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Abstract

A robust approach to computational kinematics intended to cope with algo-

rithmic singularities is introduced in this paper. The approach is based on

the reduction of the original system of equations to a subsystem of bivariate-

equations, as opposed to the multivariate-polynomial reduction leading to

the characteristic univariate-polynomial. The effectiveness of the approach

is illustrated for the exact function-generation synthesis of planar, spherical,

and spatial four-bar linkages. Some numerical examples are provided for the

case of the spherical four-bar function generator with six precision points to

show the benefits of the proposed method with respect to methods reported

in the literature.
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1. Introduction

The kinematics of mechanical systems such as mechanisms and robots

leads to a set of equations that involve a number of joint variables. These

variables, e.g., joint angles, usually appear in these equations in a nonlin-

ear form through their harmonic functions. The set of underlying kinemat-

ics equations must be solved for either analysis or synthesis purposes. In

this regard, some transformations, e.g. the well-known tan-half identities,

are commonly applied to obtain one single univariate nth-degree polynomial

equation. The n roots of this polynomial, which is referred to as the char-

acteristic polynomial of the system at hand, represent the solution sought.

Raghavan and Roth [1] as well as Lee et al. [2] solved the inverse displacement

problem of general six-revolute (6R) manipulators leading to a univa riate

16th-degree polynomial equation. Innocenti and Parenti-Castelli [3] and Gos-

selin et al. [4] obtained a univariate eighth-degree characteristic polynomial

for the direct displacement problem of spherical parallel robots. Moreover,

Alizade and Kilit [5] and Cervantes-Sánchez et al. [6] synthesized the four-

bar spherical function generator (SFG) with five precision points based on a

cubic polynomial. Similarly, Dukkipati [7] and Cervantes-Sánchez et al. [6]

designed the SFG with six precision points via a 16th-degree and a 10th-

degree polynomial, respectively.

However, the classical univariate-polynomial approach for computational

kinematics has significant drawbacks, such as algorithmic singularities and

ill-conditioning, which are illustrated in Section 2 with several examples. In

order to overcome these drawbacks, which are algorithmic, rather than in-

trinsically kinematic or structural, the authors propose an alternative means,
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the bivariate-equation approach, to solve robustly problems in computational

kinematics of the above kinds. While the underlying idea has been proposed

in various publications by the second author and his team [8, 9], the general-

ity of the bivariate approach and its comparison with the classical alternative

have not as yet been reported. The procedure of the proposed approach is de-

scribed in Section 3, where it is illustrated for the exact function-generation

synthesis of planar, spherical, and spatial four-bar linkages. Some numerical

examples are discussed in Section 4 for the SFG to show the benefits of the

proposed approach vis-a-vis its counterpart alternatives. Finally, Section 5

includes the conclusions.

2. Singularities and Sensitivity in the Classical Univariate-polyno-

mial Approach

2.1. Polynomial Root-finding Sensitivity

Although there exist methods in the literature to obtain the numerical so-

lution of polynomials [10], the problem of polynomial root-finding has been

identified as ill-conditioned by numerical analysts for some time [11]. Ill-

conditioning here stems from the nature of the problem itself, rather than

because of the intrinsically finite accuracy of floating-point arithmetic. Ill-

conditioning implies high sensitivity to round-off errors, e.g., high error am-

plification in polynomial root-finding, in the sense that small perturbations

in the data lead to dramatic changes in the root values. That is, when poly-

nomial coefficients are slightly perturbed, the computed root values become

corrupted with unacceptably large error. As a consequence, polynomial root-

finding should be avoided in any type of computation, whenever possible. To
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illustrate the sensitivity in question, let us consider the 20th-degree polyno-

mial proposed by Forsythe [11]:

P (x) = (x− 1)(x− 2) · · · (x− 19)(x− 20) = x20 − 210x19 + · · ·+ 20! (1)

The roots of P (x), {1, 2, ..., 19, 20}, are well separated. Suppose that a

change in the tenth most significant digit is made in only one of the twenty

coefficients. For example, if the coefficient of x19 is changed from −210 to

−210 − 10−7, the computed roots for the modified polynomial, i.e. P̃ (x) =

P (x)−10−7x19, are: 1, 2, 3, 4, 5, 6, 6.99, 8.01, 8.92, 10.12±0.60ı, 11.82±1.59ı,

14.01±2.44ı, 16.72±2.73ı, 19.45±1.87ı, 20.78. Note that a negligibly small

change in one coefficient has caused 10 of the roots to become complex, two

of them having moved more than 2.73 units off the real axis. The reason

why these roots changed so dramatically is not a round-off problem; it is a

matter of intrinsic problem sensitivity.

2.2. Algorithmic Singularities

This kind of singularities arises when the tan-half identities are introduced

to obtain the characteristic univariate-polynomial of a specific kinematics

problem. Moreover, in function-generation synthesis the linkage geometric

parameters are transformed into dimensionless design parameters via nonlin-

ear transformations, e.g., those introduced by Freudenstein [12]. These trans-

formations give rise to singularities that are algorithm-dependent, rather than

intrinsic to the mechanical system at hand. For example, when the tan-half-

angle identities are used, an algorithmic singularity is apparently introduced

at the angle value of π. The outcome is that, if one of the roots finds it-

self at that value, then the characteristic polynomial admits one solution at
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infinity, which manifests itself as polynomial deflation. This phenomenon is

illustrated with one example.

Serial decoupled 6R robots are those whose last three revolute axes inter-

sect at a common point, which is known as center of the wrist. For this type

of robots, the inverse displacement problem for the first three joints—i.e.,

the positioning problem of the wrist center—can be reduced to two bivariate

trigonometric equations [8]:

h1cθ1 + h2sθ1 + h3cθ3 + h4sθ3 + h5 = 0, (2)

h6cθ1 + h7sθ1 + h8cθ3 + h9sθ3 + h10 = 0, (3)

where {hi}101 are constant coefficients computed from the data, i.e. the de-

sired position of the wrist center and the robot Denavit-Hartenberg param-

eters. In the above equations a compact trigonometric notation has been

used: cθi ≡ cos(θi), sθi ≡ sin(θi), where θ1 and θ3 are the angles of the first

and the third joints, respectively.

Upon introduction of the tan-half identities and then elimination of θ1

from the equations thus resulting by dialytic elimination [13], the above equa-

tions can be reduced to a single quartic univariate polynomial equation:

h11τ
4
3 + h12τ

3
3 + h13τ

2
3 + h14τ3 + h15 = 0, τ3 = tan(θ3/2), (4)

which is the characteristic polynomial at hand. The above equation in τ3 of

the given problem admits four roots. Thus, up to four possible values of θ3

are expected. Once each value of θ3 is available, the unique value of θ1 is

computed from Eqs. (2) and (3). Then, the value of the second joint angle,

θ2, can be readily computed from a set of linear equations [8], not given here

for the sake of compactness.
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For the isotropic 3R robot in Fig. 1a, with the wrist center at (0, a, 0),

where a is a non-zero length, Eqs. (2) and (3) become:

C1 : sθ1 + cθ3 + sθ3 + 1 = 0, (5)

C2 : cθ1 + sθ3 + 1 = 0. (6)

For this case, the quartic Eq. (4) deflates into a cubic equation:

τ 33 + 2τ 23 + 3τ3 + 1 = 0, (7)

whose roots are readily found as −0.43 and −0.785±1.307ı. That is, only one

real solution is obtained: θ3 = 5.47 rad. However, the configuration shown

in Fig. 1a is a quite symmetric posture of this manipulator, which does not

correspond to the real solution obtained above. In fact, the solution yielding

the posture in Fig. 1a disappeared because of the use of the tan-half-angle

identities. The two contours derived from Eqs. (5) and (6) are displayed

in Fig. 2, their intersections yielding the two real roots, including the one

leading to the posture in Fig. 1a. The missing root is, hence, τ3 → ±∞,

whence, θ3 = π. For each value of θ3, angle θ1 is readily calculated from

Eqs. (5) and (6) as 4.43 and π, respectively.

2.3. Conditioning of the Solutions

For the same isotropic 3R robot with the wrist center at (0, 2a,−a), as
shown in Fig. 1b, Eqs. (2)–(4) become:

C1 : 2sθ1 + cθ3 + sθ3 − 1 = 0, (8)

C2 : 2cθ1 + sθ3 + 1 = 0, (9)

τ 43 − 4τ 33 + 2τ 23 + 4τ3 − 3 = 0. (10)
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The foregoing quartic equation in τ3 has four real roots, namely, 1, 1, −1,

and 3, yielding four solutions with the joint angle values:

R1(π, π/2), R2(π, π/2), R3(π/2,−π/2), R4(2.5, 2.5). (11)

The two contours derived from Eqs. (8) and (9) are displayed in Fig. 3a,

their intersections yielding the four points Ri.

Now, let us consider a 10% perturbation in only one coefficient of Eqs. (8)

and (9). That is, a value of 0.1 is added to and subtracted from Eq. (8):

C1+ : 2sθ1 + cθ3 + sθ3 − 0.9 = 0, (12)

C1− : 2sθ1 + cθ3 + sθ3 − 1.1 = 0, (13)

where subscripts + and − are used to identify the sign of the perturbation

introduced. The new real solutions for the joint angles from Eqs. (9) and

(12) or (13) are:

R1+(π + 0.138, π/2− 0.195), R2+(π + 0.029, π/2 + 0.041),

R3+(π/2 + 0.003,−π/2− 0.106), R4+(2.5− 0.172, 2.5 + 0.258), (14)

R1−(No real solution), R2−(π − 0.030, π/2− 0.042),

R3−(π/2 + 0.002,−π/2 + 0.096), R4−(No real solution). (15)

Thus, the percentage error amplification E (%) for each solution is:

E1+(138, 195), E2+(29, 41), E3+(3, 106), E4+(172, 258), (16)

E1−(∞,∞), E2−(30, 42), E3−(2, 96), E4−(∞,∞), (17)

where it is apparent that the perturbation has greater impact in solutions R1

and R4 than in solutions R2 and R3. In fact, the real solutions given by R1

and R4 are lost, as they become complex, for the negative 10% perturbation.
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In order to find the cause of this behavior, the contours derived from

Eqs. (8), (9), (12) and (13) are displayed in Fig. 3b. Note that contour C1 is

almost tangent to contour C2 at roots R1 and R4, which gives high numerical

sensitivity when perturbing the contours. In fact, the numerical conditioning

of the solutions is given by the angle at which the contours intersect [8]. That

is, for the best possible solutions, from the numerical conditioning viewpoint,

the two contours cross each other at right angles, e.g., R2 and R3 in the above

example. At ill-conditioned postures the contours are tangent to each other,

e.g., R1 and R4 in the same example. A limit case of ill-conditioning can

be found when the two contours overlap, thereby leading to a continuum

of solutions. In this case purely numerical methods, like those used in the

univariate-polynomial approach, are strongly recommended against, since

they hide information available in the graph representation.

3. A Robust Method for Kinematic Computations

3.1. Overall Description

The proposed method, applicable to similar problems in computational

kinematics, is based on a system of bivariate equations. In this approach, the

equations of the kinematics problem at hand are reduced to a system of M

(≥ 2) nonlinear equations in two unknowns. Note that only two such equa-

tions are required, although equation redundancy provides robustness to the

method, as explained in Subsection 3.2. These equations are then displayed

in the plane of the two unknowns using the graphics features of commercial

software for computer algebra. The M contours must intersect at a solution.

All the intersections are roughly estimated by inspection on the contour plots,
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and then refined by a numerical procedure to the desired accuracy. To this

end, the M bivariate equations are regarded as independent, since possible

contradictions, due to round-off error, may render them independent. Then,

rather than one solution to all the bivariate equations, what the refinement

algorithm seeks is their (nonlinear) least-square approximation, which can

be done via the Gauss-Newton method [14], see Appendix B. To complete

the solution, the remaining unknowns are computed for each pair of roots

thus found.

3.2. Main Advantages

1. Avoiding direct polynomial root-finding : As mentioned in Subsection 2.1,

polynomial root-finding is intrinsically an ill-conditioned problem and

should be avoided whenever possible.

2. Avoiding algorithmic singularities : The proposed approach keeps the

original nonlinear functions, i.e. the harmonic functions of the joint

angles, in the bivariate equations, without any transformation. Thus,

algorithmic singularities, e.g., polynomial deflation, as illustrated in

Subsection 2.2, are avoided. Therefore, all real roots are found and

high error amplification due to nearness to algorithmic singularities is

prevented. This advantage is shown in Example 3 of Subsection 4.2

3. Robustness to spurious roots and ill-conditioning : Although only two

bivariate-equations are independent, more than two are always wel-

come, as these add robustness to the computations involved: firstly, re-

dundancy helps identify spurious roots, i.e., points where two or more,

but not all, contours intersect; secondly, when two or more contours

turn out to be either tangent or close to tangent at an intersection, the
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remaining non-tangent contours help to pinpoint the intersection coor-

dinates, as discussed in Subsection 2.3. These advantages are shown in

Example 1 of Subsection 4.2.

4. Obtaining approximate solutions : The graph representation of contours

is useful to notice when all of them approximately intersect or even

overlap, which is very difficult to establish with purely numerical ap-

proaches. Then, approximate solutions or a continuum of approximate

solutions, which are almost exact for the kinematics problem at hand,

can be found. This advantage is shown in Example 2 of Subsection 4.2.

3.3. An Outline of the Robust Approach for Function-generation Synthesis

In this Subsection, a common procedure is described for the robust function-

generation synthesis of four-bar linkages using the proposed bivariate-equation

approach. In further Subsections, the procedure is applied to the planar,

spherical, and spatial cases. The kinematic relations associated with the

function-generation problem define the input-output equation. For the com-

mon approach, this equation is written in the form [12]:

p1 + g1(ψ, φ, pN−1, pN) + p2g2(ψ, φ, pN−1, pN)

+ · · ·+ pN−2gN−2(ψ, φ, pN−1, pN) = 0, (18)

where gi is a generic nonlinear function, {pi}N1 are the independent design

parameters of the linkage, ψ is the input variable and φ is the output variable.

When used for the kinematic synthesis of the four-bar function generator,

the input-output equation must be satisfied for N precision points (ψi, φi),

thereby leading to N synthesis equations :

p1 + g1i + p2g2i + · · ·+ pN−2g(N−2)i = 0, for i = 1, . . . , N, (19)
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where gji ≡ gj(ψi, φi pN−1, pN).

To eliminate parameter p1 from the above equations, the Nth synthesis

equation is subtracted from the remaining N − 1 equations, to give:

g1i − g1N + p2(g2i − g2N ) + · · ·+ pN−2(g(N−2)i − g(N−2)N ) = 0,

for i = 1, . . . , N − 1. (20)

The above system of N − 1 equations can be expressed in array form:

[

A b

]





p

1



 = Ā p̄ = 0, (21)

where p = [ p2 · · · pN−2 ]T , A(pN−1, pN) ∈ R
(N−1)×(N−3), b(pN−1, pN) ∈

R
N−1, Ā(pN−1, pN) ∈ R

(N−1)×(N−2), p̄ ∈ R
N−2 and 0 ∈ R

N−1.

Matrix Ā must be rank-deficient (necessary condition) for Eq. (21) to

admit a non-trivial solution. This means that the determinants of all of its

(N − 2)× (N − 2) submatrices, obtained by deleting one of its N − 1 rows,

should vanish. Note that only two of these N − 1 determinants are indepen-

dent. However redundant determinants add robustness to the method, as

discussed in Subsection 3.2. Therefore, the vanishing of N − 1 determinants

is imposed, which yields, correspondingly, N − 1 contours in the pN−1-pN

plane. The intersections of all contours then yield the (pN−1, pN) pairs of

real values which render Ā rank-deficient. For each intersection, the remain-

ing design parameters in Eq. (21) are computed by linear-equation solving:

given that the remaining system of linear equations is overdetermined, a

least-square approximation is computed, which yields, in symbolic form:

p = −
(

ATA
)−1

ATb. (22)
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Finally, parameter p1 can be computed from any of the N synthesis equa-

tions in Eq. (19).

3.4. Robust Function-generation Synthesis for the Planar Four-bar Linkage

The input-output equation of the planar four-bar linkage can be written

in the form [12]:

k1 + k2cψ + k3cφ− cψcφ+ sψsφ = 0, (23)

which is called the Freudenstein equation, where {ki}31 are the Freudenstein

parameters, ψ is the input angle and φ is the output angle. Note that the

above equation is linear in the Freudenstein parameters and bilinear in the

harmonic functions of the input and output variables.

The case under study has three independent design parameters {ki}31.
However, two additional design parameters can be introduced: the reference

angles ψ0 and φ0, with respect to which the input and output angles are

measured. If ψ → ψ + ψ0 and φ → φ + φ0 are introduced into Eq. (23), an

alternative input-output equation is obtained:

k1 + k2c(ψ + ψ0) + k3c(φ+ φ0)

− c(ψ + ψ0)c(φ+ φ0) + s(ψ + ψ0)s(φ+ φ0) = 0. (24)

By comparing Eqs. (18) and (24), a set of equivalences is obtained: N =

5, {pi}31 = {ki}31 and {p4, p5} = {ψ0, φ0}. Thus, the function-generation

synthesis for this linkage is obtained as described in Subsection 3.3 with the

foregoing equivalences.
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3.5. Robust Function-generation Synthesis for the Spherical Four-bar Link-

age

The input-output equation of the spherical four-bar linkage can be written

in a form similar to that of the foregoing Freudenstein equation [12]:

k1 + k2cψ + k3cφ− k4cψcφ+ sψsφ = 0, (25)

where {ki}41 are the four Freudenstein parameters, ψ is the input angle and

φ is the output angle.

Again, two additional design parameters can be introduced: the reference

angles ψ0 and φ0, with respect to which the input and output angles are

measured. As above, if the transformations ψ → ψ+ ψ0 and φ→ φ+ φ0 are

introduced into Eq. (25), an alternative input-output equation is obtained:

k1 + k2c(ψ + ψ0) + k3c(φ+ φ0)

− k4c(ψ + ψ0)c(φ+ φ0) + s(ψ + ψ0)s(φ+ φ0) = 0. (26)

By comparing Eqs. (18) and (26), the equivalences are: N = 6, {pi}41 =

{ki}41 and {p5, p6} = {ψ0, φ0}. Thus, the function-generation synthesis for

this linkage is obtained as described in Subsection 3.3 with the foregoing

equivalences.

3.6. Robust Function-generation Synthesis for the Spatial RCCC Linkage

The spatial RCCC linkage is a single-input-double-output four-bar linkage

whose input-output equations can be written in the form of the foregoing

Freudenstein equations [15]:

k1 + k2cψ + k3cφ− k4cψcφ+ sψsφ = 0, (27)
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k5 + k6cψ + k7cφ− k8cψcφ− k2sψ + k3dsφ

+k4(sψcφ+ dcψsφ) + dsψcφ+ cψsφ = 0, (28)

where {ki}81 are the eight Freudenstein parameters, ψ is the input angle, φ

is the output angle and d is the output sliding. Note that the above equa-

tions are linear in the Freudenstein parameters and trilinear in the harmonic

functions of the input and output angular variables plus the output sliding.

Four precision points (ψi, φi, di) can be selected using the eight Freuden-

stein design parameters. However, one additional precision point can be

handled when two more design parameters are introduced: the reference

angle φ0 and the reference position d0, with respect to which the output an-

gle and the output sliding are measured. Therefore, if the transformations

φ → φ + φ0 and d → d + d0 are introduced into Eqs. (27) and (28), two

alternative input-output equations are obtained:

k1 + k2cψ + k3c(φ+ φ0)− k4cψc(φ+ φ0) + sψs(φ+ φ0) = 0, (29)

k5 + k6cψ + k7c(φ+ φ0)− k8cψc(φ+ φ0)− k2sψ

+k3(d+ d0)s(φ+ φ0) + k4sψc(φ+ φ0)

k4(d+ d0)cψs(φ+ φ0) + (d+ d0)sψc(φ+ φ0) + cψs(φ+ φ0) = 0, (30)

The 10 design parameters are computed in two stages: first, the five design

parameters {ki}41 and φ0 are obtained from Eq. (29); then, the remaining five

design parameters {ki}85 and d0 are obtained from Eq. (30). For the first

stage, the equivalences with the common approach are N = 5, {pi}31 = {ki}31
and {p4, p5} = {k4, φ0}. For the second stage, the equivalences with the

common approach are N = 5, {pi}31 = {ki}75 and {p4, p5} = {k8, d0}.
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3.7. Branch, Order and Circuit Defects in Function-generation Synthesis

These defects are inherent to linkage synthesis using precision points and

may occur irrespective of the computational method used. Firstly, branch

defect occurs when the synthesized linkage can pass through all the precision

points only in different branch configurations, which would render the mech-

anism useless. For example, planar and spherical four-bar linkages present

branch defect when the sign of the sine of the transmission angle changes

[16]. Secondly, order defect occurs when the synthesized linkage fails to pass

through the precision points in the specified order. Finally, circuit defect

occurs when the input link has a partial rotatability with several disjointed

ranges of motion and the precision points belong to different ranges.

Therefore, the linkages synthesized using the proposed approach should

be tested for all three kinds of defect, then discarded if any defect is found.

It is noteworthy that some works have been reported [16, 17] that propose

means to avoid the above-mentioned defects. The integration of those tech-

niques with the proposed approach could be investigated. However, this issue

lies outside the scope of this paper, and is hence left aside, to be discussed

in future work.

4. Examples for the Spherical Four-bar Function Generator

4.1. Kinematic Relations

Figure 4 depicts a general spherical four-bar linkage, which is character-

ized by four links connected by four revolute joints, namely, A, B, C and

D, whose axes of rotation intersect at one common point O. Therefore, this

point is the center of concentric spheres on which the motion of all the links
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takes place. In Fig. 4 the input and output angles are denoted by ψ and φ,

respectively. Link dimensions are given by the angle between adjacent joint

axes: α1 for the input link, α2 for the coupler link, α3 for the output link and

α4 for the fixed link. The input-output equation of the spherical function

generator (SFG) is known to be [18]:

f(ψ, φ, α1, α2, α3, α4) = (sα1sα3)sψsφ− (sα1sα3cα4)cψcφ

+ (sα1cα3sα4)cψ + (cα1sα3sα4)cφ+ cα1cα3cα4 − cα2 = 0. (31)

Note that, when the input link length α1 is equal to π or 2π the input

angle ψ vanishes in the SFG input-output equation, which is equivalent to a

zero length of the input link, where joint axes OA and OB collapse into one

single axis. This situation corresponds to a degenerate design (structural

singularity) of the SFG. An analogous situation occurs when either of the

other link lengths is equal to π or 2π. Even several links can simultaneously

degenerate. In any case, to be on the safe side regarding degenerate designs

and mechanical constraints, the four link lengths must satisfy:

αi ∈ ]0, π[ ∪ ]π, 2π[ , for i = 1 . . . 4, (32)

αi ≤ αj + αk + αm, for i = 1 . . . 4, where i 6= j 6= k 6= m. (33)

Furthermore, a link dimension αi close to 0, π or 2π is neither an accept-

able design, as the linkage is close to a degeneracy and is, hence, fragile—as

opposed to robust—i.e., highly sensitive to data perturbation.

The direct relations between the link lengths {αi}41 and the Freudenstein

parameters {ki}41, see Eqs. (25) and (31), are:

k1 = (cα1cα3cα4 − cα2)/(sα1sα3), (34)
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k2 = (cα3sα4)/sα3, (35)

k3 = (cα1sα4)/sα1, (36)

k4 = cα4, (37)

where the Freudenstein parameters {ki}31 are infinite only for degenerate de-

signs. From the above expressions, the inverse relations between link lengths

and Freudenstein parameters are:

α4 = arccos(k4), (38)

α1 = arctan(sα4/k3), (39)

α3 = arctan(sα4/k2), (40)

α2 = arccos(cα1cα3cα4 − k1sα1sα3), (41)

where the absolute values of parameter k4 and of (cα1cα3cα4−k1sα1sα3) must

be smaller than or equal to 1 in order to obtain a real solution for the link

lengths α4 and α2, respectively. With Eqs. (38)–(41) up to 64 (= 2×4×4×2)

sets of {αi}41 values for one single set {ki}41 are obtained, where 32 of these

are the antipodal counterparts of the other 32. However, all these 64 sets

give the same input-output equation and will, therefore, be considered in

this work as the same design solution.

4.2. Numerical Examples1

In order to illustrate the synthesis of the SFG with six precision points,

three examples of prescribed functions are considered: 1) the hyperbolic spi-

ral, 2) the quadratic root and 3) the Archimedean spiral. The three functions

1The results reported here were obtained with Mathematica R© 5.2.
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and the corresponding set of precision points used are shown in Table 1. The

first two are taken from [6], which is the only work that gives numerical

examples for the problem at hand. However, the method reported in [6] in-

troduces algorithmic singularities at the parameter values ψ0 = ±π/2 and

φ0 = ±π/2 due to the transformations made between design parameters and

design coefficients.

Example 1 : the hyperbolic spiral

For this example, the five contours in the ψ0-φ0 plane are displayed in

Fig. 5. There are 20 intersections among all five contours, which are num-

bered from 1 to 5 because only five of them represent distinct designs. That

is, for one intersection point in the range [(0, 0), (π, π)], there are other three

symmetric intersection points obtained by subtracting π from the values of

ψ0 and/or φ0. Therefore, to obtain all the possible solutions it suffices to

analyze one π × π quadrant. For example, Fig. 6 displays the five contours

in the range [(−π/2,−π/2), (π/2, π/2)]. According to Subsection 4.1, up to

256 (= 4× 64) sets of {ψ0, φ0, {αi}41} values for the same design solution will

be obtained, all of them giving the same input-output equation.

Although only two contours are independent, displaying all five contours

adds robustness to the method, as discussed in Subsection 3.2. For example,

in Fig. 6 three and four contours intersect at points {P3i}51 and {P4i}31, re-
spectively, which can be readily identified as spurious roots because two and

one contours, out of four, do not pass through these points. Moreover, at

the first intersection point in Fig. 6, there are two sets of tangent contours;

using all five contours ill-conditioning is avoided.

Table 2 shows the coordinates of each intersection point obtained with a
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nonlinear least-square minimization algorithm [14]. This table also shows the

value of the residual error eR and the value of the Freudenstein parameters for

each point. Note that, for actual intersection points the value of the residual

error tends to zero as the number of iterations of the algorithm is increased.

The points that give a valid SFG design, which appear in boldface numbers,

are those with |k4| 6 1. In particular, two valid designs are obtained, whose

link-length values and reference angles can be found in Table 1. The plots

in Figs. 7 and 8 illustrate for each design how the SFG accommodates its

input-output function (thin continuous line) according to the precision points

(filled circles) in order to satisfy the prescribed function (thick continuous

line), regardless of its intricate shape. The two designs obtained here for this

example are practically the same as the ones reported in [6].

Example 2 : the square root

The five contours obtained for this example are displayed in Fig. 9. Math-

ematically, there are three independent intersection points among all of them.

The value of the coordinates, residual error and Freudenstein parameters for

the three points are shown in Table 3. Only the third point gives a valid

SFG design, whose link-length values and reference angles can be found in

Table 1. The plot in Fig. 10 illustrates how the designed SFG accommo-

dates its input-output function to the precision points. This SFG design is

practically the same as the one reported in [6].

However, let us further analyze the graph representation of the contours of

this example. For this purpose, Fig. 11 displays the five contours in the range

[(0, 0), (π, π)]. Although mathematically the contours only intersect at three

points, all of them almost overlap in the region RA, which lies approximately
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between the third intersection point and point 5A.

To go deeper into this overlap, points 4A and 5A are treated as if they

were actually intersection points, which they are not. Although the value of

their residual error is not exactly zero, Table 3 shows that this error lies below

4× 10−8, which is quite acceptable. Moreover, point 4A gives a valid design,

whose link-length values and reference angles can be found in Table 1. In

fact, the plot in Fig. 12 shows that this SFG design accommodates its input-

output function to the precision points with no perceptible error. Therefore,

in this example a continuum of approximate solutions has been found in the

RA region.

Example 3 : the Archimedean spiral

The five contours are displayed for this example in Fig. 13. There are

seven independent intersection points, as seen in Fig. 14. The value of the

coordinates, residual error and Freudenstein parameters for the seven points

are shown in Table 4. Only the first two points give a valid SFG design, whose

link-length values and reference angles can be found in Table 1. Besides, the

synthesis method developed in [6] was applied to the prescribed function and

precision points of this example. The link-dimensions and reference angles

obtained are shown in Table 1. In particular, two designs are obtained: the

second is basically the same as its counterpart obtained with our method,

whereas the first one is slightly different from its counterpart. The two

designs of both approaches are comparatively depicted in Figs. 15 and 16. In

particular, the first design obtained with the method developed in [6] exhibits

a large error that is unacceptable for exact function-generation synthesis.

The reason why this design fails lies in that it lies close to the algorithmic
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singularities—ψ0 = ±π/2 and φ0 = ±π/2—introduced by the parameter

transformations used in [6]. Thus, round-off errors are highly amplified,

thereby giving rise to an unsuccessful design, as evidenced in Fig. 15.

5. Conclusions

In this paper a robust approach to computational kinematics was pro-

posed. The approach is based on the reduction of the original system of

equations to a subsystem of bivariate-equations, rather than the classical

characteristic univariate-polynomial. The proposed method thus avoids the

high sensitivity or error amplification that the univariate-polynomial ap-

proach exhibits at and around algorithmic singularities. The application

of the approach was illustrated for the function-generation synthesis of pla-

nar, spherical, and spatial four-bar linkages. In particular, the numerical

examples provided for the spherical four-bar function generator show the ef-

fectiveness of the proposed method with respect to methods reported in the

literature.

It is noteworthy that the proposed approach can be used for solving other

kinematics problems such as linkage synthesis for path generation or rigid

body guidance, which remains as future work. In this sense, similar ideas

to those proposed here have been successfully used for a robust analysis of

the inverse kinematics of serial robots [8] and of the forward kinematics of

spherical parallel robots [9].

Obviously, the proposed method is intended for off-line applications.

However, it can be used in real-time problems—e.g. for finding real-time

solutions of inverse kinematics problems—if the rough estimation of the con-
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tour intersections is automated. This can be done by means of a suitable

graphics system, is another interesting field for future work.
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APPENDIX A

Notation

4A, 5A points within the RA region in Example 2

a non-zero length representing the scale of the isotropic 3R

robot

A first revolute joint of a spherical four-bar linkage

A (N − 1)× (N − 3) matrix

Ā (N − 1)× (N − 2) matrix

b (N − 1)-dimensional vector

B second revolute joint of a spherical four-bar linkage

cxi cosine of xi

C third revolute joint of a spherical four-bar linkage

d output sliding of the spatial RCCC linkage

d0 reference output sliding

D fourth revolute joint of a spherical four-bar linkage

eR residual error of the nonlinear least-square minimization al-

gorithm

Ei+, Ei− percentage error amplification of a perturbed solution

gi, gji generic nonlinear functions

hi constant coefficient of the inverse positioning problem of serial

decoupled 6R robots

ki ith Freudenstein parameter of a four-bar linkage

M number of bivariate equations

N number of precision points
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O intersection point of the axes of rotation of a spherical four-

bar linkage

pi independent design parameter of the linkage

p (N − 3)-dimensional vector

p̄ (N − 2)-dimensional vector

P3i, P4i points in the contour plot of Example 1 where three and four

contours intersect

P (x) 20th-degree polynomial in x

P̃ (x) perturbed version of P (x)

Ri original root solution

Ri+, Ri− perturbed root solutions

RA region in the contour plot of Example 2 where all the contours

almost overlap

sxi sine of xi

t parameter in the parametric form of the hyperbolic and the

Archimedean spirals

αi ith-link dimension of a spherical four-bar linkage

θi joint angle of serial decoupled 6R robots

τ3 tangent of the third joint half-angle

ψ input angle of the linkage

ψ0 reference input angle

φ output angle of the linkage

φ0 reference output angle

Ci original contour

Ci+, Ci− perturbed contours
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APPENDIX B

The implementation of the refinement algorithm outlined in Subsection 3.1

using the Newton-Gauss method [14] is described here. The method is used

to find iteratively the least-square approximation of a nonlinear overdeter-

mined system of equations; at each iteration, the least-square approximation

of a linear overdetermined system is computed.

Problem statement: Find an approximate solution to system of nonlinear

equations

f(x) = 0, (42)

where x is a n-dimensional vector and f is a m-dimensional vector, with

m > n, that verifies those equations with the least-square error, i.e.,

f T f → min
x
. (43)

In general, no vector x can be found that verifies all the m scalar equa-

tions (42). However, approximations can be found that minimize the least-

square error of the approximation.

Solution: first, an initial guess x0 of x has to be given. In our case, this

guess is given by the intersections roughly estimated by inspection on the

contour plots. Then, a sequence x1, x2, x3, . . . , is obtained, such that

xi+1 = xi +∆xi, (44)

with ∆xi found as the least-square approximation of an overdetermined linear

system, namely,

J(xi)∆xi = −f(xi) (45)
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with J defined as the m×n Jacobian matrix of the vector function f(x), i.e.,

J(x) =
∂f(x)

∂x
. (46)

Therefore, in symbolic form,

∆xi = −
(

JTJ
)−1

JT f (47)

The procedure stops when a convergence criterion,

‖∆x‖ < ǫ, (48)

is met, with ǫ denoting a prescribed tolerance.

Therefore, the algorithm returns the local optimum value x∗ closest to

the initial guess x0 and truncated to the desired accuracy ǫ that best ap-

proximates the overdetermined system given by Eq. (42) in the least-square

sense.

Remarks: It can be shown that the second-order approximation of eq.(42)

is negative-definite, and hence, the sequence of error-values decreases mono-

tonically. That is, in the neighborhood of a stationary point ∆x = 0, the

first-order approximation of f(x) is good enough, and hence, if the procedure

converges, it does so to a minimum. However, convergence is not guaranteed.

The algorithm may converge slowly or not at all if the initial guess is far from

the minimum or the matrix JTJ is ill-conditioned. In our case, the initial

guess is always close-enough to a local minimum.
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Prescribed

Function

ψ = 2− (5/t) sin t

φ = 2 + (5/t) cos t
φ =

√
2ψ

ψ = (0.1) t cos t+ 0.15797399

φ = (0.1) t sin t + 0.02045874

PRECISION POINTS (ψi, φi)

1 (0.37890171, 0.55157387) (0.20000000, 0.63245553) (-0.16978585, -0.10231539)

2 (2.23900863, 0.50381853) (0.40000000, 0.89442719) (-0.04793556, -0.34560309)

3 (3.06530923, 1.53395445) (0.60000000, 1.09544512) (0.24936505, -0.46094304)

4 (2.78515796, 2.52299466) (0.80000000, 1.26491106) (0.59229088, -0.33305058)

5 (1.98665563, 2.79353860) (1.00000000, 1.41421356) (0.78788493, 0.03105150)

6 (1.41750916, 2.36032707) (1.20000000, 1.54919334) (0.68570557, 0.48034936)

Our Method Our Method Our Method Method in [6]

COMPUTED DESIGN PARAMETERS

α1 2.7562506 1.3235236 1.5679253 1.3761275 1.5826845 0.6913904 1.5832970 0.6913904

α2 2.6036225 0.9672887 0.4371065 0.6117110 2.6635344 0.3128503 2.8097423 0.3128503

α3 0.3533623 0.9485493 1.9048276 2.2216431 1.8801156 0.4142372 1.8841588 0.4142372

α4 0.8977034 1.7283503 2.3637434 2.0674146 1.7471203 0.6604776 1.7471203 0.6604776

ψ0 1.4164239 -1.2111495 1.3632058 1.5000000 -1.5707963 0.4191038 -1.5707963 0.4191038

φ0 -1.3210544 -0.4418615 1.2142519 1.2930765 1.5707963 1.0435117 1.5707963 1.0435117

Table 1: Results obtained for valid designs
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Prescribed Function: ψ = 2− (5/t) sin t, φ = 2 + (5/t) cos t

No. ψ0 φ0 eR k1 k2 k3 k4

1 1.4164 −1.3211 1.09× 10−15 2.4352 2.1199 −1.9277 0.6234

2 −1.2111 −0.4419 3.95× 10−15 −0.7488 0.7084 0.2493 −0.1569

3 −1.2172 1.0146 2.03 × 10−15 −6.2289 10.4235 −7.1700 −11.4489

4 0.2733 −0.8098 1.18 × 10−15 −1.1498 −1.1059 1.3641 −1.1255

5 0.7198 −1.5222 0.60 × 10−15 18.0309 21.3054 −30.8173 37.2972

Table 2: Numerical values of the intersection points for Example 1
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Prescribed Function: φ =
√
2ψ

No. ψ0 φ0 eR k1 k2 k3 k4

1 0.6452 0.9555 1.40× 10−16 −1.3623 0.9252 −0.9251 −1.3624

2 1.4027 −1.1015 1.53× 10−16 1.2343 −0.1314 −0.8487 −1.0393

3 1.3632 1.2143 1.42× 10−16 −0.9583 −0.2436 0.0020 −0.7124

4A 1.5000 1.2931 3.68× 10−8 −0.9773 −0.6696 0.1733 −0.4765

5A −0.9558 −1.3696 2.64× 10−9 −0.5251 −1.0336 −0.1174 −1.6763

Table 3: Numerical values of the intersection points for Example 2
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Prescribed Function: ψ = (0.1) t cos t+ 0.15797399, φ = (0.1) t sin t+ 0.02045874

No. ψ0 φ0 eR k1 k2 k3 k4

1 −1.5708 1.5708 2.32× 10−16 0.9315 −0.3146 −0.0117 −0.1754

2 0.4191 1.0435 2.21× 10−16 −1.5375 1.3953 0.7412 0.7897

3 −0.5032 0.1965 3.75 × 10−16 −129.716 131.338 130.543 132.166

4 −0.2541 0.2954 3.71 × 10−16 −116.581 126.933 119.165 129.660

5 −0.0997 0.3727 3.68 × 10−16 −21.3945 24.2833 21.1979 24.0815

6 −0.3085 −0.0785 2.27 × 10−16 −5.5586 −1.8540 −3.6938 −12.3156

7 −0.6784 0.1307 3.90 × 10−16 −26.9659 27.0212 27.0733 27.1457

Table 4: Numerical values of the intersection points for Example 3
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LIST OF FIGURE CAPTIONS

Figure 1: An orthogonal 3R robot: configurations (0, a, 0) and (0, 2a,−a)

Figure 2: Contours producing the two real solutions of the deflation example

Figure 3: An example of ill-conditioning

Figure 4: A general spherical four-bar linkage

Figure 5: Plot of the five contours for Example 1

Figure 6: Plot of the five contours in the range [(−π/2,−π/2), (π/2, π/2)]
for Example 1

Figure 7: Plot associated with the generation of {ψ = 2 − (5/t) sin t, φ =

2 + (5/t) cos t}: first solution

Figure 8: Plot associated with the generation of {ψ = 2 − (5/t) sin t, φ =

2 + (5/t) cos t}: second solution

Figure 9: Plot of the five contours for Example 2

Figure 10: Plot associated with the generation of φ =
√
2ψ: first solution

Figure 11: Plot of the five contours in the range [(0, 0), (π, π)] for Example 2
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Figure 12: Plot associated with the generation of φ =
√
2ψ: second solution

Figure 13: Plot of the five contours for Example 3

Figure 14: Plot of the five contours in the range [(−π/2,−π/2), (π/2, π/2)]
for the Example 3

Figure 15: Plot associated with the generation of {ψ = (0.1) t cos t+0.15797399, φ =

(0.1) t sin t + 0.02045874}: first solution

Figure 16: Plot associated with the generation of {ψ = (0.1) t cos t+0.15797399, φ =

(0.1) t sin t + 0.02045874}: second solution
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Figure 1: An orthogonal 3R robot: configurations (0, a, 0) and (0, 2a,−a)
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Figure 2: Contours producing the two real solutions of the deflation example
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Figure 3: An example of ill-conditioning
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Figure 4: A general spherical four-bar linkage
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Figure 5: Plot of the five contours for Example 1
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Figure 6: Plot of the five contours in the range [(−π/2,−π/2), (π/2, π/2)] for Example 1

40



-1 0 1 2 3 4

-2

-1

0

1

2

3

y

f

Input-Output Function

Precision Points

Prescribed Function

Figure 7: Plot associated with the generation of {ψ = 2− (5/t) sin t, φ = 2+ (5/t) cos t}:
first solution

41



-1 0 1 2 3 4

-2

-1

0

1

2

3

y

f

Input-Output Function

Precision Points

Prescribed Function

Figure 8: Plot associated with the generation of {ψ = 2− (5/t) sin t, φ = 2+ (5/t) cos t}:
second solution

42



-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3f0

y0

2

3
11

1 1

2

2

2

3

33

Figure 9: Plot of the five contours for Example 2
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Figure 10: Plot associated with the generation of φ =
√
2ψ: first solution
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Figure 11: Plot of the five contours in the range [(0, 0), (π, π)] for Example 2
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Figure 12: Plot associated with the generation of φ =
√
2ψ: second solution
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Figure 13: Plot of the five contours for Example 3
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Figure 14: Plot of the five contours in the range [(−π/2,−π/2), (π/2, π/2)] for Example 3
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Figure 15: Plot associated with the generation of {ψ = (0.1) t cos t + 0.15797399, φ =

(0.1) t sin t + 0.02045874}: first solution

49



-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

1.5

y

f

Our Method

Method in @6D

Precision Points

Prescribed Function

Figure 16: Plot associated with the generation of {ψ = (0.1) t cos t + 0.15797399, φ =

(0.1) t sin t + 0.02045874}: second solution
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