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[1] In this contribution a new and efficient integral equation formulation is presented for
the analysis of arbitrarily shaped capacitive waveguide devices. The technique benefits
from the symmetry of the structure in order to reduce the dimensions of the problem from
three to two dimensions. For the first time, this technique formulates the waveguide
capacitive discontinuity problem as a 2‐D scattering problem with oblique incidence,
combined with an efficient calculation of the parallel plate Green’s functions. The
numerical method allows the efficient evaluation of the electromagnetic fields inside the
analyzed structures. Results for different practical capacitive waveguide devices are
successfully compared with commercial software tools for validation of the proposed
theory. Finally, a novel low‐pass filter implementation based on circular conducting posts
has been proposed. The field contour lines in the critical gaps of the new structure are
curved due to the use of rounded posts. This could result in improved power handling
capabilities with respect to standard corrugated low‐pass filters.

Citation: Quesada Pereira, F. D., P. Vera Castejón, A. Álvarez Melcón, B. Gimeno, and V. E. Boria Esbert (2011), An efficient
integral equation technique for the analysis of arbitrarily shaped capacitive waveguide circuits, Radio Sci., 46, RS2017,
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1. Introduction

[2] Capacitive rectangular waveguide structures are typi-
cally used for the design of low‐pass filters as proposed by
Levy [1973], impedance converters [see Young, 1962], and
matching networks. In the past, several numerical techniques
have been used for computing the electrical response of this
kind of devices, such as the finite elements method [see
Salazar Palma et al., 1998] employed by widely used com-
mercial software packages like HFSS©, modal analysis tech-
niques as described by Guglielmi and Gheri [1994], or the
boundary integral resonant mode expansion (BI‐RME) used
by Arcioni et al. [1996] for the broad band analysis of capac-
itive microwave devices. Although general purpose finite
elements codes can deal properly with E plane (capacitive)
structures, their main drawback is the lack of efficiency,
since one has to setup a three dimensionalmodel of the circuits.
On the other hand, modal analysis as employed by Guglielmi
and Gheri [1994] are very efficient for the study of E plane
devices composed of canonical rectangular waveguide sections,
but cannot easily handle complex geometries such as rounded
corners introduced during mechanical manufacturing proce-

dures, or other useful elements such as conducting rounded
posts. This limitation is due to the need of the computation of the
modal chart of the basic waveguide sections defining the whole
structure.
[3] Moreover, the method of analytical regularization

(MAR) [Nosich, 1999] has successfully been employed for the
analysis of E plane and H plane rectangular waveguide
microwave devices [Kirilenko et al., 1994, 1996; Lyapin et al.,
1996]. This technique allows for the analysis of circular posts
inside rectangular waveguides following a procedure similar to
that proposed by Twersky [1962]. The main advantage of
MAR with respect to a standard integral equation technique
solved by the method of moments (MOM), is the formula-
tion in terms of Fredholm matrix equations of the second
kind which guarantee numerical convergence. However,
MAR cannot deal with arbitrarily shaped capacitive geom-
etries, other than circular posts.
[4] This drawback has been overcome by other techniques

allowing the efficient evaluation of modal charts in complex
geometries, such as the BI‐RME method. Alternatively, the
analysis of E plane arbitrarily shaped microwave components
can also be performed by computing the admittance matrix of
the structure with the 2‐D BI‐RME technique, as presented by
Arcioni et al. [1996]. The technique is based on solving an
eigenvalue problem where the whole structure is surrounded
by an auxiliary rectangular cavity resonator, and the input and
output ports are short circuited. The dynamic variation of the
fields inside the structure are expanded in terms of the resonant
modes of the surrounding cavity used as a reference. Once the
eigenvalue problem is solved, the broadband admittance
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parameters of the structure are obtained by opening the input
and output ports.
[5] On the other hand, integral equation techniques

are very popular for the analysis of useful microwave
devices [see Auda and Harrington, 1984; Bunger and Arndt,
2000], and 2‐D/3‐D scattering problems as described by
Harrington [1968] and Rao et al. [1982]. An interesting
example is the study of inductive microwave components in
rectangular waveguides [see Esteban et al., 2002]. This
problem was also solved by Quesada Pereira et al. [2007]
and Pérez Soler et al. [2007] using a 2‐D integral equa-
tion formulation under normal plane wave excitation. In
addition, 2‐D integral equation formulations with oblique
incident angle have been used in general scattering pro-
blems, involving both metallic and dielectric objects as
described by Peterson et al. [1998] and Rojas [1988].
However, to the authors’ knowledge, such methods have
never been applied to the study of practical waveguide
microwave components. In this paper we solve for the first
time the waveguide capacitive discontinuity problem with
an oblique incidence integral equation formulation. The
technique uses the parallel plate Green’s functions of line
sources, efficiently computed with the theory previously
reported by Quesada Pereira et al. [2007]. Therefore, the
calculation of modal charts in complex waveguide structures
is not needed for the treatment of complex capacitive
waveguide geometries. The proposed technique provides a
full‐wave analysis of practical capacitive waveguide cir-
cuits. Unlike other modal based techniques, it can easily
deal with arbitrarily shaped capacitive discontinuities and
posts inside rectangular waveguides. The technique is also
efficient for the analysis of these devices, since it exploits
the symmetry of the structure to reduce the analysis to a
2‐D problem. All these reasons make of the technique
proposed a very attractive and useful strategy for the design
of capacitive waveguide devices.

[6] This contribution presents the basic formulation and the
theory underlying the developed integral equation. The tech-
nique is demonstrated in three E plane practical waveguide
devices, including simulation data from commercial software
packages for validation. A novel low‐pass filter based on cir-
cular capacitive steps is proposed, to show the capabilities of
the new technique to deal with complex geometries. The
electromagnetic fields distributions are obtained for the two
last examples. Results show that in the critical gaps the field
contour lines are curved due to the use of rounded posts. This
could result into a beneficial effect for power handling capa-
bilities issues with respect to standard corrugated low‐pass
filters presented by Cameron et al. [2007].

2. Theory

[7] The formulation of the proposed method is setup
considering a rectangular waveguide where all the dis-
continuities are invariant along the x axis, as shown in
Figure 1. In Figure 1, the relevant dimensions (width a and
height b) of the waveguide are indicated, together with the
orientation of the coordinate axes.
[8] The original structure shown in Figure 1 is replaced,

after the application of the surface equivalent principle [see
Balanis, 1989], by induced electric current densities on the
boundaries of the conducting discontinuities. In this way, the
rectangular waveguide is reduced to a parallel plate wave-
guide due to the invariant geometry of the problem along the
x axis. After these considerations, an electric field integral
equation (EFIE) [see Peterson et al., 1998] is employed for
computing the response of the equivalent two‐dimensional
problem shown in Figure 2.
[9] The excitation of the problem (~Ei, ~H i) is the dominant

mode of the rectangular waveguide TE10
z . Although the

geometry of the capacitive device is invariant along the
x axis, this fundamental mode exhibits a half period trigo-
nometric variation of sine‐type along the waveguide width,
as can be observed from its basic expression:

~Ei ¼ �A10

"0

�

a
sin

�

a
x

� �
e�jkzzŷ ð1Þ

where kz is the propagation constant along the waveguide
z axis, and A10 is an arbitrary amplitude constant [Balanis,
1989]. This variation of the exciting field prevents to for-
mulate the problem as a simple scattering problem of normal
incidence contained in the (y, z) plane, as it has been done
in the works of Quesada Pereira et al. [2007], Auda and
Harrington [1984], Conciauro et al. [1996], and Esteban
et al. [2002].
[10] Fortunately, the previous variation of the field along

the x axis is known and does not change due to the sym-
metry of the problem. After applying the Euler’s formula to
equation (1), the incident electric field can be considered as
that produced by two plane waves with an oblique incident
angle with respect to the x axis (~k1 = −�

a x̂ + kẑz and~k2 = �
a x̂ +

kẑz, see Figure 3):

~Ei ¼ �A10

"0

�

a

e j
�
ax � e�j�ax

2j

� �
e�jkzzŷ ð2Þ

Figure 1. A capacitive step inside a rectangular waveguide
of width a and height b. The coordinate axis used in this
paper is also shown.
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[11] This decomposition of the exciting field in two plane
waves, which are propagating at an oblique angle with respect
to the x axis, allows to formulate the problem as a 2‐D scat-
tering problem of oblique incidence. Following this theory,
the electromagnetic fields scattered by the conducting
capacitive discontinuities inside the rectangular waveguide
can be computed as the sum of the contributions of the two
previous plane waves. A very efficient way for solving this
problem is based on writing the EFIE in the dual spatial‐
frequency domain (spectral variable kx = ±�a) [Peterson et al.,
1998], resulting:

n̂� ~~Ei þ ~~Es
h i

¼ 0; on the metallic contour cð Þ ð3aÞ

n̂� ~~Ei
h i

¼ n̂� j! ~~Aþ ~rFe

h i
; on the metallic contour cð Þ

ð3bÞ

~r ¼ jkxx̂þ d

dc
ĉ

� �
ð3cÞ

where a mixed potential representation of the electric field is
assumed, and the (~) denotes Fourier transformation with
respect to the x coordinate. Using the Green’s functions for-
malism, the explicit form of the integral equation is written as

~~Ei cð Þ
����
tan

¼ j!

Z
c′
GA ~�;~�′ð Þ � ~Jx c′ð Þx̂þ ~Jc c′ð Þĉ′� �

dc′

þ jkxx̂þ d

dc
ĉ

� �Z
c′

jkx ~Jx c′ð Þ þ d ~Jc c′ð Þ
dc′

h i
�j!

� GV ~�;~� ′ð Þ dc′
����
tan

ð4aÞ

~� ¼ yŷþ zẑ ð4bÞ

[12] In equations (4a) and (4b), all the relevant magnitudes
are written in a mixed spatial‐spectral domain (spatial vari-
ables of the contour (c) in the (y, z) plane and the spectral
variable kx).
[13] Another important difference with respect to an induc-

tive problem [see Quesada Pereira et al., 2007; Auda and
Harrington, 1984; Esteban et al., 2002], is that the unknown
induced electric current ~~J (c′) = ~J x(c′)x̂ + ~J c(c′)ĉ′ presents two
components, one along the longitudinal x axis, and the other
along the contour (c) of the capacitive problem. On the other
hand, GA(~�, ~�′) is a diagonal dyadic Green’s function corre-
sponding to the magnetic vector potential, whereas GV(~�, ~� ′)
is the electric scalar potential Green’s function. The mathe-
matical forms of these Green’s functions for the geometry
under consideration are described in section 2.1.
[14] Finally, the integral equation (equations (3a)–(3c)) has

been solved by means of the method of moments expanding

Figure 2. Equivalent parallel plate waveguide problem considered for the evaluation of the electromag-
netic response of the device. The constitutive parameters of the medium inside the waveguide are
the same as those corresponding to vacuum ("0, m0). The electromagnetic fields exciting the structure
(~Ei, ~H i) correspond to the fundamental mode of the rectangular waveguide TE10

z ; (ĉ) is a unit vector
tangent to the contour, whereas (n̂) is the normal unit vector. The location of the input (z = Z1) and output
(z = Z2) ports is also represented in the plot.

Figure 3. The excitation of the problem, TE10
z mode, is

the sum of two different plane waves. The propagation con-
stants of the plane waves are~k1 = −�a x̂ + kẑz and~k2 = �

a x̂ + kẑz.
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the unknown electric current with triangular subsectional
basis functions, and using the same set of functions for testing
(Galerkin procedure)

~~J c′ð Þ ¼ ~Jx c′ð Þx̂þ ~Jc c′ð Þĉ′ ¼
XNx

n¼1

an fnx c′ð Þ � kx � �

a

� �
x̂

þ
XNc

n¼1

bn fnc c′ð Þ � kx � �

a

� �
ĉ′ ¼

XNx

n¼1

an′ fnx c′ð Þ � kx þ �

a

� �
x̂

þ
XNc

n¼1

bn′ fnc c′ð Þ � kx þ �

a

� �
ĉ′ ð5Þ

[15] These functions are defined on the linear segments
used in the discretization of the contour of the conducting
discontinuities inside the parallel plate waveguide. In the
expansion of the currents, Nx and Nc are the number of
subsectional triangular basis functions along the longitudi-
nal ( fnx) and transversal ( fnc) directions, respectively. On
the other hand d (kx ∓ �

a) is a spectral Dirac’s delta function
defined at the spatial frequencies (kx = ±�a) corresponding
to the oblique incident angle of the plane waves exciting
the rectangular waveguide (see equation (2) and Figure 3).
The excitation of the problem can be written in the mixed
spatial‐frequency domain as:

~~Ei ¼ �A10

"0

�

a

� kx � �
a

	 
� � kx þ �
a

	 

2j

� �
e�jkzz ŷ ð6Þ

[16] The electric current in equations (4a) and (4b) is
replaced by its expansion (5). After that, the resulting
expression is tested with functions oriented along x axis
( fmx) and along the transveral (y, z) plane ( fmc). Finally, a
system of linear equations is obtained and can be written in
matrix form for each one of the involved spatial frequencies
(kx = ±�a), as follows

Zxx
mn Zxc

mn
Zcx
mn Zcc

mn

� �
an an′ð Þ
bn bn′ð Þ

� �
¼ 0

em

� �
ð7Þ

where (an, bn) are the unknown expansion coefficients
under plane wave excitation (kx = +�a), and (a′n, b′n) are the
corresponding coefficients under the excitation (kx = −�a).
After some mathematical manipulations, the different sub-
matrices take the form

Zxx
mn ¼ j!

Z
cm

fmx cð Þ
Z
cn

Gxx
A ~�;~� ′ð Þfnx c′ð Þdc′

� �
dc

� j �=að Þ2
!

Z
cm

fmx cð Þ
Z
cn

GV ~�;~� ′ð Þfnx c′ð Þdc′
� �

dc ð8aÞ

Zxc
mn ¼ ��=a

!

Z
cm

fmx cð Þ
Z
cn

GV ~�;~� ′ð Þ dfnc c′ð Þ
dc′

dc′

� �
dc ð8bÞ

Zcx
mn ¼ � �=a

!

Z
cm

dfmc cð Þ
dc

Z
cn

GV ~�;~� ′ð Þfnx c′ð Þdc′
� �

dc ð8cÞ

Zcc
mn ¼

Z
cm

fmc cð Þ
Z
c′
cycy′G

yy
A ~�;~� ′ð Þ þ czcz′G

zz
A ~�;~� ′ð Þ	 


fnc c′ð Þdc′
� �

dc

� j

!

Z
cm

dfmc cð Þ
dc

Z
c′
GV ~�;~� ′ð Þ dfnc c′ð Þ

dc′
dc′

� �
dc ð8dÞ

em ¼
Z
cm

�A10

"0

�

a

e�jkzz

2j
fmc cð Þ cy dc ð8eÞ

The tangent unit vectors to the conducting posts in
equations (8a)–(8e) are defined as ĉ = cy ŷ + cz ẑ and ĉ′ = cy′ ŷ +
cz′ ẑ for the observation and the source cells, respectively.
[17] Since we are employing the same set of functions for

the expansion of the electric current density and for testing,
following a Galerkin procedure, the relation Zmn

xc = −Zmncx is
satisfied. Moreover, the following relation holds between
the current expansion coefficients under the two plane wave
excitations:

an′ ¼ an ð9aÞ

bn′ ¼ �bn ð9bÞ

[18] The previous relations allow to solve the system of
linear equation (7) only once for computing the total
induced electric current density on the conducting posts.
Using these relations, the total electric current in the spatial
domain can be expressed as

~J c′ð Þ ¼
XNx

n¼1

an fnx c′ð Þe j �ax′x̂þ
XNx

n¼1

an fnx c′ð Þe�j �ax′x̂

þ
XNc

n¼1

bn fnc c′ð Þe j �ax′ĉ′�
XNc

n¼1

bn fnc c′ð Þe�j �ax′ĉ′

¼ 2 cos
�

a
x′

� �XNx

n¼1

an fnx c′ð Þx̂þ 2j sin
�

a
x′

� �

�
XNc

n¼1

bn fnc c′ð Þĉ′ ð10Þ

[19] Once the unknown current has been found, the scat-
tering parameters can directly be computed by evaluating
the ratio between the incident and the scattered fields on the
ports of the device (z = Z1 and z = Z2 shown in Figure 2), as
described by Leviatan et al. [1983]. The computation of the
electromagnetic fields is briefly described in section 2.2. It
is important to stress that, although the excitation of the
capacitive problem is split into two different plane waves, it
is only necessary to solve the algebraic problem for one of
them, leading to a very efficient formulation.
[20] It can be observed that the proposed technique imple-

ments an electric field integral equation (EFIE) for the
analysis of capacitive discontinuities inside rectangular
waveguides. As it is known, this kind of integral equation
may fail at certain frequencies for closed structures. For the
practical circuits treated in this paper this is not a problem
due to the electrically small size of the conducting posts
inside the rectangular waveguides considered. Nevertheless,
the presented formulation can be adapted to a combined
field integral equation (CFIE) for far out of band analysis. In
this case, the posts could become electrically large enough
to trigger defect frequencies when using an EFIE. It is
known that the CFIE is free from these defect frequencies
and yields to correct results in case that numerical problems
are encountered.

2.1. Parallel Plate Green’s Functions

[21] In this section, the parallel plate Green’s functions
used for solving the capacitive equivalent problem are
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summarized. The general expression of these Green’s
functions in their spectral form is given by:

Gppw z� z′; y; y′ð Þ ¼ "n�

b�

X∞
n¼0

fn kyy′
	 


gn kyy
	 
 e�jkz z�z′ð Þ

jkz
ð11aÞ

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k2x � k2y

q
; ky ¼ n�

b
; kx ¼ �

a
ð11bÞ

where "n =
1 n ¼ 0
2 n 6¼ 0

�
, fn and gn are trigonometric func-

tions, and x is a constant depending on the constitutive
parameters of the medium filling the rectangular waveguide.
It is interesting to observe the definition of the longitudinal
wavenumber (kz), which is modified with respect to the
inductive case with the fixed oblique incident angle (kx = p/a)
used in this formulation. All the relevant definitions for the
Green’s functions needed in order to solve the capacitive
equivalent problem are given in Table 1.
[22] It is worth stressing the low convergent behavior of

the series represented in equations (11a) and (11b) when the
observation point along the propagation z axis is very close
to the source at z′. For these situations, one has to employ
summation acceleration techniques like the Kummer’s
method used by Quesada Pereira et al. [2007] and Leviatan
et al. [1983] for an efficient computation of the Green’s
functions in the implementation of the integral equation
technique.

2.2. Electromagnetic Fields and Scattering
Parameters Evaluation

[23] The scattered electric field inside the rectangular
waveguide is computed by using the following mixed poten-
tials expression:

~Es ~�ð Þ ¼ �j!~A ~�ð Þ � rFe ~�ð Þ ð12Þ

[24] One can write the previous equation in the spectral
domain as follows:

~~Es ~�ð Þ ¼ �j!

Z
c′
GA ~�;~� ′ð Þ ~Jx c′ð Þx̂þ ~Jc c′ð Þĉ′	 


dc′

� jkxx̂þ d

dc
ĉ

� �Z
c′
GV ~�;~� ′ð Þ jkx ~Jx c′ð Þ þ d ~Jc c′ð Þ

dc′

�j!

" #
dc′ ð13Þ

[25] Due to the dyadic nature of equation (13), we have a
different expression for each electric field component. The
main component of the electric field will be along the y axis
when only the fundamental mode is propagating inside the
waveguide. This is because the x component is null, and the

z component is only significant in the near‐field region
surrounding the conducting obstacles. This last component
is generated by the capacitive discontinuities, and it will be
significant only close to them.
[26] It is important to note that one has to compute the

y and z derivatives of the electric scalar potential Green’s
function GV (~�,~� ′) for computing the y and z components of
the electric field. Although these Green’s function deriva-
tives can be computed directly from its spectral form, pre-
sented in section 2.1, the performance of the convergence of
the series in equations (11a) and (11b) is worse than the
original Green’s function, even after the application of the
Kummer’s acceleration technique. For a better convergence
performance, one can switch to a direct computation of the
z derivatives in the spatial domain as a series of spatial
images [see Quesada Pereira et al., 2007], or to the appli-
cation of the Ewald acceleration technique as proposed by
Capolino et al. [2005] and Quesada Pereira et al. [2006].
[27] The computation of the scattered magnetic field can

be carried out by applying a similar procedure to the
equation

~H ~�ð Þ ¼ 1

�0
r�~A ~�ð Þ ð14Þ

[28] For the capacitive problem the previous expression
can be written in the spectral domain as

~~H ~�ð Þ ¼ 1

�0
jkxx̂þ @

@y
ŷþ @

@z
ẑ

� �

�
Z
c′
GA ~�;~�′ð Þ �; kx1ð Þ ~Jx c′ð Þx̂þ ~Jc c′ð Þĉ′� �

dc′ ð15Þ

[29] Taking into account the dyadic nature of equation (15),
a different expression is again obtained for each component
of the magnetic field.
[30] Finally, to compute the fields in the spatial domain,

the above expressions are first evaluated in the spectral
domain with the electric current corresponding to each
spatial frequency kx = ±�a. After that, the individual results
are transformed into the spatial domain and they are
summed. Since the electric current component weights
~J c(c′) and ~J x(c′) are related in our problem to the harmonics
kx
1 = p/a and kx

2 = −p/a, as shown in equations (9a) and (9b),
similar relationships to (10) can be established for the dif-
ferent electromagnetic fields components in the spatial
domain.

3. Results

[31] The first example is a low‐pass filter with a 12.8 GHz
cutoff frequency presented by Levy [1973]. The geometry
and dimensions of the filter can be seen in Figure 4. The
design is composed of two different sections. The inner
section corresponds to a tapered corrugated waveguide low‐
pass filter derived from a Zolotarev half‐stub prototype. The
terminal parts are impedance transformers for matching the
waveguide impedance of the tapered corrugated filter to
the input and output ports of a standard WR‐90 waveguide.
[32] The results obtained with the new integral equation

technique have been compared again to those provided by
the commercial software FEST3D© from Aurora Software

Table 1. Green’s Functions Components Needed for Solving the
Capacitive Equivalent Problem

x fn gn

GA
xx m0 sin(ky y) sin(ky y′)

GA
yy m0 cos(ky y) cos(ky y′)

GA
zz m0 sin(ky y) sin(ky y′)

GV 1/"0 sin(ky y) sin(ky y′)
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and Testing, S.L. [2009], which is based on the integral
equation technique presented byÁlvarezMelcón et al. [1996],
showing a very good agreement, as can be observed in
Figure 5. The results are also in good agreement with respect
to the measured results reported by Levy [1973], thus vali-
dating the software tool developed. In this case, only 15modes
have been enough for the Green’s functions computation,
whereas the number of unknowns for expanding the surface
current density has been set to 1200. The evaluation time
has been 0.51 s per frequency point in a 64 bits computer
with a 2.0 GHz clock.
[33] Although we have employed general purpose basis

functions for expanding the unknown electric current den-
sity on the discontinuities (triangular basis functions), we
have also taken care of the fast electromagnetic field var-
iations close to conducting sharp corners. In this case, the
electric current is better modeled with a finer mesh density
around these corners. We have employed a cosine‐like mesh
pattern for straight edges forming a corner. This pattern
provides a faster convergence of the solution than a uniform
mesh, since it concentrates more mesh cells in the proximity
of the corners.
[34] The new technique has been employed for the anal-

ysis and design of a different low‐pass filter implementa-
tion. In this case, the filter is composed of different
capacitive irises acting as impedance inverters, inside a
constant height rectangular waveguide section with dimen-
sions a = 10.68 mm and 6.0 mm (see Figure 6). In this
design, all waveguide sections are selected of the same
characteristic impedance, and the impedance inverters are
varied to recover the desired transfer function as described
by Cameron et al. [2007]. The results obtained by the new
numerical technique have been compared to those provided
by the commercial software tool FEST3D© from Aurora
Software and Testing, S.L. [2009], showing a very good

agreement as can be observed in Figure 7. The maximum
number of modes used for computing the Green’s functions
presented in section 2.1 is 10, whereas 380 basis functions
have been enough for characterizing the unknown electric
currents, yielding to an accurate response in the frequency
range of the analysis. This structure is particularly conve-
nient for the software tool, since all impedance inverters

Figure 4. Geometry and dimensions of the low‐pass filter presented by Levy [1973]. The filter structure
is composed of impedance converters in the input and output ports and a Zolotarev prototype for the inner
section. The input and output waveguides are WR‐90 (a = 22.86 mm, b = 10.16 mm).

Figure 5. Scattering parameters of the low‐pass filter pro-
posed by Levy [1973]. The geometry and dimensions of the
filter are shown in Figure 4. The results computed by the
new integral equation technique have been compared to
those provided by the commercial software tool FEST3D©

[Aurora Software and Testing, S.L., 2009].
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share a common waveguide section. As a consequence, only
the capacitive steps need to be meshed, leading to a reduced
number of unknowns. With these considerations, the simu-
lation time is less than 0.2 s per frequency point in the same
computer as used with the previous example.
[35] To show the usefulness of the procedure presented in

section 2.2 for the evaluation of the electromagnetic fields
inside the capacitive structure, the total electric field inside
the rectangular waveguide has been computed at 15 GHz on
the (y, z) plane for x = a/2. This frequency is within the
passband of the capacitive filter. As can be seen in Figure 8,
the highest electric field magnitude is located inside the
shortest gap at the center of the structure. This is, therefore,
the critical gap of most concern in power handling capability
applications. In Figure 8 we can also clearly observe the
fringing fields at the corners of the capacitive windows,
where they show fast variations. Due to these fast variations
we have verified for this example that improved accuracy is
obtained when a cosine pattern mesh is used to define the
capacitive windows. The field plots shown in Figure 8 are
computed with this cosine pattern discretization. Similar
considerations can also be applied to the total magnetic field
shown in Figure 9.
[36] The next example is a sixth‐order capacitive low‐

pass filter composed of six circular conducting posts inside
a constant height rectangular waveguide, with the same
dimensions as in the previous design (a = 10.68 mm and b =
6.0 mm) (see Figure 10). To the authors’ knowledge, this is
the first capacitive low‐pass filter design using circular
conducting post instead of corrugated rectangular wave-
guide sections. Results obtained with the new integral
equation technique have been compared again to those
estimated by the commercial full‐wave simulation tool
FEST3D (Figure 11). The agreement exhibited by the two
results is also good, despite of following very different
numerical approaches.
[37] The maximum number of modes used for computing

the Green’s functions presented in section 2.1 is 10, whereas
360 basis functions have been enough for characterizing the
unknown electric currents, yielding to an accurate response
in the studied frequency range. The simulation time is less
than 0.18 s per frequency point in the same computer.
[38] The electromagnetic fields have also been computed

for this filter at the same cut plane as done before, and at
15 GHz, well inside the passband of the filter. As can be

seen in Figure 12 the total electric field is concentrated on
the top and bottom areas of the circular conducting posts.
The narrower gaps support the highest electric field inten-
sities. However, the contour lines tend to bend due to the
curvature of the circular posts. This might be a beneficial
effect for power handling capabilities issues. Again, similar
considerations can be applied to the magnetic field pre-
sented in Figure 13 for completeness.

4. Conclusions

[39] A new integral equation technique has been presented
for the analysis of arbitrarily shaped capacitive microwave
waveguide circuits. For the first time, the scattering para-
meters of these kind of devices have been computed by
formulating a 2‐D scattering problem with oblique incident
angle. The boundary conditions of the original host wave-
guide have been taken into account through the use of the

Figure 6. Capacitive low‐pass filter composed of rectangular irises inside a rectangular waveguide (a =
10.68 mm and b = 6.0 mm). The dimensions of the filter are: b1 = 3.4 mm, b2 = 1.7 mm, b3 = 1.26 mm,
l1 = 6.55 mm, l2 = 5.0 mm and w = 4.0 mm.

Figure 7. Scattering parameters of the low‐pass filter
shown in Figure 6. Results computed by the new pro-
posed numerical method have been compared to those data
provided by the commercial software package FEST3D©.
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Figure 8. Total electric field magnitude inside the rectangular waveguide at 15 GHz (x = a/2). The nodes
of the mesh employed for the analysis have been also plotted as white circles.

Figure 9. Magnitude of the magnetic field x component inside the rectangular waveguide at 15 GHz (x =
a/2). The nodes of the mesh employed for the analysis have been also plotted as white circles.
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Figure 10. Capacitive low‐pass filter composed of six circular conducting posts inside a rectangular
waveguide (a = 10.68 mm and b = 6.0 mm). The dimensions of the structure are: d1 = 3.0 mm, d2 =
4.2 mm, d3 = 4.68 mm, l1 = 10.2 mm, l2 = 9.5 mm and l3 = 9.2 mm.

Figure 11. Scattering parameters of the low‐pass filter shown in Figure 10. Results computed by the
new proposed numerical method have been compared to those data provided by the commercial software
package FEST3D©.
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Figure 12. Total electric field magnitude (V/m) inside the rectangular waveguide at 15 GHz (x = a/2).
The nodes of the mesh employed for the analysis has been also plotted as white circles (A10 = "0a/(2jp) in
equation (1)).

Figure 13. Magnitude of the total magnetic field inside the rectangular waveguide at 15 GHz (x = a/2).
The nodes of the mesh employed for the analysis have been also plotted as white circles (A10 = "0a/(2jp)
in equation (1)).
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parallel plate Green’s functions of infinite line sources.
Results are validated with the analysis of several practical
capacitive waveguide devices, such as low‐pass filters with
different geometries. The technique has also been employed
for the efficient evaluation of the electromagnetic fields inside
the proposed structures. A new capacitive low‐pass filter
composed of circular conducting posts has been designed
using the software tool. In all cases, simulation results com-
pared to data from commercial software tools and the tech-
nical literature have shown the validity and accuracy of the
new method.

[40] Acknowledgments. This work has been developed with finan-
cial support from SENECA project reference 08833/PI/08, and CICYT
project reference TEC2007‐67630‐C03.
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