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C/ Serrano, 144, E-28006 Madrid, Spain

(Dated: November 16, 2010)

Abstract

A systematic study of noise barriers based on sonic crystals made of cylinders that use recycled

materials like absorbing component is here reported. The barriers consist of only three rows of

perforated metal shells filled with rubber crumb. Measurements of reflectance and transmittance

by these barriers are reported. Their attenuation properties result from a combination of sound

absorption by the rubber crumb and reflection by the periodic distribution of scatterers. It is

concluded that porous cylinders can be used as building blocks whose physical parameters can be

optimized in order to design efficient barriers adapted to different noisy environments.
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I. INTRODUCTION

Sonic Crystals (SCs) are structures made of sound scatterers periodically arranged in

a lattice[1]. SCs forbid sound propagation for some frequency bands, named bandgaps,

in a manner similar as semiconductors forbid the transmission of electronic waves of some

energy bands[2]. The physical mechanism behind the formation of bandgaps is the same

for both scalar waves; that is, the destructive interference between waves reflected by two

consecutive planes of sound scatterers (for acoustic waves) or atomic planes (for electronic

waves). Transmittance and reflectance measurements for sound waves impinging arrays of

solid cylinders in air demonstrated that, at bandgap frequencies, a low transmittance and

a high reflectance are simultaneously observed due to Bragg scattering[3–5]. The existence

of complete bandgaps as well as the presence of deaf modes in the acoustic bands were

demonstrated in the late eighties[3, 4]. Also, it has been shown that disordering in the SC

lattice produces bandgap enlargement[6].

Numerical algorithms have been developed to reproduce the experimental findings. They

are based on different theoretical approaches like plane-wave expansion [7], variational meth-

ods [3, 4, 6], transfer matrix [8], multiple scattering [5, 9–11], finite differences in time domain

(FFTD)[12] and the finite element method[13].

Practical devices like, for example, acoustic filters or waveguides based on SCs have been

proposed and demonstrated [14, 15]. Taking advantage of the small acoustic impedance of

SC at low frequencies, it is also possible to make convergent lenses [16] and Fabry-Perot

interferometers [11]. An application that generates considerable interest in the last years

is the noise control by acoustic barriers based on SC. Sound attenuation up to 20dB [3]

and 25dB [17] were obtained with arrangements of metallic cylinders in air and it has been

concluded that SC can compete with mass law-based sound screens with the advantage of

less volume and weight. It was also predicted that sound attenuation (in dB) of a 2D SC

increases linearly with the number of rows[18], but diffraction effects associated with the

finite height of barriers defines a limit to its potential attenuation. Selective noise reduction

has been reported by SC barriers based on three-dimensional scatterers [19]. SC barriers

with embedded resonances have been also proposed to attenuate efficiently the low frequency

region of the audible spectrum (below 500 Hz)[20]

SC barriers made of metallic or rigid cylinders in air show a strong attenuation of the
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transmitted sound only at bandgap frequencies. In order to overcome this drawback a porous

covering of the cylinders has been proposed as a solution to get a more uniform attenuation

spectrum[21]. Umnova and coworkers reported the insertion loss spectra by barriers made

of three rows of cylinders with diameter 0.635 cm and lattice constant 1.5 cm, having a very

thin porous covering (0.175 cm thick) in a very wide frequency region (up to 50kHz). From

our point of view it is of great interest to know what is the physical mechanism, absorption

or Bragg reflexion, controlling the insertion loss in acoustic barriers based on SCs. Moreover,

it is also important to know how attenuation depends on the thickness of the covering layer

and to study this dependence in the low frequency region of the audible spectrum. Both

effects are relevant when we consider the design of barriers where the reflected sound needs

to be minimized. Thus, for the cases of narrow roads or railway lines, where barriers are

placed at both sides, sound reflected by one of the barriers can reach the other with the

consequent loss of efficiency.

In this work we report a systematic study, theoretical and experimental, of SC barriers

whose attenuation properties are based on a combination of sound absorption by the porous

covering and sound reflection by the periodic distribution of scatterers. For this purpose

we have fabricated barriers whose building blocks consist of hollow and perforated metallic

cylinders filled with rubbed crumb, a porous material that is obtained by recycling used car

tires. We analyze barriers made of only three rows of cylinders arranged in a square lattice.

Moreover, we focus our attention in the low frequency region of the audible spectrum (up

to 5kHz) since the barrier quality depends on its performance in this region.

The article is organized as follows. Section II gives a brief review of the multiple scat-

tering method employed in the numerical simulations. Section III describes the acoustical

parameters of rubber crumb, the recycled material used as the porous material in building

the cylindrical units. The experimental set up and barrier characterization is described in

Sec. IV, where a comparison between theory and experiments is also reported together with

a discussion of results. Finally, Sec. V gives a summary of the work performed and suggests

lines of future research.
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II. MULTIPLE SCATTERING THEORY

Numerical simulations are performed in the framework of multiple scattering theory.

This theory is based on the exact solution of the single scattering problem and is capable

of calculating the scattering of finite and infinite arrays of scatterers. A detailed account of

the algorithm can be found, for example, in Ref. 11 and references therein.

Three different sound scatterers have been tested in the experiments: i) cylindrical rods

made of metal, ii) cylinders made of rubber crumb, and iii) cylinders consisting of a shell

of rubber crumb and a metal core. This section gives a brief account of the expressions for

the t matrix of these three types of cylindrical scatterers and how they are obtained. Due

to the high acoustic impedance of steel compared to air this material can be considered as a

rigid body; i.e. with an infinite mass density. Regarding the rubber crumb, it is modeled as

a fluid-like medium characterized by three parameters: porosity, complex wave number and

complex dynamical mass density. Section IIA obtains the t matrix for a porous cylinders

and a rigid (metallic) cylinder, respectively. Finally, the t matrix of a porous cylindrical

shell with a rigid core is reported in Sec. II B.

A. T matrix of a fluidlike porous cylinder

Let us consider a fluidlike cylinder of infinite length, radius R, mass density ρa and sound

velocity ca. It is embedded in a background with acoustic parameters ρb and cb.

The general expressions for the pressure field incident on the cylinder P 0, scattered by

the cylinder P SC and transmitted inside the cylinder P in, are:

P 0(r, θ;ω) =

+∞
∑

q=−∞

A0
qJq(kbr)e

iqθ, (r > R) (1)

P SC(r, θ;ω) =

+∞
∑

q=−∞

AqHq(kbr)e
iqθ, (r > R) (2)

P in(r, θ;ω) =
+∞
∑

q=−∞

B0
qJq(kar)e

iqθ, (r < R) (3)

where Jq and Hq are q-th order Bessel and Hankel functions, respectively, and ω is the

angular frequency. Moreover, ka = ω/ca (kb = ω/cb) is the wave number inside (outside) the

cylinder and (r, θ) define the polar coordinates of the point where the field is calculated.
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Coefficients A0
q are defined by the incident field. Thus, for a plane wave with amplitude

C and wave vector ~k0(x, y) = ~k0(cos θ0, sin θ0):

A0
q = Ciqe−iqθ0 (4)

Coefficients Aq and Bq depend on A0
q and on the cylinders physical parameters. So, to

obtain Aq we apply the usual continuity conditions at the cylinders surface[21]:

P out(r = R) = P in(r = R), (5a)

1

ρb

∂P out

∂r

∣

∣

∣

∣

r=R

=
Ω

ρa(ω)

∂P in

∂r

∣

∣

∣

∣

r=R

, (5b)

where ρa(ω) is the frequency dependent dynamical mass density and Ω is the cylinder’s

porosity. The porosity is defined as Ω = Vair/Vtot, where Vair is the pore volume and Vtot

the total volume of material.

After some easy operations we obtain the so called t matrix of the cylinder, which is

defined by

Tq ≡
Aq

A0
q

= −
ρqJ

′
q(kbR)− Jq(kbR)

ρqH ′
q(kbR)−Hq(kbR)

, (6)

where

ρq =
1

Ω

ρaca
ρbcb

Jq(kaR)

J ′
q(kaR)

and J ′
q and H ′

q are first derivatives of q-th order Bessel and Hankel functions. This t matrix

is used in modeling rubber crumb cylinders.

For the case of a rigid cylinder (ρa = ∞), expression (6) is reduced to the well know

expression

Tq = −
J ′
q(kbR)

H ′
q(kbR)

(7)

B. T matrix of a porous cylindrical shell with a rigid core

Let us consider now a cylinder made of a fluid-like porous shell defined by radii Ra and Rb

(Ra < Rb) and parameters ks, ρs, cs. Regarding the core (r < Ra), let us start by assuming

that is also fluidlike with parameters ka, ρa, ca .

The external pressure impinging the cylinder, P 0, and the scattered pressure,P SC are

given by expressions (1) and (2), respectively, with R = Rb. However, at positions r < Rb

we have:
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P a =

+∞
∑

q=−∞

DqJq(kar)e
iqθ, if r < Ra (8)

P s =

+∞
∑

q=−∞

BqJq(ksr)e
iqθ +

+∞
∑

q=−∞

CqHq(ksr)e
iqθ, if Ra < r < Rb (9)

By applying the boundary conditions at the two interfaces and also by using the simpli-

fying assumption of a rigid core (ρa → ∞), we get:

Tq = −
ρwJ

′
q(kbRb)− Jq(kbRb)

ρwH ′
q(kbRb)−Hq(kbRb)

, (10)

where

ρw =
1

Ω

ρscs
ρbcb

Jq(ksRb) + T s
qHq(ksRb)

J ′
q(ksRb) + T s

qH
′
q(ksRb)

T s
q = −

J ′
q(ksRa)

H ′
q(ksRa)

These expressions define the t matrix of a porous cylinder with a rigid core that will be

used in the multiple scattering simulations described below.

C. Multiple Scattering

When the external field P 0 impinges a cluster of N parallel cylinders arbitrarily located,

the scattered field P SC is obtained from

P SC(x, y) =
N
∑

α=1

+∞
∑

q=−∞

(Aα)qHq(kbrα)e
iqθα, (11)

where (rα, θα) are the polar coordinates translated to the center of the αth-cylinder and

(Aα)q the coefficients to be calculated. See Fig. (1) for an account of the variables employed

below.

The total field incident on the αth-cylinder is

P 0
α =

+∞
∑

s=−∞

(Bα)sJs(kbrα)e
isθα. (12)

This takes into account the external field as well as the field scattered by the rest of cylinders

arriving at α.
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FIG. 1: Coordinate system and variables used in the multiple scattering theory.

Applying Graff’s addition theorem to (11) and adding the incident field P 0 we arrive at

P 0
α =

+∞
∑

q=−∞

(A0
α)qJq(kbrα)e

iqθα +
∑

β 6=α

(Aβ)sHq−s(kbrαβ)e
i(s−q)θαβJq(kbrα)e

iqθα (13)

where (A0
α)q are the same as A0

q of (1) but translated to the αth-cylinder.

For the case of an external plane wave like that in (4)

A0
α = Ciqe−iqθ0ei

~k0·~rα (14)

The t matrix relates (Aα)q and (Bα)s:

(Aα)q =

+∞
∑

s=−∞

(Tα)qs(Bα)s (15)

7



0 500 1000 1500
0.0

0.2

0.4

0.6

0.8

1.0

A
bs

or
pt
io
n

Frequency (Hz)

 
exp

 
th

FIG. 2: The absorption value of rubber crumb measured in a standing wave tube. The theoretical

coefficient has been obtained by fitting β1 and β2 in Eq. (24). The curve αth is obtained with

β1 =1.58 and β2 =0.7

The expression for (Aα)q is finally obtained from Eqs. (12), (13), and (15) by truncating

the infinite sums at ±Smax:

(Aα)q =

N
∑

β=1

+Smax
∑

r=−Smax

+Smax
∑

s=−Smax

(M−1
αβ )qr(Tα)rs(A

0
α)s, (16)

where

(Mαβ)qs = δrsδαβ − (Gαβ)rs (17)

(Gαβ)rs = (1− δαβ)(Tα)qHq−s(kbrαβ)e
i(s−q)θαβ (18)

and δ represents the Kronecker delta.

Once (Aα)q is known the total pressure at any point (x, y) can be obtained by adding

P 0(x, y)+P SC(x, y). Note that this method allows to deal with cylinders of different acoustic

parameters at the different positions in the lattice.
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III. RUBBER CRUMB PARAMETERS

Porous materials are widely used for sound absorption because of their capacity to dissi-

pate the acoustic energy[22]. Granular porous material can be considered as an alternative

to the more usual fibrous and foam absorbers. In addition, granular materials offer good ab-

sorption combined with good mechanical strength unlike fibrous materials[23]. Particularly,

the rubber crumb is widely used for acoustic conditioning in outdoors noise control[24]. The

one used here is polydisperse and consists of grains with sizes in the range from 0 to 3mm.

There are many theoretical and empirical models that have been developed to predict

the acoustical properties of granular porous materials. For a review the reader is addressed,

for example, to Refs. 25–29 and references therein. Here, we employed the so called Biot-

Allard theory, which assumes a negligible contribution by the movement of the material

skeleton[32]. In this model the porous material is described like a dissipative compressible

fluid whose acoustical properties are completely characterized by the wave number kc(ω)

and the characteristic impedance Zc(ω), which are functions of ω. Both are related to the

complex dynamical mass density, ρ(ω),and bulk modulus, K(ω), through[28]:

kc(ω) = ω

√

ρ(ω)

K(ω)
, (19a)

Zc(ω) =
1

Ω

√

ρ(ω)K(ω), (19b)

where Ω is the material porosity already introduced in section IIA

The magnitudes kc and Zc are modeled in the present work by the five parameter model

of Johnson-Stinson that uses the proposal of Johnson et al.[29] to express the complex

dynamical mass density:

ρ(ω) = ρ0τ

(

1− iA

√

1 + i
β2
1

2A

)

with A =
σΩ

ωρ0τ
, (20)

where this expression has been obtained by using the viscous characteristic length, Λ, given

in Ref. 30:

Λ =
1

β1

√

8ητ

σΩ
(21)

For the bulk modulus we use the expression obtained in Ref.31 from the initial proposal of

Stinson et al.[27]:

K(ω) =
γP0

γ − γ−1

1−i
β2
2

Npr
A

√

1+i
Npr

2Aβ2
2

, (22)

9



-1.5

-1.0

-0.5

0.0

-0.10

-0.08

-0.06

-0.04

-0.02

-5

-4

-3

-2

-1

0

2.4

2.7

3.0

3.3 ( a )

R
e 

( Z
c/

0c 
)

 R
e 

( k
c ) 

[c
m

-1
]

0.0

0.4

0.8

1.2

1.6
( b )

Im
 ( 

Z c/
0c)

 

 Im
 ( 

k c )[
 c

m
-1

]

40 100 1000 4000

1.2

1.6

2.0

2.4

2.8

 

R
e 

(
/

0)

Frequency (Hz)
40 100 1000 4000

0.4

0.5

0.6

0.7

0.8
( d )

c 
/ c

0

Frequency (Hz)
 Im

(
c / 

0)

( c )

FIG. 3: Real and imaginary parts of: (a) characteristic impedance Zc; (b) propagating wave vector

kc; (c) dynamical mass density ρ; and (d) effective sound speed c. Note that parameters are

determined from density ρ and bulk modulus K, which are the two independent parameters in the

model (see text).

where Npr = 0.706 is the fluid Prandtl number and γ = 1.4 is the ratio of specific heats.

This expression has been obtained by using the thermal characteristic length, Λ′, given in

Ref. 30:

Λ′ =
1

β2

√

8ητ

σΩ
(23)

The flow resistivity (σ), the tortuosity (τ) and the porosity (Ω) are parameters that can

be experimentally determined by non acoustical methods. Finally, the two parameters β1

and β2 are related with the attenuation of acoustic energy due to the viscous and thermal

phenomena occurring as the sound moves through the material and are the only fitted

parameters in our modeling.

The flow resistivity is measured by using an experimental setup based on the European

Norm[33]. The tortuosity is a parameter characterizing the skeleton of absorbing materials,

which is directly related to the porous shape and to the existence of lateral branches. In

order to its determination, we used the procedure developed by Johnson et al.[34], which

is based on an electric measurement proposed by Brown[35]. The porosity, Ω, is obtained

by a method currently employed in geophysical studies[35] because of its simplicity and
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accuracy. The values measured for these parameters are σ =3318.6 MKS rayls/m, τ =1.54,

and Ω =54.1%.

The parameters β1 and β2 are obtained by fitting the absorption coefficient measured on

a sample of rubber crumb with thickness e in a standing wave tube. At normal incidence,

the theoretical coefficient αth is related to the surface impedance Zs of the sample by:

αth = 1−

∣

∣

∣

∣

Zs − Z0

Zs + Z0

∣

∣

∣

∣

2

; Zs = −iZccot(kce), (24)

where Zc and kc are known through the Johnson-Stinson model employed to take into

account the physical mechanism of the acoustic wave attenuation within the rubber crumb.

Figure 2 shows the absorption coefficient, α, measured for the thickness e =9.5cm. It is

compared with the curve αth giving the best fitting. The values obtained for β1 and β2 are

β1 = 1.58m−1 and β2 = 0.7m−1. These values give Λ = 142µm and Λ′ = 508µm.

The physical parameters [Zc(ω), kc(ω), ρ(ω) and c(ω)] describing our specific rubber

crumb are depicted in Fig. 3, where the sound speed, c(ω), through the effective fluid is

obtained from:

c(ω) = Re

(
√

K(ω)

ρ(ω)

)

(25)

The frequency dependence of the different curves in Fig. 3 follows the standard behavior of

granular porous media. Note that an increasing sound attenuation is expected for increasing

frequencies of the waves propagating through this type of absorbing material.

IV. EXPERIMENTAL CHARACTERIZATION

Experiments have been performed in an anechoic chamber of size 8 × 8 × 8m3. The

samples consist of 3 rows of cylindrical scatterers, each row containing 9 cylinders 1 meter

length put in a square configuration with lattice constant a =11cm.

Five different barriers samples have been analyzed and their dimensions are given in Table

I. Note that samples 1 and 2 do not contain rubber crumb, they are made of rigid cylinders

and results are used here for comparison purposes. Samples 3, 4 and 5 are made by using 3

different porous units. All the units consist of a porous shell with a diameter of db =8cm.

However, their inner cores (steel cylinders) have different diameters: da =4 cm in sample 3,

da =2cm in sample 4, and da =0 (no core) in sample 5.
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FIG. 4: Experimental setup. The parameters and dimensions specified here are employed in Section

IV. Note that reflectance is obtained by using two microphones put in front of the barrier while

transmittance is obtained by using a single microphone [Mic2(T)] put at the rear of the barrier.

The experimental setup is illustrated in Fig. 4. As sound excitation we use an UDE

AC-150 column loudspeaker separated 4m from the sample in order to have approximately

a plane wave front at the surface sample. Two B&K 4958 microphones are placed at the

equatorial plane of samples and aligned with the central cylinder. Data of two microphones

are acquired with a NI-4551 for further processing in a computer.

Reflectance measurements are performed by placing both microphones between sample

and loudspeaker. Microphones (Mic1 and Mic2(R) in Fig. 4) are put at distances d and ℓ

near the sample surface, the separation between them being ∆d = ℓ− d=1.5cm. Note that

reflection coefficient can’t be determined at frequencies where distance between microphones

corresponds to a half-wavelength of sound. Thus there is an upper frequency limit that in

our case is 11.3 kHz. Applying white noise to the sample, the pressure reflection coefficient

is calculated as[36, 37]

r(ω) = e−2ikℓH12e
−ik∆d − 1

1−H12eik∆d
, .

where H12 is the transfer function that is experimentally obtained from S1 and S2, the com-

plex spectra (unit of pressure) for the signals measured by Mic1 and Mic2(R), respectively.

Explicitly, H12 is obtained by calculating the ratio S12/S11, where S11 = S∗
1 · S1 is the au-

tospectrum of signal at Mic1 and S12 == S∗
1 · S2 is the crossspectrum between signals of

12



both microphones [38]. Therefore, the power reflection coefficient is [36–38]

R(ω) = |r(ω)|2 =

∣

∣

∣

∣

e−2ikℓS12e
−ik∆d − S11

S11 − S12eik∆d

∣

∣

∣

∣

2

(26)

This expression represents a one-dimensional approach to the full two-dimensional problem;

i.e., it has been obtained under the assumption that the incident, reflected and transmitted

waves have plane wavefronts and they all travel along the direction normal to the sample’s

surfaces[36–38]. This hypothesis, which is considered valid in our set up since the loudspeaker

is far from the sample, has been widely employed by some of us in previous works[3–5, 39] and

we always found good agreement between data and simulations based on it. For example,

the reader is addressed to Ref.39 where a comparison is reported between data and two

numerical simulations; one using a plane wave for the incident beam, the other using a

Gaussian wave approach.

Transmission measurements are made with Mic2 put at the rear surface of the sample

(and switching off Mic1); at a distance dt from the central cylinder. Keeping in mind that

the loudspeaker is distant to the sample, the sound power transmission coefficient T can

be approximated as the ratio between the autospectrum measured with the SC sample, S22

(related with the power of the transmitted field) and that measured without it S0
22 (related

with the power of the incident field):

T (ω) =
S22

S0
22

(27)

The insertion loss (IL), in decibels, is obtained from:

IL(dB) = −10× log10(T ). (28)

Finally, the absorption is obtained by assuming energy conservation: A(ω) = 1− T −R.

At this point it is important to remark that, since we are working with periodic structures,

waves propagating along angles θn different to the incident θ0 are possible because of their

scattering by planes of cylinders (Bragg planes) different to the specular. These angles are

given by[2]:

sin(θn) = sin(θ0) +
2πn

ka
, (29)

where n is an integer (n = 0 ± 1 ± 2 . . .) and a is the lattice constant. Taking θ0 =0

the first diffracted mode appears when ka = 2π, i.e. when λ = a, in such a manner that

13



θn becomes a real number. This condition is known as the diffraction limit and it defines

a frequency cut-off such that, for higher frequencies, Eq. (26) is not longer valid since

reflected and transmitted waves do exist with k−wavevectors not collinear with that of the

incident wave. In other words, for wavelengths smaller than a some energy is scattered to

angles different to the ballistic and will cause the failure of the measurement method due

to the non satisfied condition of incident, reflected and transmitted waves travelling along

the same direction in the setup. Therefore, no discussion of data will be performed above

the diffraction limit. However, let us stress that, for finite structures, Eq. (26) can still

be used in the frequency regions corresponding to the first bandgap because it appears at

frequencies bellow the diffraction limit and where the transmission reduction observed is

caused by the destructive interference of waves reflected on the successive rows of cylinders

with the incident wave that travels in opposite direction.

Reflectance and transmittance spectra are taken for frequencies up to 4 kHz and for three

different values of dt and ℓ; 5, 10 and 20cm, respectively. The results within that range of

frequencies are consistent and repetitive for the three positions of microphones. Here, we

only depict spectra correspond to microphones put at positions dt=ℓ=10cm.

The data are compared with theoretical spectra obtained by modeling the same experi-

mental configuration. Numerical simulations are performed by assuming an incident plane

wave impinging a SC cluster identical to that in the set up. The pressure is also calculated

at the microphone positions. A frequency sweep has been carried out and Eqs. (26) and

(27) are evaluated at each frequency by replacing S11 by p1 , the pressure amplitude mea-

sured at Mic1, and S21 by p2, the pressure amplitude at Mic2. The main difference is that

multiple scattering calculations are performed under the approach of infinite long cylinders.

This assumption is justified because the data are taken very close to the sample surface

and, therefore, no diffraction from the borders of cylinders is expected. In other words, the

cylinders effectively behave as infinitely long.

A. Barriers made of rigid cylinders

Figures 5 and 6 show the results for SC barriers made of only rigid cylinders with diame-

ters 4cm and 2cm, respectively; i.e., samples 1 and 2 in Table I. For the sake of comparison,

the band structures along the k−direction normal to the sample surface are also shown.
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FIG. 5: Reflectance, transmittance and absorption spectra (black dots) for a noise barrier made

of three rows of metal cylinders 4 cm diameter (sample 1 in table I). The simulations (solid lines)

are performed by using the multiple scattering theory described in Sec. II. The horizontal dashed

line is a guide for the eye. The shadowed regions define the frequencies above the diffraction limit.

The black stripe in the acoustic band structure (top panel) defines the bandgap of the underlaying

square lattice.

The acoustic bands have been obtained by the procedure described in Section II of Ref.

[10]. In brief, we have solved the secular equation obtained by taking into account that, in

a periodic system, the Bloch theorem applies to coefficients (Aα)q given by Eq. (15). It is

observed that, at the frequency region where the band gap is predicted (black stripes), a

peak appears in the reflectance spectrum and a deep simultaneously appears in the trans-

mittance spectrum. These features are barely seen in sample 2, which is made of very thin

cylinders and, therefore, has a small filling fraction, ff . This parameter is defined as the
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FIG. 6: Reflectance, transmittance and absorption spectra (black dots) for a noise barrier made

of three rows of metal cylinders 2 cm diameter (sample 2 in table I). The simulations (solid lines)

are performed by using the multiple scattering theory described in Sec. II. The horizontal dashed

line is a guide for the eye. The shadowed regions define the frequencies above the diffraction limit.

The black stripe in the acoustic band structure (top panel) defines the band gap of the underlaying

square lattice.

ratio between the cylinder volume and the total volume of the SC unit cell (see Table I).

Let us stress that better defined peaks and deeps can be obtained if larger number of layer

were employed in building the barrier[3]. Note that data (black dots) are well reproduced

by numerical simulations based on multiple scattering theory (continuous lines).

It is noticeable in Figs. 5 and 6 that values larger than unity appear in the reflectance

or transmittance spectra for frequencies above 3kHz. These values are unphysical and are

obtained by the fact that expressions employed in their calculations lost their validity since
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FIG. 7: (a) Transmittance of a flat perforated metal plate 0.5 mm thick. The perforations are

circular with 0.5mm diameter and are arranged in a hexagonal lattice.(b) Transmittance through

a SC structure consisting of three rows of cylinders (8 cm diameter) fabricated with the perforated

plates characterized above. The dashed horizontal lines are guides for the eye.

they were obtained under the approach of a plane wavefront propagating along the direction

normal to the sample surface[36, 37]. According to Eq. (29) the excitation of Bragg waves

with n 6= 0 approximately starts around λ = a. An exact determination of this cutoff is

obtained from the acoustic band structure (top panels in Figs. 5 and 6), which gives about

2.8kHz for sample 1 and 3kHz for sample 2. These cutoffs are confirmed by the absorption

spectra, which are flat (with value zero) up to such frequencies. Since microphones only

measure ballistic transport (zero-order Bragg waves) and there is no mechanism for sound

absorption in these samples, the non-zero values above such frequencies are mainly due to

diffraction effects.

B. Barriers made of rubber crumb cylinders

The rubber crumb cylinders are fabricated by inserting this recycled material inside hol-

low cylinders made with 0.5 mm thick steel plates perforated with holes of 0.5 mm of
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FIG. 8: Reflectance, transmittance and absorption spectra (black dots) for a noise barrier made of

cylinders with rubber crumb layer (8 cm diameter) and a rigid core (4 cm diameter) (sample 3 in

table I). The corresponding simulations (solid lines) are obtained by the multiple scattering theory

described in Sec. II.

diameter and arranged in a hexagonal lattice with 1.3mm of lattice constant. This pro-

cedure represents a practical alternative to the habitual use of binders in order to obtain

rigid structures of rubber crumb. Experimental verification that the described perforated

metal plates are highly transparent to sound is shown in Fig. 7(a), which represents the

transmission coefficient measured at 10cm from the rear surface by using the transmission

set up explained previously. From this spectrum it can be concluded that the plate is almost

acoustically transparent for normal incident sound. If sound impinges with angles different

to the normal, the plate loses its transparency and, as a consequence, the cylinders made

with them loose the perfect transparency for frequencies above the diffraction limit of the

associate SC (about 2.8 kHz). This phenomenon is observed in the transmittance spectrum

depicted in Fig. 7(b), which corresponds to a barrier consisting of three layers of hollow

cylinders 8cm diameter made with the perforated metal plates. Note that this structure is

transparent enough until 4.0kHz. Therefore, it will be assumed that the absorption effects

observed after their filling in will be associated solely to the absorption properties of the
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FIG. 9: Reflectance, transmittance and absorption spectra (black dots) for a noise barrier made of

cylinders with rubber crumb layer (8 cm diameter) and a rigid core (2 cm diameter) (sample 4 in

table I). The corresponding simulations (solid lines) are obtained by the multiple scattering theory

described in Sec. II.

rubber crumb.

Figures 8, 9, and 10 represent the spectra for samples 3, 4 and 5, respectively. Note

that, as in the case of SC barriers based on rigid cylinders, we have obtained an overall

good agreement between measurements (black dots) and numerical simulations (continuous

lines). In comparison with the case of samples 1 and 2, there is now an important absorption

in the full range of frequencies because of the attenuation properties of rubber crumb. Let

us remark that absorption increases for increasing frequency because of the behavior of kc

shown in Fig. 3(b). Also note that no unphysical results are observed in reflectance and

transmittance spectra above the diffraction limit since the absorption mechanism avoid their

appearance. However, the data above this limit are of no quality and must be obtained by

other means.

The reflectance spectra in Figs. 8, 9, and 10 show a relevant feature: the peaks at the

band gap region have approximately the same frecuency width due to the fact that all the

structure has the same filling ratio; i.e., the cylinders have the same external diameter.
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FIG. 10: Reflectance, transmittance and absorption spectra (black dots) for a noise barrier made

of cylinders with rubber crumb layer (8 cm diameter) (sample 5 in table I). Numerical simulations

(continuous lines) are obtained by the multiple scattering theory described in Sec. II.

However, the peak is stronger for the case of sample 3, which is made of cylinders with the

thicker core, and weaker for sample 4, which is made of cylinders with no core.

Regarding transmittance and absorption spectra, it is difficult to extract clear conclusions

by just looking at their corresponding plots in Figs. 8, 9. So, these magnitudes are discussed

in the next section with the help of related parameters.

C. Discussion

In order to compare the absorption quality of the samples analyzed we have introduced

AP , a parameter defined as

AP ≡
1

∆ω

∫

∆ω

A(ω)dω, (30)

where A(ω) is the energy absorption. AP acts as a quality parameter to measure the ab-

sorption power at the three different spectral regions of interest in a SC: below bandgap, at

bangap and above bandgap. The borders of the bandgap are defined by the frequencies at

which the reflectance peak is half of its maximum value. Note the AP =1 is the maximum
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FIG. 11: (Color online) Insertion loss of samples described in Table I. The dashed lines represent

the IL predicted for a rigid wall having the same external dimensions as the samples.
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FIG. 12: (Color online) Theoretical predictions of the Insertion loss for the samples described in

Table I. The dashed lines represent the IL predicted for a rigid wall having the same external

dimensions as the samples.
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value achievable and would mean total absorption of the incident sound in the frequency

range considered.

The values of AP for the different samples are reported in Table II. First, let us remark

that negative values mean that the energy conservation assumption is broken and, therefore,

the resulting values for AP have no physical meaning and are not discussed. For the case of

barriers made of rigid cylinders (samples 1 and 2) there is no any physical mechanism leading

to sound absorption and, therefore, AP values should always be close to zero. Results for

samples 3, 4 and 5 indicate that power absorption below the bandgap are practically the

same and does not depend on the thickness of the porous covering. Inside the bandgap, the

experiment show that AP increases with increasing shell thickness; it is maximum when the

cylinders have no core. For frequencies above bandgap AP get larger values since attenuation

by rubber crumb increases with frequency but, in this region, we have to recall that data

obtained by Eq. (26) are not reliable and a more accurate method should be employed in

this region. Therefore, for frequencies above bandgap, AP must be calculated by using data

obtained by a different experimental set up. Table II also shows that there is a general good

agreement between experimental data and simulations based on a 2D multiple scattering

algorithm. Let us remark that the disagreement observed at the bandgap region are mainly

due to the overestimation by our modeling of the peak strength in reflectance spectra.

The insertion loss (IL) of the different samples either measured as well as calculated

are depicted in Figs. 11 and 12, respectively, for the sake of their comparison with results

reported by other groups[17, 18, 21]. The black dashed lines in these figures represent the IL

calculated for a rigid wall with the same dimensions than the SC barriers; i.e., 30 cm thick

and 1 m height. This value has been obtained by using the procedure described in the ISO

9613[42]. It is observed that the IL of samples containing a porous shell are stronger than

that having only rigid cylinders. This behavior is produced by the absorption properties of

the rubber crumb. Moreover, it is also observed that the shell containing the thicker core

present an enhancement of the IL, which even overcome the IL of the corresponding rigid

wall in certain frequency regions. This result is confirmed by the simulations and let us to

conclude that a critical thickness that optimizes the IL in this type of structures may exist.

On one hand, the comparison with the attenuation properties of SC barriers based on rigid

cylinders[17, 18] indicates that IL values comparable to ours could be obtained by increasing

the number of layer employed in building the barriers. However, this IL enhancement will
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be focused into the band gap frequency region. Note that in our rubber crumb based

structures the attenuation is obtained in a broad range of frequencies. On the other hand,

the comparison with the barriers using the same attenuation mechanisms [21] than that

employed here is difficult because of several reasons: (1) the differences in the geometrical

parameters of the barriers studied, (2) the porous material employed are also different, and

(3) the low frequency region in Ref. 21 is not explicitly analyzed. In any case, it could

be said that the IL in our porous structure is stronger (in the low frequency region) than

that reported in Ref. 21 since thicker layers of porous materials are better low frequency

absorbers.

The results shown in Figs. 11 and 12 are extremely interesting because they indicate

that (at low frequencies) the IL dramatically increases when we add a layer of rubber crumb

to the metallic cylinders building the barrier. For example, we observe that the IL for the

barrier consisting of cylinders made of a metallic core (4cm diameter) and a rubber crumb

layer with a thickness of 2 cm is about three times larger (at the bandgap frequencies) than

that fabricated only with metallic cores. The IL enhancement observed at all frequencies is

due to two main effects: the higher filling fraction of the SC barrier caused by the overlayer of

rubber crumb and the dissipation produced by its porosity, which increases with increasing

frequencies according to the properties of rubber crumb described in Fig. 3.

The dashed lines in Figs. 11 and 12 represent the IL of a rigid wall having the same

external dimensions than SC samples. It has been calculated by using the expressions in

Ref. 42. It is observed that SC barriers based on only three rows of rigid cylinders show a

very low attenuation efficiency in comparison with the rigid wall. The attenuation efficiency

of SC barriers is strongly enhanced by using porous cylinders as building blocks; their

qualities approach the one of a rigid wall in some frequency regions. Let us remark that IL

similar to that of the rigid wall could be obtained by using additional rows cylinders.

Finally, it is interesting to remark a recent work predicting the quenching of acoustic

band gaps by flow noise generated by wind impinging the barriers based on sonic crystals[40].

Regarding this point, we should point out that wind speeds needed to destroy the band gaps

is pretty high (above 10m/sec) and depend on the barrier filling fraction. Since the prototype

barriers tested were 25cm long in height[40], we expect that for barriers of about 3m height

and having a filling ratio (i.e., the ratio between the volume occupied by cylinders and

the total volume) of 41.5%, sound attenuation by reflectance is guarantee for wind speeds
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below 30m/sec, which is obtained by using the relation of the wind speed expected for

actual structures (v) with that measured on prototypes (vp): v = vp
√

ℓ/ℓp, where ℓp is the

dimension of prototype and ℓ the real dimension[41]. The reader is addressed to chapter 7

of Ref. 41 for the origin and details of this relationship.

V. SUMMARY

Reflectance and transmittance spectra have been measured and simulations are performed

for noise barriers based on SCs made of three different types of cylindrical scatterers: rigid,

porous and porous shells with a rigid core. Our model, which is based on the multiple scat-

tering theory, accurately describes the absorption properties of the structures experimentally

studied and also gives support to the measurement method employed. Our results indicate

that three rows of cylinders are enough to get well defined bandgaps in the transmittance

and reflectance spectra. This is a relevant finding in order to make the building of these

type of noise barriers affordable.

We have also shown that the effect of using rubber crumb like porous absorptive media

results in an enhancement of the insertion loss of these barriers in comparison with those

based on just rigid cylinders. The IL enhancement have been demonstrated in the low

frequency regime (below 3 kHz) analyzed here. Moreover, it has been demonstrated that

the inner structure of the porous cylinders (i.e., the possible existence of a rigid core) is a

mechanism that can be used to optimize the IL of SC barriers at different frequency regions.

Therefore, an optimization procedure can be developed in order to design SC barriers based

on building units efficiently adapted to attenuate sound for different noisy environments. In

this regards, traffic noise is a paramount example where that optimization procedure should

be applied first to test the ability of rubber crumb in shielding broadband noise with low

frequencies. Further work will be developed in our group to achieve this goal.
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TABLE I: Dimensions of the cylindrical units used in building the barrier samples studied here.

db is the external diameter of the cylindrical porous shell and da is the diameter of its inner core,

which is a rigid cylinder. The column Rb −Ra gives the thicknesses of the porous shells. The last

column reports the filling fraction ff of the square lattice; ff = πR2
b/a

2, where a =11cm is the

lattice constant.

da(cm) db(cm) Rb −Ra ff

sample 1 4 4 0 0.10

sample 2 2 2 0 0.03

sample 3 4 8 2 0.41

sample 4 2 8 3 0.41

sample 5 0 8 4 0.41

TABLE II: The absorption power AP [see Eq. (30)] for the barriers analyzed. This quality factor

is calculated separately in the three frequency regions where the associated sonic crystals can be

divided. The sample description is given in table I and Section IV. Negative values have no physical

meaning (see text)

Below Gap Band gap Above Gap

Theo. Exp. Theo. Exp. Theo. Exp.

sample 1 0 0.04 −0.03 0.14 - -

sample 2 0 0.01 −0.08 0.05 - -

sample 3 0.37 0.35 0.24 0.27 0.78 0.77

sample 4 0.37 0.36 0.29 0.39 0.64 0.68

sample 5 0.36 0.36 0.28 0.43 0.68 0.72
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