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Abstract

RNA-binding proteins play a central role in post-transcriptional mechanisms that control gene expression. Identification of
novel RNA-binding proteins in fungi is essential to unravel post-transcriptional networks and cellular processes that confer
identity to the fungal kingdom. Here, we carried out the functional characterisation of the filamentous fungus-specific RNA-
binding protein RBP35 required for full virulence and development in the rice blast fungus. RBP35 contains an N-terminal
RNA recognition motif (RRM) and six Arg-Gly-Gly tripeptide repeats. Immunoblots identified two RBP35 protein isoforms
that show a steady-state nuclear localisation and bind RNA in vitro. RBP35 coimmunoprecipitates in vivo with Cleavage
Factor I (CFI) 25 kDa, a highly conserved protein involved in polyA site recognition and cleavage of pre-mRNAs. Several
targets of RBP35 have been identified using transcriptomics including 14-3-3 pre-mRNA, an important integrator of
environmental signals. In Magnaporthe oryzae, RBP35 is not essential for viability but regulates the length of 39UTRs of
transcripts with developmental and virulence-associated functions. The Drbp35 mutant is affected in the TOR (target of
rapamycin) signaling pathway showing significant changes in nitrogen metabolism and protein secretion. The lack of clear
RBP35 orthologues in yeast, plants and animals indicates that RBP35 is a novel auxiliary protein of the polyadenylation
machinery of filamentous fungi. Our data demonstrate that RBP35 is the fungal equivalent of metazoan CFI 68 kDa and
suggest the existence of 39end processing mechanisms exclusive to the fungal kingdom.
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Introduction

The rice blast fungus Magnaporthe oryzae causes significant

economic yield losses in rice and wheat [1–3]. In order to develop

durable and environmentally friendly control methods, it is

important to expand our knowledge on the molecular mechanisms

underpinning M. oryzae-rice interaction. On leaves, early infection

is initiated by the adhesion of three-celled conidia to the surface

and the development within a few hours of a short germ tube that

differentiates into a penetration structure known as an appresso-

rium. Subsequently, a hyphal peg produced in the base of the

appressorium breaches the leaf cuticle and an invasive hypha (IH)

then initiates the colonisation of epidermal cells. This IH is coated

by a plant-derived layer called extra-invasive hyphal membrane

[4], and fungal effectors which facilitate infection and/or induce

host immune responses are transferred to the plant cytoplasm

across this membrane [5,6]. The fungus also secretes several fungal

toxins although their definitive role in plant infection remains

unclear [7]. Fungal metabolism and autophagy play a pivotal role

in the establishment of blast disease [8–10]. Under laboratory

conditions M. oryzae also infects roots by developing penetration

structures on underground tissues such as hyphopodia [11] and

pre-IH [12]. Although silencing pathways and fungal-specific

small RNAs have been identified in M. oryzae [13–15], very little is

known of the post-transcriptional regulatory network that control

M. oryzae infection ability.

Eukaryotic messenger RNA (mRNA) maturation occurs

through several interdependent and co-transcriptionally regulated

steps that involve pre-mRNA formation, 59end capping, splicing,

39end polyadenylation and degradation [16]. The 39end formation

of pre-mRNAs is a two step process essential for eukaryotic gene

expression [17]. First, nearly all pre-mRNAs (with the exception of

some metazoan histone genes) are cleaved at their 39end. This step

involves specific endonucleolytic cleavage at a canonical site
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determined by polyadenylation factors (CPSF-73 in higher

eukaryotes or Cft2/Ydh1 in yeast) [18]. The second step involves

the polymerization of the adenosine tail by poly(A) polymerases.

Poly(A) tail length varies depending on the organism (,200

residues in higher eukaryotes and ,70 in yeast) and influence

mRNA stability, translation, and transport. Isoforms of mRNAs

with different exon content or 39UTR lengths can be generated by

alternative (or non canonical) polyadenylation, a mechanism that

regulates the presence of cis elements in the mRNA. Proteins

involved in alternative polyadenylation include Cleavage Factor I

in metazoans (CFIm) and Hrp1 in yeast [19,20]. The cis elements

present in the 39UTRs including microRNA target sites modulate

gene expression by affecting cytoplasmic polyadenylation, subcel-

lular localization, stability, translation and/or decay of the mRNA

[21,22]. In Caenorhabditis elegans, 43% of the genes analyzed contain

more than one 39UTR isoform [23]. In humans, about a quarter

of 39UTRs analysed also contain two or more polyadenylation

signals [24].

RNA-binding proteins play a major role during all steps of RNA

metabolism. They associate with RNAs and proteins to form

ribonucleoprotein complexes (RNPs). The functional diversity of

RNPs depends on the constituent RNA-binding proteins, which

possess the dual ability to recognise cis-acting elements present in

their RNA targets (primary sequence and/or secondary structures)

and to interact with other proteins [25]. Several types of RNA-

binding domains have been identified in eukaryotes [26]. The

RNA-binding domains can be present in single or multiple copies

and associate with other RNA-binding domains or additional

motifs which can also bind RNA directly, facilitate RNA

recognition, mediate protein-protein interactions and/or regulate

subcellular localisation. Consequently, the modular structure of

RNA-binding proteins regulates their wide functional repertoire

and their RNA-binding ability.

The RNA recognition motif (RRM) is one of the most common

and ancient protein modules found in all life kingdoms including

prokaryotes and viruses [27]. RRM-containing proteins partici-

pate in nearly all known events of RNA-mediated processes. The

RRM contains about 90 amino acids displayed in a conserved

protein fold where at least one of the two motifs (RNP-1 and RNP-

2) recognises specific RNA sequences. RNA-mediated recognition

by RRMs is complex and often involves not only protein-RNA but

RNA-RNA and protein-protein interactions [28]. Some non-

canonical RRMs interact exclusively with proteins [29], and

certain RRMs bind single stranded telomeric DNA; double

stranded DNA; or interact with chromatin [27,30]. Proteins with

single or multiple copies (up to five) of RRM domains have been

described, and normally are found in association with additional

motifs.

In this study, we investigated the involvement of a RRM protein

(RBP35) in M. oryzae full disease symptom production. Using a

combination of cell biology, biochemistry and transcriptomics, we

show that RBP35 is a novel component of the polyadenylation

machinery of M. oryzae required for alternative 39end processing of

transcripts associated with signaling and metabolism. Results

indicate that RBP35 acts as a gene-specific polyadenylation factor,

ultimately regulating developmental and infection-related process-

es in the rice blast fungus.

Results

Identification of a novel RNA-binding protein implicated
in fungal plant infection

To identify genes required for M. oryzae root infection we

generated and screened a random T-DNA insertional library on

roots [12]. The mutant M35 produced reduced disease symptoms

compared to the isogenic wild type strain Guy11 and was selected

for further characterisation (Figure 1A). A tandem T-DNA

insertion in M35 was located within a gene encoding a putative

RNA-binding protein (RBP35, MGG_02741; Figure S1A available

on line). The predicted protein is 424 amino acids (aa) long and

contains one N-terminal RRM and six Arg-Gly-Gly tripeptide

repeats (RGG; Figure 1B). Based on prediction tools, RBP35 is a

non-cytoplasmic protein that contains a bipartite nuclear localisa-

tion signal (NLS).

We performed a BLASTP search against the non-redundant

database at the National Center for Biotechnology Information

(NCBI) and the Saccharomyces Genome Database (SGD) using the

entire RBP35 protein as a query sequence. Uncharacterised

proteins of ascomycetous filamentous fungi were the only RBP35

orthologues found at the NCBI; no significant matches were

recognized at the SGD. We examined the M. oryzae proteome and

found no paralogs of RBP35. We made an additional query

exclusively using the RRM aa sequence looking for closest protein

matches. Two hits were found, one at the NCBI with the Drosophila

melanogaster cleavage factor I 68kDa (CFIm68; 37% identity, 59%

similarity) and a second at the SGD with Nop13 (21% identity;

37% similarity), a nucleolar protein found in pre-ribosomal

complexes. However, CFIm68 and Nop13 possess different

auxiliary motifs and protein structure compared to RBP35.

Consequently, we conclude that RBP35 is a filamentous fungus-

specific RRM protein.

Drbp35 shows alterations in development and secondary
metabolite production

To investigate the biological function of RBP35 we generated

deletion mutants of this gene and examined the mutant phenotype

in vitro and in planta (Figure 1–2 and S1). Drbp35 strains showed

fewer disease symptoms on roots and leaves as expected

(Figure 1A). The mycelium of Drbp35 showed lower pigmentation

and different morphology on both complete medium (CM) and

minimal medium (MM), and reduced growth rate of Drbp35 was

Author Summary

The rice blast fungus Magnaporthe oryzae is one of the
most damaging diseases of cultivated rice worldwide and
an emerging disease on wheat, impacting on global food
security. We identify a M. oryzae virulence-deficient mutant
defective in the production of a RNA-binding protein
(called RBP35). Clear orthologues of RBP35 are absent in
yeast, plants and metazoans. We find two RBP35 protein
isoforms that localise in the nucleus and bind RNA.
Notably, we demonstrate that RBP35 interacts in vivo with
a highly conserved protein component of the eukaryotic
polyadenylation machinery. We show that RBP35 present
different diffusional properties in nuclei of distinct fungal
structures, and consequently different protein/nucleic acid
interactions. Further, we find that RBP35 regulates the
length of 39UTRs of transcripts with developmental and
virulence-associated functions. We prove that the Drbp35
mutant is affected in the TOR (target of rapamycin)
signaling pathway showing significant changes in nitrogen
metabolism and protein secretion. Nothing it is known
about pre-mRNA 39 end processing in filamentous fungi
and our study suggest that their polyadenylation machin-
ery differs from yeast and higher organisms. This study can
provide new insights into the evolution of the pre-mRNA
maturation and the regulation of gene expression in
eukaryotes.

Pre-mRNA 39 End Processing in Magnaporthe oryzae

PLoS Pathogens | www.plospathogens.org 2 December 2011 | Volume 7 | Issue 12 | e1002441



observed on CM but not on MM (Figure 2A). Drbp35 produced

less conidia (,50-fold) with altered morphology (septation defects)

compared to the isogenic wild type strain Guy11 (Figure 2B). On

plant tissues and artificial surfaces Drbp35 differentiated normal

penetration structures (Figure 2C and S1B). However, some

Drbp35 conidia (,28%) produced hyperbranched hyphae at 24 h

on coverslips. These defects were not overcome by addition of

cAMP, cutin monomers or diacylglycerol, indicating that the

mutant failed to perceive and/or respond to environmental

signals. Next, we investigated the ability of the null mutant to

adapt to stress-related conditions. We observed that Drbp35 grew

faster on MM supplemented with the cell wall assembly inhibitor

Congo Red and had darker mycelia in the presence of Calcofluor

White compared to wild type Guy11, indicating cell wall

anomalies (Figure 2D) [31]. Exposure of Drbp35 to alkaline pH

did not alter its colony morphology whereas Guy11 showed darker

mycelia, indicating the ability of Drbp35 to withstand high pH

conditions (Figure 2D). No differential susceptibility of Drbp35 was

Figure 1. RBP35 is an RRM protein involved in fungal virulence. (A) Drbp35 strains show reduced disease symptoms on leaves and roots. wt:
wild type. (B) Domain organisation of RBP35. The presence of a bipartite NLS and the M9-like motif suggests two alternative routes for RBP35
nucleocytoplasmic transport. RGG* can be methylated.
doi:10.1371/journal.ppat.1002441.g001
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observed upon exposure to oxidative, osmotic or heavy metal

stresses (Figure S1C).

The RBP35 gene produces a single mRNA which is
expressed in different media and in planta

We detected only one RBP35 transcript by Northern blotting

using poly(A)-enriched RNA (, 2.36 kb, Figure 2E). We

confirmed its full length size using a combination of rapid

amplification of cDNA ends (RACE) and sequencing strategies

(Figure S1A). The RBP35 gene contains an unusually large 59

untranslated region (59UTR) of 733 bp. Several lengths of the 39

RACE clones were found suggesting different polyadenylation

sites; 39 RACE clones ending at 237 bp downstream of the stop

codon were predominant. RBP35 was constitutively expressed in

different nutrient media and in planta, showing a two-fold

increase in expression on leaf surfaces at 8 h after inoculation

(Figure 2E).

RBP35 binds poly(G)30 RNA homopolymers in vitro
In vitro binding assays were carried out using homopolymeric

RNAs to determine if RBP35 is a functional RNA-binding protein

(Figure 3A). For this purpose we purified His-tagged RBP35 from

E. coli which generated two isoforms (Figure S2). This E. coli-

purified fraction allowed us to generate polyclonal antibodies

against RBP35 with good specificity (Figure 3 and 4). Results

showed that RBP35 bound exclusively biotinylated poly(G)30 and

not poly(A)30, poly(U)30, poly(T)30 RNA homopolymers or DNA

from calf thymus (single- or double-stranded). It is well established

that G-rich sequences create four-stranded structures in DNA and

RNA known as G-quartets [32] and we next examined if RBP35

can recognise additional G-quadruplex structures formed by DNA

sequences such as poly(dG) tracks and d(TTAGGG)n repeats

present in telomeres and promoter regions of ribosomal genes.

RBP35 was unable to recognise biotinylated poly(dG)30 DNA

oligonucleotides (Figure 3B). However, RBP35 recognised bioti-

Figure 2. RBP35 is also implicated in M. oryzae development. (A) Drbp35 shows different colony morphology and growth rates (mean 6 SD of
three biological replica) on CM (complete medium) or MM (minimal medium). Culture filtrates of wild type and Drbp35 strains after 48 h on liquid CM.
Drbp35 presents clear defects in the synthesis of pigmented metabolites. (B) Drbp35 spores show defects in conidia morphology. Scale bar: 15 mm.
(C) Wild type and Drbp35 strains develop appressoria (AP) on coverslips. Conidia (CO) of Drbp35 produce hyperbranched hyphae at 24 h.
Exogenously applied cAMP (1 mM), hexadecanodiol (HEX, cutin monomers 2 mg/mL in 1:250 DMSO) or diacylglycerol (DAG; 20 mg/ml) did not
reduced hyperbranching growth in Drbp35. Values represent mean percentage of three experiments. Scale bar: 15 mm. (D) Drbp35 presents cell wall
anomalies (left) and withstands better alkaline conditions (right) compared to wild type strain. (E) Expression analysis of RBP35 using Northern blots
(left panel, ethidium bromide staining of RNA loading is shown below) and qPCRs (right panel; mean 6 SD of three biological replica normalised
against actin). MM-N and MM-C, minimal media minus nitrogen and carbon source respectively.
doi:10.1371/journal.ppat.1002441.g002
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nylated single-stranded DNA oligomers containing sense and

antisense telomeric repeats [d(TTAGGG)5 and d(CCCTAA)5]

although its relative binding was lower compared to poly(G)30

RNA recognition. This result suggested that either RBP35 needed

additional protein components to recognise these sequences or the

RBP35 recognition was unspecific due to structural similarities.

RBP35 shows a steady-state nuclear localisation and it is
excluded from the nucleolus

To understand at what step of the RNA life cycle RBP35

participates, we generated functional RBP35-mRFP (monomeric

variant of red fluorescent protein) translational fusions, which

restored Drbp35 defects (Figure S3), to determine their subcellular

localisation. Amino (RBP35-mRFP-N) and carboxy (RBP35-

mRFP-C) fusions showed a steady-state nuclear localization under

all developmental stages analysed in vitro and in planta (Figure 3C).

Colocalisation experiments with the nucleolar protein Nop1

revealed that RBP35-mRFP was excluded from the nucleolus

(Figure 3D).

A second RBP35 isoform is generated by proteolytic
processing

We identified two RBP35 protein isoforms by immunoblotting

using the specific antibodies generated against RBP35 (Figure 4A):

the expected full length protein (,44 kDa; RBP35A) and a smaller

variant (,35 kDa, RBP35B). We assumed that the second protein

isoform derived from post-transcriptional (i.e. alternative initiation

of translation) or post-translational (i.e. proteolytic cleavage)

regulation as only a single transcript of RBP35 was detected by

Northern blotting. To investigate this, we carried out western blots

using total protein extracts from Drbp35 containing carboxy and

amino RBP35-mRFP constructs (Figure 4A). Two shifted protein

bands were observed using anti-RBP35 antibodies in strains

expressing RBP35-mRFP-N due to the addition of mRFP. By

contrast, strains expressing RBP35-mRFP-C contained only one

band of high molecular weight (RBP35A-mRFP-C) that showed

low affinity for the anti-RBP35 antibody, and a small band similar

in size to RBP35B, which was not detected using anti-mRFP

antibodies. Additionally, the presence of a low molecular weight

protein band containing mRFP in strains expressing RBP35-

mRFP-C corroborated that RBP35B was derived from the C-

terminal proteolytic processing of RBP35A-mRFP-C.

RBP35 showed differential kinetics in nuclei of distinct
fungal structures

Fluorescence recovery after photobleaching (FRAP) is a widely

used technique to measure the dynamics of RNA-binding proteins

in living cells [33,34]. To assess the ability of RBP35 to form

protein complexes, the diffusional properties of RBP35-mRFP-N

was monitored in the nucleus by FRAP (Figure 4B). Different

kinetics of fluorescence recovery were observed after photobleach-

ing a small region (,0.9 mm2) of the nucleoplasm of appressoria or

conidia. The fast recovery (less than 8 seconds) of fluorescence in

the appressorium suggested that both isoforms are in a free form or

associated with low molecular weight protein complexes. By

contrast, the slow fluorescence recovery of RBP35-mRFP-N in the

nuclei of conidia indicated binding or interactions within a large

nucleic acid/protein complex. In the apical nucleus from which

the first germ tube normally arises (Co-Nu3 in Figure 4B), RBP35-

mRFP-N also showed smaller but significant differences in the

ability to recover to the initial pre-bleaching value. These results

supported that RBP35 can exhibit different protein/nucleic acid

interactions in the nucleus during M. oryzae life cycle.

RBP35 is a component of the M. oryzae polyadenylation
machinery

In order to determine the molecular function by which RBP35

controls fungal virulence and development, we searched for

proteins that interact with RBP35. We generated a variant of

RBP35 containing the HA-FLAG tag fused to its carboxy end

(Figure S4A). Immunoblots corroborated the C-terminal process-

ing of RBP35A-HA-FLAG protein, meaning that only the full

length isoform contained the HA-FLAG tag in this experiment

(Figure S4B). We identified three proteins by tandem affinity

purification that coimmunoprecipited with RBP35A-HA-FLAG

(Figure 4C and S4C): the orthologue of the metazoan cleavage

factor I 25kDa (CFIm25; MGG_01676); a protein containing the

uncharacterized YdiU domain (MGG_03159), and RBP35B.

Figure 3. RBP35 isoforms bind poly(G) RNA homopolymers in
vitro and show a steady-state nuclear localisation. (A) His-tagged
RBP35 binds biotinylated poly(G)30 RNA homopolymers. The single-
(ssDNA) and double-stranded (dsDNA) DNA derived from calf thymus
was attached to cellulose beads. wt, total protein extracts from wild
type. (B) RBP35 recognises with low affinity biotinylated single-stranded
sense and anti-sense telomeric DNA repeats and not poly(dG) DNA. (C)
Steady-state nuclear localisation of RBP35. Drbp35 was constructed with
a cytoplasmic GFP (green fluorescent protein) to visualise its growth in
planta. RBP35-mRFP variants colocalise in the nucleus with GFP-tagged
histone H3 (H3-gfp). VE: vesicle; IH: invasive hyphae; AP: appressorium;
CO: conidium; PS: polystyrene; PHIL: hydrophilic; PHOB: hydrophobic;
HY: hyphopodia. Scale bar:15 mm. (D) RBP35-mRFP-N is excluded from
the nucleolus. Scale bar: 5 mm.
doi:10.1371/journal.ppat.1002441.g003
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Immunoblots using anti-RBP35 antibody against FLAG and HA

elutions from Drbp35/RBP35A-HA-FLAG corroborated that

RBP35B interacts with RBP35A (Figure 4D).

The metazoan CFIm complex is a heterotetrameric complex

consisting of two small subunits of 25 kDa (CFIm25) and two large

subunits of 59 (CFIm59), 68 (CFIm68) or 72 kDa [20]. CFIm25

enhances the efficiency of poly(A) site cleavage by selecting a

canonical or non-canonical poly(A) site and recruiting the 39end

processing machinery [17,35]. The recent crystal structure of a

human complex CFIm25/CFIm68/RNA has established several

parameters which identify likely orthologs of CFIm68 RRM.

Remarkably, RBP35 orthologues of Aspergillus flavus and Neurospora

crassa have been found among them [20]. The RRMs of the two

CFIm68 subunits facilitate RNA looping and enhance the RNA

binding by CFIm25 within the heterotetrameric complex. This

RNA looping could explain a mechanism for a non-canonical

polyA site selection and the essential involvement of CFIm68 in

alternative polyadenylation [20]. Consequently, one role of M.

oryzae RBP35 inferred from its structural homology with CFIm68

RRM and its interaction with CFI25 is its participation in

canonical or alternative 39 end processing of pre-mRNA targets.

Transcriptome analysis led to the identification of mRNAs
processed by RBP35

To identify potential genes controlled by RBP35, we compared

the transcriptomes of Guy11 and Drbp35. Alterations in the 39 end

processing of RBP35 targets will be reflected by differential

expression between microarray-oligos representing the coding

sequence (CDS) or 39UTR of the same gene. Out of the 159 genes

identified in the transcriptome profiling as being differentially

regulated in Drbp35 compared to the wild type strain, 39 genes

contained two or more oligos in the microarray chip (Figure S5).

Five of these genes showed down-regulation in microarray-oligos

located in their 39UTRs and no changes in microarray-oligos

located in their CDS (Figure 5A). These genes encoded a 14-3-3

protein (MGG_13086), the 40S ribosomal subunit S7

(MGG_00221), the Asd enzyme (aspartate semialdehyde dehydro-

genase, MGG_03051), and two transcriptional regulators

(MGG_07339 and MGG_07237). The ESTs matching these gene

regions indicated their ability to produce transcripts with short and

long 39UTRs. We confirmed that their mRNAs showed altered 39

end processing by RT-PCR and qPCR, i.e. transcripts with long

39UTRs were less abundant in the Drbp35 mutant background

compared to the wild type (Figure 5B and 5C). These results

suggested an involvement of RBP35 in their alternative pre-mRNA

39end processing.

TOR pathway, protein secretion and nitrogen
metabolism are affected in Drbp35

We also classified the 159 genes up/down-regulated into

functional groups to better understand the phenotypic defects of

Drbp35 at the molecular level (Table S1). Eight signaling-related

genes showed differential expression in Drbp35. Among them,

three genes encoding proteins that link extracellular stimuli to

numerous signaling cascades were down-regulated, such as

modulators of the small membrane-anchored G-protein RAS

Figure 4. Both RBP35 isoforms showed different diffusional properties and interact with CFI25. (A) Two RBP35 isoforms are present in
M. oryzae. Immunoblots of total protein extracts derived from wild type, Drbp35 and Drbp35 complemented with RBP35-mRFP variants. RBP35
isoforms (asterisks) and proteolytic products containing mRFP (white arrows) are indicated. Note the unspecific processing of RBP35-mRFP-N (black
arrows). (B) RBP35-mRFP-N shows different fluorescence recovery kinetics in nuclei of appressoria or conidia. The relative fluorescence recovery
kinetics analysed by FRAP are represented. Each data point shows the averages 6 SE of analysed nuclei (n) in conidia (Co-Nu) or appressoria (Ap-Nu).
(C) Comassie blue-stained gel of proteins that coimmunoprecipitate with RBP35-HA-FLAG after tandem affinity purification. Three proteins
coimmunoprecipitate in vivo with RBP35A-HA-FLAG: CFI25, YdiU and RBP35B. (D) Immunoblots using anti-RBP35 antibodies and proteins isolated
during FLAG and HA affinity purification steps. RBP35B copurifies with RBP35A-HA-FLAG indicating that both proteins interact in vivo.
doi:10.1371/journal.ppat.1002441.g004
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(MGG_04946/-7.2 fold and MGG_02933/-2.1 fold) and 14-3-3 (-

3.7 fold). Two genes (Tap42 and FKBP) involved in TOR (target

of rapamycin) signaling showed a two fold up-regulation

suggesting alterations in this cascade. Another two genes linked

to cAMP-dependent signaling pathway were up- and down-

regulated respectively (CPK2/2.0 fold and ACI1/-3.3 fold).

Remarkably, fifty eight genes encoding secreted or cell wall-

related proteins and thirty four genes functioning in energy and

intermediary or secondary metabolism showed altered expression

pattern in Drbp35 correlating with its cell wall anomalies and

pigmentation defects. In particular, seven genes involved in nitrate

and ammonium assimilation were down-regulated. Genes impli-

cated in RNA metabolism and protein synthesis (21), cytoskeleton

(5) and autophagy (1) were also identified. We validated by qPCR

the differential expression of genes that play significant roles in

nitrogen assimilation and signaling, including the TOR kinase

gene which was not originally identified due to the low signal

intensity (log2 , 6) displayed by the unique microarray-oligo

representing this gene in the chip (Figure 6A).

We tested Drbp35 defects inferred from microarray experi-

ments. Alterations in nitrogen assimilation correlated with the

accelerated growth rate displayed by Drbp35 compared to Guy11

in the presence of ammonium tartrate as unique nitrogen source

on MM (Figure 6B). This Drbp35 growth capacity on ammonium-

media was further increased by inhibiting the TOR pathway with

rapamycin (inhibitor of the TOR kinase). The down-regulation of

TOR kinase expression in Drbp35 could explain this tolerance

towards rapamycin. No differences were observed in the presence

of nitrate as nitrogen source on MM. Growth in nutrient-

deficient medium forces the fungus to use autophagy for further

growth. In water agar medium, an enhanced growing capacity

was found in Drbp35 compared to Guy11 indicating that Drbp35

displayed an accelerated autophagy (Figure 6C). This result was

consistent with the up-regulation of ATG24 (MGG_03638/3.6

fold) found in Drbp35 (Table S1). The increased growth

differences between the two strains in water medium amended

with rapamycin confirmed the higher tolerance of Drbp35 to

rapamycin. The TOR signaling pathway is classically known for

its role as a central regulator of growth through modulation of

protein synthesis, autophagy, and proliferation in response to

nutrients [36]. Based on the differential expression of genes in

Drbp35 involved in signaling, metabolism and protein secretion

together with its nutrient-dependent behaviour, accelerated

autophagy and higher tolerance to rapamycin, our results

suggested that the TOR pathway was significantly affected in

Drbp35.

Figure 5. RBP35-dependent transcripts showed altered 39UTR processing. (A) Analysis of 39UTRs using genomically aligned clusters of ESTs.
Microarray probes are shown in black arrows; probes marked with asterisks are down-regulated in Drbp35. Curve lines represent 39UTR lengths
derived from ESTs. White arrowheads indicate location of primers used for analysis of 39UTRs in Drbp35. (B-C) Comparative analysis of transcript
abundance of RBP35-dependent mRNAs in wt and Drbp35 by RT-PCR (B) and qPCR (C). cDNA concentration of wild type and Drbp35 was normalised
using actin. Transcripts with long 39UTRs either possess higher instability or are less abundant in Drbp35.
doi:10.1371/journal.ppat.1002441.g005
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Discussion

RNA-binding proteins play a fundamental role in the control of

gene expression at post-transcriptional level and are responsible

for regulating essential biological activities. Here, we initiated

studies in the post-transcriptional mechanisms that control M.

oryzae infection-related processes. To this end, we characterised a

RNA-binding protein required for full disease symptom produc-

tion in the rice blast fungus. We found an insertional mutant M35

that showed reduced lesions on leaves and roots. The T-DNA was

located in a gene encoding an RRM protein with six RGG

tripeptides (RBP35). The RRM domain is widely spread in

eukaryotes although only a small fraction has been studied. In

humans, it is estimated that about 2% of the total proteome

contain at least one RRM (497 gene products out of ,25 000

genes in the human genome) [27]. The M. oryzae genome encodes

76 RRM proteins and RBP35 represents the first M. oryzae RRM

protein investigated to date. The combination of RRM and RGG

modules is found in well characterised RNA-binding proteins with

highly diverse functions in human and yeast (Table S2).

Orthologues of RBP35 are found only in filamentous fungi.

The Drbp35 mutant showed defects in development (conidia-

tion, conidiogenesis and nutrient-dependent growth), secondary

metabolism, protein secretion and cell wall biosynthesis. As a

result, plants infected with Drbp35 exhibited lack of chlorosis on

leaves and reduced lesion diameter on both leaves and roots

compared to disease symptoms produced by the wild type strain.

These deficiencies correlated with alterations displayed by the

mutant in the TOR signaling cascade, which we identified using

transcriptome profiling and confirmed by qPCR and growth tests.

The RBP35 gene is expressed throughout all developmental

stages of M. oryzae. We confirmed that RBP35 binds poly(G)30

RNA homopolymers with an assay widely used to study the

binding specificity of RNA-binding proteins in vitro [37]. Two

RBP35 protein isoforms (RBP35A and RBP35B) are found in vivo

and colocalise in the nucleoplasm. However, it is still possible that

RBP35 is present in the cell cytoplasm. The human hnRNPA1

and CFIm68 proteins display steady-state nuclear localization and

both can carry out functions in the cytoplasm (Table S2) [38,39].

In vivo coimmunoprecipation experiments revealed that

RBP35A interacts with M. oryzae CFI25. Based on this interaction

and the structural and sequence similarity of RBP35 RRM motif

with CFIm68 RRM, we conclude that RBP35 is the functional

orthologue of CFIm68 in filamentous fungi. Interestingly, RBP35A

(,44 kDa) also coimmunoprecipitates with RBP35B (,35 kDa)

and both isoforms are required for full complementation of Drbp35

defects, indicating that the M. oryzae CFI complex is composed at

least of RBP35A, RBP35B and CFI25 subunits. Moreover, we

found that a YdiU protein (MGG_03159) interacts in vivo with

RBP35A. Further research will investigate if this protein is part of

the M. oryzae polyadenylation machinery or interacts with RBP35

in a different protein complex.

The inferred function of RBP35 in alternative 39 end processing

of pre-mRNAs drove us to search genes with altered expression

patterns in their 39UTRs using comparative transcriptomics.

Among the five genes identified as RBP35 targets, alterations in

the pre-mRNA processing of 14-3-3, S7 and Asd give explanation

for Drbp35 phenotype. The 14-3-3 proteins are involved in key

cellular processes and play an important role as integrators of

environmental cues through modulation of signaling cascades such

as TOR [40]. Altered pre-mRNA 39end processing could affect

protein expression levels or subcellular location of the 14-3-3

mRNA, justifying the signaling-associated defects of Drbp35.

Recently it has been shown that the activation of TOR is

mediated by its association with the ribosome in yeast and humans

[41]. Therefore in addition to 14-3-3, it is possible that the M.

oryzae 40S ribosomal subunit S7 participates as an integrating

factor of ribosomal signaling and TOR activity. The defects

displayed by Drbp35 in nitrogen metabolism can be related to the

Asd protein, an enzyme implicated in the biosynthesis of aa (Lys,

Met, Leu and Ile). Investigation of RBP35-mediated post-

transcriptional regulation of Asd could be of significant interest

to the pharmacological industry since animal cells lack this enzyme

[42]. The other two RBP35-dependent mRNA encode transcrip-

tional regulators not characterized yet in M. oryzae.

In addition, the transcriptome profile analysis led us to a deeper

insight into the developmental and physiological programmes

deployed by RBP35. Results are consistent with RBP35 having an

important role in plant virulence and fungal growth through

regulation of the TOR signaling pathway. M. oryzae produces a

range of secreted effector molecules which facilitate infection and/

or induces innate and adaptive immune responses in its host [1].

More than a third of the genes (58) with expression defects in

Drbp35 encode secreted proteins, several of which contain domains

with effector functions relevant for host colonisation or modifica-

Figure 6. Drbp35 shows defects in nitrogen metabolism and
TOR signaling. (A) Validation by qPCR of up- and down-regulated
genes identified in Drbp35 using microarrays. Data represent
means6SD (n = 3). Fungal mycelium was grown on liquid CM (complete
medium). (B) The accelerated growth rate of Drbp35 in the presence of
ammonium tartrate as unique nitrogen source indicates defects in
nitrogen assimilation. This effect is enhanced by inhibiting the TOR
pathway with rapamycin. (C) Analysis of autophagy in water agar
reveals that Drbp35 possess more efficient autophagy and is more
resistant to rapamycin than the wild type strain.
doi:10.1371/journal.ppat.1002441.g006
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tion of fungal and plant cell walls including serine proteases (3),

peroxidases (2), metalloproteases (1), laccases (2), LysM effectors

(1), cysteine rich proteins (1) and other enzymes (9; Table S1).

RBP35 might be involved in the 39UTR maturation of a subset of

transcripts related to plant virulence. Further research will focus

on the identification of RBP35-associated networks and additional

direct targets and RNA binding sites using CLIP (cross-linking and

immunoprecipitation) approaches [43].In addition to alternative

polyadenylation of pre-mRNAs, other roles have been recently

assigned to CFIm68 such as splicing [44], mRNA export [39], and

histone 39end processing [45]. Based on the distinct modular

structure of RBP35 compared to CFIm68, we expect that RBP35

involvement in RNA-mediating processes will be different in M.

oryzae (Figure 7A). Fission and budding yeast lack clear orthologues

of CFIm25 and CFIm68 proteins [46]. Hrp1/Nab4 is the yeast

equivalent of the CFIm complex [47], and it is required for cell

viability indicating its essential role in canonical and alternative

polyadenylation of pre-mRNAs [19]. Obvious Hrp1 orthologues

are not found in metazoans or plants [46,48]. Intriguingly, M.

oryzae has a clear orthologue of Hrp1 (MGG_06881, e-52;

Figure 7B), which suggests that combined mechanisms regulate

the 39end processing of pre-mRNAs in filamentous fungi. This

could explain the low number of genes affected in Drbp35 (159

genes out of the predicted 11,074 genes in M. oryzae genome), and

corroborates that RBP35 is not essential for fungal viability but

acts as a gene-specific polyadenylation factor regulating alternative

39UTR processing of specific mRNAs.

Joint efforts and interdisciplinary approaches are necessary to

identify durable control methods of blast disease in rice fields

[1,3,49]. The identification of RBP35 as an auxiliary component

of the polyadenylation machinery is an important step to unravel

post-transcriptional networks that regulate M. oryzae plant

colonisation. Future work will identify additional polyadenylation

factors and cis elements present in the 39UTRs that regulate the

expression of infection-related fungal mRNAs. This area of

research can lead to the identification of novel targets to control

fungal diseases and will provide new insights into the evolution of

the polyadenylation mechanisms in eukaryotes.

Figure 7. M. oryzae contains both yeast and metazoan CFI protein subunits. (A) Domain structure of CFI68 subunits in different kingdoms.
(B) M. oryzae genome contains a Hrp1 homologue (MGG_06881). Hrp1 (CFIB) is the yeast equivalent of metazoan CFIm complex.
doi:10.1371/journal.ppat.1002441.g007
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Materials and Methods

Fungal strains, growth conditions and plant infections
The M. oryzae wild-type strain Guy11 was obtained from Prof.

Nick Talbot (University of Exeter, UK). Identification of DNA

sequences flanking the T-DNA insertion sites, generation of

targeted gene replacement mutants and growth and infection tests

were performed as previously described [12].

M. oryzae annotated genes
Prediction of the M. oryzae genes used in this study is based on

the 6th annotation of the genome available at The Broad

Institute (http://www.broadinstitute.org/annotation/genome/

magnaporthe_grisea/MultiHome.html).

DNA cloning and purification of His-tagged RBP35 fusion
protein

RBP35 protein variants were generated using multisite gateway

technology (Invitrogen). The binary destination vectors pSULPH-

R3R4 and pBAR-R3R4Amp which contain sulfonylurea and

bialaphos resistance cassettes respectively were generated in this

study. PCRs were carried out using primers detailed in Table S3

and Phusion DNA polymerase (NEB). The 59- and 39-RACE

analysis was carried out with the SMART RACE cDNA

Amplification Kit (Clontech). The RBP35 cDNA was cloned into

the expression vector pET-24 and expressed in Rosetta E.coli cells.

His-tagged RBP35 was purified on a Ni-NTA Hitrap FF column

followed by a Superdex 75 26/60 column (GE Healthcare, UK).

Polyclonal antibodies against the purified protein were raised in

rabbit (YORBIO, UK) and used at 1:10000 dilution.

RNA and DNA binding assays
In vitro RNA and DNA binding assay was performed using the

mMACSTM Streptavidin Kit (Miltenyi Biotec, UK). Single- and

double-stranded DNA-cellulose from calf thymus DNA (Sigma),

byotinilated DNA oligonucleotides (TTAGGG)5/poly(dG)30 (Sig-

ma) and biotinylated poly(A)30/poly(U)30/poly(C)30/poly(G)30

RNA homopolymers (Invitrogen) were used as bait. Binding

reactions were carried out incubating 0.3 mg of RBP35 with 0.2

nmoles of bait oligo in 200 ml of binding buffer (20 mM Tris pH 8,

150 mM NaCl, 0,01% IGEPAL CA-360, 2 mM MgCl2, 1 mM

DTT) for 1 h at 4uC. After adding 100 ml of mMACS magnetic

beads the samples were applied to the column previously

equilibrated with Equilibration Buffer. Washes were performed

with binding buffer and protein eluted in 150 ml of binding buffer

containing 1 M NaCl. Eluate aliquotes (20 ml) were loaded on

12% SDS-page gel, blotted and probed with antiRBP35 antibody.

Protein extraction, purification, and tandem affinity
immunoprecipitations

10 days-old M. oryzae mycelia grown on CM plates (approx-

imately 20 cm2) were cut out from the agar, homogenised in a

food Blender (Waring Commercial, USA) with 150 ml of liquid

CM media, placed in 250 ml flasks and incubated in darkness on

a shaker at 25uC/120 rpm for 2 days. Mycelia (1–3 g of wet

weight) were collected by filtering through a double layer of

miracloth, washed with sterile water and grounded in liquid

nitrogen. Proteins were extracted from 300–400 mg of mycelia

(wet weight) using 760 ml of extraction buffer (50 mM Tris

pH 7.5, 5 mM EDTA, 1% Triton x-100, 10% glycerol, 2 mM

Phenylmethanesulfonyl fluoride) and 20 ml/ml Protease Inhibitor

Cocktail (PIC, Sigma). Cell debris were removed by centrifuga-

tion for 30 min at 4uC at 20000 g. Between 40–80 mg of total

protein extract per lane were used for westerns. The following

antibodies were used in western blottings: anti-FLAG (Sigma;

1:10000); anti-mRFP (Caltag Medsystems UK; 1:5000) and anti-

HA (Sigma; 1:10000).

Confocal imaging and FRAP analysis
Visualisation of fungal cells and FRAP experiments were

performed with a Zeiss 510 Meta confocal microscope. GFP was

exciting using the 488-nm laser line from an argon ion laser, and

the emission was captured using a 505 to 550 nm band-pass filter.

mRFP (cherry) was exciting using the 561 nm laser line, and the

emission was captured using a 575 to 615 nm band-pass filter.

RBP35-mRFP-N kinetics was imaged using x63/1.4 oil objective

at zoom 4. Pre- and post-bleach images were collected using 2%

laser power at 561 nm and emission captured from 575 to

615 nm. The Zeiss software was set to collect ten pre-bleach

images and one hundred post-bleach images; a small circular

region (15 pixels diameter/0.866 mm2 area) was photobleached

using 100% laser from 561 nm laser. Images were taken 125 ms

intervals for 12.5 s when the maximal recovery of the signal was

observed. Image analysis was done using the Zeiss software to

measure roi (region of interest) intensities from bleached, total cell

and background regions. Microsoft Excel was used to process the

intensity data (background subtraction, correction for fluorescent

loss and normalisation). The chart was generated using GraphPad

Prism v.5.

RNA isolation and cDNA synthesis
Infected rice leaf tissues (approx. 1 g) or M. oryzae mycelium

were mortar-grounded in liquid nitrogen and resulting powders

resuspended by vortex (30 s) in 2.5 ml of phenol and 2.5 ml of

TLES buffer (100 mM Tris pH 8.0; 100 mM LiCl; 10 mM

EDTA ph 8.0; 1% SDS). Subsequently, 2.5 ml of chloroform:i-

soamyl alcohol 24:1 (V/V) was added to each sample, mixed and

centrifuged at 1800 g/4uC for 20 min. The same volume of 4 M

LiCl was added to the supernatant and samples were gently mixed

and stored overnight at 4uC. The pellet obtained after centrifu-

gation at 12000 g was resuspended in DEPC-treated H2O, washed

with Phenol:Chloroform:isoamylalcohol 24:1 and left with 3 M

NaAc and Ethanol at 280uC overnight. The resulting total RNA

(20–50 mg) was treated with Turbo DNase (Ambion) and column

purified using RNeasy Qiagen kit. The RNA quality was checked

by automated preparation on Agilent 2100 Bioanalyzer. RNA

samples (2 mg/sample) were reverse transcribed using Superscript

II RT kit (Invitrogen).

Quantitative polymerase chain reaction (qPCR)
Genes and primers are detailed in Table S3. The average

threshold cycle (Ct) was normalized against actin and relative

quantification of gene expression was calculated by the 2DDCt

method [50]. Four dilutions of all cDNA samples were used to test

primer efficiency. Reactions were performed using SYBR green I

kit (Roche Diagnostics). The qRT-PCR analysis was carried out

using two technical repetitions from at least three independent

biological experiments for each sample. Transcript levels of genes

examined in Drbp35 are expressed as a relative value, with 1

corresponding to the transcript level in the wild type strain.

Global gene expression profile by microarrays
Four biological replicates (each containing three technical

repetitions) were independently hybridized for each transcriptomic

comparison. Slides were Agilent Magnaporthe II Oligo Micro-

arrays 4x44K (ref. 015060). Background correction and normal-
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ization of expression data were performed using LIMMA [51,52].

LIMMA is part of Bioconductor, an R language project [53]. For

local background correction the "normexp" method in LIMMA

was used. The resulting log-ratios were print-tip loess normalized

for each array [52]. To have similar distribution across arrays and

to achieve consistency among arrays, log-ratio values were scaled

using as scale estimator the median absolute value [52]. Linear

model methods were used for determining differentially expressed

genes. Each probe was tested for changes in expression over

replicates by using an empirical Bayes moderated t-statistic [51].

To control the false discovery rate p-values were corrected by using

the method of Benjamani and Hochberg [54]. The expected false

discovery rate was controlled to be less than 5%. Hybridizations

and statistical analysis were performed by the Genomics Facility at

Centro Nacional de Biotecnologı́a (Madrid, Spain).

Tandem affinity protein purification
For purification of FLAG-HA-tagged RBP35 protein, 16 g of

mycelia from liquid culture were homogenised in 30 ml of IP

buffer (50 mM Tris HCl pH 7.5, 5 mM MgCl2, 10% glycerol, 1%

Triton X-100, 1 mM PMSF, 2% PIC). Extracts were centrifuged

at 20 g for 30 min, at 4uC and 25 ml of supernatant were

incubated with 700 ml of anti-FLAG M2 magnetic beads (Sigma)

and rinsed with TBS (50 mM Tris–HCl, pH 7.4; 150 mM NaCl,

1 mM PMSF; 2% PIC) for 2 h at 4uC with rotation. Beads were

collected using a magnetic stand and washed extensively with

TBS. Bound proteins were eluted by competition with 1.75 ml of

FLAG peptide (150 ng/ml, Sigma), and incubated with 300 ml of

HA resin (Sigma), rinsed with RIPA buffer (150 mM NaCl, 1%

Igepal CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM

Tris HCl pH 8, 1 mM PMSF, 2% PIC) for 1.5 h at 4uC with

rotation. After transferring to SigmaPrep spin columns, resins were

washed with RIPA buffer and proteins eluted by incubation with

375 ml of 50 mM Tris pH 7.5, 2% SDS at 65uC for 15 min.
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