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The cover photograph shows the Cabriel River, Spain (photograph by Virginia 

Garófano-Gómez). Fish species at the lower part of the cover are Squalius 

valentinus, Luciobarbus guiraonis, Cobitis paludica (source: 

http://www.mediterranea.org/cae/divulgac/guipeces.htm), Anguilla Anguilla 

(source: Greenpeace, Spain), and Parachondrostoma arrigonis (source: Kalous and 

Doadrio). 
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ABSTRACT 

Native fish are indicators of the health of aquatic ecosystems, and they have 

become a key quality element to assess the ecological status of rivers. The 

understanding of factors affecting native fish species is important for the 

management and conservation of aquatic ecosystems. The general objective of this 

thesis are to analyse the relationships between biological and habitat variables 

(including connectivity) across a range of spatial scales in Mediterranean rivers, 

with the development of modelling tools to support the decision-making in river 

restoration. 

This thesis is composed by four articles. The first aims to model the relationship 

between a set of environmental variables and native species richness (NFSR), and 

to evaluate the potential effectiveness of river restoration actions to improve NFSR 

in the Júcar river basin. In order to solve these questions, an artificial neural 

network (ANN) modelling approach was carried out, using the Levenberg–

Marquardt learning algorithm in the model training phase. The partial derivatives 

method was applied to determine the relative importance of input environmental 

variables. According to the results, ANN model combined variables describing 

riparian quality, water quality, and physical habitat and helped to identify the 

primary drivers of the NFSR patterns in Mediterranean rivers. In the second part of 

the study, the model was used to evaluate the effectiveness of two restoration 

actions in the Júcar River: the removal of two abandoned weirs and the consequent 

increase in the proportion of riffles. These simulations indicated that richness 

increases with the augmentation of channel length without artificial barriers and 

riffle proportion, and demonstrated the utility of ANN as a powerful tool to support 

decisions in the management and ecological restoration of Mediterranean rivers. 

The second paper aims to determine the relative importance of the two main 

factors controlling the reduction of native fish species richness (NFSR), i.e. the 

interactions between aquatic species, habitat (including river connectivity) and 

biological variables (including invasive species) in the Júcar, Cabriel and Turia 

rivers. To this end, three ANN models were analysed: the first one built only with 



 

 

biological variables, the second one only built with habitat variables and the third 

one was made with the combination of both groups of variables. The results show 

that habitat variables are the most important drivers for the distribution of NFSR, 

and demonstrate the ecological relevance of the developed models. The findings of 

this study highlight the need to propose mitigation measures related to improve the 

habitat as a means to conserve and restore these Mediterranean rivers.  

The third paper seeks to compare the reliability and ecological relevance of two 

predictive models of fish species richness, based on artificial neural networks 

(ANNs) and random forests (RF). The relevance of the selected input variables of 

each model was evaluated based on ecological knowledge and supported by other 

researches. Both models were developed using a k-fold cross validation procedure 

and their performance were evaluated by three metrics: the determination 

coefficient (R
2
), the Mean Square Error (MSE) and the adjusted determination 

coefficient (R
2
adj). According to the results, RF obtained the best performance in 

training. But, the cross-validation procedure revealed that both techniques gave 

similar results (R
2
=68% for RF and R

2
=66% for ANN). The comparison of 

different ML methods is very helpful for the critical analysis of the results obtained 

from the models. 

The fourth paper has the following purpose: to evaluate the ability of ANN to 

identify local stress factors affecting density and presence/absence of Luciobarbus 

guiraonis in the Júcar river basin district. We used multilayer feed-forward 

artificial neural networks (ANN) to represent nonlinear relationships between L. 

guiraonis descriptors and biological and habitat variables. The models predictive 

power was evaluated based on the Kappa statistic (k), the correctly classified 

instances (CCI), and the area under the curve (AUC) of a receiver operator 

characteristic (ROC) plots. According to the results, the presence/absence of L. 

guiraonis is well predicted by the ANN model (CCI= 87%, AUC= 0.85 and k= 

0.66). The prediction of density was moderate (CCI = 62%, AUC=0.71 and k= 

0.43). The most significant variables that described the presence/absence were: 

solar radiation, drainage area and proportion of exotic fish species with a relative 

importance of 27.8%, 24.53% and 13.60%, respectively. In the density model, the 

most important variables were coefficient of variation of mean annual flows with a 



 

 

relative importance of 50.5% and proportion of exotic fish species with 24.4%. The 

models provides important information about the relation of L. guiraonis with 

biotic and habitat variables, this new knowledge could be used to support future 

studies and practical decisions for the management and conservation of this species 

in the Júcar River Basin District. 





 

 

RESUMEN 

Los peces nativos son indicadores de la salud de los ecosistemas acuáticos, y se 

han convertido en un elemento de calidad clave para evaluar el estado ecológico de 

los ríos. La comprensión de los factores que afectan a las especies nativas de peces 

es importante para la gestión y conservación de los ecosistemas acuáticos. El 

objetivo general de esta tesis es analizar las relaciones entre variables biológicas y 

de hábitat (incluyendo la conectividad) a través de una variedad de escalas 

espaciales en los ríos Mediterráneos, con el desarrollo de herramientas de 

modelación para apoyar la toma de decisiones en la restauración de ríos. 

Esta tesis se compone de cuatro artículos. El primero tiene como objetivos 

modelar la relación entre un conjunto de variables ambientales y la riqueza de 

especies nativas (NFSR), y evaluar la eficacia de potenciales acciones de 

restauración para mejorar la NFSR en la cuenca del río Júcar. Para ello se aplicó un 

enfoque de modelación de red neuronal artificial (ANN), utilizando en la fase de 

entrenamiento el algoritmo Levenberg-Marquardt. Se aplicó el método de las 

derivadas parciales para determinar la importancia relativa de las variables 

ambientales. Según los resultados, el modelo de ANN combina variables que 

describen la calidad de ribera, la calidad del agua y el hábitat físico, y ayudó a 

identificar los principales factores que condicionan el patrón de distribución de la 

NFSR en los ríos Mediterráneos. En la segunda parte del estudio, el modelo fue 

utilizado para evaluar la eficacia de dos acciones de restauración en el río Júcar: la 

eliminación de dos azudes abandonados, con el consiguiente incremento de la 

proporción de corrientes. Estas simulaciones indican que la riqueza aumenta con el 

incremento de la longitud libre de barreras artificiales y la proporción del 

mesohabitat de corriente, y demostró la utilidad de las ANN como una poderosa 

herramienta para apoyar la toma de decisiones en el manejo y restauración 

ecológica de los ríos Mediterráneos. 

El segundo artículo tiene como objetivo determinar la importancia relativa de 

los dos principales factores que controlan la reducción de la riqueza de peces 

(NFSR), es decir, las variables del hábitat (incluyendo la conectividad fluvial) y las 



 

 

biológicas (incluidas las especies invasoras) en los ríos Júcar, Cabriel y Turia. Con 

este fin, tres modelos de ANN fueron analizados: el primero fue construido 

solamente con variables biológicas, el segundo se construyó únicamente con 

variables de hábitat y el tercero con la combinación de estos dos grupos de 

variables. Los resultados muestran que las variables de hábitat son los “drivers” 

más importantes para la distribución de NFSR, y demuestran la importancia 

ecológica de los modelos desarrollados. Los resultados de este estudio destacan la 

necesidad de proponer medidas de mitigación relacionadas con la mejora del 

hábitat (incluyendo la variabilidad de caudales en el río) como medida para 

conservar y restaurar los ríos Mediterráneos. 

El tercer artículo busca comparar la fiabilidad y relevancia ecológica de dos 

modelos predictivos de NFSR, basados en redes neuronales artificiales (ANN) y 

random forests (RF). La relevancia de las variables seleccionadas por cada modelo 

se evaluó a partir del conocimiento ecológico y apoyado por otras investigaciones. 

Los dos modelos fueron desarrollados utilizando validación cruzada k-fold y su 

desempeño fue evaluado a través de tres índices: el coeficiente de determinación 

(R
2
), el error cuadrático medio (MSE) y el coeficiente de determinación ajustado 

(R
2

adj). Según los resultados, RF obtuvo el mejor desempeño en entrenamiento. 

Pero, el procedimiento de validación cruzada reveló que ambas técnicas generaron 

resultados similares (R
2
 = 68% para RF y R

2
 = 66% para ANN). La comparación 

de diferentes métodos de machine learning es muy útil para el análisis crítico de los 

resultados obtenidos a través de los modelos. 

El cuarto artículo tiene como objetivo evaluar la capacidad de las ANN para 

identificar los factores que afectan a la densidad y la presencia/ausencia de 

Luciobarbus guiraonis en la demarcación hidrográfica del Júcar. Se utilizó una red 

neuronal artificial multicapa de tipo feed-forward (ANN) para representar 

relaciones no lineales entre descriptores de L. guiraonis con variables biológicas y 

de hábitat. El poder predictivo de los modelos se evaluó con base en el índice 

Kappa (k), la proporción de casos correctamente clasificados (CCI) y el área bajo 

la curva (AUC) característica operativa del receptor (ROC). La presencia/ausencia 

de L. guiraonis fue bien predicha por el modelo ANN (CCI = 87%, AUC = 0.85 y 

k = 0.66). La predicción de la densidad fue moderada (CCI = 62%, AUC = 0.71 y k 



 

 

= 0.43). Las variables más importantes que describen la presencia/ausencia fueron: 

radiación solar, área de drenaje y la proporción de especies exóticas de peces con 

un peso relativo del 27.8%, 24.53% y 13.60% respectivamente. En el modelo de 

densidad, las variables más importantes fueron el coeficiente de variación de los 

caudales medios anuales con una importancia relativa del 50.5% y la proporción de 

especies exóticas de peces con el 24.4%. Los modelos proporcionan información 

importante acerca de la relación de L. guiraonis con variables bióticas y de hábitat, 

este nuevo conocimiento podría utilizarse para apoyar futuros estudios y para 

contribuir en la toma de decisiones para la conservación y manejo de especies en 

los en los ríos Júcar, Cabriel y Turia. 

 





 

 

RESUM 

Els peixos natius són indicadors de la salut dels ecosistemes aquàtics, i han 

esdevingut un element de qualitat clau per a avaluar l‟estat ecològic dels rius. La 

comprensió dels factors que afecten a les espècies natives de peixos és important 

per a la gestió i conservació dels ecosistemes aquàtics. L‟objectiu general d‟aquesta 

tesi és analitzar les relacions entre variables biològiques i d‟hàbitat (incloent la 

connectivitat) a través d‟una varietat d‟escales espacials als rius mediterranis, amb 

el desenvolupament d‟eines de modelització per a donar suport a la presa de 

decisions en la restauració de rius. 

Aquesta tesi es compon de quatre articles. El primer té com a objectius 

modelitzar la relació entre un conjunt de variables ambientals i la riquesa 

d‟espècies natives (NFSR), i avaluar l‟eficàcia d‟accions potencials de restauració 

per a millorar l‟NFSR a la conca del riu Xúquer. A fi de resoldre aquestes 

qüestions, es va aplicar un enfocament de modelització de xarxa neuronal artificial 

(ANN), i per a fer-ho es va utilitzar en la fase d‟entrenament l‟algorisme 

Levenberg-Marquardt. Es va aplicar el mètode de les derivades parcials per 

determinar la importància relativa de les variables ambientals. Segons els resultats, 

el model d‟ANN combina variables que descriuen la qualitat de la ribera, la qualitat 

de l‟aigua i l‟hàbitat físic, i va ajudar a identificar els principals factors que 

condicionen el patró de distribució de l‟NFSR als rius mediterranis. En la segona 

part de l‟estudi es va utilitzar el model per avaluar l‟eficàcia de dues accions de 

restauració al riu Xúquer: l‟eliminació de dos assuts abandonats i l‟increment 

consegüent de la proporció de corrent. Aquestes simulacions indiquen que la 

riquesa augmenta en incrementar la longitud lliure de barreres artificials i la 

proporció del mesohàbitat de corrent, i va demostrar la utilitat d‟ANN com una 

eina poderosa per a donar suport a la presa de decisions referents a la gestió i la 

restauració ecològica dels rius mediterranis. 

El segon article té com a objectiu determinar la importància relativa dels dos 

factors principals que controlen la reducció de la riquesa de peixos (NFSR), és a 

dir, les interaccions entre les espècies aquàtiques, variables de l‟hàbitat (incloent-hi 



 

 

la connectivitat fluvial) i biològiques (incloses les espècies invasores) als rius 

Xúquer, Cabriol i Túria. Amb aquest objectiu es va analitzar tres models d‟ANN: 

el primer es va construir solament amb variables biològiques; el segon, únicament 

amb variables d‟hàbitat; i el tercer, amb la combinació d‟aquests dos grups de 

variables. Els resultats mostren que les variables d‟hàbitat són els “drivers” més 

importants per a la distribució d‟NFSR, i demostren la importància ecològica dels 

models desenvolupats. Els resultats d‟aquest estudi destaquen la necessitat de 

proposar mesures de mitigació relacionades amb el millorament de l‟hàbitat 

(incloent la variabilitat de cabals en el riu) com a mesura per a conservar i restaurar 

els rius mediterranis. 

El tercer article cerca comparar la fiabilitat i rellevància ecològica de dos 

models predictius d‟NFSR, basats en xarxes neuronals artificials (ANN) i random 

forests (RF). La rellevància de les variables seleccionades per cada model es va 

avaluar a partir del coneixement ecològic fonamentat en altres investigacions. Els 

dos models van ser desenvolupats utilitzant la validació creuada de k iteracions (k-

fold) i el funcionament en va ser avaluat a través de tres índexs: el coeficient de 

determinació (R
2
), l‟error quadràtic mitjà (MSE) i el coeficient de determinació 

ajustat (R
2
adj). Segons els resultats, RF va tenir el millor funcionament en 

entrenament. Però el procediment de validació creuada va revelar que ambdues 

tècniques van generar resultats similars (R
2
 = 68% per a RF i R

2
 = 66% per a 

ANN). La comparació de diferents mètodes d‟aprenentatge (machine learning) és 

molt útil per a l‟anàlisi crítica dels resultats obtinguts a través dels models. 

El quart article té com a objectiu avaluar la capacitat d‟ANN per a identificar els 

factors d‟estrès que afecten a la densitat i la presencia/absència de Luciobarbus 

guiraonis en la demarcació hidrogràfica del Xúquer. Es va utilitzar una xarxa 

neuronal artificial multicapa de tipus feed-forward (ANN) per a representar 

relacions no lineals entre descriptors d‟L. guiraonis amb variables biològiques i 

d‟hàbitat. El poder predictiu dels models es va avaluar sobre la base de l‟índex 

Kappa (k), la proporció de casos correctament classificats (CCI) i l‟àrea sota la 

corba (AUC) característica operativa del receptor (ROC). Segons els resultats, la 

presencia/absència d‟L. guiraonis va ser ben predita pel model ANN (CCI = 87%, 

AUC = 0.85 i k = 0.66). La predicció de la densitat va ser moderada (CCI = 62%, 



 

 

AUC = 0.71 i k = 0.43). Les variables més importants que descriuen la 

presencia/absència van ser la radiació solar, l‟àrea de drenatge i la proporció 

d‟espècies exòtiques de peixos, amb un pes relatiu del 27.8%, el 24.53% i el 

13.60% respectivament. En el model de densitat, les variables més importants van 

ser el coeficient de variació dels cabals mitjans anuals, amb una importància 

relativa del 50.5%, i la proporció d‟espècies exòtiques de peixos, amb el 24.4%. 

Els models proporcionen informació important sobre la relació d‟L. guiraonis amb 

variables biòtiques i d‟hàbitat; aquest nou coneixement podria utilitzar-se per a 

fonamentar futurs estudis i per a contribuir a la presa de decisions per a la 

conservació i la gestió d‟espècies als rius Xúquer, Cabriol i Túria. 
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Chapter 1 

Introduction 

The populations of freshwater Mediterranean fish species are clearly decreasing 

as a consequence of habitat loss and degradation. Pollution, overexploitation of 

water resources, the introduction of invasive species and the alteration of riparian 

environments are the most important stressors which increase species risk 

extinction (Doadrio and Aldeguer, 2007; Smith and Darwall, 2006). The 

development of mathematical tools is very important to understand the effects of 

these alterations in the river ecological processes and advance on the knowledge 

about Mediterranean freshwater ecosystems. Knowledge improvement is necessary 

to design efficient and effective management and restoration measures (Cowx and 

Portocarrero Aya, 2011; Hurford et al., 2010; Tirelli et al., 2009).  

Fish communities can be used as indicators of rivers environmental degradation, 

because they are very sensitive to water quality changes (Angermeier and 

Davideanu, 2004; Karr, 1981); thus, the study of fish ecology has been recognized 

as an important topic to assess the impact of human disturbances on aquatic 

ecosystems and evaluate the effect of management and restoration actions in water 

bodies (Bond and Lake, 2003; Cheng et al., 2012; Lake et al., 2007; Olaya-Marín 

et al., 2012; Zarkami et al., 2012). Currently, the prediction of species distributions 

and the characterization of the factors affecting species range limits are a challenge 

in freshwater ecology (Broennimann et al., 2012). Therefore, modelling the 

descriptors of fish communities as a function of biotic and abiotic environmental 

predictors is a key issue to improve processes understanding in freshwater ecology 
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(Cheng et al., 2012; Knudby et al., 2010) and support decision-making in water 

management and conservation (Drew et al., 2011; Jopp et al., 2011; Lek et al., 

2005; Olaya-Marín et al., 2012; Zarkami et al., 2012). The application of machine 

learning techniques in ecological studies has been increased in recent years, due to 

its capacity to model complex and non-linear relationships, these techniques are not 

constrained by traditional assumptions about the statistical distribution of data 

(Gevrey et al., 2004; Kohonen, 2001; Olden et al., 2008). 

Ecological models represent the interactions and changes of environmental 

elements and simulate the dynamics of spatial-temporal patterns of ecological 

processes (Drew et al., 2011; Jopp et al., 2011). This PhD thesis is focused on the 

development of predictive models for native fish as a function of physico-chemical, 

hydromorphological and biological variables to support the design of conservation 

and river restoration actions in Mediterranean rivers. For this aim, the models were 

built using artificial neural networks (ANN), which are considered in literature as 

powerful tools to address ecological data mining analysis (Brosse et al., 2003; 

Franklin, 2010; Lek et al., 2005; Olden et al., 2008). The main advantages of 

ANNs are their high performance in the solution of non-linear problems, their 

ability to deal with noisy data (Goh, 1995; Olden et al., 2008; Tirelli et al., 2009), 

and their tolerance to the lack of  independence, homoscedasticity and normality in 

datasets (Goh, 1995; Lek et al., 2005; Olden et al., 2008). ANNs can deal with the 

inherent variability of biological datasets, therefore this models are better to 

recognize patterns and make improved predictions than traditional statistical 

methods (Kang et al., 2011). 

Native fish richness is modelled in chapter 2, as an indicator of the effects of 

hydromorphological enhancements in river restoration. Chapter 3 addresses the 

role of invasive species and habitat degradation on freshwater native fish diversity 

in Mediterranean river basins. Chapter 4 presents a comparison of artificial neural 

networks and random forests modelling to predict native fish species richness in 

Mediterranean rivers. In the chapter 5, biological and habitat relationships are 

modelled to analyse the distribution of Luciobarbus guiraonis in the Júcar River 

Basin District. Finally, chapter 6 shows the general conclusions and future research 

questions derived from this PhD thesis.  
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The present dissertation includes the following research articles: 

 Olaya-Marín EJ, Martínez-Capel F, Soares Costa RM, Alcaraz-

Hernández JD. Modelling native fish richness to evaluate the effects of 

hydromorphological changes and river restoration (Júcar River Basin, 

Spain). Science of the Total Environment. 2012; 440: 95-105. 

 Olaya-Marín EJ, Martínez-Capel F, Vezza, P. A comparison of artificial 

neural networks and random forests to predict native fish species 

richness in Mediterranean rivers. Knowledge and Management of 

Aquatic Ecosystems. 2013; (under review). 

1.1 CONTEXT 

1.1.1 BACKGROUND 

Machine learning (ML) has been an emerging discipline of Ecoinformatics 

during the last decade (Jorgessen et al., 2009); its general objective is to analyse 

high complex and non-linear data structures, and making accurate predictive 

models (Drew et al., 2011; Olden et al., 2008). In recent years, ML has been 

considered as a powerful tool to model ecological data. This is explained by the 

fact that ecological data exhibit a variety of problems, such as complex data 

interactions and dependence between observations (Olden et al., 2008; Olden et al., 

2006). A key advantage of ML is its better capacity to discover complex 

relationships and spatial patterns than traditional statistical models that assumes 

data normality (Jorgensen and Bendoricchio, 2001). 

ML techniques can be classified in two categories; on one hand, supervised 

learning try to model the relationships between a set of inputs and a known output, 

such as multilayer perceptron artificial neural networks, random forests (Hogeweg, 

1988), decision trees, bagging, boosting evolutionary algorithms, bayesian 

networks, nearest neighbors and support vector machines (Breiman, 2001). On the 
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other hand, unsupervised learning reveals ecological data patterns based on input 

datasets. These models are known as self-organized systems, some of them are 

self-organizing maps (SOM), Hopfield networks, learning matrix, temporal 

associative memory (LAM), fuzzy associative memory, additive Grossberg, and 

adaptive resonance theory (Hopfield, 1982). Artificial neural networks (ANNs) and 

random forests (RF) have been successfully used by many researchers to design 

species distribution models and in other ecological issues (Drew et al., 2011; 

Franklin, 2010; He et al., 2010; Mouton et al., 2011; Olaya-Marín et al., 2012; 

Olden et al., 2008; Recknagel, 2001). ANNs and RF are able to carry out complex 

computations in pattern recognition, signal classification and prediction problems. 

Both techniques can be used to successfully address complex modelling issues 

(Cutler et al., 2007; Edia et al., 2010; Prasad et al., 2006; Tirelli and Pessani, 

2009). 

ANNs are mathematical models with an architecture inspired in the structure of 

the biological central nervous system. A biological neuron is constituted by three 

components: the cell body, dendrites and the axon (Fig 1a). Dendrites receive input 

signals, the cell body combines and integrate them and releases output signals. 

Axon transfers the information towards synaptic junctions, where it is distributed to 

new neuron sets. The fundamental building block of ANNs is the neuron (Chon 

and Park, 2006; Drew et al., 2011; Franklin, 2010; Lek et al., 2005) showed in Fig 

1b. Dendrites are represented by input units; the weighted inputs are assimilated by 

the cell body, which acts as input attractor and nonlinear filter (activation function) 

to transfer the output signal to the axon (Jorgensen and Fath, 2011).  
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Fig. 1. Conceptual structures of biological and artificial neural networks. Modified from 

Jorgensen et al. (2009) 

ANNs can be classified according to the neuron connections as: i) feed-forward 

neural network (signal propagates forward through layers), multilayer perceptron 

and radial basis functions are examples. ii) Recurrent networks (information flows 

feed-forward and feed-backward), some examples are recurrent multilayer 

perceptron, real-time recurrent network, and self-organizing maps. The most 

common type of ANN model is the multilayer perceptron (MLP) also called 

multilayer feed-forward neural networks (Fig. 2) and belong to supervised learning 

procedures. 
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Fig. 2. Schematic diagram of tree-layered feed-forward artificial neural network (one input 

layer, one hidden layer and one output layer). Black circles are the input nodes of ANN 

model. These are linked to the hidden nodes (middle), which in turn are linked to an output 

node. 

MLP is a layered feed-forward neural network, in which the neurons are 

organized in connected layers with unidirectional flow of information, from the 

input layer to the output one. A neuron in a layer is linked to all neurons in the 

adjacent layer, but there is neither connection within a layer nor feedback 

connections (Fig. 2). The number of input and output neurons depends on the 

number of predictors and target variables, respectively. The learning algorithms of 

MLP are based on a relatively simple concept (Fig. 3), the weights are changed in 

each iteration to minimize the error (represented by an objective function), the 

procedure ends when it is reached a stopping criteria. In a training phase, a set of 

input/output data is used to minimize the error function; once the optimum weights 

and bias are found the performance of the network is tested using an independent 

dataset.  
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Fig. 3. Basic types of ANN. a) supervised feed-forward ANN; b) non-supervised ANN. 

Modified from Hernández (2006). 

On the other hand, early stopping and cross-validation are the most commonly 

used criteria to avoid over-fitting in training phase, and some researchers have used 

them jointly (Sarle, 1995; Yong, 2006). Early stopping approach divides training 

dataset in two subsamples: The first one is the training sub-set, used to compute the 

gradient and update the weights and biases in the network. The second one is the 

validation sub-set. The error in the validation sub-set is observed through the 

training process, this error decreases in the first phase of training. However, when 

the optimization algorithm begins to over-fit the prediction to the training sub-set, 

validation error typically begins to rise and the training is stopped when the 

validation error increases for a specified number of iterations (Fig. 4), and the 

weights and biases at the minimum validation error are conserved as model 

parameters (Demuth et al., 2010). This technique stops training before the network 

starts to learn from the noise present in training sub-set and prevents over-fitting 

improving the generalization capability of the trained neural network (Yong, 2006). 

Once the model is trained, its performance is evaluated on an independent 

dataset (test dataset). This procedure is useful to objectively assess the level of 

likelihood of the prediction to a new input set (Demuth et al., 2010) and learn 

about the generalization ability of the neural network. 



Chapter 1 

30 

Fig.4. Neural network training process with early stopping criteria. 

Cross-validation is employed in ecology when the size of dataset is insufficient 

to divide data in training and test subsets (Goethals et al., 2007; Hastie et al., 

2009). The most used cross-validation method is k-fold; in which, dataset is 

divided in k subsets and the ANN model is trained with k-1 sets, and validated with 

the another one (Goethals et al., 2007). This training/test process is repeated k 

times, using different sub-sets in validation, this procedure is illustrated in Figure 5 

using k = 4 (Hastie et al., 2009). Finally, model performance is the average of the 

error values in the k trials, and it is a global prediction error (Witten and Frank, 

2005). 

Figure 5. Scheme of the dataset division for a k-fold cross-validation using k = 4. 

According to the aforementioned, ANN is a valuable technique to be applied in 

ecological modelling; its utility is focused on a better understanding of habitat and 
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biological relationships, and the improvement of models predictability for the 

conservation and ecological restoration of rivers (Olden et al., 2008; Tirelli et al., 

2009).  

1.1.2 MOTIVATION 

The European water framework directive (2000/60/EC) (WFD) establishes a 

framework for Community action in water management. Water is considered more 

than a resource; it is valued as a fundamental dimension of freshwater ecosystems 

and relevant to support a good environmental quality (Munné and Prat, 2004). The 

main aims of water conservation policy cover the management of the whole 

ecosystem; therefore, biological quality indicators are as important as physico-

chemical quality indicators (CHE, 2007). Fish are sensitive to persistent 

environmental changes, which can be observed by the alteration of native fish 

species abundance and specific richness (CHJ, 2007; Laws, 2000); therefore, 

these indicators can be used to evaluate the health of river ecosystems and the 

effect of river restoration actions. For this reason, the WFD takes into account 

continental fish as one of the biological indicators to evaluate the ecological status 

of water bodies. 

The development of mathematical models in ecology is fundamental to improve 

the scientific knowledge, and useful to support decision making from a practical 

point of view (Omlin and Reichert, 1999). Due to anthropogenic environment 

alterations, the utility of prediction and simulation in applied ecology have 

increased in recent years, with the aim of designing rehabilitation actions (Jopp et 

al., 2011; Olden et al., 2010). However, model predictability is constrained by 

ecosystems complexity, non-linearities of the emerging relationships (Olden et al., 

2008) and unknown mathematical structures governing the biological-habitat 

processes. According to Jopp et al. (2011), predictive models are useful for 

complementing existing approaches in at least five areas of research (Jopp et al., 

2011): a) Decision-support for conservation biology; b) Testing specific 

hypotheses, e.g. on the spatial scale of habitat selection; c) Generating hypotheses, 

e.g. on correlation of species traits with environmental variables, which can be 
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tested experimentally; d) Identifying hierarchies of environmental drivers; and e) 

Prospective design of surveys, e.g. optimizing sampling schemes for rare species. 

A recent avenue of approaches to improve predictability and learn about the 

behavior of freshwater ecosystems is based on ML techniques. Hence, ML is 

valuable to build mathematical models of species‟ distribution, abundance or 

diversity (Drew et al., 2011; Guisan and Thuiller, 2005; He et al., 2010; Olaya-

Marín et al., 2012; Zarkami et al., 2012), and also to understand the biological-

habitat processes to design conservation protocols and restoration measures, to 

assess the impact of human activities on natural resources, evaluate the impact of 

invasive species and study the impact of global warming on biodiversity and 

ecosystem (Franklin, 2010; Tirelli and Pessani, 2009; Zarkami et al., 2012). There 

is no consensus in the scientific community about fundamental quantitative 

relationships to explain biological communities‟ descriptors as function of 

environmental-biological predictors through global, regional and local scales. 

Therefore, it is important to enrich the scientific literature with researches 

concerning mathematical models development and to provide tools to generate, 

integrate and synthesize knowledge in freshwater ecology through different 

climatic conditions around the world. 

In the context of Mediterranean river basins, the development of new 

conceptualizations, theories and methods are needed to explain the relationships 

between biological and habitat variables and improve the understanding of 

ecological processes through a wide range of spatial and temporal scales. Special 

attention is required to native ichthyofauna, which is constituted by many endemic 

taxa with a very limited or local distribution. The freshwater fish fauna in 

Mediterranean river basins is particularly threatened, due to its high level of 

endemism. According to IUCN, the 56% of freshwater Mediterranean species are 

threatened (Smith and Darwall, 2006). 
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1.2 SCOPE AND RESEARCH PROBLEM 

In Mediterranean rivers many stressors (pollution, introduction of exotic 

species, hydrological regime alteration and habitat loss) have caused native fish 

population decline and/or extinction (Smith and Darwall, 2006). Some studies in 

Mediterranean environments supports this affirmation; e.g. Costa et al. (2012) 

found that habitat degradation has reduced the complexity of a Mediterranean river 

in Spain and enhanced the declining of the endangered Júcar nase 

(Parachondrostoma arrigonis). Hermoso et al. (2011) showed that the proliferation 

of invasive species is as strong threat to the persistence of native assemblages in 

highly fluctuating environments. And Aparicio et al. (2000) arrived to the 

conclusion that water pollution and modifications of the habitat were the most 

important anthropogenic factors affecting the changes in fish community integrity 

in south-eastern Pyrenean watersheds, in the Iberian Peninsula. 

The Mediterranean freshwater ecosystems require the development of ecological 

models to explain the complex relationships between the habitat features (including 

connectivity) and the aquatic biota at different spatial scales. Therefore, it is 

important to develop new scientific knowledge in Mediterranean fluvial ecology to 

delineate political, administrative and technical guidelines to address watershed 

and river restoration plans and support the integrated management of the 

Mediterranean river basins. This PhD thesis seeks to characterize and improve the 

understanding of the factors governing the decline of native fish species in 

Mediterranean rivers; therefore, this research aims to solve the following questions: 

¿what are the most relevant environmental variables for the conservation of native 

fish in the Júcar, Cabriel and Turia rivers? ¿What role invasive species play in the 

declining of native fish in these rivers? And ¿What should be the most appropriate 

restoration actions for the Mediterranean rivers?  

1.3 OBJECTIVES 

The general objective of this PhD thesis is: 
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 To analyse the relationships between biological and habitat variables 

across a range of spatial scales in Mediterranean rivers, with the 

development of modelling tools to support the decision-making in river 

restoration. 

The above objective implies the following specific objectives: 

 To build a database of fish descriptors, biological and environmental 

variables at different spatial scales in rivers of the Júcar river Basin 

District. 

 Specific objectives of chapter 2: (i) to model the relationship between a 

set of environmental variables (associated with different scales and 

ecosystem components) and the native species richness (NFSR); (ii) to 

assess the importance of the most relevant environmental variables to 

predict NFSR; and (iii) to evaluate the potential effectiveness of river 

restoration actions to improve NFSR in the Júcar river basin.  

 Specific objectives of chapter 3: to determine the relative importance 

of the two main factors in the reduction of native fish species richness 

(NFSR), i.e. habitat (including water quality and river connectivity) 

and ecological interactions among aquatic species, in the Júcar, Cabriel 

and the Turia rivers. 

 Specific objectives of chapter 4: (i) to compare the reliability and 

ecological relevance of two predictive models for fish richness based 

on the techniques of ANN and RF and (ii) to evaluate the concordance 

in terms of selected important variables between the two modelling 

approaches.  

 

 Specific objectives of chapter 5: (i) to identify relevant environmental 

variables and model density and presence/absence of L. guiraonis and 

(ii) to assess the importance of each predictive environmental variable 

in the estimation of density and presence/absence. 
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ABSTRACT 

The richness of native fish is considered to be an indicator of aquatic ecosystem 

health, and improving richness is a key goal in the management of river 

ecosystems. An artificial neural network (ANN) model based on field data from 90 

sample sites distributed throughout the Júcar River Basin District was developed to 

predict the native fish species richness (NFSR). The Levenberg-Marquardt learning 

algorithm was used for model training. When constructing the model, we tried 
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different numbers of neurons (hidden layers), compared different transfer 

functions, and tried different k values (from 3 to 10) in the k-fold cross-validation 

method. This process and the final selection of key variables with relevant 

ecological meaning support the reliability and robustness of the final ANN model. 

The partial derivatives method was applied to determine the relative importance of 

input environmental variables. The final ANN model combined variables 

describing riparian quality, water quality, and physical habitat and helped to 

identify the primary drivers of the NFSR patterns in Mediterranean rivers. In the 

second part of the study, the model was used to evaluate the effectiveness of two 

restoration actions in the Júcar River: the removal of two abandoned weirs and the 

progressive increase in the proportion of riffles. The model indicated that the 

combination of these actions produced a rise in NFSR, which ultimately reached 

the maximum values observed in the reference site of that river ecotype (sensu the 

European Water Framework Directive). The results demonstrate the importance of 

longitudinal connectivity and riffle proportion for improving NFSR and the power 

of ANNs to help decisions in the management and ecological restoration of 

Mediterranean rivers. Furthermore, this model at the basin scale is the first step for 

further research on the effects of water scarcity and global change on 

Mediterranean fish communities. 

Keywords: Artificial neural networks; River connectivity; Mitigation measures; 

Hydromorphology; Fish richness, River restoration. 

2.1 INTRODUCTION 

 

In 2000, the European Water Framework Directive (hereafter WFD) 

acknowledged the importance of freshwater fish communities as indicators that can 

be used to assess the ecological status of rivers (European Commission, 2000). 

Freshwater fish are considered to be good indicators of water quality in river 

systems (Angermeier and Davideanu, 2004; Karr, 1981) due their sensitivity to 

human disturbances, which alter community parameters such as the abundance of 
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native species and species richness (Laws, 2000; Oberdoff et al., 1995; Rosenberg 

and Resh, 1993). Species richness is a primary indicator used in the conservation 

and management of fish communities; it can be used as an indicator of ecological 

changes and as a criterion for the selection of conservation areas (He et al., 2010; 

Lek et al., 2005; van Jaarsveld et al., 1998). 

From the perspective of species conservation, the Mediterranean part of Europe 

has been recognised as a global biodiversity hotspot for freshwater fish species and 

for plant and terrestrial animal species (Cuttelod et al., 2008). However, an 

ongoing extinction crisis is affecting Europe‟s freshwater fishes, and ambitious 

conservation actions, including the adequate protection and management of key 

freshwater habitats, are urgently needed (Freyhof and Brooks, 2011). The increased 

frequency and intensity of droughts are already impacting freshwater systems and 

the species that rely on them, especially in the Mediterranean region (Freyhof and 

Brooks, 2011). Conservation of fish diversity is one of the most critical issues 

facing the preservation of European biodiversity (Zitek et al., 2008). Therefore, 

implementation of effective river restoration schemes is very important, and 

knowledge about the relationships between hydromorphological features and fish 

populations is essential for the design of effective actions. 

In the last decade, predictive modelling of species distribution has become a 

powerful tool to support decisions in conservation and natural resource 

management (Drew et al., 2011; Jopp et al., 2011). Several studies have used 

conventional multivariate statistical methods to determine the effect of human 

disturbance on native species richness. For example, in the Iberian Peninsula, 

Corbacho and Sánchez (2001) analysed the factors affecting the native species 

richness in the Guadiana Basin (Spain) using principal component analysis and 

multiple regression analysis. Clavero et al. (2004) studied the effect of dams and 

introduced species on fish biodiversity in Iberian basins using generalised linear 

models. In relation to habitat connectivity, Alexandre and Almeida (2010) 

evaluated the effect of small artificial barriers on fish richness in the Muge and 

Erra Rivers using canonical correlation analysis and analysis of covariance. 
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 Simultaneously, the development of advanced techniques in the machine 

learning area has allowed the creation of predictive models with greater power for 

explaining and predicting ecological patterns (Olden et al., 2008); such models 

have the ability to model complex, nonlinear relationships in ecological data 

without having to satisfy the restrictive assumptions required by conventional, 

parametric approaches (Elith et al., 2006; Olden and Jackson, 2002a; Recknagel, 

2003). Examples of Machine Learning techniques are artificial neural networks 

(ANNs), random forests (RFs), genetic algorithms and support vector machines. 

ANNs have been used frequently and successfully in freshwater fish studies, giving 

satisfactory results in regards to learning capacity, adaptation, parallelization, 

speed, and flexibility (Soria et al., 2010) and showing high efficiency in linking 

environmental variables, which are highly complex and nonlinear (Lek et al., 

2005).  

However, only a few studies have used Machine Learning techniques to predict 

native fish species richness (NFSR). For example, Mastrorillo et al. (1998) found 

that the ANN is a powerful tool of prediction compared to traditional modelling 

methods. He et al. (2010) used RF and Classification and Regression Trees 

(CART) to predict endemic fish assemblages and species richness in the upper 

Yangtze River (China). Knudby et al. (2010) predicted fish species richness, 

diversity, and biomass in the reefs around the Chumbe and Bawe Islands 

(Tanzania) using different techniques (e.g., RFs, boosted regression trees, and 

support vector machines). Recently, Cheng et al. (2012) used RF and CART to 

predict species richness in lakes in the Yangtze River Basin.  

These techniques also can be used to develop ecological response models. For 

example, studies at the fluvial network or basin scale that relate the biota with 

environmental variables allow the development of ecological response models with 

potential application in environmental flow assessments at the basin scale. These 

models can be applied to different environmental flow methodologies (see Paredes-

Arquiola et al., 2011 in press; Poff et al., 2010), assuming that there is an 

economical way to up-scale instream flow studies in regions where there is a 

shortage of ecological species information (Paredes-Arquiola et al., 2011 in press). 

Ecological response models can be used to complement and compare results from 
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reach-scale assessments when it is necessary to extrapolate at the basin scale 

according to river types. 

Understanding the relationships among hydrology, habitats, and fish 

populations is key to designing effective river restoration actions. In this work we 

used variables related to the physicochemical properties of water, 

hydromorphology (river flow, habitats), geographic location, and biological 

indexes of water and riparian quality to model the NFSR using an ANN and to 

simulate restoration actions in the main stem of the Júcar, Cabriel, and Turia 

Rivers. The objectives of this study were to: (1) model the relationship between a 

set of environmental variables (associated with different scales and ecosystem 

components) and the NFSR using the ANN; (2) assess the importance of the most 

relevant environmental variables for the NFSR; and (3) evaluate the potential 

effectiveness of a river restoration action (i.e., improving river connectivity) to 

improve NFSR in the Júcar River. The ANN model at the basin scale developed in 

this study is the first step in developing  more complex simulations at smaller time 

scales (e.g., using daily flow data) and in assessing the effects of water scarcity and 

global change on Mediterranean fish communities.  

2.2 MATERIALS AND METHODS 

2.2.1 STUDY AREA AND DATA COLLECTION 

The study area consists of the main stem of the Júcar, Cabriel, and Turia Rivers 

(Fig. 1), in the Júcar River Basin District (Eastern Iberian Peninsula). The three 

watersheds have a Mediterranean climate, and their environmental characteristics 

show a similar pattern of variability. The coldest and rainy areas are located in the 

mountainous zones, and the most temperate areas are situated near the coast 

(Estrela et al., 2004). In Spain, the Ministry of Environment developed an official 

ecotype classification to implement the WFD (CEDEX, 2005). The upper reaches 

of the rivers have a small percentage of flow regulation (in relation to mean flow), 

and they belong to the Mediterranean calcareous mountain rivers (CMM) ecotype. 
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The large dams produce significant regulation downstream (Alarcón, Contreras, 

Benagéber, see Fig. 1). Downstream of the Alarcón and Contreras Dams lay 

segments of the mineralized Mediterranean-continental rivers (MCM) ecotype. The 

sampling sites located in the lowest reaches in the Turia River belong to the 

mineralized rivers of Mediterranean low mountain (ML) and low-altitude 

Mediterranean rivers (MML) ecotypes. In general, the flow regimes match the rain 

pattern and exhibit strong seasonal and annual variability. Consequently, severe 

droughts occur in summer and flash floods occur in winter and spring (Belmar et 

al., 2010; Gasith and Resh, 1999; Vidal-Abarca et al., 1992). The predominant 

lithographic groups are calcarenites and marls, although significant proportions of 

limestone and alluvial material are present. The forests cover a great percentage of 

the western mountainous areas, but the watersheds are highly anthropic in the 

eastern area (CHJ, 2007). 

 

Fig. 1. Location of the Júcar, Cabriel and Turia River Basins in the Iberian Peninsula, with 

detail of the 90 sampling sites (square), the large dams (triangle) and the river’s ecotypes 

(CEDEX, 2005) sensu the European Water Framework Directive. 
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The ecological importance of the fish communities in these rivers resides in 

their adaptation to Mediterranean conditions and to the number of endemic and 

endangered species. The communities are dominated by cyprinids (Ferreira et al., 

2007) and are characterised by a high number of endemic species, which have a 

reduced distribution range compared with other fish species elsewhere in Europe 

(Doadrio, 2001; Granado-Lorencio, 1996). However, information about habitat 

suitability for the fish communities is scarce, likely because of the low commercial 

fishing value of these species. In the reference sites for the assessment of 

ecological status (sensu the WFD), the highest NFSR values were as follows: In the 

reference site of the CMM ecotype in the Júcar River (NFSR = 5), the species 

present are Salmo trutta fario, Luciobarbus guiraonis, Achondrostoma arcasii, 

Iberocypris alburnoides, and Cobitis paludica. The reference site of the same 

ecotype in the Cabriel River (NFSR = 5) includes S. trutta fario, 

Squalius  pyrenaicus, L. guiraonis, A. arcasii, and Parachondrostoma arrigonis 

(Júcar nase). In this location, the last is a very important species that is critically 

endangered (Freyhof and Brooks, 2011), and the only sustainable populations of 

the Júcar nase live in the Cabriel River and the Magro River (i.e., tributaries of the 

Júcar River) (Costa et al., 2012). The Cabriel River is the only river where habitat 

suitability studies for the Júcar nase could be conducted (Costa et al., 2012), and 

biological and ecological data about this species are scarce. In the same ecotype in 

the river Turia, the maximum NFSR is 3, and the species present are L. guiraonis, 

Barbus haasi, and Parachondrostoma turiense. The reference site of the MCM 

ecotype is located in the Cabriel River near Puente Tamayo (NFSR = 5), where the 

native fish species are L. guiraonis, Salaria fluviatilis, S. pyrenaicus, Anguilla 

anguilla, and P. arrigonis (the last two are critically endangered). Regarding the 

other ecotypes in the Turia River, the maximum NFSR is 4. In the ML ecotype, the 

species are S. trutta fario, L. guiraonis, Squalius valentinus, and C. paludica; in 

some reaches S. trutta fario is substituted by P. turiense or A. anguilla. In the same 

river but in the MML ecotype, L. guiraonis, S. valentinus, P. turiense, and A. 

anguilla are present. 
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2.2.2 RESPONSE VARIABLE AND PREDICTOR VARIABLES  

In this study we used 90 fish sampling sites distributed along the three rivers 

(Fig. 1). Fish were captured by electrofishing (single-pass) that covered more than 

50 m of river length. Sampling was conducted in the spring and summer months 

from 2005 to 2009. Each individual fish was identified to species. 

Twenty-four environmental variables were used in the development of the ANN 

models (Table 1). In agreement with other investigations (Granado-Lorencio, 1996; 

Ibarra et al., 2003; Jackson et al., 2001; Lek et al., 1996; Mastrorillo et al., 1998), 

they were chosen according to their degree of importance for fish life and 

according to their availability in public databases. The environmental variables 

correspond to three groups: physicochemical parameters of water quality, 

hydromorphology, and biological indicators of water and riparian quality. We took 

into account different spatial scales, from mesohabitat measurements to larger 

scales such as the fluvial segment and the segment watershed (the latter was 

measured using a geographic information system (GIS)) (Table 1). As some studies 

have indicated, models based on multiple spatial scales usually outperform single-

scale analyses (Olden et al., 2006). 

Water quality is widely recognised as a key factor affecting fish species 

distribution, as water pollution severely alters fluvial dynamics and compromises 

the survival of fish fauna (Granado-Lorencio, 2000; Jackson et al., 2001). For this 

reason, physicochemical water variables and biological indicators of water and 

riparian quality were used in this study. The mesohabitats or hydromorphological 

units determine the available habitat for fish communities at the meso- and 

microhabitat-scale; thus, mesoscale variables are important for fish (Bernardo et 

al., 2003; Costa et al., 2012). The magnitude and variability of river discharge 

determine the lifecycle traits of Mediterranean fish fauna (Ferreira et al., 2007; 

Granado-Lorencio, 2000). Other geographic variables, such as watershed area, 

distance from the headwater source, and altitude, affect fish species richness 

distribution patterns (Oberdorff et al., 1995; Reyjol et al., 2007). In this study, 

channel length without artificial barriers was taken into account because transverse 

hydraulic structures fragment fluvial continuity: act as barriers to reproductive fish 
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migration, inhibit colonisation of empty reaches, and favour the development of 

lentic habitats, which are suitable for exotic species (Granado-Lorencio, 2000). 

Riverine vegetation plays an active role in the preservation of aquatic life (Naiman 

et al., 1993; Patten, 1998), as it provides refuge and food and constitutes a 

biological buffer, which decreases the input of pollutants from alluvial and 

colluvial soils. Moreover, riverine vegetation controls the flood regime and water 

channel temperature (Hattermann et al., 2006; Quinn et al., 2004). 

The physical and chemical properties of water were averaged for the year when 

fish were sampled at each of the 90 sampling points, using data recorded every 3 

months as part of the official monitoring network of the Júcar River Basin 

Authority. The same authority provided the daily flow data from gauging stations. 

The mean monthly flows were estimated at each of the sampling points where there 

was no gauging station; the flow rate was interpolated between gauged sites using 

the relationship between the flow rate in the natural regime and the drainage area 

accumulated at the point (Caissie, 2006a; Caissie and El-Jabi, 1995; Leopold and 

Maddock, 1953; Leopold et al., 1964). The mean annual flow in natural conditions 

was obtained by applying the water balance equation and the principle of mass 

conservation (Wurbs, 2006). The mean width of the water surface and the 

proportions of  hydromorphological units were determined in the field based on the 

classification by Dolloff et al. (1993) and adapted to these Mediterranean rivers as 

pool, glide, riffle, run, and rapid. The same classification was applied in previous 

studies of Iberian rivers (Alcaraz-Hernández, 2011; Costa et al., 2012). The 

geographical variables were determined using the ArcGIS
TM

 9.3.1 software (ESRI 

©2009), based on the layers of the official river network supplied by the Júcar 

River Basin Authority. We used two biological indicators: the index of water 

quality based on aquatic invertebrates (IBMWP), (Alba-Tercedor and Sánchez-

Ortega, 1988) and the index of riparian quality  (Munné et al., 2003). The second 

indicator considers four components: total riparian vegetation cover, cover 

structure, cover quality, and channel alterations. The IBMWP was obtained from 

field data (biomonitoring network) collected by the Júcar River Basin Authority. 

The riparian forest quality index (QBR) was determined in a basin-scale study 

funded by the same authority  (Aguilella et al., 2005). 
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Table 1. Potential predictive variables considered in the development of the model for 

native fish species richness (n = 90). For each variable, it is noted whether it was measured 

in situ or in a GIS; other data were supplied by the Júcar River Basin Authority (water 

quality and flow monitoring network, MN, or biomonitoring network, BMN). 

Variable Method Code Unit Mean Range 

Physicochemical conditions of water       

Dissolved oxygen MN DIS mg/l 9.5 8-11 

Biological Oxygen Demand  MN BOD mg/l  2.5 2.0-4.0 

Total phosphorus  MN TOP mg/l 0.06 0.02-0.22 

Nitrites  MN NIT mg/l 0.02 0.01-0.23 

pH  MN PH - 8.1 7.7-8.3 

Suspended solids  MN SUS mg/l 11.3 3.1-25.2 

Water conductivity  MN CON µS/cm 797.8 499.1-1210 

Water temperature  MN WAT ºC 13.3 5.7-16.7 

Hydromorphology       

Hydromorphological units:       

                       Pools (%) In situ POO - 48.6 0.0-95.0 

                       Glide (%) In situ GLI - 11.2 0.0-80.0 

                       Riffle (%) In situ RIF - 28.2 0.0-89.0 

                       Rapid (%) In situ RAP - 5.7 0.0-53.0 

                       Run (%) In situ RUN - 6.0 0.0-50.0 

Mean width of water surface  In situ WID m 12.4 3.1-19 

Channel length without artificial 

barriers 

GIS CWB km 26.3 0.5-95.8 

Altitude  GIS ALT m a.s.l. 746.4 92.0-1363 

Drainage area  GIS DRA km2 3318.8 54.0-10952 

Distance from headwater source  GIS DHS km 150.1 20.5-327.4 

Mean Annual flow rate  MN FMA m3/s 4.3 0.03-11.31 

Inter-annual mean flow (calculated 

for 5 years)  

MN FIA m3/s 5.50 0.11-12.36 

Coefficient of variation of mean 

monthly flows (fish sampling year)  

MN FIM - 0.5 0.28-0.94 

Coefficient of variation of mean 

annual flows (calculated for 5 years) 

MN FCV - 0.4 0.15-0.81 

Biological indices of water quality and riparian quality    

Iberian Biological Monitoring 

Working Party-IBMWP  

BMN IBMWP - 131.6 64-260 

Index of Riparian Habitat Quality BMN QBR - 73.6 10-100 
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2.2.3 ARTIFICIAL NEURAL NETWORKS MODELLING 

ANNs are mathematical models that are inspired by the structure and function 

of biological nervous systems (Olden et al., 2008). In this study we built a 

multilayer perceptron neural network (MLP), as they are very frequently used for 

supervised learning and are the most used networks in ecology (Özesmi et al., 

2006). The learning procedure for this kind of neural network involves 

optimization of the mean squared error for a dataset of the output variable based on 

a set of predictive environmental variables. At each iteration, the weights or 

parameters are changed in order to find a minimum mean squared error. A detailed 

description of the MLP can be found in Dedecker et al. (2005), Goethals et al. 

(2007), Olden et al. (2008) and Mouton et al. (2010). 

The first step in the model construction was the calculation of a correlation 

matrix to estimate the potential effect of collinearity and we used a cluster 

representation to visualise collinearity (Fig. 3). When two variables were highly 

correlated (Spearman‟s rho
2
 > 0.5) we used the one with higher ecological 

interpretability (Brosse et al., 1999; Dormann, 2011; van Wijk and Bouten, 1999). 

We then used the forward stepwise method to incorporate predictive variables into 

the network (Gevrey et al., 2003). Many candidate MLP models were built to 

assess the optimal number of neurons in the hidden layer and the proper transfer 

function for the hidden and output layers. An important issue in ANN architecture 

is the selection of the transfer functions. Frequently, the neurons of a layer share 

the same kind of transfer function and the most used functions are the sigmoidal 

ones (Goethals et al., 2007). However, the advantage of selecting a particular 

transfer function has not been demonstrated mathematically yet (Hassoun, 1995). 

Currently, the criterion for selecting a transfer function is the better performance of 

the model, as tested by trial and error (Isa et al., 2010) .Therefore, we tried two 

combinations of transfer functions in the hidden and output layers (hidden/output): 

(1) hyperbolic tangent/lineal and (2) logistic/logistic. Data were scaled to ensure 

that predictive variables get equal attention during the training process (Maier and 

Dandy, 2000) and to commensurate their values with the limits (hyperbolic tangent 

[–1,+1] or logistic [0,+1])  of the transfer function used (Olden and Jackson, 

2002b). The models were built with a single hidden layer; this is satisfactory for 
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statistical applications (Bishop, 1996) and it notoriously decreases the computation 

time. Commonly, the use of one hidden layer yields similar results to the use 

multiple hidden layers (Kurková, 1992).  

The Levenberg-Marquardt algorithm was used to train the neural networks; this 

is the fastest procedure to train neural networks of moderate size (Karul et al., 

2000) and it was recommended in previous studies (Gutiérrez-Estrada and Bilton, 

2010; Tan and Van Cauwenberghe, 1999). To evaluate the predictive performance 

in the validation we used the method of k-fold cross-validation. This method is 

frequently used in ecology when the number of observations is not sufficient to 

divide the data into training and validation sets (Olden et al., 2008). Goethals et al. 

(2007) suggested that it is necessary to test several values of k between 3 and 10. In 

this work, k was empirically determined by comparison of performance among the 

networks constructed with a range of k values between 3 and 10. A detailed 

description of this algorithm can be found in Shepherd (1997). Model performance 

was measured by the correlation coefficient (r) and the mean squared error (MSE).  

A sensitivity analysis was performed to evaluate the contribution of each 

predictive variable to the ANN output. For this purpose the partial derivatives 

method (PaD) was applied (Dimopoulos et al., 1999; Dimopoulos et al., 1995). 

This method estimates the relative importance of each input variable to the 

prediction of NFSR in the model; a variable was considered relevant when its 

importance value was higher than 15% (Brosse et al., 2003).  

2.2.4 SIMULATION OF MITIGATION MEASURES 

The ANN model with optimal performance was used to simulate the effect of 

restoration measures by introducing changes in the key predictive variables. 

Longitudinal fluvial connectivity and riffles are highly relevant to Iberian endemic 

cyprinid fishes (Granado-Lorencio, 1996; Ilhéu et al., 1999), and mitigation 

measures related to these factors were simulated by changing the values of the 

following two variables: riffle proportion to river length (RIF) and channel length 

without artificial barriers (CWB). The removal of weirs is a commonly used 

method for river enhancement in Europe (Kroes et al., 2006); the lack of 
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connectivity in terms of water, sediment, and fauna has important ecological 

consequences because the hydromorphological and biological conditions of the 

ecosystem are directly or indirectly affected (Cowx and Welcomme, 1998). 

In the first step of the simulation, we analysed the effect of increasing CWB on 

NFSR. The simulation was implemented in the river segment between the 

Manchega and Torcío weirs, downstream of Alarcón dam (Fig. 2); there we 

simulated the removal of three small disused weirs: Carrasco, La Marmota, and 

Los Pontones. Weir removal generates changes in the proportion of 

hydromorphological units, but there was no hydraulic model available to predict 

such changes in this segment. Therefore, in the second step of the simulation we 

analysed the sensitivity of NFSR to an increase in riffle proportion (10, 20, 30, 40, 

and 50%) with respect to the observed values in the target river segment (Fig. 2), 

where there is only one native species. This segment belongs to the MCM ecotype. 

The Puente de Tamayo site (Cabriel River, species richness = 5) was the reference 

site of this fluvial ecotype (CEDEX, 2005) that we used to compare the richness in 

the target river segment. This is the only reference site of this ecotype in the Júcar 

River. 

 

Fig. 2. Main stem of the Júcar and Cabriel Rivers, with the weirs and small dams 

(triangles), the 2 sampling points in the segment of simulation where the effects of 

mitigation measures were simulated (fish symbol). The reference site of this ecotype is also 

indicated (Cabriel River). 
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2.3 RESULTS 

 

The variables DHS, WAT, ALT and DRA have a strong correlation (Fig. 3). 

Following the literature, DRA has the highest ecological interpretability for fish 

richness (Filipe et al., 2010; Matthews and Robison, 1998; Oberdorff et al., 1995); 

consequently we remove the first three variables as potential predictive variables. 

Since CON and FCV are highly correlated, we excluded the variable CON as a 

potential predictive variable. According to Figure 3, FIA and FMA are highly 

correlated, but we preserve both of them because they are important for 

Mediterranean fish life (Granado-Lorencio, 2000; Hermoso and Clavero, 2011). 

 

Fig. 3. Representation of the hierarchical clustering using squared Spearman correlation 

(2) on the environmental variables, in order to indicate their similarities.  

The cross-correlation analysis and the forward stepwise method allowed us to 

determine the key variables for predicting the NFSR. These were the QBR, RIF, 

CWB, drainage area (DRA), coefficient of variation of mean monthly flows (FIM), 

mean annual flow rate (FMA), and the IBMWP index. With these variables the 

ANN model was built and developed.  

The architecture of the best ANN model (i.e. best performance) for NFSR 

consisted of three layers (7-6-1): one input layer with seven nodes (seven 

environmental variables); one hidden layer with six nodes; and the output layer 
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with one output node (Fig. 4). The use of the hyperbolic tangent as the transfer 

function in the hidden layer and linear transformation in the output layer improved 

the ANN performance compared with the model using the logistic function in both 

layers. Therefore, both the hyperbolic tangent and linear transformation functions 

were used to construct the final ANN. Among the different trials of k-fold cross-

validations, only those with k values smaller than 6 improved the network 

performance. Consequently, the k-6 was used to construct and validate the ANN.  

 

Fig. 4. Structure of the three-layered feed-forward artificial neural network with the best 

performance. Seven input nodes correspond to the independent environmental variables 

(QBR=riparian forest quality index, RIF=riffle proportion, CWB=channel length without 

artificial barriers, FIM = coefficient of variation of mean monthly flow, FMA = mean 

annual flow rate, DRA = drainage area and IBMWP index), six nodes constitutes the 

hidden layer and one output node shows the estimate of native fish richness. 

The r value of the ANN model in the training procedure was 0.90 (P < 0.05), 

and it was 0.81 in the validation procedure (P < 0.05). The MSE values for training 

and validation were 0.35 and 0.62, respectively. The r and the MSE showed a good 

fit of the values estimated by the model to the observed data. Figure 5 shows the 

relationship between the observed values and those estimated by the model. The 

partial derivatives method established that the variables that contributed most to the 

model were IBMWP, RIF, and FMA, with a relative importance of 20.72%, 

20.18%, and 16.44%, respectively (Fig. 6). This is consistent with reality, because 

observed species richness tend to increase for high values of IBMWP, RIF and 
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FMA in each of the three rivers, and the observed richness decrease for low values 

of these variables. 

 

Fig. 5. Relation between the observed and estimated values of native fish species richness 

(NFSR) for the dataset used in the training and validation of the ANN model of the best 

performance (N = 90). The mean squared errors for training and validation were 0.35 and 

0.62, respectively. 

 

Fig. 6. Relative contribution of the environmental variables to the modelling of native fish 

richness, estimated by the partial derivative algorithm (PaD). The line represents the 

minimal significance level (15%) accordingly to Brosse (2003). See codes of variables in 

Figure 4. 

Figure 7 illustrates the influence of the key environmental variables in 

predicting the richness of native fish in the model, as calculated using PaD 

sensitivity analysis. The positive values on the Y axis indicate a positive 

relationship between the input and output variable (NFSR), and negative values 

represent a negative influence. The values of the partial derivatives of the NFSR 

relative to IBMWP, RIF, and FMA are mainly positive, as indicated by the lateral 
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histograms in the figure. This means that an increase in one of the three variables 

leads to an increase in the NFSR in the study area. 

 

Fig. 7. Partial derivatives of the richness of native fish (NFSR) regarding IBMWP index, 

riffle proportion (RIF) and mean annual flow rate (FMA). 

The first step of the simulation indicated that elimination of the three weirs 

would result in a 37 km long reach free of barriers. The model predicted that an 

increase of NFSR from 1 to 3 species would occur in the two simulation sites. The 

increase in RIF (10, 20, 30, 40, and 50%) over the observed values at each site 

(35% and 27%) produced a progressive increase in the richness of native fish (Fig. 

8). In the first simulation site it meant an increase of richness to a constant value of 

5 species. In the second simulation site the richness increased progressively until it 

reached 4 native species. These values are very near or match the maximum NFSR 

evaluated in the reference site of this river ecotype (CMM). 
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Fig. 8. Progression of the native fish species richness simulated with regular increments in 

the riffle proportion (RIF) over the original values estimated in the field (35 and 27 % in 

sites 1 and 2, respectively). 

2.4 DISCUSSION 

The ANN developed in this study, which predicted the NFSR based on seven 

environmental variables, performed well. The accuracy of the model is related to 

the ability of the ANN to represent the structure and non-linear processes found in 

nature (Drew et al., 2011). The combination of techniques used during model 

development, such as the forward stepwise method to incorporate predictive 

variables (Gevrey et al., 2003), the testing of different numbers of neurons (hidden 

layer), the comparison between transfer functions, and the testing of different k 

values (from 3 to 10) in the k-fold cross-validation, supported the reliability and 

robustness of this ANN model. The final group of key variables, with ecological 

relevance and consequences for river restoration, was an important result of this 

research, as it is discussed below. 

The most significant variables identified in this study (IBMWP, RIF, and FMA) 

are considered to be very important for the development of Mediterranean fish 

communities (Bernardo et al., 2003; Granado-Lorencio, 1996, 2000; Oliva-Paterna 

et al., 2003). Among these variables, water quality usually affects aquatic species 
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at a larger scale compared to the other variables, and large-scale studies frequently 

find significant associations between fish communities and abiotic factors (Jackson 

et al., 2001). Many researchers have noted the importance of water chemistry, 

especially dissolved oxygen and pH, for aquatic communities (Jackson et al., 

2001). However, none of these variables was selected for inclusion in the final 

model, and instead IBMWP was used as an integrative indicator of water quality. 

In Spain, this index has been widely used for evaluating water quality and for 

ecological monitoring (Carballo et al., 2009). We found that in the rivers being 

studied, the NFSR increases with the IBMWP (Fig. 7a); this result is consistent 

with results of other studies because the index is positively related to different 

aspects of the ecological status of rivers. For instance, in Iberian rivers Pardo et al. 

(2002) found a significant positive correlation between the IBMWP and the index 

of habitat diversity, and Benejam et al. (2010) reported that water pollution 

decreases the condition and fecundity of freshwater fish. Abiotic factors are also 

important; for example, water temperature can limit the range of species over a 

broad geographic scale (Shuter et al., 1980), and it is a relevant factor at finer 

scales as well (e.g., Cunjak and Linnansaari, 2011; Grossman and Freeman, 1987). 

This factor was integrated into the analysis as mean annual temperature, but it 

ultimately was not selected for inclusion in the model. This was the only robust 

variable that could be calculated from the available public data. However, the 

pattern of seasonal variations in temperature and the changes at the scale of 

hydromorphological units are affected by the proportions of habitats (e.g., riffles 

and pools), the presence of weirs or other obstacles, and tributaries, and we believe 

that this factor requires further research at smaller spatial and temporal scales. 

The ANN model developed at the basin scale in this study is the first step 

needed to develop more complex simulations at different spatial and temporal 

scales and to assess the effects of water scarcity and global change on 

Mediterranean fish communities. In the Mediterranean, water scarcity is one of the 

consequences of global change (García-Ruiz et al., 2011), and its potential effects 

on aquatic systems are an issue of major concern; for instance, the reduction of 

water quality may pose severe risks to ecosystem integrity (Petrovic et al., 2011). 

One future step may be to develop another ANN to include as inputs the water 
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quality variables available from the monitoring networks in order to investigate 

specifically the relationships between water quality and fish richness. To date, the 

absence of these variables in the final ANN model suggests a low sensitivity of 

richness to these variables individually or in combination in comparison with other 

environmental factors. 

Although the currently available analytical methodologies can detect the 

majority of relevant pollutants at their environmental levels, their dynamic 

environmental fate and their negative effects on the ecosystem are still poorly 

understood (Petrovic et al., 2011). Therefore, understanding the response of the 

biota to both water scarcity and poor water quality is a challenging topic of 

research (Barceló and Sabater, 2010). In our opinion, the integration of “standard” 

parameters of water quality and emerging contaminants into fish distribution 

models is a feasible approach that might improve our understanding of the 

ecological responses and the effects of multiple stressors. In the regional context, 

the future development of richness models also should include analysis of 

ecological interactions at a time scale smaller than a month and incorporate 

parameters relevant to extreme hydrological events, such as floods and droughts. 

For instance, the low flows associated with water scarcity affect biogeochemical 

processes, decrease the dilution capacity of nutrient loads, and also decrease the 

natural ability of river biota to process sewage waters (Petrovic et al., 2011). Spain 

is one of the first countries in terms of river regulation and large dams (WCD, 

2000), and downstream of the reservoirs the effects of drought on community 

composition and structure can be intensified as a result of the competition between 

human uses of water and environmental values (Boix et al., 2010). 

In our model, the proportion of riffle habitat was the most important variable 

together with the IBMWP; the sensitivity analysis indicated that a positive 

relationship exists between RIF and the NFSR (Fig. 7b). These results are in 

accordance with previous studies conducted in the Iberian Peninsula, which 

demonstrated that native cyprinid species prefer shallow riffles, slow runs, and 

deep pools, with higher probability-of-use in riffles, compared to other habitats, 

whereas the exotic species prefer the pools (Bernardo et al., 2003). The relevance 

of incorporating mesoscale analyses to interpret fish habitat use has been 
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demonstrated in Mediterranean brown trout (Alcaraz-Hernández, 2011; Mouton et 

al., 2011) and Júcar nase (Costa et al., 2012) populations in Mediterranean rivers. 

The riffles are very important for fish reproduction; in the Júcar and Turia Rivers, 

gravel is the dominant substrate in riffles, and it is necessary for the spawning of 

lithophilic fish species such as the Iberian barbel and the Iberian chub (Doadrio, 

2001b). The importance of gravel bars also has been demonstrated for other 

European species (e.g. barbel and dace) (Copp et al., 1991). Another example is the 

European chub, which is considered to be a lithophilic species; it selects spawning 

sites with a water depth between 0.1 and 0.3 m, a stream velocity of 0.15–0.7 m 

s
−1

, and a gravely substratum with grain size > 5 mm (Fredrich et al., 2003). 

Regarding the physical characteristics of riffles, in this study we defined them 

as shallow water with ripples on the surface, an average water velocity < 0.4 m·s
−1

, 

nearly symmetrical cross-sections, and a mean depth similar in magnitude to the 

mean substrate size (Alcaraz-Hernández, 2011). Riffles are also important for 

recruitment and serve as important nursery habitats (Baras et al., 1996). The young 

of the year of some cyprinid fish species select microhabitats characterised by 

shallow water with low velocity (Copp, 1997; Lamouroux et al., 1999; Martínez-

Capel and Garcia de Jalón, 1999), which partially corresponds to riffles. The small 

fish prefer riffles because they provide suitable shelter from predators as well as 

food availability (Ilhéu et al., 1999). Concerning salmonid species, Alcaraz-

Hernández (2011) found a significant correlation between the density of small trout 

(age 0+ and 1+) and the proportion of medium substrate, which is the most 

abundant substrate in the riffles of four Mediterranean trout rivers. 

One limitation in our study was the lack of a hydraulic model calibrated in the 

target river segment, which might provide estimations of habitat change after the 

dam removal, in terms of depth and velocity (e.g. Fjeldstad et al., 2012); in spite of 

the short-term improvement in the hydraulic conditions, the old gravel and cobbles 

are now under a layer of silt, and the recovery of the area for spawning would 

require longer periods and suitable river flows. The hydraulic simulation could be 

carried out with a 1-dimentional standard model, but the application of 2D/3D 

models is well suited for analyses of changes after habitat rehabilitation (Alfredsen 

et al., 2004), as it was proved in previous studies (García de Jalón and Gortázar, 
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2007). In the case of these old weirs in the Júcar River, where the habitats are very 

affected by sedimentation, the composition of the sediments can be very relevant, 

as well as the changes in water quality after rehabilitation; in the Júcar river there is 

a water quality model calibrated at the large scale, GESCAL (Paredes-Arquiola et 

al., 2010), however its application at small scale in this case requires further 

technical work. 

The results of PaD analysis highlighted the importance of the mean annual flow, 

a key variable for river habitats that greatly influences the organisation of aquatic 

communities (Walker and Thoms, 1993; Welcomme, 1980). The magnitude of 

monthly and annual flows, as well as their variability and rate of change, is 

presumably important for the maintenance and regeneration of riverine habitats and 

native biological diversity (Richter et al., 1997). Specifically, Mediterranean fish 

species have developed optimal adaptive strategies for their survival in changing 

environments (Granado-Lorencio, 1996); these strategies include a short life span, 

rapid growth rate, high fecundity, early sexual maturity and spawning, and 

generalist and opportunistic feeding strategies (Ferreira et al., 2007; Granado-

Lorencio, 2000; Vila-Gispert et al., 2002). Previous studies demonstrated that 

mean annual flow is a critical variable in the classification of Mediterranean rivers, 

thus in the interpretation of the spatial patterns of the aquatic Mediterranean 

communities; mean annual discharge, percentage of months with zero flow and 

coefficient of variation in mean annual flows represent the major gradients of 

variation in the Mediterranean flow regimes (Belmar et al., 2011). 

The magnitude of mean flows and other flow regime parameters are expected to 

change with the climate in the Iberian Peninsula (CEDEX, 2011), and this in turn 

will affect the distribution patterns of the biological communities. For river 

management, it is very important to anticipate future trajectories of change and 

identify alternative future trajectories as a basis for adaptive management and river 

restoration (Gregory, 2008). To evaluate whether changes would produce 

drawbacks or retrogression in fish diversity after restoration actions, we estimated 

the potential effect of a reduction in the FMA in the target segment, assuming that 

other relevant variables would remain the same. The last report on climate change 

in Spain estimated a 10–25% reduction of FMA in the Júcar River Basin (CEDEX, 
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2011). Based on the optimal situation after improvements in connectivity and riffle 

proportion, the FMA input was reduced by 10, 20, and 25%. The outputs of the 

model indicated that the NFSR would be reduced from 4 to 3 and from 5 to 3 in the 

study sites. Although this is a coarse estimation of the potential effect of reduced 

FMA, it is indicative of the importance of a proactive attitude towards river 

restoration, especially considering that efforts to improve fish communities can be 

overwhelmed by global change if there are no other measures of compensation. In 

general, in the future we can expect lower available discharges from dams to meet 

water demands, thus it is very important to adapt the actual water management 

strategies to address correctly the consequences of global change (García-Ruiz et 

al., 2011). 

In Mediterranean rivers, the hydrological alteration that occurs below dams is 

usually very relevant in magnitude; in many rivers, regulated flow regimes now 

present maximums in summer and minimums in winter, with droughts becoming 

more frequent and long lasting (Belmar et al., 2010; Vidal-Abarca et al., 2002). 

Management decisions must be made to handle the intense competition between 

humans and fish for the fresh water supply (Moyle, 1995), keeping in mind that 

flow diversion is one of the most important factors affecting the potential 

extinction of fish in Mediterranean rivers (Smith and Darwall, 2006). Because of 

the intense flow regulation in the Júcar, Cabriel, and Turia Rivers, it is necessary to 

implement suitable environmental flows that imitate the natural pattern and 

variability of the natural flow regime, with minimum flows in summer and 

hydrological events during the rainfall seasons (Arthington et al., 2006), in order to 

promote the integrity and sustainability of the freshwater ecosystems. Existing 

water diversions have led to the replacement of lotic habitats by lentic habitats, 

which in turn has caused loss of the majority of distinctive fish associations in 

Mediterranean rivers; these associations have been replaced by other communities 

adapted to the new ecological conditions (Granado-Lorencio, 1996). Thus, 

implementation of environmental flow regimes in river restoration is an essential 

mitigation measure for improving the ecological status of the rivers (sensu the 

WFD). 
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Although mean annual flow was analysed in this study, it is necessary to 

emphasise that environmental flow regimes cannot be defined solely in terms of 

mean monthly or mean annual flows because flow variability is crucial for the 

maintenance of native communities. Overall, maintenance of natural flow 

variability is an important principle for riverine ecosystem protection and 

restoration (Jowett and Biggs, 2009; Poff et al., 2010). In this study, one of the 

limitations in the data was the monthly time scale of the flow rate and the derived 

variables; other indicators of the hydrological regime (e.g., the ramping rate during 

peak flows and duration of floods and droughts) can provide relevant ecological 

information, but they could not be robustly estimated using monthly flow data. 

Therefore, the ANN model developed herein is the first step in approaching more 

complex simulations at smaller time scales (e.g., based on daily flow data). 

Although daily flow data are not yet available for the 90 sampling sites, a new 

model could be developed with a smaller database consisting of daily flow data and 

indicators of hydrological alteration (Richter et al., 1997). The ANN at the basin 

scale then could be compared or validated over smaller temporal and spatial scales, 

and the effects of water scarcity could be estimated with higher reliability. Despite 

the inconvenience of having only monthly data, this ANN model may be useful for 

environmental flow assessments because it is a model of ecological response to 

habitat and hydrological changes. In general, this model can be viewed as a 

hydromorphological model for predicting NFSR at the basin scale because it 

relates hydromorphological variables to the fish communities. Therefore, this 

model may be integrated in methodological frameworks of environmental flows, 

e.g., in the IFIM (Instream Flow Incremental methodology, Bovee et al., 1988), 

Eloha (Poff et al., 2010), and other recent approaches at the basin scale (Paredes-

Arquiola et al., 2011 in press). 

The simulation in the Júcar River indicated that richness increases with CWB 

and RIF (Fig. 8), which agrees with results of the PaD sensitivity analysis (Fig. 7b). 

These results also agree with those from previous studies in the Iberian Peninsula. 

For example, Alexandre and Almeida (2010) observed that fish richness was higher 

at the sites where direct influence of artificial transverse barriers was smaller. 

Barriers, weirs, or dams disrupt the longitudinal continuity of the river flow and 



Modelling native fish richness to evaluate the effects of hydromorphological 

changes and river restoration (Júcar River Basin, Spain) 

63 

sediments and make the migratory movements of fish difficult or impossible 

(Meixler et al., 2009). The construction of dams and flow regulation have also 

created favourable conditions for invasive fish species (Corbacho and Sánchez, 

2001; Poulet, 2007; Vila-Gispert et al., 2005) and are considered to be a major 

factor in the dramatic reduction of native rheophilic species, which depend on 

riffles for reproduction (García de Jalón et al., 2007). Poor river connectivity has 

been identified as one of the main causes of declines in many continental Iberian 

fish species (Casals, 2005; Lucas and Baras, 2001; Santo, 2005) and European 

species (Kroes et al., 2006; Marmulla, 2001). Juvenile cyprinids may be especially 

vulnerable to barriers and other local alterations; thus, maintaining connectivity 

and local habitat quality are extremely important for supporting native fish 

populations (Santos et al., 2011). Accordingly, the WFD requires effective passage 

and undisturbed migration of fish as a key component to restore and manage 

watersheds (European Commission, 2000). In this study, the proposal for removing 

weirs is based on the current knowledge of the river reaches, which contain 

abandoned and obsolete structures whose water rights are not in use. Weir removal 

and the legal process of water rights cessation are important tools for river 

restoration at the basin scale, and they should be widely applied to improve the 

status of Mediterranean aquatic communities. 

In the segment of simulation the potential fish community after the mitigation 

measures could be assessed, as follows. The only native species actually in that 

segment is L. guiraonis. In the Júcar River between the two large reservoirs of 

Alarcón and Cortes (see Fig. 1), other native species (I. alburnoides, C. paludica, 

S. pyrenaicus and A. anguilla) can be found; thus, these would be the most 

probable species to colonise the segment. The reference site of the ecotype (MCM) 

is in the Cabriel River, with a potential connectivity to the target segment through a 

large reservoir; however, obstacles are present that block this connectivity and 

make it impassable for fish, especially in the Júcar River. Other species that 

potentially would colonise the target segment from the Cabriel River are A. 

anguilla, S. fluviatilis, and P. arrigonis. Therefore, the removal of weirs could 

improve the situation for two critically endangered fish species and contribute to 

meeting the European Recovery Plan for the Eel (Regulation 1100/2007; European 
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Commission, 2007). River longitudinal connectivity is also extremely important for 

maintaining the conservation status of many freshwater species included in the 

Nature 2000 Network (Habitats Directive 92/43/EEC; European Commission, 

1992), as was highlighted in previous studies (Ordeix et al., 2011). Considering the 

maximum value of NFSR = 5 obtained by modelling, this is the maximum 

potential value according to the reference site, in the case that the proportion of 

riffles could reach the percentages specified (Fig. 8). However, the gradient of the 

river channel could limit the final result of the mitigation measures in some river 

reaches in terms of the RIF. In the reference sites of the Júcar River Basin, 70% 

was the highest recorded riffle percentage; thus, according to the simulation, the 

maximum richness we could expect would be between 4 and 5 in the best situation.  

One of the limitations of the ANN model is that this maximum of 5 fish species 

was estimated based in the input variables of the model without consideration of 

the environmental conditions (i.e., upstream and downstream) around the target 

segment. Therefore, due to the lack of river connectivity with other segments with 

higher diversity, more actions would be necessary to reach such a value of 5; these 

actions may include the removal of other barriers and/or the allocation of fish by 

the responsible administration. Another limitation of the study is that we did not 

consider the biological interactions (e.g., food availability and inter-species 

competition). The target segment contained four exotic species of fish (Gobio 

gobio, Alburnus  alburnus, Lepomis gibbosus, and Micropterus salmoides), which 

could interfere with the recovery of the NFSR because they can compete with or 

predate on the native fish. The importance of habitat and exotic species for the 

recovery of native populations is undoubtedly an important issue that must be 

considered in these Mediterranean rivers. 

The final ANN model combines variables describing physical habitat and water 

quality, and it contributes to identifying the primary drivers of the NFSR patterns 

in Mediterranean rivers; additionally, consideration of variables associated with 

different spatial scales provides a high potential for model transferability (Leftwich 

et al., 1997) to other rivers and basins. Once the importance of longitudinal 

connectivity and riffle proportion for the NFSR has been demonstrated, these 

variables should be considered in river restoration strategies and projects. 
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Therefore, the model and the results described herein may support technical 

decisions for the management and ecological restoration of Mediterranean rivers. 
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ABSTRACT 

The presence of invasive species and habitat alteration have been frequently 

identified as major threats to Mediterranean native freshwater fishes. However, it 

has been questioned the main or secondary role of invasive species as drivers of the 

decline of native fish species richness (NFSR); therefore, it is possible that habitat 

plays the main role in some aquatic ecosystems, meaning that exotic fish invasions 

and native fish decline could be a consequence of the habitat degradation. It is clear 

that the knowledge of the main drivers is very important for river restoration, in 

order to prioritize effective management actions. In this study, we used the 
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multilayer feed-forward ANN to analyse the effect of habitat alteration and 

invasive species on native fish richness, in three Mediterranean rivers. We built 

three ANNs, one with biological variables, another only with habitat variables and 

a third model with the most relevant environmental variables of the previous 

models. To prevent overfitting we used together "early stopping" and cross-

validation and it was used the Levenberg-Marquardt algorithm for optimization. 

The importance of the ANNs input variables was determined using the partial 

derivatives (PaD) method. We found the best performance with only habitat 

variables, in contrast to the model with biological variables and the third 

(combined) model. The third model included percentage of riffles and length of 

rivers without barriers as the main habitat variables, while the number of exotic 

predator species was the fifth in importance. The results indicate that habitat 

variables (including stream flow and habitat connectivity) are important drivers of 

NFSR. The findings of this study highlight the need to propose mitigation 

measures related to the improvement of habitat to conserve and restore 

Mediterranean rivers. 

Keywords: Artificial neural networks (ANN); invasive species; fish richness; 

river regulation; habitat degradation; driver; passenger; Mediterranean rivers. 

3.1 INTRODUCTION 

In the European context, freshwater species of the Mediterranean river basins 

have a high level of endemism (Abell et al., 2008), due to their geographical 

isolation and climate variability, characterized by intermittent periods of torrential 

rains and droughts and a high intra-annual and inter-annual variation of flow 

(Gasith and Resh, 1999). It is estimated that 70% of the 228 endemic freshwater 

Mediterranean fish species are threatened or endangered and are nearly extinct 

(Hermoso and Clavero, 2011; Ribeiro and Leunda, 2012; Smith and Darwall, 

2006). This situation is represented in the Iberian Peninsula, where approximately 

80% of the fish species are endemic (Doadrio, 2002). Therefore, the design of 

conservation and restoration actions is crucial to diminish biodiversity loss rates. 



 Role of invasive species and habitat degradation on freshwater native fish diversity 

in Mediterranean River Basins 

77 

But, the development of new knowledge about the factors driving diversity loss is 

necessary to prioritize effective management actions (Hermoso et al., 2011). 

Some factors such as habitat alteration and invasive species have been cited by 

many researchers as the main threats to native freshwater fish (Didham et al., 2007; 

García-Berthou et al., 2005; Moyle, 1995). In fact, the main Iberian Peninsula 

rivers have more exotic than native fish species (Clavero and García-Berthou, 

2006). Inside the principal ecological impacts and threats exerted by invasive 

species on native ones stands hybridization and genetic introgression, disease 

vectors introduction and parasites, competition over resources, predation and 

ecosystem disruption (Ribeiro and Leunda, 2012). However, the positive 

correlation between invasive species and the decline of native species has not been 

proven (Gurevitch and Padilla, 2004), therefore, the invasive species impact on the 

environment of native species has been questioned. Some authors have suggested 

that invasive species may operate as "passengers" and not "drivers" in the 

ecological change (Didham et al., 2005; MacDougall and Turkington, 2005; 

Spieles, 2010). Passenger means that invasive species operate as a symptom of 

habitat modification and degradation, driver means that invasive species originally 

generate the ecological change (Spieles, 2010). 

There are few studies that analyse the habitat degradation role and invasive 

species in the extinction of native fish species. Corbacho and Sánchez (2001) 

analysed the factors which affect native species richness over 30 rivers of the 

Guadiana River basin (southwestern of Iberian Peninsula), their study was based on 

biotic and hydrologic variables. Using principal component and multiple regression 

analysis, they found that habitat degradation could be the main cause in the decline 

of native species and the spread of invasive species in the Guadiana basin. Light 

and Marchetti (2007) compiled fish presence data, conservation status, land use 

and hydrologic modifications at catchment level, and designed models (using 

regression analysis) to examine the decline of native species in California. Their 

results showed that the invasions are the main driver of population declines and 

extinctions of fish. Hermoso et al. (2011) discussed the importance of habitat 

degradation and invasive species in the decline of native fish assemblages in the 

Guadiana River basin, using structural equations modelling (SEM). They found 
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that the abundance of invasive species is the best predictor of native species 

decline, and habitat degradation does not play an active role. The factors which 

affect the native fish richness species are important for management and 

conservation of Mediterranean aquatic ecosystems, because if an invasive species 

is a change driver, their removal should lead to recovery of native species in either 

richness or abundance. By contrast, the removal effects of an invasive species 

would be minimal if not exert significant control in the ecosystem change (Bulleri 

et al., 2010). 

Artificial neural networks (ANNs) have been used in ecology by a large number 

of authors due to its adaptability to all problem type and the good results obtained 

in different studies (Albañez-Lucero and Arreguín-Sánchez, 2009; Brosse et al., 

1999; Garzón et al., 2006; Hilbert and Ostendorf, 2001; Lippitt et al., 2008). ANNs 

are mathematical models inspired by the structure and functioning of biological 

neural systems (Gutiérrez-Estrada and Bilton, 2010; Olden et al., 2008) and have 

been successfully applied in freshwater fish ecological studies (Ibarra et al., 2003; 

Mastrorillo et al., 1998; Penczak, 2011; Tirelli and Pessani, 2009). This paper aims 

to determine the relative importance of the two main factors in the reduction of 

native fish species richness (NFSR), i.e. habitat and ecological interactions among 

aquatic species, in the Júcar, Cabriel and the Turia rivers. For this purpose, we 

created three different ANN models of native fish richness based on three sets of 

variables: biological, habitat and variables describing the natural environmental 

variability in the river basin. The predictive variables and their relative importance 

in the ANNs were compared with previous studies to assess its ecological 

relevance. The results of this study highlight the need to propose mitigation 

measures to conserve and restore these Mediterranean rivers.    
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3.2 METHODS 

3.2.1 STUDY AREA  

The data for this study were collected in the main stream of the Júcar, Cabriel 

and Turia river basins (Spain), which flows to the Mediterranean Sea (Figure 1). 

The Spanish Ministry of Environment developed an official ecotypes classification 

(based on the B system) to implement the Water Framework Directive –WFD– 

(CEDEX, 2005). The upper reaches of these studied watersheds have slightly 

regulated or unregulated flows, and they are classified as Mediterranean calcareous 

mountain rivers (CMM) ecotype. Downstream, large reservoirs strongly regulate 

the river flows (Alarcón, Contreras and Benagéber reservoirs, Fig. 1). Below these 

reservoirs, the ecotype is mineralized Mediterranean-continental Rivers (MCM) in 

the Júcar and Cabriel rivers, whereas we find mineralized rivers of Mediterranean 

low mountain (ML) and low-altitude Mediterranean rivers (MML) in the Turia 

River. The region is characterized by a high seasonal and interannual variability of 

the flow regime; the discharge pattern is strongly dependent on rainfall variability, 

the driest period occurs in summer and the wet ones are spring and fall (Belmar et 

al., 2010; Blondel and Aronson, 1999; Gasith and Resh, 1999). The meteorological 

phenomena known as “gota fria” (medicanes / kaltlufttropfen) may happen in 

October and November, meaning the occurrence of storms with short duration and 

high intensity. The predominant soils are highly permeable; this condition implies 

that the infiltration is an important hydrological process promoting the percolation 

to aquifer systems (CHJ, 2007). The mean annual temperature ranges between 11.6 

and 17 ºC, with the maximum values in July and August (Estrela et al., 2004). 
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Fig. 1.  Location of sampling sites in the Júcar, Cabriel and Turia River Basins 

 

Mediterranean rivers are characterized by a high number of endemic fish 

species with a reduced range of distribution in contrast to other locations in Europe 

(Doadrio, 2001; Granado-Lorencio, 1996, 2000; Hermoso and Clavero, 2011). 

These species are well adapted to the high hydrologic variability of Mediterranean 

zones (Granado-Lorencio, 2000) and cyprinids is the most abundant family of fish 

species (Ferreira et al., 2007).  In these rivers, we have observed the presence of 

invasive species, which come from Asia, North America, Europe and other 

watersheds of the Iberian Peninsula. 

3.2.2 PREDICTORS AND RESPONSE VARIABLE 

To build the ANN models, we used data from 90 sampling points in the three 

rivers. The sampling was carried out by electrofishing method in spring and 

summer, from 2005 to 2009. Each sampling station was kept open, so we did not 

use nets to close the sampling sites. Each captured individual was classified at 

species level and returned to the water body. We found 23 fish species in the whole 
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study area, of which 12 were native. Despite this high number of native species, the 

maximum fish richness was 5 species, this is representative of Mediterranean 

conditions, in which is frequent to find low values of fish richness per site 

(Aparicio et al., 2011; Ferreira et al., 2007). According to the International Union 

for Conservation of Nature (IUCN), 75% of the sampled species are considered as 

threatened with global extinction (Table 1). This study considers that exotic species 

and translocated species from other Iberian watersheds are invasive species.  

Table 1. Conservation status (according to IUCN, 2012) of fish species sampled in Júcar, 

Cabriel y Turia Rivers 

Species Family Native/Nonnative Threat status 

Anguilla anguilla  Anguillidae Native CR 

Parachondrostoma arrigonis   Cyprinidae Native CR 
Parachondrostoma turiense  Cyprinidae Native EN 

Achondrostoma arcasii  Cyprinidae  Native VU 

Barbus haasi  Cyprinidae Native VU 
Cobitis paludica  Cobitidae Native VU 

Luciobarbus guiraonis  Cyprinidae Native VU 

Squalius  pyrenaicus Cyprinidae Native NT 

Squalius valentinus  Cyprinidae Native VU 

Iberocypris alburnoides Cyprinidae Native VU 

Salmo trutta  Salmonidae Native LC 
Salaria fluviatilis  Blenniidae Native LC 

Gobio Gobio Cyprinidae Translocated  

Gobio Lozanoi Cyprinidae Translocated  
Alburnus alburnus Cyprinidae Nonnative  

Cyprinus carpio Cyprinidae Nonnative  

Gambusia holbrooki Poeciliidae Nonnative  

Esox lucius Esocidae Nonnative  

Micropterus salmoides Centrarchidae Nonnative  

Sander lucioperca Percidae Nonnative  
Oncorhynchus mykiss Salmonidae Nonnative  

Lepomis gibbosus Centrarchidae Nonnative  

Pseudochondrostoma polylepis Cyprinidae Nonnative  

  Notes: Key to abbreviations: CR, critically endangered; EN, endangered; VU, vulnerable;  

                  NT, near threatened; LC, least concern.  

 

To evaluate the relative effect of invasive species and habitat alteration on 

native fish species, we used three groups of variables: biological (interactions with 

fish and aquatic macroinvertebrates availability), habitat, and geographic variables 

describing the natural gradient from headwater to the mouth (i.e., not subjected to 

direct human alteration). Some of them were measured in situ, others calculated 

from geographical information systems (GIS), and others were obtained from the 

monitoring networks for water quality, biological components and stream flow of 

the Júcar River Basin Authority (see Table 2). All the biological variables were 

http://es.wikipedia.org/wiki/Percidae
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collected in situ, except the number of macroinvertebrate families, which was 

supplied by the Júcar River Basin Authority.  

Regarding the biological interactions, the introduction of invasive species is one 

of the most important threats for the conservation of native ichthyofauna, because 

this threats native fish survival and genetic integrity (Cucherousset and Olden, 

2011; Hermoso et al., 2011); specifically, the mechanisms of interaction between 

invasive and native species may be diverse. Some invasive species can cause 

severe damage to the habitat by removing materials from the channel bed (Doadrio 

and Aldeguer, 2007). Others can act as predators of native fish species at different 

phases of lifecycle (eggs, larval, fry, juvenile, adult) (Granado-Lorencio, 1996), 

which can result in a reduction of native fish diversity and abundance or the 

extinction of local species  (Bernardo et al., 2003; Crivelli, 1995; Cucherousset and 

Olden, 2011). Furthermore, native species loss may be related to the reduction of 

food availability, because macroinvertebrates are the principal source of food for 

several fish species in Mediterranean rivers (Doadrio and Aldeguer, 2007; 

Granado-Lorencio, 1996). According to the aforementioned causes of native fish 

decline, we considered the following biological variables: Invasive fish species 

richness, number of invasive fish which affect the physical habitat, number of 

invasive fish predators and number of families of benthic macroinvertebrates (as a 

surrogate to food availability). 

Habitat variables of two categories were considered: water quality and 

hydromorphology (including connectivity and riparian quality). The use of 

predictive variables acting at multiple spatial scales usually results in better model 

performance than single-scale based models (Olden et al., 2006). The multiscale 

approach allows the integrative analysis of multiple factors and a better 

understanding of the biodiversity patterns in streams and rivers, in order to support 

effective conservation and management actions (Filipe et al., 2010). Therefore, we 

considered different spatial scales based on mesohabitat measurements (i.e., scale 

of hydro-morphological units, hereafter HMU) and larger scales (e.g. fluvial 

segment, drainage area). 
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Water quality is a critical attribute that affects fish species distribution because 

water pollution alters the survival of fish (Granado-Lorencio, 2000; Jackson et al., 

2001). For this reason, we took into account physicochemical properties of water 

(Table 2). These variables were averaged for the year when fish were sampled; the 

available data were recorded every 3 months in the official monitoring network of 

the Júcar River Basin Authority. Moreover, a biologically-based index of water 

quality (IBMWP) was used. The IBMWP (Alba-Tercedor et al., 2002) ranges from 

64 to 260 in our database, it has been widely used for evaluating water quality and 

for ecological monitoring in Spain (Carballo et al., 2009); this index is based on 

scores calibrated for species sensitive to water pollution, and it has a very low 

correlation (ρ
2
=0.12) with the number of macroinvertebrates families, thus they are 

considered independent. These variables were obtained from field data 

(biomonitoring network) collected by the Júcar River Basin Authority.  

Regarding hydromorphological variables, the regime of river discharge 

(magnitude, pattern of variability) influences the lifecycle traits of Mediterranean 

fish species (Ferreira et al., 2007; Granado-Lorencio, 2000), thus we considered 

predictive variables related to flow characteristics. The mean monthly flow was 

estimated at each sampling location by interpolation between gauging stations, this 

interpolation was based on the relationship between flow discharge in the natural 

regime and the accumulated drainage area at each location (Caissie, 2006; Caissie 

and El-Jabi, 1995; Leopold and Maddock, 1953; Leopold et al., 1964; Olaya-Marín 

et al., 2012). It was considered that HMUs are linked to the definition of prevailing 

habitat for fish life at meso and microhabitat level (Bernardo et al., 2003; Costa et 

al., 2012). We used the classification of HMUs proposed by Dolloff et al. (1993), 

and modified for these Mediterranean rivers as pool, glide, riffle, run and rapid, 

which was applied in other studies of Mediterranean rivers (Alcaraz-Hernández et 

al., 2011; Costa et al., 2012); the proportions of HMUs were estimated in field. 

Transverse hydraulic structures acts as barriers for fish migration, obstructs the 

colonization of uninhabited reaches and improves the formation of lentic habitats 

which favour exotic fish species (Granado-Lorencio, 2000); these effects were 

considered with the use of channel length without artificial barriers (Olaya-Marín 

et al., 2012). The freshwater fauna is safeguarded by riverine dynamics (Naiman et 
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al., 1993; Patten, 1998); the riparian vegetation offers refuge and food, and regulate 

water channel temperature and the inflow of pollutants from lateral flows 

(Hattermann et al., 2006; Quinn et al., 2004). To include riverine effects in our 

models we used the index of riparian habitat quality (Munné et al., 2003) of 

extensive use in Mediterranean rivers (Garófano-Gómez et al., 2011; Olaya-Marín 

et al., 2012).  

The geographic variables (basin-scale) contribute to describe the natural 

variability of the river basin (i.e., not subjected to direct human alteration) and are 

considered as relevant factors to describe the fish assemblages and species richness 

(Leprieur et al., 2009b; Light and Marchetti, 2007; Oberdorff et al., 1995; Reyjol et 

al., 2007). Thus we selected watershed area, distance from the headwater source 

and altitude as potential variables in the models with biological and habitat 

variables, because they contribute to the models disregarding the effects of invasive 

species or habitat degradation. The variables supported on geographical 

information systems were calculated using the ArcGIS
 TM

 9.3.1 software 

(ESRI©2009).  

 Table 2. Biological and habitat variables used as potential predictors. The source of each 

variable is indicated: in situ, GIS, water quality and flow monitoring networks (MN) or 

biomonitorinog network (BMN). 

Variable Method Code Mean Range 

Biological      

Invasive fish species richness In situ IFR 2.12 0-5 

Number of invasive fish which affect the 

physical habitat 

In situ IFH 0 0-2 

Number of invasive fish predators  In situ IFP 1 0-4 

Number of families of benthic 

macroinvertebrates 

BMN BMF 5 4-6 

Habitat       

Physicochemical water quality variables:     

Dissolved oxygen (mg/l) MN DIS 9.58 8-11 

Biological Oxygen Demand (mg/l) MN BOD 2.51 2.0-4.0 

Total phosphorus (mg/l) MN TOP 0.06 0.02-0.22 

Nitrites (mg/l) MN NIT 0.02 0.01-0.23 

pH  MN PH 8.18 7.77-8.34 

Suspended solids (mg/l) MN SUS 11.39 3.14-25.21 

Conductivity (µS/cm) MN CON 797.87 499.16-1210 

Water temperature (ºC) MN WAT 13.38 5.76-16.75 

Iberian monitoring Working Party 

(IBMWP) index 

BMN IBMWP 131.68 64-260 
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Hydromorphological      

Channel length without artificial barriers 

(km) 

GIS CWB 26.35 0.58-95.82 

Mean width of water surface (m) In situ WID 12.46 3.15-19 

Mean Annual flow rate ( m3/s) MN FMA 4.33 0.03-11.31 

Inter-annual mean flow (calculated for 5 

years) ( m3/s) 

MN FIA 5.505 0.11-12.36 

Coefficient of variation of mean monthly 

flows (fish sampling year) 

MN FIM 0.58 0.28-0.94 

Coefficient of variation of mean annual 

flows (calculated for 5 years 

MN FCV 0.40 0.15-0.81 

Index of riparian habitat quality -QBR BMN QBR 73.61 10-100 

Hydromorphological units:     

Pools (%) In situ POO 48.66 0.00-95.00 

Glide (%) In situ GLI 11.21 0.00-80.00 

Riffle (%)  In situ RIF 28.27 0.00-89.00 

Rapid (%)  In situ RAP 5.79 0.00-53.00 

Run (%)   In situ RUN 6.07 0.00-50.00 

Geographic  (not subjected to direct 

human alteration) 

    

Altitude (m a.s.l.) GIS ALT 746.48 92.00-1363 

Drainage area (km2) GIS DRA 3318.84 54.00-10952 

Distance from headwater source (Km) GIS DHS 150.19 20.53-327.49 

 

3.2.3 ARTIFICIAL NEURAL NETWORKS MODELLING 

It was selected the Multilayer Perceptron (MLP) type of ANN, which applies 

supervised learning and is the most used in ecology (Özesmi et al., 2006), MLP is 

able to recognize patterns and to represent complex and nonlinear systems (Lek et 

al., 2005). The training of this kind of ANN implies the minimization of the error 

function (e.g. difference between the observed and predicted output) through the 

iterative modification of weights. A detailed description of MLP can be found at 

Brosse et al. (2003), Goethals et al., (2007) and Olden et al., (2008). 

Three ANN models were trained to analyse the effect of habitat alteration and 

invasive species on native fish richness; the first one was built with biological 

variables, the second one was made with habitat variables, and the last one was 

elaborated with both kinds of variables. Before training, the inputs and targets were 

scaled to fall within a specified range (Demuth et al., 2010); to this end, we used 

the “mapminmax” function of Matlab in the range [-1,+1]. The scaled variables 

have the same order of magnitude to compute the activation function in the hidden 
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layer (hyperbolic tangent). In this work, we assumed that the inputs of the model 

with the best performance involve a better control on native species prediction than 

the inputs of the models with lower performances. Variables were selected by two 

techniques. In the first step, collinearity among the potential predictors was verified 

by hierarchical cluster analysis using squared Spearman correlations (ρ
2
) as 

similarity measure. If two variables were correlated with ρ
2
 higher than 0.5, in 

general we used the one with the strongest ecological interpretability (Dormann 

and Kaschner, 2011; Olaya-Marín et al., 2012). In the second step, we used the 

forward stepwise method (Gevrey et al., 2003), which allowed us to eliminate 

irrelevant input variables and reduce the complexity of the ANN architecture 

(Gevrey et al., 2003; Tirelli and Pessani, 2009). 

To define the optimal number of neurons in the hidden layer we tested different 

ANN architectures. All of these architectures used a single hidden layer because it 

is parsimonious and sufficient for statistical applications (Bishop, 1996). The 

algorithm for training the ANN was the Levenberg-Marquardt; this is the fastest 

method to train neural networks of moderate size (Karul et al., 2000) and 

recommended by several authors (Gutiérrez-Estrada and Bilton, 2010; Singh et al., 

2009; Tan and Van Cauwenberghe, 1999). A detailed description of this algorithm 

is discussed in Shepherd (1997). The performance of each model was represented 

by the correlation coefficient (r) and the mean square error (MSE). To assess the 

predictive performance in validation we employed the k-fold cross-validation 

method. The optimal value of k was estimated empirically comparing the 

performance of different ANNs (with k from 3 to 10). The contribution of input 

variables was calculated through the partial derivatives method (PaD) (Dimopoulos 

et al., 1999; Dimopoulos et al., 1995), which provided two results. First, the profile 

of the output variations derived from small changes of each predictive variable; the 

positive values in the PaD plot indicate a positive relationship between the 

corresponding input variable and the output variable, and vice versa. Secondly, 

PaD method makes an estimation of the relative contribution of input variables to 

the prediction of native fish species richness (NFSR).   
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3.3 RESULTS 

According to Figure 2, the variables DHS, WAT, and ALT were strongly 

correlated with DRA (ρ
2
 = 0.77, 0.77 and 0.81 respectively); the last one was 

selected in the analysis because previous researches have shown its relevance for 

fish richness (Oberdorff et al., 1995; Olaya-Marín et al., 2012). Therefore, DHS, 

WAT, and ALT were removed from the dataset. Another correlation (ρ
2
 = 0.51) 

was found between CON and FCV; thus we kept FCV as a potential predictive 

variable because it represent temporal flow variability (e.g. Olaya-Marín et al., 

2012). FIA and FMA were highly correlated (ρ
2
 = 0.51), but we preserve both of 

them because they are both important for Mediterranean endemic freshwater fish 

(Corbacho and Sánchez, 2001; Costa et al., 2012; Hermoso and Clavero, 2011). 

IFR had a strong correlation with IFP (ρ
2
 = 0.62); however, we used both because 

they are important for freshwater fish conservation (Hermoso et al., 2011; Smith 

and Darwall, 2006); thus, in this case the selection of the most significant relied on 

the forward stepwise method of variables selection. 

Fig. 2. Hierarchical clustering using squared Spearman correlation (2
) on the 

environmental variables, in order to indicate their similarities. The variables’ codes are 

noted in table 2. 

According to the hierarchical clustering and the forward stepwise procedure, the 

final variables to predict native fish richness covered the considered spatial scales 

(i.e. mesohabitat scale and watershed scale). The best model with biological 

variables had architecture with three layers, five inputs (predictive variables), and 

four neurons in the hidden layer and one neuron in the output layer (5→4→1). This 
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output layer calculates the predicted value of native fish richness. The best 

architecture for the model developed with habitat variables, as well as in the third-

combined- model was 7→6→1 (Figure 3). 

 

 

Fig. 3. Artificial neural networks’ architecture for the prediction of native fish species 

richness (NFSR) in a) ANN with biological variables; b) ANN with habitat variables; c) 

ANN with biological and habitat variables. The variables’ codes are noted in table 2. 

The model built with habitat variables had a better performance to predict 

NFSR than the models made with biological variables and the combined model 

(Table 3). Based on the PaD (Fig. 4), IBMWP and RIF were the most important 

variables in this model, with a relative importance of 20.72% and 20.18%, 

respectively. The combined model presented a slightly smaller performance, with 

these relevant variables: RIF (26.32%) and CWB (20.72%); there was a relatively 

small contribution (< 15%) of biological variables in this model, where only IFP 

was present. The performance was considerably smaller in the model with 

biological variables, where the inputs with the highest weights were: IFP (34.25%) 

and DRA (27.34%). Figure 4 shows the relative contribution of each variable 

calculated with the PaD algorithm. 
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Table 3. Correlation coefficient (r) and mean square error (MSE) between observed and 

predicted native fish richness in training and validation. Results shows the performance of 

the three kinds of ANN models 

Models 
training Validation 

r MSE r MSE 

ANN - biological variables  0.65 1.03 0.67 1.06 

ANN - habitat variables  0.90 0.35 0.81 0.62 

ANN - both kind of variables 0.88 0.41 0.78 0.64 

 

 

Fig. 4. Relative contribution of each input variable for the prediction of native fish species, 

according to the partial derivatives algorithm a) model with biological variables b) model 

with habitat variables c) combined model with biological and habitat variables. 

Figure 5 present the profiles for the combined model. This figure shows that the 

PaD of the native fish richness related to QBR, RIF, CWB, IBMWP and FMA are 

predominantly positive. Therefore, an increase in those variables leads to 

increments of native fish species in the study area. On the contrary, the partial 

derivative values of NFSR with respect to IFP and DRA are predominantly 

negative. 
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Fig. 5. Partial derivatives of the ANN model response (NFSR) with respect to each 

independent variable (PaD algorithm, derivatives profile). 

3.4 DISCUSSION 

According to results, invasive species have a limited importance for the 

management of the native fish species at the basin scale in the Júcar, Cabriel and 

Turia rivers. This is evidenced by the facts that the model with habitat variables 

had the best performance to predict fish richness (Table 3) and the importance of 

IFP was relatively low in the combined model. One of the advantages of the 

present work is the integration of  biological, habitat and geographic variables in a 

basin-scale model, with successful results demonstrated with a high performance. 

The most important variables in the combined model were RIF and CWB, followed 
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by DRA and IBMWP; however, IFP had a smaller importance as the fifth in the 

ranking of variables importance (Fig. 4c). Considering the two best models, the 

major importance of RIF was demonstrated. Accordingly, habitat degradation is the 

main factor affecting the declining of native fish richness in the study area. This 

result is consistent with the findings of Corbacho and Sánchez (2001), who 

concluded that habitat degradation could be the main cause in the decline of native 

fish species in the Guadiana River Basin.  

According to literature, the role of invasive species combined with habitat had 

not been analysed before in the Júcar River Basin. However, some studies in 

Guadiana river basin (Southwestern Iberian Peninsula) categorized invasive species 

as drivers of the native fish decline. Godinho and Ferreira (1998) concluded that 

the presence of invasive species explains the decline of native freshwater fish 

assemblages in the Guadiana river. Hermoso et al. (2011) found that invasive 

species were the leading driver of the decline of native freshwater fish assemblages 

in the Guadiana river, considering other conditions like the habitat degradation and 

the natural gradient of physical factors. Therefore, they proposed a set of measures 

to prioritize the control of invasive species over all kind of conservation measures, 

such as eradication or long-term control of invasives, improvement of the river 

flow regime and reduction of dispersal rates from reservoirs. The discrepancy of 

our results with the above can be explained by the methodological approach and 

the ample spectrum of environmental variables considered in the present study.  

Firstly, Godinho and Ferreira (1998) and Hermoso et al. (2011) used canonical 

correspondence analysis and structural equation modelling, respectively; these 

methods are sensitive to certain underlying assumptions in data (e.g. independence, 

homoscedasticity and normality), which is difficult to satisfy with ecological data. 

This limitation is relevant to question the validity and reliability of this kind of 

models (Breiman, 2001; Drew et al., 2011; Guisan and Zimmermann, 2000); the 

main problem is that functional relationships modelled in SEM are assumed to be 

linear and therefore is less suitable to situations involving complex relationships 

between variables (Austin, 2007). Furthermore, we used a method (ANN) able to 

deal with the inherent variability and non-linearity associated with ecological and 

biological data; ANNs are better to recognize patterns in data, and generate lesser 
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uncertainty in predictive results than conventional methods (Kang et al., 2011; Lek 

et al., 2005; Olden et al., 2008). It was previously demonstrated that the 

relationship between fish community descriptors and environmental variables is 

very complex and nonlinear in the Júcar, Cabriel and Turia rivers (Olaya-Marín et 

al., 2012). Secondly, we considered different kind of variables to cover a wide 

range of dimensions (Table 1): mesohabitat variables (e.g. rifle, pools, run), fluvial 

connectivity, biological interactions (e.g. invasive fish species richness, number of 

invasive fish predators, etc.), water quality, hydrology (describing spatial-temporal 

variability and magnitude of river flow) and geographic variables, which are 

important for fish communities in Mediterranean environments (Granado-Lorencio, 

2000; Olaya-Marín et al., 2012; Poff et al., 1997). Godinho and Ferreira (1998) and 

Hermoso et al. (2011) used a smaller source of potential predictive variables; e.g., 

they neglected the hydrological variability and the effect of small weirs on river 

connectivity, which could affect the relative importance of habitat variables in their 

models. Fish communities are linked to complex processes where biotic and 

environmental relationships are relevant to explain fish extinction and decline 

(Granado-Lorencio, 1996, 2000). 

Our results demonstrated that habitat variables are key factors of native fish 

prediction in the studied area. Considering the averaged contribution in the two 

best models (with similar high performance), the ranking of importance was the 

following, RIF (23.25%), IBMWP (17.56%), CWB (17.00%), DRA (13.62%), 

FMA (12.60%) and QBR (3.65%) . Accordingly, the importance of RIF and CWB 

(Fig. 4c) was previously shown in the Júcar River Basin (Olaya-Marín et al., 

2012). The sensitivity analysis points out a positive relationship of RIF and NFSR 

(Fig. 5c); this is supported by previous studies in Mediterranean rivers, in which 

RIF was the preferred mesohabitat of native species; by contrast, invasive species 

lives in lentic habitats (e.g. Bernardo et al., 2003; Olaya-Marín et al., 2012). The 

preference of riffles is associated to the substrate properties in this mesohabitat, 

which is adequate for the reproduction of some cyprinids, serve as nursery habitat 

and refuge (Baras et al., 1996; Bernardo et al., 2003; Martínez-Capel and Garcia de 

Jalón, 1999; Olaya-Marín et al., 2012). 
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Regarding the slow-water habitats created by the barriers, invasive species 

prefer these habitat types (e.g. pools) because they originally come from seasonally 

stable rivers from a hydrological point of view, unlike Mediterranean systems, 

which displays a high hydrological variability and a strong seasonality (Belmar et 

al., 2010; Ferreira et al., 2007; Gasith and Resh, 1999; Vila-Gispert et al., 2005). 

Discharge fluctuation regulate the structure and dynamics of Mediterranean aquatic 

communities (Bonada et al., 2007; Magalhães et al., 2007), and Mediterranean fish 

have adapted their life cycle corresponding to the evolution of their aquatic 

ecosystems. Granado-Lorencio (1996) highlights that the scarce of lentic natural 

aquatic systems in the Iberian Peninsula forced ichthiofauna to develop survival 

strategies (r strategies) like: small species with early sexual maturity, short life 

cycle, and high fecundity (Bernardo et al., 2003; Ferreira et al., 2007; Granado-

Lorencio, 2000). Invasive species are known to possess the opposite strategies 

(Doadrio and Aldeguer, 2007). 

The relative contribution by variable revealed that channel length without 

artificial barriers (CWB) is another key variable for the fish species richness, 

accordingly with the relation between barriers and slow-water habitats, and with 

recent works in the region (Alexandre and Almeida, 2010; Corbacho and Sánchez, 

2001; Olaya-Marín et al., 2012; Solá et al., 2011). The sensitivity analysis showed 

a positive relationship between CWB and NFSR (Fig. 5b). Reduced river 

connectivity is one of the main causes for decline of many continental Iberian fish 

species (e.g. Aparicio et al., 2000; Solá et al., 2011), dams and weirs disrupt the 

longitudinal continuity of discharge, hindering and disturbing fish migration 

(Meixler et al., 2009). These alterations could lead to the extinction of threatened 

species like Anguilla anguilla. Doadrio (2001) found relevant effects of weirs 

construction on endemic cyprinids, especifically Júcar nase (Parachondrostoma 

arrigonis) and Turia nase (Parachondrostoma turiense) because these species need 

to migrate to the upper parts of the catchments for spawning. Olaya-Marín et al. 

(2012) concluded that artificial barriers (dams and weirs) play a fundamental role 

in the dramatic reduction of rheophilous native species in Júcar river basin. Native 

fish richness diminish and invasive species increases when weirs and artificial 

channels are present (Corbacho and Sánchez, 2001). Therefore, the removal of 
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small barriers, with the consequent improvement in RIF and similar fast-water 

habitats is a primary measure for the conservation of fish communities. Together 

with the legal process of water rights cessation, managers have two fundamental 

tools for river restoration at the basin scale, which should be widely applied to 

improve the ecological status of rivers. The potential improvements on fish 

diversity after the removal of obsolete structures have been modelled with ANN in 

Mediterranean rivers (Olaya-Marín et al., 2012). Furthermore, this is a commonly 

used method for river enhancement in Europe (Kroes et al., 2006); it is well known 

that the lack of connectivity in terms of water, sediment, and fauna has important 

ecological consequences, since the hydromorphological and biological conditions 

of the ecosystem are directly or indirectly affected (Cowx and Welcomme, 1998). 

Although the improvement of river connectivity (with fish passes) is an interesting 

measure to improve the populations, it is not expected that it may produce the same 

results, given that RIF is not incremented; however, the creation of riffle habitats in 

nature-like bypasses, as well as spawning channels, provide habitat for a portion of 

the fish community (Aarestrup et al., 2003; Jormola, 2011; Santos et al., 2005) thus 

it could partially contribute to the recruitment of fish populations. 

Another relevant result (see Figure 5g) was the positive relationship between 

NFSR and mean annual flow. The FMA magnitude contributes to regulate the 

dynamic interactions among habitat, floodplain and riparian vegetation (Garófano-

Gómez et al., 2012; Olaya-Marín et al., 2012; Poff et al., 1997), and is critical in 

the interpretation of the spatial distribution of fish Mediterranean communities 

(Belmar et al., 2011). The hydrological regime in the Iberian Peninsula is strongly 

altered (Benejam et al., 2010a) and the FMA is expected to reduce with climate 

change (CEDEX, 2011) in a 10–25%; such scenario would have severe 

consequences for native fish richness in the Júcar River Basin (Olaya-Marín et al., 

2012) and for the structure and dynamics of Mediterranean aquatic communities 

(Bonada et al., 2007b; Magalhães et al., 2007). The pivotal role of flow regime 

promotes the conservation of biodiversity, the biotic integrity of lotic systems (Poff 

et al., 1997; Poff and Zimmerman, 2010), and the growth and survival of native 

species (Baron and Poff, 2004; Bunn and Arthington, 2002; Poff and Zimmerman, 

2010). Flow regime influences water quality, physical features of habitat and 
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energy flows (Baron and Poff, 2004); more specifically, extreme flows (floods and 

low flows) perform selective pressures (favoring or disfavoring) on the 

establishment of species (Bunn and Arthington, 2002; Hart and Finelli, 1999). 

To maintain dynamical patterns of discharge in the natural range of variation 

contribute to mitigate or prevent the establishment and proliferation of invasive 

species; invasive species are unable adapting to the natural Mediterranean 

hydrological regime (Bernardo et al., 2003; Olaya-Marín et al., 2012; Vila-Gispert 

et al., 2005). They would need a long time to develop an evolutionary strategy in 

local hydrological regimes (Doadrio and Aldeguer, 2007). It is therefore urgent for 

the managers to improve the environmental flow regimes, given that an ongoing 

extinction crisis is affecting Europe's freshwater fishes (Freyhof and Brooks, 

2011). However, the main actual obstacles for the application of environmental 

flow management are (Richter, 2010): the lack of understanding of environmental 

flow benefits; uncoordinated management of water resources; low priority given to 

environmental flows in allocation systems; environmental flow allocations are 

usually limited to low flows; not addressing the problem of unnatural augmentation 

of river flows (too much water can be damaging as well); and, difficulty of 

implementing complex environmental flow specifications. 

The human-induced alteration in the magnitude and variability of river 

discharge  influences the habitat of rheophilous species, which commonly are 

endemic cyprinids threatened with extinction (Freyhof and Brooks, 2011). Invasive 

predator species like Northern pike (Esox lucius), pikeperch (Sander lucioperca) 

and Largemouth bass (Micropterus salmonides) are limnophilous, and their lentic 

habitats are usually favoured by the discharge regime alteration and small 

environmental flows. Based on our findings, NFSR declines when IFP increases 

(Fig. 5d); this result is supported by other studies because IFP seriously affects 

native fish (especially Cyprinidae family). Cyprinids have small size and are easily 

preyed by invasive species (Doadrio and Aldeguer, 2007), most invasive species 

exhibit predatory habits and are placed in the top levels in the food web, and 

Iberian fish rarely are ichthyophagous (Godinho et al., 1997; Granado-Lorencio, 

1996). Therefore, invasive predators have an important role in the structure and 

organization of Mediterranean fish communities, because they can alter the native 
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fish species distribution and diminish its abundance (Doadrio and Aldeguer, 2007; 

Granado-Lorencio, 1996, 2000). For example, Micropterus salmoides is a common 

predator in the Iberian Peninsula; during the first stages it feeds on 

macroinvertebrates and plankton, but the adults are ichthiophagous (Doadrio and 

Aldeguer, 2007; Granado-Lorencio, 1996). Almeida et al. (2012) argue that 

regulated Iberian streams may provide both suitable food and habitat suitability 

with insignificant predation pressures, thereby may serve as a recruitment 

environment for M. salmoides. Other adverse impacts on native species caused by 

the introduction of invasive species are the insertion of foreign pathologies, genetic 

and habitat degradation (Cucherousset and Olden, 2011; García-Berthou, 2001; 

Granado-Lorencio, 1996).  

In these rivers we found that NFSR increases for high values of IBMWP and 

QBR (Fig. 5e, 5a). These indices have been commonly used by Spanish water 

authorities to assess biological quality in Mediterranean rivers (MMARM, 2008). 

IBMWP and QBR are positively related to different aspects of the ecological status 

of rivers; hence, a good riparian and water quality status contribute to preserve 

native fish communities (Meador and Goldstein, 2003; Mouton et al., 2012; 

Naiman et al., 2000; Olaya-Marín et al., 2012; Wichert and Rapport, 1998). Low 

water quality causes negative effects on metabolism, growth and reproduction of 

freshwater fish, and morphological anomalies like eroded fins, lesions and tumors 

(Aparicio et al., 2011; Benejam et al., 2010b). A well-developed riparian cover at 

riverside provides habitat heterogeneity, food sources, refuge, improvement of 

water quality, temperature control, bed structure and sediment balance (Mouton et 

al., 2012; Pinto et al., 2006; Sabater and Tockner, 2010). The linkages between 

riparian vegetation and fish communities have received little attention in 

Mediterranean rivers, although riversides have experienced persistent alterations of 

their natural conditions (Garófano-Gómez et al., 2012; Pardo et al., 2002). Some 

studies have documented successful examples of how stream flow management can 

greatly benefit the fish and riparian communities (Rood et al., 2003). On the 

contrary, Meador and Goldstein (2003) showed that poor riparian conditions are 

associated with the decreasing of fish communities, this is supported by the fact 

that fish community structure is strongly controlled by instream habitat (Paller et 
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al., 2000). Therefore, among other measures for habitat improvement, the control 

of water pollution and the riparian management are very important in the fish 

conservation plans.   

In summary, our results support that the ecological status of native fish 

communities in altered rivers could be improved by the implementation of these 

prioritized restoration actions: (1) removal of disused weirs to increase the channel 

length without artificial barriers and reduce the presence of lentic habitats (García 

de Jalón et al., 2007; Olaya-Marín et al., 2012; WWF, 2009); (2) Wastewater 

control; (3) application and monitoring of environmental flows imitating the 

natural hydrological variability, i. e. low flows in dry seasons and flash floods in 

rainy seasons (Arthington et al., 2006; Costa et al., 2012); (4) sustainable 

management of vegetation (Meador and Goldstein, 2003); (5) declaration of areas 

for conservation of native fish species (Filipe et al., 2004; Hermoso et al., 2011); 

and (6) prevention of new invasive species introductions (Lockwood et al., 2007; 

Wittenberg and Cock, 2001). However, these prioritized actions must be carefully 

interpreted in the context of each river basin, where a different ranking of the 

environmental controls is possible, and the physical habitat  hierarchy in the lotic 

ecosystems must be considered, as well as the scales at which the physical habitat 

act as a filter on aquatic communities (Poff and Ward, 1990). 
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ABSTRACT  

Machine learning (ML) techniques have become important to support decision 

making in management and conservation of freshwater aquatic ecosystems. Given 

the large number of ML techniques and to improve the understanding of ML utility 

in ecology, it is necessary to perform comparative studies of these techniques as a 

preparatory analysis for future model applications. In this context, the aims of this 

study were (i) to compare the reliability and ecological relevance of two predictive 

models for fish richness, based on the techniques of artificial neural networks 
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(ANN) and random forest (RF) and (ii) to evaluate the concordance in terms of 

selected important variables between the two modelling approaches. The model 

performances were evaluated through three performance metrics: the determination 

coefficient (R
2
), the Mean Square Error (MSE) and the adjusted determination 

coefficient (R
2
adj) and both models were developed using a k-fold cross validation 

procedure. According to the results, RF obtained the best performance in training 

and it was the model with the smallest number of inputs (five predictive variables), 

while the ANN model required seven input variables. In the cross-validation 

procedure both techniques gave similar results (R
2
=68% for RF and R

2
=66% for 

ANN). Although the two methods selected different subsets of input variables, both 

of them demonstrated high ecological relevance for the conservation of native fish 

in the Mediterranean area. This work shows how the use of different modelling 

methods can assist the critical analysis of predictions and underlines the possible 

use of ML techniques to design environmental management actions at a catchment 

scale. 

Keywords: Artificial Neural Networks, Random Forests, machine learning, 

native fish, species richness, Mediterranean rivers. 

4.1 INTRODUCTION 

In the last decades, due to the worldwide accelerated degradation of freshwater 

ecosystems (Beechie et al., 2010; Postel, 2000; Strayer and Dudgeon, 2010) 

ecological modelling has become an important tool for wildlife and habitat 

conservation (Breckling et al., 2011; Drew et al., 2011). Particularly in 

Mediterranean rivers, pollution, introduction of exotic species and alteration of 

hydrological regimes are factors which have influenced fish population decrease 

and, in some cases, the extinction of native species (Didham et al., 2007; García-

Berthou et al., 2005; Smith and Darwall, 2006). According to IUCN, the 56% of 

freshwater Mediterranean species are threatened (Smith and Darwall, 2006) and, 

given the high degree of endemicity of biota and its high vulnerability to habitat 
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alteration, more research is currently needed on local and native fish populations 

(Corbacho and Sánchez, 2001; Doadrio, 2002). 

The conservation of fish diversity is one of the most critical issues facing the 

preservation of Mediterranean biodiversity (Smith and Darwall, 2006); and, due to 

its sensitivity to human disturbances, fish species richness is widely used as a 

primary indicator of the ecological changes and as a criterion for the selection of 

conservation areas (He et al., 2010; Lek et al., 2005; van Jaarsveld et al., 1998). 

Increasing knowledge about the relationships between environmental features and 

fish populations is therefore essential for the design of effective habitat 

conservation and river restoration actions. 

Ecological and biological data rarely satisfy the principles of parametric 

approaches, in which data must be independent, normal and homoscedastic 

(Breiman, 2001b; Guisan and Zimmermann, 2000). This circumstance increases 

the challenges in modelling ecological phenomena. To cope with these issues, 

machine learning (ML) techniques have been widely used due to their ability to 

drive non-linearity and generate less uncertain predictive results (Olden et al., 

2008; Recknagel, 2001). 

Several researchers have applied ML in ecological studies (Aertsen et al., 2010; 

Armitage and Ober, 2010; D'Heygere et al., 2006; Leclere et al., 2011; Mouton et 

al., 2011). In particular, artificial neural networks (ANN) and random forest (RF) 

are two machine learning techniques which are currently valuable tools for 

ecological modelling, especially useful in analysing large datasets and identify 

non-linear relationships (Drew et al., 2011). ANN are recognized as powerful and 

effective tools (Mastrorillo et al., 1998; Olden et al., 2008) to solve complex 

dependencies which are difficult with other traditional statistical methods (Lek et 

al., 2005; Olden et al., 2008). In the context of freshwater fish studies, ANN have 

been used with satisfactory results (e.g. Carpenter et al., 1999; Olaya-Marín et al., 

2012; Tirelli et al., 2009). Ibarra et al. (2003) used ANN and multiple regression 

models (MLR) to identify the factors that influence fish guilds in the Garonne river 

basin (south-western France). They found better predictions of fish guilds with 

ANN than MLR. A similar result about ANN prediction accuracy is reported in 
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Tirelli and Pessani (2009, 2011), who used ANN and decision trees to predict the 

presence of Telestes muticellus and Alburnus alburnus alborella in Piedmont rivers 

(north-western Italy). Moreover, Tirelli et al. (2009) applied ANN, discriminant 

function analysis, logistic regression and decision tree to model Salmo marmoratus 

distribution in Piedmont (Italy) and the performance of ANN was superior to the 

other modelling techniques. Also for unbalanced data, Hauser-Davis et al. (2010) 

concluded that ANN are an excellent alternative in classification problems.  

Regarding RF, it is currently considered a promising technique in ecology 

(Cutler et al., 2007; Cheng et al., 2012; Drew et al., 2011; Franklin, 2010) but it 

has rarely been applied in freshwater fish studies. RF has the ability to identifying 

and exploring non-intuitive relationships (Evans et al., 2011), with high accuracy 

and  flexibility to perform both regression and classification analyses (Cheng et al., 

2012). He et al. (2010) compared the use of classification and regression trees 

(CART) and RF to predict endemic fish assemblages and species richness in the 

upper Yangtze River. The study showed that RF is better than CART in terms of 

accuracy and efficiency. Knudby et al. (2010) used linear (LM) and generalized 

additive models (GAM), Bagging, RF, Boosted Regression Trees (BRT) and 

support vector machines (SVM) to build predictive mapping of reef fish species 

richness, diversity and biomass. They found that the tree-based models were 

generally superior to predict species richness of reef fish. Furthermore, Mouton et 

al. (2011) found similar predictive performance of RF and Fuzzy logic models to 

represent mesohabitat suitability for Salmo trutta in Spain, while Kampichler et al., 

(2010) compared different ML techniques (including ANN and RF) for 

classification problems and recommend the use of RF in conservation biology.  

Given the large number of ML techniques, there is not a protocol to define the 

most indicated method to address a particular ecological question or management 

action for freshwater ecosystems. It is therefore necessary to conduct comparative 

studies of ML techniques for model identification and selection (Guisan and 

Zimmermann, 2000). Moreover, the knowledge related to the ecology of 

Mediterranean rivers needs to be deepen and further efforts to improve the 

understanding of the main factors influencing species richness are valuable 

(Aparicio et al., 2011; Filipe et al., 2010) . In this context, the aims of this study 
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were (i) to compare the reliability and ecological relevance of two predictive 

models for fish richness, based on the techniques of ANN and RF and (ii) to 

evaluate the concordance in terms of selected important variables between the two 

modelling approaches. It is important to highlight here that a comparison between 

ANN and RF for prediction of fish species richness has not yet been presented in 

literature. These comparisons are currently considered a new open line of research 

(Aertsen et al., 2011) and this paper represents a further contribution in such a 

field.  

4.2 MATERIALS AND METHODS  

4.2.1 STUDY AREA AND DATA COLLECTION 

This study was carried out with data collected in the main streams of the Júcar, 

Cabriel and Turia Rivers, in the Eastern Iberian Peninsula (Fig.1). These rivers are 

characterized by a Mediterranean climate, a flow regime controlled by rainfall 

variability, a strong seasonal and inter-annual discharge variation with two high 

flow periods per year (spring and fall) and severe droughts in summer (Blondel and 

Aronson, 1999; Ollero et al., 2011). The maximum temperatures are registered in 

July and August, coinciding with the dry period (Estrela et al., 2004) and the mean 

temperature ranges between 11.6 to 17 ºC. The mean annual precipitation in the 

study area is 500 mm, ranging between 320 mm in dry years to 800 mm in the wet 

ones (Estrela et al., 2004). The soils are highly permeable and are characterized by 

high infiltration and percolation rates (CHJ, 1997; Estrela et al., 2004). During the 

last decades, the natural flow regime has been altered after the building of 

reservoirs and water abstractions; flow regulation is severe particularly for streams 

located in the middle and lower part of the watersheds. The effect of flow 

regulation is expressed by an inversion of the intra-annual variability pattern; in 

summer, the regulated flow is greater than natural flow, and in contrast, the 

regulated flow is smaller than the natural flow during winter (Aparicio et al., 

2011). Due to industrial and urban waste water, pollution also affects rivers 

(Aparicio et al., 2011; Estrela et al., 2004) and agricultural practices, particularly in 
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spring and summer, constitute a source of diffusive pollutants at the catchment-

scale (Estrela et al., 2004).  

In the analyses, we used data from 90 sampling sites along the main streams of 

the three rivers (Fig. 1). The sites were selected as representative in terms of river 

morphology and proportion of mesohabitats which characterize the analysed water 

courses. Native fish species richness (i.e. the number of fish species at each 

sampling site) was defined by means of a single-pass electrofishing during the 

spring/summer period from 2005 to 2009. The limits of the sampling sites were 

open and the minimum length of each sampled reach was 50 m.  

 

Fig.1. Study area showing the distribution of the 90 sampling sites in the three considered 

rivers (Jucar, Cabriel and Turia rivers).  
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The total fish diversity comprises 12 native species (Table 1) with a maximum 

local richness of 5 species. These values are common in Mediterranean rivers, 

which are generally characterized by a low species richness per site (Ferreira et al., 

2007). Cyprinidae is the predominant family in the three rivers; the most important 

genera are Achondrostoma, Parachondrostoma, Luciobarbus, Barbus, Squalius 

and Iberocypris. Other species present in the rivers are Cobitis paludica and 

Salaria fluviatilis which are very sensitive to pollution and have strict 

environmental requirements (CHJ, 2007). All these species perform small-scale 

migrations for reproduction within the river system and the only one migrating at 

large scale is Anguilla Anguilla, a catadromous fish species with a complex life-

history that includes migrations across the Atlantic Ocean. The number of 

individuals of these native fish species decreased consistently in the last decades as 

a consequence of habitat modifications (including barriers) and pollution in the 

lower river reaches (Costa et al., 2012; CHJ, 2007; Doadrio, 2001a).  

Table 1. Freshwater fish species present in the study area related to its threat status 

(Freyhof and Brooks, 2011; IUCN, 2012).CR, critically endangered; EN, endangered; VU, 

vulnerable; NT, near threatened; LC, least concern. 

Species name Common name Family 
Threat 

status 

Anguilla anguilla  European eel Anguillidae CR 

Parachondrostoma arrigonis   Júcar nase Cyprinidae CR 

Parachondrostoma turiense  Turia nase Cyprinidae EN 

Achondrostoma arcasii  Bermejuela Cyprinidae VU 

Barbus haasi  Iberian redfin barbell Cyprinidae VU 

Cobitis paludica  Southern Iberian spined-loach Cobitidae VU 

Luciobarbus guiraonis  Eastern Iberian barbell Cyprinidae VU 

Squalius  pyrenaicus Southern Iberian chub Cyprinidae NT 

Squalius valentinus  Eastern Iberian chub Cyprinidae VU 

Iberocypris alburnoides Calandino Cyprinidae VU 

Salmo trutta  Brown trout Salmonidae LC 

Salaria fluviatilis  Freshwater blenny Blenniidae LC 

 

The environmental variables used in the construction of the ANN and RF 

models were 24, which were selected considering their ecological importance for 

fish life cycle (Bernardo et al., 2003; Costa et al., 2012; Granado-Lorencio, 1996; 
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Jackson et al., 2001; Oberdorff et al., 1995). Variables were obtained from three 

main sources: in situ, from GIS analyses and through the monitoring network (MN) 

of the Júcar River Basin (Table 2). Physico-chemical variables (i.e. dissolved 

oxygen, biological oxygen demand, total phosphorous, nitrite, pH, suspended 

solids, water temperature) corresponded to the mean annual value referred to the 

year of the survey. The proportions of hydro-morphological units (HMUs) and the 

mean width of water surface were measured in situ. The classification of HMUs 

was based on the method proposed by Dollof et al. (1993) and five different types 

were selected: pool, glide, riffle, rapid and run (Alcaraz-Hernández et al., 2011; 

Costa et al., 2012). Geographical variables (i.e. channel length without artificial 

barriers, altitude, drainage area and distance from the source) were obtained with 

the ArcGIS 9.3.1 software (ESRI©2009). 

The mean monthly flow was calculated at ungauged sites through a linear 

interpolation between gauged sites. To define the hydrological indexes (inter-

annual mean flow and the coefficients of variation of mean monthly flow and mean 

annual flow), we used the relationship between the flow in natural conditions and 

the accumulated drainage area, and then we transformed monthly flow values to 

regulated conditions (Caissie, 2006a; Caissie and El-Jabi, 1995; Leopold et al., 

1964). The riparian habitat quality index (QBR, Munné et al., 2003) was taken into 

account to assess the morphological conditions of the sampling sites; this index 

was adopted by the Spanish Ministry of Environment (MMARM, 2008). QBR 

consists of four components, which synthesize qualitative features related to the 

conservation state of the riparian area: total vegetation cover, vegetation cover 

structure and quality, and river channel alterations. The values of this index are 

distributed in five quality intervals (≥95: excellent quality; 90-75: good quality; 70-

55: moderate quality; 30-50: poor quality; ≤ 25: bad quality). Finally, we used the 

Iberian Biomonitoring Working Party index –IBMWP- (Alba-Tercedor, 1996; 

Alba-Tercedor and Sánchez-Ortega, 1988) based on invertebrate analysis to 

evaluate the biological quality of the rivers. IBMWP values are distributed in five 

ranges of water quality: > 150: very clean water; 101-120: unpolluted water or not 

appreciably altered; 61-100: partially polluted water with some evident effects; 36-

60: polluted water; 16-35: very polluted water; < 15: heavily polluted water. 
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Table 2. Potential environmental variables used to build the predictive models for native 

fish species richness. Physico-chemical and hydrological parameters were obtained from 

the monitoring network (MN) of the Júcar River Basin Authority, mean width and hydro-

morphological unit proportions were measured in situ during fish samplings, while 

geographical variables were derived from GIS analyses. 

Variable Code Source Mean 
Standard 

deviation 

Dissolved Oxygen (mg/l) DIS MN 9.58 0.44 

Biological oxygen demand (mg/l) BOD MN 2.51 0.77 

Total phosphorus (mg/l) TOP MN 0.06 0.03 

Nitrite (mg/l) NIT MN 0.02 0.02 

pH  PH MN 8.18 0.11 

Suspended solids (mg/l) SUS MN 11.39 5.77 

Water Conductivity (µS/cm) CON MN 797.87 172.62 

Water temperature (ºC)  WAT MN 13.38 2.48 

Percentage of pools (%) POO in situ 48.66 21.42 

Percentage of glides (%) GLI in situ 11.21 16.89 

Percentage of riffles (%) RIF in situ 28.27 21.41 

Percentage of rapids (%) RAP in situ 5.79 6.85 

Percentage of runs (%) RUN in situ 6.07 12.10 

Mean width of the water surface (m) WID in situ 12.46 4.68 

Channel length without artificial barriers 

(km) 
CWB GIS 26.35 29.46 

Altitude (m a.s.l) ALT GIS 746.48 298.43 

Drainage area (km2) DRA GIS 3318.84 2607.51 

Distance from the source (km) DHS GIS 150.19 76.41 

Mean Annual flow rate (m3/s) FMA MN 4.33 2.44 

Inter-annual mean flow (calculated for 5 

years) (m3/s) 
FIA MN 5.50 2.57 

Coefficient of variation of mean monthly 

flows (referred to fish sampling) 
FIM MN 0.58 0.18 

Coefficient of variation of mean annual 

flows (calculated for 5 years) 
FCV MN 0.40 0.17 

Index of Riparian Habitat Quality QBR MN 73.61 20.74 

Iberian Biomonitoring Working Party  IBMWP MN 131.68 36.32 
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4.2.2 MODELLING TECHNIQUES 

4.2.2.1 ARTIFICIAL NEURAL NETWORKS (ANN) 

Artificial neural networks are mathematical models inspired in the structure and 

behaviour of the human brain (Olden et al., 2008). They are considered as a 

powerful computational tool to address ecological issues that are difficult to 

analyse by traditional statistical methods (Lek et al., 2005); among different types 

of ANN, Multilayer Perceptron (MLP) is the most used in ecology (Özesmi et al., 

2006). It is constituted by multiple layers and the information is transferred from 

the input layer to the output one (feed-forward). This kind of ANN has supervised 

learning, which implies the use of input and output datasets to iteratively change 

the weights until the simulated outputs are similar to the observed ones. To 

minimize the error, the algorithm employs the values of the error calculated in the 

previous iteration and then updates the weights. A detailed description of ANN is 

reported in Olden et al. (2008) and Goethals et al. (2007). 

This study applied a MLP to predict native fish species richness. For each ANN 

model, we built and tested several MLP models to establish, by trial and error 

estimates, the optimal number of neurons in the hidden layer. A single hidden layer 

was used to significantly reduce the computational time. Moreover, as reported in 

Kurková (1992) the use of a single hidden layer produces similar results compared 

to the incorporation of additional hidden layers. To work with values characterized 

by the same order of magnitude, data of all variables were scaled. The transfer 

function in the hidden layer was a hyperbolic tangent and an identity function in 

the case of the output layer. The hyperbolic tangent gave optimal results in 

previous studies (Isa et al., 2010) in which a performance comparison was carried 

out to select the best MLP  activation function (Olaya-Marín et al., 2012). The 

Levenberg-Marquardt (LM) optimization algorithm was used to train the candidate 

models because this algorithm is the fastest method to train neural networks of 

moderate size (Karul et al., 2000). LM has been applied successfully in ecology 

(Gutiérrez-Estrada and Bilton, 2010; Tan and Van Cauwenberghe, 1999) and a 
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description of the algorithm can be found in Singh et al. (2009). To test and 

validate the models, we used the k-fold cross-validation procedure and tried 

different values of k (ranging from 3 to 10, Dormann, 2011; Goethals et al., 2007). 

The best k value was then identified by the comparison of the performance of the 

different ANN obtained in the cross-validation procedure. All numerical 

calculations were performed using MATLAB software (version R2010a). 

4.2.2.2 RANDOM FORESTS 

The fish richness was also predicted using Random Forest (RF) methodology 

(Breiman, 2001a; Cutler et al., 2007) in the statistical software R (R Development 

Core Team, 2009) by means of the randomForest package (Liaw and Wiener, 

2002). RF is an ensemble learning technique based on a combination of a large set 

of decision trees. Each tree is trained by selecting random bootstrap subsets Xi (i = 

bootstrap iteration which ranges from 1 to t) of the original dataset X and a random 

set of predictive variables. This aspect represents the main difference compared to 

standard decision trees (Breiman et al., 1984), where each node is split using the 

best split among all predictive variables (e.g. Vezza et al., 2012). Moreover, RF 

corrects many of the known issues in CART, such as over-fitting (Breiman, 2001a; 

Cutler et al., 2007), and provides very well-supported predictions with large 

numbers of independent variables (Cutler et al., 2007). 

As the response variable (fish richness) was numerical, we confined our 

attention to regression RF. The algorithm for growing a random forest of t 

regression trees performed as follows (for full details see Breiman, 2001a): 

(1) t bootstrap samples Xi of the training dataset were randomly drawn with 

replacement, each one containing approximately two third of the elements 

of the original dataset X. The elements not included in each training dataset 

are referred to as out-of-bag data (OOB, i.e. the validation dataset) for that 

bootstrap sample. On average, each element of X was an OOB element in 

one-third of the t iterations. 
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(2) For each bootstrap sample Xi, an unpruned regression tree was grown. At 

each node m variables were randomly selected and the best split was 

automatically chosen. 

(3) New data (OOB elements) were predicted by averaging the predictions of 

the generated t trees. In particular, for each element (yi) of the original 

dataset an aggregated prediction (gOOB) was developed and the out-of-bag 

estimate of the error rate (EOOB) was computed as 

 
2

1

(1/ )
t

OOB i OOB iE t y g X
 
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The EOOB was also used to choose an optimal value of t and m (Breiman, 

2001a). As EOOB is an unbiased estimate of the generalization error, it is not 

necessary to test the predictive ability of the model using a cross-validation 

procedure (Breiman, 2001a). However, in accordance with ANN and for a more 

reliable comparison, we performed k-fold cross-validation (with k ranging from 3 

to 10) following the approach reported in Svetnik et al. (2003). 

4.2.2.3 INPUT SELECTION 

As a first step, a correlation matrix was calculated to verify collinearity. For 

high correlations (Spearman's rho
2
>0.5) we removed the variable with less 

ecological relevance (Dormann, 2011). To identify the most important predictive 

variables we followed two different approaches. On one hand, the forward stepwise 

procedure was applied in the ANN models; this method consists of adding step by 

step a single input variable and then evaluating the improvement in ANN 

performance (Gevrey et al., 2003). The irrelevant input variables are therefore 

eliminated measuring the complexity reduction of the ANN model (see Gevrey et 

al., 2003; Tirelli and Pessani, 2009) and at the end of the process the variables that 

imply a significant improvement in the ANN performances are selected (Fig. 2).  

On the other hand,  we applied the Model Improvement Ratio technique (MIR, 

Murphy et al., 2010) to identify the most parsimonious RF model. RF produces a 

measure of variable importance by analysing the deterioration of the predictive 

ability of the model when each predictor is replaced in turn by random noise. The 
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increase in the mean square error of each tree (IncMSE) is used as a score of 

importance of a given variable in regression RF models (Vincenzi et al., 2011), as 

it indicates the contribution to RF prediction accuracy for that variable. The MIR 

technique uses the variable importance standardized from zero to one and the 

improvement ratio was therefore calculated as [In/Imax], where In is the 

importance of a given variable and Imax is the maximum model improvement 

score. We then iterated through MIR thresholds (i.e. 0.05 increments), with all 

variables above the threshold retained for each model (Evans and Cushman, 2009). 

The models corresponding to different subsets were then compared and the one that 

exhibits the minimum MSE error and the lowest number of variables was selected. 

4.2.2.4 MODEL EVALUATION 

The overall accuracy of the two statistical models was evaluated using three 

performance metrics, which are commonly used in ecological modelling (Aertsen 

et al., 2011; Chenard and Caissie, 2008; Singh et al., 2009): the determination 

coefficient (R
2
), the Mean Square Error (MSE) and the adjusted determination 

coefficient (R
2
adj).  

The determination coefficient (R
2
) assesses the proportion of variability 

explained by the model, it is calculated by: 
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Where, 
obsY  are the observed values, 

simY  represent the predicted values, and 

n  is the total number of observations. The Mean Square Error (MSE) is the error 

between model predictions and observed values, it is expressed as:           
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The adjusted determination coefficient is a modification of the determination 

coefficient and was used during the model selection procedures to compare models 

with different numbers of predictive variables (Vezza et al., 2010). In contrast to 

R
2
, this coefficient penalizes the excessive use of inputs, and it is expressed as 

follows: 

 2 2 1
1 1

1
adj

n
R R

n p


  

 
      (3) 

where p represents the number of input variables. 

Finally, the ecological interpretation of each optimal ANN and RF model was 

carried out by the assessment of the relative importance of the inputs. For ANN the 

partial derivatives (PaD) method was applied (Dimopoulos et al., 1999; 

Dimopoulos et al., 1995), which represents the mostly used approach to evaluate 

the relative importance in MLP (Gevrey et al., 2003), whereas for RF the relative 

importance was indicated by the IncMSE values of each variable (Breiman, 

2001a).  

4.3 RESULTS 

The best neural network architecture to predict native fish richness had three 

layers (i.e. 7→6→1), with seven neurons in the input layer (which corresponds to 

the predictive variables), a hidden layer with six neurons, and the output layer with 

a single neuron; the last one calculates the estimated values of native fish richness. 

During the k-fold cross validation, the ANN performance did not increase with k 

values higher than 6, then we used k = 6 to validate the model. The stepwise 

selection of variables and the MSE is illustrated in Fig. 2. 

For RF, the out-of-bag estimates of the error rate (EOOB) were used to select the 

optimum Random Forest parameters m and t, while RF performance estimates were 

based on a 6-fold cross-validation (Svetnik et al., 2003). The m parameter (number 

of variables permutated at each node) was defined as [1/3(number of variables)] 
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(Breiman, 2001a) and it was 2 in the selected model (see  Breiman, 2001a). 

Moreover, in our analysis the OOB error stabilization occurred between t = 1500 

and t = 2500 replicates. However, a heuristic estimation of t taking into account the 

OOB error stabilization was defined as [2(t for EOOB stabilization) = 5000] (Evans 

and Cushman, 2009a). The relation between the MSE and number of variables in 

RF is shown in Fig. 2. For both models, the MSE quickly decreased as the number 

of input variables was increasing (Fig. 2). A breakpoint was located at 7 variables 

in ANN; and at 5 variables in RF. Based on this criterion, we used 7 predictive 

input variables to build the ANN model and 5 for RF. 

Fig. 2. Artificial Neural Networks (ANN) and Random Forests (RF) performance in terms 

of Mean Squared Error (MSE) as a function of the number of input variables (N. 

Variables). The final ANN model (including 7 variables) and RF model (including 5 

variables) were those in which the incorporation of any additional variable meant no 

relevant error decrease (vertical lines). 

 

According to the correlation analysis and the forward stepwise procedure the 

relevant variables to predict the native fish richness with the ANN model are 

reported, in order of importance, in Fig. 3: the Iberian Biomonitoring Working 

Party (IBMWP), percentage of riffles (RIF), mean annual flow rate (FMA), 

coefficient of variation of mean monthly flow (FIM), channel length without 

artificial barriers (CWB), drainage area (DRA) and index of riparian habitat quality 

(QBR). In contrast for RF, the selected variables were QBR, percentage of runs 

(RUN), DRA, IBMWP and percentage of rapids (RAP). 
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The best performance in training was obtained by the RF model (R
2
 = 0.94; 

MSE = 0.10), whereas in validation both techniques gave similar results (MSE = 

0.62, R
2
=66% for ANN; MSE = 0.56, R

2
 = 68% for RF). Table 3 displays the 

performance indices of RF and ANN models. 

Table 3. Artificial Neural Networks (ANN) and Random Forest (RF) performance indices 

in training and k-fold cross validation procedures. Models were evaluated with 

determination coefficient (R
2
), mean squared error (MSE) and adjusted determination 

coefficient (R
2
adj). 

Models 
Training k=6 Cross Validation 

R2 MSE R2
adj R2 MSE R2

adj 

ANN  0.81 0.35 0.78 0.66 0.62 0.63 

RF 0.94 0.10 0.94 0.68 0.56 0.66 

 

 The implementation of the partial derivatives algorithm for ANN revealed that 

the most important variables to predict native fish richness were IBMWP, with a 

relative importance of 20.72%, and percentage of riffle (RIF) with an importance 

of 20.18%. In the case of the RF model, the most important variables were QBR 

and percentage of runs (RUN), with a relative importance of 23.51% and 22.02%, 

respectively (Fig. 3). 

Fig. 3. Relative importance (expressed in % of contribution) of each input variable to 

predict native fish richness. Left side: the ANN model, right side: the RF model. See codes 

of variables in Table 2. 
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4.4 DISCUSSION 

In this study two machine learning techniques (i.e. Artificial Neural Networks 

and Random Forest) were applied to estimate the fish species richness in the Jucar 

River Basin, as preparatory reference for future wildlife and habitat conservation 

actions. The methodology compared the reliability and ecological relevance of the 

two statistical techniques in order to evaluate their applicability and assess the 

concordance in terms of variables importance between the two predictive models. 

Looking at the results, ANN and RF showed no significant differences of 

performance in the cross-validation procedure (R
2
=68% for RF and R

2
=66% for 

ANN, Table 3). However, it is important to note that RF outperformed ANN in 

terms of MSE, particularly considering small numbers of input variables (Fig. 2, N. 

Variables < 7). 

RF was the model with the smallest number of inputs and only five variables 

were required for prediction, while ANN required seven. Parsimonious models are 

particularly suitable for applications (fewer variables to be surveyed) and the 

difference in the number of inputs highlighted the advantage of using RF. 

Moreover, models with fewer variables are much easier to interpret and can reduce 

the level of prediction uncertainty (Jorgensen and Fath, 2011). However, the RF 

model showed much higher accuracy in the calibration to that obtained in the 

validation phase (Table 3), presenting a considerable difference in performance. In 

contrast, for ANN the difference between training and validation prediction error 

was smaller and demonstrated more stable results. 

Since the 90‟s, diverse mathematical algorithms have emerged in order to 

quantify and interpret the importance and contribution of input variables to the 

model output, and, at same time, to identify and eliminate redundant variables to 

increase model parsimony (e.g. Gevrey et al., 2003; Murphy et al., 2010; Olden 

and Jackson, 2002). In this research we used partial derivatives (Dimopoulos et al., 

1999; Dimopoulos et al., 1995) for ANN and the model improvement ratio 

(Murphy et al., 2010) for RF. PaD allowed the classification of the input variables 

according to their contribution to the output variable and, in accordance with 
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Gevrey et al. (2003), the technique produced a stable variables ranking over the 

different ANN models. On the other hand, MIR demonstrated to be a simple and 

powerful methodology to select the threshold that minimized both retained inputs 

and model error. 

For variable selection, a forward stepwise methodology was embedded in the 

ANN algorithm, whereas the variable importance values were used in RF to screen 

the overall range of inputs and select the most parsimonious model. The two 

procedures were based on different approaches and led to two different sets of 

variables. However, this result is not surprising and it is confirmed in several 

studies (Abrahamsson et al., 2003; Reunanen, 2003; Wells et al., 2011; Xu and 

Zhang, 2001), in which different variable selection procedures produced similar 

subsets of variables. It is important to note that the RF ranking of variables is based 

on all possible combinations of model inputs with m random variables permuted at 

each node of the tree. In contrast, the one-step-ahead search procedure of ANN 

may not lead to the best combination of inputs; it required the modeller to study the 

sequence of variables and analyse whether the addition or removal of a few more 

variables might not produce any improvement. 

Another important aspect in ecological modelling involves the evaluation and 

interpretation of the results. The presented models were in accordance with the 

literature due to fact that the selected input variables, such as water quality, flow 

regime and the status of riparian forest, are of great importance for the 

Mediterranean fish populations (Bernardo et al., 2003; Ferreira et al., 2007; García 

de Jalón et al., 2007; Granado-Lorencio, 1996, 2000). 

Both models had in common three variables to predict fish richness: drainage 

area (DRA), quality index of the riparian forest (QBR) and the biological index for 

water quality (IBMWP). Although the variables‟ ranking was not the same (in 

terms of % of contribution, Fig. 3), this accordance can indicate the robustness of 

the results (e.g. Xu and Zhang, 2001). In several studies (Leprieur et al., 2009; 

Oberdorff et al., 1995; Reyjol et al., 2007) DRA is considered an important 

environmental variable for fish species richness, integrating information related to 

habitat diversity, the variety of microclimates and flow regimes in the river basin 
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(e.g. Allan and Castillo, 2007; Begon et al., 2006; Townsend et al., 2008), while 

QBR and IBMWP indicate the water quality and riparian forest key role in 

determining the richness of native fish. QBR and IBMWP have been already 

mentioned in Spain as relevant factors influencing fish species richness (Carballo 

et al., 2009; Sánchez-Montoya et al., 2010) and are widely used for the ecological 

monitoring of rivers. Indeed, the riparian forest provide shelter and food for aquatic 

organisms (Naiman et al., 1993) and can strongly influence the quality of aquatic 

habitats, particularly along a gradient of river regulation (Garófano-Gómez et al., 

2011). Furthermore, river pollution is currently one of the most important threats 

for the Mediterranean freshwater fish (Smith and Darwall, 2006); it can severely 

disrupt the functioning of the aquatic ecosystem and compromise the survival of 

biota (Granado-Lorencio, 2000). 

Both ANN and RF selected the proportion of HMUs as important predictors of 

fish richness and, in particular, percentage of riffles (RIF) were selected in ANN 

and percentage of runs (RUN) and rapids (RAP) in RF. Although the two statistical 

techniques considered different HMU types, one can observe how the spatial 

distribution and dynamics of mesohabitats can be of great importance for fish 

conservation (Fausch et al., 2002). According to Bernardo et al. (2003) riffles and 

runs can influence the composition of Mediterranean fish communities; particularly 

for those dominated by the family Cyprinidae (Ferreira et al., 2007; Granado-

Lorencio, 2000), because these mesohabitats can offer good conditions in terms of 

food availability and shelters. 

The variables related to flow regime (mean annual flow rate, FMA, and the 

coefficient of variation of mean monthly flow, FIM) along with the channel length 

without artificial barriers (CWB) were only selected by ANN. Different studies 

highlighted the role of flow variability and magnitude in supporting the aquatic 

communities (Belmar et al., 2011; Olaya-Marín et al., 2012; Poff et al., 1997) and, 

the longitudinal connectivity has important consequences on the distribution of 

native fish (Kroes et al., 2006), either small or large-scale migratory species (e.g. 

Parachondrostoma arrigonis or Anguilla Anguilla, both critically endangered in 

the region of interest). Including these aspects in fish richness prediction underline 
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the ecological relevance of the ANN model, which seemed to capture the interplay 

between natural and anthropogenic factors influencing fish species distribution. 

As reported in Siroky (2009) RF models are fast to train and tune. In our 

research the time needed for RF model construction was much smaller than for 

ANN (few minutes compared to hours) due to the structure of RF algorithm 

characterized by few parameters to set and a limited number of variables (m) to be 

permutated at each tree node. ANN needed more time for computer architecture 

design and learning as it performed a large amount of trials changing the number of 

neurons and the type of activation function in the hidden layer. However, the 

amount of time needed can be reduced by using different computer processors 

working in parallel (Armitage and Ober, 2010) and once calibrated, ANN are able 

to process a large volume of data and quickly generate predictions (Olden et al., 

2008). 

The applied ML techniques involve elegant mathematical theories and are 

known to be robust to noise and able to manage the non-linearity among variables 

(Lek et al., 2005; Olden et al., 2008; Siroky, 2009), but for some authors they can 

be seen as black boxes (Hooten, 2011). In particular, the relationships between the 

input variables and the predicted values produced by ANN and RF do not have 

simple representations such as a formula (e.g. linear regressions) or pictorial graph 

(e.g. regression trees) that characterizes the entire function, and this lack of simple 

representation can make the ecological application difficult (Cutler et al., 2007). 

Olden et al. (2002b) provided an interesting point of view to give light into the so 

called “black box”; but, compared to traditional statistical methods, ML remain 

more complex to understand and apply (Olden and Jackson, 2002; Olden et al., 

2008). In addition, these techniques require the modeller to have knowledge and 

experience in designing and programming the algorithms in order to make effective 

use of the tools and to reach satisfactory and valid results (Franklin, 2010). 

Although a comprehensive evaluation of several different techniques was 

beyond the scope of this paper, we believe that the best predictive ML method 

cannot be chosen a priori and both ANN and RF constitute valuable tools to 

predict fish richness in the Mediterranean area. Looking at the results, we can state 
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that the use of more than one ML technique on the same study area was helpful, 

not only to identify the most important variables, but also to interpret the goodness 

and coherence of the results. As operational procedure for future studies on fish 

species richness, we can state that the comparison of different ML methods should 

be carried out and, as a further step already planned for the near future, these 

analyses can be performed in other Mediterranean basins. The presented 

approaches, which relate environmental variables to the fish communities, can be 

indeed used for predicting fish richness at the basin scale and can be incorporated 

into the decision-making process for water resources management (Paredes-

Arquiola et al., 2012 in press). For instance they could contribute to perform large-

scale assessments of environmental flow standards, based on methodological 

frameworks with a regional perspective (Paredes-Arquiola et al., 2011 in press; 

Poff et al., 2010). 
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ABSTRACT  

Luciobarbus guiraonis (Eastern Iberian barbel) is an endemic fish species to 

Spain, with the status of vulnerable species, threatened with extinction, mainly 

distributed in the Júcar River Basin District. Its study is important because there is 

scarce information about its biology and ecology. To improve the knowledge about 

the species distribution and habitat requirements, nonlinear modelling was carried 
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out to predict the presence/absence and density of Eastern Iberian barbel. The 

models were created and validated against 155 sampling sites distributed 

throughout the Júcar River Basin District (Eastern Iberian Peninsula). In this case 

study, we used multilayer feed-forward artificial neural networks (ANN) to 

represent nonlinear relationships between L. guiraonis descriptors and various 

biological and habitat variables. The gradient descent algorithm was implemented 

to find the optimal model parameters and the importance of the ANN‟s input 

variables was determined by the partial derivatives method (PaD). The predictive 

power of the model was evaluated based on the Kappa statistic (k), the correctly 

classified instances (CCI), and the area under the curve (AUC) of a receiver 

operator characteristic (ROC) plots. According to the results, the presence/absence 

of L. guiraonis is well predicted by the ANN model (CCI= 87%, AUC= 0.85 and 

k= 0.66). The prediction of density was moderate (CCI = 62%, AUC=0.71 and k= 

0.43). The most significant variables that described the presence/absence were: 

solar radiation (its highest contribution was observed between 2000 and 4200 

WH/m
2
), drainage area (with the strongest influence between 3000 and 5.000 km

2
), 

and proportion of exotic fish species (with relevant contribution between 50 and 

100%). In the density model, the most important variables were coefficient of 

variation of mean annual flows (relative importance of 50.5%) and proportion of 

exotic fish species (24.4%), but partial derivative method was unable to identify a 

positive or negative relationship between these variables and fish density. The 

models provide important information about the relation of L. guiraonis with biotic 

and habitat variables, this new knowledge could be used to support future studies 

and practical decisions about the management and conservation of this species in 

the Júcar River Basin District. 

Keywords: Artificial Neural Networks; hydromorphology; species distribution 

model; Mediterranean rivers; cyprinids; fish habitat; fish density. 
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5.1 INTRODUCTION 

Models are useful to understand the effects of environmental variables 

interactions on species distribution and to assess the alteration of ecological 

patterns as a response to environmental changes (Jopp et al., 2011). Ecological 

modelling have become an important tool to learn about the implications of 

stressors like climate change, hydrological regime alteration, water pollution, and 

invasive species introduction on freshwater ecosystems (Drew et al., 2011). 

Ecological models can be integrated in support decision making systems for 

ecological restoration, reserve design and conservation planning, impact 

assessment and resource management (Drew et al., 2011; Franklin, 2010; Guisan 

and Thuiller, 2005; Olaya-Marín et al., 2012; Pearce and Ferrier, 2000). This 

models are needed in Mediterranean rivers (Olaya-Marín et al., 2012; Vezza et al., 

2012), because 56% of endemic fish are threatened with extinction (Smith and 

Darwall, 2006). From a conservation point of view, models of species density and 

presence/absence help to search for better conservation and river restoration 

politics (Costa et al., 2012; Muñoz-Mas et al., 2012; Zarkami et al., 2012). 

Machine learning (ML) techniques have been seen in recent years as a 

promising discipline to advance the current knowledge of ecological processes and 

patterns (Drew et al., 2011; Jopp et al., 2011; Leclere et al., 2011; Olden et al., 

2008). ML has been developed from artificial intelligence and has been applied in 

several disciplines of environmental sciences (Hsieh, 2009), due to their ability to 

model nonlinear processes (Hsieh, 2009; Olden et al., 2008). This ML feature 

allows us to derive better predictions and improve the effectiveness of decision 

making in environmental management (Evans and Cushman, 2009). 

Currently, ML is a cornerstone and one of the most active research areas in the 

field of artificial intelligence (Jopp et al., 2011). Artificial neural networks (ANN) 

are one of the most effective ML techniques capturing nonlinearities in ecological 

problems (Feio and Poquet, 2011; Franklin, 2010; Lek et al., 2005), the use of 

ANN in freshwater studies demonstrates this affirmation. Baran et al. (1996) 
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predicted density and biomass of Salmo trutta in some rivers of the central 

Pyrenean mountains, Mastrorillo et al. (1997) modelled presence/absence of three 

fish species in south-western France, Brosse et al. (1999) found a good 

performance of ANN to predict fish spatial occupancy and abundance in a 

mesotrophic reservoir, Joy and Death (2004) simulated fish and decapod presence 

in Wellington Region North Island New Zealand. Fish presence/absence is well 

classified by ANN both in temperate zones (Tirelli and Pessani, 2011; Tirelli et al., 

2009) and tropical ones (Hauser-Davis et al., 2010), even modelling with 

unbalanced datasets (in terms of prevalence). Olaya-Marin et al. (2012) found 

satisfactory results modelling native fish richness with ANN, their approach 

provided an evaluation of the effects of hydromorphological changes and river 

restoration actions (weir removal) in three Spanish Mediterranean rivers. 

This study focused on Eastern Iberian barbel (Luciobarbus guiraonis), because it is 

a Mediterranean endemic freshwater fish mainly distributed in the Júcar River 

Basin, in Spain (Doadrio, 2001; Jiménez et al., 2002), and their ecology and 

biology is poorly known (Doadrio, 2001); Moreover, this species is facing a high 

risk of extinction and its population is estimated to decline by 30% in the next ten 

years (IUCN, 2012). The ichthyofauna of the Iberian Peninsula is one of the most 

endemic in the world (Doadrio and Aldeguer, 2007); therefore, the study of aquatic 

ecosystems in this area should be supported by reliable models to predict future 

ecological changes, in order to understand potential alterations and avoid their 

occurrence through the implementation of restoration actions (Clark et al., 2001; 

Drew et al., 2011; Olaya-Marín et al., 2012). 

In this paper, we evaluate the ability of ANN to identify local stressing factors 

affecting density and presence/absence of L. guiraonis in the Júcar River Basin 

District at the basin scale. The aims of the research are (i) to identify relevant 

environmental variables and model density and presence/absence of L. guiraonis 

and (ii) to assess the importance of each predictive environmental variable in the 

estimation of density and presence/absence. 
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5.2 MATERIALS AND METHODS  

5.2.1 STUDY AREA AND DATA COLLECTION 

The research was conducted in the main streams of the Júcar, Cabriel and Turia 

rivers (Eastern Iberian Peninsula). This area is characterized by torrential storms in 

humid seasons, severe droughts in dry seasons and a hydrological response 

controlled by the rainfall regime, which is typical in Mediterranean environments 

(Granado-Lorencio, 1996; Vila-Gispert et al., 2005). Temporal irregularities of 

rainfall cause a particular variability pattern expressed by interannual differences in 

discharge (Gasith and Resh, 1999; Granado-Lorencio, 1996). The natural 

hydrological regime in these rivers has been altered by dams and weirs, used for 

hydropower generation and water consumption for agricultural, industrial and 

domestic activities. The most altered habitats are located in the middle and lower 

parts of the watersheds, in which there is a poor development of riparian vegetation 

caused by agricultural pressures and wastewater discharges (Martínez-Capel et al., 

2008), this situation is mainly evidenced in stretches located from Alarcón‟s dam 

to the mouth in Júcar river.   

Mediterranean fish communities are known by their low species richness, high 

endemicity (Ferreira et al., 2007) and the predominance of Cyprinids, which 

possess high specific diversity, are exclusive of epicontinental water bodies, and 

have typical morphofunctional and physiological adaptations to fluctuating 

environments (Granado-Lorencio, 1996, 2000). The current knowledge about 

Mediterranean freshwater fish inhabiting the Iberian Peninsula is scarce (Aparicio 

et al., 2011; Ferreira et al., 2007; Maceda-Veiga and De Sostoa, 2011). Whereas 

other studies about habitat requirements at microhabitat and mesohabitat scale are 

available in the Iberian Peninsula (e.g. Costa et al., 2012; Martínez-Capel et al., 

2009), the studies at the basin scale are very scarce. L. guiraonis is a cyprinid 

species and it has been poorly studied; consequently, there are little information 

about their biology and ecology, inferred from similar species like Luciobarbus 

graellsii  and Luciobarbus bocagei (Doadrio, 2001). But these extrapolations could 

conduct erroneous conclusions about the ecology of L. guiraonis and the design of 
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inadequate restoration measurements and management actions (Aparicio et al., 

2011). 

5.2.2 RESPONSE AND PREDICTIVE VARIABLES  

The sampling dataset is constituted by 145 sites along the main streams of the 

considered Mediterranean rivers (Fig. 1). Density and presence/absence of L. 

guiraonis were calculated based on single-pass electrofishing in spring, summer 

and fall seasons from 2004 to 2010. Fish density and presence/absence were the 

dependent variables for the models in function of biological and habitat variables. 

Species density was expressed as the number of fish caught per m
2
. 

Fig.1. Study area showing the distribution of the 145 sampling sites in the three rivers 

(Jucar, Cabriel and Turia rivers). 
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Twenty seven environmental variables were used as potential predictors in the 

ANN models (Table 1), these variables were selected taking into account their 

ecological importance for fish life cycle (Bernardo et al., 2003; Costa et al., 2012; 

Granado-Lorencio, 1996; Jackson et al., 2001; Oberdorff et al., 1995). The 

potential predictors were obtained from three sources (Table 1): in situ (field 

work), GIS analysis and official monitoring networks (MN) of stream flow and 

biological variables. Geographical variables (i.e. altitude, distance from the source, 

channel length without artificial barriers, and others) were computed in ArcGIS 

9.3.1 with a 5-meter resolution digital elevation model supplied by the National 

Geographical Institute of Spain.  

Altitude, water temperature, and the natural slope in the channel play an 

important role in fish communities‟ distribution along the rivers, since they 

influence flow velocity, water oxygenation and the magnitude of sediments 

transported by the stream (De Sostoa, 2002; Jackson et al., 2001), factors that 

affect the development of different habitats for fish life (Bernardo et al., 2003; 

Costa et al., 2012). Channel length without artificial barriers, number of tributaries 

between artificial barriers and drainage area between artificial barriers were 

included in the research because dams and weirs are physical obstacles limiting 

fish migration along the river (García de Jalón and González del Tánago, 2007; 

García de Jalón et al., 2007); moreover, longitudinal connectivity restoration is 

critical to re-establish the natural dynamics of freshwater ecosystems (Lake et al., 

2007). Other geographical and hydrological variables like distance from the source, 

drainage area, potential insolation, magnitude and variability of river discharge are 

key factors for Mediterranean ichthyofauna conservation (Filipe et al., 2010; 

Granado-Lorencio, 2000; Hermoso and Clavero, 2011). 

It is well known that water quality affects the distribution and composition of 

fish communities (Jackson et al., 2001; Schlosser, 1991). We considered water 

quality indices (ICGp, IBMWP and QBR) because they give an integrative 

estimation based on different source of environmental quality and helped us to 

reduce dimensionality. The Iberian Biomonitoring Working Party index (IBMWP) 

is a modification of the Biological Monitoring Working Party score system (1978), 

adapted by Tercedor and Sánchez-Ortega (1996; 1988) to the Iberian Peninsula. 
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This index assesses biological quality in water bodies based on macroinvertebrates, 

their values are obtained by the sum of the partial scores assigned to each family of 

macroinvertebrates present in each stretch. The total IBMWP score goes from 0 to 

more than100 (it is possible to find IBMWP values higher than 300 in Iberian 

rivers). The general physico-chemical water quality index (ICGp) is a variation of 

the general quality index (CHJ, 2008; Martínez-Muro, 2003), originally developed 

by Provencher and Lamontagne (1977). The ICGp index results from the 

combination of 11 parameters, its values are limited in the range of 0 (heavily 

polluted water) to 100 (very good quality). 

The interactions among species influence fish distribution (Broennimann et al., 

2012; Fitzpatrick et al., 2007), but this kind of variables are commonly neglected 

when species distribution models are built (Davis et al., 1998; Fitzpatrick et al., 

2007). However, we have included in our analysis some variables related to the 

fish communities and species interactions, like the proportion of exotic fish species 

(%), total density of invasive fish, and fish predators‟ density, since exotic species 

are one of the main causes of threat for endemic ichthyofauna in Mediterranean 

rivers (Doadrio, 2001b; Granado-Lorencio, 1996; Smith and Darwall, 2006). 

At ungauged locations, the mean monthly flow was calculated through a linear 

interpolation based on the relationship among flow in natural conditions and the 

accumulated drainage area between gauged sites (Caissie, 2006a; Caissie and El-

Jabi, 1995; Leopold and Maddock, 1953; Leopold et al., 1964). River discharge 

and its pattern of variability define the lifecycle traits of Mediterranean fish species 

(Ferreira et al., 2007) therefore, different variables regarding the magnitude and 

variability of river flows (at monthly scale) during the previous years and in the 

spawning season before the fish sampling were considered. The riparian habitat 

quality index (QBR, Munné et al., 2003) was introduced in the study to assess the 

morphological conditions of the sampling sites. QBR is the integration of four 

components and synthesizes different qualitative features describing the 

conservation status of the riparian area: total vegetation cover, vegetation cover 

structure, vegetation cover quality, and river channel alterations. Each feature can 

be evaluated from 0 to 25 and the total valuation can be in the range of 0 to 100. 

QBR is accepted as a well approximation of riparian quality in different regions, 
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including Mediterranean environments (Aguilella et al., 2005; Garófano-Gómez et 

al., 2011). Finally, fishing year and river name were used as potential predictive 

variables in order to know if these variables have a relevant weight predicting 

density and presence/absence of L. guiraonis.  

Table 1. Potential environmental variables selected to build the presence/absence and 

density predictive models. 

Variable Code Method Range Mean 

Channel length without artificial barriers (km) CWB GIS 0.8-79.0 43.8 

Number of tributaries between artificial 

barriers 

TAB GIS 0.0-54 28.7 

Altitude (m a.s.l) ALT GIS 28-1286 553.8 

Drainage area (km2) DRA GIS 95-18296 4189.0 

Drainage area between artificial barriers DAB GIS 3.0-4624 866.0 

Distance from the source (km) DHS GIS 20.53-383.7 168.0 

Natural slope of the channel (%) NSL GIS 0.0-6.8 0.44 

Solar radiation (WH/m2) SOR GIS 1153-6298 3915.6 

Water temperature (ºC) WAT MN 5.76-19.9 13.6 

Mean Annual flow rate (m3/s) FMA MN 0.03- 12.22 5.1 

Mean monthly flow (Two year before 

sampling  ) (m3/s) 

MMF  0.103- 13.62 5.13 

Inter-annual mean flow (5 years before 
sampling)  

FIA MN 0.11- 12.36 6.02 

Coefficient of variation of mean monthly flows 

(5 years before sampling) 

FIM MN 0.23- 1.09 0.65 

Coefficient of variation of mean annual flows 

(5 years before sampling) 

FCV MN 0.15-0.91 0.36 

Inter-monthly flow variation of the mean 
monthly flows (5 years before sampling) 

FVM MN 0.36-3.37 0.83 

Maximum monthly flow (April to June before 

sampling) (m3/s) 

MaxMF MN 0.015- 26.38 7.82 

Mean monthly flow (April to June before 

sampling) (m3/s) 

MeanMF MN 0.01- 21.0 6.3 

Minimum monthly flow (April to June before 
sampling) (m3/s) 

MinMF MN 0.0015-7.87 2.73 

Mean monthly flow (of the two months with 

the lowest monthly flow for the year before 
sampling) (m3/s) 

MeanLMF MN 0.004- 8.2 2.9 

Sampling year FIY n/a 2004-2010 n/a 

River name RN n/a 1-3 n/a 

Proportion of exotic fish species (%) PEF In situ 0.0-100 37.6 

Total density of invasive fish (Fish/m2) DIF In situ 0.0-0.008 0.002 

Fish predator density (Fish/m2) FPD In situ 0.0- 0.0035 0.0005 

Index of Riparian Habitat Quality QBR MN 10-100 73.28 

Iberian Biomonitoring Working Party  IBMWP MN 61-260 124.3 

Physicochemical Index of water quality ICGp MN 67.57-87 80.5 
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5.2.3 ARTIFICIAL NEURAL NETWORKS MODELLING 

Artificial neural networks are mathematical models inspired in nervous system 

structure, being its fundamental building block is the neuron (Lek et al., 2005; 

Olden et al., 2008). ANN are valuable in ecological studies because they are 

flexible, robust, and generalizable (Alpaydın, 2010; Lek et al., 2005; Olden et al., 

2008). The most used ANN in ecology is the multilayer perceptron (MLP) (Özesmi 

et al., 2006), which can be successfully applied in pattern recognition problems, 

forecasting, signal processing and modelling of complex nonlinear systems 

(Goethals et al., 2007; Lek et al., 2005). In the learning phase, MLP weights are 

updated to reduce the differences between observed and predicted outputs; this 

process ends when the stopping criterion is reached (e.g. early stopping: which 

implies stopping the training phase when validation error increases in a specified 

number of iterations). Given the advantages of MLP, in this study we used it to 

predict presence/absence and density of L. guiraonis. Presence/absence was 

considered as a binary variable, where presence was denoted by 1 and absence was 

represented by 0. On the other hand, density was classified according to the 

number of fish per square meter; class 1 means a density of zero, class 2 comprises 

densities between 0.001 and 0.019, and class 3 comprises densities in the range 

from 0.020 to 0.066 ind/m
2 
(Table 2). 

Table 2. Range and total number of data classes used to build the presence/absence and 

density predictive models. 

Model Class Range 
Number of 

data  

Presence/Absence 
Presence 1-1 102 

Absence 0-0 43 

Density 

Class 1 0-0 43 

Class 2 0.001 -0.019 52 

Class 3 0.020 -0.066 50 

 

The generalization capacity of ANN can be restricted by the distribution pattern 

and magnitudes of the original data. Data pre-processing is highly recommended 

before building the ANN models (Goethals et al., 2007). Accordingly, input 

variables have been previously transformed to a similar order of magnitude. In this 

case, environmental variables involved in the problem were proportionally scaled 
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between 0 and 1 in the range of their maximum and minimum values (e.g. Olden 

and Jackson, 2002b; Park et al., 2008; Qin et al., 2010; Tirelli and Pessani, 2009). 

Another aspect playing a crucial role in the overall performance of the resulting 

network is the input variable selection process. A two-step methodology has been 

used herein. Firstly, an exploratory analysis to identify collinearity among the 

potential predictors was carried out by hierarchical cluster analysis using squared 

Spearman correlations (ρ
2
) as similarity measure (Fig. 2). In the case of highly 

correlated variables (ρ
2
> 0.8), only the one with higher ecological interpretability 

was chosen (Olaya-Marín et al., 2012). Secondly, a forward stepwise method was 

conducted to eliminate irrelevant inputs and thus, reducing network architecture 

complexity (Gevrey et al., 2003).  

Several MLP models were built and tested, in order to establish (by systematic 

trial and error) the optimal number of neurons in the hidden layer and the proper 

transfer function in the hidden and output layers. Commonly, transfer functions are 

nonlinear; they transform the weighted sum of inputs into an output signal (Isa et 

al., 2010; Zhang et al., 1998) and it is typical the use of the same transfer function 

in hidden and output layers (Goethals et al., 2007; Lek et al., 2005). MLP results 

are very sensitive to the implemented transfer functions in their layers (Isa et al., 

2010; Piekniewski and Rybicki, 2004). Generally, the selection of a transfer 

function is based on the best performance by trial and error (Isa et al., 2010), 

comparing different transfer functions in the hidden and output layers. In this work, 

two transfer function combinations (hidden layer/output layer) were tested: 

hyperbolic tangent/linear, and logistic/linear; the combination offering the best 

performance was selected (Isa et al., 2010; Olaya-Marín et al., 2012).  

The ANN models were designed with a single hidden layer and the number of 

neurons optimized by trial and error. Bishop (1996) have shown that a single 

hidden layer is sufficient for statistical applications with reasonable computation 

requirements. Moreover, the use of a single hidden layer is comparable to the 

results using multiple hidden layers (Kurková, 1992). The dataset was randomly 

divided into three sections (training: 60%, validating: 20% and testing sets: 20%), 

these percentages are frequently used in literature (Qin et al., 2010; Ryan et al., 

2004). The gradient descent with momentum and adaptive learning rate 
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backpropagation algorithm (traingdx function in Matlab) was the optimization 

method used to train the networks (Demuth et al., 2010) with a momentum 

constant of 0.9 and a learning rate of 0.01. Three efficiency indices have been 

selected to evaluate model‟s predictive capacity: Correctly classified instances 

(CCI) (Buckland and Elston, 1993; Fielding and Bell, 1997), Cohen‟s Kappa 

(Cohen, 1960) calculated upon the confusion matrix (Table 3) and the area under 

the curve (AUC) of the receiver-operator characteristic (ROC) plots (Hanley and 

McNeil, 1982).  

Table. 3. Error matrix used to calculate the percentage of correctly classified instances 

(CCI) and Cohen’s Kappa. 

 Observed 

Predicted Presence Absence 

Presence a (true positive) b (false positive) 

Absence c (false negative) d (true negative) 

 
The percentage of correctly classified instances (CCI) was calculated as follows: 
 

100
a d

CCI
n

 
  
 

  (1) 

Cohen‟s kappa measures the proportion of correctly classified points after 

accounting for the probability of chance agreement (Drew et al., 2011). Kappa 

ranges from 0 to 1. According to previous researches (Drew et al., 2011; Koch et 

al., 1977; Manel et al., 2001) the index can be valued as poor (0.00 to 0.39), 

moderate (0.40 – 0.59), substantial (0.60 to 0.79) or excellent (0.80 to 1). Cohen‟s 

kappa was calculated by the following equation: 

     

     

2

2
1

a b a c c d b da d

n n
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a b a c c d b d

n
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  

   
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 
 

 (2) 

AUC is calculated as the area under the ROC curve (Franklin, 2010) and it is 

applicable only to binary variables (e.g., presence/absence). AUC is interpreted as 

the probability of correctly classifying a pair of subjects randomly selected, one 
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from the presence group and the other from the absence group (Fielding and Bell, 

1997; Franklin, 2010). AUC ranges from 0.50 to 1, a value between 0.50 and 0.70 

indicates a low discrimination (poor model performance), from 0.70 to 0.90 

moderate discrimination and higher than 0.90 high discrimination (Manel et al., 

2001; Swets, 1988). 

The selection of a parsimonious model is important to find a robust model. We 

took into account the number of parameters using the Akaike‟s Information 

Criterion (AIC); this performance metric considers the fitting error and the number 

of variables used to reach that error, and is useful to assess the relationship between 

fitting and neural network size. AIC is calculated as follows:   

ln( ) 2AIC n RMSE k    (3) 

Where ln  is the natural logarithm, k  is the number of network weights, 

calculated as follows: k = input neurons × hidden neurons + hidden neurons × 

output neurons + bias parameters (see Brosse and Lek, 2000, for details), n is the 

sampling size and RMSE is the root mean squared error. A smaller AIC means a 

better performance in relation to the number of parameters used by the model. So, 

choosing the model with the smallest AIC implies to select the simplest one with 

less inputs and hidden neurons. This criterion is valuable due to the models with 

fewer variables are much easier to interpret, have a lower level of prediction 

uncertainty (Jorgensen and Fath, 2011), and optimal ANN architecture is the 

simplest one that adequately captures the relationships in the training data 

(D'Heygere et al., 2006).  

Finally, to evaluate the importance of input variables in each model, the partial 

derivatives method (PaD) was implemented (Dimopoulos et al., 1995). PaD 

method can be used to analyse the output changes as a response of small variations 

in each input variable, and estimate input relative importance to predict 

presence/absence and density. 
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5.3 RESULTS 

The correlation matrix of variable indicated that altitude (ALT) and drainage 

area (DRA) were strongly correlated (Fig. 2). Following literature, DRA has a 

higher ecological importance for fish and is broadly used to explain variations 

among aquatic communities (Ibarra et al., 2003; Olaya-Marín et al., 2012); thus, 

ALT was removed as potential predictive variable. Minimum monthly flow 

(MinMF, April-June) was highly correlated (ρ
2
 = 0.97) with mean monthly flow of 

the lowest 2 flows (MeanLMF); MeanLMF was omitted as potential predictive 

variable because MinMF acts as a critical threshold for fish spawning. Maximum 

monthly flow (MaxMF) has a correlation of 0.98 with mean monthly flow 

(MeanMF); because MaxMF is important to L. guiraonis spawning, which occurs 

from April to June (Doadrio, 2001), we excluded MeanMF from the dataset. 

According to Fig. 2, the number of tributaries between artificial barriers (TAB) had 

a strong correlation with the channel length without artificial barriers (CWB); 

however, we preserve both of them for input selection through forward stepwise 

method, given their importance for Mediterranean fish life (Granado-Lorencio, 

2000; Olaya-Marín et al., 2012). 

Fig. 2. Hierarchical clustering using squared Spearman correlation (ρ
2
) of environmental 

variables. Nomenclature is shown in Table 1. 

Hyperbolic tangent in the hidden layer and linear in output layer were the best 

transfer functions found to predict presence/absence of L. Guiraonis. Fig. 3a shows 

that Cohen‟s Kappa increases at a high rate from 1 to 8 predictive variables, the 
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rate of improvement is dramatically reduced from 8 to 19 variables, and using more 

than 19 variables there is another significant increment (maximum k=0.85). The 

density model (Fig. 3b) reached the best performance using logistic and linear 

transfer functions; the best performance with a small number of inputs was reached 

by the model with 5 input variables, and using more than 14 variables we can see a 

better performance, but we selected the model with 5 predictors because a model 

with a reduced number of input variables is more interpretable and applicable 

(Drew et al., 2011).   

Fig. 3. Influence of the number of input variables and transfer functions (Hidden 

layer/output layer) in models’ performance. a) presence/absence of L. guiraonis. b) Density 

of L. guiraonis. 
To predict presence/absence of L. guiraonis, the best neural network 

architecture found had three layers (i.e. 8→6→2) with eight nodes in the input layer, 

six neurons in the hidden layer, and two neurons in the output one (Fig. 4a). The 

model with 12-inputs (12→9→2) has a kappa of 0.77 (Fig. 3 and Table 4), but it 

was not selected because it has almost twice the number of parameters of the 8-

inputs model. This involves a test-AIC of 243.88 in the 12-inputs model and a test-

AIC of 113.4 in the 8-inputs model (Table 5). Moreover, both models have a kappa 

coefficient classified as substantial. 

 The eight predictive variables identified in the selected model were: Drainage 

area (DRA), proportion of exotic fish species (PEF), solar radiation (SOR), mean 

annual flow rate (FMA), number of tributaries between artificial barriers (TAB), 

coefficient of variation of mean monthly flow (FIM) and the Iberian Biomonitoring 
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Working Party (IBMWP). This network possesses a high percentage of CCI (87%), 

a substantial kappa coefficient (0.66) and a good performance evidenced by a value 

of 0.85 in the area under the ROC curve, which indicate that this model 

discriminates well (Gabriels et al., 2007; Manel et al., 2001).  

Table 4.  Predictive results of ANN models (CCI= Percentage of correctly classified 

instances; Cohen's kappa; AUC= Area Under the Curve) 

Model ANN-structure CCI 
Cohen's 

kappa 
AUC 

Presence/absence 
8→6→2 87% 0.66 0.85 

12→9→2 90% 0.77 0.93 

Density 
5→4→3 62% 0.43 0.71 

15→11→3 72% 0.57 0.83 

 

We found a model with five inputs as the best parsimonious tool to interpret 

density of L. guiraonis (Table 5). These inputs are the coefficient of variation of 

mean annual flows (FCV), proportion of exotic fish species (PEF), minimum 

monthly flow from April to June before sampling (MinMF), sampling year (FIY) 

and IBMWP. The architecture of this model is composed by five nodes in the input 

layer, four neurons in the hidden and three nodes in the output one (i.e., 5→4→3), 

the model classifies density in three classes in the output layer (Fig. 4b). This 

model presents a lower performance than presence/absence model (Table 4); with 

CCI of 62%, a moderate kappa coefficient (0.43) and an AUC of 0.71. These 

values indicate a moderate efficiency of the model (e.g. Tirelli et al., 2009).  

Models with more input variables also have a moderate efficiency. For example, 

density model with 15 inputs (15→11→3) presents a moderate kappa coefficient 

(0.57), a moderate AUC (0.83) and a CCI of 72%. However, this model has 212 

parameters in contrast to the 39 parameters of the 5-inputs density model. Table 5 

shows a better performance concerning AIC in the 5-inputs density model than 15-

inputs density model. 
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Table 5.  Akaike Information Criterion (AIC) calculated in presence/absence and density 

models (RMSE= Root mean squared error, n = sampling size, k = neural network 

parameters) 

Model Phase RMSE n K AIC 

Presence/Absence 

ANN 

(8→6→2) 

Training 

Validation 

Test 

0.327 

0.310 

0.466 

87 

29 

29 

68 

38.76 

102.08 

113.84 

ANN 

(12→9→2) 

Training 

Validation 

Test 

0.224 

0.433 

0.354 

87 

29 

29 

137 

143.8 

249.73 

243.88 

Density 

ANN 

(5→4→3) 

Training 

Validation 

Test 

0.422 

0.452 

0.439 

87 

29 

29 

39 

2.92 

54.95 

54.17 

ANN 

(15→11→3) 

Training 

Validation 

Test 

0.375 

0.419 

0.400 

87 

29 

29 

212 

338.56 

398.75 

397.45 

 Fig. 4.  Schematic description of the ANN models finally selected. a) presence/absence of 

L. guiraonis. b) Density of L. guiraonis. Variables’ nomenclature is presented in Table 1. 

 

The implementation of the partial derivatives algorithm revealed that the most 

influential variables to predict presence/absence of L. guiraonis were solar 

radiation (SOR) with a relative importance of 27.8%, drainage area (DRA) with 

24.53%, and proportion of exotic fish species (PEF) with 13.60% (Fig. 5a). Partial 

derivatives of each of these variables were plotted against the corresponding input 

values (e.g. Brosse et al., 2003). Positive values in y axes (Fig. 6) indicate a 

positive relationship between the input and the output variable, on the contrary, 
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negative values express an inverse relationship (Gevrey et al., 2003; Olaya-Marín 

et al., 2012).  

Fig. 5. Contribution of each independent variable predicting presence/absence (left) and 

density (right), based on the partial derivatives method (PaD). Dotted lines represents the 

level of significance (13 and 20% respectively) according to Brosse et al, (2003). 

Fig. 6. Output partial derivatives related to the most significant predictive variables, as a 

function of each environmental variable. Left a) Presence of L. guiraonis. Right b) Density 

of L. guiraonis.  



Modelling factors affecting the presence/absence and density of Luciobarbus 

guiraonis (Júcar River Basin, Spain) 

157 

The analysis of Fig. 6a leads to the following remarks: 

 Most positive partial derivatives with respect to drainage area (DRA) occurs 

in the range between 3000 to 5000 km
2
. This means that the increase of 

DRA would conduct to an increment of L. guiraonis presence, but this 

relation is weaker in DRA values higher than 5000 km
2
. 

 When the proportion of exotic fish species (PEF) reaches the range of 50 to 

100% we found the highest negative partial derivatives. So, for values of 

PEF higher than 50 we can have a higher importance of PEF in the 

reduction of L. guiraonis presence.  

 The negative partial derivatives in relation to solar radiation (SOR) show 

that the increase of the SOR contributes to the reduction of probability of L. 

guiraonis presence, and the highest contributions are found in the range of 

2000 to 4200 WH/m
2
. 

The most important variables in the density model were the coefficient of 

variation of the mean annual flow (FCV) with a relative importance of 50.5% (Fig. 

5b), and the proportion of exotic fish species (PEF) with 24.40%. Given the 

moderate performance of this model, PaD method is unable to support an 

ecological interpretation of the predictive variables. Partial derivatives with respect 

to FCV and PEF are positive and negative at the same time, without a precise 

tendency; therefore, it is not possible to provide a robust mathematical conclusion 

about the action of FCV and PEF on L. guiraonis density (Fig. 6b).  

5.4 DISCUSSION AND CONCLUSION 

The developed model to classify the presence/absence of the studied species is 

efficient, and their predictive variables have ecological relevance; moreover, the 

relationships revealed by the PaD method have ecological meaning. These features 

increase the interest of the proposed model, because it can be used to study the 

relationships between the environmental variables and L guiraonis, which have a 
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direct impact to improve the understanding of the fluvial Mediterranean ecosystem 

behaviour.  

Regarding the selected density model, it is important to highlight that the 

selected inputs are relevant for the studied species; even if the model had a 

moderate performance; it is not possible to establish a clear relationship between 

input variables and species density from PaD analysis (Fig. 6b). It could be caused 

by an interaction between FCV and PEF or another variable (e.g. Gevrey et al., 

2003) which probably imply the difficulty to identify a single input perturbation 

effect on species density (Gevrey et al., 2006). For this reason, it is recommended 

employ in future analysis PaD2 (see Gevrey et al., 2006, for details) to study the 

contribution of all possible pair-wise combinations of input variables. 

From the partial derivatives method, the predictive variables with the strongest 

contribution to predict presence/absence were drainage area (DRA), solar radiation 

(SOR) and proportion of exotic fish species (PEF). Based on our results, L. 

guiraonis have a positive relation with drainage area and the species prefers the 

stretches located at the middle parts of the watersheds (Fig 6a). Gortázar et al. 

(2007) found a low presence of L. guiraonis in the upper parts of Cabriel River and 

a large population in the middle, which is a zone with a proper temperature range 

for cyprinids development. Kottelat and Freyhof (2007) affirmed that the presence 

of L. guiraonis is more frequent in middle and lower river reaches, and related its 

decline with water abstraction and habitat modification; these alterations are 

present in the lower parts of the Júcar, Cabriel and Turia rivers. Martínez-Capel et 

al. (2008) discussed that the population of the studied species have declined in the 

Júcar River through the years, due to the large proportion of lentic habitats 

(produced by frequent weirs) and the high proportion of fine-textured soils in the 

channel bed, which affects the eggs survival. The same author revealed that the 

lack of recruitment can be the main cause of L. guiraonis declining, which is 

noticeable in the lower reaches of the Júcar and Turia rivers (Estrela et al., 2004).  

Concerning the solar radiation (SOR), the sensitivity analysis indicated a 

negative relationship between SOR and the presence of L. guiraonis (Fig. 6b). 

Several authors have found that solar radiation is a critical environmental factor 
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governing temperature change in fluvial systems (Brown and Krygier, 1970; Isaak 

et al., 2012; Webb et al., 2008). Water temperature is a key variable for fish 

survival because affects their physiology and behaviour (Caissie, 2006b; 

Hrachowitz et al., 2010). This environmental variable directly regulates dissolved 

oxygen concentration in the water, affecting spawning time, growing rates, and 

spatial-temporal distribution of species (Baron et al., 2002; Jackson et al., 2001; 

Magnuson et al., 1979; Prchalová et al., 2006). Currently, there is a deficiency of 

knowledge about the effect of water temperature on L. guiraonis and more efforts 

are needed to investigate this relationship because climate change studies have 

indicated that Mediterranean rivers would experience an increase of droughts 

intensity and frequency (Bonada et al., 2007; Hermoso and Clavero, 2011; Mas-

Martí et al., 2010; Sabater and Tockner, 2010), which could severely affect the 

establishment and survival of this species in the future.  

The negative relationship between the proportion of exotic fish species (PEF) 

and the presence of L. guiraonis (Fig. 6a) is supported by the findings of Doadrio 

(2001), who described a reduction of this species due to the introduction of exotic 

species. In the studied river basins, L. guiraonis cohabits with the following exotic 

species: Pumpkinseed (Lepomis gibbosus), Largemouth bass (Micropterus 

salmoides), Northern pike (Esox lucius), the pikeperch (Sander lucioperca), 

Pyrenean gudgeon (Gobio lozanoi), Bleak (Alburnus alburnus), Common carp 

(Cyprinus carpio), Iberian straight‐mouth nase (Pseudochondrostoma polylepis), 

Gudgeon (Gobio gobio) and Rainbow trout (Oncorhynchus mykiss). Exotic species 

have a variety of adverse effects on native fauna, such as predation, competition, 

hybridization, disease vector and habitat alteration (Almeida and Grossman, 2012; 

Granado-Lorencio, 2000). In the Júcar, Cabriel and Turia rivers, these invasions 

have been favoured by the construction of dams and weirs, which have created a 

suitable habitat for the establishment of exotic species (Olaya-Marín et al., 2012), 

changing from a lotic system to a lentic one, where some exotic species find the 

suitable habitat for spawning (e.g. the bass and the pumpkinseed). Moreover, these 

hydraulic structures have segregated L. guiraonis to isolated habitats and 

interrupted upstream migration in the spawning season. Generally speaking, many 

exotic species cannot be adapted to the natural Mediterranean hydrological regime, 
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characterized by water stress in summer and a torrential regime in fall (Doadrio 

and Aldeguer, 2007); hence, they are present in the studied area because the flow 

regulation and artificial obstacles have benefited the establishment of these species 

(Corbacho and Sánchez, 2001; Vila-Gispert et al., 2005). 

The predictive variables of the density model (FCV, PEF, MinMF, FIY and 

IBMWP) have a reasonable influence on Mediterranean fish species from an 

ecological point of view (Bernardo et al., 2003; Doadrio, 2001; Granado-Lorencio, 

2000; Olaya-Marín et al., 2012). Previous studies have demonstrated that the 

coefficient of variation of the mean annual flow (FCV) is important for fish 

distribution in Mediterranean rivers, because native fish lifecycle is well adapted to 

fluctuating discharges as a function of natural seasonality (Doadrio and Aldeguer, 

2007). Moreover, the stream flow is one of the main drivers of the fish population 

dynamics, as it is demonstrated in Mediterranean rivers and elsewhere (Alonso-

González et al., 2004; Lobón-Cerviá and Mortensen, 2005). As explained above, 

the exotic species are a strong hazard for native freshwater fish in Mediterranean 

areas (Doadrio, 2001b; Hermoso and Clavero, 2011; Smith and Darwall, 2006). 

The minimum monthly flow from April to June (MinMF) is important to L. 

guiraonis because this species migrates in these months for spawning (Kottelat and 

Freyhof, 2007). IBMWP, as a biological indicator of the water quality, was found 

as a fundamental variable to predict fish distribution in Mediterranean rivers 

against other water quality indices (Carballo et al., 2009; Olaya-Marín et al., 

2012).    

The presence/absence model provides important information about the relation 

of L. guiraonis with biotic and habitat variables. This knowledge complements 

other models performed at the fish community level, and could be used to support 

future studies and practical decisions about the management and conservation of 

this species in the Júcar River Basin District. The density model did not permit to 

establish a clear relationship between the predictive variables and density of L. 

guiraonis, which should be considered in future studies to advance in the 

understanding of ecological interactions in Mediterranean ecosystems, and the 

critical factors for the species population enhancement.  
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The application of multilayer perceptron artificial neural networks had shown in 

several studies their capability to model complex ecological patterns and processes, 

with higher performances than traditional statistical approaches (Franklin, 2010; 

Olden et al., 2008). Moreover, with other techniques is difficult to represent dataset 

patterns and trends. Given the nonlinearities in ecological processes and patterns, 

linear modelling is not a promising field to develop predictive models. Despite the 

advantages of ANN, they have been categorised as black-box models due to the 

little information given by the network about the relationship of each input variable 

and the dependent variables. this is explained by the fact that these relationships are 

implicit in the architecture of the MLP model. The black-box condition is the main 

disadvantage of MLP in contrast to traditional statistical approaches, in which, we 

could quantify the influence of each independent variable in the modelling process 

and the level of confidence in the prediction.  

Nevertheless, several methods have been developed to overcome this issue of 

MLP; one of them is the partial derivative method (PaD), which is used to assess 

the contribution of each input variable in the prediction. PaD have been considered 

the most useful method to identify the degree of contribution of input variables in 

ANN models (Park and Chon, 2007), but PaD is calculated in relation to one 

independent variable at a time. Thus, when a predictive variable interacts with 

other one is difficult to explicitly represent the relationship, as it was observed in 

PaD analysis of the density model in this work. The improvement of the future 

models with the implementation of new techniques like PaD2, is clearly a line of 

research with promising results in the field of the data-driven modelling 

approaches. 
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Chapter 6 

Conclusion and future work 

6.1 GENERAL CONCLUSIONS 

In the following paragraphs I have summarized the conclusions of the PhD 

thesis, according to the general and specific objectives mentioned in previous 

chapters. 

The ANN model built to predict native fish richness combines variables 

describing physical habitat and water quality, and it has demonstrated potential to 

identify the primary drivers of fish species richness patterns in Mediterranean 

rivers. The most critical variables at the basin scale were the index of water quality 

based on invertebrates (IBMWP), the proportion of riffle habitat, and the mean 

annual flow. Simulating the effect of obsolete weirs removal in the Júcar River, the 

model indicated a significant rise of native fish richness in response to the increase 

in channel length without artificial barriers and the potential increase in riffle 

proportion. 

Based on future expectations about mean annual flow reduction in the Júcar 

River Basin (related to climate change), a simulation of the potential effects 

indicated a decrease of fish species richness. Due to this potential degradation of 

the ecological status, and the expected reduction of discharges, it is very important 

to adapt the water management strategies to address the consequences of the global 
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change. This ANN model at basin-scale means the first step for modelling fish 

communities in more complex simulations, at different spatial and time scales, in 

order to assess the effects of water scarcity and global change on the Mediterranean 

fish communities. 

Based on the finding of this PhD thesis, the habitat alterations are the main 

hazardous factors for the conservation of the native fish species in the Júcar, 

Cabriel, and Turia rivers. This study has shown that habitat alterations (including 

reduction of connectivity) are more important than biotic interactions (e.g. related 

to invasive species) to predict native fish richness. The results suggest that a 

Mediterranean fluvial system subject to anthropic disturbances and regulations is 

more vulnerable to exotic species invasion than a natural system, being the habitat 

degradation the driver of the ecological decline. The analysis based on the ANN 

models provides ideas to improve the ecological status in the Mediterranean 

freshwater ecosystems, and also to prevent the loss of biodiversity and ecological 

integrity of the fluvial ecosystem. Examples of these measures are the removal of 

abandoned weirs, design and operation of optimal environmental flow regimes, 

water quality improvement, and enhancement of the natural riparian vegetation. 

However, these prioritized actions must be carefully interpreted in the context of 

each river basin, where a different ranking of the environmental controls is 

possible, and the hierarchy of scales in the habitat factors may produce different 

effects.    

Artificial neural networks and Random Forests constitute valuable tools to 

predict fish richness; their comparison showed that the best predictive method 

cannot be chosen a priori. Looking at the results, we could state that the use of 

more than one ML technique on the same study area was helpful, not only to 

identify the best model, but also to interpret the goodness of the results. ANN and 

RF models found the proportion of hydro-morphological units (HMU) as important 

variables to predict fish richness; particularly, percentage of riffles (RIF) was 

selected in ANN, and percentage of runs (RUN) and rapids (RAP) in RF. Even if 

the two modelling approaches arrived to identify different HMU types as predictive 

variables, one can see that the spatial distribution and dynamics of mesohabitats are 

important to model native species richness. As operational procedure for future 
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studies on fish species richness, the comparison of different ML methods may 

assist the critical analysis of the results; it is also recommended to repeat the 

analysis in other study sites within the Mediterranean regions. 

The presence/absence model provides important information about the relation 

of Luciobarbus guiraonis with biotic and habitat variables; this new knowledge 

could be used to support future studies and practical decisions about the 

management and conservation of this species in the Júcar, Cabriel and Turia rivers. 

Density model indicates that PaD method does not permit to establish a clear 

relationship between each predictive variable and the species density. This could be 

due to an interaction between FCV with PEF or another variable. For this reason, it 

is recommended to explore in future analysis the application of PaD2 analysis to 

depict the contribution of all possible pair-wise combinations of input variables. 

6.2 FUTURE RESEARCH 

Based on the findings of this thesis, the following research lines are proposed: 

 Elucidating the patterns and drivers of freshwater fish invasions: 

Are invasive species a symptom of habitat modification and 

degradation, or are they drivers of diversity loss? Is removing invasive 

species crucial to prevent the extinction of native fish species, or is it 

largely a waste of time and resources? There are few studies concerning 

the relationship of invasive species and ecosystem change (Gurevitch 

and Padilla, 2004; Hermoso et al., 2011; Spieles, 2010). Although the 

rapid growth of the invasions is associated with the decline of fish 

communities, it is not sufficient to state a causal relationship (i.e., 

association does not imply causation) (Spieles, 2010). This question 

was analysed in deep in this thesis, but it still needs further research to 

build new theories supporting the decision-making in river restoration 

(Gurevitch and Padilla, 2004; Olden et al., 2010; Spieles, 2010).  
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 Understanding the interactive effects of multiple stressors in 

freshwater ecosystems. There are some evidences indicating that the 

synergistic effects among stressors (e.g. habitat loss, species invasions, 

pollution effects on fish, overharvesting and climate change) may 

accelerate the extinction process of freshwater fishes (Leprieur et al., 

2009; Olden et al., 2010). „Synergistic‟ means the simultaneous effect 

of separate processes with a superior total effect than the sum of 

individual effects (Leprieur et al., 2009). Field observations and their 

analysis have shown that the above impacts can individually increase 

the risk of fish extinction in freshwater ecosystems (Dudgeon et al., 

2006). Our current understanding of the interactive effects is 

undeveloped (Olden et al., 2010), it is of a great importance because an 

on-going extinction crisis is affecting Europe's freshwater fishes, and 

ambitious conservation actions (including the adequate protection and 

management of key freshwater habitats) are urgently needed (Freyhof 

and Brooks, 2011). An important field of research will be the 

incorporation of multiple drivers of environmental changes to analyse 

their synergistic effects on freshwater ecological processes (Olden et 

al., 2010). Sensitivity of fish density as a function of habitat 

degradation is unclear; therefore, it will be interesting to analyse the 

synergistic effect of environmental change on other characteristics of 

the fish community like percentage of individuals with anomalies, age 

structure of native fish populations, abundance of native fishes, loss of 

native species, and alien fish pressure. These variables were identified 

by Aparicio et al. (2011) as key factors to define stream integrity. 

 Assessment of predictive uncertainty and study of the sources of 

uncertainty in aquatic ecosystem modelling. Machine learning 

techniques have proved to be a useful approach to advance our 

understanding of ecological phenomena (Drew et al., 2011; Olden et 

al., 2008). However results will inevitably contain some degree of 

uncertainty (Jopp et al., 2011; Peters et al., 2009) and rarely has been 
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taken into account when the robustness of ecological models was 

evaluated (Bruce G, 2012; Peters et al., 2009).  
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