒−4𝑘−3, and hence we get 𝑛𝑘+1 = (8𝑘2 + 6𝑘 + 1)𝑚𝑘,

𝑘 ∈ N. This allows us to construct inductively the sequences (𝑚𝑘)𝑘∈Z and

(𝑛𝑘)𝑘∈Z. Now it is easy to check that taking 𝑀,𝜔 = 1, 𝜌 is an admissible

weight function.

To check condition (iii) in Theorem 5.1, we observe that

𝜌(𝑡) = 𝑒2𝑘+1𝑠𝑡−𝑚𝑘
𝑘 = 𝑒2𝑘+1𝑒

− 𝑡−𝑚𝑘
2𝑘𝑚𝑘 > 𝑒2𝑘 if 𝑚𝑘 ≤ 𝑡 ≤ 2𝑘𝑚𝑘.
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Figure 5.1: Example 5.4

To check condition (iii) in Corollary 5.3, we first note that if 𝑡 ∈ [𝑛−𝑘,𝑚−𝑘],

then 𝜌(𝑡) = 𝜌(𝑗)−1 for −𝑡 = 𝑗 ∈ [𝑛𝑘,𝑚𝑘], so

𝜌(𝑗) = 𝑒−2𝑘𝑆𝑗−𝑛𝑘
𝑘 = 𝑒−2𝑘𝑒

𝑗−𝑛𝑘
2𝑘𝑛𝑘 ≤ 𝑒−2𝑘𝑒

(2𝑘−1)𝑛𝑘
2𝑘𝑛𝑘 if 𝑛𝑘 ≤ 𝑗 ≤ 2𝑘𝑛𝑘.

Therefore

𝜌(𝑡) ≥ 𝑒2𝑘−1𝑒
1
2𝑘 > 𝑒2𝑘−1 if 2𝑘𝑚−𝑘 ≤ 𝑡 ≤ 𝑚−𝑘.

This implies that all the conditions in Theorem 5.1 and Corollary 5.3 are

satisfied and so F and 𝜏 are completely distributionally irregular. Finally,

since 𝜌(𝑡) = 𝜌(−𝑡−1) for every 𝑡 ∈ R+, there is no increasing sequence (𝑡𝑗)𝑗∈N

tending to ∞ such that

lim
𝑗→∞

𝜌(𝑡𝑗) = lim
𝑗→∞

𝜌(−𝑡𝑗) = 0.

Therefore it cannot be hypercyclic, by Theorem 4.4.





Chapter 6

Examples of distributionally chaotic

𝐶0-semigroups associated to partial

differential equations

6.1 Distributionally chaotic 𝐶0-semigroups

In this section we consider several examples of 𝐶0-semigroups that are already

known to be Devaney chaotic and we will study when they exhibit distribu-

tional chaos. These examples will be considered on the following spaces:

𝐿𝑝𝜌(𝐼,C) =

{︃
𝑓 ∈ M(𝐼,C) ; ‖𝑓‖𝑝,𝜌 =

(︂∫︁
𝐼
|𝑓(𝑠)|𝑝𝜌(𝑠)𝑑𝑠

)︂1/𝑝

<∞

}︃
,

with 1 ≤ 𝑝 < ∞, where 𝐼 is an interval on R and 𝜌 a weight function. If

𝜌(𝑥) = 1, then we will simply denote it as 𝐿𝑝(𝐼,C), 1 ≤ 𝑝 <∞. The hypothesis

on 𝜌 may be different on each example.

In [Tak05] Takeo considered the following first order abstract Cauchy prob-

lem on 𝐿𝑝(𝐼,C), 1 ≤ 𝑝 <∞:⎧⎨⎩
𝜕𝑢

𝜕𝑡
= 𝜁(𝑥)

𝜕𝑢

𝜕𝑥
+ ℎ(𝑥)𝑢,

𝑢(0, 𝑥) = 𝑓(𝑥), 𝑥 ∈ 𝐼,
(6.1)
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where 𝜁 and ℎ are bounded continuous functions defined on 𝐼. This partial

differential equation has been used to model the dynamics of a population of

cells under simultaneous proliferation and maturation [LM94]. When 𝜁(𝑥) is

constant and equal to 1 and 𝐼 = R+
0 , the solution 𝐶0-semigroup {𝑇𝑡}𝑡≥0 of

(6.1) is defined as

𝑇𝑡𝑓(𝑥) = exp

(︂∫︁ 𝑥+𝑡

𝑥
ℎ(𝑠)𝑑𝑠

)︂
𝑓(𝑥+ 𝑡), for all 𝑥, 𝑡 ≥ 0, 𝑓 ∈ 𝐿𝑝(R+

0 ,C). (6.2)

Theorem 6.1. If ℎ(𝑥) is a real function and there is a measurable set 𝐵 ⊂
R+
0 such that Dens(𝐵) = 1 and

∫︀
𝐵 exp

(︀
−𝑝
∫︀ 𝑥
0 ℎ(𝑠)𝑑𝑠

)︀
𝑑𝑥 < ∞, then the 𝐶0-

semigroup {𝑇𝑡}𝑡≥0 defined in (6.2) is distributionally chaotic on 𝐿𝑝(R+
0 ,C),

1 ≤ 𝑝 <∞.

Proof. If we define 𝜌(𝑥) = exp(−𝑝
∫︀ 𝑥
0 ℎ(𝑠)𝑑𝑠), then the operators of {𝑇𝑡}𝑡≥0

can be rewritten as

𝑇𝑡𝑓(𝑥) = (𝜌(𝑥)/𝜌(𝑥+ 𝑡))1/𝑝𝑓(𝑥+ 𝑡).

This function 𝜌(𝑥) is an admissible weight function in the sense of [DSW97,

Def. 4.1], which ensures that the left translation semigroup {𝜏𝑡}𝑡≥0 defined as

𝜏𝑡𝑓(𝑥) = 𝑓(𝑥+ 𝑡), for 𝑥, 𝑡 ≥ 0, 𝑓 ∈ 𝐿𝑝𝜌(R+
0 ,C),

is a 𝐶0-semigroup on 𝐿𝑝𝜌(R+
0 ,C).

Let us define 𝜑(𝑓)(𝑥) = (𝜌(𝑥))1/𝑝𝑓(𝑥) and consider the following commu-

tative diagram:

𝐿𝑝𝜌(R+
0 ,C)

𝜏𝑡−−−−→ 𝐿𝑝𝜌(R+
0 ,C)

𝜑

⎮⎮⌄ ⎮⎮⌄𝜑
𝐿𝑝(R+

0 ,C)
𝑇𝑡−−−−→ 𝐿𝑝(R+

0 ,C).

(6.3)

The hypothesis on 𝐵 let us conclude that {𝜏𝑡}𝑡≥0 is distributionally chaotic

on 𝐿𝑝𝜌(R+
0 ,C), see [BP12, Th. 2.3]. Therefore, the conclusion is obtained since

distributional chaos is preserved under uniform conjugacy by Corollary 2.11.

y

Remark 6.2. The previous result can be compared with the characterizations

of hypercyclicity and Devaney chaos for the translation 𝐶0-semigroup on the
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spaces 𝐿𝑝𝜌(R+
0 ,C), 1 ≤ 𝑝 <∞ : The translation 𝐶0-semigroup {𝜏𝑡}𝑡≥0 is hyper-

cyclic on 𝐿𝑝𝜌(R+
0 ,C) if, and only if, lim inf𝑥→∞ 𝜌(𝑥) = 0 [DSW97], and {𝜏𝑡}𝑡≥0

is Devaney chaotic on it if, and only if,
∫︀∞
0 𝜌(𝑥)𝑑𝑥 < ∞ [dE01; MYT03]. Us-

ing conjugacy, these results can be transferred to the 𝐶0-semigroup {𝑇𝑡}𝑡≥0

[GEPM11, Ex. 7.5.2].

On the one hand, if ℎ(𝑥) is constant and equal to 1, then we have that

{𝑇𝑡}𝑡≥0 is Devaney chaotic and distributionally chaotic on 𝐿𝑝(R+
0 ,C). On the

other hand, taking

𝐵 =
⋃︁
𝑛∈N

]︁
102

𝑛−1, 102
𝑛+1−2

]︁
,

and defining ℎ(𝑥) = 1 if 𝑥 ∈ 𝐵 and ℎ(𝑥) = −1 elsewhere, we have Dens(𝐵) = 1

and
∫︀
𝐵 𝜌(𝑥)𝑑𝑥 <∞. Therefore {𝑇𝑡}𝑡≥0 is distributionally chaotic on 𝐿

𝑝(R+
0 ,C).

It is also hypercyclic since 𝜌(102
𝑛+1−2) < 𝑒−𝑝9·10

2𝑛+1−3
for every 1 < 𝑛 ∈ N,

which yields that lim inf
𝑥→∞

𝜌(𝑥) = 0 [Tak05, Th. 2.2]. However, it cannot be

Devaney chaotic since
∫︀
R+
0
𝜌(𝑥)𝑑𝑥 = ∞.

To sum up, we have an example of a 𝐶0-semigroup that is hypercyclic,

distributionally chaotic, but it is not Devaney chaotic. This example can be

compared with the Example 4.11 of a distributionally chaotic translation 𝐶0-

semigroup that is neither hypercyclic nor Devaney chaotic.

Now, let us consider another example of a 𝐶0-semigroup whose dynamical

behaviour was already discussed in [Tak05]: Let 𝜌 : [0, 1] → R+ be a continuous

function such that there exist constants 𝑀 ≥ 1, 𝜔 ∈ R, and 𝛾 < 0 such that

𝜌(𝑥) ≤𝑀𝑒𝜔𝑡𝜌(𝑒𝛾𝑡𝑥), for all 𝑥 ∈ [0, 1], 𝑡 > 0. (6.4)

With such a function 𝜌, we can consider the spaces 𝐿𝑝𝜌([0, 1],C), for 1 ≤ 𝑝 <∞.

The family of operators {𝑆𝑡}𝑡≥0 with 𝑆𝑡𝑓(𝑥) = 𝑓(𝑒𝛾𝑡𝑥), 𝑡 ≥ 0 defines a 𝐶0-

semigroup on them [Tak05].

Theorem 6.3. If 𝛾 < 0, then the 𝐶0-semigroup {𝑆𝑡}𝑡≥0 is distributionally

chaotic on 𝐿𝑝𝜌([0, 1],C), 1 ≤ 𝑝 <∞.

Proof. Let us apply Theorem 3.3. Take 𝑋0 = {𝑓 ∈ C([0, 1],C) ; 𝑓(0) = 0}.
This set is dense in 𝐿𝑝𝜌([0, 1],C) and, clearly, lim𝑡→∞ 𝑆𝑡𝑓 = 0 for every 𝑓 ∈ 𝑋0,

which fulfils condition (i) in Theorem 3.3.
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Let us prove that
∫︀∞
0 ‖𝑆𝑡‖−1

𝑝,𝜌𝑑𝑡 is finite: Fix 𝑡 > 0 and a continuous function

𝑔 on [0, 1] with ‖𝑔‖𝑝,𝜌 = 1, for instance 𝑔(𝑥) = 1/𝜌(𝑥)1/𝑝.

There is some 𝑡0 > 0 such that for 𝑡 > 𝑡0 we have
(︁∫︀ 𝑒𝛾𝑡

0 𝜌(𝑥)𝑑𝑥
)︁1/𝑝

≤
𝑡−2/‖𝑔‖∞. For these 𝑡 > 𝑡0, define

𝑔𝑡(𝑥) =

⎧⎨⎩𝑔(𝑒−𝛾𝑡𝑥), if 0 ≤ 𝑥 ≤ 𝑒𝛾𝑡,

0, elsewhere.
(6.5)

Since ‖𝑔𝑡‖𝑝,𝜌 ≤ 𝑡−2 and 𝑆𝑡𝑔𝑡 = 𝑔, then ‖𝑆𝑡‖𝑝,𝜌 ≥ 𝑡2 for 𝑡 ≥ 𝑡0. So that∫︀∞
𝑡0

‖𝑆𝑡‖−1
𝑝,𝜌𝑑𝑡 is convergent, which yields the conclusion. y

Remark 6.4. The assumption 𝛾 < 0 forces 𝑤 > 0: if not, take any 𝑥 ∈ [0, 1].

Taking limits when 𝑡→ ∞ in the inequality 𝜌(𝑥)
𝜌(𝑒𝛾𝑡𝑥) ≤𝑀𝑒𝜔𝑡 we have 𝜌(𝑥)

𝜌(0) ≤ 0,

which is a contradiction because 𝜌 is a positive continuous function.

Remark 6.5. An alternative proof given by one of the referees from [BC12]

is the following: If 𝜌 : [0, 1] → R+ is a continuous weight function which is ad-

missible in the sense of (6.4), then 𝜓 : R+
0 → R+

0 defined as 𝜓(𝑥) := 𝜌(𝑒𝛾𝑥)𝑒𝛾𝑥

is an admissible weight function in the sense of [DSW97, Def. 4.1]. Therefore,

taking 𝜑 : 𝐿𝑝𝜓(R
+
0 ,C) → 𝐿𝑝𝜌([0, 1],C) defined as 𝜑(𝑓)(𝑥) := 𝑓

(︁
log(𝑥)
𝛾

)︁
, we have

the following commutative diagram:

𝐿𝑝𝜓(R
+
0 ,C)

𝜏𝑡−−−−→ 𝐿𝑝𝜓(R
+
0 ,C)

𝜑

⎮⎮⌄ ⎮⎮⌄𝜑
𝐿𝑝𝜌([0, 1],C)

𝑆𝑡−−−−→ 𝐿𝑝𝜌([0, 1],C).

(6.6)

If 𝛾 < 0, then
∫︀∞
0 𝜓(𝑥)𝑑𝑥 < ∞. So that, by uniform conjugacy, {𝑆𝑡}𝑡≥0 is

hypercyclic, Devaney chaotic and distributionally chaotic, see Remark 6.2.

We return to the initial value problem stated in (6.1). Consider the case

when 𝐼 = [0, 1], 𝜁(𝑥) := 𝛾𝑥, 𝛾 < 0, and ℎ ∈ C([0, 1],C). Under these hypothe-

sis, the 𝐶0-semigroup { ̃︀𝑇𝑡}𝑡≥0 defined as

̃︀𝑇𝑡𝑓(𝑥) = exp

(︂∫︁ 𝑡

0
ℎ(𝑒𝛾(𝑡−𝑟)𝑥)𝑑𝑟

)︂
𝑓(𝑒𝛾𝑡𝑥) for 𝑡 ≥ 0, 𝑥 ∈ [0, 1], (6.7)

gives the solution 𝐶0-semigroup to (6.1) on 𝐿𝑝([0, 1],C), 1 ≤ 𝑝 < ∞ [Tak05,

Th. 3.4]. The particular case when 𝛾 = −1 and ℎ(𝑥) = −1/2 was studied using

the Wiener measure in [LM94].
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Theorem 6.6. If 𝛾 < 0 and min{R(ℎ(𝑥)) ; 𝑥 ∈ [0, 1]} > 𝛾/𝑝, then the 𝐶0-

semigroup { ̃︀𝑇𝑡}𝑡≥0 defined in (6.7) is distributionally chaotic on 𝐿𝑝([0, 1],C),
1 ≤ 𝑝 <∞.

Proof. We apply again Theorem 3.3: Condition 3.3.(i) holds in the same way

as in the proof of Theorem 6.3 taking 𝑋0 = {𝑓 ∈ C([0, 1]),C) ; 𝑓(0) = 0}.
In order to verify condition 3.3.(ii), let 𝛼 ∈ R be such that min{R(ℎ(𝑥)) ; 𝑥 ∈

[0, 1]} > 𝛼 > 𝛾/𝑝. For every 𝑡 > 0, we define 𝑓𝑡 as a function with ‖𝑓𝑡‖𝑝 = 1

and supp(ft) ⊂ [0, e𝛾t]. Using it, we have the following estimations for ‖ ̃︀𝑇𝑡‖𝑝:
‖ ̃︀𝑇𝑡‖𝑝 ≥ ‖ ̃︀𝑇𝑡𝑓𝑡‖𝑝 ≥ 𝑒𝛼𝑡

(︂∫︁ 1

0
|𝑓𝑡(𝑒𝛾𝑡𝑥)|𝑝𝑑𝑥

)︂1/𝑝

= 𝑒(𝛼−𝛾/𝑝)𝑡

(︃∫︁ 𝑒𝛾𝑡

0
|𝑓𝑡(𝑦)|𝑝𝑑𝑦

)︃1/𝑝

= 𝑒(𝛼−𝛾/𝑝)𝑡.

So that
∫︀∞
0 ‖ ̃︀𝑇𝑡‖−1

𝑝 𝑑𝑡 is finite, which yields the conclusion. y

In addition, Brzeźniak and Dawidowicz also studied in [BD09] Devaney

chaos for the case 𝛾 = −1 and ℎ(𝑥) = 𝜆 ∈ R in certain subspaces of Hölder

continuous functions on [0, 1]. For 𝛼 ∈]0, 1], 0 < 𝑟 ≤ 1, we define the space

𝐶𝛼𝑟 ([0, 1]) of functions 𝑓 : [0, 1] → R such that

‖𝑓‖𝛼,𝑟 := sup
𝑥,𝑦∈[0,1]

0<|𝑥−𝑦|<𝑟

|𝑓(𝑥)− 𝑓(𝑦)|
|𝑥− 𝑦|𝛼

<∞.

For 𝛼 ∈]0, 1[, let us consider 𝑉𝛼([0, 1]) the space of functions

{𝑓 ∈ 𝐶𝛼1 ([0, 1]) ; lim
𝑟→0+

‖𝑓‖𝛼,𝑟 = 0 and 𝑓(0) = 0}.

In [BD09] it is shown that 𝑉𝛼([0, 1]) is a separable Banach space endowed with

the norm ‖𝑓‖𝛼,1. Furthermore, following a constructive approach, it is proved

that if 𝛾 = −1 and ℎ(𝑥) = 𝜆 > 𝛼, then { ̃︀𝑇𝑡}𝑡≥0 is Devaney chaotic there and

exponentially stable if 𝜆 ≤ 𝛼. We will prove that in this case { ̃︀𝑇𝑡}𝑡≥0 is also

distributionally chaotic.

Theorem 6.7. If 𝛾 = −1 and ℎ(𝑥) = 𝜆 > 𝛼, then the 𝐶0-semigroup { ̃︀𝑇𝑡}𝑡≥0

defined in (6.7) is distributionally chaotic on 𝑉𝛼([0, 1]), 𝛼 ∈]0, 1[.



74 6. Solution semigroups of partial differential equations

Proof. We will apply Theorem 3.3 again. Since in order to prove that { ̃︀𝑇𝑡}𝑡≥0 is

Devaney chaotic, Aroza and Mangino in [AM13] make use of the version of the

Desch-Schappacher-Webb Criterion given by El Mourchid [El 06, Th 2.1], one

can check that there is a dense set 𝑋0 ⊂ 𝑉𝛼([0, 1]) such that lim𝑡→∞ ̃︀𝑇𝑡𝑥 = 0

for all 𝑥 ∈ 𝑋0, and the first condition in Theorem 3.3 holds.

In order to verify condition 3.3.(i), take 0 < 𝜀 < (𝜆 − 𝛼)/2 such that

𝛼 + 𝜀 < 1. Let us define 𝑓𝜀(𝑥) = 𝑥𝛼+𝜀, 0 ≤ 𝑥 ≤ 1. Since |𝑥𝛼+𝜀 − 𝑦𝛼+𝜀| ≤
|(𝑥−𝑦)𝛼+𝜀| for all 𝑥, 𝑦 ∈ [0, 1], then we can easily see that ‖𝑓𝜀‖𝛼,1 = 1 and 𝑓𝜀 ∈
𝑉𝛼([0, 1]). We also get that ‖ ̃︀𝑇𝑡𝑓𝜀‖𝛼,1 = 𝑒(𝜆−𝛼−𝜀)𝑡 and hence

∫︀∞
0 𝑑𝑡/‖ ̃︀𝑇𝑡‖𝛼,1 ≤∫︀∞

0 𝑑𝑡/‖ ̃︀𝑇𝑡𝑓𝜀‖𝛼,1 <∞. y

6.2 The Desch-Schappacher-Web Criterion implies

distributional chaos

Under the hypothesis of the last theorem, Takeo proved that { ̃︀𝑇𝑡}𝑡≥0 is De-

vaney chaotic by applying the Desch-Schappacher-Webb Criterion [Tak05]. In-

dependently, Brzeźniak and Dawidowicz also proved that { ̃︀𝑇𝑡}𝑡≥0 is Devaney

chaotic when 𝛾 = −1 and ℎ(𝑥) = 𝜆 ∈ R with 𝜆 > −1/𝑝, that is known as

the von Foerster-Lasota equation [BD09, Th. 8.3 & 8.4]. Furthermore, they

also showed that for 𝜆 ≤ −1/𝑝 the orbits of all elements tend to 0, which

makes chaos disappear. Therefore, we can affirm that Devaney chaos coin-

cides exactly with distributional chaos for the same values of 𝜆. As we will see

later, this is due to the fact that Devaney chaos can be obtained here from the

Desch-Schappacher-Webb Criterion. This can be easily seen if we reformulate

Theorem 3.3 in terms of the infinitesimal generator of the 𝐶0-semigroup. The

following result is a continuous version of [BBMGP11, Cor. 31].

Theorem 6.8. Let 𝑋 be a complex Banach space and let T be a 𝐶0-semigroup

in 𝐿(𝑋) with infinitesimal generator (𝐴,𝐷(𝐴)). If the following conditions

hold:

(i) there is a dense subset 𝑋0 ⊂ 𝑋 with lim𝑡→∞ 𝑇𝑡𝑥 = 0, for each 𝑥 ∈ 𝑋0,

and
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(ii) there is some 𝜆 ∈ 𝜎𝑝(𝐴) with R(𝜆) > 0,

then T has a dense distributionally irregular manifold. In particular, T is

distributionally chaotic.

Proof. Fix 𝑡 > 0. On the one hand, if condition (i) holds, then we have

lim𝑛→∞ 𝑇𝑛𝑡 𝑥 = 0 for every 𝑥 ∈ 𝑋0. On the other hand, by the point spectral

mapping theorem for 𝐶0-semigroups, since 𝜆 ∈ 𝜎𝑝(𝐴), then 𝑒𝜆𝑡 ∈ 𝜎𝑝(𝑇𝑡).

Therefore 𝑟(𝑇𝑡) ≥ |𝑒𝜆𝑡| > 1 and, by [BBMGP11, Cor. 31], 𝑇𝑡 admits a dense

distributionally irregular manifold. By [ABMP13, Rem. 2 ], this is equivalent

to say that T admits a dense distributionally irregular manifold. Furthermore,

T is distributionally chaotic [ABMP13, Prop. 2]. y

Remark 6.9. Clearly, the conditions in Theorem 6.8 hold whenever the

Desch-Schappacher-Webb Criterion can be applied. Since this criterion can be

applied in the following examples, we not only obtain Devaney chaos, but also

distributional chaos (and the existence of a dense distributionally irregular

manifold):

� 1) [BL01, Th. 1]:

In 𝑋 = ℓ𝑝, 1 ≤ 𝑝 <∞, or 𝑐0, the 𝐶0-semigroup generated by the system

𝑑𝑓𝑛
𝑑𝑡

= (𝐿𝑓)𝑛 = −𝛼𝑛𝑓𝑛 + 𝛽𝑛𝑓𝑛+1, 𝑛 ∈ N0.

with (𝑓𝑛)𝑛∈N0 ∈ 𝑋, when the sequences (𝛼𝑛)𝑛∈N0 and (𝛽𝑛)𝑛∈N0 satisfy

the following condition for every 𝑛 ∈ N0:

� 0 < 𝛼𝑛 < 𝛽𝑛,

� 𝛼𝑛 = 𝛼 + 𝑎′𝑛, for some 𝛼 ≥ 0, with lim
𝑛→∞

𝑎′𝑛 = 0 and there is 𝑞 < 1

such that

⃒⃒⃒⃒
𝑎′𝑛
𝛽

⃒⃒⃒⃒
≤ 𝑞𝑛+1, and

� 𝛽𝑛 = 𝛽𝑏𝑛, for some 𝛽 > 𝛼 and with lim
𝑛→∞

𝑏𝑛 = 1.

� 2) [DSW97, Ex. 4.12]:

In 𝑋 = 𝐿2([0,∞[,C) the solution 𝐶0-semigroup to the following partial

differential equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢𝑡(𝑥, 𝑡) = 𝑎𝑢𝑥𝑥(𝑥, 𝑡) + 𝑏𝑢𝑥(𝑥, 𝑡) + 𝑐𝑢(𝑥, 𝑡),

𝑢(0, 𝑡) = 0 for 𝑡 ≥ 0,

𝑢(𝑥, 0) = 𝑓(𝑥) for 𝑥 ≥ 0 with some 𝑓 ∈ 𝑋,
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when 𝑎, 𝑏, 𝑐 > 0 and 𝑐 < 𝑏2

2𝑎 < 1.

� 3) [CM10, Th. 3.1]:

The 𝐶0-semigroup by the perturbation of the one-dimensional Orsntein-

Uhlenbeck operator

A𝛼 = 𝑢′′ + 𝑏𝑥𝑢′ + 𝛼𝑢

with domain

𝐷(A𝛼) =
{︁
𝑢 ∈ 𝐿2(R) ∩𝑊 2,2

loc (R) ; A𝛼𝑢 ∈ 𝐿2(R)
}︁
,

when 𝑏 > 0 and
𝑏

2
< 𝛼 ∈ R.

� 4) [CPT10, Th. 2.1]: The solution semigroup to the hyperbolic heat transfer

equation (HHTE) in absence of internal heat sources,⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜏𝑢𝑡𝑡 + 𝑢𝑡 = 𝛼𝑢𝑥𝑥,

𝑢(0, 𝑥) = 𝜑1(𝑥), 𝑥 ∈ R,

𝑢𝑡(0, 𝑥) = 𝜑2(𝑥), 𝑥 ∈ R;

has

𝐴 =

(︃
0 𝐼

𝛼
𝜏 𝜕𝑥𝑥

−1
𝜏 𝐼

)︃
as infinitesimal generator. This 𝐶0-semigroup was already known to be

Devaney chaotic (by application of the Desch-Schappacher-Webb Crite-

rion) on the space 𝑋𝜌 ⊕𝑋𝜌 where

𝑋𝜌 :=

⎧⎨⎩𝑓(𝑥) =∑︁
𝑛≥0

𝑎𝑛
𝑛!

(𝜌𝑥)𝑛 ; (𝑎𝑛)𝑛 ∈ 𝑐0(N0)

⎫⎬⎭ ,

for some 𝜌 > 0, endowed with the norm

‖𝑓‖ := sup
𝑛∈𝑁0

sup
𝑥∈R

𝜌−𝑛𝑒𝜌|𝑥||𝜑(𝑛)(𝑥)|.

Here, (𝑐0(N0), ‖ · ‖∞) is the Banach space of all complex sequences tend-

ing to 0, endowed with the maximum norm.

See also [GEPM11, Ch. 7] for an improved version of the proof of this last

example.
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6.3 Distributional chaos for birth-and-death processes

with proliferations

In [BM11], the authors have analysed the Devaney chaos in the problem of

the exponential decay of the drug resistant population of cells.

Let us denote by 𝑓𝑛, 𝑛 ≥ 1, the number of copies of the drug resistant gene

in a population of cells. The matrix of the process has constant coefficients

and it is obtained from the following infinite system of equations.

𝑓 ′1 = 𝑎𝑓1 + 𝑑𝑓2,

𝑓 ′𝑛 = 𝑎𝑓𝑛 + 𝑏𝑓𝑛−1 + 𝑑𝑓𝑛+1, 𝑛 ≥ 2.

We consider the so-called sub-critical case when 0 < 𝑏 < 𝑑.

The usual setting will be ℓ1, nevertheless the space ℓ1𝑠 of summable se-

quences with the weights 𝑠𝑛, 𝑛 ≥ 0, will be also considered. By (𝑒𝑚)𝑚 we

denote the canonical basis of ℓ1.

Let us consider the operator 𝐿𝑠 = 𝑎𝐼 + 𝐶𝑠 in ℓ1 where 𝐶𝑠 is an operator

defined on ℓ1 by

𝐶𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 𝑑/𝑠
𝑠𝑏 0 𝑑/𝑠

𝑠𝑏 0 𝑑/𝑠

𝑠𝑏 0
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

Lemma 6.10 (See Lemma 1 in [BM11]). We have

(𝐶𝑘𝑠 f)𝑛 =

𝑘∑︁
𝑖=0

[︂(︂
𝑘

𝑖

)︂
−
(︂

𝑘

𝑘 − (𝑛+ 𝑖)

)︂]︂
(𝑠𝑏)𝑘−𝑖

(︂
𝑑

𝑠

)︂𝑖
𝑓𝑛−𝑘+2𝑖, (6.8)

where f = (𝑓1, 𝑓2, . . .), 𝑓𝑖 = 0 for 𝑖 ≤ 0 and the Newton symbol is also 0 for

negative entries.

We will consider the following restrictions:

0 < 𝑏 < 𝑑, (6.9)

|𝑎| ≤ 2
√
𝑏𝑑. (6.10)
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As in [BK99], we compute the ℓ1-norm of 𝐶𝑘 acting over (𝑓𝑛)𝑛≥1 = 𝑒𝑚

where 𝑚 > 𝑘 then,

‖𝐶𝑘𝑠 f‖ℓ1 =

∞∑︁
𝑛=0

⃒⃒⃒⃒
⃒
𝑘∑︁
𝑖=0

[︂(︂
𝑘

𝑖

)︂
−
(︂

𝑘

𝑘 − (𝑛+ 𝑖)

)︂]︂
(𝑠𝑏)𝑘−𝑖

(︂
𝑑

𝑠

)︂𝑖
𝛿𝑛−𝑘+2𝑖,𝑚

⃒⃒⃒⃒
⃒ .

Since 𝛿𝑛−𝑘+2𝑖,𝑚 = 0 for 𝑛 < 𝑚− 𝑘 or 𝑛 > 𝑚+ 𝑘, then,

‖𝐶𝑘𝑠 f‖ℓ1 =
𝑚+𝑘∑︁

𝑛=𝑚−𝑘

⃒⃒⃒⃒
⃒
𝑘∑︁
𝑖=0

[︂(︂
𝑘

𝑖

)︂
−
(︂

𝑘

𝑘 − (𝑛+ 𝑖)

)︂]︂
(𝑠𝑏)𝑘−𝑖

(︂
𝑑

𝑠

)︂𝑖
𝛿𝑛−𝑘+2𝑖,𝑚

⃒⃒⃒⃒
⃒ .

With the change 𝑗 = 𝑘 − 𝑖 we get

𝑚+𝑘∑︁
𝑛=𝑚−𝑘

⃒⃒⃒⃒
⃒⃒ 𝑘∑︁
𝑗=0

[︂(︂
𝑘

𝑗

)︂
−
(︂

𝑘

𝑗 − 𝑛

)︂]︂
(𝑠𝑏)𝑗

(︂
𝑑

𝑠

)︂𝑘−𝑗
𝛿𝑛+𝑘−2𝑗,𝑚

⃒⃒⃒⃒
⃒⃒ .

Changing also 𝑛′ = 𝑛+ 𝑘 −𝑚, we have

2𝑘∑︁
𝑛′=0

⃒⃒⃒⃒
⃒⃒ 𝑘∑︁
𝑗=0

[︂(︂
𝑘

𝑗

)︂
−
(︂

𝑘

𝑗 + 𝑘 − 𝑛′ −𝑚

)︂]︂
(𝑠𝑏)𝑗

(︂
𝑑

𝑠

)︂𝑘−𝑗
𝛿𝑛′+𝑚−2𝑗,𝑚

⃒⃒⃒⃒
⃒⃒ .

If 𝑛′ is odd, 𝛿𝑛′+𝑚−2𝑗,𝑚 = 0, then we are left with the even terms, getting

𝑘∑︁
𝑗=0

⃒⃒⃒⃒
⃒
[︂(︂
𝑘

𝑗

)︂
−
(︂

𝑘

𝑘 − 𝑗 −𝑚

)︂]︂
(𝑠𝑏)𝑗

(︂
𝑑

𝑠

)︂𝑘−𝑗 ⃒⃒⃒⃒⃒ .
Since 𝑚 > 𝑘, we only have

𝑘∑︁
𝑗=0

(︂
𝑘

𝑗

)︂ ⃒⃒⃒⃒
⃒(𝑠𝑏)𝑗

(︂
𝑑

𝑠

)︂𝑘−𝑗 ⃒⃒⃒⃒⃒ ,
which is

(︂
𝑠𝑏+

𝑑

𝑠

)︂𝑘
. Therefore, ‖𝐶𝑘𝑠 ‖ ≥

(︂
𝑠𝑏+

𝑑

𝑠

)︂𝑘
.

With these estimations, we can also estimate the norm of 𝑒𝑡𝐶𝑠 in 𝐿(ℓ1).

‖𝑒𝑡𝐶𝑠‖ =

⃦⃦⃦⃦
⃦

∞∑︁
𝑘=0

(𝑡𝐶𝑠)
𝑘

𝑘!

⃦⃦⃦⃦
⃦
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Since 𝐶𝑠 is a positive operator, for every 𝑚 > 0 we have⃦⃦⃦⃦
⃦

∞∑︁
𝑘=0

(𝑡𝐶𝑠)
𝑘

𝑘!

⃦⃦⃦⃦
⃦ ≥

⃦⃦⃦⃦
⃦
𝑚−1∑︁
𝑘=0

(𝑡𝐶𝑠)
𝑘

𝑘!

⃦⃦⃦⃦
⃦ ≥

⃦⃦⃦⃦
⃦
𝑚−1∑︁
𝑘=0

(𝑡𝐶𝑠)
𝑘

𝑘!
𝑒𝑚

⃦⃦⃦⃦
⃦ =

∞∑︁
𝑘=0

𝑡𝑘
(︀
𝑠𝑏+ 𝑑

𝑠

)︀𝑘
𝑘!

.

Therefore, taking supremum on 𝑚 we get ‖𝑒𝑡𝐶𝑠‖ ≥ 𝑒𝑡(𝑠𝑏+
𝑑
𝑠
), and hence

1

‖𝑒𝑡𝐿𝑠‖
≤ 1

𝑒𝑡(𝑎+𝑠𝑏+
𝑑
𝑠
)
. (6.11)

Now we proceed to compute the sign of 𝑎 + 𝑠𝑏 + 𝑑
𝑠 . On the one hand, if

𝑎 ≥ 0, then it is always positive for 𝑠 > 0. On the other hand, if 𝑎 < 0 but

|𝑎| < 2
√
𝑏𝑑, this is always positive for any 𝑠 > 0. In both cases we have that

1

‖𝑒𝑡𝐿𝑠‖
is integrable on R+ with respect to 𝑡.

Theorem 6.11. {𝑒𝑡𝐿𝑠}𝑡≥0 is distributionally chaotic and admits a dense dis-

tributionally irregular manifold provided that 𝑎, 𝑏, 𝑑 satisfy (6.9) and (6.10).

Proof. Since 𝑎, 𝑏, 𝑑 satisfy (6.9) and (6.10), {𝑒𝑡𝐿𝑠}𝑡≥0 is hypercyclic by the

Godefroy-Shapiro Criterion, as it can be seen in the proof of Theorem 4,

[BM11]. By 6.11 we have that ∫︁
R+

1

‖𝑒𝑡𝐿𝑠‖
<∞. (6.12)

Therefore, by the Dense Distributionally Irregular Manifold Criterion (Theo-

rem 3.3) the theorem holds. y

This can be compared with the following result.

Theorem 6.12 (See Theorem 4, [BM11]). If 0 < |𝑏| < |𝑑| and |𝑎| < |𝑏 + 𝑑|
hold, then {𝑒𝑡𝐿𝑠}𝑡≥0 is Devaney chaotic.

6.4 Further research lines

Consider the initial value problem of (6.1) on 𝐿1(R+
0 ,C) with 𝜁(𝑥) = 1 and

ℎ(𝑥) = 𝑘𝑥𝑘−1

1+𝑥𝑘
. Here, the solution 𝐶0-semigroup {𝑇𝑡}𝑡≥0 is defined as

𝑇𝑡𝑓(𝑥) =
1 + (𝑥+ 𝑡)𝑘

1 + 𝑥𝑘
𝑓(𝑥+ 𝑡), 𝑥, 𝑡 ≥ 0. (6.13)
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The 𝐶0-semigroup {𝑇𝑡}𝑡≥0 defined in (6.13) is distributionally chaotic on

𝐿1(R+
0 ,C) by Th. 6.1. The hypercyclicity of this 𝐶0-semigroup for 𝑘 = 2

was obtained by El Mourchid in [El 06] and the Devaney chaos by Grosse-

Erdmann and Peris in [GEPM11, Prop. 7.34]. In this case, the point spectrum

of the infinitesimal generator is the closed left half plane. This inhibits the

Desch-Schappacher-Webb Criterion to be applied in the way it has been for-

mulated. Nevertheless, El Mourchid observed that the hypercyclic behaviour

of this 𝐶0-semigroup is essentially due to the imaginary eigenvalues of its in-

finitesimal generator [El 06], see also [GEPM11, Ex. 7.5.1]. In fact, the Desch-

Schappacher-Webb Criterion can be strengthened and reformulated as follows:

Theorem 6.13. [El 06, Th. 2.1] & [GEPM11, Th. 7.31] Let 𝑋 be a complex

separable Banach space, and let T be a 𝐶0-semigroup on 𝑋 with infinitesimal

generator (𝐴,𝐷(𝐴)). If there are 𝑎 < 𝑏 and continuous functions 𝑓𝑗 : [𝑎, 𝑏] →
𝑋, 𝑗 ∈ 𝐽 , with

i. 𝑓𝑗(𝑠) ∈ ker(𝑖𝑠𝐼 −𝐴) for every 𝑠 ∈ [𝑎, 𝑏], 𝑗 ∈ 𝐽 , and

ii. span{𝑓𝑗(𝑠) : 𝑠 ∈ [𝑎, 𝑏], 𝑗 ∈ 𝐽} is dense in 𝑋,

then the semigroup T is Devaney chaotic.

To sum up, we have seen that even when we apply this stronger version of

the Desch-Schappacher-Webb Criterion for the 𝐶0-semigroup in (6.13), asking

only for an abundance of eigenvalues of real part equal to zero, then we can

also prove that there is a dense distributionally irregular manifold. Therefore

we can pose the following problem:

Problem 6.14. Do the hypothesis in Theorem 6.13 imply the existence of

a dense distributionally irregular manifold for T? If not, is there at least a

distributionally irregular vector for T?

By the equivalence between a 𝐶0-semigroup with a distributionally irreg-

ular vector and a distributionally chaotic 𝐶0-semigroup, proved in Theorem

2.17, the former problem can also be presented as follows:
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Problem 6.15. Do the hypothesis in Theorem 6.13 imply that T is distribu-

tionally chaotic?

These questions could have a positive answer, but it is still unknown

whether Devaney chaos implies distributional chaos on 𝐶0-semigroups.

Problem 6.16. Are there examples of Devaney chaotic 𝐶0-semigroups which

are not distributionally chaotic?

A 𝐶0-semigroup is said to be frequently hypercyclic if there exists some

𝑥 ∈ 𝑋 such that for every non-empty open set 𝑈 ⊂ 𝑋, the set 𝑈𝑥 := {𝑠 ≥
0 ; 𝑇𝑠𝑥 ∈ 𝑈} has positive lower density, that is lim inf𝑡→∞(1/𝑡)𝜇(𝑈𝑥 ∩ [0, 𝑡])

is positive. In [MP11] Mangino and Peris observed that with the same argu-

ments used in [DSW97; El 06] one can show that the Desch-Schappacher-Webb

Criterion implies frequent hypercyclicity. They also provide the Frequent Hy-

percyclicity Criterion for 𝐶0-semigroups [MP11, Th. 2.2]. So that, one can

raise the following question:

Problem 6.17. Do the hypothesis of the Frequent Hypercyclicity Criterion

for 𝐶0-semigroups imply distributional chaos?

The hypothesis in Theorem 6.13 also yield the mixing property for the 𝐶0-

semigroup T, see [GEPM11]. Clearly, topological mixing implies transitivity

(i.e. hypercyclicity), but it is strictly stronger than it.

On the one hand, Example 4.11 provides an example of a distribution-

ally chaotic 𝐶0-semigroup that it is not topologically mixing. On the other

hand, in [MGOP12], there is an example of a backward shift operator on a

weighted sequence space ℓ𝑝(𝑣), 1 ≤ 𝑝 < ∞, that is topologically mixing but

it is not distributionally chaotic. This operator will provide us an analogous

counterexample in the frame of 𝐶0-semigroups.

Example 6.18. Consider the sequence (𝑛𝑘)𝑘 defined as 𝑛𝑘 = (𝑘!)3, 𝑘 ∈ N,
and define the function 𝜌 : R+

0 → R+
0 as 𝜌(𝑡) = 1 if 0 ≤ 𝑡 < 𝑛1 and 𝜌(𝑡) = 𝑘−1

if 𝑛𝑘 ≤ 𝑡 < 𝑛𝑘+1, 𝑘 ∈ N. This function is an admissible weight in the sense

of [DSW97, Def. 4.1] and makes the translation semigroup {𝜏𝑡}𝑡≥0 to be a
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𝐶0-semigroup. On the one hand, since lim𝑡→∞ 𝜌(𝑡) = 0, then the translation

𝐶0-semigroup is topologically mixing. On the other hand, if the translation

𝐶0-semigroup was distributionally chaotic, by [BP12, Th. 2.10], the backward

shift operator, defined as 𝐵(𝑥1, 𝑥2, . . .) = (𝑥2, 𝑥3, . . .), would be distributionally

chaotic on the space ℓ1(𝑣) := {(𝑥𝑛)𝑛 ;
∑︀

𝑗∈N |𝑥𝑗 |𝑣𝑗 <∞} with (𝑣𝑛)𝑛 = (𝜌(𝑛))𝑛,

which is a contradiction as it is indicated in [MGOP12].
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