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Abstract. We report on the key role of the acoustical impedance ratio between
the solid and the host fluid in the transmission properties of slit arrays. Numerical
calculations predict huge sound screening effects up to 60 dB for low impedance
ratio values. The screening band appears over a broad frequency region and
is very robust against dissipative losses of the material as well as against the
sound incident angle. This counterintuitive result is discussed in terms of the
hydrodynamic short circuit, where the fluid and the solid at the radiating interface
vibrate out of phase, resulting in a huge sound blocking effect.

Online supplementary data available from stacks.iop.org/NJP/13/043009/
mmedia

The behaviour of waves interacting with periodic structures has been a subject of intensive
research in recent years. In particular, the transmission of light through periodically perforated
metal films [1] has attracted considerable attention not only due to their intriguing physics [2],
but also because it promises several applications [3] in the field of nanophotonics. For sound
waves, specifically for airborne sound, the use of periodically perforated panels or slit arrays
is within common practice in acoustical engineering [4, 5]. Their acoustical properties are well
understood in most cases, as the sound wavelength in air is far larger than the geometrical
parameters that define the array (the period, aperture size and plate thickness). This knowledge
has been extended by the latest studies performed on this kind of structure [6]-[12], which
deal with phenomena that appear when the wavelength A is comparable to at least one of the
geometrical parameters of the array. Recent experimental and theoretical studies focus on the
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resonant full transmission peaks [6]-[10]. The sound transmission features of hole and slit arrays
are governed by Fabry—Perot resonances similarly to transverse magnetic (TM) polarized light
transmission through slit arrays [7, 13] under the perfect conductor (rigid solid) assumption
for light (sound). This resemblance is no longer valid for electromagnetic wave transmission
through hole arrays owing to the strong cutoff of the holes and the appearance of extraordinary
transmission, even for an infinitely thin holey film [14].

Recently, Estrada et al [11] reported on quite a counterintuitive result where, by means
of the Wood anomaly, drilling holes in a homogeneous plate decreases the transmission of
sound by several decibels at certain frequencies, well below the prediction of the mass law.
Also, a strong interaction between periodicity-induced modes and leaky Lamb modes for finite
impedance ratio between the fluid and the solid was demonstrated in [15, 16], whereas surface
plasmons can couple and interact with Fabry—Perot modes when light is transmitted through
metallic nano-slit arrays [17, 18]. However, our results reveal that for slit arrays having a finite
impedance ratio, no leaky Lamb modes are present in its sound transmission features as occurs
with hole arrays. These features make sound transmission through hole or slit arrays unique
compared to light.

In this paper, we will report on the key influence of the impedance ratio K between the solid
and the fluid in slit-array systems. Contrary to what should be expected, our results show that
finite impedance ratios would produce a far larger sound screening than an infinite impedance
ratio.

We performed calculations by means of finite elements using Comsol multiphysics
software. A unit cell of the slit array having a period a, a slab thickness = 0.6a and an aperture
of size d = 0.28a 1s modelled using periodic boundary conditions and perfectly matched layers
(PML) in the transmitted and reflected far sides for time-harmonic plane wave excitation. In the
solid slab, the out-of-plane components of the strain tensor and the displacement are assumed
to be zero, which allowed us to deal with a two-dimensional (2D) problem for an isotropic
solid. The transmitted and reflected sound power are then obtained integrating the component
of the time-averaged intensity that is normal to the array right before the PML. Convergence
is achieved for an element size around A /15 and is confirmed through the balance of the total
sound power in the system.

The characteristic acoustic impedance in a fluid is given by zy = poco, where py is the fluid
density and ¢, the wave velocity. For a given solid of density p, longitudinal wave velocity ¢
and transverse wave velocity ¢, the impedance ratio between the solid and the fluid is defined as
K = z,/z0 = pci1/ poco. This ratio controls the sound transmission through a fluid—solid interface
at normal incidence. On the other hand, the c¢;/cy ratio determines whether the wave motion
of a homogeneous plate is governed by leaky Lamb waves and one Scholte—Stoneley mode
(c¢/co > 1) [19] or mainly by Scholte—Stoneley waves as it occurs in a fluid—solid interface
(ct/co < 1) [20]. The transverse wave velocity in the solid is chosen as ¢, =0.7¢/ V2, thus
satisfying ¢ — 2¢? > 0.

Figure 1(a) reveals the key role of K for slit arrays compared to homogeneous plates. The
sound power transmission coefficient t has been calculated as a function of the normalized
frequency fa/cy at normal incidence. The features described in several papers assuming
K = 00 [6]—-[11], namely the resonant full transmission peaks and the Wood anomaly, appear
almost unchanged for K =15 at fa/co = 0.6 and 0.99 for the first and at fa/co =1 for the
latter. However, when K = 8, huge unexpected transmission dips appear. To retain a more
global picture of the effect of K, it has been varied between 2 < K < 15 following five different
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Figure 1. The transmitted sound power coefficient 7 in dB as a function of
the normalized frequency fa/c, for slit arrays and homogeneous plates having
different K.
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Figure 2. (a) The transmitted sound power coefficient in dB for slit arrays of
different K as a function of the normalized frequency at normal incidence.
For each peak indicated by labels (b)—(e), the pressure (colour online) and
displacement (arrows) fields are shown at the slit-array unit cell. The incident
wave travels from left to right having the same amplitude in all cases. Differences
in the range of the colour scale arise due to the existence of constructive
interference in the pressure field. Arrow scaling is also different for each plot.

slopes m = (c1/co)/(p/po). The transmission features evolve with decreasing K in agreement
with what is reported in [11] for aluminium-perforated plates immersed in water (K ~ 11.8,
¢i/co ~ 2) and the theoretical prediction in [21] for PMMA-perforated plates in water (K ~ 1.8
c/co~0.7).2

The physical origin of this phenomenon can be understood by comparing the pressure
and displacement fields for finite and infinite K values, as shown in figure 2 when a plane
wave coming from the left side impinges on the slit array. Two points for each transmission
curve in figure 2(a) corresponding to K =5 (light curve) and K = oo (black curve) are shown
and labelled in figures 2(d)—(e). The moderate transmission of —12dB obtained for K = oo

4 See supplementary data (available online at stacks.iop.org/NJP/13/043009/mmedia) for the whole set of
calculations and a detailed description.
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Intensity (a.u)

Figure 3. Time-averaged intensity normal to the aperture at the right side of
the slit array referred to in figures 2(d) and (e), as a function of the normalized
vertical coordinate y/a. The hole is centred at y/a = 0 and the positive side of
the intensity points towards the outside of the slit.

at fa/co = 0.95 is distinguishable from figure 2(b). Some portion of the incident wave coming
from the left passes through the slit and is transmitted to the right. The interfaces at the right side
of the solid cannot move, i.e. they act as a rigid baffle. This behaviour differs from that of the
Wood anomaly minimum at fa/co = 1 (see figure 2(c)). As expected, the incident wave is almost
completely reflected at the left side of the array, precluding the wave to enter the slit. Thus, even
if the plate thickness is enlarged up to infinity [22], the same phenomenon occurs. On the other
hand, when K =5, the solid can vibrate and it couples to the fluid. How this coupling contributes
to decreasing the transmission through the slit array can be inferred from figures 2(d) and (e),
which correspond to the minima in figure 2(a) at fa/co = 0.64 and 0.87, respectively. At first
glance, the fields for K = 5 are more similar to those of figure 2(b) than to the Wood anomaly
ones. However, in these cases, the incoming wave penetrates not only the slit but also the solid in
such a way that the outward displacement at the slit right side is compensated for by the inward
displacement of the solid right face. Thus, an evanescent wave appears at the transmitted side
of the slit array, yielding sharp dips beyond —40 dB in transmission. This phenomenon is well
known in the sound radiation of structures and it is called the hydrodynamic short circuit [23].
Also the field inside the slit is affected by the solid deformation. Small gradients in the vertical
direction distort the otherwise straight displacement field.

To further understand the differences between both transmission minima for K = 5, we can
analyse time-averaged quantities related to the sound radiation as the sound intensity normal to
the aperture at the right side of the slit array unit cell (see figure 3). Surprisingly, at the first
minimum (regarding figure 2(d)), the solid is attempting to transmit energy to the fluid, but the
fluid within the slit inhibits it, resulting in an overall sound blocking effect, as shown at the
minimum (d) of figure 2(a). The intensity at the second minima (regarding figure 2(e)) behaves
in the opposite way, mainly concentrated at the edges of the slit. This shape is presumably
induced by the solid deformation because the cavity sustains a standing wave and little energy
is carried through the slit. In addition, the intensity at the solid presents more gradients due to
the shorter wavelength of the incoming wave.

Previous results for normal incidence can be broadened, considering nonzero parallel to
the array wavenumber k; such that for the incident wavenumber in the fluid ko, the angle of
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Figure 4. The transmitted sound power coefficient t dispersion of a slit array for
K = 8 (colour (grey) scale in dB) as a function of the parallel wavevector kja/m
and the incident wavenumber kga /7.
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Figure 5. The transmitted sound power coefficient t of a slit array for K =9
in dB at normal incidence as a function of fa/c, for different values of the loss
factor 7.

incidence yields 6 = arcsin(k/ ko). The sound power transmission coefficient 7 is shown in
figure 4 for K =8 as a function of k; and k. Dark regions below the Wood anomaly given
by ko =27 /a — k correspond to low transmission zones where both dips can be distinguished.
Thus, an acceptable angular window of low transmission is provided.

One key difference between slit and hole arrays for finite impedance ratio is evident from a
comparison of figure 4 to the experimental and theoretical results reported in [15, 16]. No leaky
surface modes appear for slit arrays, because the solid slabs have no elastic connection between
them as a perforated plate does.

The above-presented results were calculated without including any loss either in the host
fluid or in the solid obstacle. To ensure the robustness of the huge transmission dips against
dissipative losses present in the solid, we varied the loss factor n [24] through different orders
of magnitude, as shown in figure 5. The transmission is quenched to 40 dB when n = 0.1 and
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to less than 20dB for n > 1. In real situations, the nature of the loss and its magnitude will
depend enormously on the frequency range even for a single material®. Thus, it is expected that
the choice of a material with n < 10~! would ensure very low transmission.

The nontrivial behaviour reported in this paper is even more outstanding than the already
counterintuitive possibility of screening sound with slit (hole) arrays. The lowest transmission
is not achievable with the highest impedance ratio, but with an optimum K. These results are
consistent throughout the whole set of parameters included in this study (see footnote 4). As
the impedance ratio for most solids in air is at least three orders of magnitude larger than those
considered for this study, slit array sound screening is not suitable for airborne sound [25].
The physical mechanism involved in the transmission dips differs from the Wood anomaly.
The solid vibrations allow normal intensity oscillation at the transmission face of the array,
which produces very low radiated sound power. The existence of an optimum impedance ratio
to obtain transmission losses up to 60dB using slit arrays opens the door for a wide range
of possible applications, mainly in underwater acoustics and underwater ultrasound. For sonar
applications, it could be used as a reflector either to block signals coming from unwanted sources
or for redirecting the launched sonar signal. In this aspect, a slit array can be a better option
over a solid surface or a holey plate because of its hydrodynamic characteristics. Some similar
applications, but at a smaller scale, could be thought of as well for underwater ultrasound.

Acknowledgments

We acknowledge financial support from the projects MICINN MAT2010-16879 and Consolider
NanoLight.es CSD-2007-0046 of the Spanish Education and Science Ministry and from the
project PROMETEO/2010/043 of Generalitat Valenciana. HE acknowledges support from a
CSIC-JAE scholarship.

References

[1] Ebbesen W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Extraordinary optical transmission through
sub-wavelength hole arrays Nature 391 667-9

[2] Garcia de Abajo F J 2007 Colloquium: Light scattering by particle and hole arrays Rev. Mod. Phys. 79 1267

[3] Genet C and Ebbesen T W 2007 Light in tiny holes Nature 445 39-46

[4] Ingard U and Bolt R H 1951 Absorption characteristics of acoustic material with perforated facings J. Acoust.
Soc. Am. 23 53340

[5] Miiller G and Moser M 2004 Taschenbuch der Technischen Akustik (Berlin: Springer)

[6] Zhang X 2005 Acoustic resonant transmission through acoustic gratings with very narrow slits: multiple-
scattering numerical simulations Phys. Rev. B 71 241102

[7] Hou B, Mei J, Ke M, Wen W, Liu Z, Shi J and Sheng P 2007 Tuning Fabry—Perot resonances via diffraction
evanescent waves Phys. Rev. B 76 054303

[8] Lu M-H, Liu X-K, Feng L, Li J, Huang C-P, Chen Y-F, Zhu Y-Y, Zhu S-N and Ming N-B 2007 Extraordinary
acoustic transmission through a 1d grating with very narrow apertures Phys. Rev. Lett. 99 174301

[9] Zhou L and Kriegsmann G A 2007 Complete transmission through a periodically perforated rigid slab
J. Acoust. Soc. Am. 121 3288-99

[10] Christensen J, Martin-Moreno L and Garcia-Vidal F J 2008 Theory of resonant acoustic transmission through

subwavelength apertures Phys. Rev. Lett. 101 014301

> Note that ) &~ 2—4 x 1072 for Plexiglas, while for most common metals n < 1073 [24].

New Journal of Physics 13 (2011) 043009 (http://www.njp.org/)


http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1103/RevModPhys.79.1267
http://dx.doi.org/10.1038/nature05350
http://dx.doi.org/10.1121/1.1906799
http://dx.doi.org/10.1103/PhysRevB.71.241102
http://dx.doi.org/10.1103/PhysRevB.76.054303
http://dx.doi.org/10.1103/PhysRevLett.99.174301
http://dx.doi.org/10.1121/1.2721878
http://dx.doi.org/10.1103/PhysRevLett.101.014301
http://www.njp.org/

7 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[11] Estrada H, Candelas P, Uris A, Belmar F, Garcia de Abajo F J and Meseguer F 2008 Extraordinary sound
screening in perforated plates Phys. Rev. Lett. 101 084302

[12] Estrada H, Candelas P, Uris A, Belmar F, Meseguer F and Garcia de Abajo F J 2008 Influence of the hole
filling fraction on the ultrasonic transmission through plates with subwavelength aperture arrays Appl.
Phys. Lett. 93 011907

[13] Takakura Y 2001 Optical resonance in a narrow slit in a thick metallic screen Phys. Rev. Lett. 86 5601-3

[14] Garcia de Abajo F J, Estrada H and Meseguer F J 2009 Diacritical 2009 study of light, electrons, and sound
scattering by particles and holes New J. Phys. 11 093013

[15] Estrada H, Garcia de Abajo F J, Candelas P, Uris A, Belmar F and Meseguer F 2009 Angle-dependent
ultrasonic transmission through plates with subwavelength hole arrays Phys. Rev. Lett. 102 144301

[16] Estrada H, Candelas P, Uris A, Belmar F, Garcia de Abajo F J and Meseguer F 2009 Influence of lattice
symmetry on ultrasound transmission through plates with subwavelength aperture arrays Appl. Phys. Lett.
95 051906

[17] Lee K G and Park Q-H 2005 Coupling of surface plasmon polaritons and light in metallic nanoslits Phys. Rev.
Lett. 95 103902

[18] KihmJE, YoonY C,Park D J, Ahn Y H, Ropers C, Lienau C, Kim J, Park Q H and Kim D S 2007 Fabry—Perot
tuning of the band-gap polarity in plasmonic crystals Phys. Rev. B 75 035414

[19] Viktorov I A 1967 Rayleigh and Lamb Waves: Physical Theories and Applications (New York: Plenum)

[20] Glorieux C, Van de Rostyne K, Nelson K, Gao W, Lauriks W and Thoen J 2001 On the character of acoustic
waves at the interface between hard and soft solids and liquids J. Acoust. Soc. Am. 110 1299-306

[21] LiuF, Cai F, Ding Y and Liu Z 2008 Tunable transmission spectra of acoustic waves through double phononic
crystal slabs Appl. Phys. Lett. 92 103504

[22] Norris A N and Luo H A 1987 Acoustic radiation and reflection from a periodically perforated rigid solid
J. Acoust. Soc. Am. 82 2113-22

[23] Williams E G 1999 Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (New York:
Academic)

[24] Cremer L, Heckl M and Petersson B A T 2005 Structure-Borne Sound 3rd edn (Berlin: Springer)

[25] Estrada H, Bravo J M and Meseguer F 2011 Slit-array transmission loss feasibility in airborne sound
arXiv:1102.4960v1[cond.mat.other]

New Journal of Physics 13 (2011) 043009 (http://www.njp.org/)


http://dx.doi.org/10.1103/PhysRevLett.101.084302
http://dx.doi.org/10.1063/1.2955825
http://dx.doi.org/10.1103/PhysRevLett.86.5601
http://dx.doi.org/10.1088/1367-2630/11/9/093013
http://dx.doi.org/10.1103/PhysRevLett.102.144301
http://dx.doi.org/10.1063/1.3196330
http://dx.doi.org/10.1103/PhysRevLett.95.103902
http://dx.doi.org/10.1103/PhysRevB.75.035414
http://dx.doi.org/10.1121/1.1396333
http://dx.doi.org/10.1063/1.2896146
http://dx.doi.org/10.1121/1.395656
http://arxiv.org/abs/1102.4960v1
http://www.njp.org/

	Acknowledgments
	References

