Engineering Regulated
Open Multiagent Systems

April, 2013

A dissertation submitted in partial fulfilment for the degree of:
Doctor of Philosophy in the subject of Computer Science (Doctor en Informdtica)

Maria Emilia Garcia Marqués

Under the supervision of:

Dra. Adriana Giret
Dr. Vicente Botti

' O
UNIVERSITAT =4

DE V/.\ L E N C I /.\ Informéticos y Computacion

A quien siempre estuvo ahi.

Acknowledgements
Agradecimientos

Esta seccién estd dedicada a todas esas interacciones, a todos esos momentos que
otras personas me regalaron sin perseguir ningin objetivo, sin seguir ninguna norma
y sin obedecer ningtin contrato.

A mis directores Adriana y Vicente por siempre confiar en mi y darme su apoyo.

A todos los miembros del GTI-IA. En especial a los antiguos y actuales miembros
del 205 (Carlos Garcia, Juanmi, Toni, Victor, Elena, Jose, Joan, Jaume, Bexy). A
las alegrias del pasillo Marti y Carlos, porque muchas veces lo mas importante y
lo mejor que se puede hacer es sonreir. A Aida, Andrés y todos aquellos que con
sus tareas de gestion hacen nuestra vida mucho mds fécil, porque no siempre se les
reconoce y realmente se lo merecen.

To all the members of the Department of Informatics at King’s College of London
for their warm reception and for giving me the opportunity of learning so much from
them. Specially to Prof. Michael Luck and Dr. Simon Miles for their support, trust
and encouragements.

A los ""mayores'' que nunca sabrdn cudnto me han ensefiado ellos a mi. En especial
a Isabel (Milagrin), Andrés, Araceli, Tato, Juan, Enrique, Jose y Nines. Son el mejor
ejemplo de calor y vida.

A Llucia, Pili, Azahar, Neus y Didac per ser part de cada pas del "cami".

A mi familia por ser esa red de seguridad invisible que te permite saltar cada vez mas
alto. A mis vecinos, Juan, Pilar, Vega y Héctor por crear un refugio/hogar abierto 24h
donde los problemas se disuelven entre infusiones, risas y juegos. A Ivan, la persona
con la que he crecido, luchado y vencido tantas y tantas veces. Gracias por todas las
veces que perdimos las batallas con una sonrisa y un abrazo.

Por dltimo quiero dar las gracias a aquellos que han compartido conmigo cada mo-

mento desde que pisé esta universidad. Han sido muchas horas, dias sin fin, consultas
por email, deporte antes del amanecer, ...Tots sou una part important d’aquesta tesi
(Guillem, Gabi, Javi, Joan, Vicente T., Juanje, David, Fani, Vicente P.).

II

Abstract

Due to the increase in collaborative work and the decentralization of processes in
many domains, there is an expanding demand for large-scale, flexible and adaptive
software systems to support the interactions of people and institutions distributed in
heterogeneous environments. Commonly, these software applications should follow
specific regulations meaning the actors using them are bound by rights, duties and
restrictions. Common to other works, we use the term normative open systems to
refer to systems of this kind. The development of systems of this kind can produce
important benefits because these systems allow communicating heterogeneous insti-
tutions, actors and devices in order to achieve their individual and global objectives.
However, there are also some important potential issues that can complicate the anal-
ysis, design and implementation of these systems. Most of these common issues are
related to interoperability, privacy, and the combination of the individual objectives
and restrictions of the system’s entities. Software engineering methods and tools
are necessary in order to deal with these issues and to guide developers during the
development process.

We believe that the Multiagent systems (MAS) technology is a good candidate for the
development of normative open systems. MAS technologies are used more and more,
not only in academic environments, but also in real industrial applications. Multia-
gent systems technology has emerged over the last decades as a software engineering
paradigm for building complex, adaptive systems in distributed, heterogeneous envi-
ronments.

This thesis is focused on the analysis and design of normative open systems using
MAS technology. Some agent-oriented software engineering methodologies deal
with the development of systems of this kind. However, after analyzing to what

I

extent agent methodologies support the analysis and design of these systems, we can
conclude that there are some open issues in the topic. Some of these open issues are
the integration of the normative context of the system during the whole development
process; the lack of guidelines to identify and formalize this normative context; and
the lack of validation and verification techniques that ensure the coherence of the final
design and the requirements of the system and the coherence between the individual
objectives and restrictions of each entity and the global system.

The main contribution of this thesis is a new MAS methodology called ROMAS
(Regulated Open Multiagent Systems). ROMAS is focused on the analysis and de-
sign processes for developing organizational multiagent systems where agents inter-
act by means of services, and where social and contractual relationships are formal-
ized using norms and contracts. ROMAS methodology defines an agent-oriented de-
velopment process and provides specific guidelines for identifying and formalizing:
(1) the normative context of the system, (2) the entities’ communications and inter-
changes, and (3) both the global behavior of the system and the individual features of
each entity.

In ROMAS, agents, roles and organizations are defined through a formal social struc-
ture based on a service-oriented open MAS architecture. Here, organizations repre-
sent a set of individuals and institutions that need to coordinate resources and services
across institutional boundaries. In this context, agents represent individual parties
who take on roles in the system; within a given organization (e.g. a company), they
can both offer and consume services as part of the roles they play. Beyond this,
virtual organizations can also be built to coordinate resources and services across in-
stitutional boundaries. Norms defined as permissions, obligations and prohibitions
restrict the behavior of the entities of the system. Contracts are used to formalize the
relationships between entities. In our approach, we differentiate between two types
of contracts: contractual agreements and social contracts.

This thesis also presents a modeling tool that support the development of normative
open systems designed using the ROMAS methodology. This modeling tool inte-
grates a model checking plug-in that allows the verification of the coherence of the
normative context of a system, i.e., the coherence between the restrictions and com-
mitments of each entity and the global specification of the system.

Finally, in order to evaluate the quality and usability of our proposal. We have an-
alyzed the ROMAS methodology regarding its support for the analysis and design
of normative open systems. We have also performed an empirical evaluation of the
applicability of the ROMAS methodology and tools by means of the analysis and
design of several case studies from different domains (e-health, manufacturing, com-
merce and research). The design of such different case studies has been useful to

v

evaluate different dimensions and uses of the ROMAS methodology.

Resumen

Actualmente existe una creciente demanda de sistemas flexibles, adaptables y con
gran escalabilidad para apoyar las interacciones de personas e instituciones distribuidas
en entornos heterogéneos. Esto se debe principalmente al incremento en la necesidad
de trabajo colaborativo y la descentralizacién de los procesos en muchos dominios de
aplicacion. Por lo general, estas aplicaciones de software deben seguir legislaciones
y normativas especificas, es decir, las entidades que participan en el sistema tienen
derechos, deberes y restricciones especificas. Al igual que en otros trabajos del drea,
en esta tesis se utiliza el término sistemas normativos abiertos para referirse a los
sistemas de este tipo. El desarrollo de sistemas normativos abiertos puede producir
importantes beneficios para las compaififas que los usen, ya que permiten la comu-
nicacion de instituciones, entidades heterogéneas y diferentes dispositivos con el fin
de lograr tanto los objetivos globales del sistema como los individuales de cada ins-
titucion y entidad. Sin embargo, también hay algunas cuestiones importantes que
potencialmente pueden complicar el andlisis, disefio e implementacién de estos sis-
temas. La mayoria de estos problemas estin relacionados con la interoperabilidad de
sus procesos, la privacidad, la combinacién de los objetivos individuales y la combi-
nacién de las restricciones y la legislacion de cada una de las entidades del sistema.
Por lo tanto, es necesario el uso de métodos de ingenieria del software y herramientas
de desarrollo para hacer frente a estos problemas y guiar a los desarrolladores durante
el proceso de desarrollo.

La tecnologia basada en sistemas multiagente (SMA) es considerada una buena can-
didata para el desarrollo de sistemas normativos abiertos. Durante los dltimos afios, el
uso de las tecnologias SMA se ha incrementado no sélo en el &mbito académico, sino
también en el desarrollo e implementacion de aplicaciones industriales. Los SMA se

VII

han establecido como un paradigma de la ingenieria del software para la creacién de
sistemas adaptativos complejos, en entornos distribuidos y heterogéneos.

Esta tesis se centra en el andlisis y disefio de sistemas normativos abiertos utilizando
la tecnologia SMA. Algunas metodologias SMA se dedican al desarrollo de sistemas
de este tipo. Sin embargo, después de analizar en qué medida las metodologias SMA
actuales soportan el andlisis y el disefio de estos sistemas, podemos concluir que
todavia hay importantes problemas a resolver en el drea. Algunos de estos prob-
lemas son la integracién del contexto normativo del sistema durante el proceso de
desarrollo, la falta de directrices para identificar y formalizar este contexto norma-
tivo, la falta de técnicas de validacion y verificacién que garanticen la coherencia del
disefo final respecto a los requisitos del sistema, la coherencia entre los objetivos
individuales y la coherencia de las restricciones de cada entidad respecto al contexto
normativo del sistema global.

La principal aportacion de esta tesis es una nueva metodologia SMA llamada RO-
MAS (Sistemas Multiagente Regulados y Abiertos), que se centra en el andlisis y di-
seflo de procesos para el desarrollo de sistemas multiagente organizacionales, donde
los agentes interactian por medio de servicios estdndares, y donde las relaciones so-
ciales y contractuales se formalizan mediante normas y contratos. La metodologia
ROMAS define un proceso de desarrollo orientado a agentes y proporciona guias es-
pecificas para identificar y formalizar el marco normativo del sistema, asi como las
comunicaciones y los intercambios de servicios y recursos. ROMAS especifica tanto
el comportamiento global del sistema como las caracteristicas individuales de cada
entidad.

En la metodologia ROMAS, agentes, roles y organizaciones se definen a través de
una estructura social formal basada en un arquitectura orientada a servicios. Aqui,
las organizaciones representan un conjunto de personas e instituciones que tienen que
coordinar recursos y servicios a través de fronteras institucionales. En este contexto,
los agentes representan a las partes individuales que asumen roles en el sistema, den-
tro de una organizacién (por ejemplo una empresa), que pueden ofrecer y consumir
servicios como parte de las funciones que desempefian. Més alld de esto, las organi-
zaciones también pueden ser construidas para coordinar recursos y servicios a través
de los limites institucionales. Las normas definen permisos, obligaciones y prohibi-
ciones que restringen el comportamiento de las entidades del sistema. Los contratos
se utilizan para formalizar las relaciones entre las entidades. En nuestro enfoque,
podemos diferenciar entre dos tipos de contratos: acuerdos contractuales y contratos
sociales.

Esta tesis también presenta una herramienta de modelado para el desarrollo de los sis-
temas normativos abiertos disefiados utilizando la metodologia ROMAS. Esta herra-

VIII

mienta de modelado integra técnicas de model checking que permiten la verificacion
de la coherencia del marco normativo de un sistema, es decir, la coherencia entre las
restricciones y compromisos de cada entidad y la especificacion global del sistema.
Por dltimo, con el fin de evaluar la calidad y usabilidad de nuestra propuesta, hemos
analizado hasta qué punto la metodologia ROMAS soporta el andlisis y disefio de sis-
temas normativos abiertos. Ademads, hemos llevado a cabo una evaluacién empirica
de la aplicabilidad de la metodologia y las herramientas ROMAS mediante el anélisis
y disefio de casos de estudio de diferentes &mbitos (salud, comercio electrénico y fab-
ricacién). El disefio de estos casos de estudio ha sido ttil para evaluar las diferentes
dimensiones y usos de la metodologia ROMAS.

IX

Resum

Actualment hi ha una creixent demanda de sistemes flexibles, adaptables i amb gran
escalabilitat per donar suport a les interaccions de persones i institucions distribuides
en entorns heterogenis. Aix0 es deu principalment a I’increment en la necessi-
tat de treball col.laboratiu i la descentralitzacié dels processos en molts dominis
d’aplicaci6. En general, aquestes aplicacions de programari han de seguir legisla-
cions i normatives especifiques, és a dir, les entitats que participen en el sistema
tenen drets, deures i restriccions especifiques. Igual que en altres treballs de 1’area,
en aquesta tesi s’ utilitza el terme sistemes normatius oberts per referir-se als sistemes
d’aquest tipus. El desenvolupament de sistemes normatius oberts pot produir impor-
tants beneficis per a les companyies que els facin servir, ja que permeten la comuni-
cacié d’institucions, entitats heterogenies i diferents dispositius per tal d’aconseguir
tant els objectius globals del sistema com els individuals de cada institucid i enti-
tat. No obstant aix0, també hi ha algunes qiiestions importants que potencialment
poden complicar I’analisi, disseny i implementacié d’aquests sistemes. La majoria
d’aquests problemes estan relacionats amb la interoperabilitat dels seus processos, la
privacitat, la combinaci6 dels objectius individuals i la combinaci6 de les restriccions
i la legislaci6 de cadascuna de les entitats del sistema. Per tant, és necessari I’Us
de metodes d’enginyeria del programari i eines de desenvolupament per fer front a
aquests problemes i guiar els desenvolupadors durant el procés de desenvolupament.

La tecnologia basada en sistemes multiagent (SMA) és considerada una bona candi-
data per al desenvolupament de sistemes normatius oberts. Durant els dltims anys,
I’ts de les tecnologies SMA s’ha incrementat no només en I’ambit acadeémic, sind
també en el desenvolupament i implementacié d’aplicacions industrials. Els SMA
s’han establert com un paradigma de I’enginyeria de programari per a la creacié de

XI

sistemes adaptatius complexos, en entorns distribuits i heterogenis.

Aquesta tesi es centra en I’analisi i disseny de sistemes normatius oberts utilitzant
la tecnologia SMA. Algunes metodologies SMA es dediquen al desenvolupament de
sistemes d’aquest tipus. No obstant aix0, després d’analitzar en quina mesura les
metodologies SMA actuals suporten 1’analisi i el disseny d’aquests sistemes, podem
concloure que encara hi ha importants problemes a resoldre en aquesta area. Al-
guns d’aquests problemes s6n la integracié del context normatiu del sistema durant el
procés de desenvolupament, la manca de directrius per identificar i formalitzar aquest
context normatiu, la manca de tecniques de validaci6 i verificacié que garanteixin la
coherencia del disseny final respecte als requisits del sistema, la coheréncia entre els
objectius individuals, i la cohereéncia de les restriccions de cada entitat respecte al
context normatiu del sistema global.

La principal aportacié d’aquesta tesi és una nova metodologia SMA anomenada RO-
MAS (Sistemes Multiagent Regulats i Oberts), que se centra en I’analisi i disseny
de processos per al desenvolupament de sistemes multiagent organitzacionals, on els
agents interactuen per mitja de serveis estandard, i on les relacions socials i contractu-
als es formalitzen mitjancant normes i contractes. La metodologia ROMAS defineix
un procés de desenvolupament orientat a agents i proporciona guies especifiques per
identificar 1 formalitzar el marc normatiu del sistema, aixi com les comunicacions i
els intercanvis de serveis i recursos. ROMAS especifica tant el comportament global
del sistema com les caracteristiques individuals de cada entitat.

En la metodologia ROMAS, agents, rols i organitzacions es defineixen a través d’una
estructura social formal basada en un arquitectura orientada a serveis. Aqui, les or-
ganitzacions representen un conjunt de persones i institucions que han de coordinar
recursos i serveis a través de fronteres institucionals. En aquest context, els agents
representen les parts individuals que assumeixen rols en el sistema, dins d’una orga-
nitzaci6 (per exemple, una empresa), que poden oferir i consumir serveis com a part
de les funcions que desenvolupen. Més enlla d’aix0, les organitzacions també poden
ser construides per coordinar recursos i serveis a través dels limits institucionals. Les
normes defineixen permisos, obligacions i prohibicions que restringeixen el com-
portament de les entitats del sistema. Els contractes s’utilitzen per formalitzar les
relacions entre les entitats. En el nostre enfocament, podem diferenciar entre dos
tipus de contractes: acords contractuals 1 contractes socials.

Aquesta tesi també presenta una eina de modelatge per al desenvolupament dels sis-
temes normatius oberts dissenyats utilitzant la metodologia ROMAS. Aquesta eina
de modelatge integra tecniques de model checking que permeten la verificacié de la
coheréncia del marc normatiu d’un sistema, €s a dir, la coheréncia entre les restric-
cions i compromisos de cada entitat i I’especificacié global del sistema.

XII

Finalment, per tal d’avaluar la qualitat i usabilitat de la nostra proposta, hem anal-
itzat fins a quin punt la metodologia ROMAS suporta 1’analisi i disseny de sistemes
normatius oberts. A més, hem dut a terme una avaluaci6é empirica de 1’aplicabilitat
de la metodologia i les eines ROMAS mitjancant 1’analisi i disseny de casos d’estudi
de diferents ambits (salut, comerg¢ electronic i fabricacid). El disseny d’aquests casos
d’estudi ha estat util per avaluar les diferents dimensions i usos de la metodologia
ROMAS.

X1

Contents

Acknowledgements I
Abstract A\
Resumen IX
Resum XIII
Index XVII
List of figures XXI
1 Introduction 1
1.1 Normative open SyStems v v v v v e 1

1.2 Multiagent systemso 5

1.3 Thesismotivationo 7

1.4 Thesis problem statement 9

1.5 Thesisgoals 9

1.6 Outline 10

2 State of the art 11
2.1 Requirements for designing normative open multiagent systems . . 11
2.1.1 Designabstractions 12

2.1.2 Support during the development process 15

2.1.3 Evaluation of the final design 17

XV

2.2 General overview of the state of theart
2.2.1 Regarding the design abstractions
2.2.2 Regarding the support during the development process . . .
2.2.3 Regarding the evaluation of the final design
2.3 Comparison of methodologies
2.4 Open issues in the analysis and design of normative open MAS . . .
25 Conclusions

ROMAS methodology

3.1 Introduction
3.1.1 ROMASoObjectives
3.1.2 ROMAS architecture and metamodel
3.1.3 ROMAS process lifecycle
3.1.4 ROMASbackground
3.1.5 FIPA Design Process Documentation Template
3.1.6 Case study: Conference management system

32 ROMAS metamodel
3.2.1 ROMAS metamodel views
322 ROMASHDotation

3.3 Phases of the ROMAS process
3.3.1 PHASE 1: System specification
3.3.2 PHASE 2: Organization specification
3.3.3 PHASE 3: Normative context specification
3.3.4 PHASE 4: Activity specification
3.3.5 PHASE 5: Agents specification

3.4 Work product dependencies

3.5 Conclusions L

ROMAS development framework

4.1 Motivation and objectives

4.2 Technology background: Model Driven Architecture and Eclipse tech-
nology

4.3 ROMAS development framework architecture anduse

44 ROMAS modelingtool
4.4.1 ROMAS tool technical details
4.4.2 Use of the ROMAS modelingtool
4.4.3 Contributions and limitations

4.5 ROMAS module for formal verification

XVI

451 Relatedwork
4.5.2 Verifying the coherence of the normative context
453 ROMAS to PROMELA code transformation (RO2P)
4.5.4 Contributions and limitations
46 Conclusions

5 ROMAS approach evaluation
5.1 ROMAS for developing normative open MAS
5.1.1 Comparison with other agent methodologies
52 Casestudies
521 CMSecasestudy
5.2.2 mWater virtual marketo
5.23 ePCRN-IDEA system
5.2.4 The ceramic tile factory system
5.3 Conclusions

6 Conclusions
6.1 Main contributions of thisthesis
6.2 Limitations and futurework
6.3 Software development,
6.4 Publications e
6.4.1 Journalsindexedinthe SCI
6.4.2 Indexed Conferences
6.4.3 Other International Conferences

Bibliography

XvIl

125
125
129
132
133
134
138
144
148

151
151
154
155
156
156
157
160

175

List of Figures

3.1
3.2
33
34

35

3.6

3.7

3.8
39
3.10

3.11
3.12
3.13
3.14
3.15

3.16
3.17
3.18

Overview of ROMAS architecture
The ROMAS process phases
Summary of the SPEM 2.0 notation
Organizational view (The class RelXXX represents the attributes of
the relationship XXX),
Internal view (The class RelXXX represents the attributes of the rela-
tionship XXX)
Contract Template view(The class Re/XXX represents the attributes
of the relationship XXX)
Activity View(The class RelXXX represents the attributes of the rela-
tionship XXX)
Entities from the ROMAS graphical notation
The System description phase flow of activities
The System description phase described in terms of activities and
workproducts
The flow of tasks of the Requirements description activity
Case study: Objective decomposition diagram
Casestudy: Usecase,
The Organization description phase flow of activities
The Organization description phase described in terms of activities
and work productso
Phase 2: Relations between work products and metamodel elements.
Phase 2: Role identification guideline
Case study: Rolesoverview

45

47

48

49
49
50

51
53
62
63
65

66
68
69

3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

Case study: Reviewer role diagram 74
Case study: Organizational diagram 74
Phase 3: Activity tasks Lo Lo 75
Phase 3: Resources and productsused 75
Phase 3: Relations between work products and metamodel elements. 78
From requirements to formal norms guideline 79
From normative documents to formal norms guideline 81
Social contracts guideline 85
Phase 3: Case study - Reviewer play role contract template 89
Phase 4: Activity tasks Lo oL oL &9
Phase 4: Resources and productsused 90
Phase 4: Relations between work products and metamodel elements. 92
Phase 4: Case study - Reviewer play role negotiation protocol . .. 93
Phase 5: Activity taskso oL oo 93
Phase 5: Resources and productsused 94
Phase 5: Relations between work products and metamodel elements. 96
Phase 5: Case study - PHD student agent description 98
Work product dependencies 99
Eclipse plugin structure 103
ROMAS development framework architecture 105
ROMAS textual editor: mWater case study 108
xml view of the mWater ecore case study) 109
mWater organizational view diagram 110
Eclipse plug-in for SPIN interface 114
mWater organizational view simplified diagram 116
A)Buying Water Contract Template B)Role Seller Social Contract

template L. 117
Xpand script: Mainroutine 122
Xpand script: writeForbiddenNorms routine 122
Xpand script: writeExecuters Lo 122
mWater Buyer role in PROMELA 122
Xpand script: writeContractso 123
mWater BuyWaterRightContrat in PROMELA 123
Xpand script: Initprocess 123
Scalabilitytest 1., 124
Scalabilitytest2. 124

5.1
5.2
53
54
55

mWater case study diagram 135
mWater sales contract template L. 137
ePCRN-IDEA organizational structure. 140
Phase 2: Lepis PlayRole social contract template 143
Ceramic tile production organizational view diagram 146

XXI

CHAPTER

1

Introduction

The work presented in this thesis deals with the problem of engineering normative
open systems using the multiagent paradigm. Normative open systems are understood
in this thesis as systems in which heterogeneous and autonomous entities and institu-
tions coexist in a complex social and legal framework that can evolve to address the
different and often conflicting objectives of the many stakeholders involved. The first
section of this chapter gives more details about which kind of systems we deal with.
This thesis is focused on the analysis and design stages of the development process
based on the multiagent paradigm. Therefore, Section 1.2 gives a brief overview of
this paradigm and shows the suitability of this paradigm for developing normative
open systems.

The rest of the chapter is organized as follows: Section 1.3 motivates the thesis work.
Section 1.4 details the problem that the present thesis attempts to solve. Section 1.5
introduces the goals defined for this work. Finally, Section 1.6 gives an overview of
the structure of this document.

1.1 Normative open systems

As collaborative working and the decentralization of processes increase in many do-
mains, there is more and more demand for large-scale, flexible and adaptive software
systems to support the interactions of people and institutions distributed in hetero-
geneous environments. In many cases, the interacting entities are bound by rights,
duties and restrictions, which influence their behavior.

Domains such as healthcare and electronic commerce involve autonomous institu-

2 1.1. Normative open systems

tions, with their own specific social and legal contexts, where information and ser-
vices are exchanged under agreed terms, with new entities (providers, patients, etc.)
often joining the interactions. The defining characteristics of these systems are, there-
fore, that they are open and regulated. First, they are open in the sense that, dynam-
ically at runtime, external parties can interact and become part of the system. For
example, a system designed to share information between healthcare clinics should
allow the participation of new clinics at runtime [61]. Second, they are regulated in
the sense that software developed to support activities in these domains must be de-
signed to ensure that automation does not violate any internal regulation of any party
or institution involved, and that the rights and duties of different parties are clearly
specified. Among the different ways of regulating the behavior of a software sys-
tem, in this thesis we deal with the regulation of systems by means of norms. Since
most regulated system can be specified with norms, this assumption does not limit
the applicability domain. Besides, usually in real-life systems the restrictions on the
behavior are specified in legal documents by means of norms. Consequently and
common to other works [71], in this thesis we use the term normative open systems
to refer to systems where heterogeneous and autonomous entities and institutions in-
teract between them in a regulated context in order to achieve their individual and
global objectives.

After reviewing applications and case studies from different domains [87, 79, 24, 15]
and the literature related to the theoretical analysis of these systems [86, 71], we
have concluded that there are some features and challenges that are inherent to these
systems independently of the domain of application. The common requirements and
challenges that need to be dealt during the analysis and design of normative open
systems are presented below:

Assumption of autonomous and social behavior. A particular challenge is that
usually these systems are composed by disparate entities and organizations that often
fall under different spheres of control [61]. As a result, it is common for systems to
be constructed out of many divergent sub-systems. In this context, interactions can
often take place between components that are managed by parties with conflicting
goals, different policies, incompatible data representations, and so on.

Software organizations can represent real-world institutions in the software systems
[61]. The software developed can allow new interactions between real-world enti-
ties, support existing interactions or adding new functionalities to existing systems.
Moreover, when we are dealing with large systems with many interacting compo-
nents, software organizations can be used to structure the system and create virtual
subsystems that simplifies the design, development and implementation of the sys-
tem. Therefore, organizations can represent a set of individual software entities that

1. Introduction 3

cooperate as a group in order to offer or demand services and resources [75]. There-
fore, in order to design systems of this kind it is necessary to explicitly specify in-
dividual entities and institutions. The design of these entities and institutions should
show the individual goals, abilities and features of each entity, as well as, the global
goals, abilities and features of each institution. Besides, the design should specify the
interactions and exchanges of services and products.

Assumption of heterogeneity. Since we are dealing with heterogeneous and au-
tonomous entities that can have different spheres of control and that can have been
developed by different providers, interoperability problems may emerge. Interoper-
ability is an issue that should be solved at implementation time. However, a design
that considers this potential issue can facilitate the posterior implementation task and
reduce the gap between design and implementation [61].

Some of the issues that must be solved are: (i) Distributed Data — the required data
is spread widely across all organizations, frequently using different schemas; (ii)
Technical Interoperability — different organizations often use different (potentially
incompatible) technologies; (iii) Process Interoperability — different organizations
often employ divergent (potentially incompatible) processes to achieve their goals;
(iv) Semantic Interoperability — different organizations often utilize different vocab-
ularies and coding schemes, making it difficult to understand the data of others.
Moreover, as these autonomous entities and institutions often operate with a range of
aims and priorities in a very dynamic and changing environment, they may have to
regularly update their internal processes and technology. However, it is possible that
changes may take place without necessarily propagating to all other parts of the sys-
tem. Interactions and interchanges of services and products should be standardized
and formally described in order to isolate the internal characteristics of the actors of
the system from their interactions with the rest of the system [15].

Regulated environment. In the real-world our behavior is restricted by a set of
norms derived from the law legislation and from the regulations of the institutions
that we belong to or the environments where we interact. Many software systems
are also normative, which means that the behavior of their entities and institutions is
bounded by rights and duties [71]. Norms provide users and members of a system
with expectations about what other entities of the system will do or not do. This
ensures they can have confidence in the quality and correctness of what occurs in the
system. Norms also avoid critical status of the systems to occur and ensure that the
system follows the law regulations established in a specific domain or institution.
Allowance for openness. We are trying to deal with large-scale flexible systems
that can have many independent sites involved in various capacities worldwide. A
common feature of large-scale systems is the expectation that more sites and entities

4 1.1. Normative open systems

will join the system [86]. Open systems are systems that are able to interact with
and integrate new entities and institutions in the system at runtime [39]. In order
to interact with external entities the system must use standards of communication in
order to avoid interoperability problems. Open systems should clearly specify how
an external entity can be integrated in the system. The most common approach is
to divide the functionality of the system in roles [15]. Then, if any external entity
wants to enter in the system it has to acquire a specific role inside the system. So,
once a stakeholder enters in a normative system its behavior is restricted by the rights
and duties of the roles that it is playing. The explicit specification of these rights
and duties is necessary in order to allow entities to reason about the consequences of
acquiring a specific role.

Furthermore, little trust exists between different organizations, particularly those with
conflicting goals and interests. Therefore, interchanges of services and resources be-
tween internal or with external entities should be formalized [87]. The details of
an agreement between two entities is completely specified at runtime, however in
regulated systems it may be necessary to specify at design time which kind of rela-
tionships are allowed and under which terms [79, 119].

A normative open system is composed of a set of entities and organizations, re-
sources, global objectives of the system, and a normative context. Since normative
open systems objectives and composition can change dynamically, the time is another
important factor. Organizations in normative open systems are composed of a set of
entities that are members of this organization, a set of global objectives of the orga-
nization, a set of resources that can be used only by the members of the organization
and a normative context. As well as the system, the composition and objectives of an
organization can change dynamically. Entities can become part of an organization or
leave it at any moment. Entities in a normative open system are specified by means of
their capabilities, individual objectives, personal resources, and their normative con-
text. As is shown, a normative open system may have different normative contexts:
the normative context of the system defines the norms that should be fulfilled by all
the entities of the system; the normative context of an organization defines the norms
that should be fulfilled by all the members of this organization; finally, the normative
context of an entity defines the norms that an individual entity should fulfill regard-
ing its requirements and properties. For example, in a normative open system that is
created in order to share resources among universities the normative context of the
system would define the restrictions on the interactions between universities, there
would be an organizational normative context for each university to bound the be-
havior of the members of these universities, finally, some specific entities could have

1. Introduction 5

its individual normative context related to special restrictions regarding its role in the
university (students, directors of departments, ...).

<normative_open_system> ::= {<entity>} {<organization>} {<resource>}

{< objective >} < normative_context >< time >

<organization> ::= {<entity>} {<resource>} {<objective>} <normative_context>

< time >

<entity> ::= {<capabilities>} { <objective>} {<resource>} [<normative_context>]

<normative_context> ::= {<norm>}

As a summary we can conclude that in order to develop normative open systems the
supporting software should reflect the social and normative contexts of the systems at
the same time that maintains the flexibility and adaptability of it. The software should
also respect the autonomy of each entity of the system and permit their interaction
despite their differences in their technology. Therefore the analysis and design of
systems of this kind could be a complex task. An incorrect or incomplete definition
of a normative context could arise critical issues such the lack of robustness, security
and privacy.

1.2 Multiagent systems

Multiagent systems (MAS) technology has emerged over the last decades as a soft-
ware engineering paradigm for building complex, adaptive systems in distributed,
heterogeneous environments. MAS technologies are used more and more, not only
in academic environments, but also in real industrial applications. In this section we
revise the general requirements presented in the previous section and match them
with MAS constructions and concepts in order to show the suitability of MAS for
developing these systems.

Assumption of autonomous and social behavior. MAS use high-level abstraction
concepts that are very close to real-life concepts such as agents and roles. Agents are
computer systems that are autonomous, heterogeneous, reactive, proactive and social
[123]. Moreover, nowadays the concept of organization has become a key concept
in MAS research [54]. In organizational multiagent systems, organizations represent
institutions that exist in the real life or groups of agents that interact between them
in a specific environment and that can be seen from outside as a whole.These high-
level abstraction concepts facilitate the communication with domain experts, thereby
easing things such as requirements elicitation and verification [42].

6 1.2. Multiagent systems

Assumption of heterogeneity. Agents and organizations in MAS are assumed to be
heterogeneous [123]. The interoperability problems are solved by many MAS ap-
proaches by integrating a service-oriented approach into their architecture [50, 38].
Services standardize the interactions between heterogeneous entities without restrict-
ing the technology or the process followed in order to offer this functionality. In-
tegrating agents and services thus improves flexibility, interoperability, and func-
tionality [56]. Services offer a well-defined infrastructure and high interoperability,
whereas agent technology aims to provide intelligent and social capabilities (trust,
reputation, engagement, etc) for applications. Services are a powerful interaction
mechanism at implementation and also at design time. The use of services during
the design time helps in the specification of different levels of abstraction. Services
allow to specify what an entity offers or requires separately from the internal features
of this entity and how is going to offer this functionality [80].

Regulated environment. As is explained in the previous section, we are dealing
with systems that need to bound the behavior of their entities. These restrictions on
the behavior are related to system specification requirements, legal documents and
internal regulations of the institutions involved. In order to adapt MAS systems to le-
gal and restricted environments, agents’ social relationships, organizational behavior,
interactions and service interchanges are regulated [71, 12]. Some MAS method-
ologies, architectures and platforms have been working on explicitly integrating the
high-level abstraction of norm [71]. The advantage of a norm-based design approach
is that there is a ready way for developers to specify these regulations explicitly in
the development process, such that they become part of the design. Implementing the
system in a norm-aware platform can ensure their fulfilment, even if the system has
been externally implemented by different providers.

Allowance for openness. In practice, openness is enabled by a design specifying
exactly how a new entity must behave in order to join the system [39]. The integra-
tion of the concept of contract in MAS architectures facilitates the formalization of
the rights, duties and restrictions that any entity acquires when enters in the system
playing a specific role [112, 111]. Contracts are flexible and expressive as they al-
low agents to operate with expectations of the behavior of others based on high-level
behavioral commitments, and provide flexibility in how the autonomous agents fulfil
their own obligations [119].

Therefore, we can conclude that the MAS constructions and concepts fits with the
needs of the normative open systems. A normative service-oriented MAS paradigm
that includes the concepts of contracts would be suitable for developing these kinds of
systems independently of the domain of application. However, as is shown in Chap-
ter 2 MAS methodologies do not completely support the development of normative

1. Introduction 7

open systems. The main significant weaknesses are related to the identification, for-
malization and verification of the different normative contexts of the system during
the analysis and design of these systems.

1.3 Thesis motivation

This thesis is being developed in the context of the GTI-IA research group of the
Departamento de Sistemas Informaticos y Computacion of the Universitat Politec-
nica de Valencia. The lecturer is supported by the government FPU grant AP2007-
01276.

This thesis work began in the context of the THOMAS: "MeTHods, Techniques and
Tools for Open Multi-Agent Systems’ project (TIN2006-14630-C03-01"). This project
analyzes the needs that arise from technological evolution over recent years (Inter-
net, www, electronic commerce, wireless connection etc.). This study leads to a new
paradigm of "computing as interaction”. Under this paradigm, computing is some-
thing that is carried out through the communication between computational entities.
In this sense, computing is an inherently social activity rather than solitary, lead-
ing to new forms of conceiving, designing, developing and managing computational
systems. This project also point out the importance of the social factors and their
structure in organizations for structuring interactions in dynamic open worlds.

This thesis also has contributed to other research projects: Agreement Technologies
Consolider Ingenio (CSD2007-000222 and COST IC0801 AT?). These projects try to
propose a new paradigm for next generation distributed systems. The new paradigm
will be structured around the concept of agreement between computational agents.
These agreements must be consistent with the normative context where they are es-
tablished and will permit, once accepted, that the agents call for mutual services and
honor them.

During the development of these projects we have analyzed how the increase of col-
laborative work, the development of new technologies and the distribution of the
information is creating a demand of large-scale flexible systems in regulated envi-
ronments. These new technologies should support the analysis, design and imple-
mentation of the social structure of these systems, the interaction among autonomous
and heterogeneous entities, the identification and formal specification of the different
normative contexts of the system and the dynamicity of the structure, objectives and

Lhttp:/fwww.thomas-tin.org/index.php ?lang=en
http://www.agreement-technologies.org/
3 http:/fwww.agreement-technologies.eu/

8 1.3. Thesis motivation

regulations of these system.

The analysis and design of these systems can be a complex and critical task. Some of
the challenges that need to be faced are: (1) the selection of the most suitable social
structure; (2) the identification and formalization of the restrictions and norms that the
entities must follow. These restrictions and norms can be described in internal doc-
uments of the organizations involved, in legal documents, the system requirements
specifications and so on. (3) the identification and formalization of the relationships
between the entities of the system and the relationships with external entities. (4) the
verification of the coherence between the individual objectives and normative context
of each individual entity and the global system.

A bad selection choice in the selection of the social structure could lead to problems
such bottlenecks, reduction of the productivity of the system and an increase of the
reaction time of the system. An incomplete or wrong specification of the normative
context of a system could lead to critical problems such the lack of robustness, se-
curity and privacy. Besides, in an open system where external entities can interact
with the system or become part of the system, it is necessary a clear and complete
specification of the normative context. Otherwise, external entities will not know
which behavior is expected from them and probably could violate norms of the sys-
tem without noticing. These issues should be solved during the analysis and design
phases. Therefore, a well-defined methodology that deals with these kinds of systems
is necessary. This methodology should clearly specify the development process and
offer a set of guidelines that helps developers during the performance of the critical
tasks related above.

As is presented in the previous section, the multiagent paradigm is suitable for de-
veloping normative open systems. A range of formalisms and methodologies for
developing systems of this kind in a MAS environment has emerged [43, 92, 35, 71].
However, as is shown in Chapter 2 the specification of a complete methodology for
analyzing and designing normative open systems is still an open topic. Although
there are partial solutions, there is no methodology that offers a complete support to
these phases. The main weaknesses of current methodologies are the lack of guide-
lines for the identification, formalization and verification of the normative context of
a system.

The main motivation is to fill the gap in the analysis and design of normative open
systems by offering a complete methodology that explicitly deals with the identifica-
tion, formalization and verification of the normative context of the system. Another
common gap in the definition of methodologies is the lack of tools that support these
methodologies. Thus, a CASE tool should be offered in order to facilitate the use of
this methodology.

1. Introduction 9

1.4 Thesis problem statement

The development of normative open MAS is not a closed research topic. The discus-
sion presented in Chapter 2 indicates that some issues still need to be considered. The
work presented in this thesis is an attempt to deal with some of these issues, which
can be stated by the following research questions:

Research question 1: Which are the requirements for developing normative open
systems?

Research question 2: To what extent current agent-oriented methodologies support
the development of normative open systems?

Research question 3: How the designs of normative open MAS should be formal-
ized?

Research question 4: How the analysis and design of normative open MAS should
be guided?

Research question 5: How the designs of normative open MAS should be vali-
dated?

Research question 6: How Model-Driven technology can be used to integrate the
analysis, design and verification of normative open MAs?

1.5 Thesis goals

The main goal of this thesis is to provide a complete set of methods and tools for de-
veloping normative open MAS that guide and help developers to analyze and design
systems of this kind.

First of all, regarding research question 1, our first goal is the identification of the
requirements for developing normative open MAS.

Regarding research question 2, our second goal is the analysis of the state of the art
in the analysis and design of normative open MAS.

Regarding research question 3, one of the main goals of this work is the specification
of a new MAS architecture and metamodel that allow the complete specification of
normative open MAS.

Regarding research question 4, our forth goal is the specification of a methodol-
ogy and a set of guidelines that help the designer during the analysis and design of
normative open MAS .

10

1.6. Outline

Regarding research question 5, our goal is to integrate the validation of the designs
and the verification of the coherence of the designs into the development process.
Regarding research question 6, our goal is to develop a Model-Driven CASE tool
that integrates the analysis, design and verification of normative open MAS.

1.6

Outline

The remainder of this work has been structured as follows:

Chapter 2 analyzes the requirements for developing normative open MAS and
to what extent current AOSE methodologies support the development of sys-
tems of this kind.

Chapter 3 introduces ROMAS, our proposed methodology for analyzing and
designing normative open systems.

Chapter 4 presents a CASE tool that allows modeling ROMAS models fol-
lowing the methodology described in the previous chapter. This CASE tool
includes a plug-in that allows verifying the coherence of the normative context
of the modeled system by means of model checking techniques.

Chapter 5 presents an analysis of the contributions of our development ap-
proach and gives an overview of the lessons learned during the development of
several case studies.

Chapter 6 summarizes the outcomes of this work. It also describes the publi-
cations obtained as a result of this thesis. Finally, some future work lines are
presented.

CHAPTER

2

State of the art

In this chapter we try to answer the research question: "To what extent current AOSE
methodologies support the development of normative open MAS?". In order to answer
this question we need to previously answer another research question: "Which are
the requirements for developing normative open MAS?". This chapter is organized
as follows: Section 2.1 analyzes the requirements for analyzing and designing nor-
mative open MAS. Section 2.2 analyzes how current AOSE methodologies support
these requirements.Section 2.3 presents a mechanism for comparing methodologies
regarding their support for normative open MAS and applies it to compare several
agent methodologies. Section 2.4 discusses the support that current agent method-
ologies offer and highlights some open issues. Finally, Section 2.5 summarizes the
contributions and conclusions of this chapter.

2.1 Requirements for designing normative open mul-
tiagent systems

As is presented in Section 1.1, normative open systems have common features, chal-
lenges and requirements that must be considered during their development. This
section analyzes the characteristics that an agent methodology for analyzing and de-
signing systems of this kind should have. This analysis is derived from our previous
studies [56, 58, 54], related literature [86, 75, 34, 31, 40, 12] and the study of case
studies from different application domains [61, 87, 79, 15, 119, 24].

In the specialized literature there is no consensus about the terminology that must
be used to specify normative open MAS. Therefore, in this section we analyze the

11

12 2.1. Requirements for designing normative open multiagent systems

requirements for designing normative open systems from a semantic point of view
and associate these semantics to specific terms in order to reuse them in the following
sections. These specific terms are highlighted in bold.

Software methodologies are composed by the specification of design constructs, a
development process and a set of guidelines that supports or automatizes some of the
development decisions. In that sense, the rest of the section is organized as follows:
First, Section 2.1.1 analyzes the metamodel constructions and design abstractions
that are necessary to represent systems of this kind. Second, Section 2.1.2 analyzes
the support during the development process that it is necessary in order to completely
analyze and formalize these systems. Finally, Section 2.1.3 analyzes how the final
design of the system should be validated.

2.1.1 Design abstractions

This section analyzes the design abstractions that a metamodel for modeling norma-
tive open MAS should integrate. These design abstractions are related to the common
properties of systems of this kind detailed in Section 1.1.

Regarding the assumption of autonomous and social behavior in normative open sys-
tems, we conclude that for designing systems of this kind it is necessary to explicitly
specify individual entities (called agents in MAS) and organizations. Agents rep-
resent individual entities with their personal objectives, capabilities and resources
[123]. Organizations represent a group of agents that have a common objective or
real-world institutions [54]. The explicit representation of organizations at design
time is beneficial in the sense that: (1) Organizations allow to divide a large subsys-
tem in subsystems facilitating the design, the implementation and the maintenance of
the model [75]; (2) Organizations are a high-level abstraction, very close to real life
that facilitates the design and the comprehension of the clients and domain experts;
(3) Organizations allow creating different contexts inside the same system (each con-
text can have its own resources, regulations and features) [11]. The internal structure
of the organizations of the system will determine how the functionality of the system
is divided between its entities, the social relationships and communications among
entities and how the system interacts with its environment [73].

Regarding the assumption of heterogeneity, interactions and interchanges of services
and products should be standardized and formally described in order to isolate the
internal characteristics of the actors of the system from their interactions with the
rest of the system [37]. Common to other works [97, 49], we propose standardizing
the interchanges by means of services. Services standardize the interactions without
restricting the technology or the process followed in order to offer this functionality

2. State of the art 13

[56]. Services are a powerful interaction mechanism at design and also at imple-
mentation time. The use of services during the design time helps in the specification
of different levels of abstraction. Services allow to specify what an entity offers or
requires from the system separately from the internal features of this entity and sep-
arately from how it is going to offer or use this functionality.

Regarding the assumption that we deal with systems in regulated environments, we
conclude that the behavior of the entities and institutions in the system should be
bounded by rights and duties. Norms provide a mechanism to explicitly represent
which actions are permitted, forbidden and obliged inside the system [88]. In that
sense, norms provide users and members of a system with expectations about what
other agents will do or not do. Norms provide confidence in the quality and correct-
ness of what occurs in the system. Norms avoid critical status of the systems to occur
and also try to ensure that the system follow the law regulations established in a spe-
cific domain or institution. The explicit representation of norms forces developers
to analyze and consider the normative environment at design time [12]. Beyond that
it allows external developers to know which behavior is expected from the software
that he/she is going to implement.

The interaction of several institutions and entities from different spheres of control
arise the need of specifying different normative contexts inside the same system
[61]. First, we will need to specify the normative context of a system. It is considered
to be the set of norms that regulates the behavior of each entity and the set of contracts
that formalizes the relationships between entities and institutions. Second, for each
institution involved in the system we will need to specify the normative context of
this institution. They are specified by the set of norms that affects the entities that are
members of this institution. Third, we will need to specify the normative context of
each entity. It is specified by the set of norms that directly affects the behavior of this
entity in a specific moment.

Regarding the scope of a norm, tree types of norms can be considered [12]. First,
the institutional norms are the norms that regulate the behavior inside a specific
institution or group of entities. These norms are related to internal regulations of
this institutions in the real-world or law restrictions associated to this kind of institu-
tions in this domain. Second, the role norms are the norms that any entity playing
a specific role inside the system must follow. The term role is used to specify a set
of functionalities inside a system. The role abstraction is very close to real-life sys-
tems. For example, every person that interacts inside a university has a role (students,
teachers, directors of departments, ...). Third, the agent’s norms are the norms that
affect only to a specific entity of the system. Every individual entity may have special
rights or restrictions associated to its own design and implementation. These norms

14 2.1. Requirements for designing normative open multiagent systems

are not related to the general structure of the system or the roles that this entity plays,
but with the specific features of each individual entity. For example, in a virtual mar-
ket where all the clients are obliged to pay in advance, one specific client may have
arrived to an agreement with the company that allow this client to pay after receiving
the goods.

Norms can also specify the internal structure of the system and the social relation-
ships between their components. This means that the social structure emerges from
the norms and social relationships between entities. Moreover, the use of norms to
specify the structure allows the entities to reason about the structure of their system,
and allows the structure to be updated dynamically at runtime. In the literature norms
of this kind are called structural norms [43].

Social structure architectures imply the specification of the relationship between sev-
eral entities of the system. In dynamic and flexible systems, as well as in real human
societies, the specific terms of the social relationship between entities can be nego-
tiated between the entities involved. Common to other works [112, 40], we use the
abstraction of contract templates to specify at design time the features that any con-
tract of a specific type should have. The use of contract templates to specify these re-
lationships provides flexible architectures and maintains the autonomy of the system
about how to implement their commitments. In this thesis these kinds of contracts are
called social relationship contracts [40]. Contracts has been used in many domains
in order to formalize restrictions without compromising the autonomy of the entities.
This is because contracts are expressive and flexible. They allow agents to operate
with expectations of the behavior of other agents based on high-level behavioral com-
mitments, and they provide flexibility in how the autonomous agents fulfill their own
obligations [119]. Contracts also allow the negotiation of the specific terms of the
engagement between a stakeholder and a role. Although contracts should be speci-
fied and negotiated at runtime, at design time contract templates should be defined in
order to specify contract patterns that any contract of this type should fulfil.
Regarding the assumption of openness, the design abstractions used should be able
to specify how an external entity interacts with the system and how it becomes part
of the system. Using a service-oriented architecture when an external entity needs to
interact with the system it only have to follow the standard specified by the service.
In the case that an external entity wants to be integrated in the system, i.e., to become
part of the system by offering part of the internal functionality of the system, it has
to acquire a specific role of the system. Commonly in agent literature the internal
functionality of complex systems is divided using roles [123]. A role is high-level
abstraction that allows specifying system using terms close to the ones used in real-
life systems. For example, in a commercial interchange we will use the roles client

2. State of the art 15

and provider. The external entities that want to be integrated in the system can be
heterogeneous and they can be developed outside the scope of the system. However,
once a stakeholder enters in a normative system its behavior should fulfill the rights
and duties of the roles that it is playing. Therefore, when an entity wants to play a
specific role, it has to be informed about the rights and duties associated to this role.
Moreover, flexible and dynamic systems may allow entities to negotiate at runtime
how each entity is going to play each role. Therefore, the rights and duties associated
to each role should be described by means of contracts. Similarly to other works
[43], the contract templates that specify at design time the general terms that any
entity should fulfill in order to play a specific role are called play role contract.
Interchanges of services and resources are formalized at runtime, however in reg-
ulated systems it may be necessary to specify at design time which kind of rela-
tionships are allowed and under which terms. Therefore, it is necessary to specify
contract templates that formalize these restrictions and may establish the interaction
protocols that should be executed in order to negotiate, execute and resolve conflicts
related to these contracts. In this thesis these type of contract templates are called
contractual agreements.

2.1.2 Support during the development process

The development of normative open MAS requires complex tasks such as the inte-
gration of the individual and social perspective of the system or the integration of
the system restrictions in the design of the individual entities. Therefore, software
methodologies should provide a set of guidelines that simplifies or automatizes these
tasks. Following we present a summary of the most important guidelines that a com-
plete methodology for normative open MAS should provide.

One of the challenges in the design of normative open systems is determining the
most suitable social structure and when the system should be structured into sub-
organizations [75]. Although the process of analyzing which is the most suitable
organizational topology could seem to be as simple as mirroring the real world struc-
ture, it is in fact rather complex. On the one hand, if the system supports or automates
existing relationships between institutions, developers should identify and analyze
these relationships in order to extract the specific requirements. On the other hand,
if the system allows new interactions, they could change the existing social struc-
ture. Since the structure of the system determines the relationships and interaction
among the entities and the division of tasks between them, a bad choice in the selec-
tion of the social structure could derive problems such bottlenecks, a reduction of the
productivity of the system and an increase of the reaction time of the system [120].

16 2.1. Requirements for designing normative open multiagent systems

Therefore, methodological guidelines that support the decision of which is the most
suitable structure are necessary [41, 74].

Another challenge is the identification and formalization of the normative context of
a system. In the previous subsection a set of different types of norms that should
be formalized at design time are introduced. These norms can be derived from: (1)
the specific requirements of the system (e.g. a system in which the main goal is to
increase productivity during a specific period would forbid any entity from taking a
vacation during this period) [104]; (2) legal documents that formalize governmental
law or internal regulations of each institution (e.g. the National Hydrological Plan,
the governmental law about water right interchanges) [17]; and (3) design decisions
[120]. The identification of the normative context of a system is not trivial because:
(1) the description of the requirements of the system provided by domain experts
might be incomplete; (2) individual entities might have their own goals that con-
flict with the goals of the system; (3) in systems composed of different institutions,
each could have its own normative context that needs to be integrated into an over-
all system; and (4) legal documents are written in plain text, which means that the
terminology of the domain expert and these legal documents could be different.

A poor or incomplete specification of the normative context can produce a lack of
trustworthiness and robustness in the system. In open systems in which every entity
could be developed by a different institution, if the rights and duties are not formally
specified, an entity that tries to join a system would not know how to behave. Entities
could perform actions that harm the stability of the system (e.g. in a non-monopoly
system, a client could buy all the resources of one type). Therefore, specific guide-
lines should be added to the requirements analysis stage in order to identify and
formalize the norms that are directly related to the requirements of the system. Also,
specific guidelines for identifying the norms that should be implemented in a system
derived from the legal documents associated to the system should be provided. This
identification is a complex process because such documents are usually written in
plain text and the semantic meaning of the concepts described in the legal documents
and in the system design can be inconsistent.

The structure of the system and the relationship between the roles and entities
of the system can be explicitly specified by means of norms and contracts. As is
presented in previous sections this explicit representation provide benefits, however,
it can be a complex task in complex systems. Therefore the methodology should
provide specific guidelines that simplify and automatize the task. In that sense, the
methodology should provide specific guidelines for identifying institutional, role and
agent norms, as well as guidelines to formalize play role and social relationship con-
tracts.

2. State of the art 17

Another challenge is the identification of when is beneficial for the system that two
entities collaborate [102]. A complete methodology should help developers in this
process. Beyond that, the formalization at design time of these interchanges can be
a complex task. The formalization should specify which terms of the contract are
mandatory and which are forbidden. So, a complete methodology should offer spe-
cific guidelines to the identification and formalization of contractual agreements.
Contracts are more than a set of norms [22, 89]. The specification of negotiation,
execution and conflict resolution protocols is also an important issue in contract-
based systems [118]. These protocols should fulfill the normative context of the con-
tract and ensure that all the terms of the contract are agreed and executed. Therefore,
methodological guidelines could be very beneficial in order to avoid incoherence be-
tween the contracts’ clauses and their protocols and to ensure the correctness and
completeness of these protocols.

2.1.3 Evaluation of the final design

The validation of the fact that the designed system fulfils all the requirements iden-
tified in the analysis stage and the verification of the coherence of the system are
common open issues in any development approach. For normative open systems,
these validations and verification have even greater importance due to two specific
features. First, systems of this kind integrate the global goals of the system with the
individual goals of each party, where these parties are completely autonomous and
their interests may conflict. It is thus crucial to help developers to verify that the com-
bined goals of the parties are coherent and do not conflict with the global goals of the
system. If any incoherence is detected, the developer should be able to determine
when this issue will affect the global goals and whether it is necessary to introduce
norms to avoid related problems. Second, such systems usually integrate different
normative contexts from the different organizations involved, which must be coher-
ent with the contracts defined in the system. It is necessary to ensure that each single
normative context has no conflicts, and also that the composition of all the normative
contexts is itself conflict-free. In this respect, an open question is how consistency
and coherence of norms and contracts can be automatically checked inside an orga-
nization. Therefore, guidelines for validating that the design fulfills the normative
requirements and for verifying the coherence of the goals of the different parties
in the system and the coherence of the normative context should be offered by the
methodology and integrated in the development process.

As well as verification and validation, traceability is another topic that has a special
importance in normative open MAS. Requirements traceability refers to the ability to

18 2.2. General overview of the state of the art

describe and follow the life of a requirement, in both forward and backward direction
[23]. Traceability improves the quality of software system . It facilitates the verifica-
tion and validation analysis, control of changes, as well as reuse of software systems
components and so on. The ability of following the life of a requirement associated
to a norm is even more important due to the dynamicity of the normative contexts of
a system. For example in the mWater case study [59] the whole system should follow
the National Hydrological Plan legislation. Without traceability any change in this
law would imply the revision of the whole system. However, if it would be possible
to trace each norm individually, only the norms that had changed should be revised
and only the parts of the system affected by these norms should be redesigned. There-
fore, traceability of the normative context is a desired feature in a methodology for
developing normative MAS.

2.2 General overview of the state of the art

This section summarizes the state of the art of the agent methodologies’ support for
normative open MAS regarding the requirements described in the previous section.

2.2.1 Regarding the design abstractions

The representation of individual entities and the social structure of the system is a
common topic in MAS. The concept of organization has become a key concept
in MAS research, since its properties can provide significant advantages when de-
veloping agent-based software, allowing more complex system designs to be built
with a reduced set of simple abstractions [77, 78]. Organizations comprise both the
integration of organizational and individual perspectives and the dynamic adapta-
tion of models to organizational and environmental changes. Relevant organizational
methodologies are: Gaia [127], AML [115], AGR [47], AGRE [48], MOISE [66],
INGENIAS [95], OperA [40], OMNI [44], OMACS [32]. A detailed survey of orga-
nizational approaches to agent systems can be found in [78].

Many AOSE approaches deal with the challenge of communicating heterogeneous
entities avoiding interoperability issues by means of integrating service-oriented ar-
chitectures into their architectures [56]. A service-oriented open MAS (SOMAS) is
a multi-agent system in which the computing model is based on well-defined, open,
loosely-coupled service interfaces such as web services. Such services can support
several applications including: heterogeneous information management; scientific
computing with large, dynamically reconfigurable resources; mobile computing; per-

2. State of the art 19

vasive computing; etc. Relevant SOMAS proposals are: Tropos [26], Alive [38],
GORMAS [6], INGENIAS [49].

Agents that join an organization usually have to deal with some constraints, such as
the need to play particular roles so as to participate in certain allowed interactions.
The specification of explicit norms has been employed for keeping agents from un-
expected or undesirable behavior [70]. Currently, the most developed agent method-
ologies integrate norms into their meta-models in order to formalize the restrictions
on the behavior of the actors of the systems [13, 33, 44, 8]. Many of them also allow
the specification of organizational systems. These agent methodologies are able to
describe different normative contexts by means of specifying norms whose scope is
limited to one specific organization of the system [111, 43, 22].

Another high-level abstraction construction that is becoming increasingly more im-
portant for agent behavior regulation is the explicit specification of electronic con-
tracts [87, 89]. Most of the approaches integrate contracts in order to specify the
contractual agreements between parties [69, 22]. Only few approaches use contracts
to specify the structure of the system and the social relationship among the system’s
entities [21, 92, 43].

2.2.2 Regarding the support during the development process

Selecting the most suitable organizational topology and distributing the functionality
of the system in the most appropriate way can be a complex task in large and hetero-
geneous systems. Beyond the complexity of the task, a bad selection of the structure
of the organization can be critical for the success of the system [75]. Some MAS
methodologies provide specific guidelines [9, 34]. The social structure and coordi-
nation are usually represented in agent approaches by means of roles and structured
organizations. Only a small subset consider the normative context when selecting
the organizational structure and only few approaches represent the social structure
by means of norms in order to allow entities to dynamically reason and change this
structure at runtime [40].

Only few methodologies consider services as an important part of the analysis and
design of the system and provide guidelines for specifying their interface as well as
their internal functionality [50, 9]. Without these kinds of guidelines the designer
should rely only in his/her expertise to specify the services and their attributes. This
task could be very complex in dynamic, distributed, large systems.

Although some methodologies include into their meta-model and development pro-
cess the description of the normative context of a system, only few works provide
guidelines to actually identify the normative context of the system. Work by Boella,

20 2.2. General overview of the state of the art

Rotolo et al. [12, 99] offers several guidelines that point the attention of the system
designer to important issues when developing a normative system, but they cannot
be used as an artefact for designers to identify the norms that regulate the system.
Kollingbaum et al. [82] present a framework called Requirement-driven Contracting
(RdC), for automatically deriving executable norms from requirements and associ-
ated relevant information, but this framework only derives system norms from the
description of the goals of the system. A more complete guideline that includes the
analysis of each entity’s goals, and the resources and the relationship between entities
is still needed.

Breaux et al. [17, 19] present a methodology for extracting and prioritising rights and
obligations from regulations. They show how semantic models can be used to clarify
ambiguities through focused elicitation, thereby balancing rights with obligations.
[18] continues this work, investigating legal ambiguity and what constitutes reason-
able security. This methodology identifies obligations and restrictions derived from
the analysis of the complaints, agreements and judgments of the system. It seems
to address existing systems and needs runtime information to derive the norms. The
methodology is not, however, focused on the analysis and design of multiagent sys-
tems, although some of these guidelines could be combined with an agent methodol-
ogy to adapt the system at runtime and increase its security.

Siena et al. [104] study the problem of generating a set of requirements, which com-
plies with a given law, for a new system. It proposes a systematic process for gen-
erating law-compliant requirements by using a taxonomy of legal concepts and a set
of primitives to describe stakeholders and their strategic goals. This process must be
combined with an agent methodology in order to completely design the system.
Saeki and Kaiya [101] propose a technique to elicit regulation-compliant require-
ments. In this technique, the regulations are semantically checked against require-
ments sentences to detect the missing obligation acts and the prohibition acts in the
requirements.

2.2.3 Regarding the evaluation of the final design

Regarding the verification of the models and the consistency and coherence of norms
and contracts inside an organization, there are some works in the literature but it is
still an open problem. Most work in this thesis is focused on offline verification of
norms by means of model checking [121].

The application of model-checking techniques to the verification of contract-based
systems is an open research topic. Some works like [105] model contracts as a finite
automata that models the behavior of the contract signatories. Other works repre-

2. State of the art 21

sent contracts as Petri nets [76]. These representations are useful to verify safety and
liveness properties. However, adding deontic clauses to a contract allows conditional
obligations, permissions, and prohibitions to be written explicitly. Therefore, they
are more suitable for complex normative systems. In [94] and [46] a deontic view of
contracts is specified using the CL language. The work in [94] uses model-checking
techniques to verify the correctness of the contract and to ensure that certain proper-
ties hold. The work in [46] presents a finite trace semantics for CL that is augmented
with deontic information as well as a process for automatic contract analysis for con-
flict discovery. In the context of Service-Oriented Architectures, model checkers have
recently been used to verify compliance of web-service composition. In [85] a tech-
nique based on model checking is presented for the verification of contract-service
compositions.

In the context of verification techniques for MAS, there are some important achieve-
ments using model checking. In [122], the SPIN model checker is used to verify
agent dialogues and to prove properties of specific agent protocols, such as termi-
nation, liveness, and correctness. In [14] a framework for the verification of agent
programs is introduced. This framework automatically translates MAS that are pro-
grammed in the logic-based agent-oriented programming language AgentSpeak into
either PROMELA or Java. It then uses the SPIN and JPF model checkers to verify
the resulting systems. In [124], a similar approach is presented but it is applied to
an imperative programming language called MABLE. In [93], the compatibility of
interaction protocols and agents deontic constraints is verified. However non of these
approaches is suitable for many normative open systems since they do not consider
organizational concepts.

There are only a few works that deal with the verification of systems that integrate
organisational concepts, contracts, and normative environments. The most devel-
oped approach is presented in the context of the ISTFCONTRACT project [92]. It
offers contract formalization and a complete architecture. It uses the MCMAS model
checker to verify contracts. However, as far as we know, it does not define the organ-
isational normative context or verify the coherence of this context with the contracts.
Only few works ensures traceability of the requirements [23] and none of them is
focused on the traceability of the normative context attributes.

As is presented in this section, there are some approaches that offer partial solutions
to the issues derived from the development of normative open systems. However,
the combination of this partial solutions in order to obtain a complete methodology
is not an easy task. Since each approach use different terminology, semantics and
meta-model constructions, many times these partial solutions are not compatible.

22 2.3. Comparison of methodologies

This study also show that regarding the requirements presented in Section 2.1 and
among the analyzed methodologies, the ones that seem more suitable for normative
open MAS are OperA [40], O-Mase [34], Tropos [111] and Gormas [10]. These
approaches are studied more deeply in the next section.

2.3 Comparison of methodologies

In order to analyze to what extent AOSE methodologies support the development of
normative open systems, we need to analyze, evaluate and compare the methodolo-
gies available in the literature.

Due to the differences in the terminology and semantics of each methodology, the
comparison of methodologies is a complex task. The evaluation of software engi-
neering techniques and applications is an open research topic. Some evaluation ap-
proaches are based on the comparison by means of a case study [35, 45], whereas
other approaches use formal techniques like model checking to asses the compliance
of specific properties [14, 125]. Our approach tries to be more general. We want
to analyze the support for the development of normative open MAS by means of a
significant set of criteria related to the specific features of these kinds of systems.
Based on our previous works [55, 54, 56, 58], the study of the different approaches
available in the literature [25, 107, 84, 16] and the requirements for developing these
kinds of systems (Section 2.1), we propose a set of questionnaires that guides the
analysis and comparison of methodologies for developing normative open systems.
The use of questionnaires makes the answers be more specific and easier to compare.
It also reduces the evaluation time and simplifies the evaluation process [30, 114].
The overview of the state of the art presented in the previous section shows that re-
garding the requirements presented in Section 2.1 the most developed methodologies
are:

e Organizations per Agents (OperA) [40]: OperA is a framework for the spec-
ification of normative open MAS that includes a formal meta-model, a method-
ology and a case tool. The OperA methodology is structured in three steps:

— Organizational model design: This phase specifies the OperA Organiza-
tional Model for an agent society. This model is composed of three lev-
els: (1) Coordination Level: It specifies how the structure of the society is
determined. (2) Environment Level: The society model determined in the
previous step is further refined with the specification of its social structure
in terms of roles, global requirements and domain ontology. (3) Behavior

2. State of the art 23

Level: The organizational model of an agent society is completed with
the specification of its interaction structure which results from the analy-
sis of the interaction patterns and processes of the domain. This process
is supported by a library of interaction patterns.

— Social model design: This phases describes the agent population in the
Social Model that will enact the roles described in the structure. This
phase describes the roles specified in the previous phase, role negotiation
scenes and the characteristics of the agents that apply for society roles. In
other words, during this phase the social contracts that define the structure
of the system are detailed.

— Interaction model design: This phase describes the concrete interaction
scenes between agents. Interaction contracts are used to formalize these
interaction scenes.

e Organization-based Multiagent System Engineering (O-MaSE) [34]: pro-
vides a customizable agent-oriented methodology based on a meta-model, a
set of methods fragments and a set of methods construction guidelines.

0O-Mase methodology explicitly defines activities and tasks but it does not de-
fine specific phases. O-Mase provides a set of guidelines to organize these
activities in different ways based on project need. These activities includes
the analysis of the requirements; the design of the system by means of organi-
zations and roles; the architecture design by means of defining agent classes,
protocols and policies; the low level design in which specific plans, capabilities
and actions are described; and the code generation.

e Tropos [20]: The initial version of the Tropos methodology was focused on
supporting the agent paradigm and its associated mentalistic notions through-
out the entire software development life cycle from requirements analysis to
implementation [20]. Notions of agent, goal, task and (social) dependency are
used to model and analyse early and late software requirements, architectural
and detailed design, and (possibly) to implement the final system. The pro-
posed methodology spans four phases:

— Early requirements, concerned with the understanding of a problem by
studying an organizational setting; the output of this phase is an organi-
sational model which includes relevant actors, their respective goals and
their inter-dependencies. Early requirements include two main diagrams:
the actor diagram and the goal diagram. The latter is a refinement of the
former with emphasis on the goals of a single actor.

24

2.3. Comparison of methodologies

— Late requirements, where the system-to-be is described within its oper-
ational environment, along with relevant functions and qualities. The
system-to-be is represented as one actor which has a number of depen-
dencies with the other actors of the organisation. These dependencies
define the system’s functional and non-functional requirements.

— Architectural design, where the system’s global architecture is defined
in terms of subsystems, interconnected through data, control and other
dependencies. This phase is articulated in three steps: (1) definition of the
overall architecture (2) identification of the capabilities the actors require
to fulfill their goals and plans (3) definition of a set of agent types and
assignment to each of them one or more capabilities

— Detailed design, where behavior of each architectural component is de-
fined in further detail. Each agent is specified at the micro-level. Agents’
goals, beliefs and capabilities are specified in detail, along with the inter-
action between them

e Guidelines for Organizational Multi-Agent Systems (Gormas) [10]: GOR-

MAS defines a set of activities for the analysis and design of organizational
systems, including the design of the norms that restrict the behavior of the
entities of the system.

Gormas methodology is focused on the analysis and design processes, and it
is composed of four phases covering the analysis and design of a MAS: First
phase is mission analysis, that involves the analysis of the system requirements,
the use cases, the stakeholders and the global goals of the system; the service
analysis phase specifies the services offered by the organization to its clients,
as well as its behavior, and the relationships between these services; the orga-
nizational design phase defines the social structure of the system, establishing
the relationships and restrictions that exist in the system; and Finally, at the or-
ganization dynamics design phase, communicative processes between agents
are established, as well as processes that control the acquisition of roles along
with processes that enable controlling the flow of agents entering and leaving
the organization. Additionally, some norms that are used to control the system
are defined. Finally, the organization dynamics design phase is responsible of
designing guides that establish a suitable reward system for the organization.

2. State of the art 25

2.3.0.1 Regarding the design abstractions

Table 2.1 shows the evaluation criteria for analyzing which design abstractions and
constructions these methodologies support. These criteria are directly related to the
requirements for developing normative open systems presented in Section 2.1.1.

- Organizations: Does the methodology support the explicit representation of organizations?

- Services: Does the methodology support the specification of standard services?

- Normative contexts: Does the methodology support the specification of different normative contexts in the system?
- Institutional norms: Does the methodology support the specification of norms that only affects the scope of a
specific institution?

- Role norms: Does the methodology support the specification of the norms that are associated to a specific role?

- Agent norms: Does the methodology support the specification of the norms that are associated to a specific agent?
- Structural norms: Does the methodology support the formalization of the structure of the system by means of
norms?

- Social relationship contract: Does the methodology support the formalization of the structure of the system by
means of contracts?

- Play role contract: Does the methodology support the formalization of the rights and duties that an agent acquires
when plays a specific role in the system by means of contracts?

- Contractual agreements: Does the methodology support the formalization of the interchanges of resources and
services between different actors of the system?

Table 2.1: Evaluation criteria: Regarding the design abstractions

OMASE OPERA TROPOS GORMAS

Organizations Supported Supported Partially sup- | Supported
ported

Services Supported Supported Not supported Supported
Normative con- | Supported Supported Not supported Supported
texts
Institutional Supported Supported Not supported Supported
norms
Role norms Supported Supported Not supported Supported
Agent norms Supported Not supported Not supported Supported
Structural norms Not supported Supported Not supported Supported
Social relation- | Not supported Supported Partially sup- | Not supported
ship contracts ported
Play Role con- | Not supported Supported Partially sup- | Not supported
tracts ported
Contractual Not supported Supported Partially sup- | Not supported
agreements ported

Table 2.2: Design abstractions comparative

As is shown in Table 2.2, all the studied methodologies with the exception of Tropos
describes a MAS as an organizational structure. Tropos does not define explicitly
organizations, however, this methodology describes the social relationships between
the entities of the system by means of dependencies. The benefits of using the ab-

26 2.3. Comparison of methodologies

straction of organization instead of dependencies are that organizations create dif-
ferent contexts, they are close to real-life institutions and they divide the system in
different subsystems facilitating the modulation of the system.

All the studied methodologies with the exception of Tropos integrate the specification
of services into their metamodels.

O-Mase regulates the behavior of the entities by means of a set of norms called poli-
cies. These policies describe how an organization, role or agent may or may not
behave in particular situations. O-Mase does not integrate the concept of contract.
In that sense, O-Mase does not support the specification of commitments between
entities and does not explicitly specify if an entity can negotiate the norms or policies
that assumes when playing a specific role.

The OperA model regulates the behavior of the entities by means of norms and con-
tracts. Norms specify obligations, permissions and prohibitions of the roles of the
system. OperA does not include the design of the individual agents. However, it
assumes that agents can understand the society ontology and communicative acts and
are able to communicate with the society. OperA defines two types of contracts: so-
cial contracts and interaction contracts. These abstractions respectively match with
the play contract and contractual agreement concepts detailed in Section 2.1.1. So-
cial contracts establish an agreement between the agent and the organization model
and define the way in which the agent will fulfil its roles. In that sense, the structure
of the society is defined by the social contracts specified in the system. Interaction
contracts establish an agreement between agents, i.e., they define agent’s partnership,
and fix the way a specific interaction scene is to be played.

The initial version of the Tropos methodology [20] does not support the concepts
of norms or contracts. However, Telang at al. [111] enhances Tropos with com-
mitments. It proposes a metamodel based on commitments and a methodology for
specifying a business model. The concept of commitment in Telang at al. [111]
match wit the concept of contractual agreement used above. The specification of
social contracts is not supported by this approach.

Gormas allows the specification of institutional, role, agent and structural norms.
However Gormas does not support the concept of contract, neither to formalize social
relationship, nor to specify contractual agreements.

2.3.0.2 Regarding the support during the development process

Table 2.3 shows the evaluation criteria for analyzing to what extent these methodolo-
gies offer guidelines that support the design of the specific features of the normative
open systems. These criteria are directly related to the requirements for developing

2. State of the art 27

- Coverage of the lifecycle: What phases of the lifecycle are covered by the methodology?

- Social structure: Does the methodology provide any guideline to identify the best social structure of the system?

- Requirement norms: Does the methodology provide any guideline to identify and formalize the norms of the system
during the requirement analysis?

Does the methodology provide any guideline to identify which requirements should be specified as norms?

- Legal documents: Does the methodology provide any guideline to identify and formalize the norms that should be
implemented in the system derived from legal documents associated to the system?

- System design: Does the methodology consider the normative context of the system as an important factor in the
design of the system?

- Structure considers norms: Is the normative context of the system analyzed before specifying its structure? Is this
normative context integrated in the guideline to define the structure of the system?

- Contractual agreements: Does the methodology provide any guideline to identify and formalize contractual agree-
ments?

- Contract protocols: Does the methodology provide any guideline to formalize the negotiation, execution or conflict
resolution protocol associated to each contract regarding its requirements?

Table 2.3: Evaluation criteria: Regarding the support during the development process

normative open systems presented in Section 2.1.2.

Table 2.4 shows the comparison of the selected methodologies regarding the criteria
detailed in Table 2.3. The results of this analysis are described below.

Although O-Mase includes a specific task where the policies (norms) of the system
are formalized, it does not provide guidelines that help the designer to identify these
policies from the requirements of the system, legal documents or systems design.
This identification relies on the designer expertise.

OperA offers guidelines to select the most appropriate organizational social structure
and to specify interaction protocols by means of patterns. However, this methodology
does not offer guidelines to capture the clauses (norms) that each contract should
contain.

In the Tropos version presented by Telang at al. [111] a methodology is proposed in
order to analyze and design the system. One of the steps of the methodology consists
in the identification of the contractual agreements derived from business processes.
However, no other guideline related to the normative context of the system is pro-
vided.

Gormas offers a detailed guideline to select the most appropriate social structure.
Norms in Gormas are presented from the early beginning of the development process,
however, Gormas does not offer any specific guideline to identify the norms that
restrict the system. Their identification lays on the expertise of the designer. Gormas
neither offers guidelines for specifying the most appropriate interaction protocols
regarding the specific requirements.

28 2.3. Comparison of methodologies
OMASE OPERA TROPOS GORMAS
Social structure Provided Provided Not provided Provided
Requirement Partially provided | Partially provided | Not provided Partially provided
norms
Legal documents Not provided Not provided Not provided Not provided
System design Considered Considered Not considered Considered
Structure consid- | Part of the nor- | Part of the nor- | Not considered Supported
ers norms mative system is | mative system is
analysed before | analysed before
but it is mnot | but it is not
integrated in the | integrated in the
guideline. guideline.
Contractual Not provided Partially provided | Not provided Not provided
agreements
Contract proto- | Not provided Partially. It offers | Not provided Not provided
cols a library of pat-
terns for interac-
tion protocols.

Table 2.4: Support during the development process comparative

2.3.0.3 BRegarding the evaluation of the final design

Table 2.5 shows the evaluation criteria for analyzing how agent-methodologies sup-
port the specification of the final designs, and their validation and verification.. These
criteria are directly related to the requirements for developing normative open sys-
tems presented in Section 2.1.3.

- Modeling tool: Does the methodology provide an associated modeling tool?

- Code generation: Does the methodology or its associated tools provide a mechanism for automatic generation of
code from the model?

- Validation of the requirements: Does the methodology offer guidelines to validate that the requirements of the
systems are fulfilled with the resulting design?

- Verification of inconsistencies: Does the methodology offer guidelines to verify that there are no inconsistencies
such as conflicts between the individual behavior of an agent and the global objectives of the system?

- Tests: Does the methodology or its associated tools provide simulations or simplified system prototypes to experi-
mentally check the behavior of the system?

- Coherence of the normative context: Does the methodology offer guidelines to verify the coherence of the norma-
tive context?

Does the methodology offer guidelines to verify the coherence between the system and agent’s goals and the norma-
tive context?

- Traceability of the normative context: Does the methodology support traceability of the normative context?

Table 2.5: Evaluation criteria: Regarding the evaluation of the final design

2. State of the art 29

OMASE OPERA TROPOS GORMAS
Modeling tool Provided Provided Partially pro- | Provided
vided. The tool
does not sup-
port norms and
contracts

Code generation Partially provided | Partially provided | Not provided Partially provided
Validation of the | Not supported Not supported Partially sup- | Not supported
requirements ported

Verification of in- | Not supported Not supported Not supported Not supported
consistencies

Tests Not supported Not supported Not supported Not supported
Coherence of | Partial verifica- | Partial verifica- | Not supported Not supported
the normative | tion in the case | tion in the case

context tool tool

Traceability — of | Not supported Not supported Not supported Not supported

the normative
context

Table 2.6: Evaluation of the final design comparative

Table 2.6 shows the comparison of the selected methodologies regarding the criteria
detailed in Table 2.5. The results of this analysis are described below.

O-Mase methodology framework is supported by the a7 integrated development
environment, which supports method creation and maintenance, model creation and
verification and code generation and maintenance [35]. The a7 verification frame-
work allows selecting from a set of predefines rules which ones should be checked
against the model. This fact allows verifying specific properties of the model and
processes consistency. However, as far as we know, there is no tool for verifying the
coherence of the normative context.

OperA models can be implemented using the Operetta tool [91]. Although OperA
methodology does not integrate the verification of the system as a step of the method-
ology, the Operetta tool integrates model checking techniques in order to verify the
coherence of the system design. This verification includes the validation of the co-
herence of the normative context of the system.

The tool TAOMAE [90] support the design of the Tropos methodology in the ver-
sion presented in [20]. However, this tool is not suitable for the design of normative
open MAS because this version of the Tropos methodology does not support neither
norms, nor contracts. Chopra et al. [26] deals with the verification of Tropos mod-
els. This work proposes a technique to verify that an agent can potentially achieve
its objectives playing a specific role, and that an agent is potentially able to honor
its commitments. However, it does not provide any guideline or technique to ver-
ify the coherence of the normative system. Tropos offers supports for requirements

30 2.4. Open issues in the analysis and design of normative open MAS

traceability but it does not considered the normative context [23].

The EMFGormas CASE tool [53] support the analysis and design of systems based
on the Gormas methodology. Gormas does not offer tools for the verification of the
coherence of the system or the traceability of the normative context.

2.4 Openissues in the analysis and design of nhorma-
tive open MAS

Considering the general study of the state of the art and the comparison of method-
ologies presented in the previous section, we conclude that:

e Most well-known agent methodologies integrate into their meta-models the
concepts of organizations and norms. This fact allow designers to specify and
formalize institutional, role and agent norms, as well as, specify different nor-
mative contexts inside the same system.

e Only few methodologies integrate the concept of contract in their meta-model.
Some methodologies are integrating into their meta-model the specification
of contractual agreements, however, the use of structural norms and contracts
to define the structure of the system is only supported by a small subset of
methodologies.

e Most methodologies provide specific guidelines for selecting the most suitable
organizational typology and for distributing the functionality of the system in
the most appropriate way between the parties involved. However, only a small
subset considers the normative context when selecting the organizational struc-
ture.

e No methodology integrates into the development process guidelines that com-
pletely support the identification of norms from the analysis of the require-
ments, nor from legal texts.

e Although there is some work related to validation and verification of the de-
signed models, it is still an open problem. Verification using any development
approach is important, but in normative open systems it is even more so due to
the high risk of incoherence resulting from interference between different nor-
mative contexts, and between the global goals of the system and the individual
goals of each party.

2. State of the art 31

e Traceability of norms from requirements is not well supported by current method-
ologies.

e Although in the literature there are partial solutions to deal with the develop-
ment of normative open MAS, there is no complete methodology that guides
the development process. The combination of these partial solutions is not
possible in many cases due to the differences in terminology, semantics and
development processes.

2.5 Conclusions

In this chapter, we have analyzed the specific requirements for developing normative
open MAS. Regarding these requirements we have analyzed to what extent agent
methodologies support the development of systems of this kind. After analyzing the
state of the art, we have compared the currently most developed approaches. Finally
we have presented some open issues in this topic such as the lack of guidelines for the
identification and formalization of the normative context of a system. The purpose of
our approach, which is presented in Chapter 3 is to deal with these open issues.

CHAPTER

3

ROMAS methodology

This chapter presents the ROMAS methodology which is a methodology for the anal-
ysis and design of normative open MAS. This chapter is organized as follows:
Section 3.1 presents an overview of this methodology and the case study that will be
used in the chapter as a running example.

Sections 3.2, 3.3 and 3.4 of this chapter detail the ROMAS methodology following
the FIPA standard Design Process Documentation Template. Section 3.2 details the
ROMAS metamodel. Section 3.3 details the ROMAS process lifecycle by means of
detailing its phases and activities. Section 3.4 presents the relationships between the
work products produced and used during the process lifecycle as is specified in the
FIPA standard.

Finally, Section 3.5 summarizes the main conclusions and contributions of this chap-
ter.

3.1 Introduction

As is presented in the previous chapter, current approaches for developing normative
open MAS do not completely support the analysis and design of these kinds of sys-
tems. In this chapter we present the ROMAS methodology that deals with some of
the open issues in this topic.

This section gives an overview of this methodology by means of: (1) A description of
the ROMAS methodology’s objectives; (2) An introduction to the main concepts of
the ROMAS architecture and metamodel; (3) An introduction to the ROMAS process
lifecycle; (4) A brief description of the ROMAS background; (5) An introduction to

33

34 3.1. Introduction

the FIPA standard Design Process Documentation Template that will be followed
during the rest of the chapter in order to specify the ROMAS methodology; (6) A
brief description of the case study that will be used during the whole chapter as a
running example.

3.1.1 ROMAS objectives

ROMAS methodology tries to deal with some of the open issues on the analysis and
design of normative open MAS. Specifically, ROMAS tries to contribute to the state
of the art by offering a complete development process for analyzing and designing
normative open MAS that includes a set of guidelines to identify, formalize and verify
the normative context of the system, as well as, that allows the traceability of the
normative context from the requirements to the design decisions and viceversa.

The general objectives of ROMAS are:

e Analyzing the system requirements from a global and individual point of view,
i.e., analyzing the global requirements of the system and the individual require-
ments of every entity of the system.

e Analyzing and formalizing the social structure of the system and the relation-
ships between its entities.

e Formalizing the relationships and interchanges between entities in a way that
allows heterogeneous and autonomous entities to interact, even if these entities
have been implemented by external providers using different technologies.

e Analyzing and formalizing the normative context of the system, i.e., the re-
strictions on the entities behavior derived from the system’s requirements and
the design decisions.

e Verifying the coherence of the designed normative context.

e Formalizing the normative context in a way that allows the traceability from
the requirements to the design decisions and viceversa.

3.1.2 ROMAS architecture and metamodel

In ROMAS, agents, roles and organizations are defined through a formal social struc-
ture based on a service-oriented open MAS architecture, whose main features are
summarized in Figure 3.1. Here, organizations represent a set of individuals and

3. ROMAS methodology 35

Pursues

o™ [] 5
Organization ™, & BulletinBoard
Norm 0’749,» @
0] s, N
oY Organization 9
L /
SocialRelationship % r§$)
Role Rg 2 &
Q
“h @ 4
()

Agent Agent /
=]
Product Product
Service &5 Service
Interchange T

Figure 3.1: Overview of ROMAS architecture

institutions that need to coordinate resources and services across institutional bound-
aries. In this context, agents represent individual parties who take on roles in the
system, within a given organization (e.g. a company), they can both offer and con-
sume services as part of the roles they play. Beyond this, virtual organizations can
also be built to coordinate resources and services across institutional boundaries. Im-
portantly, each of these concepts must be strictly defined, alongside their interrela-
tions. Organizations are conceived as an effective mechanism for imposing not only
structural restrictions on their relationships, but also normative restrictions on their
behavior. These restrictions are formalized in ROMAS by means of norms and con-
tracts.

Norms in ROMAS are specified using the model described in [28], which defines
norms that control agent behavior, the formation of groups of agents, the global goals
pursued by these groups and the relationships between entities and their environment.
Specifically, it allows norms to be defined: (i) at different social levels (e.g. interac-
tion and institutional levels); (ii) with different norm types (e.g. constitutive, regu-
lative and procedural); (iii) in a structured manner; and (iv) dynamically, including
later derogation. Figure 3.1 shows two types of norms: (i) those that are associated
with each organization; and (ii) those that are associated with each role. Clearly, the
former must be complied with by any organization member, while the latter must be
complied with by all agents playing that role.

Finally, ROMAS also allows interactions to be formalized by means of contracts.
These are necessary when working in an open regulated system, to be able to specify
the expected behavior of others without compromising their specific implementation.
ROMAS involves two types of contracts: social contracts and contractual agree-

36 3.1. Introduction

ments. Social contracts can be defined as a statement of intent that regulates behavior
among organizations and individuals. As shown in Figure 3.1, social contracts are
used to formalize relationships: (i) between an agent playing a role and its host or-
ganization (as indicated by the contract labelled c;); and (ii) between two agents
providing and consuming services (as indicated by c2). Social order, thus, emerges
from the negotiation of contracts about the rights and duties of participants, rather
than being given in advance. In contrast, contractual agreements represent the com-
mitments between several entities in order to formalize an interchange of services or
products (c3).

The properties of each entity of the presented architecture and the allowed relation-
ships between them are formalized in the ROMAS metamodel.

In order to facilitate the modeling tasks, this unified metamodel can be instantiated
by means of four different views that analyze the model from different perspectives:

e The organizational view that allows specifying the system from a high-level
of abstraction point of view. This view allows specifying the global purposes
of the system, the relationships with its environment, the division of the func-
tionality of the system in roles and the main structure of the system.

e The internal view that allows specifying each entity (organizations, agents and
roles) of the system in high and low level of abstraction point of view. From a
high-level of abstraction, this view allows specifying the beliefs and objectives
of each entity, and how the entity participate in the system and interact with its
environment. From a low-level of abstraction, this view allows specifying the
internal functionality of each entity by means of the specification of which task
and service implements. One instance of this view of the metamodel is created
for each entity of the system.

e The contractlemplate view that allows specifying contract templates which
are predefined restrictions that all final contract of a specific type must fulfill.
Contracts are inherently defined at runtime, but contract templates are defined
at design time and can be used at runtime as an initial point for the negotiation
of contracts and to verify if the final contract is coherent with the legal context.

e The activity view that allows specifying interaction protocols, the sequence of
activities in which a task or a service implementation is decomposed.

ROMAS metamodel is completely described in Section 3.2.

3. ROMAS methodology 37

J/i[lncoherence in the normative context]*‘

~ | I |
] = —_— —_—

[

P1.System P2.Organization Are the roles P3. Normative [Is the organization P4. Activity P5. Agents
specification specification playedbyan contex specification of the system well specification specification
individual spetified?]
entities?] '
[no, itis played by an organization]J [New contract]

[no]

Figure 3.2: The ROMAS process phases

3.1.3 ROMAS process lifecycle

ROMAS tries to guide developers during the analysis and design phases in a intuitive
and natural way. In that sense, ROMAS derives the whole design from the analysis of
the requirements and their formalization by means of objectives. Following a goal-
oriented approach, developers are focused from the early beginning in the purpose of
the system.

ROMAS development process is composed of five phases, which help developers to
analyze and design the system from the highest level of abstraction to the definition
of individual entities and implementation details (Figure 3.2). ROMAS phases are
completely detailed in Section 3.3. Following a summary of the purposes and results
of each phase is presented:

e Phase 1. System specification: The purpose of this phase is to analyze the
system requirements from a global point of view, i.e., focusing on the system
as whole instead of focusing on the individual interests of each entity. These
requirements are translated in terms of objectives and restrictions. The global
objectives of the system are studied and refined into operational objectives and
the main use cases of the system are specified. Once all the requirements of the
system have been analyzed, the last task of this phase is to evaluate the suitabil-
ity of the ROMAS methodology for the development of the system regarding
its specific requirements.

The results of this phase of the methodology are: (1) a textual description of the
system requirements, (2) a textual description of the objectives of the system,
(3) an objective decomposition diagram, (4) a set of the use cases diagrams,
(5) a study of the suitability of the ROMAS methodology for this system.

e Phase 2. Organization specification: The purpose of this phase is to analyze
and design the social structure of the system. First, the functionalities of the

38

3.1. Introduction

system are associated to roles. Then, the relationships between these roles, the
restrictions and the social environment of the system are analyzed in order to
select the most suitable social architecture. This social architecture specifies in
a high-level of abstraction which are the social relationships between the roles
of the system (like authority or collaboration) and if the system is composed of
several organizations.

The results of this phase of the methodology are: (1) a textual description of
the roles of the system, (2) one diagram for each role of the system specifying
its properties. These diagrams are instances of the Internal view of the meta-
model, (3) one diagram for representing the social environment and structure
of the system. This diagram is an instance of the Organizational view of the
metamodel.

Phase 3. Normative context specification: The purpose of this phase is to for-
mally specify the normative context of the system by means of norms and con-
tracts. The requirements of the system, the normative documents associated
to the system (like governmental legislation or institutional regulations) and
the social structure of the system are analyzed in order to identify the norms
and contracts that should be formalized. The processes of identification, for-
malization and validation of the normative context are supported by a set of
guidelines.

The results of this phase are: (1) modifications on the diagrams defined in the
previous phase in order to add the norms and contracts identified, (2) a set
of diagrams for specifying the contract templates of all the identified social
relationships. These diagrams are instances of the Contract template view of
the metamodel.

Phase 4. Activity specification: The purpose of this phase is to specify the
tasks, services and protocols that have been identified in the previous phases
of the development process. In that sense, this phase revises the role internal
view diagrams, the organizational view diagram and the contract template view
diagrams in order to identify which tasks, services and protocols should be de-
tailed. For example, for each contract template a negotiation and an execution
protocol should be specified.

The results of this phase are a set of diagrams, one for each task, service and
protocol, that are instances of the Activity view of the metamodel.

e Phase 5. Agents specification: The purpose of this phase is to analyze and

3. ROMAS methodology 39

design every individual entity of the system. This phase analyzes the require-
ments of each entity, its restrictions and which roles this entity should play in
order to achieve its objectives. The last step of this phase is to validate the
coherence between the design of every individual entity and the global design
of the system.

The results of this phase are a set of diagrams, one for each individual entity,
that are instances of the Internal view of the metamodel and that specifies the
features, properties and interactions of this entity with the rest of the system.

As the Figure 3.2 shows, this is not a linear process but an iterative one, in which
the identification of a new element of functionality implies the revision of all the di-
agrams of the model and the work products produced, so it requires to go back to
the appropriate phase. For example, during the second phase (Organization spec-
ification), part of the detected roles can be played by a group of agents that form
another organization. In this case, it is necessary to go back to the first phase of
the methodology to analyze the characteristics, global objectives and structure of this
organization.

3.1.4 ROMAS background

The complete ROMAS background is presented in Chapter 2. The most remarkable
influences for ROMAS are GORMAS [7] and OperA [40].

ROMAS uses the GORMAS metamodel as a starting point for the specification of
its own metamodel. GORMAS is a service-oriented methodology that defines a set
of activities for the analysis and design of organizational systems, including the de-
sign of the norms that restrict the behavior of the entities of the system. ROMAS
metamodel inherits from GORMAS the concepts of agents, organizations, services
and norms. ROMAS revises the GORMAS metamodel in order to refine these con-
cepts. ROMAS also adds the concept of social and commercial contract. The process
lifecycle of ROMAS and GORMAS are completely different. GORMAS bases the
development process in the specification of the services that every entity must provide
and use, while ROMAS bases it in the objectives of the system and the objectives of
each entity of the system.

The graphical notation used in ROMAS to formalize the models is based on the no-
tation used in GORMAS [7], ANEMONA [68] and INGENIAS [95]. ROMAS adds
few graphical icons to represent some elements, like contract templates, that were not
previously defined in these methodologies.

40 3.1. Introduction

The concept of social contract used in ROMAS is similar to the concept of contract in
the Opera methodology. However, ROMAS does not share the same concept of orga-
nizations and interactions. Organizations in OperA are defined as institutions where
agents interact between them entering in previously determined scenes. Moreover,
other differences are that OperA does not include the analysis and design of indi-
vidual agents and it does not offer specific guidelines for identify the norms derived
from the analysis of the requirements, legal documents or design decisions.

3.1.5 FIPA Design Process Documentation Template

ROMAS methodology is described using the Design Process Documentation Tem-
plate proposed by the FIPA Design Process Documentation and Fragmentation Work-
ing Group'. The complete specification of this standard can be consulted in [51].
This standard uses the SPEM 2.0 notation [103]. Figure 3.3 summarizes the most
used concepts and shows their graphical icons in order to facilitate the understanding
of the specification of the ROMAS methodology presented in the following sections.
The use of this standard template for specifying the ROMAS methodology is benefi-
cial in the sense that:

e The use of the standard ensures that the whole development process is com-
pletely specified.

e The use of the standard facilitates the comparison with other methodologies
described with the same standard.

e The use of the standard reduces the methodology learning time of developers
used to this standard.

o This template is designed in order to facilitate the creation and reuse of method
fragments. The template proposes the use of the Situational Method Engineer-
ing paradigm in order to provide means for constructing ad-hoc software en-
gineering processes following an approach based on the reuse of portions of
existing design processes (method fragments). In that sense, our methodology
could be extended by adding a method fragment from other methodology. Parts
of our methodology could also be used to add functionality to other methodol-
ogy or to create a new software engineering process for a specific purpose.

'http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/

3. ROMAS methodology

41

Icon

Name

Description

Phase

Phases represent significant periods in a project, ending with major
management checkpoint, milestone, or set of deliverables. It is
composed of a set of activities.

Activity

Activities represent set of tasks. Activities are supposed to produce
finer grained artifacts than phases.

Task Tasks represent actions that are performed during the
development process. Tasks are supposed to concur to the
definition of activity-level artifacts.

In use This icon is attached to any entity that is in use in this diagram.

Role Roles represent human entities that participate in a diagram.

Guideline Guidelines represent best practices suggested for a good

application of the process documentation template or techniques
about how to perform the prescribed work.

Structured work product

It is a text document ruled by a particular template or grammar, for
instance a table or a code document.

Behavioral work product

It is a graphical kind of work product and is used to represent the
dynamic aspect of the system (for instance a sequence diagram
representing the flow of messages among agents along time);

Structural work product

It is a graphical kind of work product and is used for representing
the static aspect of the system, for instance a UML class diagram.

Composite work product

It is a work product that can be made by composing the previous
work product kinds, for instance a diagram with a portion of text
used for its description.

Figure 3.3: Summary of the SPEM 2.0 notation

42 3.2. ROMAS metamodel

3.1.6 Case study: Conference management system

During the rest of the chapter we will use the Conference management system as
a running case study in order to exemplify and clarify some parts of the develop-
ment process. This case study deals with the development of a system to support the
management of scientific conferences. This system involves several aspects from the
main organization issues to paper submission and peer review, which are typically
performed by a number of people distributed all over the world.

This system has been used previously as a case study by other methodologies such
Tropos [90] or O-Mase [33]. In these works the normative context of the system
and their entities are not studied. In this thesis, we consider that the Conference
management system is regulated by a set of legal documents such the governmental
law about data storage privacy, and that each conference managed in the system can
define its own internal regulations.

3.2 ROMAS metamodel

This section details the ROMAS metamodel elements, relationships and structure.
As is introduced above, ROMAS offers an unified metamodel that can be instanti-
ated by means of four different views: Organizational view, Internal view, Contract
Template view and Activity view. A complete description of these views of the meta-
model is presented in Section 3.2.1. Section 3.2.2 shows the graphical notation used
to draw the ROMAS models.

Table 3.1 describes the entities that the ROMAS metamodel uses for modeling nor-
mative open MAS.

Concept Definition Metamodel
views
Objective An objective is a specific goal that agents or roles have to fulfill. It | Organizational
can be refined into other objectives. Internal view
Organizational | A set of agents that carry out some specific and differentiated ac- | Organizational
Unit (OU) tivities or tasks by following a predefined pattern of cooperation | Internal

and communication. An OU is formed by different entities along | Contract tem-
its life cycle which can be both single agents or other organiza- | plate
tional units, viewed as a single entity.

Role An entity representing part of the functionality of the system. Any | Organizational
entity that plays a role within an organization acquires a set of | Internal
rights and duties. Contract tem-
plate

Activity

3. ROMAS methodology

43

Agent An entity capable of perceiving and acting into an environment, | Organizational
communicating with other agents, providing and requesting ser- | Internal
vices/resources and playing several roles. Contract tem-

plate
Activity

Norm A restriction on the behavior of one or more entities. Organizational
Internal
Contract tem-
plate
Activity

Contract tem- | A set of predefined features and restrictions that all final contract | Organizational

plate of a specific type must fulfill. A contract represent a set of rights | Internal Con-
and duties that are accepted by the parties. tract template

Activity
Bulletin A service publication point that offers the chance of registering | Organizational
Board and searching for services by their profile. Internal

Contract tem-

plate

Activity
Product An application or a resource. Organizational

Internal

Contract tem-

plate

Activity
Service The description of a service that the agent might offer to other | Organizational
Profile entities Internal

Activity

Service Im- | A service specific functionality which describes a concrete imple- | Internal

plementation mentation of a service profile Activity

Task An entity that represents a basic functionality, that consumes re- | Organizational
sources and produces changes in the agent’s Mental State. Internal

Contract tem-
plate
Activity

Stakeholder A group that the organization is oriented to and interacts with the | Organizational
OUs.

Belief A claim that an agent (or a role taken by an agent) thinks that itis | Internal
true or will happen.

Fact A claim that is true at the system’s domain. The difference be- | Internal
tween beliefs and facts is the level of confidence in their veracity.

While an agent is completely sure that its facts has happened, a
belief is something that an agent hopes to happen or that thinks
that has happened.

Event The result of an action that changes the state of the system when | Internal
it occurs.

Interaction An entity defining an interaction between agents. Activity

Interaction A performative employed during the interaction. Activity

Unit

Translation An artifact that allows defining the sequence of tasks depending | Activity

Condition

on a condition.

44 3.2. ROMAS metamodel
Executer A participant in an interaction. It can be an Organization, an Agent | Organizational
or a Role. Internal
Contract tem-
plate
Activity
Table 3.1: Definition of ROMAS metamodel elements
3.2.1 ROMAS metamodel views

3.2.1.1 ORGANIZATIONAL VIEW

In this view the global goals of the organizations and the functionality that organiza-
tions provide and require from their environment are defined (Figure 3.4). The static
components of the organization, i.e. all elements that are independent of the final
executing entities are defined too. More specifically, it defines:

The entities of the system (Executer): AAgents and Roles. The classes Executer
and AAgents are abstractions used to specified the metamodel, but neither of
them are used by designers to model systems.

An AAgent is an abstract entity that represents an atomic entity (Agent) or a
group of members of the organization (Organizational Unit), seen as a unique
entity from outside.

The Organizational Units (OUs) of the system, that can also include other
units in a recursive way, as well as single agents. The Contains relationships
includes conditions for enabling a dynamical registration/deregistration of the
elements of an OU through its lifetime.

The global Objectives of the main organization. The objectives defined in this
view are non-functional requirements (softgoals) that are defined to describe
the global behavior of the organization.

The Roles defined inside the OUs. In the contains relationship, a minimum and
maximum quantity of entities that can acquire this role can be specified. For
each role, the Accessibility attribute indicates whether a role can be adopted
by an entity on demand (external) or it is always predefined by design (inter-
nal). The Visibility attribute indicates whether entities can obtain information
from this role on demand, from outside the organizational unit (public role)
or from inside, once they are already members of this organizational unit (i.e.

3. ROMAS methodology

45

private role). A hierarchy of roles can also be defined with the InheritanceOf
relationship.

The organization social relationships (RelSocialRelationship). The type of a
social relationship between two entities is related with their position in the
structure of the organization (i.e. information, monitoring, supervision), but
other types are also possible. Some social relationships can have a Contract-
Template associated which formalize some predefined commitments and rights
that must be accepted or negotiated during the execution time. Each Contract
Template is defined using the Contract Template view.

The Stakeholders that interact with the organization by means of the publica-
tion of offers and demands of Products and Services in the BulletinBoard.

The Bulletin Board can be considered as an information artifact for Open MAS.
This artifact allows the designer to define the interaction with external entities
and facilitates trading processes. When an agent wants to trade, the agent can
consult or publish their offer into the BulletinBoard. Each offer or demand
can be associated with a ContractTemplate. It means that this offer or demand
has some predefined restrictions which are specified in this ContractTemplate

view.
RelDemands Stakeholder
-Servide/Product -Name
-ContractTemplate -Description
-Internal/External ’ T 1 Objective
688 N
-Name
RleIConsuIts § é § SocialRelationship -Description
-Filter \J/ \(J,,—; \g—l,/ — Pursues -Decomposition
ins—1 /—Type

RelOffers BulletinBoarale ——CONT | Executer

-Service/Product -Name KCOnsuns contains |OrganizationalUnit
-ContractTemplate -Description &Demand\-

-Internal/External S—— A

RelContainsExecuter ‘

-MinQuantity inheritanceOf. AAgent

-MaxQuantity — Role g

RelSocialRelationship [ﬁ/l
Type RelPursues Agent

-OtherTypes -ActivationCondition

-Condition -DeactivationCondition

-MinQuantity -FailCondition

-MaxQuantity -SatisfactionCondition

-RelatedContract -ATask

Figure 3.4: Organizational view (The class Re/XXX represents the attributes of the relationship XXX)

46 3.2. ROMAS metamodel

3.2.1.2 INTERNAL VIEW

This view allows defining the internal functionality, capabilities, beliefs and objec-
tives of each entity (organizations, agents and roles) by means of different instances
of this model (Figure 3.5). More specifically, it defines the following features of each
entity:

e The Objectives represent the operational goals, i.e., the specific goals that
agents or roles have to fulfill. They can also be refined into more specific ob-
jectives. They might be related with a Task or Interaction needed for satisfying
this objective.

e The Mental States of the agent, using beliefs, events and facts.
e The products (resources/applications) available by an OU.

e The rasks that the agent is responsible for, i.e. the set of tasks that the agent
is capable of carrying out. Task An entity that represents a basic functionality,
that consumes resources and produces changes in the agent’s Mental State.

o The Implements Service Profile

o Internal entities can publish offers and demands in a BulletinBoard, as external
stakeholder can do by means of the organizational view. This publications
can also have an associated Contract Template to describe some predefined
specifications.

e The roles that an agent or an organizational unit may play inside other orga-
nizational units (Plays relationship). ActivationCondition and LeaveCondition
attributes of this relationship indicate in which situation an OU acquires or
leaves a role.

e The roles played by each agent. ActivationCondition and LeaveCondition at-
tributes of this play relationship indicate in which situation an agent can acquire
or leave a role.

e The Norms specify restrictions on the behavior of the system entities. The
relationship Contains Norm allows defining the rules of an organization and
which norms are applied to each agent or role. norms that control the global
behavior of the members of the OU.

3. ROMAS methodology 47

RelPursues RelPlays Morm Task ServiceProfile Objective
-ActivationCondition +activationCondition -Name |-Precondition Input -MName
FDeactivationCondition | FLeaveCondition -Type -Postcondifion Cutout -Description
FailCondition HRelatedContract -Definition Precondition b
SatisfactionCondition -Description responsibleFor Posteondition Event
-ATask -Activation Mame [Name

RelDemands -Caducity -Description
—— -Controller ﬁ@ﬁ@ Pirstins -State
RelOffers -Servide/Product 3
-Rewarderer [P

1 |-ContractTemplate b
-SarvicaProduct internalExternal -Concems 0”*&;‘ Bellove
FContraciTemplate A R MBS -Sanctioner 0“3\‘\‘_ Executer o Name
AU RelConsults 5""’#‘““- gasmip‘suu

7 fter I as———>-Ontclogy
Filter .0 e - Atributes
BulletinBoard
Rellmplements nleicinildtstn szt\d b Fact
-Mame e._‘iJ
FServicalmplemantation(Task 0-1) -Description FName
-Cast +Description
L Tangibility * LOntalogy
-Productivity = FadribLtes
FQuality ole Ahgent
Plays Product
Fhame
FDeserption

Figure 3.5: Internal view (The class Re/XXX represents the attributes of the relationship XXX)

3.2.1.3 CONTRACT TEMPLATE VIEW

This view allows defining Contract Templates. Contracts are inherently defined at
runtime. Despite this, designers represent some predefined restrictions that all final
contract of a specific type should follow by means of a contract template. Contract
templates can be used at runtime as an initial point for the negotiation of contracts
and to verify if the final contract is coherent with the legal context. The syntax of a
contract template is defined in Figure 3.6. More specifically, it defines:

e The relationship Signants indicates who is allowed to sign this type of con-
tracts. It could be a specific agent, an agent who plays a specific role or an
organization. A ThirdPart could be anyone who participates in the negotiation
protocol or who is affected by the final execution of the Contract.

e The relationship Protocol indicates which protocols are recommended to ne-
gotiate this type of contract.

e After the negotiation, the Notary is responsible for verifying the correctness
and coherence of the final contract definition. He should check if any term of
a contract violate any norm of the regulated environment.

e Each type of contract can define which Receipts will be generated during the
execution time. Receipts are proofs of facts, for example, a receipt can be

48 3.2. ROMAS metamodel

Receipt -
[d InteractionProtocol
| Description s, /
.Date ﬁq%g% Contains InheritanceOf /71'
FGlobalTimeRefersnce . [] &
| RelatedConiract %{%\ Q@?' & Norm
L Signants ~ | ContractTemplate & [MName
RelSignants LRelateditem Fid / . \3}‘?“ -Type
CMinCuantity -Ontology /—Dascripﬁm dgé‘ FDefinition
-MeaxCuantity ot |- Activation -Description
nRegresentationf | ——————— s _ +Caducity Z—Suﬂ": arms—= Activation
Executer ThirdPart— L Date FCaducity
B AtenAUtem = L GiobalTimeReferenc Controiler
RelThirdPart i .:_:_'Jaegu"dhnn R - L:tea imeReference | HarToms 3 o doret
~Description - é:‘—:i[fjw -CrganizationContext -Cnnue_rus
~Type B dge— _ Ontology +-Sanctioner

Figure 3.6: Contract Template view(The class RelXXX represents the attributes of the relationship
XXX)

generated when an agent successfully provides a service.

e In case of conflict, the Judge has to evaluate the Complaints and the generated
Receipts following the ConflictResolution protocol. If he decides that there has
been a violation of a norm, the RegulationAuthority, who is the main authority
in the context of a contract, can punish or reward the agent behaviors.

e The relationship Hard clause indicates that any instance of this type of con-
tract has to include this norm. Soft clause are recommendations, so during the
negotiation stage Signants will decide whether this norm will be included or
not in the final contract.

3.2.1.4 ACTIVITY VIEW

This view allows defining the sequence of actions in which a task, a service or a
protocol can be decomposed (Figure 3.7). Each state represents an action or a set of
actions that must be executed. An action is a first order formula that indicates which
task or service is executed or which message is interchanged between the agents
that participate in this state. The relationship next indicate the sequence of states.
These sequence can be affected by a translation condition that indicates under which
circumstances the a state is going to be the next step of the process.

3. ROMAS methodology 49

RelNext Next

-Id
Action Executer lg Ente,, e State
Stay, it _[d Next. TranslationConditio
9Go ™~ .Type i
-Simple/Composed NextCond -ld
RelNextCond -Acticr:ns P S————"" | -variableCondition
-Id -Condition
-Action T
-ValueCond Splits NextCond

Figure 3.7: Activity View(The class RelXXX represents the attributes of the relationship XXX)

O &5 08 x

Organizational ~ Role Contract

Objective Unit Agent Stakeholder Template Norm
zall. =
S| O O o O
Service Service Task Belief Event
BulletinBoard Service Profile Implementation
VAR =S
<> 7 Interaction
Condition Relationships Product Interaction Unit Fact

Figure 3.8: Entities from the ROMAS graphical notation

3.2.2 ROMAS notation

ROMAS models are graphically represented following the notation detailed in Figure
3.8. This notation is based on the notation used in the GORMAS [6] and which was
initially proposed by the INGENIAS methodology [95]. In order to represent the
entities of the ROMAS metamodel that do not exist in these other methodologies like
the abstraction of contract template, new graphical icons has been created.

3.3 Phases of the ROMAS process

In this section, the phases that compose the ROMAS methodology are described fol-
lowing the FIPA standard Design Process Documentation Template. The description
of each methodology is composed of the following parts:

e A brief introduction that summarizes the purposes of this phase. This introduc-
tion also includes two diagrams, one for representing the flow of activities of
this phase and another for representing the relationships between the activities,
tasks, roles and work products.

e Process roles subsection that lists the roles involved in the work of this phase

50 3.3. Phases of the ROMAS process

Requirements Evaluate
description suitability

Figure 3.9: The System description phase flow of activities

and clarifies their level of involvement in the job to be done.

e Activity details subsection that describes the sequence of tasks that are per-
formed in each activity. This subsection presents a table where every task is
detailed. Following the description of these tasks, developers can know exactly
the sequence of actions that should be performed and which guidelines support
them.

e Work products subsection that presents a the work products used and produced
at each phase summarizing them in a table. This subsection also describes the
relationship between the work product and the ROMAS metamodel and details
the structure and the associated guidelines to every work product.

3.3.1 PHASE 1: System specification

During this phase the analysis of the system requirements, global goals of the system
and the identification of use cases are carried out. Besides, the global goals of the
organization are refined into more specific goals, which represent both functional
and non-functional requirements that should be achieved. Finally, the suitability of
the ROMAS methodology for the specific system to be developed is analyzed.

The process flow at the level of activities is reported in Figure 3.9. The process flow
inside each activity is detailed in the following subsections (after the description of
process roles). Figure 3.10 describes the System specification phase in terms of which
roles are involved, how each activity is composed of tasks, which work products are
produced and used for each task and which guidelines are used for each task.

3.3.1.1 Process roles

There are two roles involved in this phase: the system analyst and the domain expert.
The domain expert is responsible for: (1) describing the system requirements, by
means of identifying the system main objectives, the stakeholders, the environment of
the organization and its restrictions; (2)supporting the system analyst in the analysis
of the objectives of the system; (3) supporting the system analyst in the description
of the use cases of the system. The system analyst is responsible for: (1) analyzing

3. ROMAS methodology 51

= << >> i1 E1
L_;,_. < predecessor: L_—ﬁ
Requirements Evaluate
descrjption %75 suitaility
- erformsgmmi-fy system System
P requirements description ‘>
T <<output>> Domai
} Nfi; Expert
<<performs,primary>>—% <<input>>—-—> o)
Identify operational Sygzmjfﬂﬁ”wn\ <<performs>>
objectives <<input>> \
\«output»H&
<sperforms,assist>> [ﬁ C’%«input» l__é‘
<<performs,assits>> e Objecfive description Evaluatef ROMAS
Objectives document suitapility
description <<input>>
<<input>>
o I = hill il
i | = <output>
System {———<<performs,primary> —3 P! C' ROMAS
Analyst Identify Use cases Use case diagrams suitability

Figure 3.10: The System description phase described in terms of activities and work products

the objectives of the system; (2) identifying the use cases; and (3) evaluating the
suitability of the ROMAS methodology for the system to be developed regarding its
requirements.

3.3.1.2 Activity details

As Figure 3.9 shows, this phase is composed of two activities: the Requirements
description whose process flow is detailed in Figure 3.11, and the Evaluate suitability
that is composed of only one task. The first activity analyzes the requirements of the
system to be developed. The second activity evaluates the suitability of the ROMAS
methodology for analyzing and designing a system with these requirements.

All the tasks of this phase are detailed in Table 3.2. The description of the tasks details
the sequence of actions that should be performed in this phase, which guidelines and
work products are used by each task, and which work products are produced.

3.3.1.3 Work products

This section details the work products produced in this phase. A brief description
of these work products is presented in Table 3.3. Following each work product is
detailed and their use is exemplified by means of our running example.

System description document

This document is employed to identify the main features of the system and its re-
lationship with the environment. Table 3.4 shows the template that describes each

52

3.3. Phases of the ROMAS process

Activity Task Task description Roles involved
Requirements | Identify Following the guideline system description | Domain expert
description system re- | document, the requirements of the system | (performs)
quirements | are analyzed, including global objectives of
the system, stakeholders that interact with
the system, products and services are offered
and demands to/from stakeholders, external
events that the system handles and norma-
tive documents such as governmental laws at-
tached to the system.
Requirements | Identify Following the guideline objective description | System analyst
description Oper- document, the global objectives of the system | (assists) and
ational are analyzed and split into operational objec- | domain expert
Objectives tives, i.e., into more low level objectives that | (performs)
can be achieved by means of the execution of
a task or a protocol.
Requirements | Identify Using the information obtained in the previ- | System analyst
description use cases ous task, the use cases of the system regard- | (performs) and
ing the tasks and protocols associated to the | domain expert
operational objectives identified are defined. (assists)
Evaluate suit- | Evaluate Following the guideline ROMAS suitabil- | System analyst
ability ROMAS ity guideline, the suitability of the ROMAS
suitability methodology for the development of the sys-
tem to be developed regarding its specific fea-
tures is evaluated.
Table 3.2: Phase 1: Activity tasks
Name Description Work product
kind
System This document analyzes the main features of | Structured text
definition the system and the relationship with its envi-
ronment.
Objectives This document analyzes the global objectives | A compos-
description of the system and decomposes them into op- | ite document
erational objectives. composed by a
structured text
document and a
diagram.
Use cases These diagrams are UML graphical represen- | Behavioral
tations of workflows of stepwise activities and
actions with support for choice, iteration and
concurrency.
ROMAS suit- | It is a questionnaire to evaluate the suitability | Structured text
ability guide- | of the ROMAS methodology for the develop-
line ment of the analyzed system.

Table 3.3: Phase 1: Work products

3. ROMAS methodology 53

253
Domain start
Expert . SE g >C g %%(C)

Identify system Identify operational Identifg Use\cases

=N requirements objectives X \

A7) . <<input>> <<output>>
System 7 <<output>> <<input>>4§ <<output>> /
Analyst [ﬂ > & e \ﬁ

System oy ﬁ B >
description System description ~ Objectives Objective description o0 aca diagrams

document description document

Figure 3.11: The flow of tasks of the Requirements description activity

analyzed system attribute.

Table 3.5 shows how this template has been used to analyzed the CMS case study.
This document shows that the CMS system is a distributed system in a regulated
environment with a set of global objectives. The system should offer to external
entities two services, one for registering in the system and another to log in.

54

3.3. Phases of the ROMAS process

Property

Description

Guideline

System
identifier

General name of the system to be devel-
oped.

It is recommended to select a short
name or an abbreviation.

System
description

Informal description of the system.

There is no limitation on the length
of this text. - What is the motivation
for developing such a system?

-Is there any system requirement
that specifies if the system must be
centralized or decentralized?

- Which is the main objective of this
system?

Domain

Domain or domains of application.

If this system must be able to be
applied in different domains, it is
recommended to add a text that ex-
plains each domain and whether it
is necessary to adapt the system to
each domain.

Kind of en-
vironment

Identify and specify the kind of environ-
ment of the system.

- Can the functionality of the sys-
tem be distributed between different
entities?

- Are the resources of the system
distributed in different locations?

- Are there external events that af-
fect the internal state and behavior
of the system? Is it a reactive sys-
tem?

- Is it a physical or a virtual environ-
ment? Is there any physical agent
or robot that plays a role in the sys-
tem?

- Is there any human interaction
with the system?

- Should the results of the system be
presented graphically? Is there any
graphical environment?

Global
objectives

Functional and non-functional re-
quirements (softgoals) that specify the
desired-global behavior of the system.

- Which are the purposes of the sys-
tem?

- Which results should provide the
system?

- Should the system keep any pa-
rameter of the system between a
specific threshold? (ex. the tem-
perature of the room, the quantity
of money in an account and so on)

3. ROMAS methodology

55

Identifier An identifier for the
stakeholder.
Description | Informal description
of the stakeholder.
Type Indicate if the stake-
holder is a client, a
provider or a regulator.
Contribution| To point out what the
organization obtains
from its relationship
with the stakeholder.
Requires A set of products
Stakeholders and/or services - that Are there external entities or appli-
the stakeholder con- . . .
cations that are able to interact with
- Sumes. the system?
Provides A set of products
and/or services that
the stakeholder offers
to the organization.
Frequency To point out whether
this stakeholder con-
tacts with the organi-
zation frequently, oc-
casionally or in an
established period of
time.
Resources Resources and applications available by | - Is there any application or re-
the system. source available by the system?
- Is this resource physical or vir-
tual?
Events External events that produce a system | Which events can produce an effect
response. on the system?
How the system capture these
events and how response to them?
Offers A set of products or services offered by | Is there any product or service that
the organization to its clients. the system should provide to an ex-
ternal or internal stakeholder?
Demands A set of products or services demanded | Are there any requirements that the
by the organization to its clients. system cannot provide itself? Is it
important who provide this service
or product?

3.3. Phases of the ROMAS process

- Behavioral restrictions: Is there
any system requirement that spec-
ifies limits on the behavior of the

Restrictions | An overview about which types of re-
strictions the system should imposed on

its entities.

members of the system?

- Critical restrictions: Is there
any action whose inadequate usage
could be dangerous for the system?
- Usage restrictions: Is there any
restriction on the usage of the sys-
tem resources? Is there any restric-
tion on the usage of the services and
products offered by the system? Is
there any restriction on who is an
appropriate stakeholder to provide a
service or product to the system?

- Legal restrictions: Is there any
normative document, such as gov-
ernmental law or institutional inter-
nal regulations, that affects the sys-
tem’s entities behavior?

Table 3.4: Template for System description document

Case study: System description document

System identi-
fier

CMS (Conference Management System)

System de- | This system should support the management of scientific conferences.

scription This system involves several aspects from the main organization issues
to paper submission and peer review, which are typically performed by a
number of people distributed all over the world.

Domain Research

Kind of envi- | Virtual and distributed environment with established policies and norms

ronment that should be followed.

Global objec-
tives

- Management of user registration

- Management of conference registration
- Management of the submission process
- Management of the review process

- Management of the publication process

Stakeholders There is no external entity that interact with the system. Every entity that
wants to interact with the system should be registered and logged in the
system.

Resources Database: it should include personal information and affiliation and infor-
mation about which users are registered as authors, reviewers or publishers
for each conference. Also it should include information about each con-
ference, i.e., its status, its submitted papers and reviews,...

Events Non external events are handled by the system.

Offers - NewUsers_registration();

- Log_in();
Demands
Restrictions - The system should follow the legal documentation about the storage of

personal data.
- Each conference should describe its internal normative.

3. ROMAS methodology 57

Table 3.5: Phase 1 - Case study: System description document

Objectives description document

This document analyzes the global objectives of the system and decomposes them
into operational objectives. It is a composite document composed by a structured
text document and a diagram.

The structured text document template is shown in Table 3.6. Every global objective
specified in the system description document is described using this document. The
global objectives of the systems are refined into more specific ones that should also
be described using this document. The document will be completed when all the
global objectives are decomposed into operational objectives, i.e. they are associated
to tasks, protocols or restrictions that must be fulfilled in order to achieve these objec-
tives. It is recommended to create one table for each global objective. The first col-
umn of each table will contain the properties name, the second the description of the
global objective and the following columns the descriptions of the objectives in which
this global objective has been decomposed. As an example of the decomposition of
a global objective into operational ones, Tables 3.7 and 3.8 show the decomposition
of the global objective Conference registration. The abstract objective of Conference
registration is decomposed in two objectives: Create new conference and Allow su-
pervision. In the same way the objective Allow supervision is decomposed in three
operational objectives: Modify conference details, Get information about submission,
Get information about reviews and Validate reviews decision. The details about these
objectives are presented in these tables.

The diagram represents graphically the decomposition of the objectives by means of
an UML diagram in order to provide a general overview of the purpose of the system
that can be easily understood by domain experts. The graphical overview of the CMS
case study objectives is shown in Figure 3.12, where A means abstract objective and
O means operational objective.

Property Description Guideline
Identifier Objective name identifier. It is recommended to select a short name
or an abbreviation.
Description Informal description of the objec- | There is no length limitation on this text. It
tive that is pursued. should clearly describe this objective.

58

3.3. Phases of the ROMAS process

Activation
Condition

First order formula that indicates
under which circumstances this ob-
jective begins being pursued.

- Does the organization pursue this objec-
tive from the initialization of the system?

- Is there any situation that activates this
objective? Common circumstances that
can activate objectives are: when an event
is captured, the failure of other objective,
the violation of a restriction, when an agent
plays a specific role, and so on.

- If this objective is deactivated, is there
any situation that forces the objective to be
pursued again?

Deactivation
Condition

First order formula that indicates
under which circumstances this ob-
jective stops being pursued.

- Is this objective pursued during the whole
lifecycle of the system?

- Is there any situation that deactivates this
objective? Common circumstances that
deactivate an objective are: when it is sat-
isfied, when other objective is satisfied,
when some restriction has been violated,
and so on.

Satisfaction
Condition

First order formula that indicates in
which situation this objective is sat-
isfied.

- Is the satisfaction of this objective mea-
surable?

- What results should be produced to claim
that this objective has been satisfied?

Fail Condition

First order formula that indicates in
which situation this objective has
failed.

- Is there any situation that is contrary to
this objective and that will invalidate it?

- Is there any threshold that should not be
exceeded?

Type

Objectives can be abstract or op-
erational. An abstract objective is
a non-functional requirement that
could be defined to describe the
global behavior of the organization.
An operational objective is a spe-
cific goal that agents or roles have
to fulfill.

If there is a task that can be executed in
order to satisfy this objective, it is an oper-
ational objective, in other cases it is an ab-
stract objective. Abstract objectives can be
refined into other abstracts or operational
objectives.

Decomposition

First order formula that specified
how this objective is decomposed.

If this is an abstract objective it should be
decomposed in several operational objec-
tives which indicates which tasks should be
executed in order to achieve this objective.
Operational objectives can also be decom-
posed in order to obtain different subobjec-
tives that can be pursued by different mem-
bers of the organization. This fact simpli-
fies the programming task and facilitates
the distribution of responsibilities.

3. ROMAS methodology

59

Related Action
/ Restriction

Objectives can be related to a

restriction on

the behavior of

the system, or to an action that

must be executed
achieve this objective.

in order to
Actions

can be tasks, services or protocols.

Type

Task, service or pro-
tocol.

Identifier

An identifier for the
task, service or pro-
tocol.

Description

Informal description
of the action.

Resources

Which applications
or products are
necessary to exe-
cute this task (for
example, access to a
database). This fea-
ture can be known at
this analysis phase
due to require-
ment specifications.
However, if there is
no specification, the
specific implemen-
tation of each task
should be defined in
following steps of
the methodology.

Activation
condi-
tion

First order formula
that indicates un-
der which circum-
stances this action
will be activate.

Inputs

Information that
must be supplied.

Precondi-
tion

A set of the input
conditions and envi-
ronment values that
must occur before
executing the action
in order to perform a
correct execution.

Outputs

Information re-
turned by this action
and tangible results
obtained.

Postcondi-|
tions

Final states of
the parameters of
the environment,
by means of the
different kinds of
outputs.

The difference between a task and a pro-
tocol is that a task can be executed by one
single agent, however a protocol is a set of
tasks and interactions between two or more
agents. Services are pieces of functional-
ity that an entity of the system offers to the
others, so the main difference between ser-
vices and tasks or protocols is that they are
executed when an entity request this func-
tionality. At this phase it is not necessary
to detail all the parameters of the task. You
should describe in a high abstraction level
what actions and activities are necessary to
achieve this objective.

60

3.3. Phases of the ROMAS process

Table 3.6: Phase 1: Objectives description

Case study: Conference registration objective decomposition

Identifier Create new conference Allow supervision Modify conf details
Description The system should allow | The authorized entities | The description details such
the registration of new | should be able to su- | asdeadlines, topics and gen-
conferences. The entity | pervise the status of the | eral description can be mod-
who registers the confer- | conference and modify its | ified by the chair or vice-
ence should be the chair of | details. chair of the conference.
1t.
Activation True (always activated) Conference_status= Conference_status= acti-
Condition activated vated
Deactivation False Conference_status= Conference_status= can-
Condition cancelled celled
Satisfaction
Condition
Fail Condition
Type Operational Abstract Operational
Decomposition Modify conf details AND
Get info submissions
AND Get info reviews
AND Validate reviews
decision
Related Action / Restriction
Identifier Create_new_conference() Modify_conf_details()
Type Service Service
Description The registration must be After checking that the user
performed by means of a that is trying to modify the
graphical online applica- conference details is autho-
tion. rized to do that, the system
will provide a graphical on-
line application to update the
details. The information is
shown by means of a graph-
ical online application.
Resources Access to the conferences Access to the conferences

database

database

Activation con-
dition

Registered user demand

Inputs Deadlines, topics of inter-
ests and general informa-
tion

Precondition The entity that executes
the task should be a regis-
tered user.

Outputs

Postconditions The user that executes the

task becomes the chair of
the conference.

Table 3.7: Phase 1 - Case study: Objective description document I

3. ROMAS methodology

61

Case study: Conference registration objective decomposition II
Identifier Get Info submissions Get Info reviews Validate reviews decision
Description The system should provide | The system should provide | The chair should validate the
information about the sub- | information about the re- | decisions about acceptance
mitted papers. views that has been up- | or rejection of papers per-
loaded in the system. formed by the reviewers.
Activation Conference_status= Conference_status= Conference_status= revision
Condition activated activated
Deactivation Conference_status= Conference_status= Conference_status= can-
Condition cancelled cancelled celled
Satisfaction
Condition
Fail Condition
Type Operational Operational Operational
Decomposition
Related Action / Restriction
Identifier Get_Info_ submissions() Get_Info_ reviews() Validate_reviews_decision()
Type Service Service Task / Protocol
Description Only pc members can ac- | Only pc members that are | The chair should validate
cess to the information | not authors of the paper | one per one the decision for
about submissions. The | can access to the reviews | each paper. If the chair per-
information is shown by | of a specific paper. The | forms the action by itself
means of a graphical on- | information is shown by | this objective would be pur-
line application means of a graphical on- | sued by means of a task. If
line application the final decision is negoti-
ated between the PC mem-
bers this objective should be
pursued by means of a pro-
tocol.
Resources Access to submitted pa- | Access to reviews | Access to reviews database.
pers database database
Activation con- After the review deadline is
dition finished
Inputs
Precondition
Outputs
Postconditions After the validation the deci-
sion is considered final and
authors should be notified.

Table 3.8: Phase 1 - Case study: Objective description document 11

Use case diagram

These diagrams are UML graphical representations of workflows of stepwise activ-
ities and actions with support for choice, iteration and concurrency. The actions
identified in the analysis of the operational objectives are related forming activity
diagrams in order to clarify the sequence of actions that will be performed in the sys-
tem. The idea is not to completely describe each task and neither detail who is the
responsible of it. With these diagrams what the System Analyst should clarify is the

62 3.3. Phases of the ROMAS process

Conference Management

AND

1
Conférence o
registration User regjstration Submission

‘eate New Conf.

i A
fanagement Review management Q
Publicaton|management

AND

Allow supervision

‘ AND

I Register submission Inform author 5
i Validate reviews : Register revised
etTnfo

odify conf details decisions versions Print proceed

G Get Info reviews AND Contact reviewers Register reviewers

submissions

Distribute papers

Allow managin
Login User 9ing

Create New User personal information

Figure 3.12: Case study: Objective decomposition diagram

sequence of actions and the possibility of choice, iteration and/or concurrency. Figure
3.13 shows the sequence of actions that can be performed in the CMS case study. It
shows that to have access to the functionality of the system, users need to log in first.
It also shows that there are a set of activities that should be performed sequentially,
for example, after registering a new submission authors should be informed of the
status of their submission.

ROMAS suitability guideline

After analyzing the requirements of the system, it is recommended to use this guide-
line in order to evaluate the suitability of the ROMAS methodology for the develop-
ment of the analyzed system. Table 3.9 shows the criteria used to evaluate whether
ROMAS is suitable.

ROMAS is focused on the development of regulated multiagent systems based on
contracts. ROMAS is appropriate for the development of distributed system, with
autonomous entities, with a social structure, with the need of interoperability stan-
dards, regulation and trustworthiness between entities and organizations. ROMAS is
not suitable for the development of centralized systems or non multiagent systems.
Although non normative systems could be analyzed using ROMAS, it is not recom-
mended.

The analysis of the CMS case study features following this guideline shows that
ROMAS is suitable for the development of this system. It is a distributed system,

3. ROMAS methodology 63

Create New User

Get Infd reviews Registgr revised

Modify[personal ¢eate New Conf. Modify cdnf details Register submission)
verdions

information submissions

Inform|author i
Select reviewers

Print prpceedings

Figure 3.13: Case study: Use case

composed by intelligent systems with social relationships between them. The behav-
ior of the system’s entities and their relationships are bounded by the regulations of
the system. The rights and duties that an entity acquires when it participates in the
system should be formalized. For example, reviewers should know before acquiring
the commitment of reviewing a paper, when its revision must be provided. Therefore,
a contract-based approach is recommendable.

DISTRIBUTION:It is recommendable to use a distributed approach to develop the system if any of
these questions is affirmative.

- Composed system: Is the system to be developed formed by different entities that interact between
them to achieve global objectives? Are there different institutions involved in the system?

- Subsystems: Is the system composed by existing subsystems that must be integrated?

- Distributed data: Is the required data spread widely in different locations and databases? Are there
any resources that the system uses distributed in different locations?

INTELLIGENT ENTITIES: It is recommendable to use an agent approach to develop the system if
any of these questions is affirmative.

- Personal objectives: Do the entities involved in the system have individual and potentially different
objectives?

- Heterogenous: Is possible that entities of the same type had been implemented with different individ-
ual objectives and implementations?

- Proactivity: Are the entities of the system able to react to events and also able to act motivated only
by their own objectives?

- Adaptability: Should be the system able to handle dynamic changes in its requirements and condi-
tions?

64

3.3. Phases of the ROMAS process

SOCIAL STRUCTURE: It is recommendable to use an organizational approach to develop the system
if any of these questions is affirmative.

- Systems of systems: Does the system needs the interaction of existing institutions between which
exist a social relationship in the real-world that must be taken into account?

- Social relationships: Do the entities of the system have social relationships, such as hierarchy or
submission, between them?

- Departments: Is the functionality of the system distributed in departments with their own objectives
but that interact between them to achieve common objectives?

- Regulations: Are there different regulations for different parts of the system, i.e. is there any regula-
tion that should be applied to a group of different entities but not to the rest of them?

- Domain-like concepts: Is the domain of the system in the real-world structured by means of indepen-
dent organizations?

INTEROPERABILITY: The system must implement interoperable mechanism to comunicate entities
if any of these questions answers is affirmative.

- Technical Interoperability: Is possible that different entities of the system use different (potentially
incompatible) technologies?

- Process Interoperability: Is possible that different entities of the system employ divergent (potentially
incompatible) processes to achieve their goals?

- Semantic Interoperability: Is possible that different entities of the system utilise different vocabularies
and coding schemes, making it difficult to understand the data of others?

REGULATIONS: If the system has regulations associated it is recommended to apply a normative
approach to develop the system. Only in the unlikely possibility that the norms of the system were
static (no possibility of changing over time) and all the entities of the system are implemented by
a trustworthy institution taking into account the restrictions of the system a non normative approach
could be used.

- Normative documents: Is the system or part of it under any law or institutional regulation?

- Resources restrictions: Are there specific regulations about who or how system resources can be
accessed?

- Dynamic regulations: Should the system be adapted to changes in the regulations?

- Openness: Is the system open to external entities that interact and participate in the system and these
entities should follow the regulations of the system?

- Risky activities: Is there any action that if it is performed the stability of the system would be in
danger?

TRUSTWORTHINESS: It is recommended to use a contract-based approach if any of these questions
is affirmative.

- Formal interactions: Are there entities that depend on the behavior of the others to achieve their
objectives and whose interactions terms should be formalized?

- Contractual commitments: Should the entities of the system be able to negotiate terms of the inter-
changes of products and services and formalize the results of these negotiations?

- Social commitments: Are the entities of the system able to negotiate their rights and duties when they
acquire a specific role? Could the social relationships between agents be negotiated between them?

- Control system: Is the system responsible of controlling the effective interchange of products between
entities?

- Openness: Is the system open to external entities that interact and participate in the system acquiring
a set of rights and duties?

Table 3.9: ROMAS suitability guideline

3. ROMAS methodology 65

3.3.2 PHASE 2: Organization specification

During this phase the analysis of the structure of the organization is carried out. In the
previous phase of the methodology, the operational objectives are associated to spe-
cific actions or restrictions. In this phase, these actions and restrictions are analyzed
in order to identify the roles of the system. A role represents part of the functionality
of the system and the relationships between roles specify the structure of the system.

The process flow at the level of activities is reported in Figure 3.14. The process flow
inside each activity is detailed in the following subsections (after the description of
process roles). Figure 3.15 describes the Organization specification phase in terms
of which roles are involved, how each activity is composed of tasks, which work
products are produced and used for each task and which guidelines are used for each
task.

3.3.2.1 Process roles

The roles involved in this phase are the same than in the previous phase: the system
analyst and the domain expert. The domain expert is in charge of supporting the
system analyst facilitating information about domain requirements and restrictions.

3.3.2.2 Activity details

As Figure 3.14 shows this phase is composed of two activities: Roles description
and Social structure description. Each activity is composed of several tasks that are
executed sequentially. All the tasks of the phase are detailed in Table 3.10. The
description of the tasks details the sequence of actions that should be performed in
this phase, which guidelines and work products are used by each task, and which
work products are produced.

@i - (@)
Roles description Social structure
description [Does the structure of the
organization force the creation of
new roles?]

lyes]

Figure 3.14: The Organization description phase flow of activities

66 3.3. Phases of the ROMAS process

L;i;j S <<predecessor>> szj
Requirements Evaluate
descrjption Qiﬂ suitapility
/Iﬂﬂify system System

<<performs>> requirements description

—_

o

Domai
NE Expert

<<performs primary>>-——<<input>>—— =

Identify operational System des‘/cﬁ*p(zcn\ <<performs>>
document \

<<output>>

objectives <<input>>

\«output»ﬂ .

input;

<sperforms,assist>> Eﬁ C
O <
<<performs,assits>> o iecli ioti Evaluate) ROMAS
Objectives o dlgsudrs:rpmn suitapility
description <<input>>
<<input>>
Bo =l [ﬂ
— i = tput;
System <<performs,primary L outpul o ROMAS
Analyst Identify Use cases Use case diagrams suitability

Figure 3.15: The Organization description phase described in terms of activities and work products

3.3.2.3 Work products

This phase uses the work products produced in the previous phase (Use cases dia-
gram, System definition and Objective description documents), and it produces the
work products presented in Table 3.11. Following each work product is detailed and
their use is exemplified by means of our running example.

Some of the work products generated are instances of the ROMAS metamodel. Fig-
ure 3.16 describes the relation between these work products and the metamodel el-
ements in terms of which elements are defined (D), refined (F), quoted (Q), related
(R) or relationship quoted (RQ).

Role identification guideline

A role is an entity representing a set of goals and obligations, defining the services
that an agent or an organization could provide and consume. The set of roles rep-
resents the functionality of the system, therefore the roles that a system should have
are defined by the objectives of the system and should also take into account previ-
ous system requirements. The relationships and interactions between roles are the
basis to define the structure of the organization. This guideline is designed to help
the System Analyst to identify the roles that are necessary in the system. Figure 3.17
represents de sequence of activities to do.

The first step of the process consists in asking the domain expert and check in the
system description document whether there is any preestablished role defined in the
requirements of the system.

After that every operational objective described in the Objective description docu-
ment should be analyzed. It is recommended to analyze all the operational objectives

3. ROMAS methodology

67

Activity Task Task description Roles involved
Roles descrip- | Identify Following the guideline Role identification | System analyst
tion roles guideline the roles of the system are identified | (assists) and
and associated to different parts of the system | domain expert
functionality. (performs)
Roles descrip- | Describe Following the guideline Role description doc- | System analyst
tion roles ument each identified role is analyzed. (assists) and
domain expert
(performs)
Roles descrip- | Represent The details about each role are graphically | System analyst
tion roles represented by means of instances of the in- | (performs)
ternal view diagram.
Social struc- | Identify Identify how the members of the organiza- | System analyst
ture descrip- | organi- tion interact between them, i.e., which social | (performs) and
tion zational structure has the organization. domain expert
structure (assist)
Social struc- | Represent Represent graphically the identified social | System ana-
ture descrip- | social structure using an organizational view dia- | lyst(performs)
tion structure gram
Table 3.10: Phase 2: Activity tasks
Name Description Work product

kind

Role identifi-
cation guide-
line

This guideline supports the identification of
the roles of the system.

Structured text

Role descrip-

This document analyzes the main features of

Structured text

tion document | each role. It describes each role’s objectives,
resources and restrictions.
Internal view | One internal view diagram is created for each | Behavioral
diagram role. They graphically represent the specifi-
cation of each role.
Organizational | This diagram represents graphically the struc- | Behavioral

view diagram

ture of the system, its global objectives and
the relationship with its environment.

Table 3.11: Phase 2: Work products

68 3.3. Phases of the ROMAS process

Stakeholder

fiE - -Name
o BulletinBoard R _Description
Internal view \ -Name
@ Q -Description
= R
Role description . - D
document OrganizationalUnit D
\ Q -Structure
D R -1
D Organizational
Role — view
D R
[Accessibility (internal/external) /
Visibility (public/private) D
L r]
R R R Objective
-Name
Actions R -Description

-Decomposition
-Type

Figure 3.16: Phase 2: Relations between work products and metamodel elements.

obtained by the decomposition of an abstract objective before analyzing the next ab-
stract objective.

If this operational objective is associated to a restriction, it would add a norm in the
organization that pursues these objectives. Besides, if this restriction is associated to
a external event or a threshold there must be an entity responsible of handling this
event or measuring this threshold variable.

If this operational objective is associated to a protocol, the system analyst should
revise the sequence of actions necessary to perform this protocol in order to obtain
all the entities that participates in this protocol.

Usually each task and functionality is associated to a role in order to create a flexible
and distributed system. However, decomposing the system in too many entities can
increase the number of messages between entities, the number of restrictions, and
the complexity of each activity. Although, the System Analyst is the responsible of
finding the balance taking into account the specific features of the domain, here we
present some general guidelines:

It is not recommended to assign two functionalities to the same role when:

e These functionalities have different physical restrictions, i.e., they must be per-
formed in different places.

3. ROMAS methodology

start

Identify
preestablished roles

)

Choose an
operational objective

Is this objective
urused by a...?

[Restriction]

Is essary an entity to
fmeasure any threshold;
handle any event, or
ecutes any activity.
| its fulfil

co nt?

[Protocol]

Select the
necessary number
of entities

Task
[Taskl V' yeg)

Ino] Iyes]

is functionai
compatible with previous
roles?

Add responsibility,
resources and
restrictions to that

Create a new role

role.

S there an
Operational objective
left?

[no]

Figure 3.17: Phase 2: Role identification guideline

o These functionalities have temporary incompatible restrictions, i.e., when they
cannot be executed at the same time by the same agent. For example, it is usual
that an entity was able to buy and sell, but as far as he is not able to sell and
buy the same item at the same time, it is recommended to create one role Buyer
and one role Seller. Remember that roles represent functionality, so any final
entity of the system could be able to play several roles at the same time.

These functionalities involve the management of resources that are incompat-
ible. For example, the functionality of validating who is able to access to a
database should not be join to the functionality of accessing to the database.
The reason is that if the entity who is accessing to the database is the responsi-

ble of validating its own access, there can be security issues.

It is recommended to assign two functionalities to the same role when:

70

3.3. Phases of the ROMAS process

These functionalities cannot be executed concurrently and they are part of a
sequence.

These functionalities access to the same resources and have the same require-
ments.

These functionalities can be considered together as a general functionality

In order to provide a fast and general overview, it is recommended to create a graph-
ical representation of the relationships between the identified roles and the tasks and
protocols. A relationship between a role and an action in this diagram means that the
role is responsible from this action, participates in it or it is affected by its results.
Figure 3.18 gives an overview of the results obtained when applying this guideline to
the CMS case study. As is shown, seven roles has been identified:

The User role is an entity of the system that must be registered in order to
access to the system. On the contrary of the rest of the roles, this role is not
related to any specific conference.

The Author role is an entity attached to a specific conference in which this role
can submit papers and receive information about the status of its papers.

The Chair role is the main responsible from a conference. This role is able to
create a conference and share the responsibility from selecting the reviewers,
validate the revisions and update the conference details with the Vice-Chair
role.

The PC member role is responsible from managing the reviews, can partici-
pate in the selection of the reviewers and have access to the information about
submissions and reviews for a specific conference.

The Reviewer role is responsible from submit the reviews to the system.

The Publisher role is responsible from managing the revised versions of the
papers and print the proceedings.

Role description document and internal view diagram

Each role should be described by means of the guideline offered in Table 3.12. This
guideline allows the analysis of the roles and also the analysis of the relationships
between them. After this analysis, this information is graphically represented by
means of an internal view diagram for each role.

3. ROMAS methodology

71

Property Description
Identifier General name of role. It is recommended to select a short name or an abbreviation.
Description Informal description of the role. There is no length limitation on this text.
Objective’s The identifier of the objective that this role is going to con-
identifier tribute to its satisfaction
Description An informal text describing how this role contributes to the
of its contri- | satisfaction of this objective.
bution
List of objectives Task / Pro- | Which task is responsibility of this role or in which protocol
in which the role tocol / Ser- | this role participates. If this task should be activated as a reac-
participates vice tion of a petition of other entity, this task should be published
as a service.
Responsibility) A text explaining if this role pursue this objective alone or if
shared with he collaborates with others to achieve it.

Resources: Used

A list of the resources (products, services and applications) that this role requires
to develop its functionality. This text should specify which type of access the role
needs (reading, executing, writing, partial or full access)

Resources: Pro-
vided

A list of the resources (products, services and applications) that this role provides.

Events

A list of the events that this role handlesa and with which task.

Restrictions

A list of the restrictions that are inherent to the functionality that this role exe-
cutes.These restrictions are mainly derived from the information provicesd by the
Domain Expert.

Other member-
ships

A text explaining if this role in order to executes a task inside the organization it
must be part of other different organization. If it is know, its rights and duties in the
other organization must be detailed in order to ensure the coherence its objectives,
rights and duties. However, due to privacy restrictions it is probable that many
details cannot be shared between organizations.

Personal objec-
tives

A role can pursue an objective not directly related to the functionality required by
the organization. For example, it can pursue an objective in order to maintain its
integrity.

Who plays the
role

Is this role played by a single entity or by an organization? If it is played by an
organization this organization must be analyzed following each step of the method-

ology.

Table 3.12: Phase 2: Role description document

72 3.3. Phases of the ROMAS process

Create New User tﬁ
Author %
Regist bmissi
Wer egister submission
User Modfy personal Inform author
information
Registel revised

Chdir Create New Conf. ions

Publisher

Print proceedings
Modify conf details
Vice-Chair

Validate reviews
decisions

L seedleven)
Select reviewers Reviewer
@ Get Info

PC member submissions

Get Info reviews

Manage reviews

Figure 3.18: Case study: Roles overview

As an example, Table 3.13 shows the description of the role reviewer from the case
study. Figure 3.19 shows its graphical representation using a ROMAS internal view
diagram.

Organizational view diagram

One organizational view diagram is created to graphically represent the structure of
the system. Besides, this diagram also describes the overview of the system by means
of its global objectives and how the system interact with its environment of the sys-
tem (which services offers and demands to/from the stakeholders and which events
the system is able to handle). The necessary information to fulfill these diagram is
obtained from the System description document. Due to the fact that in the literature
there are several well-defined guidelines to identify the organizational structure of a
system, ROMAS does not offer any new guideline. Instead the use of the guideline
defined by the GORMAS methodology in [9] is recommended.

Figure 3.20 shows the organizational view diagram of the CMS system case study.
Inside the main system, the Conference organization represents each conference that

3. ROMAS methodology

73

Property Description
Identifier Reviewer
Description This role is responsible from submit the reviews to the system. It is attached to a
specific conference. It is responsible from submit a review from a paper within the
established deadline and in the specific format that the conference specifies.
Objective’s Select reviewers Manage reviews
identifier
Description Reviewers should negotiate | Reviewers should send to the
of its contri- | with PC members which pa- | system their reviews. PC
bution pers are they going to review, | members would validate the
when they are supposed to | reviews and contact the re-
provide the reviews and which | viewers if there is any doubt
List of objectives specific format these reviews | in the information supplied
in which the role must have.
participates Task / Pro- | Reviewers participate in the | Reviewers are responsible
tocol / Ser- | protocol Select_reviewers() from the protocol Man-
vice age_reviews() and they offer
the service Execute_review()
Responsibility] PC memebers
shared with

Resources: Used

- Reviews and papers database.
-They use the service Get_info_submissions()

Resources: Pro-
vided

Events

Conference details modification event

Restrictions

- The same entity cannot be the author and the reviewer of the same paper.
- Reviewers only have access to the information about their own reviews. They do
not have access to other reviews or to the authors’ personal details.

Other member-

Any entity that wants to play the role reviewer should be previously registered in the

ships system as a user.
Personal objec- | In general, there is no personal objectives for reviewers in the system. However, some
tives conferences can encourage the productivity of their reviewers by offering rewards for

each revised paper or for presenting the reviews before a specific date.

Who plays the
role

This role is played by a single entity.

Table 3.13: Phase 2: Case study- Reviewer role description document

74 3.3. Phases of the ROMAS process

O

Manage' Teviews Get_Info\submission Execute_review

Uses

Provides

Database Pursues

Papers and
reviews

Manage reviews

itsfleFor

Incompatibility
Restriction

EVENT

Reviewer

Conference
details
modification

Figure 3.19: Case study: Reviewer role diagram

O

User registration

Pursues
Con;e fence

registration

(=

User

O

ubmission management

O

7
Pursues Review management

Publicaton management

Conference

Author

Publisher
Reviewer

PC member Chair Vice-Chair

Figure 3.20: Case study: Organizational diagram

is manage by the system. Each conference is represented as an organization because
using this abstraction each one can define its own internal legislation and can refine
the functionality assigned to each entity of the system.

3.3.3 PHASE 3: Normative context specification

During this phase the normative context of the system is analyzed by means of iden-
tifying and formalizing the norms and the social contracts that regulate the entities’
behavior inside the system. As is described in the metamodel (Section 3.2), norms
are formalized using the following syntax:

(normID, Deontic, Target, Activation, Expiration,Action,Sanction,Reward).

The process flow at the level of activities is reported in Figure 3.21. The process
flow inside each activity is detailed in the following subsections (after the description
of process roles). Figure 3.22 describes the Normative context specification phase

3. ROMAS methodology 75

start] r] e

LI s
Identify restrictions Identlfy social Valldate normative

from requirements contracts context

Figure 3.21: Phase 3: Activity tasks

Objective description System deTcription
document documient -
<<input>> =l
<<input>> l Organizational
view diagram Normative
éj \L_ AR ? <<Input>> " congext validation
Organizational) ‘*c . / \
norms Identify restrictions)
from requirements < <<input>> ’—_‘\‘}
<<assits>> = Validate normative
_ <<performs>> Role description context
= . . — document B
K3 <<assits>> <<input>> t <<performs>>
- g <<|n ut>>
Identify restrictions g [<<input,output>> P
from requirement: Domain B —>
Identify social [FaY
N Expert - <<|nput>> =
<<performs>> contracts System

Internal view
\ diagram Analyst
<<output>>

<<predecessor>>

Social contracts

i Contract template -
System view diagram Validate normative
Analyst v context

L__>_< <<predecessor>>
Identify social
contracts

Figure 3.22: Phase 3: Resources and products used

in terms of which roles are involved, how each activity is composed of tasks, which
work products are produced and used for each task and which guidelines are used for
each task.

3.3.3.1 Process roles

The system analyst is responsible for performing the activities of this phase. The
domain expert will support the system analyst during the identification of the norms
that regulate the system.

3.3.3.2 Activity details

As Figure 3.21 shows this phase is composed of tree activities: Identify restrictions
from requirements, Identify social contracts and Verify normative context.

Each activity is composed of one task. All the tasks of this phase are detailed in
Table 3.14. The description of the tasks details the sequence of actions that should be

76 3.3. Phases of the ROMAS process

Activity | Task Task description Roles involved
Identify Identify re- | Following the guideline Organizational norms, the system an- | System analyst
restric- strictions ~ from | alyst formalizes the norms described in the requirements that | and domain
tions requirements regulate the agent behavior. This norms refine the organi- | expert

from zational view diagram of the organization associated to these

require- norms.

ments Following the guideline Normative documents, the system an-

alyst extracts from the normative documents attached to the
system requirements the norms and restrictions that must be
integrated in the design.

Identify Identify social | Following the guideline Social contracts, the social contracts | System analyst

social contracts of the system are identified and formalized by means of the | and domain
con- contract template view diagram. expert

tracts

Verify Verify normative | Following the guideline Normative context verification, the co- | System analyst
nor- context herence among system’s norms and between them and the so-

mative cial contracts of the system is validated.

context

Table 3.14: Phase 3: Activity tasks

performed in this phase, which guidelines and work products are used by each task,
and which work products are produced.

3.3.3.3 Work products

This section details the work products produced in this phase. A brief description
of these work products is presented in Table 3.15. Following each work product is
detailed and their use is exemplified by means of our running example.

Figure 3.23 describes the relation between these work products and the metamodel
elements in terms of which elements are defined (D), refined (F), quoted (Q), related
(R) or relationship quoted (RQ).

Organizational norms guideline

This guideline specifies a process to identify and formalize restrictions on the be-
havior of entities gained from the analysis of system requirements. These normative
restrictions are associated with specific features of the system, and are usually well
known by domain experts but not formally expressed in any document. This guide-
line helps the system analyst identify these restrictions with the support of the domain
expert.

This guideline is composed of several steps that revise the requirements and specifi-
cations of the system in order to formalise the associated norms. Below, each step of
the guideline is described. Figure 3.24 presents a pseudo-code algorithm that sum-
marises these steps.

3. ROMAS methodology

77

norms guide-
line

and formalize restrictions on the behavior of
entities gained from the analysis of system re-
quirements.

Name Description Work product
kind
Organizational | This guideline specifies a process to identify | Structured text

Normative
document
guideline

This guideline specifies a process to extract
from normative documents the norms that
must be implemented in a system.

Structured text

Social con-
tracts guide-
line

This guideline specifies a process to identify
and formalize social contracts inside a spe-
cific organization.

Structured text

diagram

ated in the previous phase of the methodol-
ogy, is refined by adding the social contracts
and norms attached to this role.

Normative This guideline analyzes how the coherence of | Structured text
context ver- | the normative context should be verified.
ification
guideline
Contract tem- | One instance of the contract template view di- | Behavioral
plate view di- | agram is created in order to specify each con-
agram tract template.
Organizational | The organizational view diagram, created in | Behavioral
view diagram the previous phase of the methodology, is re-
fined by means of adding these norms to the
diagram.
Internal view | The internal view diagram of each role, cre- | Behavioral

Table 3.15: Phase 3: Work products

78

3.3. Phases of the ROMAS process

Contract template

view diagram ——D——{InteractionProtocol
b— |
Receipt D R
d |
-Description ContractTemplate
-Date -Id /Q{ganizationa D Norm
_(SB_IobaI'It'lmeReference -Description view diagram _Name
-slgnants — R -Activation -Type
-Relatedltem \—Caducity -Definition
-Ontology _Date -Description
_GlobalTimeReference | ———Q Internal view -Activation
-OrganizationContext diagram -Expiration
-Ontology -Controller
R //’-Rewarderer
’//R -Concerns
Role -Sanctioner
R
\
RQ\

OrganizationalUnit

Figure 3.23: Phase 3: Relations between work products and metamodel elements.

o Step 1 Analysis of system description documents: These documents contain in

plain

text the requirements of the system, and if the system is composed by

several organizations, there will be one system description document for each
organization. The norms that arise from a document only affect the entities
inside the organization that this document describes. The following steps are
executed:

1.1 Analysis of the resources: For each resource of the system, such as a
database or an application, it is analyzed who has access to the resource,
who cannot access it and who is responsible for its maintenance. There-
fore, permission, prohibition and obligation norms are associated with
these resources (lines 1-13). For example, the analysis of the Confer-
ence database highlight the norm that only the chair of the conference
can modify the details of the conference (NModifyDetails, FORBIDDEN, !Chair,
Modify(ConferenceDB),-,-,-,-).

1.2 Analysis of the events: For each event that the organization must han-
dle, an obligation norm to detect this event is created. If the organization
should react to this event by executing a task, another obligation norm is
specified (lines 18-22). The activation condition of this norm is the event

3. ROMAS methodology

79

Step 1.1/11 For each Resource: R{
2 For each entity with access {
3 newNorm.Performative=PERMITTED
4 newNorm.Action= Use(R.Id)
5 Add(newNorm)}
6 For each entity without access {
7 newNorm.Performative=FORBIDDEN
8 newNorm.Action= Use(R.id)
9 Add(newNorm)}
10 newNorm.Performative=0OBLIGED
11 newNorm.Action= Management(R.id)
12| Add(newNorm)
13}
Step 1.2|14 For each Event E{
15 newNorm.Performative=OBLIGED
16| newNorm.Action= Detect(E.id)
17| Add(newNorm)
18 If Event has an associated action {
19 newNorm.Activation=E.id
20| newNorm.Action=E.Action
21 Add(newNorm) }
22| }
Step 1.3[23 For each Offer/Demand: OD{
24 If the system should offer the service {
25 newNorm.Performative=OBLIGED
26| newNorm.Action= OfferService (OD.id)
27 Add(newNorm)}
28| For each entity that with access to the Service{
29 newNorm.Performative=PERMITTED
30 newNorm.Action= Offer/Demand/Use(OD.id)
31 Add(newNorm)}
32| For each entity that without access to the Service{
33 newNorm.Performative=FORBIDDEN
34| newNorm.Action= Offer/Demand/Use (OD.id)
35 Add(newNorm)}
36| }
Step 1.4[37 For each domain restriction
38 For each Normative document
39 Execute (Normative document guideline)
40 For each restriction
41 Add(newNorm)
42| }
Step2 43 For each Objective of the system: O {
44 NewNorm.Activation =0.Activation
45| NewNorm.Expiration =0.Expiration
46| If Threshold stability{
47| newNorm.Performative=FORBIDDEN
48| newNorm.Action=variable < x AND variable >y}
49| If Action{
50| newNorm.Performative=OBLIGED
51 newNorm.Action =.0.Action}
52 Add(newNorm)
53] }

Figure 3.24: From requirements to formal norms guideline

80 3.3. Phases of the ROMAS process

itself (line 16).

— 1.3 Analysis of the offers/demands: External stakeholders can interact
with the organization, offering and demanding services or resources. If
the system is obliged to offer any specific service, an obligation norm is
created. If there are specific entities that are allowed to offer, demand
or use a service, a related permission norm is created (lines 24-27). On
the other hand, if there are specific entities that are not allowed to offer,
demand or use it, a related prohibition norm is created (lines 32-35).

— 1.4 Analysis of domain restrictions: The last attribute of the system de-
scription document analyzes if there are normative documents attached to
the organization or if there are specific domain restrictions that must be
taking into account. For each normative document attached to the system
the guideline Normative documents described below must be executed
(lines 38-39). If there is any restriction that is described directly by the
domain expert during the analysis of the requirements of the system it
must be integrated in the design (lines 40-41). For example, in the CMS
case study the domain expert has claim that "Each conference should
publish a normative document describing its internal regulations”, it is
formalized as (confNormative, OBLIGED, Conference, Publish(ConferenceRegulations),-,-,-
). This norm will be attached to every conference, therefore, the task of
defining the internal normative should be added to a role inside the con-
ference. In this case, this task has been added to the chair responsibilities.

o Step 2 Analysis of the objectives description document: We can differentiate
two types of objectives: the objectives attached to restrictions and the objec-
tives attached to specific actions. First, for each objective that pursues the
stability of any variable of the system in a threshold, a forbidden norm should
be created to ensure that the threshold is not exceeded (lines 46-48). A variable
of a system is anything that the system is interested in measuring; for example,
the temperature of a room or the quantity of money that a seller earns. Second,
for each objective that is attached to an action, an obligation norm is created
in order to ensure that there is an entity inside the system that pursues this ob-
jective (lines 49-51). The activation and expiration conditions of the created
norms are determined by the activation and expiration conditions of the related
objective.

Normative document guideline

3. ROMAS methodology 81

ResourcesMatches=((TextResource,De;ig"nDomainResource NormativeDocumentActor, DesignDomainActor)}
ActionMatches={(TextAction, DesignDgmainAction Normativ,/eDocumentActor, DesignDomainActor)}

!
N
N
N

Step 3: Formalize norms ———» (normiD, Deontic,Activation, Expiration, , Sanction, Reward)

Step 2: Refine semantic matches

Step 1: Identify matches E ActorsMatches={(Normative DocumentActof,DesignDomainActor

/ S

FORBIDDEN ~ OBLIGED PERMITTED

Figure 3.25: From normative documents to formal norms guideline

This guideline specifies a process to extract from normative documents the norms
that must be implemented in a system. Normative documents can be governmental
law restrictions or internal regulation of each institution. For example, any system
that stores personal information must follow governmental law about personal data
privacy. These documents are usually written in plain text, so they must be anal-
ysed in order to make the design of the system compliant with the norms. A system
composed of several organisations or subsystems can have different normative docu-
ments associated with each party in the system. Therefore, this guideline should be
employed once for each document, and the effects of the derived norms should be
taken into account only inside the organisation or sub-organisation associated with
the document.

This guideline presents a set of steps that help a system analyst to extract norms from
normative documents. Below each step of the guideline is described. Figure 3.25
summarises the steps of guideline.

o Step 1. Identify matches: This step consists of matching the actors, actions and
resources addressed in the document with their related entities in the domain
analysis. The binding is operated by the system analyst, comparing how en-
tities are named in the normative document with how they are named in the
domain analysis. The final result of this step is three sets of possible matches,
one for actors, one for actions, and another for resources such as databases or
applications: (1) ActorsMatches={(NormativeDocumentActor,DesignDomainActor)} (2) Action-
Matches= {(TextAction, DesignDomainAction, NormativeDocumentActor, DesignDomainActor)} (note
that, if an action is associated with a specific actor either in the normative
document or in the design domain, this information should be annotated); and
(3) ResourcesMatches= (TextResource, DesignDomainResource, NormativeDocumentActor, DesignDo-

mainActor).

o Step 2. Refine semantic matches: The domain expert should verify the semantic
match of the set of identified actors, actions and resources, and should also

82

3.3. Phases of the ROMAS process

refine the identification of actors by means of the analysis of matches between
actions and resources. If an action or a resource is associated with a specific
actor in the normative document and it is also associated with a specific actor
in the design domain, there could be a semantic match between these actors.

Step 3. Formalize norms: When a domain actor is recognised to be a normative

document subject, the corresponding rights and duties must be assigned to this
actor. The normative document should be revised again and, for each identified
actor, action or resource that appears in the text, a norm should be added to the
design model. As explained previously, a norm is composed of the following
attributes:

— normlID: For future maintenance activities, it is important to clearly asso-
ciate each created norm with its associated clause in the normative doc-
ument. Normative document clauses are usually identified by acronyms
composed of a set of numbers and symbols which, in order to maintain
traceability, should be used as the norm identification attribute. If the nor-
mative document clauses are not already labeled, they will be labeled the
same, both in the document and in the created norms.

— Deontic modality and Action: Obligations are expressed in plain text like
orders, e.g. The actor should perform the action, must, The forbidden
deontic modality is usually associated with negative sentences in which
the prohibition of the execution of a task is specified. If the clause spec-
ifies the possibility of performing an action, a permission norm must be
created.

If there is a match between the action described in the normative doc-
ument and an action in the design domain, the action is attached to the
norm. If there is no match, then the domain expert must specify whether
the action is outside the scope of the system. Only if the action is in
scope and its associated deontic modality is an obligation, should it be
taken into account. In this case, the specification of the requirements of
the system should be revised and the action added to the model. After that
an obligation norm would be created in order to ensure that the action is
executed.

Some clauses specify restrictions that are not related to actions, but re-
lated to variables thresholds. In this case, the procedure is exactly the
same with the difference that the action follows the following pattern
variable < x and variable > y. To decide whether this clause should be

3. ROMAS methodology 83

formalised in the model, the domain expert should specify whether the
variable is in scope or if any action that is performed modifies the value
of this variable.

— Target: If the clause makes reference to an identified actor, this actor
is the target of the norm. If the clause makes reference to an identified
action or resource with no specific reference to any actor, the target of the
norm is all members of organisations that must follow this norm.

— Activation and Expiration: If the clause specifies the circumstances under
which it should be applied, these circumstances should be formalised as
the activation and expiration attributes. Commonly, activation conditions
are specified after conditional particles such as If, When,... Deactivation
conditions are usually specified after temporal conditional and exception
particles such as Unless, Until, Except when...

— Sanction and Reward: Sometimes the action that should be executed
when a clause is fulfilled or violated is explicitly specified in the text.
In such cases, it is necessary to look for a match between this action and
an action from the design domain. If there is no match a new action
should be added and the responsibility for executing this task should be
added to one role.

Social contracts guideline

This guideline specifies a process to identify and formalize social contracts inside a
specific organization regarding the information detailed in the role description doc-
ument, the roles’ internal view digrams and the structure of the organization. Social
contracts are used to formalize two kinds of social relationship: (1) play role con-
tract template, which specifies the relationship between an agent playing a role and
its host organization; and (2) social relationship contract template, which specifies
the relationship between two agents playing specific roles. Social order thus emerges
from the negotiation of contracts over the rights and duties of participants.

One play role contract template should be defined for each role of the organization
in order to establish the rights and duties that any agent playing this role should ful-
fill. Therefore, in the CMS case study, seven play role contract templates should
be formalized: one for role user of the main organization, and six for each role de-
scribed inside the Conference organization (author, reviewer, PC member, Chair,
Vice-chair, Publisher). That means that the rights and duties that an agent that tries
to play arole inside a conference can be different depending on how each conference
negotiate these contracts. For example, one conference can establishes that a PC

84 3.3. Phases of the ROMAS process

member cannot submit a paper to this conference while other conference do not add
any restriction like that. Since every agent that intends to play a specific role inside
the system must sign a play role contract, every agent will be aware of its rights and
duties inside the organization in advance.

One social relationship contract template should be defined for each pair of roles that
must interchange services and products as part of the social structure of the organi-
zation. Contracts of this kind should be negotiated and signed by the related entities
and not by the organization as whole. However, if the terms of the contract are not
negotiated by the entities, and the relationship between these agents is determined by
their organization, it is not necessary to create a social relationship contract. Instead,
the rights and duties of each role over the other are included in their respective play
role contracts. In the CMS case study there is an authority relationship between the
chair role and the vice-chair role. The terms of this relationship are specified by
each conference. Therefore, the rights and duties from one entity to the other are
formalized in their respective play role contract and no social relationship contract is
created.

Figure 3.26 presents a pseudoalgorithm of this guideline. Below, each step of the
guideline that should be applied to each role of the system is described.

o Step 1 Adding identified norms: Every restriction or norm identified during the
application of the Organizational norms guideline that affects the role should
be added to the contract (lines 3-4). The norms that are attached to several
roles, but that include this specific role should be added. This can increase the
size of the contract, so it is the responsibility of the domain expert to specify
which norms should be communicated. For example, in the case of CMS case
study, not all governmental norms related to the storage of personal data are
included in the contracts, only a norm that specifies that any agent inside the
system should follow this regulation is specified in the contracts.

o Step 2 Analysis of the organizational objectives: In previous phases of the RO-
MAS methodology, the requirements of the system are analyzed by means of
the analysis and decomposition of the objectives of the system. Each objec-
tive is associated with an action that must be performed in order to achieve it,
and these actions are associated with specific roles that become responsible for
executing them. Therefore, for each objective related to a role, an obligation
norm must be created that ensures the execution of this action. The activation
and expiration of the norm match the activation and expiration of the objective
(lines 5-7). If the action related to the objective is a fask, the role is obliged to

3. ROMAS methodology

1 [For each RoleR {

2
Stepl B For each Restriction R.Rest T

4 AdA(R.RESY)
Step2 |5 For each Objective related with the role R.O {

6 NewNorm.Activation =R.0.Activation

7 NewNorm.Expiration =R.0.Expiration

8 If R.O.Action==Task

9 newNorm=Performative=OBLIGED

10| newNorm.Action=R.0.Action

11 If R.O.Action==Service

12| newNorm.Performative=OBLIGED

13| newNorm.Action = REGISTER R.O.Action

14 Add(newNorm)

15] S
Step3 |16 For each Resource or Service Used R.RU{

17| newNorm.Performative=PERMITTED

18 newNorm.Action= R.RU.UseMode(R.RU.id)

19 Add(newNorm)

20| }

21| For each Resource or Service Forbidden R.RF{

22| newNorm.Performative= FORBIDDEN

23 newNorm.Action= Use(R.RF.id)

24 Add(newNorm)

25 }

26| For each Resource or Service Provided R.RP{

127, newNorm.Performative=OBLIGED

28 newNorm.Action= Provide(R.RP.id)

29 Add(newNorm)

B0l e
Step4 [31| For each Event R.E{

32| newNorm.Performative=OBLIGED

33| newNorm.Action= Detect(R.E.id)

34| Add(newNorm)

35 If R.E has an associated action {

36] newNorm.Activation=R.E.id

37, newNorm.Action=R.E.Action

38 Add(newNorm) }

39 e
Step5 |40 For each SocialRelationship R.S {

41 newNorm.Activation=R.S.Activation

42| newNorm.Expiration=R.S.Expiration

43 If R.S.type == Incompatibility {

44 newNorm.Performative=FORBIDDEN

145 newNorm.Action= PlayRole(R.S.IncompatibleRole) }

46| If R.S.type == ForcedCompatibility {

147, newNorm.Performative=OBLIGED

48 newNorm.Action= PlayRole(R.S.compatibleRole) }

49 If R.S.type == (Information) {

50| newNorm.Performative=OBLIGED

51] newNorm.Activation=R.S.Event

52 newNorm.Action= Inform(R.S.SupervisorRole,R.S.Associated_Information) }

53] If R.S.type == (Authorization/Submission) {

54 newNorm.Performative=OBLIGED

55 newNorm.Action= ProvideService(R.S.SupervisorRole,R.S.AssociatedService) }

1o S S
Step6 |57 For each personal objective of the role, the system can establish thresholds or any kind of limitation in their

58 performance. These limitations will arise FORBIDDEN norms.

59| }

Figure 3.26: Social contracts guideline

86

3.3. Phases of the ROMAS process

execute this task (lines 8-10). If it is related to a service, the role is obliged to
offer and register this service (lines 11-14).

Step 3 Analysis of offers/demands: The description of each role should specify
which resources and services this role must offer and which ones can use. For
each resource and service that this role is able to use, a permission norm is
added (lines 16-20). For each resource or service that this role cannot have
access to, a prohibition norm is created (lines 21-24). Also, for each resource
and service that this role is supposed to provide, an obligation norm is added
(lines 26-30). In this sense, an agent would not be able to play a role unless it
were able to provide all the services and resources that are specified in the play
role contract.

Step 4 Analysis of the events: For each event that the role must handle, a norm
that forces any agent that plays this role to detect this event is created (lines
31-34). If the role should react to that event by executing a task, an obligation
norm is created whose activation condition is that event and indicates that the
role should execute this action (lines 35-38).

Step 5 Analysis of the relationships: As is discussed above, the norms derived
from the social relationships between roles should be included in the play role
contract template when they cannot be negotiated by the entities playing these
roles, i.e. they are rigidly specified by the organization. In other cases, a social
relationship contract should be created and these norms included in it. The
norms that are derived from the social relationship should be activated only
when the social relationship is active and their deontic attribute depends on the
type of relationship between the parties. If two roles are incompatible, a pro-
hibition norm is added specifying this fact (lines 43-45). In the same way, if
any agent playing one role is required to play another, an obligation norm is
included in the contract (lines 46-48). Usually, a social collaboration appears
when several roles should interact to achieve a global goal of the organization.
In such cases, a set of obligation norms specify which actions and services
are the responsibility of each entity. If the collaboration relationship indicates
information, it means that one role is obliged to inform another when some
conditions occur. An authority/submission relationship requires the specifi-
cation of: (1) which services should provide the submitted party, (2) which
actions the authority can force to do to the other agent, and (3) which actions
the submitted party cannot perform without the consent of the authority.

3. ROMAS methodology 87

e Step 6 Analysis of personal objectives: A personal objective of a role is a goal
that is not directly related to the main goals of the system, but that all the
agents that play this role will pursue. The system as an entity can establish
some restrictions on the performance of personal objectives (lines 57-59). An
example of a personal objective in the CMS case study is that although the
agents that play the role author pursue the objective of Submitting as many
papers as possible. Each conference can establish limits on the quantity of
papers that an author can submit to the same conference.

Normative context verification guideline

The verification of the normative context is limited here to the verification that there
are no norms in conflict, i.e, that the normative context is coherent. As is presented
in [46], conflicts in norms can arise for four different reasons: (1) the obligation
and prohibition to perform the same action; (2) the permission and prohibition to
perform the same action; (3) obligations of contradictory actions; (4) permissions
and obligations of contradictory actions. Therefore, after the specification of the
organizational norms and the social contract templates that define the structure of the
organization it is necessary to verify that the normative context as a whole is coherent.
Each organization can define its own normative context independently of the other
organizations that constitute the system. The first step is analyzing the normative
context of the most simple organizations, i.e, the organizations that are not composed
by other organizations. After that, we will analyze the coherence between this simple
organization and the organization in which it is inside. This process will continue
until analyzing the coherence of the main organization of the system.

In order to analyze the coherence of a specific organization, it is necessary to verify
that: (1) There is no state of the system in which two or more organizational norms
in conflict are active. (2) There is no norm that avoids the satisfaction of an orga-
nizational objective, i.e., there is no norm that is active in the same states than the
objective is pursued and whose restriction precludes the satisfaction of this objective.
(3) There is no social contract that specifies clauses that are in conflict with the or-
ganizational norms. (4) There is no a pair of social contract whose clauses are in
conflict between them and therefore, the execution of one contract would preclude
the satisfactory execution of the other one. (5) There is no social contract in which a
role participates whose clauses preclude the satisfaction of the roles objectives.

The verification task can be performed manually or by means of automatic techniques
such as model checking. In [57], we present a plug-in integrated in our case tool that
allows a simple verification of the coherence between the organizational norms and
the contracts by means of the SPIN model checker [72].

88 3.3. Phases of the ROMAS process

Contract template view diagram

One contract template diagram is created for each identified social contract. The
recommended steps to specify a contract template are:

- Identify signants: 1f it is a play role contract template the signants are the entity that
tries to pursue this role and the organization as a whole. If there is a specific role in
charge of controlling the access to the organization, the entity playing this role will
sign the contract on behalf of the organization. If it is a social relationship contract
template the signants are the entities playing the roles that have the relationship.

- Attach clauses: The norms that has been identified by means of the social contract
guideline are included in the contract. If the norm to be included in the contract must
be in any contract of this type, this norm is defined as a hard clause. On the contrary,
if the norm to be included in the contract is a recommendation this norm is defined
as a soft clause.

- Define receipts: In order to monitorize the correct execution of the contract, it is rec-
ommended to define specific artifacts that entities participating in the contract should
provide in order to prove the fact that they have executed their required actions.

- Define authorities: Optionally, the designer can define who is responsible for veri-
fying the coherence of the final contract (notary), for controlling the correct execution
of the contract (regulation authority), and for acting in case of dispute between the
signant parties (Judge).

- Identify protocols: Optionally, the designer can define specific negotiation, execu-
tion and conflict resolution protocols. At this phase, only a general description of
these protocols is provided. They will be completely specify in the next phase of the
methodology.

Figure 3.27 shows the play role contract template that any entity that wants to play the
role reviewer should sign. It is signed by the role that wants to play the role reviewer
and by the conference in which the entity wants to participate. There are six clauses
attached to this contract template that specify an entity playing this role is not allowed
to modify the details about a conference unless it is also the chair of this conference
(NModifyDetails norm), and neither to access to the submission information about
a paper in which he is also author (Incompatibility norm). This entity would have
permission to access to the reviews database (WriteReviews norm) and to use the
service Get Info Submission (ReadSubmission norm). This entity would be obliged
to detect when the conference details have changed (DetectChanges norm) and to
provide the service Execute review (ProvideReview norm).

3. ROMAS methodology 89

ReviewerRS Conference
|g$

NModifyDetails Signant, 7
Reviewer

WriteReviews HardClauses
PlayRole contract

SofiClauses ReadSubmission

ProvideReview ConflictResolutionBrotocol “NegotiationProtocol DetectChanges
Incompatibility e \re
Alternative DisputeResolution ReviewersProtocol
NORM ID NORM DESCRIPTION (Deontic, Target,Activation,Expiration,Action,Sanction,Reward)
NModifyDetails (FORBIDDEN, !Chair, Modify(ConferenceDB),-,-,-,-)
WriteReviews (PERMITTED, Reviewer, -,-, WriteAccess(Conference database),-,-)
ReadSubmission (PERMITTED, Reviewer,-, -, UseService(Get Info Submission),-,-)
DetectChanges (OBLIGED, Reviewer, -,-, Detect(ChangesConference event),-,-)
ProvideReview (OBLIGED, Reviewer, -,-, ProvideService(Execute review),-,-)
Incompatibility (FORBIDDEN, Reviewer, reviewer=author,-, UseService(Get Info Submission),-,-)

Figure 3.27: Phase 3: Case study - Reviewer play role contract template

= — 75 7 -@

Describe ontology Describe services Describe tasks/protocols

Figure 3.28: Phase 4: Activity tasks

3.3.4 PHASE 4: Activity specification

During this phase each identified task, service and protocol is described by means of
instances of the activity model view.

The process flow at the level of activities is reported in Figure 3.28. The process
flow inside each activity is detailed in the following subsections (after the description
of process roles). Figure 3.29 describes the Activity specification phase in terms
of which roles are involved, how each activity is composed of tasks, which work
products are produced and used for each task and which guidelines are used for each
task.

90 3.3. Phases of the ROMAS process

=
Internal view
diagram

£5

Describe ontology

<<input/output>>

<<input>>
<<predecessor>> .
7 <<input>>
L
f E5 g
- " <<assits>>
e services \
Ca Syig;ﬂ%<<performs>> L_\\ES'
- << fi > > i
Describe ws > Analyst Desctibe ontology 02
<<input>> <<output>> Describe tasks/protocols
‘ \\ Ql <<input>>
<<output>> <<input>> Contrac\ﬁ%mplate

<<input>>

l view diagram
_ <<performs>>
= _ <<input>>
= <<input>> -

Organizational view =

diagram Role des;:ription

document
L L_- 3
System —)/\j

= Analyst Describe tasks/protocols
Activity view
diagram
~ <<predecessor>>

Figure 3.29: Phase 4: Resources and products used

3.3.4.1 Process roles

The domain expert should provide the domain ontology and should give support to
the system analyst in the definition of the protocols, tasks and services.

3.3.4.2 Activity details

As Figure 3.21 shows this phase is composed of tree activities: Specify ontology,
Specify services and Specify tasks and protocols.

Each activity is composed of one task. All the tasks of this phase are detailed in
Table 3.16. The description of the tasks details the sequence of actions that should be
performed in this phase, which guidelines and work products are used by each task,
and which work products are produced.

3. ROMAS methodology 91

Activity | Task Task description Roles involved
Specify Specify ontology System domain concepts are analyzed. These concepts will | System analyst
ontology be used to define the inputs, outputs and attributes of tasks, | (performs)
protocols and services. domain expert
(assists)
Specify Specify services Define service profile attributes for each service. One activity | System analyst
services view diagram is created for specifying each service implemen- | (performs)

tation. If there are services that should be published to other
members of the system or to external stakeholders, the orga-
nizational view diagram of the system should be refined by
adding a BulletinBoard. This abstraction is an artifact where
authorized entities can publish and search services.

Specify Specify tasks and | Create one instance of the activity view diagram for each task | System analyst
tasks protocols and protocol to specify them. In addition to the protocols as- | (performs)

and pro- sociated to objectives and roles, the contracts of the system

tocols should be completed by adding specific negotiation, execution

and conflict resolution protocols.

Table 3.16: Phase 4: Activity tasks

Name Description Work product
kind

Activity view | One instance of the activity view metamodel | Behavioral

diagram is created for specifying every task, protocol

and service implementation.
Organizational | The organizational view diagram created in | Behavioral
view diagram previous phases is refined in order to specify
which services are published in the Bulletin
Board and who have access to them.

Table 3.17: Phase 4: Work products

3.3.4.3 Work products

This section details the work products produced in this phase. A brief description of
these work products is presented in Table 3.17.

The flow of activities inside this phase is reported in Figure 3.28 and the tasks are
detailed in the Table 3.16. Figure 3.30 describes the relation between these work
products and the metamodel elements in terms of which elements are defined (D),
refined (F), quoted (Q), related (R) or relationship quoted (RQ).

One activity view diagram is created for each task, protocol or service identified in the
previous phases of the methodology. Phase 2 shows the tasks, services and protocols
that each role should implement and phase 3 identifies the negotiation, execution and
conflict resolution protocols for the contract templates.

An example of an instance of the activity view diagram that represents a protocol is
presented in Figure 3.31. It shows the description of the reviewer play role negotia-
tion protocol. First, the chair sends to the user that tries to play the role reviewer the

92 3.3. Phases of the ROMAS process

InteractionProtocol

o]

Contract template
view diagram

/
a Q
R D
ContractTemplate \
-1d
-Description .. qa
-Activation Role Al v|itJview
-Expiration diagram
-Date] R b—
-GlobalTimeReference
-OrganizationContext Q Task D
-Ontology -Precondition
-Postcondition
CrJ
. ServiceProfile D
Internal view
diagram Input
Output
u Precondition
Postcondition
Organizatioﬁil view Name
diagram'p
R
Executer
R BulletinBoard Servicelmplementation
-Name R -Precondition
-Description -Postcondition

Figure 3.30: Phase 4: Relations between work products and metamodel elements.

details about the conference (deadlines, topics of interests, ...). The user analyzes this
information and if necessary propose a change in the review deadlines. This change
can be accepted or rejected by the chair. If the chair rejects the change, he can finish
the interaction or modify his proposal and send it again to the user. Once they have
agreed the conference details, the chair send the user the specification of the contract,
i.e., the rights and duties that the user will acquire if he becomes a reviewer. This
contract cannot be negotiated, so the user can reject it and finish the interaction or
accept it and begin playing the role reviewer within this conference.

3.3.5 PHASE 5: Agents specification

During this phase each identified agent is described by means of an instance of the
internal view metamodel.

The process flow at the level of activities is reported in Figure 3.32. The process flow
inside each activity is detailed in the following subsections (after the description of
process roles). Figure 3.33 describes the Agents specification phase in terms of which
roles are involved, how each activity is composed of tasks, which work products are
produced and used for each task and which guidelines are used for each task.

3. ROMAS methodology

93

Init

Propose changes

+ Chair

Task(Chair Prepare_details)

Message
(Chair->Reviewet,Send_details)

User analyzes proposal

Propo:

+Chair
+User

Task(Chair, Wait_answer)
Task(User, Analyze_details)

-~

Chair analyzes changes

+Chair
+User

Task(User,Wait_answer)
Task(Chair, Analyze_details)

Reject

e changes

\, Reject

Accept

Cancel

+ Chair

Accept

Task(Chair,Cancel_negotiation)

Contract proposal

+Chair
+Reviewer

Task(User,Wait_contract)
Task(Chair, Prepare_contract)

J

(Chair->User,Send_contract)

Reviewer analyzes contract

+Chair
+User

Task(Chair,Wait_answer)
Task(User, Analyze_contract)

Reject

-

Accept

Contract accepted

+Chair
+User

Task(User,PlayRole - Reviewer)
Task(Chair, Send_paper)

Figure 3.31: Phase 4: Case study - Reviewer play role negotiation protocol

E

. start

1

S5

Describe agent

55

Analyze objectives Associate roles Validate coﬂerence

55

1

b

[Incoherence]

Figure 3.32: Phase 5: Activity tasks

~<>—@

3.3. Phases of the ROMAS process

94
L_I_)H‘ <predecessor>> I_:r___ﬂ
Validate goherence Asso’(ﬁate roles
Lo
<<performs>>43te
—— Analyst
:3}' <<input>>—— : <<performs>>\

Validate|coherence =
Role description)
<<input>> document < <<input>> ’—_fﬁv
l <<input>> /Assrfcmte roles
<<output>>

<<input>>
=
Agent description =
document = . <<predecessor>>
Internal view =
T diagram Obijective description
<<output>> document
‘ <<output>>
ﬁ/i«performs»% A <<output>>
L 0
Descri 1:e-’agent Domain N
Expert < <<performs>> | L_t\:t. .
nalyze objectives

<<assits>> .
<<assits>>

o
System
v Analyst o

RE [2E
Ei> o,
Describe agent <<predecessor>> Analyze objectives

Figure 3.33: Phase 5: Resources and products used

3. ROMAS methodology

95

Activity | Task Task description Roles involved
Describe | Describe agent Following the guideline agent description document, the de- | System analyst
agent velopment requirements of each agent are analyzed. (assists) and
domain expert
(performs)
Analyze | Analyze objec- | Following the guideline objectives description document de- | System analyst
objec- tives tailed in Phase 1, the agent’s objectives are analyzed and de- | (assists) and
tives composed in operational objectives. domain expert
(performs)
Associate | Associate ~ with | Identify which roles the agent must play in order to achieve its | System analyst
with system roles objectives. This analysis is performed by matching the agent | (performs)
system objectives with the roles functionality. Therefore, the objective
roles description document of the agent is compared with the analy-
sis of the roles presented in the roles description documents.
Validate Validate coher- | Validate that the normative context of the agent does not avoid | System ana-
coher- ence any of its objectives to be satisfied. Validate that the agent is | lyst(performs)
ence able to fulfill its commitments defined by its signed contracts.
Validate that there is no incoherence between the normative
context of the agent and the normative context of the organiza-
tions to which it pertains.
Table 3.18: Phase 5: Activity tasks
3.3.5.1 Process roles

The tasks of this phase are executed by the collaboration between the system analyst
and the domain expert. The domain expert should provide the information related to
agent development requirements. The system analyst should formalize these require-
ments using the ROMAS diagrams.

3.3.5.2 Activity details

As Figure 3.32 shows, this phase is composed of four activities. Each activity is
composed of one task. All the task of this phase are detailed in Table 3.18.

3.3.5.3 Work products

This section details the work products produced in this phase. A brief description of
these work products is presented in Table 3.19.

Figure 3.34 describes the relation between these work products and the metamodel
elements in terms of which elements are defined (D), refined (F), quoted (Q), related
(R) or relationship quoted (RQ).

Figure 3.33 shows graphically the products used and produced by each task. First an
agent description document is created for each agent. Table 3.20 shows the related

96

3.3. Phases of the ROMAS process

Name Description Work product
kind
Agent de- | This document analyzes the main features of | Structured text
scription each agent and its relationship with the sys-
tem.
Objectives This document analyzes the individual objec- | A compos-
description tives of each agent and decomposes them into | ite document

operational objectives. This document is the

composed by a

same document that the one used in the first | structured text
phase of the methodology to analyze the sys- | document and a
tem’s objectives. diagram.
Internal view | One internal view diagram is created for each | Behavioral
diagram agent. They graphically represent the specifi-
cation of each agent.
Table 3.19: Phase 1: Work products
Q gent descripfio Q\ Objective
document
Agent R/-Name
-Description
-Type
R o .
Role [~ Role description Q
ContractPIayRoIe document %J
Task Objective description
-Precondition document
-Postcondition
Event
Norm -Name
-Description
D— |State
/
ServiceProfile \D Belief
Input Intem I ew
Output dia ramD -Name
- -Description
Precondition Servicelmpl Tt D _Ontology
iti ervicelmplementation
Postcondition P! Fact _Attributes
Name
-Name
-Description
Product _Ontology
-Name -Attributes
-Description

Figure 3.34: Phase 5: Relations between work products and metamodel elements.

3. ROMAS methodology 97
Property Description Example
Identifier General name of the agent. It is recom- | PHD student
mended to select a short name or an abbre-
viation.
Description Informal description of the agent. There is | It is a PHD student who wants to
no length limitation on this text. participate in the system in order to
improve its CV.
Objectives Informal description of the agent’s purposes | - Improve its CV
of the agent.
Resources: A list of the resources (products, services | - Unpublished papers
Available for the | and applications) that the agent has or pro-
agent vides.

Resources: Re-
quired by the
agent

A list of the resources (products, services
and applications) that the agent requires to
develop its functionality. This text should
specify which type of access the role needs
(reading, executing, writing, partial or full
access)

the agent.

Events A list of the events that this agent handles.

Other member- | A text explaining if this agent is interacting | This agent plays the role PHD stu-
ships with other active systems or organizations. dent inside its college.
Restrictions A list of the restrictions that are inherent to | This agent must follow the regula-

tion of its college and that he is re-

sponsible of the maintenance of the
research group database.

Table 3.20: Phase 5: Agent description document

guideline and an example from the CMS case study. After that, each identified objec-
tive is analyzed following the guideline objective description document described in
Phase 1. The analysis of the objectives in our running example shows that the main
objective of the PHD student agent, Improve CV, is decomposed in: Submit thesis
draft, Increase number of publications and Collaborate in conferences. The first ob-
jective is not related to any objective of the system, so it cannot be achieved inside the
conference management system. The second objective, Increase number of publica-
tions, could be achieved if the agent joined conferences as an author. The authors’
play role contract template establish that any agent that wants to join a conference as
an author should submit an abstract of the paper. Since Bob has unpublished papers
that could submit to a conference he can play the role author. The third objective,
Collaborate in conferences, could be achieve by being the PC member of a confer-
ence. However, after the validation step it is shown that Bob cannot play the role
PC member because any agent that wants to play this role must be a doctor and the
agent is a PHD student. One internal view diagram is created for each to specify the
features of each agent. As an example, Figure 3.35 shows the internal view diagram
of the PHD student agent.

98 3.4. Work product dependencies

O O

Increase number Collaborate in

Submit thesis publications conferences

draft

Product / Author
Unpublished
papers

Register submission

Fact
Status= PHD student

ponsibleFor

E Maintain research

College group database
regulation

Figure 3.35: Phase 5: Case study - PHD student agent description

3.4 Work product dependencies

According to the FIPA standard Design Process Documentation Template this sec-
tion provides a representation of the dependencies among the workproducts gener-
ated during the development process (Figure 3.36). The direction of the arrow points
from the input document to the consumer one. For instance, the analysis of the sys-
tem description document is used as an input to specify the objective description
document and the use case diagrams.

3.5 Conclusions

This chapter presents the ROMAS methodology. ROMAS is a new methodology
that deals with the analysis and design of normative open MAS. This methodology
proposes a metamodel that integrates the concepts of agents, organizations, services,
norms and contracts. By means of these high-level abstraction concepts ROMAS
generates designs that are very close to real-life systems and therefore, that are eas-
ily understood by domain experts. ROMAS metamodel allows specifying the global
system requirements and objectives, as well as, the individual features and require-
ments of every entity. The normative context of the system is specified by means
of norms and contracts. This fact gives flexibility in the way each individual entity
achieve its objectives inside the system at the same time that ensures the stability of
the system. Thanks to the structure of the system by means of organizations, dif-
ferent normative contexts can be specified. This is an interesting feature since we

3. ROMAS methodology 99

Objective description
-7 document e

System description / =) § <""”"’“F(dl’é’iie:scription
document Agent = document

4 J description Internal view 3

| document - |

b Activity view T ol |

s diagram Contract template - |

ke H H I

view diagram
= 4=
Use case diagrams Organizational
external view

Figure 3.36: Work product dependencies

are dealing with autonomous entities and institutions that can have their own specific

regulations attached.

ROMAS methodology specifies a development process composed by a set of activ-

ities and tasks that guide developers at each step of the process. ROMAS offers a
set of guidelines that facilitate the decision-making process at critical points such the
identification and formalization of the normative contexts of the system, the decom-
position of the functionality of the system in roles, the verification of the coherence
of the normative context and so on.

Chapter 5 evaluates this methodology regarding the evaluation criteria presented in
Chapter 2 and analyzes its contributions to the current state of the art.

CHAPTER

4

ROMAS development frame-
work

This chapter presents the ROMAS development framework that offers support for
the application of the ROMAS methodology. This framework has been implemented
using model-driven technology in order to integrate the analysis, design, verification
and code generation of normative open MAS.

The rest of the chapter is organized as follows: Section 4.2 introduces the technolog-
ical background of this framework. Section 4.3 explains how to use this framework
in order to develop normative open MAS. Section 4.4 details the functionalities of
the modeling tool. Section 4.5 introduces the proposed prototype for verifying the
modeled designs and discuss how this prototype could be improved.

4.1 Motivation and objectives

The ROMAS methodology offers a set of guidelines and specifies a development pro-
cess for analyzing and designing normative open MAS. However, in order to become
of practical use, tools that support this methodology should be provided. The main
objective of the ROMAS development framework is to integrate the analysis, design,
verification and code generation of normative open systems.

Our first objective is the creation of a CASE tool that facilitates the graphical rep-
resentation of the diagrams generated by the ROMAS methodology. This fact guide
to the challenge of enabling the modeling of different diagrams whose entities and
relationships are restricted by the different views of the ROMAS metamodel.

Our second objective is the verification of the coherence of the designed normative
context. Normative open systems may have to integrate different normative contexts

101

4.2. Technology background: Model Driven Architecture and Eclipse
102 technology

derived from each organization involved in the system. Besides, the social contracts
and contractual agreements specified in the system should be coherent between them
and with the normative context of the system. An incoherence in the specification of
the normative context may produce critical situations, as well as, a lack of robustness
and trustworthiness. Therefore, it is important to detect and correct these potential
incoherences at an early stage of the development process.

Our third objective is to allow the automatic generation of code from the ROMAS
designs. Automatic code generation avoids implementation mistakes and reduces
the implementation time. Since we are dealing with normative open systems that
can include several institutions, entities, norms and contracts; the implementation
task can be very complex and it is important to offer techniques that reduce this
complexity.

The ROMAS methodology has been specified using a FIPA standard in order to fa-
cilitate the comparison of methodologies, to reduce the learning time and also to
facilitate the extraction and introduction of methods fragments. In that sense, the
ROMAS methodology is open to integrate guidelines and methods fragments from
other methodologies. Therefore, the ROMAS development framework should be eas-
ily extensible and interoperable with other methods and tools.

In order to achieve these objectives and integrate the multiagent we use model-driven
techniques to create a flexible and extensible development framework that includes
the analysis, design, verification and code generation of normative open systems.

4.2 Technology background: Model Driven Architec-
ture and Eclipse technology

Recently, Model Driven Development (MDD) has been recognized and become one
of the major research topics in the agent-oriented software engineering community
due to its inherent benefits [81]. Its use normally improves the quality of the devel-
oped systems in terms of productivity, portability, inter-operability and maintenance
[65, 4]. Basically, MDD proposes an approach to software development based on
modeling and on the automated mapping of source models to target models. The
models that represent a system and its environment can be viewed as a source model,
and code can be viewed as a target model. In that sense, MDD aims to change the
focus of software development from code to models. This paradigm shift allows de-
velopers to work with the high abstraction level inherent to multiagent systems during
the analysis and design stage and to transform these designs into final code in an easy
way.

4. ROMAS development framework 103

Some works like [100, 96, 4, 27, 128, 52] show how MDD can be effectively applied
to agent technologies. Furthermore, they show how the MDD technology can help to
reduce the gap between the analysis phase and the final implementation.

The Model Driven Architecture initiative (MDA) [106] has proposed a standard for
the metamodels of the specification languages used in the modeling process, which
is known as the Meta Object Facility (MOF). This includes a set of requirements for
the transformation techniques that will be applied when transforming a source model
into a target model. This is referred to as the Query/View/Transformation (QVT)
approach [3].

« Mofscript
EMF | » 'LM"‘:::::"" —»| GEF GMF | » [§/Graphical Editor{ 4 Final Code
) 4 Xpand2
Gen Model _ Graphical definition
i3 ocL &
.genmodel restrictions .gmfgraph
" Tooling definition | Gen Model
Textual editor / e gmftool >l gmfgen
Java classes MDT EMFT =) Mapping definition
.gmfmap

Figure 4.1: Eclipse plugin structure

Following these MDA standards, the Eclipse Platform [1] is an open source initiative
that offers a reusable and extensible framework for creating IDE-oriented tools. The
Eclipse Platform itself is organized as a set of subsystems (implemented in one or
more plug-ins) that is built on top of a small runtime engine. Plug-ins define the
extension points for adding behaviors to the platform, which is a public declaration
of the plug-in extensibility. Figure 4.1 shows the plug-ins used to developed the
ROMAS development framework:

e The Eclipse Modeling Framework (EMF) plug-in offers a modeling framework
and code generation facility for building tools and other applications based on
a structured data model. From a metamodel specification described in XMI,
Rational Rose, or the ECore standard (a variant of the MOF standard), EMF
provides tools and runtime support to produce a set of Java classes for the
model. EMF also provides the foundation for interoperability with other EMF-
based tools and applications. Moreover, EMF generates a textual modeler
editor from the metamodel

e The Graphical Editing Framework (GEF) and Graphical Modeling Framework
(GMF) plug-ins allow developers to create a rich graphical editor from an

104 4.3. ROMAS development framework architecture and use

existing ECore metamodel. These plug-ins allow the definition of the graphi-
cal elements that are going to be used in the generated tool. They also allow
the definition of several views of the model and the palette of elements of
each view. Finally, these plug-ins combine the graphical definition with the
metamodel elements and with the different views of this metamodel, creating
a complete modeling tool. These new tools are integrated into the platform
through plug-ins that allow the definition of models based on the specification
of the metamodels.

e The Xpand plug-in offer a language to define matching rules between the
ECore metamodel and another language. A plug-in generated using Xpand
consists of a set of transformations mapping rules between the entities and
relationships of a metamodel defined in the ECore language and any other de-
scription language. These scripts are executed on an instance of the metamodel,
i.e., on a user application model. These scripts have access to each entity and
relationship of the model and match this information with the mapping rules
defined at metamodel layer to generate the related code. Therefore, users can
design their models using the graphical editor and execute this rules to auto-
matically generate code from these models.

4.3 ROMAS development framework architecture and
use

This section gives an overview of the proposed development framework for designing
and verifying ROMAS which is based on a Model-Driven architecture. Figure 4.2
summarizes the main steps of the process.

1. Model: Analyze and design the system First the system is analyzed and de-
signed following the development process specified by the ROMAS methodol-
ogy. During the phases of the methodology a set of diagrams that are instances
of the ROMAS metamodel are generated. These diagrams are represented
graphically by means of the Eclipse modeling tool described in Section 4.4.
This tool has been developed following the MDA [106] standards by means of
the Eclipse technology. It consists of several Eclipse plug-ins that offer several
graphical editors (one for each view of the ROMAS metamodel). The entire
information detailed in the different diagrams is saved in a single ecore model.
Therefore, all the diagrams of the same model are connected, and designers
can navigate from one view to another by clicking on the main entity of the

4. ROMAS development framework 105

MDD
process

ROMAS methodology

and guidelines ROMAS
metamodel

1 Eclipse Modeling
Model ROMAS models

21 Xpand plugin:
Model Transformationto *==se=seesessennasfenanss PROMELA
translation to PROMELA code
verification
‘ Verification
= model checking
Verification SPIN

“ v
3. Xpand plugin: | : Executable agent platform code
Code code generation
generation

| S|

Figure 4.2: ROMAS development framework architecture

diagram. In this way, a system modeled with the ROMAS tool consists of a
single ecore model and a set of graphical diagrams that have been developed
with different graphical environments.

2. Verification of the model This step of the process consists of verifying the
correctness, completeness, and coherence of the designed model. Although
the modeling tool restricts the model to the syntax that is defined in the meta-
model, many conflicts such as the coherence between agents’ goals and the
goals of their organization can arise. The current version of the ROMAS tool
deals with the conflicts related to the incoherences between the designed con-
tract templates and the organizational norms. Model-checking techniques are
used to verify the models. The verification plug-in and process are detailed in
Section 4.5.

3. Generate the code for the execution platform. Finally, the models generated
by the ROMAS modeling tool can be translated into executable code. The
Xpand plug-in is used to generate several patterns that transform the model
that is designed with the modeling tool into a source code of an agent platform.
The ROMAS framework architecture would be able to generate code for any
agent platform as far as the transformation patterns would be encoded using the

106 4.4. ROMAS modeling tool

Xpand plug-in. Currently there is an ongoing work [98] to create an automatic
code generation plug-in for the Thomas platform [29]. Thomas is an agent
platform that supports the description of multiagent systems in a social and
normative environments. The implementation of this plug-in is out of the scope
of this thesis.

4.4 ROMAS modeling tool

The ROMAS tool is a CASE tool for developing normative open MAS using the
ROMAS methodology. The development of this tool is an ongoing work. A prototype
can be downloaded from

http://users.dsic.upv.es/grupos/ia/sma/tools/ROMAS.

The ROMAS tool derives from our previous work the EMFGormas tool [53]. EMF-
Gormas supports the development of organizational systems by means of the GOR-
MAS methodology. The EMFGormas tool has been modified to support the ROMAS
metamodel.

4.4.1 ROMAS tool technical details

The ROMAS tool is a combination of tools based on the Eclipse Modeling Frame-
work (EMF) and tools based on the Graphical Modeling Framework (GMF) inte-
grated into a single editor. Developed as an Eclipse plug-in, ROMAS tool is fully
open-source and follows the MDD principles of tool development, as Figure 4.2
shows.

The implementation of the ROMAS tool has been performed following the MDA
standards [106] by means of the Eclipse technology. The sequence of Eclipse plug-
ins used to implement this tool is presented in Figure 4.1.

First, the ROMAS metamodel was codified using the ecore standard. The specifica-
tion of a metamodel using such standard makes the final plug-in interoperable with
other plug-ins and tools. The ecore specification of the metamodel is extended with
the default EMF edit and editor plug-ins to provide model accessors and the basic
tree-based editor for the creation and management of ROMAS models. Figure 4.3
shows a snapshot of this textual editor. One ecore file is created for each system
modeled with ROMAS. These file will store the entities and relationships that define
the system model. Models can be edited directly modifying its ecore file (Figure 4.4)
or using the textual editor facilitated by Eclipse (Figure 4.3).

However, from the final user point of view this textual editor is not enough. Mod-
eling a system using the textual editor can be very challenging and time consuming.

4. ROMAS development framework 107

For that reason, this basic textual editor was extended with graphical interfaces for
editing the ROMAS models. As Figure 4.1 shows these graphical interfaces were
created by means of the GEF and GMF plug-ins. The ROMAS tool provides four
graphical editors, one for each view of the ROMAS metamodel. Each editor restricts
the modeling task to the elements and relationships specified in the corresponding
view of the metamodel.

ROMAS combines these editors in a single package. The entire information detailed
in the different graphical diagrams is saved in a single ecore model. Therefore, all
the diagrams of the same model are connected, and designers can navigate from one
view to another by clicking on the main entity of the diagram. In this way, a system
modeled with the ROMAS tool consists of a single ecore model and several diagrams
that have been developed with different graphical environments.

Figure 4.5 shows the user interface of the ROMAS tool. The interface has five main
components: the Eclipse Project navigator that shows the hierarchy of project files;
the Diagram editor where the diagrams are drawn; the Editor palette that contains
the entities and relationships that can be modeled in the selected view of the meta-
model to be selected; and the Properties view where the attributes of each entity and
relationship are managed.

Each graphical editor provides its own editor palette which will show the entities and
relationships that are allowed in its corresponding view of the ROMAS metamodel.
The graphical notation used to represent each entity of the metamodel is the same
that is presented in Section 3.2.2. It is summarized in Figure 3.8.

4.4.2 Use of the ROMAS modeling tool

Since the ROMAS modeling tool is implemented as a set of Eclipse plug-ins, its in-
stallation is very simple. It needs as basis the Eclipse modeling tool for your specific
operating system. The installation process of the ROMAS tool is to copy the ROMAS
plug-ins into the Eclipse plug-ins folder.

To model a system using the ROMAS tool, first the user needs to create an Eclipse
project. Next, the user adds a new ROMAS diagram. This action will create an ecore
file where the model will be stored as text and a diagram file that allows to graphically
model the system. From this diagram file the user can create as many instances of
the metamodel views as required. Each instance is edited with its corresponding
graphical editor.

Users can navigate between diagrams by means of double clicking in the main entity
of the diagram. Entities that has been created in one diagram can be reused in the
others by the use of shortcuts.

108 4.4. ROMAS modeling tool

s MWECEr, Fomas o-4 |=] Mwwacer, romas

L[Resource Sek

BR—¥0rganizational Unit rw.aker

4 Rel Contains Rale Mew Child +
) Agent Provider Flew Sibling | “& Angent
2 Agent Client 4% Organizational Unit
Morm Orglmiater 4% hgent
Mot Orgarth ater .¢$, -
=l 4 Conkract template diagram Fole of Cut I
Lole
€2 Role Seller .
€2 Role Buyer =| Copy # Product
< Contract Template Sallersac +¥ Resource
Marrmn norml 3 Delete ‘%‘,’ Application
Harm normz *t’l“; Opetration
= i .
: Task . - Yalidate % parameter
[=] Interaction Unit MaxSelPrab Contral...
=l 4 Conkract template diagram Buyil N
< Contract Template Buyate Run s
Mot PlowService Debug As ’
Morm Give'Water Team >
[=] Inkeraction Unit BuyRightPrd Compare With 4
[<#] Interaction Unit Alternativel Replace With 4
s »
Selection | Parent | List | Tree | Table | Tree with ¢ WikiText
Load Resource...
[3_ Problems | @ Javadoc @ Declaration |
Property Refresh
Diescription Shawt Properties Yiew organization of the miwater system,
Executer Manages Pork
Rlarma

Figure 4.3: ROMAS textual editor: mWater case study

ROMAS modeling tool offers a traditional interface and menus. This fact improves
the usability of the system and reduces the learning time.

4.4.3 Contributions and limitations

The ROMAS tool effectively supports the analysis and design of normative open
MAS following the ROMAS methodology. It offers a textual and graphical edi-
tor that restrict the models to the entities and relationships specified in the ROMAS
metamodel.

The ROMAS tool offers an interface that is similar to any other CASE tool and that
follows the Eclipse standards. This fact increases its usability and reduces the learn-
ing time.

The ROMAS tool stores the models following the ecore standard. This fact facilitates
the reusability of the models. For example, an agent could read the structure of the
system of the model and reason about it at runtime.

4. ROMAS development framework 109

File Edit Mavigaste Search Project Run Spin Mindow Help
i~ ® H-0-Q- HE- B - S 0 G

! midsker.romas |=] miater romas E2

1 <?xml wersion="1.0" encoding="UTF-5"7>
Z <romas:romas_model xmiiversion="Z.0" xmlns:xwi="http://www,omg.org/ENI" xmlns:xsi="http://wow.w3d.org/ 2001/ ML)
3 <romag_structural Name="mlater system” Description="":

E} <struc_ Aigent xsi:types"rowmas:Organizationallnit” Neme="mWater™ Description="This is the main organization ¢
5 <strucRelContainsRole OU_Contains_Role source="//(romas structural.0/8strue Rigent.0" OU_Contains_Role_tal
3 </ struc_khgent>

7 <struc_Rhgent xsi:type="romas:Agent” MName="Provider/>

a8 <struc_Rhgent xsi:type="romas:Agent” Name="Client"/>

9 <struc_MNorm Id="OrglmWater"” Description="" Activation="" Target="//Bromas_contract.0/@cont_Executer.1™ Actic
10 <struc Morm Id="CrgZmWater" Description="" Activation="" Target="//fromas contract.0/Bcont_Executer.1" Actic

11 </romas _structural>
12 <romas_contract Neme="Role Seller Social Contract”™s

13 <cont_Executer xsi:type="romas:Role" Name="Seller"/>

14 <cont_Executer xsi:type="romas:Role" Name="Buyer"/>

15 <eont_ContractTemplate Id="SellerSocialContract” signatories_parties="//@romss contract.0/Beont_Executer.l
16 <gont_Norm Id="norwl"™ Description="" ketivation="true” Target="//f@rowas contract.0/@conc_Executer.0" Aetion
17 <zont_NMort Id="norm2" Description="" ketivation="true" Target="//@romas contract.0/fcont_Executer.1" Letion:
13 <zont_Atask xsi:type="romwas:Task"/>

13 <gont_InteractionUnit Newe="MaxZellProtocol™/>

20 <fromas contract:
z1 <romas_contract Name="Buying Water™>

zz <cont_ContractTemplate Id="BuyWaterRightContract” Description="This contract is formalized by means of ROMA!
23 <mont_Norm Id="PlowService" Target="//fromas contract.0/fBcont_Executer.l" Letion="plow" Deontic="OELIGED"/>
24 <oont_Norm Id="Givelater™ Target="//@romas contract.0/Bcont_Executer.0” Action="give water" Deontic="OBLIGE]
25 <mont_InteractionUnit Newe="BuyRightProtocol™/»

26 <cont_InteractionUnit Nawe="AilternativeDisputeResolution®/>

27 </romas contract>
28 s/romas:romas, model>

[£: Problems | @ 1avadoc | [2) Declaration | B Console | E Properties £2 ¥ Search

Property Yalug

Figure 4.4: xml view of the mWater ecore case study)

The implementation of the ROMAS tool as Eclipse plug-ins allows to integrate this
tool with other Eclipse plug-ins that can extend its functionality.

However, during the design of our case studies using the ROMAS tool we have also
detected some open issues and drawbacks.

Currently the ROMAS tool supports the specification of instances of the ROMAS
metamodel. However, we are still working to offer support to the specification of the
textual work products that the use of the methodology produces, such as the system
description document.

The current version of the ROMAS tool does not integrate the guidelines offered by
the methodology. If the modeling tool would integrate all the work products and
guidelines of the methodology, the modeling tool would be able to guide developers
step by step of the methodology. This fact would reduce the learning time of the
methodology and would increase the usability of the modeling tool.

Another issue that is common in Eclipse modeling tools is that it is not possible
to easily reuse parts of one model into another. In the development of MAS, it is

110 4.5. ROMAS module for formal verification

& Java - platform:/resource/mWater/model/mWater. romas_diagram# B1YogFpaEd6T _NWBxEYthg - Eclipse SDK
Flle Edit Diagram Mavigate Search Project Run Window Help

P Ch- [i H-0-Q- i EFG @S- &
Tahoma wls BT A~ &~ F- —~ Bi-of- e | T - - 100% 3
I Project Exp &2 = O || @) mWater.romas_diagram |4 *miWater.romas_diagram#z £2
== " " & i
5 Diagram editor 75 Paltte Editor palette
= = miWater Iy & & -
- (= figures
v 1 Hodes
% = model ‘@ J Contas =l = ‘
=
& s [Gontsirs ater) g 3 OrganizationalUnit
(= src-gen Waterllser Contairs g “Rale
i T Cantairs (& Agert
Eolipse project et | Tt core ora? = homree
navigator — £25
= Contains oty L) Bl Application
Trraparty B SellersCommunity [EHorm
Contsire
Seller (= Relationships
" InheritanceOf
A Contains
7 sacialRelationship
&3 Drganizational Unit mWater
Core Property walug
i Description =
< 3| | ane Executer Manages Port
55 outine 52 =5 Mame = miwater
= QU Contains AAgent &3 Organizational Unit BuyersCommunity, Organizational Unit SellersCammunity
B QU Cantains Marm Morm Orgl, Norm Org2

OU Contains Product
OU Offers Product

{o= =) sy Structure '= Plain
= =

om

Figure 4.5: mWater organizational view diagram

common to reuse interaction protocols or social structures between projects. So, it
would be very to be able to import and export parts of the model.

4.5 ROMAS module for formal verification

Validating that the designed system fulfils all the requirements identified in the anal-
ysis stage and verifying the coherence and completeness of such designs are common
open issues in any software development approach. It has even greater importance in
the development of normative open systems, where it has two specific features. First,
systems of this kind integrate the global goals of the system with the individual goals
of each party, where these parties are completely autonomous and their interests may
conflict. It is thus crucial in helping developers to verify that the combined goals of
the parties are coherent and do not conflict with the global goals of the system. If
any incoherence is detected, the developer should be able to determine when this will
affect the global goals and whether it is necessary to introduce norms to avoid re-

4. ROMAS development framework 111

lated problems. Second, such systems usually integrate different normative contexts
from the different organizations involved, which must be coherent with the contracts
defined in the system. In this respect, an open question is how consistency and co-
herence of norms and contracts can be automatically checked inside an organization.
In this section we present a set of plug-ins that is integrated into the ROMAS tool in
order to verify the coherence of the normative context of the systems designed using
this CASE tool. As is presented in Section 4.2, model checking techniques allow the
formal verification of systems. Section 4.5.2 details our approach for verifying the
normative context by means of the model checking techniques.

4.5.1 Related work

Model checking is an area of formal verification that is concerned with the systematic
exploration of the state spaces generated by a system. Model checking was originally
developed for the verification of hardware systems, and it has been extended to the
verification of reactive systems, distributed systems, and multiagent systems.
Although there are some works that apply model-checking techniques to the verifi-
cation of contract-based systems, it is still an open research topic. Some works, like
the one presented by Solaiman et al. [105], model contracts as a finite automata that
models the behavior of the contract signatories. Other works, like the one presented
by Hsieh at [76], represent contracts as Petri nets. These representations are useful to
verify safety and liveness properties.

The use of deontic clauses to specify the terms of a contract allows conditional obli-
gations, permissions, and prohibitions to be written explicitly. Therefore, they are
more suitable for complex normative systems like ROMAS. Work by Pace, Fenech
at al. [94, 46] specifies a deontic view of contracts using the CL language. Pace at
al. [94] use model-checking techniques to verify the correctness of the contract and
to ensure that certain properties hold. While Fenech at al. [46] present a finite trace
semantics for CL that is augmented with deontic information as well as a process for
automatic contract analysis for conflict discovery. In the context of service-oriented
architectures, model checkers have recently been used to verify compliance of web-
service composition. One example is the work by Lomuscio at al. [85] that presents
a technique based on model checking for the verification of contract-service compo-
sitions.

In the context of verification techniques for MAS, there are some important achieve-
ments using model checking. Walton et al. [122] use the SPIN model checker to
verify agent dialogues and to prove properties of specific agent protocols, such as ter-
mination, liveness, and correctness. Bordini et al. [14] introduce a framework for the

112 4.5. ROMAS module for formal verification

verification of agent programs. This framework automatically translates MAS that
are programmed in the logic-based agent-oriented programming language AgentS-
peak into either PROMELA or Java. It then uses the SPIN and JPF model checkers
to verify the resulting systems. Work by Woldridge et al. [124] proposes a similar
approach, but it is applied to an imperative programming language called MABLE.
Nardine et al. [93] verify the compatibility of interaction protocols and agents deon-
tic constraints. However non of these approaches is suitable for ROMAS since they
do not consider organizational concepts.

There are only a few works that deal with the verification of systems that integrate
organizational concepts, contracts, and normative environments. The most devel-
oped approach is presented in the context of the IST-CONTRACT project [92]. It
offers contract formalization and a complete architecture. It uses the MCMAS model
checker to verify contracts. However, as far as we know, it does not define the organi-
zational normative context or verify the coherence of this context with the contracts.
This thesis tries to provide a different approach for verifying ROMAS. It is distinct
in that it designs and offers a module that allows: (1) the explicit formalization of
social and commercial contract templates at design time;(2) the automatic translation
of contract and norm descriptions into a verifiable model-checking language; (3) the
verification at design time of whether a contract template contradicts the designed
normative and legal environment.

4.5.2 Verifying the coherence of the normative context

The ROMAS tool integrates a set of Eclipse plug-ins to verify that there is no conflict
between the organizational norms, agent norms, and contract templates designed.
This verification task is associated to the last task of the Normative context specifica-
tion phase of the ROMAS methodology.

As is presented in [46], conflicts in contracts and norms can arise due to four different
reasons: (1) the obligation and prohibition to perform the same action; (2) the per-
mission and prohibition to perform the same action; (3) obligations of contradictory
actions; (4) permissions and obligations of contradictory actions. At the moment,
ROMAS tool verifies the first and the second conflict scenarios. The last two scenar-
ios need semantic analysis of the ontology which is part of our future work.

In order to perform the model checking verification we use SPIN model checker [72].
The reasons to choose this model checker are that SPIN is a popular open-source
software tool that has been used by thousands of people worldwide for the formal
verification of distributed software systems. The software has been available freely
since 1991, and continues to evolve to keep pace with new developments in the field.

4. ROMAS development framework 113

In April 2002 the tool was awarded the prestigious System Software Award for 2001
by the ACM. Moreover, there is an open-source Eclipse plug-in that integrates the
SPIN model checker into any Eclipse application [83].

Therefore, a ROMAS verification process is executed in two steps:

1. Prepare the model to be verified. The modeled system is translated into a
language that can be verified using model checking.

As explained in Section 4.4, the systems designed using the ROMAS modeling
tool are stored in an ecore file. Since we use the SPIN model checker, the ecore
model is translated into the PROMELA language and Linear Temporal Logic
(LTL) formulas. This translation is automatically performed by the Eclipse
plug-in RO2P (ROMAS to PROMELA code transformation) that is detailed in
the next subsection (ROMAS to PROMELA code transformation).

2. Execute the model checker. Once the PROMELA file and the LTL formulas
have been generated, the SPIN formal verification of the model is directly run
from the modeling tool. It is possible thanks to the Eclipse plug-in' [83] that
has been integrated into our Eclipse modeling tool. After the verification, if
there is any incoherence, the designer must revise the model, and the verifi-
cation step begins again. Figure 4.6 shows the interface of the SPIN Eclipse
plug-in.

4.5.3 ROMAS to PROMELA code transformation (RO2P)

The coherence of the normative context can be verified at different levels: (1) Or-
ganizational level, where we verify that the normative context of the organizations
involved in the system are coherent between them; (2) Role level, where we verify
that the norms and contracts related to the roles of an organization are coherent; (3)
Agent level, where we verify that the norms and contracts related to an agent that is
playing a set of roles are coherent between them.

Therefore, the elements of the model that need to be translated into a verifiable code
are:

- Organizational norms: Norms that are associated to a specific organization.
- Role norms: Norms that are associated to a specific role.

- Agent norms: Norms that are associated to a specific agent.

Lhttp:/flms.uni-mb.si/ep4s/

114

4.5. ROMAS module for formal verification

$ $-0-Q° HEG- Bc - Q JOOOEs -
=] mtw/ater_MormativeContext.pml 1 —
& Preferences E \@E|
17 —
18 Verification [CRe -
15 /*ContractTemplate BuyingWater::Contract thac formalig "o
20~ proctype BuyingWatercontracti){ Ak
21 BuyingWater_statesexecuting: % Do Frofil: Default
2zt - Ecore Tools Diagram T
mport.... | [Export...
2 Setier rensing ¢ qive vaser, Bugerigent,n; A
24 Buyer_Pending | plow, Sellerdgent,0: #1- Help
25 - Instal{Update Basic Options | Advanced Options
2 6 BuyingWater_state=finished; - Java Correctness properties Search Made
27 unl fal: B % Model Yalidation
junless (false) (@ Safety (state properties) @ Exhaustive
28 3/% end BuvingWater ©f #1- Plugrin Development
29 - Run/Debug [assertions O Supertrace/Bitstate
30 = Spin oEd [invalid Endstates O HashCompact
217 proctype Buyer () Promela Editor
32 end: Simulation O Liveness (cyclesisequences) A Full Queue
33 do e 3 @ Blacks Mew Msgs
34 :: Buyer Pending 27 Buyer_task , Buyer_target, B p : I:Zm) Loses Mew Msgs
32 l‘l:lntf(\nparam sdin", B parswml) - Usage Data Collector User Parameters
od:
g #1- Reendjxpand O
Use this parameters:
97 y/vend Buyert/ [Apply Never Claim (IF Present)
33
o [¥]Report Unreachable Code
40% proctype Seller() { [Ccheck xr/xs Assertions
221 end: . LT Farmula Never claim
o
43 ii Seller Pending ?7 Seller_task , Seller target, DCBuyer_task==plow) Qe
44 od;
45 3/%end Seller®/
46
Restore Defauls Apphy
[Problems | @ Javadoc [€} Dedaration [E] 3 T properties | 47 Search E
Spin C:\Documents and \DROPECKIDrombox\FORMALWERY () 1
Simulation: Start

C:yjspinibin/spin.exe =X -p -v =¥ -5 -r -nl -31 mWater_NormativeContext.pml

o: proc - (iroot:) creates proc 0 (:init:)
Srarting Buyer with pid 1
1: proc 0O (:init:) creates proc 1 (Buyer)
1: proc O (:init:) wmilater NormativeContext.pml:4S [state 1) [(run Buyer())]

Starting Seller with pid 2
2: proc O (:init:) creates proc 2 (Seller)

Figure 4.6: Eclipse plug-in for SPIN interface

- Social contracts: Contract templates that can specify social relationships be-
tween roles or the restrictions that an agent need to fulfill in order to play a
specific role.

- Contractual agreements: Contract templates that specify resources or products
interchanges.

Multiagent systems have some properties that need to be considered when performing
the verification:

- Concurrency: The entities of the system are running in the same environment
concurrently. Besides, several contracts may need to be executed at the same
time.

- Dynamicity: We are dealing with dynamic systems where norms and contracts
can be activated or desactivated depending on environmental conditions, the
result of other tasks, or the internal state of the system.

4. ROMAS development framework 115

- Autonomous entities: The entities of the system are autonomous, so they have
their own rational process to decide the execution task order. So, if for example
an agent has sign two contracts that force him to perform two actions we cannot
be sure which action is going to be executed first. Therefore, it is necessary to
analyze all the possible combinations to ensure that non norm is violated.

The next section details how the ROMAS model is translated into the SPIN model
checking language. Here, only a brief overview of the translation process is pre-
sented.

- Each organization, role or agent (depending at which level is the verification
performed) is translated as an individual process. Each process has a channel
associated where all the tasks that this entity has to performed are stored. Each
process is independent from the other and simulates the execution of the tasks
that are in its channel.

Each process is independent from the others and they can be executed concur-
rently. They choose randomly the next task to execute in order to simulate the
autonomy of each entity in terms of which action execute first.

- Each contract with obligation or permitted norms associated is translate as an-
other process. This process is activated only meanwhile the activation condi-
tion of the contract has occurred and it has not occurred the expiration con-
dition of the contract. A contract process adds to the channels of the corre-
sponding entities the tasks that are associated to the obligation and permitted
norms.

- Each prohibition norm associated to a contract or directly to an evaluated en-
tity is translated into a LTL property. If several prohibition norms have to be
verified at the same time they are joined into only one LTL, since the SPIN
model checker only permits the verification of one LTL at a time.

Translating each entity as an independent process we ensure the concurrency of the
system. Translating each contract as an independent process allows to activate and
deactivate them regarding its activation and deactivation conditions. The use of chan-
nels allows the simulation of the execution of tasks. The next task to be executed is
chosen randomly in order to simulate the capacity of each entity to decide at each
moment which task want to execute next.

116 4.5. ROMAS module for formal verification

7
Org ﬁ%use 000 00“\3\“"’ Seller

R mWater o,
oXa s,
El o [

Org2 Buyer

(*) (Org1, true, false, ANY,FORBIDDEN,pay_water(t,p,q)&& (p>0'5| | p<0'001), -,-)

(*)(Org 2,true,false,Buyer,FORBIDDEN,plow(t,q),-,-)
(*)Norms:(Id,Activation, Expiration, Target,Deontic,Action,Sanction,Reward)

Figure 4.7: mWater organizational view simplified diagram

4.5.3.1 Case study

In order to obtain a clear scenario to show how a ROMAS model is verified with
the ROMAS CASE tool, a simplified scenario of the mWater case study is presented
[64]. This system is a water market that is an institutional, decentralized framework
where users with water rights are allowed to voluntarily trade their water rights ful-
filling some pre-established rules. An introduction of this case study is presented in
Section 5.2.2 and a complete description of this case study modeled with ROMAS is
presented in [59].

o mWater Organizational view: Figure 4.7 shows a simplification of the mWa-
ter organizational view diagram where only the entities and relationships that
are related to the verification of the normative context are shown. There is an
organization called mWater that contains two types of roles Sellers and Buy-
ers. This organization restricts the behavior of these roles by means of two
organizational norms:

- Orgl mWater norm: It specifies that there is a minimum and maximum price
for the water, i.e., it is forbidden to pay more than 50 euro/kL or less than 1
euro/kL.

- Org2 mWater norm: It specifies that an agent who is playing the Buyer role
cannot offer services to other agents in exchange of water. This rule forces that
agents only can transfer water rights with money.

e Buying water rights contract: Figure 4.8.B represents the contract template
that indicates the restrictions that any contract for buying water rights should
fulfill. A contract of this type should have two signatory parties (one entity
playing the role Buyer and other playing the role Seller inside the mWater
organization. The clauses specify that the Buyer should plow the field of the
Seller in exchange of a water right. The formal specification of each norm is
presented in Figure 4.8.A.

4. ROMAS development framework 117

000
GiveWaterNorm A/A,{:I
PlowSenviceNorm % oF mater
3)
— S, R) 000
S~Cone, > gigratoy Seller -
AltemativeDisputeResolution *S®/utiop, MaxL\tersNorm\c,au o mWater
o—] CT Signalory%@ se- W,m\ﬂ“
S <—Negouan'onProm Buyer
M BuyingWaterContract &:& CT Jgnatory
BuyRightProtocol
uyRIgniFrotoc MaxSellProtocol) Seller
SellerSocialContract
(*)(GiveWaterNorm,true,false,Seller,OBLIGED,give_water(t,p,q),-,-)
(*)(PlowService Norm,true,false,Buyer,OBLIGED,plow(t,q) && t=Seller,-,-) (*)(MaxLitersNorm,true,false,Seller,FORBIDDEN,give_water(t,p,q) &&q>5$x)
A) (*)Norms:(Id,Activation,Expiration, Target, Deontic,Action,Sanction,Reward) B) (*)Norms:(Id,Activation,Expiration, Target,Deontic,Action,Sanction,Reward)

Figure 4.8: A)Buying Water Contract Template B)Role Seller Social Contract template

e Role Seller Social Contract template: Figure 4.8.B represents the contract tem-
plate that indicates the restrictions that any contract between the organization
mWater and an agent that wants to play the role Seller should fulfill. In other
words, any agent who wants to play the Seller role must sign a contract com-
pliant with this contract template. The norm associate to this contract template
indicates that the final contract should specify the maximum number of liters of
water that this agent can sell (Norm MaxLiters). The number of liters is defined
at runtime during the negotiation between the agent and the organization.

4.5.3.2 Technical details

RO2P (ROMAS to PROMELA code transformation) has been developed as an Eclipse
plug-in based on the Xpand language of the Model to Text (M2T) project [2]. As is
illustrated in Figure 4.1, Xpand helps developers to translate models that are defined
using the ecore standard into other languages. Xpand scripts apply transformation
patterns to the entities and relationship of the model and generate the related code.
This section details the Xpand transformation mapping rules between the ROMAS
metamodel and the SPIN verifiable language (PROMELA code and LTL formulas).
Since this plug-in is based on Xpand, it consists of a routine that specifies a set of
mapping rules defined at metamodel layer. The main routine of the RO2P plug-in is
presented in Figure 4.9 and it is described below.

e Figure 4.9, lines 4 to 7 create a set of lists to save the contract templates and
norms of the system, and the entities that are affected by these norms or con-
tracts (agents, roles and organizations).

e Figure 4.9, line 8 invokes the fillLists routine that navigates the model and ini-
tialize the lists defined above. The deontic attribute of the norms indicates that
they can be obligations, permissions or prohibitions. Norms of permission can

118

4.5. ROMAS module for formal verification

only produce a conflict if there is a prohibition over the same action. Therefore,
to create the verification model, we assume that the agent actually performs the
action. This means that permission norms are modeled as obligation norms.

In our case study (Figures 4.7 and 4.8), the contractList contains two con-
tracts (BuyingWaterContract and SellerSocialContract), the executerList con-
tains two roles (the role Seller and Buyer), the nForbiddenList contains three
prohibition norms (two organizational norms and one defined in the contract
template SellerSocialContract), and the nObligedList conatins two obligation
norms specified in the contract template Buying WaterContract.

Figure 4.9, lines 11 to 13 invoke the routine writeForbiddenNorms in order to
translate the norms whose deontic attribute indicates prohibition as LTL for-
mulas. These formulas are saved in a file called "LTL_Norms.pml". The code
of the routine writeForbiddenNorms is presented in Figure 4.10. Figure 4.10
line 68 creates a LTL formula that indicates that never occurs a forbidden ac-
tion. This LTL also adds the activation and expiration condition of the norm in
order to perform this verification only when the norm is active.

For example, the norm Org2 from the mWater organizational diagram which
is formalized as: (Org 2,true,false,Buyer, FORBIDDEN,plow(t,q),-,-) consider-
ing the following syntax: (Id, Activation, Expiration, Target, Deontic, Action,
Sanction, Reward), is translated to LTL as: Org2 []!(Buyer_task==plow). This
norm does not have activation or expiration conditions, so the LTL formula
only express that is not possible that a Buyer executes the task plow.

Figure 4.9, lines 14 to 18 create the file PromelaFile.pml where the PROMELA
code is saved by means of the execution of the following routines:

— writeExecuters routine (Figure 4.11): Each entity (agents, roles, organi-
zations) is represented by an active process (line 119). The core of this
process is a loop that checks its pending tasks and simulates its execu-
tion. Each party stores its pending tasks in a channel, which is a global
variable that is accessible for all the processes (line 113). If an agent is
obliged to execute a service, it is supposed to do that. Thus, the action of
the obligation norm is added to the channel of the corresponding agent.
This agent will simulate the execution of all the action of its channel. As
an example, Figure 4.12 shows the PROMELA code for the role Buyer
of the case study.

4. ROMAS development framework 119

— writeContracts routine (Figure 4.13): Each contract template is specified
as a PROMELA process (Fig. 4.13, line 83).

As an example, Figure 4.14 shows the PROMELA code for the BuyWater-
RightContrat template whose ROMAS diagram is shown in Figure 4.8.A.

The status of a contract is represented with a global variable (Fig.4.13
line 81 - Fig. 4.14 line 31). The expiration condition of a contract is
represented as the escape sequence of an unless statement which includes
all the tasks of the contract. This means that if the expiration condition is
satisfied, the contract will interrupt its execution (Fig.4.13 line 96 - Fig.
4.14 line 41). Each obligation and permission clause adds the action of
the norm to the channel of the corresponding executer that is simulating
the execution (Fig.4.13 lines from 89 to 94 - Fig. 4.14 lines 37 and 38).

— writelnit routine (Figure 4.15): This routine creates the Init process which
is the first process that is executed in a PROMELA code. This process
launches the executers processes and the contract processes when they
are activated.

In our case study, after generating the PROMELA code, the SPIN model checker
was executed from the modeling tool to verify that these contracts and norms were
coherent. The SPIN verification shows that the LTL formula Org2 mWater norm had
been violated. This means that there is an organizational norm or a contract clause
that is incoherent with the Org2 mWater norm. In this case, the conflict is produced
by the clause PlowService from the BuyingWater contract.

The Org2 mWater norm specifies that agents playing the Buyer role cannot provide
other services, whereas the clause in the contract specifies that the Buyer must pro-
vide the service Plow to the Seller.

Therefore, the designer should revise the design of the system and decide if this
norm is too strict or if such a contract cannot be performed inside the system. After
the redesign, the verifier module could be executed again.

4.5.4 Contributions and limitations

In this section we have shown how model checking techniques have been integrated
in the ROMAS CASE tool in order to verify the coherence of the normative context
of the system.

Model checking allows a full verification of distributed systems, however, it has seri-
ous scalability problems. The reason is that model checking expand all the possible

120 4.5. ROMAS module for formal verification

states of the system and verify that the property evaluated is not violated in any of
these states.

The verification module was successfully used to verify the coherence of the nor-
mative context of the case studies presented in Section 5.2. In order to analyze the
scalability of our proposal for verifying the normative context of the system, we have
performed two scalability tests.

As is described in this section, the verifiable models generated by the ROMAS tool
generate: (1) One LTL property for each prohibition norm that is in the normative
context to be evaluated. (2) One process for each role or agent. This process will
simulate the execution of each task that was assigned to it. (3) One process for each
contract. This process is responsible for sending the role processes a task for each
obligatory or permitted action that this contract contains. (4) An init process that
initialize the system. After few tests we have found that the most critical variable for
the scalability of the verification module is the number of obligation and permitted
norms, i.e., the number of actions whose execution the system has to simulate.

In our first scenario we analyze a system with only one prohibition norm (one LTL
property), one contract and one obliged action per role. The number of roles are
modified from 1 to 10, therefore the total number of actions increase also from 1 to
10. As Figure 4.16 shows that the maximum depth of the states expanded to evaluate
the design increases proportionally to the number of actions of the system. In the
same way, the verification time and the memory needed to perform the evaluation
increase also proportionally to the number of actions of the system.

In our second scenario we analyze a system with only one prohibition norm (one LTL
property), two roles and a variable number of contracts. The number of contracts
varies from 1 to 6. Each contract assigns one action to one role, in that sense, each
role executes as many actions as contracts divided by 2. Although in both scenarios
the total number of actions increases the main difference is that in the first scenario
the number of actions per role is fixed to one, whereas in the second scenario the
number of roles is fixed but the number of actions that each role executes is variable.
As Figure 4.17 shows, in this case the maximum depth of the generated graph and the
memory usage increase faster than in the previous case. The verification of a system
with 6 contracts, i.e., a system where two roles execute three actions each need a
huge quantity of memory.

In the light of the results of the scalability tests, it is obvious that techniques for im-
proving the scalability of our verification module should be investigated and imple-
mented. This is an ongoing work and there are lots of open issues on the verification
of ROMAS models such as the verification of the coherence of the individual and
global objectives, between the commitments of the entities of the system and their

4. ROMAS development framework 121

capabilities, and so on.

Since the ROMAS CASE tool has been implemented as a set of Eclipse plug-ins,
it would be easy to add new plug-ins that implement these verifications. The archi-
tecture of these new verification modules could be similar to the verification module
presented in the previous section. First a set of Xpand transformation patterns would
be defined and then the results of these patterns would be verified using the integrated
SPIN model checker.

4.6 Conclusions

This chapter presents the ROMAS development framework. It is a CASE tool based
on MDD technology and implemented as a set of Eclipse plug-ins. The use of Eclipse
technology facilitates the extensibility of the system and its interoperability with
other Eclipse tools and with any tool that follows the ecore standard.

The modeling tool supports the design of normative open MAS based on the ROMAS
metamodel. It means that this tool allows to explicitly design the social and normative
context of a system by means of norms and contracts. The tool offers one graphical
editor for each view of the ROMAS metamodel (organizational, internal, contract
template and activity view). This fact allows representing the model in different
diagrams facilitating the design of the system and increasing the clarity of the models.
The development framework also allows the verification of the coherence of the nor-
mative context of the system by means of model checking techniques. Verifying the
coherence of the normative context is an important topic in the development of nor-
mative open systems. Due to the fact that these systems commonly integrate several
legal documents and specific regulations, there is a high risk of conflict in the spec-
ification of the normative context. Detecting and solving these conflicts at design
time produces more trustworthy systems and may avoid critical situations and the
implementation of uncorrect systems.

The integration of the design and the verification of the models in the same tool
facilitates the modeling task. Besides, this tool is prepared to integrate different code
generation modules in order to generate platform execution code from the verified
model. At the moment there is an ongoing work that is generating a code generation
module from ROMAS models to code for the Thomas platform.

This development framework has been successfully used to design and verify several
case studies [57, 61, 60]. However, as is described in Sections 4.4.3 and 4.5.4, the
ROMAS development framework is an ongoing work that still have some open issues.

122 4.6. Conclusions
1| «I MPORT ronas »

2 | «DEFI NE root FOR ronas_nodel »

3 REMp [* %% * ko VARI ABLES *****xxxkkikriss | «ENDREM»

4 «LET (List[ContractTenplate]) {} AS contractList »

5 «LET (List[Executer]) {} AS executerList »

6 «LET (List[Nornl) {} AS nForbiddenList »

7 «LET (List[Nornl) {} AS nObligedList »

8 GREMp [% %% % % skok % Prepare the |ists *******x*%x%x/ «ENDREM»

9 «EXPAND fillLists(contractList, executerlList,nForbiddenList,nObligedList) FOR this»
10 CREMp [%% * %k okox Transl ate Forbi dden Norms *****xxx**/ «ENDREM»
11 «FILE "LTL_Norns" + ".pm" »

12 «EXPAND wr i t eFor bi ddenNor ns FOR nFor bi ddenLi st »
13 «ENDFI LE »
14 «FILE "Pronel aFile" + ".pm" »
15 «EXPAND writeContracts FOR contractlList »
16 «EXPAND writeExecuters FOR executerlList »
17 «EXPAND writelnit(contractList, executerList)»
18 «ENDFI LE »
19 | «ENDLET » «ENDLET » «ENDLET » «ENDLET » «ENDDEF|I NE»
Figure 4.9: Xpand script: Main routine

65 | «DEFI NE writ eFor bi ddenNorms FOR Li st[romas:: Nornj»
66 «FOREACH this AS item»
67 /*Norm «i tem I d»:: «item Description» */
68 Itl «itemld» {[]! («itemActivation» & (!«item Deactivation») && «item Action»)
69 «ENDFOREACH»
70 | «<ENDDEFI NE »

Figure 4.10: Xpand script: writeForbiddenNorms routine
110 | «DEFI NE writeExecuters FOR List[romas:: Executer]»
111 #define max_tasks 5
112 | «FOREACH this AS execu»
113 | chan «execu. Name»_Pendi ng = [nax_t asks] of {ntype, ntype}
114 ntype «execu. Nane»_t ask;
115 ntype «execu. Nanme»_par amni;
116 ntype «execu. Name»_par ang;
117
118 | /*Signatory party «execu. Name»:: «execu. Description»*/
119 | proctype «execu. Name»() {
120 end:
121 do
122 «execu. Nane»_Pendi ng ?? «execu. Name»_norm d , «execu. Nane»_Acti on
123 od;
124 | }/ *end «execu. Nanme»*/
125 | «ENDFOREACH» «ENDDEFI NE »

Figure 4.11: Xpand script: writeExecuters

23 | proctype Buyer(){

24 | end:

25 do

26 1. Buyer_Pending ?? Buyer_task , Buyer_target;
27 od;

28 | }/*end Buyer*/

Figure 4.12: mWater Buyer role in PROMELA

4. ROMAS development framework 123

78 | «<DEFINE writeContracts FOR List[ronmas:: Contract Tenpl ate] »
79 | ntype ={no_initated, executing, finished, interrunped}

80 «FOREACH this AS cont »

81 | ntype «cont.|d»_state=no_initiated;

82 | /*Contract Tenpl ate «cont.|d»::«cont. Description»*/

83 | proctype «cont. ld»(){

84 «cont . | d»_st at e=execut i ng;

85 {«LET (List) cont.clause AS norniist»

86 do«FOREACH nor nLi st AS nor malL2»

87 «LET (Norm) normalL2 AS norma »

89 «| F nornma. Deontic.toString()=="0BLIGED" || norna.Deontic.toString()=="PERM TTED" »
90 1« F norma. Activation !=null »«norma. Acti vati on»- >«ENDI F»

91 «FOREACH nor na. Target AS targ»«targ. Name»_Pending ! «norma. | d» «norma. Acti on» 0; «ENDFOREACH»
92 «ENDI F»

93 «ENDLET» «ENDFOREACH»

94 od; «<ENDLET»

95 «cont . | d»_st at e=fi ni shed;

96 }unl ess(«cont . Expi ration»);

97 | } /*end contract «cont.|d»*/
98 | «ENDFOREACH» «ENDDEFI NE»
99

Figure 4.13: Xpand script: writeContracts

31 | ntype BuyWaterRi ght Contract_state=no_initiated;
32 | /*Contract Tenpl at e BuyWat er Ri ght Contract:: Description*/
33 | proctype BuyWater Ri ght Contract () {

34 BuyWat er Ri ght Cont r act _st at e=execut i ng;
35 {

36 do

37 citrue->Seller_Pending ! nornl give_water O;
38 ::true->Buyer_Pending ! nornk plow O;

39 od;

40 BuyWat er Ri ght Contract _st at e=fi ni shed;

41 Yunl ess(false);

42 |} /*end contract BuyWaterRi ght Contract*/

Figure 4.14: mWater BuyWaterRightContrat in PROMELA

141 | «<DEFINE writelnit (List[ContractTenplate] contractList, List[Executer] executerList) FOR romas_nodel »

142 init(
143 | «FOREACH executerList AS execu»
144 run «execu. Name»();

145 | «ENDFOREACH»
146 | «I F !contractList.isEmpty»

147 do

148 «FOREACH contractLi st AS contr»

149 :: («IF contr.Activation !=null» «contr.Activation» & «ENDI Fr«contr.|d»_state==no_initiated) ->
150 | run «contr. ld»();

151 «ENDFOREACH»

152 od;

153 | «ENDI F»

154

)
155 «ENDDEFI NE »

Figure 4.15: Xpand script: Init process

124

4.

6. Conclusions

Increasing number of roles

70
- //
” /
40 /
” /
20 =
10
0
1 2 3 4 5 6 7 8 9 10
e MEMORY USAGE (MB)| 4,81 | 4,81 | 4,81 | 4,81 | 4,81 | 4,81 | 4,81 | 5,00 | 5,20 | 5,69
= DEPTH REACHED 19 24 29 34 39 44 49 54 59 64
e TIMIE (sECS) 049|044 048|049 | 0,5 | 054055057 (057]| 0,61
Figure 4.16: Scalability test 1
Increasing number of contracts
1400
1200 /
1000 /
800 /
600 /
400 /
200 7
0 — -
1 2 3 4 5 6
= MEMORY USAGE (MB) 4,81 4,81 4,90 6,86 49,34 1297,60
== DEPTH REACHED 20 34 48 62 76 90
e T|MIE (s€CS) 0,44 0,5 0,61 0,72 0,81 1,2

Figure 4.17: Scalability test 2

CHAPTER

5

ROMAS approach evaluation

This chapter analyzes to what extent the ROMAS approach supports the development
of normative open MAS.

The rest of the chapter is organized as follows: Section 5.1 analyzes how ROMAS
supports the development of normative open systems by means of re-visiting the cri-
teria presented in Section 2.3. Section 5.2 presents some of the case studies modeled
using ROMAS and analyzes the lessons learned from the application of this method-
ology. Section 5.3 summarizes the main conclusions of the ROMAS evaluation.

5.1 ROMAS for developing normative open MAS

This section revises the requirements for developing normative open MAS presented
in Chapter 2 in order to analyze to what extent ROMAS supports the development of
systems of this kind. This analysis is based on the criteria for evaluating the support
of the development of normative open MAS presented in Section 2.3. The evaluation
criteria are divided in three categories as presented in Chapter 2.

The rest of this section explains the results obtained when evaluation ROMAS fol-
lowing these criteria. Table 5.1 summarizes the results of the ROMAS evaluation.

125

5.1. ROMAS for developing normative open MAS

126

uonenreas SVINOY *1°S 21qBL

pauoddng pauoddns A[fenteq pauoddns JoN pauoddns JoN pauoddns JoN pauoddns A[renieq papiaoig
JX9)UOD AIRULIOU JX9)UOD SANRULIOU S9OUQ)SISUOD syuowaInb
Ay Jo AIqesde1], | Yy Jo QdULISYOD) S1SQL, | -UI JO UONEOYLIdA | -3I 9y} JO UOHBPI[EA uonerouas opo) 100} SurfepoIN
NDISHA TVNIA HH.L 40 NOLLVI'TVAH
(sourpopmng sewr
pauod -100) Suneidaur u3is
pauoddns joN | -dns A[renreg paoddng pauoddng poyoddng payoddng | Aq) poyoddng | -op pue sisAeuy
S[00 SJuoWaI3e SULIOU SIOPIS sjuow suLIou Q[oKoaJI]
-ojoxd joenUO) [emoenuO) | -U0d AIMONNS u3Isop wasAS | -noop [eso1 JuowaInboy AIMONNS [e100§ | 9y) Jo 93eI19A0)
SSHDO0Ud INHNJOTHAHA HHL ONTINA LI0ddNS
payoddng payoddng | poyoddng payoddng pauoddng pauoddng pauoddng pauoddng pauoddng pauoddng
S10B1UOD

SJuoWRI3e sjoen diysuoney SuLIou suIou SIX9JU0D

[emoenuo) | -uod 9ol Ae[d | -9I [BI00S [eImonng SULIOU JUS3Y | SULIOu 9[0y | [euonmnsuf QATJEWLION SOOIAIRS juoneZIUB3IO
SNOLLDOVILSAV NDISHA

5. ROMAS approach evaluation 127

5.1.0.1 Design abstractions

ROMAS methodology is focused on the analysis and design processes for developing
organizational multiagent systems where agents interact by means of services and
where social an contractual relationships are formalized using norms and contracts.
Table 5.1 summarizes which design abstractions for developing normative open MAS
the ROMAS approach integrates into its architecture, metamodel and tools. More
details about how the ROMAS integrate these design abstractions can be consulted
in Chapter 3 and a summary is presented below.

In ROMAS, organizations represent a set of individuals and institutions that need to
coordinate resources and services across institutional boundaries. Organizations can
represent real-life institutions and simulate their functionality and structure. On the
other hand, organizations can also be used as an abstraction that represents a set of
entities that have common properties, objectives or regulations.

ROMAS architecture is based on a service-oriented paradigm. The specification of
interchanges of functionality and products by means of services at design time al-
lows the designer to focus on what every entity should provide and not on how it is
going to be provided. ROMAS also allows to detail how each entity implements the
services that provides by means of the specification of tasks and messages. Since
the profile of the service is specified separately from the process, different possible
implementations can be designed for a service.

ROMAS includes into its metamodel and development process the identification and
specification of role, agent, structural and institutional norms. Norms in ROMAS
are used to restrict the behavior of the entities of the system. Role norms indicate
the norms that any entity playing that role should fulfill. Agent norms are the norms
that are associated to a specific entity because of its individual design requirements.
Structural norms formalize the structure of the system by means of norms. This
fact allow entities to reason and modify the structure of the system at design time.
Institutional norms indicates the norms that any entity that is member of an organiza-
tion should fulfill. Since organizations allow specifying different normative contexts,
some norms that are active in one organization or context could not be valid in other
contexts.

ROMAS also includes the specification of social relationship contracts, play role con-
tracts and contractual agreements. Contracts are used to formalize the relationships
between entities. These contracts are completely specified by means of the contract
template view of the ROMAS metamodel.

128 5.1. ROMAS for developing normative open MAS

5.1.0.2 Support during the development process

ROMAS methodology is structured in five phases that covers the analysis and design
of normative open MAS. This is not a linear process but an iterative one, in which
the identification of a new element of functionality implies the revision of all the
diagrams of the model and the work products produced, so it requires to go back to the
appropriate phase. ROMAS specifies a sequences of tasks that should be performed
in order to analyze and design the system. These sequences of task are supported by
a set of guidelines. The results of these tasks are formalized by means of instances of
the ROMAS metamodel.

The first phase, called system specification, includes a set of guidelines for analyzing
the system requirements, the goals of the system and the use cases. It also provide a
guideline that help developers to check the suitability of the ROMAS methodology
regarding the requirements of the system to be developed.

The second phase, called organization specification, includes guidelines for analyzing
the social structure of the system. First, ROMAS offers a guideline for identifying the
roles of the system. Second, in order to define what is the best way to structure these
roles the GORMAS guideline is integrated [9]. The integration of this guideline is
possible because both metamodels share the same concepts of role, organization and
agent. Also, both methodologies have been specified using the FIPA standard Design
Process Documentation Template so the social structure guideline can be directly
reused in ROMAS.

The third phase, called normative context specification, includes a set of guidelines
for identifying and formalizing the normative context of the system, i.e. the norms
and contracts that regulate the behavior of the system. Three guidelines are included:
(1) Organizational norms guideline that specifies a step-by-step process to identify
and formalize restrictions on the behavior of entities gained from the analysis of
system requirements. (2) Normative document guideline that specifies a step-by-step
process to analyze normative documents in order to identify which restrictions must
be implemented in the system. (3) Social contracts guideline that specifies a step-by-
step process to identify and formalize social contracts inside a specific organization
regarding the role’s specification and the structure of the organization. ROMAS also
integrate the verification of the normative context into the development process.

The fourth phase, called activity specification, guides developers during the specifi-
cation of each task, service and protocol by means of instances of the activity model
view of the ROMAS metamodel. However, ROMAS does not provide guidelines
that automatize and facilitates the selection of the most suitable implementation for a
specific task, service or protocol. This is an open issue in ROMAS.

5. ROMAS approach evaluation 129

The fifth phase, called agent specification, includes a set of guidelines for analyzing
the specific requirements of each agent and for selecting which roles should be played
in order to achieve their objectives.

5.1.0.3 Evaluation of the final design

ROMAS methodology is supported by a CASE tool called ROMAS tool. As is de-
scribed in Chapter 4, this case tool allows modeling normative open MAS follow-
ing the ROMAS metamodel. Using the Eclipse modeling technology, this case tool
provides an automatic code generation plug-in that transform ROMAS models into
executable code for the Thomas platform. However, only skeletons of agents and
organizations are generated. At the moment the normative context of the system is
not translated. The development of this plug-in is an ongoing work that is out of the
scope of this thesis.

ROMAS integrates in its development process the evaluation of the coherence of the
normative context. This guideline is integrated in the case tool by using the Eclipse
modeling technology and the Spin model checker (see Section 4.5). However, the
ROMAS tool does not offer any tool to validate the requirements and verify that
there is no inconsistencies between the individual behavior of each entity and the
global behavior of the system.

ROMAS does not support the creation of simplified systems prototypes to simulate
the behavior of the system. This property would be very useful to experimentally
verify the designs and to simulate systems.

ROMAS methodology offers traceability between the requirements of the system and
the norms and contracts that form the normative context of the system. Norms and
contracts are identified and formalized by means of guidelines that show the specific
path that has been followed in order to formalize them. Moreover, the norms identifier
attribute is defined following a standard process that allows to trace their origin. The
traceability property is very useful to avoid reimplementing the whole system when
part of the specification of the system or its normative environment change.

5.1.1 Comparison with other agent methodologies

The analysis of ROMAS using the criteria presented in Section 2.3 is used to compare

ROMAS with the methodologies studied in Chapter 2. Tables 5.2 and 5.3 summarizes

the results of this comparison'.

'The content of these tables are the union of the Tables 2.2, 2.4 and 2.6, and the Table 5.1. So,
Tables 5.2 and 5.3 do not add new information but they are introduced for clarity reasons.

130

5.1. ROMAS for developing normative open MAS

| OMASE] OPERA | TROPOS] GORMAS | ROMAS
DESIGN ABSTRACTIONS
Organizations | Supported Supported Partially sup- | Supported Supported
ported
Services Supported Supported Not sup- | Supported Supported
ported
Normative Supported Supported Not sup- | Supported Supported
contexts ported
Institutional Supported Supported Not sup- | Supported Supported
norms ported
Role norms Supported Supported Not sup- | Supported Supported
ported
Agent norms Supported Not sup- | Not sup- | Supported Supported
ported ported
Structural Not sup- | Supported Not sup- | Supported Supported
norms ported ported
Social re- | Not sup- | Supported Partially sup- | Not sup- | Supported
lationship ported ported ported
contracts
Play Role | Not sup- | Supported Partially sup- | Not sup- | Supported
contracts ported ported ported
Contractual Not sup- | Supported Partially sup- | Not sup- | Supported
agreements ported ported ported

SUPPORT DURING THE DEVELOPMENT PROCESS

Social struc- | Provided Provided Not provided Provided Provided (by
ture integrating
GORMAS
guideline)
Requirement Partially pro- | Partially pro- | Notprovided | Partially pro- | Provided
norms vided vided vided
Legal docu- | Not provided Not provided Not provided Not provided | Provided
ments
System Considered Considered Not consid- | Considered Considered
design ered
Structure Part of the | Part of the | Not consid- | Supported Supported
considers normative normative ered
norms system is | system is
analysed analysed
before but it | before but it
is not inte- | is not inte-
grated in the | grated in the
guideline. guideline.
Contractual Not provided Partially pro- | Not provided Not provided | Partially pro-
agreements vided vided
Contract pro- | Not provided Partially. Not provided | Not provided | Not provided
tocols It offers a
library of
patterns for
interaction
protocols.

Table 5.2: ROMAS comparison I

5. ROMAS approach evaluation 131

| OMASE | OPERA [TROPOS [GORMAS | ROMAS
EVALUATION OF THE FINAL DESIGN
Modeling Provided Provided Partially Provided Provided
tool provided.
The tool does
not support
norms and
contracts
Code genera- | Partially pro- | Partially pro- | Not provided Partially pro- | Partially pro-
tion vided vided vided vided
Validation of | Not sup- | Not sup- | Partially sup- | Not sup- | Not sup-
the require- | ported ported ported ported ported
ments
Verification Not sup- | Not sup- | Not sup- | Not sup- | Not sup-
of inconsis- | ported ported ported ported ported
tencies
Tests Not sup- | Not sup- | Not sup- | Not sup- | Not sup-
ported ported ported ported ported
Coherence of | Partial verifi- | Partial verifi- | Not sup- | Not sup- | Partially sup-
the normative | cation in the | cation in the | ported ported ported
context case tool case tool
Traceability Not sup- | Not sup- | Not sup- | Not sup- | Supported
of the norma- | ported ported ported ported
tive context

Table 5.3: ROMAS comparison II

The main difference between ROMAS and O-Mase is that O-Mase does not include
in its metamodel the concept of contracts and only few types of norms are considered.
As is described in Section 2.1, the use of contract templates during the analysis and
design phases allows a complete specification of the legal environment of the sys-
tem and the relationships between entities without compromising how these entities
will implement their commitments. Entities can know what to expect from the other
entities.

Gormas methodology shares the concepts of organizations, roles, agents and norms
with ROMAS, however, Gormas does not include the concept of contract in its meta-
model.

The initial version of Tropos does not support norms nor contracts. Although Telang
at al. [111] enhances Tropos with commitments, nevertheless social contracts are not
supported and the proposed development process does not guide developers in the
identification or formalization of these contracts.

OperA metamodel differs from ROMAS in the definition of organization. In OperA
organizations are defined as institutions and the activity inside these institutions is
regulated by means of scenes. However, the semantic meaning and applicability is
quite similar to the ROMAS concepts. Both metamodels integrates the use of norms,

132 5.2. Case studies

social contracts and contractual agreements. The main contribution of ROMAS ver-
sus OperA is the integration of guidelines for identifying and formalizing the norma-
tive context of a system and the integration of the verification of the coherence of the
design during the development process. The lack of these kinds of guidelines is a
common issue in all the studied methodologies.

Comma [110, 113] and Amoeba [36] are business process methodologies. Although
these methodologies can be used to model normative systems, they do not support
the design of certain properties that ROMAS supports.

Comma is a methodology for developing cross-organizational business models. This
methodology begins from an informally described real-life cross-organizational sce-
nario and produces formal business and operational models. This methodology shares
some concepts with ROMAS such the concept of agent, role, goal, task and commit-
ment. However the purpose and the level of abstraction of ROMAS and Comma
are different. ROMAS is focused on the development of the system by means of
analyzing the global purpose of the system and the individual objectives of each
agent. Whereas Comma is focused on the specification of business models in terms
of agents, roles, goals, tasks and commitments. Comma does not specify the features
of each individual agent. Comma does not support the specification of different orga-
nizations and the social structure of the system is defined only by the commitments
between the entities.

Amoeba is a process modeling methodology that is based on commitment protocols
similarly to Comma. Amoeba is focused on the specification of business protocols
by means of roles, commitments and low-level interaction protocols. The Amoeba
approach is similar to Comma. but Comma lies at a higher level of abstraction con-
taining business goals, tasks, and commitments. Amoeba and ROMAS shares the
same concept of commitment (called contracts in ROMAS) and roles, however RO-
MAS analyzes the system from a higher level of abstraction and also details the social
structure and the features of each individual entity.

5.2 Case studies

This section analyzes the usability and benefits of using the ROMAS methodology by
means of the analysis of the results when developing different case studies with RO-
MAS. The selected case studies from different application domains allow analyzing
the ROMAS methodology from different dimensions.

Following these case studies are introduced and the lessons learned during their de-
velopment are discussed.

5. ROMAS approach evaluation 133

5.2.1 CMS case study

The conference management system (CMS) is a system to support the management
of scientific conferences which involves several aspects from the main organization
issues to paper submission and peer review, which are typically performed by a num-
ber of people distributed all over the world. The analysis and design of this case
study has been detailed in Chapter 3 where it has been used as a running example to
exemplify the different phases of the ROMAS methodology.

5.2.1.1 Lessons learned and benefits of applying ROMAS

This is a common case study in MAS to analyze and exemplify new metamodel
proposals and development process approaches [35, 126].

DeLoach et al. [35] present the design of this case study using three different method-
ologies (O-Mase, Tropos and Prometheus). The social structures of this case study
designed after applying these methodologies are quite similar between them. Com-
paring these designs with the design obtained by ROMAS we can conclude that there
are several similarities. For example, the roles or the system are mainly the same.
The main differences are due to the fact that in the ROMAS analysis we assume that
different and independent conferences that may have its own requirements, features
and legal environment can be integrated in the system.

As is shown in [35], designing the CMS case study with a non normative approach is
possible. However, the CMS system has a complex normative context derived from
several legal documents and internal legislations of the institutions participating in the
system that bounds the behavior of the entities of the system. A design that does not
analyze this normative context will rely on the expertise of the developers to include
these restrictions on the final implementation. Also, the explicit representation of the
norms of the system facilitates the communication with the domain expert and the
verification of the correctness of the design.

In ROMAS a set of guidelines guides developers when identifying and formalizing
the normative context of each entity of the system. Developing such a system without
a complete development process and without guidelines that help the designers to
identify and formalize the normative contexts of the system would require a lot of
expertise of the designer. Even for an expert designer it would be easy to miss key
design constraints that could be critical for the system.

The use of contracts in the design of the CMS case study creates a flexible system in
a regulated context. Developers know exactly what is the expected behavior of every
entity and that, as long as, they follow the norms of these contracts their implemen-

134 5.2. Case studies

tation will be able to be integrated in the system.

5.2.2 mWater virtual market

Garrido et al. [64, 63] presents a case study, called mWater, that can be used as a test
bed for agreement technologies. The mWater system is an institutional, decentralized
framework where users with water rights are allowed to voluntarily trade their rights
with other users, in exchange for some compensation, economic or otherwise, but al-
ways fulfilling some pre-established rules. In this virtual market based environment,
different autonomous entities, representing individuals, groups of irrigators, indus-
tries, or other water users, get in contact in order to buy and sell water rights. They
are able to negotiate the terms and conditions of the transfer agreement following
normative laws. The control of the water supply is distributed by means of water
basin institutions, where each basin institution controls the transfer of water rights
within their basin. In order to perform an inter-basin transfer, the agreement should
be authorized by the government of the country.

5.2.2.1 Applying ROMAS

In this section a brief overview of the results obtained when applying the ROMAS
methodology to the mWater case study is presented. Further details about how the
ROMAS methodology has been applied to this case study can be consulted in [59].
Figure 5.1 presents the global structure of the mWater system using the ROMAS
metamodel diagram. The system is composed of two main roles: the Government
Authority role is the maximum authority in the system, and is responsible for control-
ling the interchange of water rights among basins, and maintaining the InterBasins
Contracts database; the Basin Authority role represents the highest authority of each
basin institution, and is not played by an individual entity but by an institution.
Every Basin Authority institution has the following roles: Water user role that repre-
sents the individual entities that are registered in the system as Buyers or Sellers to
negotiate and interchange water rights. Figure 5.1 specifies that the role Buyer can be
played by Irrigator communities or Industries, i.e., this role can be played by individ-
uals or by organisations as a whole. The Jury role is responsible for solving disputes
between Water users. The Basin Manager role who is responsible for registering the
agreements in the Basin Contracts database, for ensuring the stability of the market
by controlling the fulfillment of contracts and norms, and for maintaining the Right
Holders database, updated with the information of the status of each water right.
Three types of normative documents are attached to the system (Figure 5.1). The

5. ROMAS approach evaluation 135

Main structure Legal context

National Hydrological Plan

Authority

Basin Authority
Government Authority plays

QIO O =

Basin Legislation

Basin Institution

WaterUser

Basin Manager Jury
Seller

Community Legislation
Industry Irrigator Community

Figure 5.1: mWater case study diagram

136 5.2. Case studies

whole system follows the governmental norm specified in the National Hydrologi-
cal Plan that should be fulfilled by any entity and institution that wants to negotiate
water rights inside the market. In addition, each Basin Institution has its internal reg-
ulation that affects all interchange of water rights performed inside this water basin.
Beyond that, Irrigator Communities should define their own Community regulation
document in which they describe the internal norm that any irrigator that pertains to
this community must follow. In this sense, any agent inside an Irrigator Community
must follow the norm of its own community, the legislation of its own Basin and the
National Hydrological Plan. To implement a system coherent with the current norm,
the National Hydrological Plan document and all internal legislation of each Basin
and each Irrigator Community has been analyzed.

One play role contract template has been defined for each role of the organization in
order to establish the rights and duties that any agent playing this role should fulfill.
Therefore,six play role contract templates has been formalized: one for each role of
the main organization (Basin Authority and Governmental Authority), and one for
each role described inside the Basin Institution organization.

Following ROMAS, one social relationship contract template should be defined for
each pair of roles that must interchange services and products as part of the social
structure of the organization. Contracts of this kind should be negotiated and signed
by the related entities and not by the organization as whole. However, as is specified
in ROMAS, if the terms of the contract are not negotiated by the entities, and the
relationship between these agents is determined by their organization, it is not nec-
essary to create a social relationship contract. Instead, the rights and duties of each
role over the other are included in their respective play role contracts. In the mWater
case study there is an authority relationship between the Government Authority role
and the Basin Authority role. The terms of this relationship are specified by the main
organization of the system regarding the current legislation. Therefore, the rights and
duties from one entity to the other are formalized in their respective play role contract
and no social relationship contract is created.

The mWater organization establishes some restrictions that every transaction in this
market should follow. These restrictions are specify in the sales contract template
presented in Figure 5.2. In this sense, any contractual agreement performed inside
the system will fulfill the restrictions established in this contract template.

The model shows that only agents who play the role of Seller and Buyer can par-
ticipate in such a contract. Designers recommend the BuyRight Protocol in order to
define completely this type of contracts. The agent who plays the role MarketFa-
cilitator is the responsible for verifying the correctness and coherence of the final
contract. The agent who plays the role Jury will mediate and judge if there is any

5. ROMAS approach evaluation 137

MinimumPrice Seller Buyer
InformCommunity “‘*‘r n?{ /

% q‘g e BasipRegulatinAthority

VI, S, o, y
&—& < "Tems 7 ¢ onputhorty
o Reguiet
AlternativeDisputeResolution Crﬂesﬂ"m}, ;que/—/t’@
T * Jury
— | ola
Protad ry:
S P ()

SalesContract

RightProt
BuyRightProtocol MarketFacilitator

Figure 5.2: mWater sales contract template

Complaint related to this contract. In order to solve the conflict, the protocol Alterna-
tive Dispute Resolution will be executed. Moreover, the contract template specifies
that the agent who plays the role of BasinRegulatinAuthority will be main authority
in the context of this contract.

Every Sale Contract should include the norm MinimumPrice=(FORBIDDEN, price <0.07
eur/liter), which means that it is forbidden to sell water for less than 0.07 eur/liter. The
norm InformCommunity=(OBLIGATION, Seller, inform(mWaterOrganization)), means that
the Seller should inform the community about the final terms and conditions of the
agreement. It is a Soft Term, i.e., it is only a recommendation. Therefore, during the
negotiation process the signants will decide if this norm should be included or not in
the final contract.

5.2.2.2 Lessons learned and benefits of applying ROMAS

The mWater case study is an open virtual market that shares many characteristics and
development challenges with any other type of virtual market. Therefore, the lessons
learned during the analysis and design of this system could be extensible to other
virtual markets case studies.

One of this challenges is the development of an open environment where entities can
be integrated at runtime. ROMAS deals with this challenge by means of standard
web services and the specification of social contracts that clearly define under which
terms an agent can acquire a role in the system.

Another challenge is how to regulate the interchanges of services or products. The
specification of contractual contracts has been very useful to explicitly represent re-
strictions on the contractual agreements that the entities of the system can perform.
The application of the ROMAS methodology to the analysis and design of the mWa-
ter system has created a complete design where the normative context of this system
has been explicitly formalized.

The development of the mWater case study with other methodology would imply the

138 5.2. Case studies

following issues:

o If the methodology wouldn’t specify norms, the restrictions on the behavior
of the entities of the system should have been internally specified in the im-
plementation of each entity. Therefore, it would not be secure the integration
of entities that had been implemented outside the scope of the system. Basin
institutions software should have been revised and reimplemented before let-
ting them to be integrated in the system. Moreover, any change in the norms
of the system (e.g. a new legislation of the National Hydrological Plan) would
require to stop the system and reimplement it before restarting it again.

e If the methodology wouldn’t specify contracts, the water users, basin insti-
tutions and all the entities of the system should know in advance which are
the rights, duties and restrictions that they acquire when entering in the sys-
tem. They wouldn’t be able to negotiate specific conditions for each entity.
Moreover, the relationships between entities wouldn’t be formalized. This fact
implies that there wouldn’t be negotiations of the terms and that no specific
norm could be attached to any specific interaction.

e mWater system, as well as many other normative systems, has a complex nor-
mative context derived from several legal documents and internal legislations
of the institutions participating in the system. Developing such a system with-
out a complete development process and without guidelines that help the de-
signers to identify and formalize the normative contexts of the system would
require a lot of expertise of the designer. Even for an expert designer it would
be easy to miss a set of norms that could be critical for the system.

o In the case of the mWater system the verification of the normative context is a
fundamental task due to the necessity of verifying that the internal regulation
of each basin institution is coherent with the Hydrological National Plan.

5.2.3 ePCRN-IDEA system

Clinical trials are experiments by which the efficacy of medical treatments are ex-
plored. They involve recruiting patients with specific characteristics to undergo new
treatments, so that the effectiveness and safety of those treatments can be tested.
However, a key challenge in this is recruiting sufficient patients to ensure the results
are meaningful. This has long been a difficult problem as the requirements for par-
ticipation are often very strict, making it difficult to locate eligible patients. ePCRN-
IDEA is a new system under deployment in the UK healthcare system that notifies

5. ROMAS approach evaluation 139

practitioners in real-time whenever an eligible patient is in consultation. When a pa-
tient visits a clinic, e(PCRN-IDEA compares their details against a database of trials;
if the patient is eligible for one or more, the practitioner is prompted to try to immedi-
ately recruit the patient if they are interested. Further details about the ePCRN-IDEA
project can be found here [116].

Development of the ePCRN-IDEA system [117] has identified a number of core chal-
lenges, which are typical of similar systems in the health domain:

Integration of Independent Systems. In order to recruit eligible patients, it is nec-
essary for researchers, practitioners, patients, databases and clinics to interact. This
means that several independent institutions, which are completely autonomous and
have their own independent goals, must cooperate to achieve a common objective.
However, the integration of multiple heterogeneous and autonomous systems can be
a complicated and resource-consuming task. Some of the issues that must be solved
are [109, 108]: distributed data, technical interoperability, process interoperability,
semantic interoperability

Regulation of Independent Systems. Healthcare systems must fulfil strict governmen-
tal regulations concerning the privacy and security of personal patient data. More-
over, each research institute and clinic has its own regulations, specific goals, pri-
orities and restrictions to regulate the behavior of each of its members. Healthcare
systems must therefore often take into account several regulation environments.
System Evolution. Medical institutions are constantly adapting their systems to re-
flect new legislation, software and medical techniques. As these autonomous organi-
zations often operate with a range of aims and priorities, it is possible that changes
may take place without necessarily propagating to all other parts of the system. In
this respect, a change within one sub-system could result in violations of responsibil-
ities in another sub-system (e.g. by changing data formats). Healthcare systems that
consist of multiple organizations must therefore ensure some formal procedure by
which all parties understand and adhere to their responsibilities. To enable practical
deployment, institutions must also be contractually obliged to adhere to a standard
interaction mechanism and data format, although their internal process or storage
technology changes.

5.2.3.1 Applying ROMAS

This section presents a brief overview of the results obtained when applying the RO-
MAS methodology to the ePCRN-IDEA system. Further details about how the RO-
MAS methodology has been applied to this case study can be consulted in [61].

Figure 5.3 shows the main structure of ePCRN-IDEA in terms of the ROMAS key

140 5.2. Case studies

Main structure Q\
. . P G i
Patient. Recruitment ursues 000 overnmental regulation
ePCRN-IDEA
contains containscontains comamscom‘—"*}
/ Authority —
GPRDManager Researcher cssManager LEPISManager P
T Sl contains”! ,\ comaiz\s
contains contains
Related
organizations Requires
Research ofganization King’s/College /
Offers Offers Requires Clinic
izati Offers Requires Offers Requires Contains
GPRD orggnization Requires Offers
Research KCL regulation: %
Instituton E
GPRD regulations Clinic regulations Patient
regulations
Services
interchanged
A Insert/
Auth GP
uthorize ConsultResponses
i RegisterNewTrial .
CreateList UpdateLepis

Figure 5.3: ePCRN-IDEA organizational structure.

concepts of organizations, roles, norms and contracts, detailed below.

Organizations and Processes. Several organizations are involved in the key pro-
cesses performed in ePCRN-IDEA, as follows. When a research body wishes to cre-
ate a new clinical trial, they can inject it through a service called the Central Control
Service (CCS), which is hosted at King’s College London (KCL). The CCS stores
trials within a large database in a pre-defined format that all researchers must ad-
here to. Associated with each trial is a list of potentially eligible patients; these lists
are generated by the General Practice Research Database (GPRD), which operates a
large data warehouse containing over 12 million up-to-date patient records in the UK.
Following this, the trials and their eligibility lists are distributed to software agents
(called LEPIS agents) that operate on clinicians’ PCs at each participating clinic.
LEPIS agents then listen to the interactions between the practitioner and their local
Electronic Health Record (EHR) database, which is used to store information about
patients (e.g. diagnoses, treatments, demographic data etc.). During consultations,
LEPIS agents compare the patient information against the eligibility lists of all known
trials. If a patient is found to be eligible for a trial, the practitioner is notified, and
if the patient is interested, the system loads a Random Clinical Trial (RCT) website
provided by the research body responsible for the trial, allowing the patient’s recruit-
ment to be completed. Consequently, the following organizations are involved: KCL,

5. ROMAS approach evaluation 141

GPRD, the clinics and the research bodies.

Roles. The system is composed of six different roles presented below.

The GPRD Manager Role is responsible for updating and controlling access to the
GPRD database. It offers a service to pre-compute lists of eligible patients for in-
dividual trials based on complex search criteria (CreateList service). The role must
also offer a service to decide when a GP is authorized to perform recruitment for each
trial (AuthorizeGP service). The agent that plays the GPRD Manager role must also
play a role in the governmental body (represented as the GPRD organization), so it
must follow the special governmental legislation related to the management of this
kind of data.

The Researcher Role is responsible for defining the specific features of each trial
under its jurisdiction. Researchers are also responsible for inserting these trials into
the CCS database by means of the service offered by the CCS role (described below).
They are not allowed to directly contact patients unless they have agreed to participate
in a clinical trial under their supervision. For obvious reasons, each researcher should
be part of a specific research institution and follow its specific normative restrictions.
The CCS Role is a software application responsible for controlling the CCS database,
which stores data about active clinical trials. It offers three services to the other
members of the system: (i) a Register New Trial service that allows researchers to
inject new clinical trials in the database; whenever a Researcher tries to inject a new
trial into the CSS database, the CSS role must verify that this trial follows the spec-
ified standards and regulations; (ii) an Update LEPIS Database service that allows
the clinic’s local database to update its information about the active clinical trials;
and (iii) an Insert/Consult Patients Response service that allows the response of each
patient to be registered (whether they agree or refuse to participate in a trial). The
current implementation of the CCS role is performed by an agent that is part of the
KCL organization. Clearly, this agent must comply with established norms concern-
ing replication of information, privacy and programmed machines maintenance.

The CCS Manager Role is responsible for controlling the information in the CCS (i.e.
it has control over the CCS Role). Due to the specific requirements described by the
domain expert, there must be a human responsible for this. This role must be played
by a member of KCL, who must therefore comply with the restrictions and rules that
KCL establishes.

The LEPIS Manager Role is played by a software application that resides at a clinic
and investigates the eligibility of any present patient. There is thus a LEPIS agent
playing this role for each clinic participating in the recruitment system. LEPIS agents
use the CCS service to acquire information about the clinical trials related to the type
of patients that in which its clinic is specialized. LEPIS agents also provide the GP

142 5.2. Case studies

with a simple interface to notify them of a patient’s eligibility, as well as the option
to launch the RCT website if the patient is interested.

The GP Role represents a practitioner working in a clinic. If a GP wants to recruit
patients for trials, they must be previously authorized by the GPRD Manager. This
authorization involves the acceptance of some norms related to privacy, and specific
restrictions described for each clinical trial. Clearly, each GP must also comply with
the rules of their own clinic. Finally, patients are considered external entities for the
ePCRN-IDEA system because their interaction with the system is always executed
through their GP.

Norms and Contracts. The Governmental regulations related to the privacy of pa-
tient data and clinical trials are described at a system-wide level; i.e., every agent
playing a role inside ePCRN-IDEA should comply with them. At the same time,
each institution and clinic defines its own regulations, so the entities of the system
should follow the general governmental regulations and the restrictions established
by the institution to which they pertain. For instance, each LEPIS agent should fol-
low both global and clinic-specific regulations. The rights and duties that any specific
agent implementation must fulfil to play a role in ePCRN-IDEA are formalized by
means of a Social Contract. Even though contracts are dynamic entities that cannot
be completely defined at the design stage, designers can specify the predefined re-
strictions that all final contracts of a specific type should follow. These restrictions
are defined in a Contract Template, where Hard Clauses indicates mandatory clauses
that any contract of this type must contain and Soft Clauses indicate more flexible rec-
ommendations. Clearly, due to space constraints, a comprehensive set of norms and
contracts in ePCRN-IDEA cannot be listed; thus, we briefly cover a small number of
examples.

Figure 5.4 describes the LEPIS PlayRole contract template. It specifies that any agent
playing the LEPIS Manager role must detect changes in the EHR database and after
that it must check the suitability of this patient for any trials (Norm O.MatchTrial).
The contract template also recommends that the final contract includes a norm spec-
ifying that the local LEPIS database must be updated with new clinical trials every
day (Norm O.UpdateLepis). This clause is merely a recommendation so that at run-
time, LEPIS agents are able to negotiate with the ePCRN-IDEA organization exactly
how often they should update their local database. The remaining clauses relate to the
use of the local LEPIS databases and the service dependencies that LEPIS requires.
In this way, each clinic can implement its own LEPIS agent (if it complies with the
required contracts and norms), allowing each clinic to adapt the behavior of LEPIS
in line with its own priorities. For example, a clinic could decide that its LEPIS
agent should not increase patient queues; e.g. GPs should not be notified during busy

5. ROMAS approach evaluation 143

Lepis Manager ePCRN-IDEA

Signant O.clinic

_v
5
=
]
@

oftClau

7P.ResponsesDB

Lepis PlayRote

o
<
m
a
5
3
E

E ePCR NegotiationProtocol 0.UpdateLepis
ConflictResolutionProtocol
P.EHRdb
0.insertResponse AlternativeDisputeResolution LepisPlayProtocol

NORM ID NORM DESCRIPTION (Deontic,Target,Activation,Expiration,Action Sanction,Reward)
0.MatchTrial (OBLIGED, Lepis, Event(changesEHR), -, Match_Trial_Historical,,-)
0.UpdateLepis (OBLIGED, Lepis, DAILY, -, Request(UpdateLepis service),-,-)
P.EHRdb (PERMITTED, Lepis, -,-, Read(EHR database),-,-)
P.TrialDB (PERMITTED, Lepis, - -, Read(Lepis trial database),-,-)
P DB (PERMITTED, Lepis, -,-, Write(Lepis patient responses database),-)
P.consultResponse (PERMITTED, Lepis, -,-, Request(ConsultPatientAnswer service),-)
0.insertResponse (OBLIGED, Lepis, GPInsertResponse, - Request(InsertPatientResponse service),-,-)
0.clinic (OBLIGED, Lepis, -,-, Pertain(Clinic),-,-)

Figure 5.4: Phase 2: Lepis PlayRole social contract template

periods. Similarly, each entity that plays any role in ePCRN-IDEA can be adapted
to the different requirements and restrictions of its own institution. Each institution
would thus maintain its own technology, with different implementations of each role
interacting independently of the technological differences.

5.2.3.2 Lessons learned and benefits of applying ROMAS

In this section, we revisit the design challenges listed at the beginning of this section
to see how effective ROMAS has been.

Integration of Independent Systems. ROMAS offers an effective design platform for
modelling and integrating the different ePCRN-IDEA systems by enforcing a high-
level abstraction, using many real-world concepts (e.g. organizations). First, this
helps domain experts, who are typically not familiar with the relevant technology,
to gain a better understanding of the system. Beyond this, it also provides well de-
fined boundaries between different agents and organizations, allowing individual ob-
jectives and regulations to be specified, as well as maintaining the privacy of each
institution’s data and processes. Importantly, technical and semantic interoperability
challenges are also addressed by means of standardized web service interfaces.
Regulation of Independent Systems. The regulatory needs of ePCRN-IDEA fit well
into the ROMAS principles. Specifically, it allows different normative environments
for each clinic and research institution to be explicitly described and combined with
global governmental norms. This allows the behavior of the different entities to be

144 5.2. Case studies

formally constrained — an extremely important feature in the medical domain. Fur-
thermore, different vendors and technologies can be used to implement the agents
that play each role. For instance, each clinic could specify and implement its own
LEPIS agents according to its aims, restrictions and priorities, while maintaining the
stability of the system through global governmental regulations. This is particularly
important when potentially deploying agents across multiple research institutions and
clinics from different countries.

System Evolution. ROMAS offers an effective paradigm for assisting in system evo-
lution in ePCRN-IDEA. Through norm and contract regulation, each sub-system can
evolve while ensuring that it does not compromise its responsibilities to other parties.
Common examples include adaptation to new internal regulations or to the use of a
new software technology. Moreover, global system evolution can also take place by
publishing new contracts and norms, thereby forcing sub-systems to adapt.

5.2.4 The ceramic tile factory system

The manufacturing industry is an interesting domain for applying multi-agent tech-
nology, because on the one hand the high development level achieved by this technol-
ogy allows to tackle with complex problems fields, and on the other hand these sys-
tems require software applications that need to be inherently distributed, robust and
capable of adapting to the environment. Current manufacturing enterprises should be
flexible, responsive, adaptive, and able to cope with the variability of demand. Deci-
sions need to be made fast, be formalized, deal with vast amounts of data, fit business
objectives, be right, etc.

The aim of the ceramic tile factory system case study is to deal with a real production
programming problem in a ceramic tile factory [62]. This problem is considered as
one of the main critical issues in a ceramic tile company. It has normally been mod-
eled trying to maximize the simplification the environment conditions. Nevertheless
the related environment is in fact very dynamic and it reflects the dynamic conditions
and constant changes of the ceramic tile sector, such as new client requirements,
dynamical work entrance, the availability of machines due to breakdown, etc.

The software application to deal with this problem should be integrated in the ce-
ramic tile and interact with other departments of the factory.The main objectives of
this software application are: (1) Automatize the management of raw materials; (2)
Offer runtime information about the status of the production; (3) Simulate the execu-
tion of a Master Plan in order to help the Commercial department and the Purchases
and supplies departments to analyze the results of the execution of a plan; (4) Au-
tomatize, monitorize and manage the manufacturing process; (5) Offer a system that

5. ROMAS approach evaluation 145

helps coordinating different ceramic tile companies; (6) Schedule the tasks in order
to achieve the commitments of the Master Plan; (7) Re-schedule the tasks when there
is an event that invalidates the previous schedule. The causes for a re-scheduling can
be a break-down of a machine, the specification of a new Master Plan due to clients
requirements and so on.

This section briefly summarizes the results of applying the ROMAS methodology to
this case study and analyzes the lessons learned and the suitability of ROMAS for
developing this case study.

5.2.4.1 Applying ROMAS

During the first phase of the ROMAS methodology the requirements of the system
are analyzed and the suitability of the ROMAS methodology for the specific case
study is studied. The application of the guideline for analyzing the suitability of the
ROMAS methodology (see Table 3.9) shows the following results:

e Distribution: We are dealing with a distributed system where the information
is spread in different data bases that can be in different locations.

o [Intelligent systems: The system is composed of intelligent systems that can be
heterogeneous, proactive and that need to dynamically adapt their process and
behavior to handle changes in its requirements.

e Social structure: The system does not interact with external entities or insti-
tutions. The system is departmentalized and there are authority relationships
between its entities.

o Interoperability: All the entities of the system are implemented by the same
company for a specific tile factory, so the interoperability is not an issue.

e Regulation: The system do not have any legal or normative document associ-
ated. However, there are many dynamic restrictions derived from the commit-
ments specified in the Master Plan and the features of each machine.

o Trustworthiness: The specification of the system using a contract-based ap-
proach is not recommendable due to the following reason: (1) Although the
system interact with other departments of the company by providing informa-
tion about the status of the production, the system is not open to external enti-
ties that could play a role in the system. (2) All the entities of the system are
implemented by the same company and all of them are under the same sphere

146 5.2. Case studies

Main structure

Q\Pursues Requires
Production management
O Get Master Plan
Pursues

Inform status Production factory
production /

contains-contains contains

/ Containsjcom/ommS \m

Mangger Master plan Production Scheduler Scheduler . Scheduler Lot planner Scheduler creation
ot monitor Plan1 Manager ‘ execution monitor modificatipn controler ™" P coptroler
ers ers
Offers Offers Oflfers l Of‘fers

Internal
services

Inf 4 Inform task
rm
Inform Status Master Inform Plant Create schedule n Dschgdilr;ges sequence Inform resource

Plan configuration assigment

Figure 5.5: Ceramic tile production organizational view diagram

of control. (3) The relationships between the entities cannot be negotiated at
runtime.

In the light of the results of the requirements of the system and the results of the
ROMAS suitability guideline, we can conclude that the best option for developing
this case study is to use a methodology that deals with distributed, heterogeneous and
intelligent entities in a social environment. Therefore, the guideline concludes that
the ROMAS methodology could be used but it is not the best option and the use of a
simpler methodology is recommended.

Despite this results we decided to continuing designing the system following the
ROMAS methodology in order to evaluate how the methodology respond to these
kinds of systems.

Figure 5.5 shows the organizational view diagram of this case study. The system is
composed of the following roles: (i) Manager, responsible for the agent organiza-
tion, it maintains integrity between all agents in charge of defining and controlling
the schedule and regulates the cooperation among the different roles; (ii) Produc-
tion Plant Manager, that maintains information about actual plant configuration and
knows all restrictions and features of each machine and plant element; (iii) Sched-
uler, that has the ability to schedule tasks and resources; (iv) Schedule Execution
Monitor, that supervises actual execution of a schedule in a specific plant; (v) Mas-
ter Plan Monitor, that controls possible changes in the Master Plan (according to
schedule execution, modification and creation errors) and informs the Manager role
when it identifies an alteration that must be propagated to the Master Plan Genera-
tor Process; (vi) Schedule Modification Controller, that maintains information about
changes needed for adjusting the schedule because of failures in the manufacture pro-

5. ROMAS approach evaluation 147

cess; (vii) Lot Planner, that manages all information about the task sequence; (viii)
Schedule Creation Controller, that oversees the information about a new schedule
order, more specifically about resource assignment for a specific Master Plan Lot.
The analysis of the normative context of the system identifies the norms to specify
who can access to the resources and databases of the system and who can access to
the services of the system. One play role contract template is specified for each role.
Since there is no normative document attached to this case study, the terms of these
contract templates are only obligation norms that specify the tasks and services that
agents playing these roles should provide. These terms are not negotiable so there is
no negotiation protocol attached to these contracts.

5.2.4.2 Lessons learned and benefits of applying ROMAS

Previous works [67, 62] analyze this case study using the Ingenias methodology [95].
Comparing the designs obtained by ROMAS and Ingenias, we can observe that both
identify the same roles of the system and a similar social structure. This version of
the Ingenias methodology does not support the specification of services. Although
this case study is not an open system in the sense that external entities cannot become
part of the system, we consider that the use of services is interesting in order to
modularize the system. The specification of activities by means of services allows
parts of the system to be modified without affecting the rest of the system.

The conclusion obtained from the experience of designing this case study using the
ROMAS methodology is coherent with the recommendation offered by the ROMAS
suitability guideline, i.e., it is possible to design a system of this kind with ROMAS
but it is not recommendable. The main reasons are that using ROMAS we have gener-
ated diagrams that does not offer meaningful information and that we have followed
complex guidelines and steps with no result. For example, the play role contract tem-
plates are not useful here because there are no external entities trying to play these
roles, there is no possibility of negotiate the terms of these contracts, and because
they only specify the functionality of these roles. This functionality is also specified
in the internal view diagram that specify each role, so this information is redundant.
The identification and formalization of the normative context guidelines and steps of
the process are examples of useless steps of the process for this case study. There is no
legal document attached to this case study and the relationships between the entities
of the system are fixed by the requirements of the system and cannot be negotiated at
runtime.

The design offered by ROMAS would be interesting if the case study would include
the possibility of distributing the production among different companies. In that case,

148 5.3. Conclusions

contracts would be necessary to formalize and negotiate the commitments that each
company acquire. It would also be interesting if some of the entities of the system
could have been implemented by external entities. However, regarding the initial
specification of the case study a non normative and non contract-based methodology
is more suitable for developing this system.

5.3 Conclusions

ROMAS contributes to the state-of-the-art defining a methodology that guides devel-
opers during the analysis and design of normative open MAS. ROMAS methodology
deals with some of the open issues detected in Chapter 2:

e ROMAS integrates into its metamodel the most important design abstractions
for developing normative open MAS selected in Chapter 2 after the study of
the requirements for developing such systems. ROMAS integrates the con-
cepts of agent, role, organization, service, norm and contract during the whole
development process.

e Our experiences with the development of the case studies presented above
show the importance of these design abstraction in the analysis and design
of normative open systems.

The autonomous and heterogeneous entities that interact in a normative open
system are represented by means of agents. The social structure of the system
is specified by means of roles and organizations. Roles group functionality
into an abstract concept similar to a job in real-life systems. Organizations
allow to structure the system in different modules, create different normative
contexts and restrict the communication between different parts of the system,
simulate real-life institutions and group different agents in order to achieve a
common objective. Services allow to separate the functionality that is offered
or requested by an agent from the final implementation of these functionalities.
Services also provide a standard interface that facilitate the implementation of
open systems creating interoperable systems. Norms and contracts define the
normative context of a system. Norms restrict the behavior of the entities and
organizations of the system by specifying which behavior is permitted, obliged
or forbidden. The use of contracts to define the social and contractual relation-
ships between entities allows the system to operate with expectations of the
behavior of others, but providing flexibility in how they fulfil their own obli-
gations. The social structure of the system is represented by means of social

5. ROMAS approach evaluation 149

contracts between roles and the roles are defined by means of play contracts.
Therefore, the entities of the system can reason about their social structure at
runtime and changes this structure by means of changing the norms described
in these contracts.

e ROMAS offers a complete set of guidelines that guides developers from the
initial requirement analysis to the definition of concrete tasks and interactions.
The whole development process is guided by the global goals of the system
and it also takes into account the individual goals of each autonomous entity
that interact with the system.

The main contribution of the ROMAS methodology and what differs it from
any other approach is that it integrates int the development process guidelines
for identifying and formalizing the normative context of the system. ROMAS
also integrates the verification of the normative context of the system in the
development process.

The ROMAS development process and guidelines have successfully guided de-
velopers during the analysis and design of the case studies. This methodology
has allowed to analyze and formally represent during the design the require-
ments of those systems and their internal features and regulations.

Although ROMAS’ support during the development process is quite complete,
there are still open issues such as the lack of guidelines for selecting the most
suitable interaction or negotiation protocol regarding the requirements of the
system.

e ROMAS CASE tool supports modeling normative open MAS based on the
ROMAS methodology. This CASE tool also provides automatic verification
of parts of the normative context by means of model checking techniques. At
the moment the implementation of this CASE tool is an ongoing work. More
work is still needed in order to improve the scalability of the verification mod-
ule, increase the number of properties verified (like the coherence between the
individual and global objectives) and integrate simulation facilities.

e The description of the methodology using a FIPA standard method allow the
reuse of parts of the ROMAS methodology into other development process,
as well as, the use of other methodologies fragments into ROMAS. It also
facilitates the comparison between methodologies. It can reduce the time that
a system analyst needs to learn a new methodology.

150 5.3. Conclusions

e Our experiences with the case studies show that even when a system is going
to be implemented in an agent platform that does not support norms or con-
tracts the analysis and design of the system by ROMAS is beneficial. Using
ROMAS the system is completely specified and developers can know the ex-
pected behavior and restrictions of each entity of the system. In that sense,
the implementation of a system can be performed by different providers using
different technology because all of them know what to expect from the others.
At the moment there are some normative open platforms like Thomas [29], but
as far as we know, there is no agent platform that integrates contracts. If the
developer would like to use the abstraction of contracts in the implementation,
he/she would have to implement the contracts without the platform support.

CHAPTER

6

Conclusions

The increase of collaborative work, the decentralization of processes and the inter-
action of entities and institutions in regulated environments highlight the need of
new developing approaches. Multiagent systems technology has found a suitable
approach for dealing with systems of this kind, however there are still gaps in the
support that this technology offers. In this thesis we have addressed several of the
problems derived from the analysis and design of such systems, and have advanced
the state-of-the-art in clear and well-defined ways through the contributions in this
thesis.

Bringing the different aspects of the thesis together in this chapter, we step back and
review the thesis more generally, outlining our contributions and examining limita-
tions and possibilities for future work.

The rest of the chapter is organized as follows: Section 6.1 summarizes the main con-
tributions of this thesis. Section 6.2 presents some ROMAS limitations and our future
lines of work. Section 6.3 and Section 6.4 present the outcomes of this thesis. Section
6.3 introduces the software applications implemented during the development of this
thesis. Section 6.4 lists the works derived from this thesis that has been published in
international conferences and journals.

6.1 Main contributions of this thesis

Following the objectives described in Section 1.5 the main contributions of this thesis
are:

e A study of the requirements for developing normative open systems and the

151

152 6.1. Main contributions of this thesis

suitability of developing them using the multiagent systems paradigm.

e A discussion about to what extent current agent methodologies support the
development of normative open systems.

e The specification of a new MAS architecture and metamodel that allow the
complete specification of normative open MAS.

o The specification of a development process and a set of guidelines that help the
designer during the analysis and design of normative open MAS .

e The design and implementation of a development framework that includes a
modeling tool and a prototype module for formally verifying MAS designs.

As collaborative working increases in many domains, there is more and more demand
for large-scale, flexible and adaptive software systems to support the interactions of
people and institutions distributed in heterogeneous environments. In many cases,
the interacting entities are bound by rights, duties and restrictions, which influence
their behavior. Consequently, the supporting software should reflect this normative
and social context in any interactions it automates. Common to other work, in this
thesis we call systems of this kind as normative open systems. Section 1.1 extends
our definition of normative open system by detailing the main features of systems of
this kind.

In Section 1.2 we analyze how the properties of the multiagent systems paradigm can
be applied to the development of normative open systems concluding that MAS is a
suitable approach for developing these kinds of systems.

In order to perform a deeper analysis about what is necessary for developing nor-
mative open systems using a multiagent approach, Chapter 2 summarizes the most
important issues when developing systems of this kind and analyzes to what extent
current approaches support the development of these systems. The requirements for
developing these systems have been rewritten as an evaluation criteria questionnaire
that allows analyzing and comparing different approaches. Considering the general
study of the state of the art and the comparison of methodologies presented in the
previous section, we conclude that there is no complete methodological approach for
analyzing and designing normative systems. The most important open issues where
related to the lack of guidelines for identifying and formalizing the normative context
of the system, and the lack of verification tool to check the coherence, completeness
and validity of the designs obtained through the proposed development process. A
full list of the open issues is presented in Section 2.4.

6. Conclusions 153

Chapter 3 presents ROMAS a new methodology focused on the analysis and design
of normative open MAS. This methodology is designed in order to deal with some of
the open issues in the development of these kinds of systems. ROMAS is based on
a well defined metamodel that integrates the main concepts of agent, role, organiza-
tion, service, norm and contract. It offers an organizational structure where entities
interact between them by means of standard services and whose behavior is bounded
by norms and contracts. Norms in ROMAS indicate the actions that are permitted,
obliged or forbidden inside the system. Contracts are used to formalize the social and
contractual relationships between entities. Social contracts define the social structure
of the system as the result of a negotiation between the entities of the system in-
stead of specifying and fixed and inflexible structure. Contractual agreements are
formalized by means of contracts at design time in order to specify which kind of
relationships are allowed in the system and under which terms.

The ROMAS development process guides designers from the requirements analysis
and the formalization of the objectives of the system and the individual entities to the
low level specification of the contract templates that restrict the relationship between
the entities, the specification of each individual agent and the specification of the
interaction protocols. The whole process is supported by a set of guidelines that help
developers with design decision such how to identify the roles of the system and how
to identify and formalize the normative context of the system. The verification of the
coherence of the system is integrated in the development process.

The ROMAS development process is specified in Chapter 3 using the FIPA stan-
dard Design Process Documentation Template. The use of this template ensures the
completeness of the specification, facilitate the comparison of ROMAS with other
methodologies, reduce the learning time for users used to this standard and allows
to export and import development fragments from/to other methodologies specified
with this standard.

The ROMAS methodology is supported by a development framework as presented
in Chapter 4. It is a CASE tool based on MDD technology that was implemented as
a set of Eclipse plug-ins. The use of Eclipse technology facilitates the extensibility
of the system and its interoperability with other Eclipse tools or any tool that follows
the ecore standard. This framework is composed of a modeling tool that support the
design of normative open MAS based on the ROMAS metamodel, and a verification
module based on model checking techniques. The verification module allows the ver-
ification of the coherence of the normative context of the system. This development
framework has found useful to design and verify several case studies, however, it is
an ongoing work that still have open issues as is described in Sections 4.4.3 and 4.5.4.

154 6.2. Limitations and future work

The methodology and development framework presented in this thesis has been eval-
uated theoretically by means of the study of how this approach fulfills the evaluation
criteria questionnaire presented in Chapter 2 and the comparison with other current
methodologies. Our proposal was also evaluated empirically by means of its appli-
cation on different case studies from completely different domains and with a wide
range of different features. These evaluations, presented in Chapter 5 shows that RO-
MAS is a suitable approach for the development of normative open systems. ROMAS
contributes to the state of the art by offering a completely guided analysis and design
that is based on a solid metamodel. ROMAS metamodel allows a high-level abstrac-
tion design of systems of this kind by means of the specification of organizations,
services and contracts. This metamodel also allows a low level of abstraction de-
sign by means of the specification of individual agents, their internal features and the
detail about their interactions. The development guidelines offered by the ROMAS
development process have found very useful when designing large and complex sys-
tems.

Next section analyzes some of the limitations of this work and presents new future
lines of work.

6.2 Limitations and future work

ROMAS is an ongoing active research project. ROMAS contributes to the state of
the art in the analysis and design of normative open systems. However, there are
still some open issues on this topic that ROMAS does not deal with and that offer
potential areas for further work.

e Although Chapter 2 introduces a mechanism for analyzing and comparing
agent methodologies, the evaluation and comparison of software methodolo-
gies is still an open research topic. In the future we plan to develop a system
that allows performing a deeper comparison and that includes software metrics
to quantitatively evaluate software methodologies performance.

e ROMAS development process lacks guidelines for specifying the most suitable
interaction protocol regarding a set of requirements and restrictions. We are
planning to integrate a guideline that allows reusing interaction patterns.

e ROMAS development framework is still under development. The verification
module should be improved in order to solve the scalability problems discussed
in Section 4.5.4. Besides, it should be extended in order to deal with the se-
mantic verification of the coherence between permissions and obligations of

6. Conclusions 155

contradictory actions, to deal with the verification of the coherence between
the individual and global objectives, and the coherence between the commit-
ments of each entity and its internal features and functionality.

e The analysis and design of systems by means of norms and contracts facilitate
the final implementation because the expected behavior of each entity and its
interactions with its environment are completely specified. Developers know
exactly what should be implemented without compromising how they are go-
ing to implement it. We consider that the implementation of normative open
systems under a platform that explicitly represent contracts would facilitate
the implementation task, would produce implementation close to real-life sys-
tems and would allow the creation of dynamic and flexible systems. Although
currently there are some agent platforms, like Thomas [29] and Electronic In-
stitutions [5], that allow specifying norms and controlling their fulfilment at
runtime, there is no agent platform that integrate the abstraction of contract.
The integration of contracts into normative agent platforms is an interesting
area for future work.

6.3 Software development

This section introduces the software applications implemented during the develop-
ment of this thesis.

6.3.0.3 ROMAS development framework

The ROMAS development framework is a CASE tool to model and verify norma-
tive open MAS using the ROMAS methodology. This frameworks follows a MDD
architecture based on the Eclipse modeling technology. In that sense, this frame-
work offers a set of Eclipse plug-ins that allows modeling systems as is defined in the
ROMAS metamodel. It also integrates a formal verification module based on model
checking in order to verify the coherence of the normative context of the modeled
system. This framework is detailed in Chapter 4. The tool prototype is available at:
http://users.dsic.upv.es/grupos/ia/sma/tools/ROMAS.

6.3.0.4 MASEV: Multiagent Systems Evaluation Framework

In the last few years, the evaluation of MAS software engineering techniques has
gained the attention of the research community, leading to standardization efforts.

156 6.4. Publications

Despite this, there is no complete or systematic way to evaluate MAS development
methods and tools. As a result of the study of the requirements for developing nor-
mative open MAS and the study of the state of the art of the support that current
agent-oriented approaches offer (detailed in Chapter 2), we propose a framework that
deals with some open issues in the field of software engineering MAS evaluation.
Masev (MAs Software engineering EValuation framework) is an online application
that allows methods, techniques, and environments for developing MAS to be ana-
lyzed and compared. Further details about this tool can be consulted in [58]. This
tool is available at: http://masev.gti-ia.dsic.upv.es/.

6.4 Publications

6.4.1 Journals indexed in the SCI

e Emilia Garcia, A. Giret and V. Botti A Model-Driven CASE tool for Develop-
ing and Verifying Regulated Open MAS Science of Computer Programming
pp- In Press. ISSN 0167-6423 (2011)

JCR Impact Factor (2011): 0.62 This journal is in the third quartile of the
category COMPUTER SCIENCE, SOFTWARE ENGINEERING.

Contribution of the paper: In this paper, we present the ROMAS case tool. It
integrates the modeling and the verification of ROMAS designs. The case tool
is developed based on MDA technology. The verification is done by means
of an Eclipse plug-in that translates models into the language of the model
checker SPIN. This tool is presented in Section 4.

e Emilia Garcia, A. Giret and V. Botti Evaluating Software Engineering Tech-
niques for Developing Complex Systems with Multiagent Approaches In-
formation and Software Technology Vol. 53 pp. 494-506. ISSN 0950-5849
(2011)

JCR Impact Factor (2011): 1.25 This journal is in the second quartile of the
category COMPUTER SCIENCE, SOFTWARE ENGINEERING and COM-
PUTER SCIENCE, INFORMATION SYSTEMS.

Contribution of the paper: In this paper, we present Masev, which is an
evaluation framework for MAS software engineering. It allows MAS methods,
techniques and environments to be analyzed and compared. A case study of the
analysis of four methodologies is presented. This tool is the result of the study

6. Conclusions 157

of the requirements for developing normative open MAS presented in Chapter
2.

e E. Garcia, S. Valero, E. Argente, A. Giret, and V. Julian. A FAST method to
achieve Flexible Production Programming Systems. IEEE Transactions on
Systems, Man, and Cybernetics Part C: Applications and Reviews, 38(2):242
252, 2008. ISSN 1094-6977

JCR Impact Factor (2011): 2.009

This journal is in the first quartile of the category COMPUTER SCIENCE, IN-
TERDISCIPLINARY APPLICATIONS; COMPUTER SCIENCE, CYBER-
NETICS and COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE.

Contribution of the paper: In this paper, the FAST framework has been ap-
plied on the development and evaluation of a prototype application for the pro-
duction programming process of a real ceramic tile factory. This work is part
of our study of the related work. It allows us to experiment with MAS devel-
opment methods and gain practice in developing real-life MAS applications.

6.4.2 Indexed Conferences

e Emilia Garcia and G. Tyson and S. Miles and M. Luck and A. Taweel and
T. Van Staa and B. Delaney An Analysis of Agent-Oriented Engineering of
e-Health Systems 13th International Workshop on Agent-Oriented Software
Engineering (AOSE - AAMAS) (2012)

CORE (2010): C

Contribution of the paper: This paper analyzes to what extent agent-oriented
methodologies support the development of e-health systems. It analyzes how a
real-life e-health system can be designed using the ROMAS methodology and
discuss the benefits and weaknesses of applying such an approach. This case
study is called ePCRN-IDEA system and is presented in Section 5.2.3.

e Emilia Garcia, A. Giret and V. Botti Regulated Open multi-agent Systems
based on contracts The 19-th International Conference on Information Sys-
tems Development (ISD 2010) pp. 235-246. ISBN 978-1-4419-9645-9 (2010)

CORE (2010):A

Contribution of the paper: This paper analyzes the open challenges in the de-
velopment of normative open MAS. It also proposes the ROMAS architecture
and metamodel detailed in Section 3.2.

158

6.4. Publications

e Emilia Garcia, A. Giret and V. Botti An evaluation tool for Multiagent de-

velopment techniques Proc. of 9th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2010) pp. 1625-1626. ISBN 0-
98265-710-0/978-0-9826571-1 (2010)

CORE (2010):A

Contribution of the paper: This paper presents our first attempts in the devel-
opment of an evaluation framework for MAS software engineering. It analyzes
the properties that an agent-oriented methodology should have. This study in-
fluences the final design of the ROMAS methodology and tools.

Emilia Garcia, E. Argente and A. Giret EMFGormas: A CASE tool for de-
veloping Service-oriented Open MAS Proceedings of 9th International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS 2010) pp.
1623-1624. ISBN 0-98265-710-0 / 978-0-9826571-1 (2010)

CORE (2010):A

Contribution of the paper: This paper summarizes the most important func-
tionalities of the CASE tool EMFGormas. This tool was presented in the AA-
MAS conference in the demonstration session. The EMFGormas tool is the
initial point of the ROMAS tool presented in Chapter 4.

Emilia Garcia, E. Argente and A. Giret A modeling tool for service-oriented
Open Multiagent Systems The 12th International Conference on Principles
of Practice in Multi-Agent Systems. PRIMA 2009 Vol. 5925 pp. 345-360.
(2009)

CORE (2010):B

Contribution of the paper: In this work, a Model Driven Architecture mech-
anism has been applied to develop an engineering tool for Service-oriented
Open Multi-Agent Systems that is based on a platform-independent unified
meta-model called EmfGormas. This paper describes the EmfGormas model-
ing process and its related CASE tool. The EMFGormas tool is the initial point
of the ROMAS tool presented in Chapter 4.

Emilia Garcia, A. Giret and V. Botti Analysis, comparison and selection of
MAS software engineering processes and tools The 12th International Con-
ference on Principles of Practice in Multi-Agent Systems. PRIMA 2009 Vol.
5925 pp. 361-375. ISBN 978-3-642-11160-0 (2009)

CORE (2010):B

6. Conclusions 159

Contribution of the paper: This paper presents our initial results on the ana-
lysis of the state of the art in the development of normative open MAS.

e Emilia Garcia, A. Giret and V. Botti Masev (Multiagent System Software
Engineering Evaluation Framework) CAISE (EMMSADO09) Vol. 29 pp.
277-290. ISBN 1865-1348 (2009)

CORE (2010):A

Contribution of the paper: This paper presents the comparison of four method-
ologies using a set of questionnaires that analyzes and compares agent-oriented
methodologies. This study has been useful to select the most important issues
in the specification of an agent methodology and to investigate the state of the
art in this topic.

e Emilia Garcia, A. Giret and V. Botti Software engineering for Service-oriented
MAS Twelfth International Workshop on Cooperative Information Agents (CIA)
Lecture Notes Vol. 5180 pp. 86-100. ISBN 9753540858331 /03029743 (2008)

Indexed in Computer Science Conference Ranking (0.55)

Contribution of the paper: This paper summarizes the most important is-
sues for developing Service-oriented MAS and compares several approaches.
This work is part of the study of the state of the art presented in Chapter 2.
The conclusions of this study has determine the way in which the ROMAS
methodology and metamodel deals with the integration of services and agents.

e Emilia Garcia, A. Giret and V. Botti Towards an evaluation framework for
MAS software engineering Pacific Rim International conference on Multi-
Agent (PRIMA) Lecture Notes in Artificial Intelligence (LNAI) pp. 197-205.
(2008)

CORE (2010): B

Contribution of the paper: This paper presents the evaluation criteria used
in the MASEV evaluation framework. MASEV is framework for analyzing
and comparing agent methodologies that has been the basis of our study of the
requirements for developing normative open MAS.

e Emilia Garcia, A. Giret and V. Botti Evaluating MAS Engineering Tools In-
ternational Conference on Evaluation of Novel Approaches to Software Engi-
neering pp. 181-184. (2008)

CORE (2010): B

160 6.4. Publications

Contribution of the paper: This paper presents our first attempt in the defini-
tion of an evaluation criteria for the analysis of method and tools for developing
MAS.

6.4.3 Other International Conferences

e Emilia Garcia, A. Giret and V. Botti Developing Regulated Open Multi-
agent Systems International Conference on Agreement Technologies pp. 12-
26. (2012)

This paper was awarded as Best Paper at the International Conference on Agree-
ment Technologies.

Contribution of the paper: This paper presents the ROMAS methodology
and exemplify it by means of the Conference Management case study. The
content of this paper is explained in more detail in Chapter 3.

e Emilia Garcia, A. Giret and V. Botti On the evaluation of MAS development
tools IFIP International Federation for Information Processing Artificial In-
telligence and Practice II Max Bramer; (Boston: Springer), pp. 35-44 ISBN
978-0-387-09694-0 (2008)

Contribution of the paper: In this paper the initial proposal of the software
engineering evaluation framework is applied to the analysis of the Ingenias
methodology.

e Emilia Garcia, E. Argente and A. Giret Issues for Organizational Multiagent
Systems Development Sixth International Workshop From Agent Theory to
Agent Implementation (AT2AI-6) pp. 59-65. (2008)

Contribution of the paper: This paper summarizes the most important issues
for developing organizational MAS and compares several approaches. This
work is part of the study of the state of the art presented in Chapter 2. The con-
clusions of this study have determine the way in which the ROMAS methodol-
ogy and metamodel deals with the integration of the individual perspective of
each entity and the organizational and social structure.

e S. Valero, E. Garcia, E. Argente, A. Giret, and V. Julian. FAST: a Flexible and
Adaptable Scheduling Tool based on MAS Technology. 1st Workshop on

Industrial Applications of Distributed Intelligent Systems. International Joint
Conference Iberamia/SBIA/SBRN, ISBN 85-87837-11-7 (2006)

6. Conclusions 161

Contribution of the paper: In this paper, our first attempt of a flexible and
adaptive scheduling tool to develop an adaptable, fault-tolerant, and scalable
scheduling system for a manufacturing environment is presented. This work
is part of our study of the state of the art of the development of multiagent
systems. The system was designed using the Ingenias methodology and imple-
mented using the agent platform JADE.

Bibliography

[1] Eclipse - an open development platform. http://www.eclipse.org/, 2011.

[2] Eclipse - xpand plug-in. http://www.eclipse.org/modeling/m2t/?project=xpand,
2011.

[3] Meta object facility (mof) 2.0 query/view/transformation specification.
ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf. Object Management Group,
Document ad 07-07-07.

[4] M. Amor, L. Fuentes, and A. Vallecillo. Bridging the gap between agent-
oriented design and implementation using mda. In International Workshop on
Agent-Oriented Software Engineering, LNCS, pages 93-108, 2004.

[5] J. L. Arcos, M. Esteva, P. Noriega, J. A. Rodriguez-Aguilar, and C. Sierra.
Engineering open evironments with electronic institutions. Engineering ap-
plications of artificial intelligence., 18(2):191 — 204, 2005. Engineering Ap-
plications of Artificial Intelligence Top Cited Article 2005-2010.

[6] E. Argente. GORMAS: Guias para el desarrollo de sistemas multiagente
abiertos basados en organizaciones. PhD thesis, Departamento de Sistemas
Informaticos y Computacion, Universidad Politecnica de Valencia, 2008.

[7]1 E. Argente. GORMAS: Guias para el desarrollo de Sistemas Multiagente

abiertos basados en organizaciones. PhD thesis, Departament de Sistemes
Informatics i Computacid, Universitat Politecnica de Valéncia, 2008.

163

164

Bibliography

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

E. Argente, V. Botti, C. Carrascosa, A. Giret, V. Julian, and M. Rebollo. An
Abstract Architecture for Virtual Organizations: The THOMAS approach.
Knowledge and Information Systems, pages 1-35, 2011.

E. Argente, V. Botti, and V. Julian. Gormas: An organizational-oriented
methodological guideline for open mas. In AOSE, pages 85-96, 2009.

E. Argente, V. Botti, and V. Julian. Organizational-oriented methodological
guidelines for designing virtual organizations. In Distributed Computing, Arti-

ficial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Liv-

ing, volume 5518 of LNCS, pages 154-162, 2009.

G. Boella, J. Hulstijn, and L. W. N. van der Torre. Virtual organizations as
normative multiagent systems. In HICSS. IEEE Computer Society, 2005.

G. Boella, G. Pigozzi, and L. van der Torre. Ten guidelines for normative
multiagent systems. In G. Boella, P. Noriega, G. Pigozzi, and H. Verhagen,
editors, Normative Multi-Agent Systems, number 09121, 2009.

O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski,
J. Sichman, and J. Vazquez-Salceda. Coordination, organizations, institutions
and norms in multi-agent systems. volume 3913 of LNCS (LNAI), pages 25—
26, 2006.

R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying multi-
agent programs by model checking. In Autonomous Agents and Multi-Agent
Systems, volume 12, pages 239-256, Hingham, MA, USA, 2006. Kluwer Aca-
demic Publishers.

V. Botti, A. Garrido, A. Giret, and P. Noriega. The Role of MAS as a Decision
Support Tool in a Water-Rights Market. In Post-proceedings workshops Inter-
national Conference on Autonomous Agents and MultiAgent Systems, volume

7068, pages 35-49. Springer, 2011.

L. Braubach, A. Pokahr, and W. Lamersdorf. A universal criteria catalog
for evaluation of heterogeneous agent development artifacts. In Sixth Inter-
national Workshop From Agent Theory to Agent Implementation (AT2AI-6),
2008.

T. Breaux. Exercising due diligence in legal requirements acquisition: A tool-
supported, frame-based approach. In Proc. IEEE Int. Requirements Engineer-
ing Conference, pages 225-230, 2009.

Bibliography 165

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

T. D. Breaux and D. L. Baumer. Legally reasonable security requirements: A
10-year ftc retrospective. Computers and Security, 30(4):178 — 193, 2011.

T. D. Breaux, M. W. Vail, and A. I. Anton. Towards regulatory compliance:
Extracting rights and obligations to align requirements with regulations. In
IEEE International Requirements Engineering Conference, RE *06, pages 46—
55, Washington, DC, USA, 2006. IEEE Computer Society.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos:
An agent-oriented software development methodology. Autonomous Agents
and Multi-Agent Systems, 8(3):203-236, 2004.

C. Carabelea and O. Boissier. Coordinating agents in organizations using
social commitments. Electronic Notes in Theoretical Computer Science,
150(3):73-91, 2006.

H. L. Cardoso and E. Oliveira. A contract model for electronic institutions.
In International conference on Coordination, organizations, institutions, and
norms in agent systems I1I, pages 2740, 2008.

A. Castor, R. C. Pinto, C. T. L. L. Silva, and J. Castro. Towards requirement
traceability in tropos. In WER, pages 189-200, 2004.

R. Centeno, M. Fagundes, H. Billhardt, and S. Ossowski. Supporting medical
emergencies by mas. In Agent and Multi-Agent Systems: Technologies and
Applications, volume 5559 of LNCS, pages 8§23-833. 2009.

L. Cernuzzi and G. Rossi. On the evaluation of agent oriented modeling
methods. In Proceedings of the OOPSLA 02 - Workshop on Agent-Oriented
Methodologies, pages 21-30, 2002.

A. K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Modeling and rea-
soning about service-oriented applications via goals and commitments. In /n-
ternational Conference on Advanced Information Systems Engineering, pages
113-128. Springer-Verlag, 2010.

L. Coutinho, A. Branddo, J. Sichman, and O. Boissier. Model-driven inte-
gration of organizational models. In Workshop on Agent Oriented Software
Engineering, 2008.

166

Bibliography

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

N. Criado, E. Argente, and V. Botti. A normative model for open agent or-
ganizations. In International Conference on Artificial Intelligence, volume 1,
pages 101-107, 2009.

N. Criado, E. Argente, and V. Botti. THOMAS: An Agent Platform For Sup-
porting Normative Multi-Agent Systems. Journal of Logic and Computation,
2011.

K. H. Dam. Evaluating and Comparing Agent-Oriented Software Engineering
Methodologies. Master’s thesis, Master of Applied Science in Information
Technology - RMIT University, Australia, 2003.

R. Darimont and M. Lemoine. Goal-oriented analysis of regulations. In
ReMo2V 06 - W. Regulations Modelling and their Validation and Verification
- CAISE06, volume 241, 2007.

S. DeLoach. Omacs a framework for adaptive, complex systems. In Handbook
of Research on Multi-AGent Systems: Semantics and Dynamics of Organiza-
tional Models, pages 76—104. 1GI Global, 2009.

S. A. DeLoach. Developing a multiagent conference management system us-
ing the O-mase process framework. In International Conference on Agent-
oriented software engineering VIII, pages 168—181, 2008.

S. A. DeLoach and J. C. Garcia-Ojeda. O-mase; a customisable approach to
designing and building complex, adaptive multi-agent systems. Int. J. Agent-
Oriented Softw. Eng., 4(3):244-280, 2010.

S. A. DeLoach, L. Padgham, A. Perini, A. Susi, and J. Thangarajah. Using
three aose toolkits to develop a sample design. In International Journal Agent-
Oriented Software Engineering, volume 3, pages 416476, 2009.

N. Desai, A. K. Chopra, and M. P. Singh. Amoeba: A methodology for model-
ing and evolving cross-organizational business processes. ACM Trans. Softw.
Eng. Methodol., 19(2):6:1-6:45, Oct. 20009.

I. Dickinson and M. Wooldridge. Agents are not (just) web services: inves-
tigating bdi agents and web services. In The Workshop on Service-Oriented
Computing and Agent-Based Engineering at AAMAS, 2005.

F. Dignum, V. Dignum, J. Padget, and J. Vazquez-Salceda. Organizing web
services to develop dynamic, flexible, distributed systems. In International

Bibliography 167

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Conference on Information Integration and Web-based Applications Services,
pages 225-234, 2009.

F. Dignum, V. Dignum, J. Thangarajah, L. Padgham, and M. Winikoff. Open
agent systems? International Workshop on Agent Oriented Software Engi-
neering (AOSE) in AAMASO07, 2007.

V. Dignum. A model for organizational interaction:based on agents, founded
in logic. PhD thesis, Utrecht University, 2003.

V. Dignum and F. Dignum. Coordinating tasks in agent organizations. or: Can
we ask you to read this paper? COIN@ECAI’06: Workshop on Coordination,
Organization, Institutions and Norms in MAS, 2006.

V. Dignum and F. Dignum. A landscape of agent systems for the real world.
Technical report 44-cs-2006-061, Institute of Information and Computing Sci-
ences, Utrecht University, 2006.

V. Dignum, J.-J. Meyer, F. Dignum, and H. Weigand. Formal specification of
interaction in agent societies. In Formal Approaches to Agent-Based Systems,
volume 2699, pages 37-52. Springer Berlin Heidelberg, 2003.

V. Dignum, J. Vazquez-Salceda, and F. Dignum. Omni: Introducing so-
cial structure, norms and ontologies into agent organizations. In R. Bordini,
M. Dastani, J. Dix, and A. Seghrouchni, editors, Programming Multi-Agent
Systems, volume 3346 of LNCS, pages 181-198. Springer Berlin / Heidelberg,
2005.

R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko. Fsm-
based conformance testing methods: A survey annotated with experimental
evaluation. In Information and Software Technology, volume 52, pages 1286—
1297, Newton, MA, USA, 2010. Butterworth-Heinemann.

S. Fenech, G. J. Pace, and G. Schneider. Automatic conflict detection on con-
tracts. In International Colloquium on Theoretical Aspects of Computing, IC-
TAC 09, pages 200-214, 2009.

J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizations: an
Organizational View of Multi-Agent Systems. In P. Giorgini, J. Muller, and
J. Odell, editors, Agent-Oriented Software Engineering VI, volume 2935 of
LNCS, pages 214-230. Springer-Verlag, 2004.

168

Bibliography

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

J. Ferber, F. Michel, and J. Bdez-Barranco. Agre : Integrating environments
with organizations. Environments for Multi-agent Systems., 3374:48-56, 2005.

R. F. Fernandez, I. G. Magarifio, J. J. Gémez-Sanz, and J. Pavén. Integra-
tion of web services in an agent oriented methodology. Journal International
Transactions on Systems Science and Applications, 3:145-161, 2007.

R. F. Fernandez, I. G. Magarinyo, J. J. Gomez-Sanz, and J. Pavon. Integra-
tion of web services in an agent oriented methodology. Journal International
Transactions on Systems Science and Applications, 3:145-161, 2007.

FIPA. Design process documentation template standard specification.
http://ffipa.org/specs/fipa00097/index.html, 2012.

I. Garcia-Magarifio, J. Gémez-Sanz, and R. Fuentes-Fernandez. Ingenias de-
velopment assisted with model transformation by-example: A practical case.
In Y. Demazeau, J. Pavén, J. Corchado, and J. Bajo, editors, 7th Interna-
tional Conference on Practical Applications of Agents and Multi-Agent Sys-
tems (PAAMS 2009), volume 55 of Advances in Soft Computing, pages 40—49.
Springer Berlin / Heidelberg, 2009.

E. Garcia, E. Argente, and A. Giret. Emfgormas: a case tool for develop-
ing service-oriented open mas. In AAMAS ’10: Proceedings of the 9th In-
ternational Conference on Autonomous Agents and Multiagent Systems, pages
1623-1624, 2010.

E. Garcia, E. Argente, A. Giret, and V. Botti. Issues for organizational multia-
gent systems development. In AT2AI at AAMASOS, pages 59-65, 2008.

E. Garcia, A. Giret, and V. Botti. On the evaluation of mas development tools.
In International Conference on Artificial Intelligence in Theory and Practice
(IFIP Al), volume 276/2008 of Springer Boston, pages 35-44, 2008.

E. Garcia, A. Giret, and V. Botti. Software engineering for Service-oriented
MAS. In Cooperative Information Agents XII, volume LNAI 5180, pages 86—
100, 2008.

E. Garcia, A. Giret, and V. Botti. A Model-Driven CASE tool for Developing
and Verifying Regulated Open MAS. Science of Computer Programming,
page In Press, 2011.

Bibliography 169

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

E. Garcia, A. Giret, and V. Botti. Evaluating Software Engineering Techniques
for Developing Complex Systems with Multiagent Approaches. Information
and Software Technology, 53:494-506, 2011.

E. Garcia, A. Giret, and V. Botti. Regulated open multi-agent systems based
on contracts. In Information Systems Development, pages 243-255, 2011.

E. Garcia, A. Giret, and V. Botti. Developing Regulated Open Multi-agent
Systems. In International Conference on Agreement Technologies, pages 12—
26, 2012.

E. Garcia, G. Tyson, S. Miles, M. Luck, A. Taweel, T. V. Staa, and B. De-
laney. An Analysis of Agent-Oriented Engineering of e-Health Systems. In
13th International Workshop on Agent-Oriented Software Engineering (AOSE
- AAMAS), pages 117-128, 2012.

E. Garcia, S. Valero, E. Argente, A. Giret, and V. Julian. A FAST method
to achieve Flexible Production Programming Systems. IEEE Transactions on

Systems, Man, and Cybernetics—Part C: Applications and Reviews, 38(2):242—
252, 2008.

A. Garrido, A. Giret, V. Botti, and P. Noriega. mWater, a Case Study for
Modeling Virtual Markets. In New Perspectives on Agreement Technologies.
Springer, 2012.

A. Garrido, A. Giret, and P. Noriega. mWater: a Sandbox for Agreement
Technologies. In CCIA 2009, volume 202, pages 252-261. 10S Press, 2009.

J. M. Gascueiia, E. Navarro, and A. Ferndndez-Caballero. Model-driven en-
gineering techniques for the development of multi-agent systems. Eng. Appl.
Artif. Intell., 25(1):159-173, 2012.

B. Gateau, O. Boissier, D. Khadraoui, and E. Dubois. Moiseinst: An organi-
zational model for specifying rights and duties of autonomous agents. Envi-
ronments for Multi-Agent Systems 111, 4389:41-50, 2007.

A. Giret, E. Argente, S. Valero, P. Gémez, and V. Julian. Applying Multi Agent
System Modelling to the Scheduling Problem in a Ceramic Tile Factory. In
Mass Customization Concepts-Tools-Realization IMCM’05, pages 151-162.
GITO-Verlag, 2005.

170

Bibliography

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

A. S. Giret. ANEMONA: Una Metodologia Multiagente para Sistemas Holoni-
cos de Fabricacion. PhD thesis, Departamento de Sistemas Informaticos y
Computacion, Universidad Politecnica de Valencia, 2005.

B. Géteau, O. Boissier, and D. Khadraoui. Multi-agent-based support for elec-
tronic contracting in virtual enterprises. IFAC Symposium on Information Con-
trol Problems in Manufacturing (INCOM), 150(3):73-91, 2006.

R. Hermoso, R. Centeno, H. Billhardt, and S. Ossowski. Extending virtual or-
ganizations to improve trust mechanisms (short paper). In Proc. 7th INt. Conf.
on Autonomous Agents and Multiagent Systems, pages 1489-1472, 2008.

C. D. Hollander and A. S. Wu. The current state of normative agent-based
systems. J. Artificial Societies and Social Simulation, 14(2), 2011.

G. Holzmann. Spin model checker, the: primer and reference manual.
Addison-Wesley Professional, 2003.

G. B. Horlin and R. V. Lesse. A survey of multi-agent organizational
paradigms. The Knowledge Engineering Review, 19(04):281-316, 2004.

B. Horling. Quantitative organizational modeling and design for multi-agent
systems. PhD thesis, 2006.

B. Horling and V. Lesser. A survey of multi-agent organizational paradigms.
Knowl. Eng. Rev., 19(4):281-316, 2004.

E.-S. Hsieh. Automated negotiation based on contract net and petri net. In
E-Commerce and Web Technologies, volume 3590 of LNCS, pages 148-157.
2005.

M. Huhns and M. Singh. Reseach directions for service-oriented multiagent
systems. IEEE Internet Computing, Service-Oriented Computing Track. 9(1),
2005.

D. Isern, D. SAanchez, and A. Moreno. Organizational structures supported
by agent-oriented methodologies. Journal of Systems and Software, 84(2):169
— 184, 2011.

M. Jakob, M. Péchoucek, S. Miles, and M. Luck. Case studies for contract-
based systems. In International Conference on Autonomous Agents and Mul-
tiAgent Systems, pages 55-62, 2008.

Bibliography 171

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

V. Julian, M. Rebollo, E. Argente, V. Botti, C. Carrascosa, and A. Giret. Using
THOMAS for Service Oriented Open MAS, pages 56—70. Springer, 2009.

G. Kardas. Model-driven development of multi-agent systems: a survey and
evaluation. The Knowledge Engineering Review, page In Press, 2012.

M. Kollingbaum, I. J. Jureta, W. Vasconcelos, and K. Sycara. Automated
requirements-driven definition of norms for the regulation of behavior in multi-
agent systems. In AISB 2008 Workshop on Behaviour Regulation in Multi-
Agent Systems, Aberdeen, Scotland, U.K., April 2008.

T. Kovse, B. Vlaovi¢, A. VreZe, and Z. Brezo¢nik. Eclipse plug-in for spin
and st2msc tools-tool presentation. In International SPIN Workshop on Model
Checking Software, pages 143—-147, 2009.

C.-E. Lin, K. M. Kavi, F. T. Sheldon, K. M. Daley, and R. K. Abercrombie. A
methodology to evaluate agent oriented software engineering techniques. In
Hawaii International Conference on System Sciences, page 60, 2007.

A. Lomuscio, H. Qu, and M. Solanki. Towards verifying contract regulated
service composition. Autonomous Agents and Multi-Agent Systems, pages 1—
29, 2010.

M. Luck, L. Barakat, J. Keppens, S. Mahmoud, S. Miles, N. Oren, M. Shaw,
and A. Taweel. Flexible behaviour regulation in agent based systems. In
Collaborative Agents - Research and Development, volume 6066 of LNCS,
pages 99-113. 2011.

F. Meneguzzi, S. Modgil, N. Oren, S. Miles, M. Luck, and N. Faci. Applying
electronic contracting to the aerospace aftercare domain. Engineering Appli-
cations of Artificial Intelligence, 25(7):1471 — 1487, 2012.

J.-J. C. Meyer and R. J. Wieringa, editors. Deontic logic in computer science:
normative system specification. John Wiley and Sons Ltd., Chichester, UK,
1993.

S. Miles, N. Oren, M. Luck, S. Modgil, N. Faci, C. Holt, and G. Vickers.
Modelling and Administration of Contract-Based Systems. In Symposium on
Behaviour Regulation in Multi-Agent Systems at AISB 2008, 2008.

172

Bibliography

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

M. Morandini, C. D. Nguyen, A. S. A. Perini, and A. Susi. Tool-supported
development with tropos: the conference management system case study. In
Agent Oriented Software Engineering (AOSE), at AAMAS, 2007.

D. Okouya and V. Dignum. Operetta: A prototype tool for the design, analysis
and development of multi-agent organizations (demo paper). In AAMAS, pages
1667-1678, 2008.

N. Oren, S. Panagiotidi, J. Vizquez-Salceda, S. Modgil, M. Luck, and
S. Miles. Towards a formalisation of electronic contracting environments.
International conference on Coordination, organizations, institutions, and
norms in agent systems, pages 156—171, 2009.

N. Osman, D. Robertson, and C. Walton. Run-time model checking of interac-
tion and deontic models for multi-agent systems. In AAMAS ’06: Proceedings
of the fifth international joint conference on Autonomous agents and multia-
gent systems, pages 238-240, New York, NY, USA, 2006. ACM.

G. Pace, C. Prisacariu, and G. Schneider. Model checking contracts U a case
study. In Automated Technology for Verification and Analysis, volume 4762 of
LNCS, pages 82-97. 2007.

J. Pavon, J. Gomez-Sanz, and R. Fuentes. The ingenias methodology and
tools. In Agent-Oriented Methodologies, volume chapter IX, pages 236-276.
Henderson-Sellers, 2005.

A. Perini and A. Susi. Automating model transformations in agent-oriented
modelling. In J. Miiller and F. Zambonelli, editors, Agent-Oriented Software
Engineering VI, volume 3950 of LNCS, pages 167—178. Springer Berlin / Hei-
delberg, 2006.

M. P.Singh and M. N.Huhns. Service-Oriented Computing Semantics, Pro-
cesses, Agents. John Wisley and Sons Ltd, 2005.

M. Rodrigo, S. Valero, C. Carrascosa, and V. Julian. Tool and integrated appli-
cation development environment. Document identifier: AT/2011/D6.2.3/v1.0
Project: CSD2007-0022, INGENIO 2010 http://www.agreement-
technologies.org/. 2011.

A. Rotolo and L. van der Torre. Rules, agents and norms: Guidelines for rule-
based normative multi-agent systems. In RuleML Europe, volume 6826, pages
52-66, 2011.

Bibliography 173

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

S. Rougemaille, F. Migeon, C. Maurel, and M.-P. Gleizes. Model driven engi-
neering for designing adaptive multi-agents systems. In Engineering Societies
in the Agents World VIII: 8th International Workshop, ESAW 2007, Revised
Selected Papers, pages 318-332. Springer-Verlag, 2008.

M. Saeki and H. Kaiya. Supporting the elicitation of requirements compliant
with regulations. In CAiISE '08, pages 228-242, 2008.

J. W. Schemm, C. Legner, and H. Osterle. E-contracting: Towards electronic
collaboration processes in contract management. pages 255-272, 2006.

V. Seidita, M. Cossentino, and S. Gaglio. Using and extending the spem spec-
ifications to represent agent oriented methodologies. Agent Oriented Software
Engineering (AOSE), 2008.

A. Siena, J. Mylopoulos, A. Perini, and A. Susi. Designing law-compliant
software requirements. In International Conference on Conceptual Modeling,
ER 09, pages 472-486, 2009.

E. Solaiman, C. Molina-Jimenez, and S. Shrivastav. Model checking correct-
ness properties of electronic contracts. In Service-Oriented Computing - IC-
SOC 2003, volume 2910 of LNCS, pages 303-318. Springer Berlin / Heidel-
berg, 2003.

R. Soley and the OMG Staff Strategy Group. Model driven architecture.
ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf.

A. Sturm and O. Shehory. A framework for evaluating agent-oriented method-
ologies. In P. Giorgini, B. Henderson-Sellers, and M. Winikoff, editors, Agent-
Oriented Information Systems, volume 3030 of LNCS, pages 94-109. Springer
Berlin / Heidelberg, 2004.

A. Taweel, B. Delaney, and S. Speedie. Towards achieving semantic interop-
erability in ehealth services. In E-Healthcare Systems and Wireless Commu-
nications: Current and Future Challenges, M Watfa (ed.)IGI, pages 388—-401,
2012.

A. Taweel, S. Speedie, G. Tyson, A. R. Tawil, K. Peterson, and B. Delaney.
Service and model-driven dynamic integration of health data. In International

workshop on Managing interoperability and complexity in health systems,
pages 11-17. ACM, 2011.

174 Bibliography

[110] P. Telang and M. Singh. Specifying and verifying cross-organizational busi-
ness models: An agent-oriented approach. Services Computing, IEEE Trans-
actions on, 5(3):305 -318, 2012.

[111] P.R. Telang and M. P. Singh. Conceptual modeling: Foundations and applica-
tions. chapter Enhancing Tropos with Commitments, pages 417—-435. 2009.

[112] P. R. Telang and M. P. Singh. Comma: A commitment-based business model-
ing methodology and its empirical evaluation. In International Conference on
Autonomous Agents and MultiAgent Systems, pages 1073—1080. IFAAMAS,
2012.

[113] P. R. Telang and M. P. Singh. Comma: A commitment-based business mod-
eling methodology and its empirical evaluation. In Proc. 11th Int. Conf. on
Autonomous Agents and MultiAgent Systems, 2012.

[114] Q.-N. Tran and G. Low. Comparison of ten agent-oriented methodologies. In
B. Henderson-Sellers and P. Giorgini, editors, In Agent-Oriented Methodolo-
gies, pages 341-367. Idea Group Publishing, 2005.

[115] I. Trencansky and R. Cervenka. Agent modelling language (AML): A com-
prehensive approach to modelling mas. In Informatica, volume 29(4), pages
391-400, 2005.

[116] G. Tyson, A. Taweel, S. Miles, M. Luck, T. Staa, and B. Delaney. An agent-
based approach to real-time patient identification for clinical trials. In Elec-
tronic Healthcare, volume 91, pages 138-145. Springer Berlin Heidelberg,
2012.

[117] G. Tyson, A. Taweel, S. Zschaler, T. V. Staa, and B. Delaney. A model-driven
approach to interoperability and integration in systems of systems. In Mod-
elling Foundations and Applications workshop, 2011.

[118] A. Van Dijk. Contracting workflows and protocol patterns. In International
conference on Business process management, pages 152-167, 2003.

[119] J. Vazquez-Salceda, R. Confalonieri, I. Gomez, P. Storms, S. P. Nick Kui-
jpers, and S. Alvarez. Modelling contractually-bounded interactions in the car
insurance domain. DIGIBIZ 2009, 2009.

[120] F Vigano and M. Colombetti. Specification and verification of institutions
through status functions. In P. Noriega, J. Vazquez-Salceda, G. Boella,

Bibliography 175

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

O. Boissier, V. Dignum, N. Fornara, and E. Matson, editors, Coordination,
Organizations, Institutions, and Norms in Agent Systems I, volume 4386 of
LNCS, pages 115-129. 2007.

F. Vigano and M. Colombetti. Symbolic model checking of institutions. In
International conference on Electronic commerce, pages 35-44, 2007.

C. D. Walton. Verifiable agent dialogues. Journal of Applied Logic, 5(2):197
— 213, 2007. Logic-Based Agent Verification.

M. Wooldridge and P. Ciancarini. Agent-Oriented Software Engineering: The
State of the Art. In Agent-Oriented Software Engineering: First International
Workshop, volume 1957 of LNCS, pages 55-82. Springer, 2001.

M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Model checking multi-
agent systems with mable. In International Conference on Autonomous Agents
and MultiAgent Systems, pages 952-959. ACM, 2002.

M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons. Model checking
multi-agent systems with mable. In International joint conference on Au-

tonomous agents and multiagent systems, pages 952-959, New York, NY,
USA, 2002. ACM.

F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational rules as an
abstraction for the analysis and design of multi-agent systems. Infernational
Journal of Software Engineering and Knowledge Engineering, 11(3):303-328,
2001.

F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent
systems: The gaia methodology. In ACM Transactions on Software Engineer-
ing Methodology, volume 12, pages 317-370. ACM, 2003.

I. Zinnikus, C. Hahn, and K. Fischer. A model-driven, agent-based approach
for the integration of services into a collaborative business process. In Infer-
national Conference on Autonomous Agents and MultiAgent Systems, 2008.

One day, 24 hours, 1440 minutes, 86400 seconds
One day, your day, today

	Cover
	Acknowledgements
	Abstract
	Resumen
	Resum
	Index
	List of figures
	Introduction
	Normative open systems
	Multiagent systems
	Thesis motivation
	Thesis problem statement
	Thesis goals
	Outline

	State of the art
	Requirements for designing normative open multiagent systems
	Design abstractions
	Support during the development process
	Evaluation of the final design

	General overview of the state of the art
	Regarding the design abstractions
	Regarding the support during the development process
	Regarding the evaluation of the final design

	Comparison of methodologies
	Open issues in the analysis and design of normative open MAS
	Conclusions

	ROMAS methodology
	Introduction
	ROMAS objectives
	ROMAS architecture and metamodel
	ROMAS process lifecycle
	ROMAS background
	FIPA Design Process Documentation Template
	Case study: Conference management system

	ROMAS metamodel
	ROMAS metamodel views
	ROMAS notation

	Phases of the ROMAS process
	PHASE 1: System specification
	PHASE 2: Organization specification
	PHASE 3: Normative context specification
	PHASE 4: Activity specification
	PHASE 5: Agents specification

	Work product dependencies
	Conclusions

	ROMAS development framework
	Motivation and objectives
	Technology background: Model Driven Architecture and Eclipse technology
	ROMAS development framework architecture and use
	ROMAS modeling tool
	ROMAS tool technical details
	Use of the ROMAS modeling tool
	Contributions and limitations

	ROMAS module for formal verification
	Related work
	Verifying the coherence of the normative context
	ROMAS to PROMELA code transformation (RO2P)
	Contributions and limitations

	Conclusions

	ROMAS approach evaluation
	ROMAS for developing normative open MAS
	Comparison with other agent methodologies

	Case studies
	CMS case study
	mWater virtual market
	ePCRN-IDEA system
	The ceramic tile factory system

	Conclusions

	Conclusions
	Main contributions of this thesis
	Limitations and future work
	Software development
	Publications
	Journals indexed in the SCI
	Indexed Conferences
	Other International Conferences

	Bibliography

