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Abstract Two subgroups A and B of a group G are said to be totally completely conditionally per-
mutable (tcc-permutable) in G if X permutes with Y g for some g ∈ 〈X, Y 〉, for all X � A and Y � B.
We study the belonging of a finite product of tcc-permutable subgroups to a saturated formation of
soluble groups containing all finite supersoluble groups.
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1. Introduction and results

All groups considered in the paper are finite.
This paper is a contribution to the study of products of groups whose factors are

linked by certain permutability properties. The origin of this research can be traced to
Asaad and Shaalan [3], who provide criteria for the product of supersoluble groups to be
supersoluble. Based on their paper, Maier [22] defines a group G = HK to be the product
of the totally permutable subgroups H and K if every subgroup of H is permutable with
every subgroup of K. We recall that a formation is a class F of groups closed under
homomorphic images, such that G/M ∩ N ∈ F whenever G is a group and M , N are
normal subgroups of G with G/M ∈ F and G/N ∈ F . In this case the F-residual GF

of G is the smallest normal subgroup of G such that G/GF ∈ F . The formation F is
saturated if G ∈ F whenever G/Φ(G) ∈ F , where Φ(G) denotes the Frattini subgroup of
G. The following result was proved in [4,5,7].
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Theorem 1.1. Let F be a formation which contains the class U of all finite super-
soluble groups. Let the group G = G1G2 · · ·Gr be a product of pairwise totally per-
mutable subgroups G1, G2, . . . , Gr. Then the following hold.

(i) If G1, G2, . . . , Gr ∈ F , then G ∈ F .

(ii) Assume in addition that F is either saturated or a formation of soluble groups. If
G ∈ F , then G1, G2, . . . , Gr ∈ F .

�

Part (i) in this result was first proved for a saturated formation F such that U ⊆ F
in [22] (for r = 2) and [9] (for r arbitrary), generalizing a result in [3] for F = U , the
saturated formation of all finite supersoluble groups.

Furthermore, products of totally permutable subgroups have been studied in depth
both in the frameworks of formation theory [4–10, 22] and in the theory of Fitting
classes [16–18]. The structure of products of totally permutable subgroups is nowadays
quite well understood. For instance, products G = HK of totally permutable subgroups
H and K are close to central products in the sense that the nilpotent residual HN of H

centralizes K, and vice versa [8, Theorem 1]; N denotes the class of all finite nilpotent
groups. Also H ∩K � F (G), the Fitting subgroup of the group G [22, Lemma 2], and G

modulo its U-hypercentre ZU (G) is a direct product of images of H and K [13, p. 859,
Remarks (3)]. (The U-hypercentre ZU (G) of G is the largest normal subgroup of G such
that every chief factor X/Y of G with Y < X � ZU (G) is cyclic of prime order.)

More recently this development has been taken further by Guo et al . in [15], by con-
sidering a weaker condition of subgroup permutability, namely conditional permutability.
We refer to [14,15] and discuss the following concepts.

Definition 1.2. Let G be a group. Two subgroups X and Y of G are called condition-
ally permutable (c-permutable, for brevity) in G if X permutes with Y g for some element
g ∈ G.

The subgroups X and Y are called completely conditionally permutable (cc-permutable)
in G if X permutes with Y g for some element g ∈ 〈X, Y 〉, the subgroup generated by X

and Y .
Two subgroups A and B of G are said to be totally completely conditionally permutable

(tcc-permutable) in G if X and Y are cc-permutable in G for all X � A and Y � B.

Such a type of permutability conditions has been considered by other authors in extend-
ing classical results about the influence of permutability properties of certain families of
subgroups on the structure of groups (see, for example, [2,14,20,23]).

This paper continues a study on products of subgroups, c-permutability and super-
solubility carried out in [1]. Previous related results involving cc-permutability appear
in [15,21]. In particular, the following result is obtained in [1, Theorem 2].

Theorem 1.3. Let the group G = AB be the product of subgroups A and B such that
every subgroup of A is c-permutable in G with every subgroup of B. Then GU = AUBU .
In particular, if A and B are supersoluble, then G is supersoluble.
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As mentioned in [1], in contrast to the previous research on products of totally per-
mutable subgroups, this result does not extend to (saturated) formations containing
U , even in the universe of finite soluble groups (see Example 3.3). Nevertheless, we
prove in this paper that positive results are possible if c-permutability is strengthened
to cc-permutability. It is remarkable that c-permutability fails to satisfy the prop-
erty of persistence in intermediate subgroups (see Example 3.4). Then cc-permutability
appears when requiring c-permutability to satisfy this persistence property and becomes
a stronger condition. However, significant structural properties of products of totally
permutable subgroups, such as those mentioned previously, are missed when considering
cc-permutability instead of permutability (see Examples 3.5 and 3.6).

The main aim of this paper is to prove the following result.

Theorem 1.4. Let F be a saturated formation of soluble groups containing U . Let
the group G = G1 · · ·Gr be the product of pairwise permutable subgroups G1, . . . , Gr,
for r � 2. Assume that Gi and Gj are tcc-permutable subgroups for all i, j ∈ {1, . . . , r},
i �= j. Then

(i) if Gi ∈ F for all i = 1, . . . , r, then G ∈ F ,

(ii) if G ∈ F , then Gi ∈ F for all i = 1, . . . , r.

As a consequence, a stronger version of this theorem is obtained.

Corollary 1.5. Let F be a saturated formation of soluble groups containing U . Let
the group G = G1 · · ·Gr be the product of pairwise permutable subgroups G1, . . . , Gr,
for r � 2. Assume that Gi and Gj are tcc-permutable subgroups for all i, j ∈ {1, . . . , r},
i �= j. Then

(i) GF
i � G for all i = 1, . . . , r,

(ii) GF = GF
1 · · ·GF

r .

Analogous results to Corollary 1.5 for products of totally permutable subgroups and
formations, either saturated or of soluble groups, containing U were obtained in [4,7] (for
r = 2) and [5] (for r arbitrary). These results generalize a classical Doerk and Hawkes
result which states that for a formation F of soluble groups the F-residual respects the
operation of forming direct products [12, § IV, Theorem 1.18].

Section 2 is devoted to prove our main results. Some results and remarks about the
behaviour of F-projectors and F-normalizers in such products of (soluble) groups, as
well as the above-mentioned examples are collected in § 3.

For notation and results on classes of groups we refer to [12]. In particular, σ(G)
denotes the set of all primes dividing the order of the group G. For subgroups X, A of
a group G, we define 〈XA〉 = 〈xa : x ∈ X, a ∈ A〉; in particular, 〈XG〉 is the normal
closure of X in G. For a prime p the set of Sylow p-subgroups of G is denoted by Sylp(G).
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2. Proof of the main results

In order to prove Theorem 1.4 we need some previous results.

Lemma 2.1. Let the group G = AB be the product of tcc-permutable subgroups A

and B. Then

(i) X and Y g are tcc-permutable subgroups of G for any X � A, Y � B and g ∈ G,

(ii) for each Y � B, A permutes with Y b for some b ∈ B.

Proof. (i) We take g = ba ∈ G = AB = BA with a ∈ A and b ∈ B. Then Y g = (Y b)a

with Y b � B.
We consider Xa−1 � A and Y b = (Y g)a−1 � B, which are tcc-permutable.
Let X0 � X and Y0 � Y g. Then Xa−1

0 � Xa−1
and Y a−1

0 � Y b. Hence, there exists
t ∈ 〈Xa−1

0 , Y a−1

0 〉 such that Xa−1

0 (Y a−1

0 )t = (Y a−1

0 )tXa−1

0 . Then ta ∈ 〈X0, Y0〉 and

(X0Y
ta

0 )a−1
= Xa−1

0 (Y ta

0 )a−1
= (Y ta

0 )a−1
Xa−1

0 = (Y ta

0 X0)a−1
.

Therefore, X0Y
ta

0 = Y ta

0 X0 with ta ∈ 〈X0, Y0〉.

(ii) By hypothesis, A permutes with Y g for some g = ba ∈ 〈Y, A〉 � BA, b ∈ B, a ∈ A.
Then A = Aa−1

permutes with Y b = (Y g)a−1
and we are done. �

Lemma 2.2 (Çunihin [11]). Let the group G = HK be the product of subgroups
H and K. If L � H and L � K, then 〈LK〉 � G; in particular, L � CoreG(K).

Proof. This follows easily since L � 〈LG〉 = 〈LHK〉 = 〈LK〉 � CoreG(K). �

The following lemma is a key fact in our work. A corresponding result for products of
totally permutable subgroups was proved in [22, Lemma 2(a)].

Lemma 2.3. Let the group 1 �= G = AB be the product of tcc-permutable subgroups
A and B. Let p be the largest prime divisor of |G|. Without loss of generality let a ∈ A

be a p-element of maximal order in A ∪ B and let X0 � 〈a〉 with |X0| = p. Then

(i) Bg normalizes X0 for some g ∈ G,

(ii) 1 �= 〈XA
0 〉 � G; in particular, 1 �= X0 � CoreG(A).

Proof. (i) Set X = 〈a〉. By hypothesis, XBg = BgX for some g ∈ G. Arguing by
induction on |G| + |A| + |B| and using Lemma 2.1 (i), we may assume that G = XBg is
the product of the tcc-permutable subgroups X and Bg. Without loss of generality we
may also set B = Bg.

Assume that q is a prime divisor of |B| such that q �= p. By Lemma 2.1 (ii) and Sylow’s
theorems, X permutes with Bq for some Bq ∈ Sylq(B). Hence, XBq is a product of the
tcc-permutable supersoluble subgroups X and Bq. It follows that XBq is supersoluble
by Theorem 1.3 and, in particular, Bq normalizes X. Hence, Bq normalizes X0. On the
other hand, there exists Bp ∈ Sylp(B) such that XBp = BpX (if p �∈ σ(B), then Bp = 1).
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If XBp < G, we deduce by induction that Bu
p normalizes X0 for some u ∈ XBp which

implies that X0 is normal in XBp. Consequently, B = 〈Bp, Bq | q �= p, q ∈ σ(B)〉
normalizes X0 and we are done.

Then, we may assume that G = XBp and B = Bp �= 1.
We may assume that X < G and consider a maximal subgroup M of G containing X.

Then M = X(B∩M) and X and B∩M are tcc-permutable subgroups of M . By induction
we deduce that (B ∩ M)m for some m ∈ M normalizes X0 and then M normalizes X0.
Consequently, M � NG(X0) = XNB(X0).

Assume that NB(X0) < B and consider b ∈ B \ NB(X0).
By hypothesis X〈b〉r = 〈b〉rX for some r ∈ 〈X, 〈b〉〉. Since |X| � |〈b〉|, we can deduce

from [19, § VI, Satz 10.1] that X0 is normal in 〈b〉rX. We are now assuming that G

is a p-group and so M � G. Then r = bis ∈ G = M〈b〉 for some s ∈ M = NG(X0)
and some integer i. Hence, Xbs

0 = Xbbis

0 = Xbr

0 = X0 and so Xb
0 = Xs−1b

0 = Xs−1

0 = X0,
which contradicts the choice of b and concludes the proof of part (i).

(ii) From (i) we consider Bg, with g ∈ G, which normalizes X0. Then G = AB =
A(X0B

g) and the result follows from Lemma 2.2. �

Remark 2.4. Lemma 2.3 states that for a group 1 �= G = AB which is the product
of tcc-permutable subgroups A and B, there exists 1 �= N � G such that either N � A

or N � B.

Lemma 2.5. Let the group 1 �= G = G1 · · ·Gr be the product of pairwise permutable
subgroups G1, . . . , Gr, for r � 2. Assume that Gi and Gj are tcc-permutable subgroups
for all i, j ∈ {1, . . . , r}, i �= j. Then there exists 1 �= N � G such that N � Gi for some
i ∈ {1, . . . , r}.

Proof. Let p be the largest prime divisor of |G| and let i ∈ {1, . . . , r} such that the
factor Gi contains a p-element of G1∪· · ·∪Gr of maximal order. Then Lemma 2.3 implies
that Gi contains a non-trivial normal subgroup of G. �

Lemma 2.6. Let the group G = LN be the product of subgroups L and N with
N � G, N abelian and N ∩ L = 1. If L is c-permutable in G with a subgroup X of N ,
then L normalizes X. In particular, if L is tcc-permutable with a subgroup N0 of N ,
then L normalizes every subgroup of N0.

Proof. Assume that L is c-permutable in G with a subgroup X of N . Then L permutes
with Xn for some n ∈ N as G = LN . Since N is abelian, L permutes with X = Xn

and then X = (N ∩ L)X = N ∩ LX � LX and L normalizes X. The rest is easily
deduced. �

Lemma 2.7. Let the group G = AB be the product of tcc-permutable subgroups A

and B. Then B normalizes AU , and vice versa.

Proof. Let p be a prime divisor of |B|. By Sylow’s theorems and Lemma 2.1 we
deduce that A permutes with Bp for some Bp ∈ Sylp(B), and, moreover, A and Bp
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are tcc-permutable subgroups. In particular, AU = (ABp)U � ABp by Theorem 1.3. It
follows now that B normalizes AU . �

Lemma 2.8. Let the group 1 �= G = G1 · · ·Gr be the product of pairwise permutable
subgroups G1, . . . , Gr, for r � 2. Assume that Gi and Gj are tcc-permutable subgroups
for all i, j ∈ {1, . . . , r}, i �= j. Assume in addition that G is a soluble primitive group; let
N be the unique minimal normal subgroup of G and let p be the prime divisor of |N |.
Then either G is supersoluble or the following conditions are satisfied:

(i) without loss of generality N � G1;

(ii) G2 · · ·Gr is a cyclic group whose order divides p − 1;

(iii) there exists a maximal subgroup M of G with CoreG(M) = 1 such that M =
(M ∩ G1)(G2 · · ·Gr) and M ∩ G1 centralizes G2 · · ·Gr.

Proof. Assume that G is not supersoluble. Let M be a maximal subgroup of G with
CoreG(M) = 1. In particular, G = NM , N ∩ M = 1 and N is an elementary abelian
p-group. We prove the following.

Step 1 (N �� ∩r
i=1Gi). Otherwise Gi = N(M ∩ Gi) for each i = 1, . . . , r. It follows

from Lemma 2.6 that M ∩Gi normalizes every subgroup of N for all i = 1, . . . , r. Hence,
N has order p and G is supersoluble: a contradiction.

By Lemma 2.5 and without loss of generality assume that N � ∩s
i=1Gi with 1 � s < r

and N �� Gj for all j = s + 1, . . . , r. In particular, we note that Gi = N(M ∩ Gi) and
N ∩ (M ∩ Gi) = 1 for all i = 1, . . . , s.

Step 2 (N ∩Gj = 1 for all j = s+1, . . . , r). Assume that N ∩Gj �= 1 for some j ∈
{s+1, . . . , r}. By Lemma 2.6 we deduce that N∩Gj is normalized by Gi for all i = 1, . . . , s.
Then N ∩ Gj � G1 · · ·GsGj and Lemma 2.2 implies that N � CoreG(Gs+1 · · ·Gr) �= 1.
On the other hand, by Lemma 2.5 one of the factors Gs+1, . . . , Gr contains a minimal
normal subgroup R of Gs+1 · · ·Gr, R �= N . If R � N , it follows as above from Lemma 2.6
that R is normal in G and R = N : a contradiction. Hence, [R, N ] � R ∩ N = 1 and
R � CG(N) = N : again a contradiction, which proves that N ∩ Gj = 1.

Step 3 (Gj normalizes every subgroup of N , and therefore Gj is a cyclic
group whose order divides p − 1, for all j = s + 1, . . . , r). Let j ∈ {s + 1, . . . , r}.
It follows from Step 2 and Lemma 2.6 that Gj normalizes every subgroup of N . Then
for each g ∈ Gj , ng = nt for some t, 1 � t � p − 1, for every n ∈ N . Since CG(N) = N

and N ∩ Gj = 1, we deduce that Gj is a cyclic group whose order divides p − 1.

Step 4 (s = 1). If s � 2 we deduce from Lemma 2.6 that Gi normalizes every
subgroup of N for all i = 1, . . . , s. Consequently, N has order p, by Step 3, and G is
supersoluble: a contradiction.

Step 5 (G2 · · · Gr is a cyclic group whose order divides p − 1 and
[G2 · · · Gr, G] � N). By Steps 3 and 4, G2 · · ·Gr normalizes every subgroup of N

and G2 · · ·Gr ∩ N = 1. The result is now deduced by using arguments as in Step 3; in
particular we notice that [G2 · · ·Gr, G] � CG(N) = N .
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Step 6 (without loss of generality we may assume that G2 · · · Gr � M

and M = (M ∩ G1)(G2 · · · Gr); moreover, M ∩ G1 centralizes G2 · · · Gr). By
Step 5 and Hall’s theorems, G2 · · ·Gr is contained in a Hall p′-subgroup of G and then
G2 · · ·Gr � Mg for some g ∈ G. Without loss of generality we may set M = Mg. Since
G = G1(G2 · · ·Gr), we have that M = (M ∩ G1)(G2 · · ·Gr). Moreover, Step 5 implies
also that [G2 · · ·Gr, M ∩ G1] � M ∩ N = 1. �

We recall the following basic result on formations.

Lemma 2.9. Let H be a formation and let the group G = HK be the product of
subgroups H and K such that H centralizes K. If H, K ∈ H, then G ∈ H.

Proof. Since H centralizes K, G is a factor group of the external direct product
H × K, and the result is easily deduced. �

Proof of Theorem 1.4. (i) Assume that the result is not true and let the group
G = G1 · · ·Gr be a counterexample of minimal order. We notice that, for any normal
subgroup N of G, the factor group G/N = (G1N/N) · · · (GrN/N) satisfies the hypotheses
of the theorem. Since F is a saturated formation, G is a primitive group with a unique
minimal normal subgroup, say N , and G/N ∈ F ; in particular, G/N is a soluble group.
By Lemma 2.5 we may assume without loss of generality that N � G1 ∈ F . Hence, N is
soluble; consequently, G is a soluble primitive group and Lemma 2.8 can be applied. We
consider M = (M ∩ G1)(G2 · · ·Gr) a maximal subgroup of G as in Lemma 2.8. Let F
denote the canonical local definition of F . Since U ⊆ F , we have that G2 · · ·Gr ∈ F (p)
for p the prime divisor of |N |. Moreover, the fact that G1 ∈ F implies M ∩ G1 ∈ F (p).
Therefore, M = (M ∩G1)(G2 · · ·Gr) ∈ F (p) by Lemma 2.9 as F (p) is a formation. Since
G/CG(N) = G/N ∼= M ∈ F (p) and G/N ∈ F , it follows that G ∈ F : a contradiction,
which proves (i).

(ii) We argue as in (i) and consider G = G1 · · ·Gr to be a counterexample of minimal
order. We deduce here that G has a unique minimal normal subgroup, say N , and again
assume N � G1 by Lemma 2.5. Moreover, now G ∈ F and so G is soluble. Assume
first that G is primitive. From Lemma 2.8 and with the same notation we have that
Gj ∈ U ⊆ F for all j = 2, . . . , r. In addition, M = (M ∩ G1)(G2 · · ·Gr) ∼= G/N ∈ F (p)
because G ∈ F . Since G2 · · ·Gr is a normal nilpotent subgroup of M , it follows from [12,
§ IV, Theorem 1.14] that M ∩ G1 ∈ F (p), which implies G1 = N(M ∩ G1) ∈ F : a
contradiction.

Consider now the case N � Φ(G), the Frattini subgroup of G. We notice that GiN/N ∈
F for all i = 1, . . . , r. Assume that N � Gj for some j �= 1. Then for k = 1, j, we have
that Gk = NFk, with Fk an F-projector of Gk. Since N � G1 ∩ Gj , N and Fk are
tcc-permutable subgroups and part (i) implies that Gk = NFk ∈ F . On the other hand,
if N �� Gj for some j �= 1, then CoreG(Gj) = 1 and we can deduce from Lemma 2.7 that
GU

j = 1, that is, Gj ∈ U ⊆ F . Consequently, it follows that G1 �∈ F and Gj ∈ U for all
j = 2, . . . , r. By the hypothesis, we notice that the F-projector F1 of G1 permutes with
G

nj

j for some nj ∈ N for each j = 2, . . . , r. Therefore, F1 permutes with 〈Gn2
2 , . . . , Gnr

r 〉
and G = NF1〈Gn2

2 , . . . , Gnr
r 〉 = F1〈Gn2

2 , . . . , Gnr
r 〉, since N � Φ(G). Moreover, F1 and
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G
nj

j for each j = 2, . . . , r, are tcc-permutable subgroups by Lemma 2.1 (i), which implies
by Lemma 2.7 that FU

1 is normalized by 〈Gn2
2 , . . . , Gnr

r 〉 and then FU
1 is normal in G.

We notice that GF
1 � N is an abelian group, which implies by [12, § IV, Theorem 5.18]

that GF
1 ∩ F1 = 1. If FU

1 �= 1, then GF
1 � N � FU

1 � F1 which implies GF
1 = 1, that is,

G1 ∈ F : a contradiction. Therefore, F1 ∈ U . Consequently, G/N = NF1G2 · · ·Gr/N ∈ U
by (i), which implies G ∈ U since N � Φ(G), and obviously Gi ∈ U ⊆ F for all
i = 1, . . . , r: the final contradiction. �

The obtained results (in particular, Theorem 1.4 and Lemmas 2.1 and 2.3) allow us
to adapt the arguments in the proofs of [7, Lemmas 5 and 6] (see also the proof of
Lemma 2.7) to deduce the following result.

Lemma 2.10. Let F be a saturated formation of soluble groups containing U . Let
the group G = AB be the product of tcc-permutable subgroups A and B. Then

(i) if B ∈ F , then GF = AF ,

(ii) AF and BF are normal subgroups of G.

Proof of Corollary 1.5. From Lemma 2.10 we deduce that GF
i for all i = 1, . . . , r,

and K := GF
1 · · ·GF

r are normal subgroups of G. We notice that

G/GF = (G1G
F/GF ) · · · (GrG

F/GF )

satisfies the hypotheses of the result and then Theorem 1.4 (ii) implies that K � GF .
By now considering G/K = (G1K/K) · · · (GrK/K), it follows that GF � K from Theo-
rem 1.4 (i). Consequently, GF = K. �

3. Some consequences and examples

We deduce next some results about the behaviour of F-projectors and F-normalizers in
products of tcc-permutable (soluble) subgroups. We follow here previous related results
for products of totally permutable subgroups from [4,5].

Corollary 3.1. Let F be a saturated formation of soluble groups containing U . Let
the group G = AB be the product of tcc-permutable subgroups A and B.

(i) There exist F-projectors X of A and Y of B such that X is permutable with Y .
In this case XY is an F-projector of G.

(ii) Assume in addition that G is soluble. There exist F-normalizers U of A and V of
B such that U is permutable with V and UV is an F-normalizer of G.

Proof. (i) Let X and Y be F-projectors of A and B, respectively. Since A and B

are tcc-permutable, there exists g = ba ∈ G = BA with a ∈ A and b ∈ B such that
X permutes with Y g = Y ba. Then Xa−1

permutes with (Y g)a−1
= (Y ba)a−1

= Y b and
Xa−1

is an F-projector of A and Y b is an F-projector of B.
Assume now that X and Y are F-projectors of A and B respectively, such that X

permutes with Y . By using the results in this paper, in particular, Lemmas 2.1 and 2.3
and Theorem 1.4, the proof of [4, Theorem B] can be adapted to deduce that XY is an
F-projector of G.
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(ii) We argue by induction on |G|+ |A|+ |B|. By using Theorem 1.4, Lemma 2.10 and
the arguments in the proof of [4, Theorem C], we may assume that A /∈ F and deduce
the following facts:

• there exists a normal subgroup T of A such that T � AF � GF , T � F (A)∩F (G);

• there exists a maximal subgroup M of A such that A = TM = AFM = F (A)M ,
whence M is F-critical in A.

By Lemma 2.1 (ii) there exists a ∈ A such that Ma permutes with B. Without loss of
generality we may assume that M permutes with B. If MB is a proper subgroup of G,
we notice that G = T (MB) = GF (MB) = F (G)(MB) and MB is a F-critical maximal
subgroup of G. In both cases, whether G = MB or MB < G, the result follows, as in
the proof of [4, Theorem C], by induction and [12, § V, Lemma 3.7], which states that
F-normalizers of F-critical maximal subgroups of a group are F-normalizers of the whole
group. �

Remark 3.2. Let F be a saturated formation of soluble groups containing U . Let the
group G = G1 · · ·Gr be the product of the pairwise permutable subgroups G1, . . . , Gr,
for r � 2. Assume that Gi and Gj are tcc-permutable subgroups for all i, j ∈ {1, . . . , r},
i �= j. It is an open question whether or not there exist F-projectors Xi of Gi for each
i = 1, . . . , r, such that X1, . . . , Xr are pairwise permutable.

In this case X1 · · ·Xr would be an F-projector of G. The proof of this would follow
as above, by using the results in this paper, in particular, Lemmas 2.1 and 2.5 and
Theorem 1.4, and the proof of [5, Theorem 5] (see also the proof of [4, Theorem B]).

Assume in addition that the group G = G1 · · ·Gr is soluble; equivalently, by Theo-
rem 1.4 assume that the factors Gi for all i = 1, . . . , n are soluble. It is also an open
question whether or not there exist F-normalizers Xi of Gi for each i = 1, . . . , r, such
that X1 · · ·Xr is an F-normalizer of G.

Next we gather the examples mentioned in § 1. They are taken from [1] and included
here for completeness.

Example 3.3 (Arroyo-Jordá et al . [1, Final Remark]). This example shows the
failure of Theorem 1.4 when cc-permutability is weakened to c-permutability.

Let G = Sym(4) = AY be the symmetric group of degree 4, with A = Alt(4) the
alternating subgroup of G and Y a subgroup of G of order 2 generated by a transposition.
Then every subgroup of A is c-permutable in G with every subgroup of Y ; however, for
N 2 the saturated formation of metanilpotent groups, we have that U ⊆ N 2, A, Y ∈ N 2

but G �∈ N 2.

Example 3.4 (Arroyo-Jordá et al . [1, Example 4]). We show now that c-per-
mutability does not satisfy the property of persistence in intermediate subgroups, unlike
cc-permutability.

We consider, as above, G = Sym(4) to be the symmetric group of degree 4 and Y a
subgroup of G of order 2 generated by a transposition. Let V be the normal subgroup of
G of order 4 and X a subgroup of V of order 2, X �= Z(V Y ). Then we observe that X

and Y are c-permutable in G but they are not c-permutable in 〈Y, X〉.
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The next examples show the failure of important structural properties of products of
totally permutable subgroups when considering tcc-permutability.

Example 3.5 (Arroyo-Jordá et al . [1, Example 2]). We consider G = Sym(3) =
AB, the symmetric group of degree 3 and the trivial factorization with A = G and B a
Sylow 2-subgroup of G. Then A and B are tcc-permutable in G but B = B ∩ A �� F (G),
the Fitting subgroup of G.

(We recall that if a group G = HK is the product of totally permutable subgroups H

and K, then H ∩ K � F (G) [22, Lemma 2].)

Example 3.6 (Arroyo-Jordá et al . [1, Example 3]). Let V = 〈a, b〉 ∼= Z5 × Z5

and Z6 ∼= C = 〈α, β〉 � Aut(V ) as given by

aα = a−1, bα = b−1; aβ = b, bβ = a−1b−1.

Let G = [V ]C be the corresponding semidirect product of V with C. Set A = 〈α〉 and
B = V 〈β〉. Then G = AB and A and B are tcc-permutable subgroups of G but they
are not totally permutable. In fact, BN = BU = V does not centralize A, in contrast to
properties of products of totally permutable subgroups. We remark also that ZU (G) = 1,
and obviously G modulo ZU (G) is not a direct product of the images of A and B.

(It is known that if G = HK is the product of totally permutable subgroups H and
K, then XN centralizes Y for {H, K} = {X, Y } [8, Theorem 1]; also G modulo ZU (G)
is a direct product of the images of H and K [13, Remarks (3), p. 859].)
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13. M. P. Gállego, P. Hauck and M. D. Pérez-Ramos, On 2-generated subgroups and

products of groups, J. Group Theory 11 (2008), 851–867.
14. W. Guo, K. P. Shum and A. N. Skiba, Conditionally permutable subgroups and super-

solubility of finite groups, SE Asian Bull. Math. 29 (2005), 493–510.
15. W. Guo, K. P. Shum and A. N. Skiba, Criterions of supersolubility for products of

supersoluble groups, Publ. Math. Debrecen 68 (2006), 433–449.
16. P. Hauck, A. Mart́ınez-Pastor and M. D. Pérez-Ramos, Fitting classes and prod-
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