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Abstract

Self-Optimization will be an integral part of LTE systems in future deployments

as part of the Self-Organizing Networks (SON) features defined in 3GPP LTE Re-

lease 9 and beyond. In this context, Mobility Load Balancing (MLB) is introduced

as a SON use case. MLB enables the optimization of the intra-LTE mobility pa-

rameters to the current load in the cell and in the adjacent cells to improve the

system capacity compared to static/non-optimised cell reselection/handover pa-

rameters. The idea of the MLB use case is to enable cells that suffer congestion

to transfer the load to other cells, which have spare resource. Such transfer must

usually be forced against (optimal) radio conditions and hence new mechanisms

need to be addressed.

The MLB use case goes hand-in-hand with handover procedure, admission con-

trol, and other RRM functionalities. It is foreseen that the MLB SON functional-

ity will optimize the system performance on a long-term basis as compared to the

RRM functionality which adapts the system to network conditions on a millisec-

ond basis.

The thesis shall consider the interaction between SON MLB use case and RRM

functionalities in order to optimize the system performance. Briefly, the thesis

outline may be given as follows:

• Conducted an extensive literature review about RRM and MLB algorithms,

identifying current solutions to the problem, and conducting a feasibility

analysis for realizing such solutions in real network deployments,

• Getting familiarized with the multi-cell simulator from the company,

• Helping in developing and improving an MLB-RRM concept (with direct

support/contribution from the supervisors).



• Building a simulation framework for analyzing load balancing and imple-

menting a framework (if not already there) for any required information ex-

change between the eNBs as required by the investigated solutions,

• Implementing practically relevant load balancing algorithms,

• Evaluating the performance in terms of user throughput, system spectral ef-

ficiency, and other KPIs, and

• Optimizing the algorithms by adapting the parameters and producing final

set of results.
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1

Introduction

This thesis discuss the Mobility Load Balancing functionality described on the 3GPP standard

for Long Term Evolution (LTE) Networks. This functionality belongs to the set of functional-

ities available for self-organizing Networks (SON) and applies its enhancements in the Radio

Resource Management (RRM) layer of the LTE protocol stack.

The discussion starts with an introduction to the LTE Radio System and its protocol stack.

The properties of each layer are summarized in Chapter 2. The goal of this introduction is to

give a general overview of the system and explain some characteristics of the system, as well

as concepts, that apply directly to the framework of this thesis. If further details is needed, the

bibliography is provided at the end of the thesis.

Chapter 3 will introduce Self-Organizing Networks and discuss the need for automated

solutions on the network to enhance the network performance and reduce costs. The present

3GPP standard and special features available for SON will be explained for the self-optimizing

solutions and specially for the Mobility Load Balancing capabilities standardized in the differ-

ent releases.

Chapter 4 will define and discuss in detail the framework necessary to implement the Mo-

bility Load Balancing solution. We will take a look at the mathematical framework developed

for MLB and the parameters and assumptions necessary to consider for the solution.

Chapter 5 explains the solution chosen and implemented in this thesis. We will take a look

at the details of the MLB algorithms and explain how the decision process takes place and

which approximations were made to solve the problems for a real system solution.

Chapter 6 will introduce the simulator (AMoRE) used to evaluate the performance of the

MLB algorithm. It will discuss the results obtained for different scenarios pointing out the

1



1. INTRODUCTION

cases where the MLB solution is appropriate and showing the dependency of the performance

to the parameters introduced in the MLB algorithm.

Finally, chapter 7 will give an overview of the results obtained for the MLB algorithm and

will propose new paths to research to enhance the performance of the MLB algorithm and the

performance of the system.

2



2

LTE Overview

The objective of this chapter is to present an overview of the UMTS Long Term Evolution

(LTE) to have some background information and a better understanding of the whole Mobile

Communication system. This overview will help understand some of the concepts introduced

in further chapters. The following sections are a collection of notes taken from different books

and do not describe the system in depth. For a more detailed description, refer to the books

appointed in the bibliography.

2.1 General Description

Long Term evolution is a 3GPP project and the last step in the evolution of mobile communi-

cations systems which extends and modifies UMTS systems. Figure 2.1 show a first represen-

tation of the LTE architecture and explains graphically the terminology that would be used in

the architecture description.

LTE is developed under the assumption that all the services are packet based and therefore

the radio access technology, as well as the core network (EPC : Evolved Packet Core), are fully

packet-switched (PS) with IP connectivity. Together, LTE and EPC, constitute the Evolved

Packet System (EPS) which defines a new network architecture that allows the following en-

hancements:

• A Simple and Flat architecture that favors an optimized usage of the network and mini-

mizes the number of network elements. Due to the fact that all radio network function-

alities are located at the eNodeB, there is no need for extra controllers as in UMTS.

3
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Figure 2.1: LTE Architecture and its terminology - See

• High Data Rate reached due to advanced modulation techniques for optimization of radio

frequencies.

• Packet Optimized radio access network

• Enhance User experience for High quality multimedia services by improving cell capac-

ity, end-user throughput and low user plane latency

In the following sections we will be taking a closer look to the EPS system with a brief descrip-

tion of the EPC core network as part of the whole system and we will explain in more detail

the E-UTRAN.

2.2 Specifications

The 3GPP ( 3rd Generation Partnership Project) is a collaborative standardization group formed

by several telecommunication associations from different parts of the world and member com-

panies who participate in the standardization process. The 3GPP establish the specifications of

the E-UTRAN (Evolved UMTS Terrestrial Radio Access Network), their aim is to guarantee

interoperability between multiple vendors, adapt the system to the regulations of the different

4



2.2 Specifications

countries and take into consideration the market needs when defining these specifications. In

figure 2.2 and 2.3, we can see the last LTE releases with some of their features.

12 CHAPTER 1 Background of LTE

During the fall of 2005, 3GPP TSG RAN WG1 made extensive studies of different basic physical 
layer technologies and in December 2005 the TSG RAN plenary decided that the LTE radio access 
should be based on OFDM in the downlink and DFT-precoded OFDM in the uplink. TSG RAN and 
its working groups then worked on the LTE specifications and the specifications were approved in 
December 2007. Work has since then continued on LTE, with new features added in each release, as 
shown in Figure 1.6. Chapters 7–17 will go through the details of the LTE radio interface in more detail.

Rel-11

nhanced carrier 
aggregation
Additional intra-band 
carrier aggregation

Rel-10
(March 2011)

“LTE-Advanced” 
Carrier aggregation

MIMO

Relays

Rel-9
December 2009

Location Services
t

Rel-8
December 2008

First release for

FIGURE 1.6

Releases of 3GPP specifications for LTE.
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ready

Final submission LTE release 10
(“LTE-Advanced”)
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Specification

Study Item Work ItemWork Item

FIGURE 1.7

3GPP time schedule for LTE-Advanced in relation to ITU time-schedule on IMT-Advanced.

Figure 2.2: Releases of 3GPP specifications for LTE - See (1)
96 CHAPTER 7 LTE Radio Access: An Overview

7.1 BASIC PRINCIPLES
Building upon the basic technologies described in the previous chapters, the main principles behind 
LTE will be described in the following.

7.1.1 Transmission Scheme
The LTE downlink transmission scheme is based on conventional OFDM. As discussed in Chapter 
3, OFDM is an attractive transmission scheme for several reasons. Due to the relatively long OFDM 
symbol time in combination with a cyclic prefix, OFDM provides a high degree of robustness against 
channel frequency selectivity. Although signal corruption due to a frequency-selective channel can, in 
principle, be handled by equalization at the receiver side, the complexity of such equalization starts 
to become unattractively high for implementation in a terminal at larger bandwidths and especially in 
combination with advanced multi-antenna transmission schemes such as spatial multiplexing, thereby 
making OFDM an attractive choice for LTE for which a wide bandwidth and support for advanced 
multi-antenna transmission were key requirements.

OFDM also provides some additional benefits relevant for LTE:

! OFDM provides access to the frequency domain, thereby enabling an additional degree of free-
dom to the channel-dependent scheduler compared to time-domain-only scheduling used in major 
3G systems.

! Flexible transmission bandwidth to support operation in spectrum allocations of different size 
is straightforward with OFDM, at least from a baseband perspective, by varying the number of 
OFDM subcarriers used for transmission. Note, however, that support of a flexible transmission 

Basic LTE functionality Enhancements & extensions Further enhancements &
extensions IMT-Advanced

compliant

Rel-9 Rel-10Rel-8

FDD and TDD supportBandwidth flexibility

ICICMulti-antenna support

Channel-dependent scheduling Hybrid ARQ

OFDM transmission

MBMS Carrier Aggregation

Relaying

Multi-antenna extensionsDual-layer beam forming

Positioning

FIGURE 7.1

LTE and its evolution. Figure 2.3: LTE and its evolution - See (1)

The first LTE requirements were defined in mid 2005 and the first LTE standardization was

finalized in december 2008, know as Release 8. LTE has been enhanced and further standard-

izations have been made during the last years through releases 9 and 10. At the moment, release

11 is being standardized by the 3GPP. See section 1.5 of (Dahlman et al. (1) )for further details

on 3GPP and the standardization process.
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2. LTE OVERVIEW

2.3 Overall Architecture

Figure 2.4, takes a closer look at the LTE architecture and the interfaces between the different

entities.

Overall LTE Architecture

LTE Architecture 
11

HSS Home Subscriber Server 
HLR Home Location Register 
AuC Authorization Center 
PCRF Policy and Charging Rules Function
PDN Packet Data Network

Figure 2.4: Block diagram of LTE Architecture and its evolution -

2.3.1 Evolved Packet Core (EPC)

The EPC as explained in (2), supports only access to the packet switched domain, meaning that

it doesnt have support for the circuit switched domain. The EPC contains all functional core

network entities . This entities are grouped into control plane entities and user plane entities,

that is, MME, HSS and PCRF for the first case and S-GW together with P-GW in the second

case . Here is a short explanation of the different entities from the Control and User Plane and

some of their more important aspects.

Mobility Management Entity (MME): The MME is the central element of the EPC, it uses a

direct logical control plane connection to support the following functions:

• Mobility Management: In Idle and Active mode, UE tracking, MME selection and mo-

bility between 3GPP access networks

6



2.3 Overall Architecture

• Authentication and security through NAS signaling

• Management of subscription profile and service connectivity

• Packet core Bearer management functions including dedicated bearer establishment

Home Subscriber Server (HSS) : database that stores subscriber data such as User iden-

tification, addressing and the user-specific security credentials needed for authentication and

ciphering.

Policy and charging rules function (PCRF): responsible for quality-of-service (QoS) han-

dling, Interfaces with the PDN gateway to convey policy decisions to it and charging.

Serving Gateway (S-GW): provides tunneling management between P-GW and eNodeB

and switching with some control functions:

• Mobility anchor for inter-3GPP mobility

• Packet routing, forwarding and buffering

• Downlink rate enforcement based on aggregate maximum bit rate (AMBR)

Packet Data Network Gateway (P-GW): is the router that looks to the outside world (Inter-

net). Its main functions are:

• User Equipment IP allocation and routing

• Per user packet filtering

• Charging for UL/DL per UE, per PDN and QoS Class Identifier

• Mobility to non-3GPP RATs.

As shown before in figure 2.1, the S1 interface connects the E-UTRAN with the MME through

S1-MME and with the S-GW through the S1-U.

2.3.2 Evolved Universal Terrestrial Radio Access Network (E-UTRAN)

The 3GPP specification (3), gives an overall description of the E-UTRAN. The E-UTRAN is

based on a single radio access entity called eNodeB . The eNodeB (eNB) holds all the network

functionalities and therefore there is no need for a centralized controller as the RNC (Radio

Network Controller) in UMTS. With no separated control entity of the Radio access, the TTI

7



2. LTE OVERVIEW

(Transmission Time Interval) is much shorter than in UMTS allowing a very fast adaptation

to the radio environment as well as a very flexible and fast access during handover. This

configuration of the radio access permits to have a distributed architecture which reduces the

complexity of the whole system. Thus, the Radio Access Network is composed of a mesh of

eNodeBs connected to each other through the X2 interface with IP connectivity allowing good

scalability of the network, reuse of the backhaul infrastructure and avoidance of single points

of failure. The E-UTRAN also define a separation between User Plane and Control Plane

which make them independent from each other. This fact influence the latency of the system

by lowering it and allows a better scalability.

Figures 2.6 and 2.5 show the differences and similarities between the User Plane and the

Control Plane.
2.1 Network architecture 7
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Figure 2.3. User plane protocol.
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Figure 2.4. Control plane protocol stack.

the network side are now terminated in eNB. The functions performed by these layers are
described in Section 2.2.

Figure 2.4 shows the control plane protocol stack. We note that RRC functionality
traditionally implemented in RNC is now incorporated into eNB. The RLC and MAC layers
perform the same functions as they do for the user plane. The functions performed by the
RRC include system information broadcast, paging, radio bearer control, RRC connection
management, mobility functions and UE measurement reporting and control. The non-access
stratum (NAS) protocol terminated in the MME on the network side and at the UE on the
terminal side performs functions such as EPS (evolved packet system) bearer management,
authentication and security control, etc.

The S1 and X2 interface protocol stacks are shown in Figures 2.5 and 2.6 respectively.
We note that similar protocols are used on these two interfaces. The S1 user plane interface
(S1-U) is defined between the eNB and the S-GW. The S1-U interface uses GTP-U (GPRS
tunneling protocol – user data tunneling) [2] on UDP/IP transport and provides non-guaranteed
delivery of user plane PDUs between the eNB and the S-GW. The GTP-U is a relatively simple
IP based tunneling protocol that permits many tunnels between each set of end points. The
S1 control plane interface (S1-MME) is defined as being between the eNB and the MME.
Similar to the user plane, the transport network layer is built on IP transport and for the reliable

Figure 2.5: E-UTRAN Protocol Architecture - User Plane
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the network side are now terminated in eNB. The functions performed by these layers are
described in Section 2.2.

Figure 2.4 shows the control plane protocol stack. We note that RRC functionality
traditionally implemented in RNC is now incorporated into eNB. The RLC and MAC layers
perform the same functions as they do for the user plane. The functions performed by the
RRC include system information broadcast, paging, radio bearer control, RRC connection
management, mobility functions and UE measurement reporting and control. The non-access
stratum (NAS) protocol terminated in the MME on the network side and at the UE on the
terminal side performs functions such as EPS (evolved packet system) bearer management,
authentication and security control, etc.

The S1 and X2 interface protocol stacks are shown in Figures 2.5 and 2.6 respectively.
We note that similar protocols are used on these two interfaces. The S1 user plane interface
(S1-U) is defined between the eNB and the S-GW. The S1-U interface uses GTP-U (GPRS
tunneling protocol – user data tunneling) [2] on UDP/IP transport and provides non-guaranteed
delivery of user plane PDUs between the eNB and the S-GW. The GTP-U is a relatively simple
IP based tunneling protocol that permits many tunnels between each set of end points. The
S1 control plane interface (S1-MME) is defined as being between the eNB and the MME.
Similar to the user plane, the transport network layer is built on IP transport and for the reliable

Figure 2.6: E-UTRAN Protocol Architecture - Control Plane

In the following sections, we will be explaining some of the functionalities of the different

layers for a better understanding of the E-UTRAN protocol stack.
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2.4 Layer 1 : PHY Layer

2.4 Layer 1 : PHY Layer

The E-UTRAN is a very flexible air interface, it supports both frequency division duplex (FDD)

and time division duplex (TDD) modes of operation. Thus, most of the design parameters are

common to TDD and FDD modes to reduce the complexity of the terminal.

In downlink, LTE uses a new multiple access technology called OFDMA (Orthogonal Fre-

quency Division Multiple Access ) which is an extension of OFDM for multi-user communi-

cation systems that utilize the spectrum in a more efficient manner than WCDMA in UMTS.

OFDM (Orthogonal Frequency Division Multiplexing) is a special case of FDM where the car-

riers are all made orthogonal with the help of a Fourier transform. This leads to the ability of

squeezing subcarrier really tight together. Figure 2.7 shows an example of OFDM subcarrier

spacing.

28 CHAPTER 3 OFDM Transmission

that, during each OFDM symbol interval, Nc modulation symbols are transmitted in parallel. The 
modulation symbols can be from any modulation alphabet, such as QPSK, 16QAM, or 64QAM.

The number of OFDM subcarriers can range from less than hundred to several thousand, with the 
subcarrier spacing ranging from several hundred kHz down to a few kHz. What subcarrier spacing 
to use depends on what types of environments the system is to operate in, including such aspects as  
the maximum expected radio-channel frequency selectivity (maximum expected time dispersion) 
and the maximum expected rate of channel variations (maximum expected Doppler spread). Once  
the subcarrier spacing has been selected, the number of subcarriers can be decided based on the 
assumed overall transmission bandwidth, taking into account acceptable out-of-band emission, etc. 

∆f 2 ∆f 3 ∆f 4 ∆f–4 ∆f –3 ∆f –2 ∆f –∆f 0Tu = 1/∆f

( )
( )

2
sin






 f /∆f
f /∆fπ
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Time domain
(a)

Frequency domain
(b)

FIGURE 3.1

(a) Per-subcarrier pulse shape. (b) Spectrum for basic OFDM transmission.

∆ f  = 1/T u

FIGURE 3.2

OFDM subcarrier spacing.Figure 2.7: OFDM subcarrier spacing -

In LTE, the subcarrier spacing is standardized to �f = 15 KHz which is a compromise

between the overhead of the CP (Cyclic Prefix), used to reduce ISI (Inter-symbol Interfer-

ence) due to multi-path propagation, and the sensitivity to frequency offsets due to Doppler

spread/shift which produces ICI (Inter-Carrier Interference) breaking the orthogonality of the

subcarriers.

As described in (2), the smallest transmission unit are Resource Elements. Each Resource

Element contains a symbol of duration T
sym

= 66.67µs transmitted over a single sub-carrier

of �f = 15 KHz, the number of bits per symbol depend on the modulation scheme used e.g.

QPSK, 16QAM or 64QAM. The Downlink and Uplink are divided into Physical Resource

Blocks (PRBs), see Figure 2.8, each Resource Blocks (RB) contains 12 consecutive subcarrier

and 6 or 7 symbols (depending on the lenght of CP) per subcarrier transmitted in a slot (0, 5

ms) .
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Figure 2.8: Resource Block - Resource Element Distribution
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2.4 Layer 1 : PHY Layer

Figure 2.9, explains graphically a subframe, a subframe is the combination of two resource

blocks equivalent that occupy 2 slots and a total of 2 RB x (12 subcarriers x 7 symbols), that

is 168 Resource Elements. A TTI (Transmission Time Interval) is the smallest scheduling
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Figure 4.7 LTE resource grid. Reproduced from Beyond 3G – Bringing Networks, Terminals and the Web
Together , Martin Sauter, 2009, John Wiley and Sons Ltd.
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Figure 4.8 Symbols in a resource block used for the reference signal.

pattern over the entire channel bandwidth. Reference signals are inserted on every seventh symbol on
the time axis and on every 6th subcarrier on the frequency axis as shown in Figure 4.8. Details are
given in 3GPP TS 36.211 [14]. A total of 504 different reference signal sequences exist, which help a
mobile device to distinguish transmissions of different base stations. These patterns are also referred
to as the Physical Cell Identity (PCI). Neighboring base stations need to use different symbols for
the reference signals for the mobile device to properly distinguish them. Hence, six PCI groups have
been defined, each shifted by one subcarrier.

For initial synchronization, two additional signal types are used. These are referred to as the primary
and secondary synchronization signals and they are transmitted in every first and sixth subframe on
the inner 72 subcarriers of the channel. On each of those subcarriers, one symbol is used for each
synchronization signal. Hence, synchronization signals are transmitted every 5 milliseconds. Further
details can be found in Section 4.6.1 where the initial cell search procedure is described.
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Figure 2.9: Symbols in a Subframe - 2 Resource Blocks in a TTI. See (4)

time in LTE equivalent to 1 ms, equivalent to one subframe or 2 resource blocks. During

the scheduling time or TTI the eNodeB decides to which user should be scheduled and which

resource blocks are assigned to each one.

Figure 2.10 shows the downlink physical layer design and the assignment to different UEs

.
LTE/E-UTRA 

1MA111_2E 11 Rohde & Schwarz 

Figure 7 OFDMA time-frequency multiplexing (example for normal cyclic 

prefix) 

Downlink control channels  

The Physical Downlink Control Channel (PDCCH) serves a variety of 
purposes. Primarily, it is used to convey the scheduling decisions to 
individual UEs, i.e. scheduling assignments for uplink and downlink.  

The PDCCH is located in the first OFDM symbols of a subframe. For frame 
structure type 2, PDCCH can also be mapped onto the first two OFDM 
symbols of DwPTS field.  

An additional Physical Control Format Indicator Channel (PCFICH) carried 
on specific resource elements in the first OFDM symbol of the subframe is 
used to indicate the number of OFDM symbols for the PDCCH (1, 2, 3, or 4 
symbols are possible). PCFICH is needed because the load on PDCCH can 
vary, depending on the number of users in a cell and the signaling formats 
conveyed on PDCCH. 

The information carried on PDCCH is referred to as downlink control 

information (DCI). Depending on the purpose of the control message, 
different formats of DCI are defined. As an example, the contents of DCI 
format 1 are shown in Table 5. DCI format 1 is used for the assignment of a 
downlink shared channel resource when no spatial multiplexing is used (i.e. 
the scheduling information is provided for one code word only). The 
information provided contains everything what is necessary for the UE to be 
able to identify the resources where to receive the PDSCH in that subframe 
and how to decode it. Besides the resource block assignment, this also 
includes information on the modulation and coding scheme and on the 
hybrid ARQ protocol. 

The Cyclic Redundancy Check (CRC) of the DCI is scrambled with the UE 
identity that is used to address the scheduled message to the UE. 

Figure 2.10: OFDMA time frequency multiplexing - See (5)
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Since LTE is a very flexible system, the number of PRBs available depends on the Band-

width of the whole system. As explained in (1), the OFDM falls off very slowly out of the

OFDM Bandwidth therefore a 10% guard band is needed. That means that out of a 5 MHz

Bandwidth, 4.5 MHz will be actually used for transmission of Resource Blocks. Table 2.1

shows the number of resource blocks depending on the system bandwidth.

Bandwidth Sub-carriers Resource Blocks
1.4 MHz 75 6
3 MHz 180 15
5 MHz 300 25

10 MHz 600 50
15 MHz 900 75
20 MHz 1200 100

Table 2.1: Number of Resource Blocks for different System Bandwidth .

In the Uplink, OFMA is not an optimum solution due to the weak peak-to-average power

ratio (PAPR) properties of the signal. Instead, SC-FDMA (Single Carrier Frequency Division

Multiple Access) with cyclic prefix is used because of its better PAPR properties. It also allows

a lower cost of the UE terminals, due to the usage of cheaper power amplifiers, as well as a

lower power consumption enlarging the battery life at the UE . The Uplink layer design is the

same as in Downlink so the same explanations done before applies also for the uplink case.

From a functional perspective, the role of the PHY Layer is to provide physical channels to

the upper RLC and MAC layers. As described in (6), the TTI is a transport channel attribute and

can be explicitly given by higher layers through the modulation, the coding scheme and the size

of the transport blocks. At each TTI, the physical layer receives a certain number of Transport

Blocks for transmission then a CRC (Cyclic Redundancy Check) is added, then protected by

a channel-encoding scheme and size adapted by the MAC HARQ process. Moreover, the

interleaving process takes place to make it more robust to errors and the Mac layer decides

about modulation scheme and finally the data is mapped to the different control or data physical

channels.
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2.5 Layer 2

Figure 2.11, shows the 3 sublayers contained in Layer 2 and the channel interfaces between

each other, Layer 1 and Layer 3:

4.3 Radio Interface Protocols

4.3.1 The E-UTRAN Radio Layered Architecture

Figure 4.11, which introduces some new vocabulary, is an overview of radio protocol
structure, which is further described in the next section. It briefly describes the main purpose
of the different layers and how they interact with each other. This picture only describes the
protocol layering on the eNodeB side, but there, of course, exist similar – or dual – functions
and layers on the terminal side.

Starting from the top of the picture, the RRC layer (Radio Resource Control) supports all
the signalling procedures between the terminal and the eNodeB. This includes mobility
procedures as well as terminal connection management. The signalling from the EPC Control
plane (e.g. for terminal registration or authentication) is transferred to the terminal through the
RRC protocol, hence the link between the RRC and upper layers.

The PDCP layer (whose main role consists of header compression and implementation of
security such as encryption and integrity) is offered to Radio Bearers by E-UTRAN lower
layers. Each of these bearers corresponds to a specific information flow such as User plane
data (e.g. voice frames, streaming data, IMS signalling) or Control plane signalling (such as
RRC or NAS signalling issued by the EPC). Due to their specific purpose and handling,
information flows generated by �System Information Broadcast� and �Paging� functions are
transparent to the PDCP layer.
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Figure 4.11 Protocol layered structure in eNodeB for downlink channels.

Evolved UMTS Architecture 189

Figure 2.11: Protocol Layer Structure for Downlink - See (6)

The different sublayers and their functions will be explained briefly in the following sub-

sections. For further details on the specifics of each function, please refer to the books cited in

the bibliography or the 3GPP specification.(1, 2, 6)

2.5.1 MAC Sublayer

The Medium Access Control (MAC) radio protocol sublayers main purpose is to provide an

efficient coupling between RLC services and the physical layer. The main function for the

MAC sublayer are:

• Multiplexing of Radio Bearers (Signaling and Data Bearers) : Mapping between Logi-

cal channels and transport channels, logical channel identification and transport format

selection, reference signals, synchronization signals, broadcast channel and HARQ indi-

cator channel.
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• HARQ (Hybrid Automatic Retransmission reQuest): used for Error Correction and al-

lows the network to retransmit faulty packets

• Dynamic Scheduling (UL/DL): decides when, where and what kind of data is scheduled

and to which UE the data is sent.

• Priority Handling: between UEs and between logical channels

• QoS Management

• Timing Advance: for synchronization of the mobile transmission

• MAC Control Messaging : PDCCH indicate which resource blocks are allowed to use in

the uplink direction (Uplink packet scheduling ),

• Power headroom report (UL)

• Buffer Status Report (PUSCH)

• Padding

The MAC layer connects with the RLC over the logical channels, for a better explanation

on how the mapping of the logical and transport channels is done, please refer to the 3GPP

specification (3) .

2.5.2 RLC Sublayer

The main goal of the Radio Link Control sublayer is to receive and deliver data packet to

its peer RLC entity. For that purpose, three different transmission modes are available and

assigned to the different logical channels depending on the type of information they carry:

• Transparent Mode ( TM ): used for general information, it does not alter the upper layer

data, no RLC header, just forwards the data.

• Unacknowledged Mode (UM) used for signaling.

• Acknowledge Mode (AM) used for user data.

The main functions of RLC sublayer are performed depending on the transmission mode (UM

or AM ):
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• Segmentation : decides on PDU sizes depending on QoS and available resources

• Automatic Repeat reQuest (ARQ) : ensures the correct delivery of data for AM mode

over the air interface.

• Reassembly: (UM and AM ) it needs a RLC header in the PDU to know the order of the

sequence

• Status Report (AM): indicates if retransmission was lost.

2.5.3 PDCP Sublayer

Figure 2.12, shows the functionality of the Packet Data Convergence Protocol (PDCP) Layer:PDCP Layer

Control Plane

Integrity 
Protection

User Plane

PDCP

ROHC

Buffer Buffer

NAS

Sequence
Numbering

Sequence
Numbering

! Header compression can run in non compressed mode

Protection

Add header Add header

data_req
data_ack

RLC

Ciphering Ciphering
(optional)

LTE Protocol Overview                                                Confidential
63

Figure 2.12: PDCP Layer main packet operations -

The main functions of the PDCP Layer are :

• Encapsulation of higher layer protocols

• Packet handling: Buffers packets until they are scheduled by lower layers

• Packet forwarding :Lossless Retransmission of PDCP SDU to support Handover

• Queuing: AQM (Active Queue Management) controls the length of the queues and the

delays produce by those queues.
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As seen in the figure 2.12, the User plane uses RObust Header Compression (ROHC) and

encryption (Data protection) . In the Control plane case , no header compression is needed and

ciphering just for dedicated control channels.

2.6 Layer 3

In this section, we describe the Layer 3 protocols of the Control Plane. As seen in figure 2.13,

the User Plane does not share this protocols, instead the User Data is directly forward to the

PDCP Layer as IP packets.

Figure 2.13: Protocol Layer review - Control and User Plane . See (7)

2.6.1 RRC Layer

The Radio Resource Control (RRC), as described in the 3GPP specification (8), is a Layer

3 Access Stratum protocol of the control plane layer that handles the UE management and

controls Layer 2 and Layer 1 parameters as well as UE - eNodeB Signaling . Figure 2.14 ,

shows how the RRC Layer interact with the Lower and Upper layers:
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Figure 2.14: RRC control over the different Layer -

The functions of RRC depend on the RRC state of the UE depicted in figure 2.15:

• Applicable to both States:

– Broadcast of System information (SI): informs the UE about the different configu-

ration parameters necessary to use the transport channels and for mobility purpose

• RRC Idle mode:

– Paging: allows the UE to detect an incoming call by monitoring the paging channel.

– UE cell selection and re-selection, controlled by the parameters of the SI.

• RRC Connected mode:

– RRC Connection management between UE and eNodeB : Radio Resource alloca-

tion for the UE and configuration of signaling Radio Bearer (SRB) to send over the

control channels .

– Security functions: such as Key management

– Quality of service (QoS) management: establishment, maintenance and release of

Radio bearers (point to point, MBMS services,..)
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RRC_Idle

RRC_Connected

Registration

InactivityNew Traffic

Change of  PLMN
/deregistration

Timeout of period TA 
update

! Reduction of number of states (2 instead of 4 in UMTS) 
! Tradeoff of latency against resource/battery consumption
! Additional MAC “state” of DRX in RRC_Connected

! (very fast, efficient signaling!)

LTE Protocol Overview                                                Confidential
44

RRC_Null

Figure 2.15: RRC States -

– Mobility functions: Handover, inter-cell and inter-RAT mobility and measure-

ments.

– UE measurement reporting configuration and control: buffer status, downlink chan-

nel quality, neighboring cell measurements used for mobility procedures support.

– UE context transfer between eNodeB at handover

– Non Access Stratum (NAS) message transfer from/to NAS to/from UE

The RRC messages are mapped into Signaling Radio Bearers (SRB):

• SRB0 : used for connection establishment purpose, it is non-integrity protected and

mapped to CCCH (Common Control Channel)

• SRB1: used in RRC connected mode, it is the signaling with higher priority and mapped

to DCCH1 (Dedicated Control Channel)

• SRB2: used in RRC connected mode, it is the signaling with lower priority and mapped

to DCCH2

• System information (SI) is mapped to BCCH (Broadcast Control CHannel)

• Paging Notifications are mapped to PCCH (Paging Control Channel)
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2.6.1.1 System Information

The system information (SI) is common information that is broadcasted over the BCCH chan-

nel. The SI is structured into SIBs (System Information Blocks) which contain functionality-

related parameters. The SIBs are transmitted over three different types of RRC Messages:

MIB, SIB1 and SI messages. The Paging message informs the UE (in Idle mode) of the SI

Changes. Table 2.2 shows the different types of messages, their timing requirements and the

applicability to both RRC modes.

Message System Information Blocks Content Period(ms) Applicable

MIB Essential Physical layer Parameters 40 (fixed) Idle & Conn
SIB1 Cell Access Parameters for Cell reselection 80 (fixed) Idle & Conn
1stSI SIB2 : Common & shared channel Configuration 160 Idle & Conn

2nd SI
SIB3: Intra-frequency Serving cell reselection

320
Idle only

SIB4: Intra-frequency neighboring cell info

Table 2.2: System Information Blocks: Types and configurations See (2).

The SIB configurations for inter-frequency and inter-RAT (Radio Access Technology) are

not included in the previous table. Table 2.3, summarizes some of the parameters available in

the system information blocks. For further details and explanation see (7).

Information Block Key Information

MIB
Downlink Bandwidth, PHICH Configuration

SFN (System Frame Number), Number of Transmitting Antennas

SIB 1
SIB Scheduling List, PLMN ID (s), Cell barring, TAC

(Tacking Area Code), Cell Selection Parameters, Frequency Bands

SIB 2
Detailed Cell barring, Uplink frequency allocation

Uplink Bandwidth, MBSFN details

SIB 3 Cell reselection details

SIB 4
List of Intra-Frequency neighboring cells, Q

offsets,n

Black List of Intra-Frequency Neighboring cells

Table 2.3: System Information Block Parameters (7).
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The RRC Layer handles the messaging for the handover of an UE from one serving cell

to another target cell. LTE mobility will be explained in further details due to the fact that the

subject of this thesis applies directly to it.

2.6.2 RRM Layer

As explained in (2, 9), the primary goal of the Radio Resource Management (RRM) Layer is

to ensure the efficient utilization and optimization of radio resources by using procedures and

adaptation techniques for the different Layers. The RRM Layer serves the user according to

their minimum QoS requirements to ensure a good user performance. The solutions and al-

gorithms are vendor specific therefore, 3GPP defines just the requirements to support Radio

Resource Management such as signaling, QoS requirements and different reporting capabili-

ties.

for link adaptation purposes in downlink and uplink, respectively. This chapter presents the 
Layer 3 and Layer 2 RRM functions except for the semi-persistent scheduling, which is part 
of the voice description in Chapter 10 as semi-persistent scheduling is typically used for voice 
service. The Layer 1 functions are covered in Chapter 5.

3GPP specifi es the RRM related signaling but the actual RRM algorithms in the network 
are not defi ned in 3GPP – those algorithms can be vendor and operator dependent.

8.3 Admission Control and QoS Parameters
The eNodeB admission control algorithm decides whether the requests for new Evolved Packet 
System (EPS) bearers in the cell are granted or rejected. Admission control (AC) takes into 
account the resource situation in the cell, the QoS requirements for the new EPS bearer, as 
well as the priority levels, and the currently provided QoS to the active sessions in the cell. A 
new request is only granted if it is estimated that QoS for the new EPS bearer can be fulfi lled, 
while still being able to provide acceptable service to the existing in-progress sessions in the 
cell having the same or higher priority. Thus, the admission control algorithm aims at only 
admitting new EPS bearers up to the point where the packet scheduler in the cell can converge 
to a feasible solution where the promised QoS requirements are fulfi lled for at least all the 
bearers with high priority. The exact decision rules and algorithms for admission control are 
eNodeB vendor specifi c and are not specifi ed by 3GPP. As an example, possible vendor specifi c 
admission control algorithms for OFDMA based systems are addressed in [1]. Similarly, the 
QoS-aware admission control algorithms in [2] and [3] can be extended to LTE.

Each LTE EPS bearer has a set of associated QoS parameters in the same way as GERAN 
and UTRAN radios. All the packets within the bearer have the same QoS treatment. It is possible 
to modify QoS parameters of the existing bearers dynamically. It is also possible to activate 
another parallel bearer to allow different QoS profi les for different services simultaneously. 
The new bearer can be initiated by the UE or by the packet core network.

The QoS profi le of the EPS bearer consists of the following related parameters [4]:

• allocation retention priority (ARP)
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Figure 8.1 Overview of the eNodeB user plane and control plane protocol architecture, and the 
mapping of the primary RRM functionalities to the different layers. PHY = Physical layer; MAC = 
Medium access control; RLC = Radio link control; PDCP = Packet data convergence protocol; PDCCH 
= Physical downlink control channel

182 LTE for UMTS – OFDMA and SC-FDMA Based Radio Access

Figure 2.16: Radio Resource Management functions - See (9)

As shown in figure 2.16 ,the main functionalities of RRM are :

• Layer 3: RRC

– Self-Optimization features: discussed in next chapter

– RRC Connection management : Establishment, re-establishment and monitoring

of connections.

– Mobility Management :Cell search and reselection, Handover (discuss in next sec-

tion) for intra-frequency, inter-frequency and inter-RAT.
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– QoS management : to guarantee the minimum QoS requirements of the services

required by the users

– Admission Control: decides on the acceptance of a new Data Bearer from a UE

request depending on the available resources and the requested QoS service.

– Persistent Scheduling (for voice services)

– Location services

• Layer 2: MAC and RLC

– Hybrid ARQ management: manages the packet retransmissions.

– Uplink Adaptation : such as Power control to limit inter-cell interference.

– Interference management : mechanisms for inter-cell interference coordination

(ICIC) such as transmit power adjustments or sending scheduling announcements

over the X2 interface.

– Dynamic Scheduling : allocates PRB in time and frequency to the users depending

on the spectral efficiency to maximize cell capacity.

– Radio link monitoring and adaptation: allows high spectral efficiency by selection

of modulation and coding schemes (MCS)

• Layer 1: PHY

– PDCCH adaptation (Physical Downlink Control CHannel): signalling of the PRB

allocation and MCS to the users.

– Discontinuous reception (DRX) to reduce power consumption

– Measurement and Report management: CQI reports from the user and Sounding

Reference Signals (SRS) for scheduling decisions and Donwlink and Uplink link

adaptation, uplink Buffer Status Report (BSR) and uplink Power Headroom (PHR)

with their respective measurement configuration.

2.6.2.1 Quality of Service (QoS)

Usually applications and services delivered to a user have different quality of service (QoS) re-

quirements. The eNodeB is responsible of ensuring the minimum requirements of the services

to guarantee user satisfaction. For that purpose 3GPP defines different Dedicated Data Bearers

types :
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• CBR or GBR Bearers (Constant or Guaranteed Bit Rate): defines a type of bearer which

guarantees allocation of resources to reach the expected bit rate.

• Non-CBR: which does not guarantee any particular bit rate.

As seen in table 2.4 and defined in 3GPP TS 23.203 , each Bearer has a standardized Quality

Class Identifier (QCI) which defines the different priorities, maximum packet delays and packet

error loss rate for each required service class.

QCI
Resource

Priority
Packet delay Packet error

Example service
type budget (ms) loss rate

1 GBR 2 100 10�2 Conversational voice
2 GBR 4 150 10�3 Conversational video
3 GBR 5 300 10�6 Non-conversational video
4 GBR 3 50 10�3 Real time gaming
5 Non-GBR 1 100 10�6 IMS signaling
6 Non-GBR 7 100 10�3 Interactive gaming
7 Non-GBR 6 300 10�6 Video
8 Non-GBR 8 300 10�6 TCP based (WWW,e-mail)
9 Non-GBR 9 300 10�6 chat, FTP, p2p file sharing

Table 2.4: Service QCI Characteristics

The QoS influences on the RLC configuration modes and on the MAC Scheduling deci-

sions. Each Data Bearer has a ARP (Allocation and Retention Priority) for admission control

to decide whether or not the requested bearer should be establish in case of radio congestion.

2.7 Interfaces

In this section we look at two of the interfaces needed for interconnection of the whole EPS.

As said earlier and depicted in figure 2.1 , E-UTRAN is simply a mesh of eNodeBs connected

to neighboring eNodeBs with the X2 interface and to the EPC (Evolved Packet Core) through

the S1 Interface.

2.7.1 S1 Interface:

The S1 Interface connects the eNodeBs to the EPC over an IP connection using the GTP (GPRS

Tunnel protocol) protocol. The S1 interface defines 2 types of connections:
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• S1-U: U stand for user plane and the connection is established between the eNodeB and

the Serving Gateway(S-GW). This connection uses the GTP-UDP to carry Data Bearers

of the users.

• S1-MME: is a control plane connection between the MME and the eNodeB to transmit

Signaling Bearers over the SCTP/IP protocol. (Stream Control Transmission Protocol).

Its main functions are:

– SAE Bearer Management (System Architecture Evolution)

– Paging over S1

– Mobility over S1:

⇤ Intra-LTE Handover: just in case there is no X2 interface between eNodeBs.

It is similar to UMTS but adding Status transfer to it, just like X2 procedure.

⇤ Inter-3GPP RAT Handover: mobility towards other RATs (Radio Access Tech-

nologies)

– Load management: controls and prevent overload by balancing the load over dif-

ferent MMEs.

– NAS (Non-Stratum) signaling transport function

– Other functions..

2.7.2 X2 Interface:

The X2 interface is a logical point to point interconnection between eNodeBs standardized by

3GPP for multi-vendor operability, see (10). Meaning that there is no dedicated physical con-

nection between eNodeBs which influence the delays of messaging (5 ⇠ 20 ms). This interface

uses the X2-AP (Application protocol) based on IP connectivity over SCTP and exchanges ap-

plication level configuration data. The link between eNodeBs is initialize by the identification

of neighbors with the ANRF (Automatic Neighbor Relation Function). Figure 2.17, shows the

protocol architecture of the X2 Interface:

• X2-U: transmit data bearers over an unreliable GTP-U transport protocol. This type of

connection is used to forward data during handover from one eNodeB to another.

• X2-C: transfers signaling bearers using a reliable SCTP transport protocol. This connec-

tion defines 2 types of procedures:
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beforehand, a weighted NNSF done by each and every eNodeB in the network normally achieves a 
statistically balanced distribution of load among the MME nodes without further action. However, 
specific actions are still required for some particular scenarios:
• If a new MME node is introduced (or removed), it may be necessary temporarily to increase (or 

decrease) the weight factor normally corresponding to the capacity of this node in order to make 
it catch more (or less) traffic at the beginning until it reaches an adequate level of load.

• In case of an unexpected peak in the loading, an Overload message can be sent over the S1 interface  
by the overloaded MME. When received by an eNodeB, this message calls for a temporary restric-
tion of a certain type of traffic. An MME can adjust the reduction of traffic it desires by defining 
the number of eNodeBs to which it sends the Overload message and by defining the types of 
traffic subject to restriction.

• Finally, if the MME wants to rapidly force the offload of some or all of its UEs, it will use the  
rebalancing function. This function forces the UEs to reattach to another MME by using a 
specific “cause value” in the UE Release Command S1 message. In a first step it applies to idle 
mode UEs and in a second step it may also apply to UEs in connected mode (if full MME offload 
is desired, for example, for maintenance reasons).

7. The E-UTRAN network interfaces: X2 interface
The X2 interface is used to interconnect eNodeBs. The protocol structure for the X2 interface and 
the functionality provided over X2 are discussed below.

7.1 Protocol structure over X2
The control and user plane protocol stacks over the X2 interface, shown in figures 15 and 16 respec-
tively, are the same as those for the S1 interface, with the exception that X2-AP is substituted for 
S1-AP. This also reaffirms that the choice of the IP version and the data link layer are fully optional. 

The use of the same protocol structure over both interfaces provides advantages such as simplifying 
the data forwarding operation.

7.2 Initiation over X2
The X2 interface may be established between one eNodeB and some of its neighbor eNodeBs in 
order to exchange signaling information when needed. However, a full mesh is not mandated in an 
E-UTRAN network. Two types of information may typically need to be exchanged over X2 to drive 
the establishment of an X2 interface between two eNodeBs: load- or interference-related information 
(see Section 7.4) and handover-related information (see mobility in Section 7.3).

Figure 15. X2 signaling bearer protocol stack

Physical layer

Data link layer

IP

SCTP

X2-AP

Transport
Network
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Figure 16. Transport Network Layer for data streams over X2
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Data link layer
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UDP

GTP-U

Figure 2.17: X2 Protocol Stack - C-Plane and U-Plane. See (10)

– User specific procedures: mostly mobility procedures to support handovers. Such

as:

⇤ Handover procedure directly performed between two eNodeBs.

⇤ Handover request to prepare Handover which is the default procedure.

⇤ Passing historical information of the UEs and the Cell to assist RRM manage-

ment (e.g. list of visited cells determine to ping-pong) (2)

⇤ PDCP status report during handover for lossless handover

⇤ Deletion of context after completion of the procedure

– Global procedures:

⇤ Setting up X2 interfaces and resetting the link resolving security issues for the

exchange of eNodeB configuration data over the link.

⇤ eNodeB configuration updates

⇤ Load Management between eNodeBs : that is regular measurements exchange

for Load Balancing (as detailed in the latter chapters) and also support of inter-

cell interference coordination (ICIC).

⇤ Error Indication in case error occurs.

2.8 LTE Mobility

In this section we explain in more detail how LTE manages mobility of the UEs. The pro-

cedures for maintaining connectivity depend mostly on the UE state, therefore a distinction
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between idle mode and connected mode will be made along this section. 3GPP aimed to min-

imize handover delays and disruptions to provide seamless mobility therefore the architecture

used for that matter is simple and does not involve management entities unless changes to dif-

ferent RATs or different TA (Tracking Areas) are required. The general description of LTE

mobility is presented in (3), idle mode mobility is specified in (11), the performance require-

ments for radio resource management are defined in (12) and the relevant Radio Resource

Control specifications in (8).

2.8.1 Mobility management and User Equipment states:

Mobility procedures are divided into two categories, idle mode and connected mode. The

transitions between both states are controlled by the eNodeB.

• UE in Idle Mode : In this state the mobility management is done by the UE, it seeks for

the best PLMN and cell to camp on based on parameters provided by the network over

the SIBs and its own measurements. Selection and re-selection procedure allows the UE

to identify the most appropriated cell or technology for camping.

• UE in Connected Mode: The mobility management is done by the network and it is

based on handover. The network controls the mobility decisions based on UE measure-

ments reports from the cells, frequencies and other RAT reachable by the UE. The users

satisfaction depends on how these decisions, i.e. finding the best suitable cell, are made

and the capabilities of the UE.

2.8.2 Idle mode mobility management: Cell selection and re-selection

As said previously, in idle state, mobility is based on cell selection or re-selection. This pro-

cedure is based on finding the strongest cell with quality enough to camp on it. To select the

strongest cell the UE needs to measure the different cells that are reachable and suitable based

on the S-criterion:

S
rxlev

(dB) > 0 and S
qual

(dB) > 0 (2.1)

S
rxlev

= Q
rxlevmeas

� (Q
rxlevmin

+ Q
rxlevminoffset

) (2.2)
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S
qual

= Q
qualmeas

� (Q
qualmin

+ Q
qualminoffset

) (2.3)

Where, Q
rxlevmeas

is the measured cell received level (RSRP), Q
rxlevmin

is the minimum

required received level [dBm] and Q
rxlevminoffset

is used when searching for a higher priority

PLMN. The same explanation applies to the received signal quality.

The UE retrieves some of those parameters from the SIBs broadcasted over the air interface

and then checks the suitability of the cells to make the selection decision based on cell ranking.

The following equations describe how the cell ranking is done when the priorities are the same:

R
s

= Q
meas,serving

+ Q
hyst,s

(2.4)

R
n

= Q
meas,neighbor

� Q
offsets,n (2.5)

where Q
meas

is the RSRP measurement quantity from either the serving and neighbor cells,

Q
hyst,s

is the power domain hysteresis of the serving to avoid the ping-pong effect and Q
offsets,n

is an offset value set to control different frequency specific characteristics or cell specific char-

acteristics between the serving and neighboring cell.

Then, the Ranking Algorithm selects the cell:

Selected Cell = max{R
s

, R
n

} (2.6)

Once the UE finds a better candidate from a different tracking area, it de-registers from

its actual PLMN and registers to the new one .The Network does not control this process, but

can configure different parameters to discourage UEs to camp to a specific cell when overload

occurs. Parameters such as frequency prioritization, Neighboring cell list and black listing

apply to all camping decisions of the UEs.

2.8.3 Connected mode mobility or Handover:

When an RRC connection exists, the UE is in connected mode . The mobility management in

this mode is done by the E-UTRAN by making handover decisions. There are three types of

handovers:

• Intra-Frequency Handover: Occurs within the same LTE network Band between different

cells.
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• Inter-Frequency Handover: Occurs between different LTE network Bands to another cell

and also vertical Handover within the same cell.

• Inter-RAT : Occurs between different radio access technology (RAT) networks, e.g.

WiMAX and LTE, UMTS and LTE, etc.

All have the same basic procedure in common. The UE makes measurements and reports

them to the eNodeB. This measurements can be controlled and configured by the eNodeB.

Additionally to the UE measurements, the eNodeB makes its own measurements and broadcast

information over the corresponding SIBs . Based on all the measurements retrieved and the

information available, the handover decisions of a UE to a Target eNodeB is made by the

Serving eNodeB . There are two ways to perform handovers, the default and most efficient

one based on the X2 interface, and another based on S1 interface when the conditions and

configuration require the intervention of the Management Entities.

2.8.3.1 X2 Interface:

As depicted in figure 2.18, the source eNodeB configures the UE measurements with a RRC

connection reconfiguration message and the UE responds with a completion message to ac-

knowledge the configuration parameters. While the UE is moving, it measures the different

reachable cells. When one of the measurement events is triggered (explained later) the UE

sends measurements reports to his serving eNodeB. Based on those measurements and its con-

figurations, the eNodeB decides if the UE should be handed over to a more suitable cell. Once

this decision is made, the eNodeB send a Handover request to the target eNodeB. If the target

eNodeB supports accepts the handover based on its admission control, it send back to the re-

quested an acknowledgement to the handover request. The Serving eNodeB informs the UE

over a Handover command (RRC connection reconfiguration message) to change its serving

eNodeB. While the UE synchronize to the new Serving eNodeB, the old eNodeB sends the

status information and starts forwarding packets to the new eNodeB who buffers them. When

the UE is synchronized it send a completion message to the new eNodeB who sends him back

the uplink allocation and timing advanced information. Finally, the new Serving eNodeB send

a release context message to the old eNodeB and starts sending the buffered packet to the UE.
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Figure 2.18: Handover procedure based on X2 Interface -

2.8.3.2 S1 Interface:

S1 mobility management handles handovers that meet the following conditions :

• No direct connection between neighboring eNodeBs is available, thus no X2 interface

has been configured.

• When MME assistance is required to handover the UE such as change in the PLMN,

inter-RAT handovers, HeNB handovers or any core-involved handover where the han-

dover procedure is configured to use the S1 interface.

From the UE prospective, the S1 handover does not differ from the default X2 Handover. From

the eNodeB side, the request is send to the MME. The MME is responsible for the connection

management between the two eNodeBs. Therefore all parameters and handover messaging are

managed through the MME over the S1 interface. The procedure is similar to the X2 handover

explained earlier. The packet forwarding will be tunneled over the Serving Gateway (S-GW).

If the MME changes during handover additional procedures need to be considered. For further

details in this proceedings see the bibliography. (1, 2, 9)
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Self-Organizing Networks (SON)

This section discusses the need for Self-organizing Networks (SON) in the future networks.

The process to standardization will be shortly explained, talking about how the need for SON

appeared and the evolution of the standardization. Moreover, we discuss the use cases standard-

ized by 3GPP and the challenges faced by the implementation of SON functionalities. Most of

the information for this chapter can be found in (13).

3.1 Network Management

Today, Network Management (NM) is mostly done in a centralized OMC (Operation and Main-

tenance Center) based on a centralized OAM (Operation, Administration and Maintenance)

architecture. Meaning that all the control parameters of the network are controlled by a cen-

tralized entity. Moreover, the planning and optimization of the networks is managed by semi-

automated tools which needs constant human interaction to control the overall performance of

the Network. See figure 3.1 A from (14).

With the rapid growth of mobile communications, the deployment and maintenance of

mobile networks is more difficult. The complexity of the network increase exponentially as the

number of elements increase as well as the interdependencies between their configurations. To

be able to maintain a good performance, the network needs to be constantly monitored. This

constant monitoring of the network makes the operator to face strong operational challenges

in terms of work effort and cost. The work effort applies to the human interaction in the

supervision of the management process, which requires highly trained and extensive expertise
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in the field. Additionally, human interactions tend to increase the response time and the number

of errors generated, which impacts directly in the costs of the operators.
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works (NGMN) [4]. For example, 3GPP has set
up an ad hoc SON group in System Architec-
ture Working Group 5 (SA5) and has standard-
ized some SON-related techniques for LTE
networks in Radio Access Network Working
Group 3 (RAN3) and RAN2. Worldwide, many
research projects have been funded to develop
key SON technologies, such as the SOCRATES
project in Europe [5].

The self-organization capability of a mobile
network mainly includes three aspects: self-con-
figuration, self-optimization, and self-healing.
Figure 1 gives a comparison between network
operation with SON functions and the conven-
tional mechanism, which relies on human inter-
vention or service tools. The self-configuration
capability enables fast installation and deploy-
ment of future evolved NodeBs (eNBs), which
reduces human involvement and deployment
time. Moreover, the newly added eNBs can be
integrated in a plug-and-play approach. Thus,
self-configuration is especially useful at the pre-
operational stage of a wireless mobile network.
Comparably, self-optimization techniques such
as MLB enable a mobile network to automati-
cally select and adjust proper algorithms and sys-
tem parameters, to achieve optimal system
capacity and service coverage. Therefore, self-
optimization techniques are crucial for the oper-
ational state of mobile networks. Finally,
self-healing assists operators in recovering a net-
work when it collapses due to some unexpected
reason. It can be seen as an event-driven pro-
cess, which is necessary at emergent system fail-
ures.

In this article  we mainly consider the self-
configuration and self-optimization of mobile
networks. Specifically, we first illustrate a self-
configuration mechanism for newly added eNBs
without dedicated backhaul interfaces in the
next section. Then we propose and evaluate a
distributed MLB algorithm with low handover
cost for LTE networks. Finally, we conclude this
article in the final section.

SELF-CONFIGURATION MECHANISMS
OVERVIEW

In the LTE overall description specification [6],
the self-configuration process is defined as the
process where the newly deployed eNBs are con-
figured by automatic installation procedures to
get basic parameters and download necessary
software for operation. On the other side, self-
configuration will also be applied in failure cases
in combination with fast failure detection mech-
anisms to provide automatic failure recovery or
compensation mechanisms (e.g., in cell outage
cases).

The self-configuration process takes place at
the pre-operational state. First, an eNB gets the
IP addresses of itself and the operation, adminis-
tration, and maintenance (OAM) center. Then
the eNB associates with an access gateway
(aGW) after it is authenticated to the network.
After that, the eNB downloads the required soft-
ware and the operational parameters. Finally,
the eNB configures the neighbor list and the
coverage/capacity related parameters according
to the downloaded information, and then enters
the operational state.

In conventional cellular systems an eNB (or
base station) has at least two interfaces, the air
interface to user equipment (UE), and the back-
haul interface to the core network. Obviously,
the self-configuration process uses the backhaul
interface. The main point of implementing the
self-configuration function is how the eNB gets
its IP address and connects to the configuration
server. There are several solutions to this issue.
Simply, the eNB can use Dynamic Host Configu-
ration Protocol (DHCP) or Bootstrap Protocol
(BOOTP) agent to get its IP address. The DHCP
or BOOTP broadcast packets can only be trans-
mitted in the same subnet.

If the routers in the backhaul link do not sup-
port DHCP or BOOTP , other schemes should be
used. For example, as in [7], an eNB is added into
a multicast group of routers and a configuration

Figure 1. Network operation a) without; b) with SON functions.
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Figure 3.1: Network Operations - A) Today , B) with SON . See(14)

3.2 Self-Organizing Networks (SON)

Self-Organizing Networks aim to reduce complexity of the network by means of increasing

automation of the network operations. Making the network more automated will reduce oper-

ational effort and work load, as well as constant human interaction. Also, it will protect the

network from unexpected errors produced by people and will speed-up the operational pro-

cesses.

In the early phases, set-up and optimization of the network produce delays that SON tries to

minimize, as well as the operational expenditures (OPEX), expenses that will not be compen-

sate by the revenue of the users due to marketing strategies and fierce competition. Thus, cost

effective and easy deployment of mobile networks are key factors to shorten the ROI (Return

On Investment) of the operators.

Although automation might not be well accepted by network managers, reducing the effort

in planning, configuring, optimizing and maintaining multiple network technologies will allow

them to shift from low level management tasks to higher level management abstraction. This

makes network managers decide about the policies that guide SON functioning based on mar-

keting decisions and leaving the underlaying configurations that need to be applied to the SON
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functionalities. The configurations will optimize the settings of every individual parameter in

each network element resulting in a global enhancement of the performance of the wireless

network.

The Self-Organization is divided in 3 parts :

• Self-Configuration: enables automatic configuration for the Initial Deployment and plan-

ning , software installation, updates, test, parameter setup, authentication, configurations,

neighbor eNB identification and Plug & Play functionality for HeNBs.

• Self-Optimization: automatic real-time control of radio parameters to support the dy-

namic character of mobile networks, environmental changes, changes on the landscape,

changes in user distribution and any other changes that affect the network performance.

The optimization decisions depend on the operators preferences and policies. Here are

some of the tunable parameters:

– Radio parameters: handover parameters, neighbor lists, RACH, QoS parameters,..

– Transport parameters: optimization of S1 and X2 and routing

• Self-Healing: Aims to minimize the harm that failures produce in the network perfor-

mance. It applies to daily operations of mobile networks, hardware checking for re-

placement, software updates, network monitoring by measurements and performance

analyses, failure recovery and alarm setting for fault detection and triggering of healing

mechanisms

3.3 SON Standardization and use cases

In this section we describe how the idea of SON started and its evolution to the 3GPP standard-

ization. We will also give a quick explanation of the different use cases of SON.

3.3.1 NGMN: Next Generation Mobile Networks

As discussed in (13), NGMN is a industry forum created in 2006 and formed by operators.

Their objective is to provide business requirements to the new technologies developed. They

described the operational use cases, from problems faced by operators in their day-to-day op-

erations, that expected automatic or autonomous solutions to reduce work force and enhance
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the performance of the network. This use cases as seen in figure 3.2, cover multiple aspects of

the network operations, including planning, deployment, optimization and maintenance.Operator Use cases
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Source: NGMN White Paper “Use Cases related to Self Organising Networks”, 2008 
http:\\www.ngmn.org  
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Figure 3.2: NGMN use cases - See (15)

The generation of SON-specific requirements by the NGMN contributed to the adoption

of the SON concept by the 3GPP. NGMN defines high level use cases that provide a recom-

mendations and guidance to the 3GPP specifications. Some of the use cases have already been

standardized and some of them are in the process.

Some other research projects have influenced the standardization process such as GAN-

DALF, E3 and SOCRATES which would be refer in the following chapter due to the contribu-

tion to Mobility Load Balancing.

3.3.2 3GPP and SON Use cases

In 3GPP, SA5 work group was given the task to study the work items for SON. The goal of

this group is to define use cases, measurements, procedures and open interfaces to support

interoperability in a multi-vendor environment . This standardization process has been done

along Release-8, Release-9, Release-10 and Release-11which still under discussion. Task like

standardization of information exchange between network elements such as X2 and Itf-N(open
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management interface), definition of the use cases or control of SON functionalities by AOM

Policies for monitoring and reaching operators targets.

Figure 3.3, shows the evolution of the SON standardization over the different releases.

Standardisation schedule

!SON is of high priority to operators 
!OPEX reduction is a must for future networks 
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Figure 3.3: 3GPP SON Standardization evolution - See (15)

In 2008, the standardization process of SON functionalities started in the 3GPP with Re-

lease 8 specifications introducing Self-Configuration features. Release 8 defines procedures

associated with initial equipment installation and integration to support the commercial de-

ployment of LTE networks. The procedures defined are:

• Automatic Neighbor Relation Function (ANR): which enables a cell to maintain infor-

mation on its neighbors and define operates based on information available at an eNB.

• Automated Configuration of Physical Cell Identity : that enables a cell to select auto-

matically its PCI from an allowed range and avoids PCIs that are reported from outside.

• Load reporting of current load information for radio, Transport Network Layer (TNL)

and hardware.

• Dynamic Radio Configuration (DRC) : Automatic configuration of initial radio trans-

mission parameters which allows the base station to become adaptive to the current radio

network topology.
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• S1 and X2 setup: which allows the eNodeB to automatically setup the connections be-

tween MMEs and Neighbor eNodeBs.

In the 3GPP Release 9, RAN3 WG (Work Group) continued work on SON functions de-

scribed in Release 8 and also newly defined in Release 9. This functions are based on Self-

Optimization. Here is a list of the different use cases:

• Mobility load balancing optimization (MLB) which allow network to force users to Han-

dover against the radio condition but due to load situation. Such LB procedure can be ex-

ecuted as an intra-LTE Handover as well as inter RAT HO. In Release 9, for the purposes

of Load Balacing, procedures have been defined to negotiate Handover settings between

eNBs (intra LTE), and procedures to identify appropriate cause values for Handover re-

quest or signalling have been defined. MLB will be further discuss in the following

chapters as can be deduced from the topic of this thesis.

• Mobility Robustness Optimization (MRO) which allow on automatic detection and cor-

rection of wrong handover settings which lead to Radio Link Failures (RLF).

• RACH Optimization which allows UE to report RACH activity to the eNB . The eNB

based on received reports is able to optimize RACH resources and synchronize RACH

settings with other eNB by exchanging information over X2 and mitigate interference.

• Coverage and Capacity optimization (CCO) which enables the network to detect capacity

and coverage problems (e.g. coverage holes). For the purposes of this function, WG3

defined required information exchanged between eNBs, this task is also related with

interference reduction techniques.

In 3GPP Release 10, SON includes the continuation of the work done in Release 9. En-

hancements in Mobility Robustness with the focus on inter-RAT Handover and Mobility Load

Balancing enhancements to improve intra and inter-RAT procedures. As a new use case Energy

saving has been added to SON work item (WI).

3.4 SON Architecture

The SON architecture depends on the location of the optimization functionalities since the

algorithms will be influenced by the way data is acquired, the knowledge of the network and

the capabilities in each location. As depicted in figure 3.4 , the 3 main architectures are:
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SON Architecture – Localized SON

! Localized SON: optimization algorithms 
are executed independently in eNB

! Precondition: No requirements on 
standardization, implementation specific 

! Advantages: Very low delay for 
optimization, no signaling overhead, no 

Centralized
OAM

OAM OAM

Itf-N Itf-N 

Introduction SON

optimization, no signaling overhead, no 
interoperability problems  

! Disadvantages: Single cell scope, limited 
to isolated problems, system aspects 
neglected

eNB eNB

SON SON

9

Example: RACH optimization, Adaptive MIMO 

SON Architecture - Centralized SON

! Centralized SON:  Optimisation algorithms 
are executed in the OAM System 

! Requirements: Support of Itf-N interface 
(no need to standardize) or conventional 
KPI reports 

! Advantages: Easy to deploy, support  

Centralized
OAM

OAM OAM

SON

SON SON
Itf-N Itf-N 
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! Advantages: Easy to deploy, support  
multi-vendor equipment 

! Disadvantages: High delay for optimizationeNB eNB

11

Example: Tilt Optimization for coverage and 
capacity optimization 4+5*&01)2+3$ 6)-*&)7,*+3$

SON Architecture - Distributed SON

! Distributed SON: optimisation algorithms 
are executed in eNB and coordinated 

! Requirements: Extension of X2 interface is 
needed (standardisation needed)

! Advantages: Low delay for optimization, 
detailed information avaiable at eNB, in 

Centralized
OAM

OAM OAM

Itf-N Itf-N 

Introduction SON

detailed information avaiable at eNB, in 
line with LTE architecture paradigm  

! Disadvantages: Complex optimization 
schemes, stability and convergence 
issues 

eNB eNB

SON SONX2 

10

Example: Load Balancing, Inter-cell Interference coordination

Figure 3.4: SON Architectures - See (16)

• Localized: The functionalities are executed independently from the surrounding eN-

odeBs. Therefore, SON functionalities are multi-vendor specific and does not require

any standardization. This configuration has no interoperability problems nor signaling

overhead and the delay is very low. In the other hand, it just applies to isolated problems

in single cells.

• Centralized architecture: All optimization algorithms and functionalities executed in

OAM systems. Easy to deploy, vendor specific solutions, slow optimization, enormous

amount of data. Thus the response time is slow. No need for inter-eNodeB communica-

tion but requires It-N interface support.

• Distributed Architecture: All functionality is executed at the eNodeB, costs a lot of de-

ployment effort to support and coordinate lots of eNodeBs thus Convergence and stability

might be difficult . In the other hands , fast solutions are possible because the response

time in much smaller. The X2 interface should be extended to allow intercommunication

between eNodeBs and standardized for multi-vendor compatibility.

Since each one of the different architectures has its advantages and disadvantages, the real

SON solution utilize an Hybrid Architecture approach due that the implementation approach

depends on the specific SON functionality. Figure 3.5 , depicts the Hybrid architecture and its

interfaces (X2 and Itf-N).
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! Hybrid SON: part of the optimisation 
algorithms are executed in the OAM 
system, while others are executed in eNB

! Requirements: Extension of Itf-N and X2 
interfaces is needed

! Advantages: Flexible, support both 

Centralized
OAM

OAM OAM

SON SON

SON

Itf-N Itf-N 
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! Advantages: Flexible, support both 
complex optimization cases and simple 
and quick optimization cases, future prove

! Disadvantages: Larger number of nodes 
involved, interface updates required, 
different realisations are possible 

eNB eNB

SON SONX2 
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Figure 3.5: Real SON Hybrid Architecture - See (16)

• Hybrid architecture: The functionalities that need faster response will be implemented

closer to the eNodeB and the ones that need a better or wider understanding of the net-

work status will be implemented away from the eNodeB. The time delays acceptable,

from collecting the information and application of a solution, depend on the require-

ments of the different functionalities therefore delays are a key factor when deciding

about their locations. Then part of the functionalities are executed in the OAM system

and part in the eNodeB which allows a lot of flexibility and diversity in the optimization

process. It also needs to support multi-vendor optimizations hence standardization of X2

interface information exchange and Itf-N are required.

Figure 3.6, shows the SON architecture approach of Nokia Siemens Networks (NSN) for his

SON solutions.

12 Nokia Siemens Networks Self-Organizing Network (SON)

Even a cursory glance at all these 
criteria is revealing: No single 
architecture stands out as superior, 
and implementing SON in a radio 
network will always be a tradeoff. 
Also, different use cases demand 
different ways of executing functions. 

The best architecture will ensure: 
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response time 
The scalability/upgradability ��
necessary to accommodate 
future functions 
The ability to also operate across ��
several RAN technologies (MultiRAT) 

Simulations and emulator demo systems 
have proven effective in evaluating and 
testing architectural options.

Superior architecture

Nokia Siemens Networks proposes 
implementing SON using architecture 
that strikes the best balance between 
and exploits the benefits of both central 
and distributed functional elements. 

Some SON functions and algorithms 
are executed at the OSS level, others 
autonomously in the eNB or in a set 
of adjacent eNBs. 
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This diversified approach effectively 
meets the different requirements 
of SON use cases. 

Near real-time actions take place 
locally at distributed components, 
while more complex and global network 
tasks are performed centrally.
 
This approach entails assessing 
SON use cases, carefully selecting 
the right parameters for optimization, 
and designing robust, converging 
algorithms. 

A similarly thoroughgoing procedure 
is necessary to decouple the different 
optimization loops, reinforce operating 
stability, and enhance control capability. 

Ultimately, this approach will enable 
efficient multi-technology SON. 
A central configuration and optimization 
entity, endowed with the necessary 
intelligence, will be able perform tasks 
addressing and affecting disparate 
technologies.
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Figure 3.6: Nokia Siemens Network Architecture - See (17)
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3.5 SON Challenges

Paper (18) , describes the challenges faced by SON functionalities when implementing solu-

tions for the different use cases. This challenges should be taken into consideration in the

design of Algorithms for SON.

• Interrelation of use cases : some of the decisions made by the different SON use cases

may generate opposite solutions or may apply to the same parameters, these situations

might not get to a desirable solution therefore some coordination of the use cases is

needed. Figure 3.7, shows some of this interrelations.

10 Nokia Siemens Networks Self-Organizing Network (SON)

What parameters  
need optimizing?

One of the key issues is pinpointing  
the parameters to be targeted for 
optimization. 

Simulations have shown that a few key 
parameters can serve several SON 
use cases, and that certain parameters 
are a good match for a select use case. 

This is a meaningful insight because  
it minimizes the risk of jeopardizing 
benefits and triggering conflicting or 
adverse effects such as oscillations 
when tuning several parameters at  
a time. 

One of the key enablers for robust and 
converging algorithms will be to clearly 
define responsibilities among 
parameters.

In a real-world implementation,  
several optimization functions will run 
at the same time, making these clear 
definitions all the more important.
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Figure 3.7: SON use cases interrelation - See (17)

• Information availability, consistency and reliability in the network elements would be a

major requirement to lead the decisions made in the different use cases, nevertheless a

trade-off between delay and overhead needs to be taken into consideration.

• Algorithm design: due to the fact that the information might have delays and error prone.

The design of a deterministic solution might not be the best the best approach, a proba-

bility approach should be better suited.

• Stability and Convergence: need to be ensure in the solutions especially in dynamic

scenarios such as those in the real word
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• Evaluation Aspects: evaluation of the performance on the use cases might be difficult to

analyze since the use of real networks is prohibitive in terms of costs and most of the

information retrieve is confidential. System level simulators also need to make contain

many different scenarios and configurations such as user distributions, mobility mod-

els, traffic intensities and need to generate their own data to give an estimation of the

performance of this use cases.
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Mobility Load Balancing (MLB)

As explained in (19), the conventional network planning assumes load concentrations of dif-

ferent base stations at the same time. Being able to balance network load to get a suitable

network performance is one of the goals of network planning. Therefore, higher density of

cells is introduced in areas where higher traffic is expected.

Even with detailed network planning , dynamic random changes of the load over time can-

not be taken into account. Higher traffic in office locations during work hours versus higher

traffic in residential areas during the evening or sudden affluence of traffic in certain transporta-

tion facilities after a special event in the surroundings produce common resource shortage.

The dynamic adjustment of network parameters is considered to be out of the scope of net-

work operations. In this scenarios, Load balancing plays an important role to balance the load

between neighbor cells and a utilize resources in a more efficient way. Thus, the ability to Dy-

namically optimize parameters should lead to a more economic network design and probably

saving some base stations.

4.1 Definition

Mobility Load Balancing (MLB) is part of the Self-Optimization functionalities of Self-Organizing

Networks. The objective of Mobility Load Balancing, is to counteract local traffic load imbal-

ance when an overload situation appears due to high concentration of users in a specific cell.

Due that the spatial distribution of users and traffic properties determine the network load in

the cell, MLB aims to optimally distribute the users between the underloaded neighboring cells
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according to the load conditions of the network and the velocity, Quality of Service or Energy

consumption of the user.

Moreover, MLB moves traffic from high loaded cells to less loaded neighbors as far as in-

terference and coverage situations allow in a certain geographical area by means of controlling

mobility parameters and configurations including UE thresholds. As depicted in figure 4.1 ,

MLB changes the mobility parameters, by applying an offset to them. The effect produced by

this offset is that, if the user is connected to cell A and he remeasures the received power from

the different neighbor eNodeBs, then the best suitable cell might have changed for the user if

he is close enough to the border of the cell, as happens for one of the users in the figure.

WWW.FP7-SOCRATES.EU

Handover optimisation and load balancing: Interaction analysis

Dipl.-Ing. Thomas Jansen, TU Braunschweig, Institut für Nachrichtentechnik 

15/18

Figure 4.1: Load Balancing Solution - See (20)

MLB solutions should improve QoS, accessability, and resource utilization within the

whole network rather than only on a simple base of neighbor cell relations.Thus, improving

the overall system capacity and reduce the congestion in overloaded cells.
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4.2 Operational Modes in Mobility Load Balancing

As described in (13), MLB can be subdivided into modes of operations, which propose different

solutions to overcome the overload problem in a specific cell. Depending on the state of the

UE, the different modes of operation are:

• Idle mode: The main purpose is to prevent the worsening of the overload situation by

adjusting cell specific parameters that impact the camping decisions of the UEs in cell

selection/reselection procedures by biasing, prioritizing or restricting access to certain

RATs. The UE normally tries to connect to the cell where he is camping whenever it

changes to connected mode. Thus, allows optimization of camping decisions to the most

suitable cell, depending on the network status.

• Redirection during connection: also know as Traffic steering, is another prevention

technique that impacts the connection establishment procedure via rejection and redirec-

tion of traffic to different Layer/RAT. It can also offload traffic to lower power cells (Wifi,

HeNBs) due to unavailability of resources or while balancing the load in overloaded sce-

narios. It also prevents hard-handovers and lowers the amount of signaling required for

load balancing.

• Connected mode: In this mode, MLB reaches the load balanced situation by shifting

UEs from the border of the cell to less congested cells. This impacts the handover pro-

cedures through biasing of cell specific offset and forced handovers. Here, the signaling

and setup time are increased.

In this thesis, we focus on load balancing in connected mode since during that state the eNodeB

has full control over the users.

4.3 Load balancing mechanism in connected mode

Load balancing in connected is based on changing handover parameters and forcing handovers

of edge user to less loaded cells. Depending on the type of handover made and the handover

parameters being changed, we can distinguish three different kinds of Mobility Load Balancing

solutions:
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• Intra-frequency: in this case, the handover is made on the same system bandwidth as

its neighbor and they need to be forced against radio conditions. This will limit the area

where MLB is feasible between 2 cells in a certain frequency.

• Inter-frequency: here, the forced handover is produced between different frequencies

of the LTE network if available. The advantage is that there is no mutual interference

problems between overloaded frequencies and underloaded frequencies. The down-side

is that the UEs need to be configured to report other frequencies then the one using, that

means that the eNodeB has to signal the configurations and the UE needs to measure

different frequencies which cost lots of effort to the UE.

• Inter-RAT: Similar to inter-frequency, but handovers happen between different Radio

access technologies. This allows also vertical handover in the same cell between differ-

ent overlapping technologies. The problem in this case is that the old technologies use

different methodologies for handover and measurements, and do not possess the infor-

mation exchange mechanism available in LTE.

We will mainly focus on intra-frequency Mobility Load Balancing on this thesis and we will

try to manage the interference problems that happen mostly on the uplink due to the use of

frequency reuse 1 usually utilized in LTE networks.

4.4 3GPP Standardization evolution of Mobility Load Balancing

As explained in the previous chapter, the evolution of MLB has gone along with different

releases. Here we retake this evolution to focus on the features that apply directly to MLB and

the ones that indirectly help MLB achieve his optimization process.

In release 8, as we said earlier, ANR is necessary to maintain track of the neighbor eNodeBs

and with the automated X2 Setup, the links between eNodeB is easily established. With the

X2 interface established, information can be transmitted to the different neighbors allowing

information exchange between them such as load reporting of current load information, TNL

or Hardware Load.

In release 9, new features were added to support more accurate MLB solutions. New

parameters such as Composite Available Capacity (CAC), basic inter-RAT load information

exchange, as well as new procedures to Negotiate information and settings information (ex-

plained later).

42



4.5 Relevant measurements for Load Balancing

Release 10, continued enhancing the standard to support intra- and inter-RAT procedures.

It also introduced some new features related to energy saving and coordination of the differ-

ent SON functionalities. As well, new parameters to the X2 messages where introduced for

exchanging information to support Uplink MLB, those parameters included P0 and the alpha

parameter for path loss compensation.

Finally, release 11 is focused on detection and prevention of intra-LTE rapid Handovers

and inter-RAT too late handovers. To optimize those handover problems, information and

parameter exchange between different RATs is being standardized.

4.5 Relevant measurements for Load Balancing

While planning the network, the configuration parameters are set in a sub-optimal manner. This

is due to the fact that they are set based on models and not on real measurements. Therefore,

some optimizations are needed to improve the performance of those configurations.

For that purpose, we need to have measurements from the real networks that allow us to fine

tune the pre-configured parameters in a more accurate manner and that help us reveal problems

that might happen during the operational phase.

In this section, we describe some of the measurements, as in (21) and (22), needed to

support MLB and reach a certain level of accuracy in the decisions made by the algorithms.

• Reference Signal Received Power (RSRP): part of the UE physical layer measure-

ments and is the linear average (in watts) of the downlink reference signals (RS) across

the channel bandwidth. It measures the coverage of the LTE cell in the Downlink. It is

used to determine the best cell on the Downlink radio interface and select this cell as the

serving cell. It is also used for inter-LTE handovers.

RSRP
c,ue

(dB) = P
c

� L
ue

� L
fad

(4.1)

• Reference Signal Received Quality (RSRQ): gives an indication of the signal qual-

ity and determines the best cell for LTE radio connection in a certain geographic area.

Mostly used for initial cell re-selection and handover.

RSRQ(dB) = 10 · log (
RSRP

RSSI
) (4.2)
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The Received Signal Strength Indicator (RSSI) represents the entire received power in-

cluding the wanted power from the serving cell as well as all co-channel power and other

sources of noise.

• Total PRB usage (DL/UL): Average value calculated from the statistic measurements,

in time and frequency, of the usage of PRBs resources in the scheduler, by all the users

(MAC Layer). This information is signaled over X2 interface between eNodeBs.

PRBtot

usage

(%) =

$
PRB

usage

(T )

N tot

PRB

(T )
⇤ 100

%
(4.3)

Where, PRB
usage

(T ) is the PRB usage over a period of time T and N tot

PRB

(T ) is the

total number of PRBs available over the same period of time.

• Composite Available Capacity (CAC): indicates the amount of overall resources that

the reporting node is ready to accept.“ Composite ” means that the reporting node takes

into consideration multiple internal resources criteria, via a proprietary evaluation, to

build up his report. “Available” estimate of the amount of non-GBR traffic that can be

handed over into the cell controlled by the eNodeB. The load transferred should not

exceed the capacity reported as available by the TeNB.

CAC can have different formats since the calculations are vendor specific. Here are two

possible options:

1. Simple percentage of the total E-UTRAN resources available (total cell uplink or

downlink bandwidth known from the X2 setup procedure).

2. A percentage weighted according to a cell capacity class value which classifies the

cell capacity with respect to the other cell available in the network.

It is assumed that the node indicating available capacity is ready to accept the corre-

sponding traffic, but it is not mandatory. It is also assumed that the algorithm to calculate

the available capacity indicator is vendor-specific and runs in the eNodeB that provides

the indication.
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4.6 Mathematical Framework

In this section, we describe the mathematical framework in which load balancing is based and

which was proposed in (23). The goal of this framework is to define the target functions that

we would like to optimize and that allows us to judge that a solution is better than another one.

The target functions discuss in the following are Capacity-based target functions and they

are based on the signal-to-interference and noise ratio of the users.

The definition of the SINR per user in a cell is as follows:

SINR
u

=
P

serving

· L
serv

(~q
u

)

N +
P

c 6=Serv

⇢
c

· P
c

· L
c

(~q
u

)
(4.4)

Where, ~q
u

is the positions of the user, P
serving

the power of the serving cell, L
serv,c

the

overall loss of either the serving cell or the other neighboring cells, N is the Thermal noise and

⇢
c

the load of cell c that is a value between [0,1] that represents the probability of a cell using

the same PRB as the user.

The definition of the cell load depends on the type of UE services required, the scheduler

design and the SINR distribution over the cell. Therefore, if the user has a full buffer type of

service, the load of the cell will always be ⇢
c

=1 , since there is no limit to the amount of traffic

required by the user.

If the user requires a Constant Bit Rate (CBR) type of service, also called CBR users, the

cell load is defined as:

⇢
c

=

uTP
u=1

N
u

N
tot

(4.5)

Where N
u

is the number of resources (PRBs) used by user u, N
tot

is the total number of

resources available and u
T

the total number of users in the cell.

If we take a closer look at equations 4.5, we can see that it assumes that all the services

of the users are satisfied by the cell and that no user needs more resources that the ones he is

getting. Therefore, its value can not be bigger than 1 . The truth is that, in some scenarios, as

in Load Balancing, the cell might be overloaded and may not be able to satisfied the services

required by all the users.

For that purpose, we define the amount of required resources by a user u to satisfy his

service requirement given a SINR
u

. That is:

N̂
u

=
D

u

R(SINR
u

)
(4.6)
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4. MOBILITY LOAD BALANCING (MLB)

Where D
u

is the data rate requirement of the user u depending on his CBR service and

R(SINR
u

) is the mapping of the data rate reached by a single PRB given an SINR
u

. This

mapping depends on the MCS (modulation coding scheme), the code rate and the SINR
u

as

just appointed. Figure 4.2, show a data rate mapping example.

WWW.FP7-SOCRATES.EU 

5/20 

Author, Organisation 

Definitions:  load (per user) 

!  Throughput mapping base on the 
concept of a truncated Shannon 
mapping curve  

!  Load generated by single user is the necessary number of PRBs  Nu for 
the required throughput Du  and the transmission bandwidth of one PRB  
BW = 180 kHz 

–  Du is an average data rate requirement per user u  

Figure 4.2: Required PRBs for 512kbps for a given SINR - See (20)

Following the idea in equation 4.6, we can define a new expression that will give us an idea

of the amount of load that would be necessary to fulfill the service requirements of all the users

in the cell if some users are not satisfied. This expression is called virtual load (⇢̂
c

) and it is

define as follows:

⇢̂
c

=

uTP
u=1

N̂
u

N
tot

(4.7)

Since the virtual load (⇢̂
c

) can be higher than 1, it gives a better indication of how overloaded

the cell is and if ⇢̂
c

 1 then it means that all the users are satisfied.

Actually, from the virtual load definition we can also calculate the number of unsatisfied

user in the cell c as :

Z = max
�
0, N

c

· (1 � 1

⇢̂
c

)
�

(4.8)

Where N
c

is the total number of users in the cell and ⇢̂
c

the virtual load in cell c.
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4.7 Framework for Intra-frequency Load Balancing

In figure 4.3, we can take a look at the different features needed to implement the MLB Algo-

rithms into the standard LTE specification specified in (24).

SINR degradation and UE #3 would suffer less SINR degradation: however, will produce
high load due to high QoS.

. The UE would off load the cell significantly. Although a UE with small data rate (e.g.
voice) would have good chances to fit into a neighbour, it would not lead to significant
offloading. Hence, a cell with a larger rate would load to better offloading. Offloading
UE #1 or UE #4 would lead to very little offloading, UE #2 and #3 (if possible) would be
better choices.

For those candidates a handover request is directed to the corresponding target. Note that the
target cell is still able to reject the request. However, if the load approximation is done properly
the probability should be very low.

Finally a new cell boundary is negotiated between the two cells via X2 using the Mobility
Change Procedure to avoid ping-pongs as discussed before. Note that it is vendor specific
whether this happens before, during or after the handover (or even not at all).
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candidate(s) for 

load balancing

Handover procedure (cause: load balancing)
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Figure 5.36 Mobility Change procedure in the intra-frequency case (Holma and Toskala, 2011).
Reproduced with permission from John Wiley & Sons, Ltd.

Self-Optimisation 175

Figure 4.3: Load Balancing Standardized Framework Solution - See (13)

In this section, we will be describing the parts that constitute the overload detection, col-

lection of information, application of the MLB Algorithms and how their output is negotiated

between the corresponding eNodeBs.

4.7.1 Overload Detection

As explained in (25) , the first step on the Load Balancing Framework is to detect the overload

in the cell. For that purpose, the eNodeB has to monitor the load in the controlled cell and

exchanges related information over X2 or S1 with neighboring eNodeBs. This cell status infor-

mation is normally periodically exchange but to avoid this continuous exchange of information

we define some load threshold to reduce the control information overhead of the X2 interface

and to trigger the Load Balancing functionalities. Figure 4.4 , shows the different threshold

that are defined for Mobility Load Balancing and a imaginary virtual load of the cell.
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Energy Saving

Monitoring

Reporting

Load Balancing

�reporting
thr

�balancing
thr

�energy
thr

�̂

Time

Figure 4.4: Load Balancing Thresholds - See(25)

⇢reporting

thr

is the reporting threshold, while the virtual load is lower than this threshold the

eNodeB does not send his cell load status unless he is been requested by another eNodeB. If the

virtual load exceed the reporting threshold, the eNodeB requests the cell load status from other

eNodeBs and send his own information to them. ⇢balancing

thr

is the Load Balancing threshold.

When the virtual load is higher than this thresholds, the eNodeB triggers the Load Balancing

functionalities and the MLB Algorithms are launched. ⇢energy

thr

is the threshold define to trigger

Energy saving mechanism for reduction of power consumption when there is a high probability

of “ long time low load”. In this thesis, we will not consider the energy saving case.

4.7.2 Load Information exchange for load balancing

As proposed in (24), the load information of the eNodeBs should be used for load balancing

purposes. Besides its own load, an eNB must know the load in the neighboring cells to be able

to decide on the appropriate candidate cell for LB actions. The load of the different neighbor

can be provided with a Load Information exchange based on a client-server mechanism over

the X2 interface.

As depicted in figure 4.3, the requesting eNodeB (client) send a “RESOURCE STATUS

REQUEST” to request load reports from his neighbors (servers). This message can request

multiple types of measurements within one message. The neighbors that receive the request re-

port the requested load measurements information via the “RESOURCE STATUS RESPONSE”

message or the “RESOURCE STATUS UPDATE” message if the reporting is configured to be

periodically send to the requesting eNodeB.

The load information exchange carried for Intra-LTE load balancing is as follows:

48



4.7 Framework for Intra-frequency Load Balancing

• the current radio resource usage (UL / DL GBR PRB usage, UL/DL non-GBR PRB

usage, UL/DL total PRB usage)

• the current hardware load indicator (UL/DL HW load: low, mid, high, overload),

• the current S1 Transport load indicator (UL/DL TNL load: low, mid, high, overload).

• a composite available capacity indicator (UL / DL) as explained in section 4.5 .

• a cell capacity class indicator (UL / DL).

This measurements give the requesting eNodeB a global view of the current load situation

and the willingness of his neighbors to accept extra traffic to facilitate the MLB procedures.The

signalling of composite available capacity impacts the X2AP protocol and the necessary sup-

port is introduced in the Resource Status Reporting procedures.

4.7.3 MLB Decisions

Once identified the need to distribute the load of the cell towards either adjacent or co-located

cells, and having the information from the neighboring cells, load balancing actions can take

place. The LB actions are based on algorithms that decide how to distribute the UEs in order

to balance the traffic load. This can be done by comparing the load among the cells, the type

of ongoing services or the cell configurations. The goal pursued by MLB algorithms may be

achieved by delaying or advancing the handing over of the UEs between cells or by changing

the mobility parameters between neighboring cells. In any case, the Load Balancing solutions

proposed should improve QoS, accessibility, and resource utilization within the whole network

rather than only in a single base of neighbor cell relations.

The solutions proposed in this thesis will be described in the following chapter.

4.7.4 Negotiation of mobility/handover parameters: Mobility change Procedure

As explained before, in the intra-LTE case, the MLB algorithm estimates if the Handover

parameter settings need to be modified. If the algorithm decides that the Handover parameter

need to be changed, communication between the involved eNodeBs needs to take place so

the requesting eNodeB can propose changes of the Handover trigger settings to a neighbor

eNodeB. In the X2AP protocol, it is defined a Mobility Settings Change procedure to allow the

negotiation of Handover trigger thresholds and guarantees that users offloaded to neighboring
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cells will not be sent back due to radio handover conditions. This means that the ping pong

effect can be avoided with this parameter negotiation.

The Mobility Settings Change procedure enables one eNodeB to send a “Mobility CHANGE

REQUEST” message to another eNodeB, as depicted in figure 4.3, to indicate the handover

parameter shift that his MLB algorithm considers would be more suitable to overcome the

overload situation. If the neighbor eNodeB accepts the proposed handover trigger parame-

ter modification then he sends back a “MOBILITY CHANGE ACKNOWLEDGE” message.

In case the neighbor eNodeB finds any constraints to the proposed change, it would send a

“MOBILITY CHANGE FAILURE” message rejecting the proposed changes and indicating an

agreeable range to the parameter modification.

The handover trigger thresholds changes values can be configured in +- 0.5dB delta steps

between the new value and the current handover trigger. As specified in (3), the OAM (Op-

eration and Maintenance) entity might also preconfigure the allowed range for the handover

parameter changes.

4.7.5 Autonomous Adjustment

Finally, after the network adjusts its handover thresholds with its neighbors to overcome the

overload situation, the eNodeB starts the handover procedures of the UEs that fulfill the re-

quirements with the new settings. Cell re-selection configuration may be also adjusted to reflect

changes in the Handover settings.
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5

MLB Algorithm Implementation

In this Chapter, we explain the implementation chosen for the MLB algorithm solution. The

goal is to go into the implementation details to have a better understanding on how the decisions

are made and how some of the difficulties are surpassed.

5.1 Algorithm Implementation Milestones

As studied before, the MLB functionalities are implemented in a distributed architecture. This

means that each eNodeB has his own vendor specific MLB solution running by its self inside

each eNodeB.

As explained in (18), the solutions implemented should follow some basic properties to be

suitable solutions for real world scenarios. Here are some of the desirable properties for MLB

algorithms:

• Decentralized Solution to support the distributed architecture.

• Stability and Convergence : to minimize oscillations and unstable behavior

• Availability, Consistency and Reliability of the information introduced in the algorithm.

• Overhead and delay reduction : reduce exchange of information and have the information

available whenever needed.

• Adaptation mechanisms to different time scales, configuration settings and scenarios.

• Coordination between neighbor eNodeBs and other SON functionalities to prevent con-

flicts and continuous parameter changes.
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• Predictability on the algorithm to avoid unknown behavior.

In the implementation explained in the following sections, this goals have been taken into

consideration since the purpose of the solution was to embed it in a real-world solution.

5.2 Mobility Load Balancing States

As in explained in chapter 4, the eNodeB has to monitor the virtual load to detect an overload

situation at the eNodeB. Depending on the virtual load of the cell (⇢̂
c

), we can define a state-

machine with 3 different states, as depicted in figure 5.1.

Monitoring

Reporting Balancing

�̂c > �reporting
th

�̂c < �reporting
th

�̂c < �reporting
th

�reporting
th < �̂c < �balancing

th

�̂c > �balancing
th

�reporting
th < �̂c < �balancing

th

�̂c < �reporting
th

�̂c > �balancing
th

Figure 5.1: Mobility Load Balancing States-Machine -

The three states are :

• Monitoring : The MLB algorithm monitors the virtual load. Similar to an idle state where

the algorithm still needs to make some calculation to have the corresponding information

available.

• Reporting : MLB starts collecting the information necessary from the neighbor eNodeBs

and the UEs before it is needed, to reduce the delay and the overhead.

• Balancing : The MLB algorithm considers the information available and makes the cor-

responding optimization decisions to solve the overload situation.

In the next sections, the different states will be explained in further details.

52



5.3 MLB Monitoring State

5.3 MLB Monitoring State

The following flow chart describes the actions taken in the monitoring state of the MLB Algo-

rithm implemented.

History & Statistics

Monitor Virtual Cell Load

Get UE
Service Re-
quirements

Get UE
Load

Statistics

Calculate
Virtual
Load

Calculate
Number of
Unsatisfied

Users

Calculate
CAC

Resource
Status

Request
received?

Send
Resource
Status

Response

Send
Resource
Status
Update

Mobility
Change
Request
received?

MLB Execution

⇢̂
c

> ⇢reporting
thr

?

Continue
to Load

Balancing
Reporting

NO

YES

YES

NO

YES

NO

Figure 5.2: Monitoring State Flow Chart -

As depicted in figure 5.2, the MLB Algorithm needs to have some parameters available

even though the optimization process is not yet been triggered. This parameters are needed

to control the MLB state-machine, to evaluate the performance of the cell and to report load
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measurements to other neighbor eNodeBs.

5.3.1 Virtual Load Implementation

The virtual load is one of the most important parameters since it will allows the MLB state-

machine to go to other states depending on his value compared with the different load thresh-

olds already explained. In order to make the required calculations for the Virtual Load of the

cell, the eNodeB is required to keep track of all the UEs load statistics and have the information

of each UE CBR service type requirements available to calculate the Virtual Load.

Once we have this information, we need to estimate the required number of PRBs (N̂
u

) to

calculate the virtual load as defined in the original equation 4.7:

⇢̂
c

=

uTP
u=1

N̂
u

N
tot

(5.1)

To estimate N̂
u

, we use a simple cross-multiplication and we establish a limit for the worst

case (N̂
max

) considered just for CBR users. For each user we calculate N̂
u

as:

N̂
u

= Nalloc

u

·
Dreq

u,CBR

Dalloc

u

where 0  N̂
u

 N̂
max

(5.2)

This estimation assumes that the SINR in the N̂
u

will be the same as the average SINR of

the allocated PRBs of the user u (Nalloc

u

). With this in mind, we can estimate the number of

SINR per PRB

Number of
PRBs per User

SINR avg.

1 2 3 4 N-1 N

Nu
 alloc

Nu
 req

Figure 5.3: SINR Estimation of unallocated PRBs -
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PRB required comparing the data rate required by the CBR service (Dreq

u,CBR

) against the data

rate achieved (Dalloc

u

) by the PRBs allocated.

5.3.2 Number of unsatisfied Users

Another interesting parameter to calculate is the number of unsatisfied users in the cell. From a

network management point of view, this parameter is a good KPI (Key Performance Indicator)

to track since it measures the user satisfaction inside the cell. We will be using this parameter

to study the performance of the MLB solution on the next chapter.

The number of unsatisfied users can be calculated in two different ways. One way would

be as describe in equation 4.8, that is calculating it directly from the virtual load. A second

way, as it is done in the implementation, would be to count the number of unsatisfied users one

by one. In the latter approach, we consider that a user is satisfied if:

DGBR

u

� 0.98 · DCBR

u

then user u is satisfied (5.3)

That is, when the Guaranteed Bit Rate, the data rate performed by the user, is bigger or

equal to the Constant Bit Rate requirement of his CBR service type. In this case, the user will

be considered as satisfied. This second approach of calculating the number of unsatisfied users

allows to give consistency and reliability to the data retrieved from the simulator.

5.3.3 Composite Available Capacity (CAC)

The Composite Available Capacity is another specific MLB parameter that needs to be calcu-

lated when the eNodeB is not overloaded. This parameter needs to be available in the moni-

toring state so it can be signaled to other neighbor in case any of them request it. The CAC

confirms the willingness of the eNodeB to accept extra traffic from its neighbors in case over-

load happens in any of them.

In the implementation, the CAC is signaled in the following way:

CAC =

(
0 if ⇢̂

c

� ⇢reporting

thr

⇢reporting

thr

� ⇢̂
c

if ⇢̂
c

< ⇢reporting

thr

(5.4)

This means that if the virtual load in the cell (⇢̂
c

) is bigger that the reporting threshold, the

MLB would signal as if he was overloaded. In the other case, the spare capacity between the

virtual load of the cell and the reporting threshold will be signaled as the amount of traffic that

the eNodeB is willing to accept from overloaded neighbors. It is referenced to the reporting
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threshold to leave a margin of load so the eNodeB does not get into overloaded mode when

traffic is offloaded from a neighbor eNodeB. The latter situation would produce oscillations on

the Handover settings of both eNodeBs and bad optimization decisions as studied in (26).

5.4 MLB Reporting State

The following flow diagram describes the actions followed in the MLB Reporting State:

⇢reporting
thr

< ⇢̂
c

< ⇢balancing
thr

Monitor
Neighbors

Load

Send
Resource
Status

Request

More
NeNBs?

List of
Underloaded
Neighbors

Get
Resource
Status
Update

Configure
Measurements
parameters

Send RRC
Connection
Reconfiguration

Message

Get UEs
Measurement

Reports

⇢̂
c

> ⇢balancing
thr

?

Continue to Load Balancing Decision

⇢̂
c

< ⇢reporting
thr

?

Continue to Load Monitoring

yes

NO

NO

YES

YES

NO

Figure 5.4: Reporting State Flow Chart -
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Whenever the Virtual Load of the cell reaches the reporting threshold (⇢reporting

thr

), the MLB

Framework changes its status to a reporting state, as shown in figure 5.4. This state pretends to

make the information available before it is needed by the MLB Algorithm, but not to soon, to

prevent overhead and unnecessary information exchange or continuous configuration changes.

Once the virtual load is greater than the reporting threshold, the eNodeB starts monitoring

the load status of its neighboring cells. For that matter, the eNodeB sends Resource Status

Request over the X2 interface to his neighbors and waits for a Resource Status Update from

each one of them. Once all the information is available, the MLB framework composes a List

of underloaded Neighbors. Those neighbors included on his list will be considered as possible

eNodeB candidates that would help him lower his overload in case it appears.

The list of underloaded cells also helps in real LTE systems to configure the measurement

parameters of the different UEs depending on their closeness to the neighbor eNodeBs. This

measurement parameters are sent in the RRC Connection Reconfiguration message over the air

interface to the UEs. Once the UEs are configured, the eNodeB collects all the UE measurement

reports from the different UEs.

As noted earlier, this stage allows the eNodeB to have the necessary information before the

Load Balancing functionality is triggered.

5.5 MLB Balancing State

In this section, the Mobility Load Balancing Algorithm chosen for the thesis , and depicted in

figure 5.5, is described in thorough detail.

The MLB Balancing State is attained whenever the Virtual Load in the Cell (⇢̂
c

) is bigger

than the MLB threshold (⇢̂
MLB,Thres

). We will suppose that this algorithm has been running

continuously and that the cell has become overloaded over a period of time. Thus, the informa-

tion necessary for the algorithm is available to be examined and processed since the reporting

state has already been reached and the information has also been retrieved from the different

sources.

The first thing to do when the state machine is in Balancing Mode is to set the Composite

Available Capacity (CAC) equal to zero. By doing so, the eNodeB will signal to the Neighbor

eNodeBs, whenever queried, that its load is reaching the limit and therefore no extra load will

be admitted.
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Figure 5.5: MLB Algorithm Flow Chart -
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At this point, the eNodeB creates a temporary Target eNodeB (TeNB) list with all the

required information received from its neighbor eNodeBs (NeNB). Here, Target eNodeB is

the name given to the candidate neighbor eNodeB that is willing to accept extra load from its

neighbors. Thus, being its CAC greater than zero.

The information available for each target eNodeB is:

• Composite Available Capacity (CAC)

• Number of available Physical Resource Blocks (PRBs) at TeNB

• List of candidate UEs to Handover

• Number of PRBs needed after Handover

• Number of Users to Offload

• Handover Offset with Target eNB

The temporary TeNB list and the temporary virtual load, set to the actual virtual load,

will be used along the algorithm to make decisions regarding changes on the handover offsets.

Those changes will be tracked and stored in a temporary Handover Offset vector, which will

help negotiate the changes in the parameter change procedure at the end of the MLB decision

process.

Now that the framework has been described lets proceed to explain how the MLB decision

process is implemented.

Once the information needed is available, the next thing to do is to decrement the temporary

Handover Offsets by 0.5 dB. The step (0.5 dB) by which the Handover Offsets are decremented

is specified by the 3GPP standard, see (10). The goal of decrementing the temporary Handover

Offsets is to help the algorithm estimate the behavior of the system if the changes had to be

made. From now on the decrements to the temporary Handover Offset will be made to a specific

eNodeB as long as it keeps within the limits established by the standard. That is between -10

dB and 10 dB.

Following figure 5.5, the algorithm starts looking for the best solution while two condi-

tions are met. The first condition is to keep looking for a better solution while the temporary

virtual load still above the MLB threshold. Thus, until the future estimated virtual load is low

enough to make the eNodeB switch to a reporting state and therefore, the eNodeB will not be

overloaded anymore. The second condition to stop looking for the best possible solution is to
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check if the Handover Offsets of at least one of target eNodeBs is within the limits established

by the standard ([-10 dB, 10 dB]). This condition checks if any of the Handover Offset of the

remaining target eNodeBs could be forced 0.5 dB more to offload extra UEs.

When the two conditions are met, the algorithm updates the target eNodeB list since one

or more Handover Offsets of the target eNBs could have reached their limits and therefore,

should not be taken into consideration for future optimizations. Once the Target eNodeBs are

well known, the algorithm sorts them regarding their CAC, from greater to lower values. This

is equivalent to sort the TeNBs considering their available load capacity and willingness to

accept UEs from its neighbors.

The next step is to locate all UEs that are close to a specific TeNB and make a list for each

TeNB. To find out whether the UEs are close to a target eNodeB we need to calculate the link

imbalances 1 of each UE in the coverage area to the different TeNBs with the corresponding

temporary Handover Offset. The UEs with the available RSRP measurements to the TeNB

will be added to the corresponding list of Candidate UEs of that particular TeNB and then, the

algorithm will make sure that all the UEs on the lists are sorted from the ones with lower link

imbalance to the ones with greater link imbalance.

The next stage on the algorithm will start the estimation process. This process will take

one TeNB of the list at a time and will run until either the temporal virtual load is lower than

the MLB threshold or there are no more TeNB to consider in the list . The estimation process

will take the list of temporal UE candidates from the target eNodeB and will estimate for each

UE what is the Number of PRBs necessary to offload to the target. The estimation calculation

is explained in further details in section 5.5.2. Once, all the estimations are calculated, the

algorithm will sum up all the results and then this sum will be compared to the actual available

capacity of the target eNodeB.

If the available capacity is lower than the estimated required capacity then the algorithm

will continue trying with the next target eNodeB on the list.

If, on the other side, the available capacity is higher than the estimated required capacity,

the algorithm will update a set of variables. Those variables are:

• Number of Available PRBs on the Target eNB: Considering that the Handover Offset

will be changed, the algorithm needs to subtract the number of PRBs that it estimated

necessary to offload the candidate UE from the number of available PRBs on the Target.
1The link imbalance is explained in section 5.5.1.
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This new value will be used in future optimization when considering if the target eNodeB

has enough capacity to accept more UEs from its neighbors.

• Temporary virtual load (⇢̂
temp

): the average number of PRBs used by the UEs that will

be offloaded, need to be subtracted from the temporary virtual load. This new temporary

virtual load will be reevaluate to decide if further optimizations are needed.

• List of Candidate UEs : After estimating which UEs on the list will be offloaded, the

algorithm needs to make sure that this UEs will not be considered again in future opti-

mization from the target eNodeB as well as from from another TeNB. Therefore, it needs

to make sure that the UEs already considered as offloaded, do not appear in any other

candidate list.

• Handover Offset to Target eNodeB: Due that the estimations have been made based on

a preconceived situation. The algorithm needs to keep track of all the change that will

need to be made once the optimization process is done. Therefore, the Handover Offsets

that need to be changed are stored in the Target eNodeB list.

Once all the variables are updated, the algorithm continues evaluating the temporary virtual

load and if it is still greater than the MLB thresholds, the algorithm restart the estimation pro-

cess for the next Target eNodeB. When the algorithm runs out of Target eNodeBs, it decrements

the temporary Handover Offset by 0.5 dB and starts again evaluating the link imbalances of the

UEs and making new estimations after offloading the corresponding UEs. If any new enhance-

ments can be made to the decision process, the algorithm will update for each decremental

step until the overload has disappeared or the Handover Offset of the TeNBs have reached their

limits.

Since we have been keeping track of the changes necessary to make to the Handover Off-

sets of the Target eNodeBs, whenever any changes happen the algorithm launches the handover

parameter negotiation by the parameter change procedure explained on the next section. Oth-

erwise, the algorithm ends its executions if no changes have occurred.

The next 2 subsections explain the two concepts necessary to complete the explanation and

that have not been explained in this section.
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5.5.1 Link Imbalance

To explain the link imbalance we need to recall equations 2.4 and 2.5, used on the mobility

management of the UEs to select the most suitable cell, to which the UE should be connected

to, based on measurements performed by the UE:

Measurement to the Serving eNodeB:

R
s

= Q
meas,serving

+ Q
hyst,s

(5.5)

Measurement to the Neighbor eNodeB:

R
n

= Q
meas,neighbor

� Q
offsets,n (5.6)

and the Cell Ranking Algorithm that selects a cell by the following Criteria:

Selected Cell = max{R
s

, R
n

} (5.7)

Thus, whenever an UE meets the condition, R
n

> R
s

, the UE will be handover to the neighbor

eNodeB with the strongest received signal. That is,

R
n

> R
s

) Q
meas,neighbor

� Q
offsets,n > Q

meas,serving

+ Q
hyst,s

(5.8)

Re-arranging the terms,

Q
meas,neighbor

> Q
meas,serving

+ Q
hyst,s

+ Q
offsets,n (5.9)

Meaning that, in order to make handover the UE to a NeNB the received signal from the

neighbor has to be greater than the sum of the received signal from the connected eNB, the

hysteresis parameter and the Handover Offset between both eNodeBs.

To favor that the UE hands over to a Neighbor eNodeB we need to adjust the Handover

Offset to meet the previous condition. If we develop the condition:

Q
offsets,n < Q

meas,neighbor

� [Q
meas,serving

+ Q
hyst,s

] (5.10)

So the Handover Offset needs to be lower that the difference between Q
meas,neighbor

and R
s

in

order to make the UE handover to neighbor cell. When connected to a certain cell, R
s

is greater

than Q
meas,neighbor

producing a negative value of the right side of equation 5.10. Therefore, in

oder to meet the condition, the Handover Offset needs to be more negative than the right side
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Figure 5.6: Effects of Handover Offset decrease - Above without Handover Offset and

Below with negative Handover Offset
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and that is the reason why in the algorithm the Handover Offset is reduced by 0.5 db step to

find an optimal solution.

Figure 5.6 depicts the effects produced by the handover offset decrease between 2 neighbor

eNodeBs. In the graph below we can see how the coverage area of the SeNB is decreased and

at the same time the coverage area from the NeNB increases. This is exactly what we expected

since when we consider a constant UE density on the area, if the area is reduced then the number

of UE in the reduced area also reduce. We can also see that the RSRP levels for handover are

lower than before and that the border area of both eNodeBs are bigger. This fact influence

the number of drop calls in a negative way. To counteract the spread on the border area it

will be required to coordinate the changes done on the handover offset for both eNodeBs. The

procedure to synchronize changes in mobility parameters will be explained in the next section.

Now, to make it easier for the algorithm, and for us, to estimate when the handover condi-

tion will be met and thus, estimate when the UE will be switched to the NeNB we use the Link

Imbalance of that particular UE. The link Imbalance is define as follows:

Link Imbalance = R
s

� R
n

=

(
� 0 when SeNB more suitable cell
< 0 when NeNB more suitable cell

(5.11)

We can conclude that, when a UE is connected to its Serving eNB and its link imbalance

is negative, the NeNB should be considered as a more suitable base station for the UE. When

estimating which UEs will be handover if an hypothetic handover Offset change occurs, the

algorithm will consider as candidates UE to offload, the ones with a negative link imbalance.

The link imbalance, when positive, could also be thought as the gap or amount effort to

be made to offload a particular UE to a particular eNodeB. This issue can be helpful to reduce

the number of operations in the algorithm when the effort to be made is higher than the one

permitted by the handover offset limits.

5.5.2 Load Estimation on Neighbor eNodeB

The aim of this section is to explain in detail how it is estimated the impact on the load when

offloading a UE to a particular NeNB.

The eNodeB has knowledge of the types of services that each UE requests. The type

of service defines the requirements needed for a particular service. This requirements are
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Figure 5.7: SINR estimation in a Neighbor Cell -

translated into guaranteed bit rates that need to be fulfill to satisfied the service requested by

the UE.

The goal of the algorithm is to determine the requirements needed to fulfill a service re-

quested by a UE in a Target eNodeB. This estimation needs to be made, to decide wether the

TeNB will be capable of fulfilling the service of a UE that is been considered to be offloaded to

that same TeNB. If the NeNB is capable of supporting the service of the UE, then the UE will

have great chances to be offloaded to the Target eNodeB if the algorithm considers that changes

to the handover offset are beneficial to counteract the overloading situation at the Serving eN-

odeB.

To estimate the requirements needed on the TeNB to satisfy the UE service, the algorithm

estimates the SINR per PRB that the UE will perceived whenever a it is handover to the Target

eNodeB.

In figure 5.7, it is depicted the situation encounter by a UE located in the border between 2

cells with 3 Neighbor eNodeBs. The measurements made by the UE, requested by the SeNB,

to the Neighbor eNodeBs are represented by the arrows with the RSRP labels. Due that the

SeNB connect to its Neighbor eNodeBs through the X2 interface, the SeNB has knowledge of
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the loads of its Neighbors.

With the information that the SeNB holds, the algorithm can estimate the SINR per PRB

of the UE in a TeNB with the following formula:

\SINR
TeNB,UE

=
RSRP

TeNB,UE

N(BW ) +
NNeNBP

n=1
⇢

n

· RSRP
NeNBn,UE

(5.12)

Where, N
NeNB

is the number of Neighbor eNodeBs that the UE can measure from its location

including the Serving eNodeB. ⇢
n

is the ponderation given to each RSRP measurement, its

value depends on the load of the measured eNodeB. This factor represents the probability that

a PRB being used by the UE, is also being used by another eNodeB in another cell and thus,

interfering with him. The Noise figure N(BW ) is a function of the bandwidth of the PRB

which is 180 kHz and approximated in the algorithm to -174 dBm/Hz.

Once we have the SINR per PRB estimation, we can map the SINR with the modulation

coding scheme (MCS) to have an idea of the Data Rate per PRB (R(SINR
TeNB,UE

)) reach-

able with the actual interference conditions, as explained in section 4.6.

Since the algorithm knows the type of service and therefore, the data rate that needs to

be guaranteed for the UE to be satisfied, we can calculate the number of PRBs required in a

neighbor eNodeB with the Data Rate per PRB at the current position of the UE. The formula

as in the previous chapter is:

bN
UE,TeNB

=
D

UE,CBR

R( \SINR
TeNB,UE

)
(5.13)

D
UE,CBR

is the guaranteed bit rate for the CBR service requested and R(SINR
TeNB,UE

)

the data rate per PRB. This formula considers that all the PRBs allocated to the UE in the NeNB

will have the same SINR conditions and that might not be the case in real system.

The last step in the estimation of load in the neighbor eNodeB will be to sum up all the

PRBs needed for all the UEs that will handover to the NeNB if the the handover offset changes

occur. That is,

bN
Total,T eNB

=
NUEX

u=1

bN
u,TeNB

(5.14)

bN
Total,T eNB

is the value that will be considered when checking for load availability in the

NeNB and will decide if changes to the handover offset need to be made.
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5.5.3 MLB Handover Offset Adjustment

When the algorithm decides to make changes to the handover offsets between its neighbor eN-

odeBs, the handover offset change procedure is triggered as explained in section 4.7.4. The

procedure negotiates the handover offset changes between each Neighbor eNodeB. The NeNB

can reply with a negative response which would leave the handover offset intact or it can be

reduced by the negotiation process. Although it would be interesting to implement this mech-

anism, for the purpose of this thesis, the procedure is not implement. This means that the

changes on the handover offsets are accepted and therefore change every time an eNodeB re-

quest it.

The important issue in this change procedure is that the handover offsets need to be syn-

chronized. This means that a reduction of the handover offset in one eNodeB will need to be

followed by an increase on the handover offset of the neighbor eNodeB with whom it shares

that parameter. This helps avoid handovers with lower received power as depicted in figure 5.6.

Where we can see the effect on the received power when the change is just done in the Serving

eNodeB.

Once the handover offsets are changed, the algorithm informs the UEs so that the handover

procedures happen automatically. This allows a natural flow of UE between eNodeBs without

forcing extreme conditions and it makes the algorithm independent from the mobility patterns

of the UE. If we wanted to force individual UE to handover to specific eNodeB, the algorithm

would need to take into consideration the mobility patterns of the UEs.
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Results

This chapter contains the results from the evaluation of the MLB algorithm done in a real-

time LTE Mobile Radio System Simulator called AMoRE. This was developed by Nomor

Research GmbH and is exclusively owned by the Research and Development department of

Nokia Siemens Networks.

In the first section, a short introduction to the simulator is provided to better understand his

purpose and usage. Then, the results of the performance of the MLB algorithm obtained from

the simulator will be evaluated and the effects on the network performance discussed in further

details.

6.1 Amore Simulator

AMoRE (= Advanced Mobile Radio Realtime Experience) is a system-level simulator for Mo-

bile Radio Access Networks that executes in (or near) real-time. The simulator allows for inter-

active change of configuration parameters, as well as, conditions and the immediate observation

of the resulting impacts on the system behavior with the selected performance measurements.

Starting already in 2005, AMoRE has originally been developed as a demonstrator tool for

WCDMA, WiMAX and LTE radio technologies to provide insights into the operation of radio

features in loaded networks, the interaction between protocol layers and ultimately the effects

on the user perception of system performance. The latter is facilitated by the realtime capability

of AMoRE that allows to run live applications (like Web browsing or video streaming) across

the simulated and synthetically loaded radio network and observe its end-to-end behaviour

under different radio and traffic conditions and in different feature configurations.
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Besides the intended demo value for an intuitive explanation and promotion of technology

and feature benefits, AMoRE has also turned out highly useful for training purposes by quickly

and illustratively conveying complex features and interactions. Nonetheless, it also presents a

valuable research tool by facilitating experiments to quickly confirm hypotheses and gaining

insights in often unexpected effects that would be hard to detect by offline simulations alone.

While the original version of the AMoRE simulator was limited to single cell simulations

(with the surrounding cells modeled as synthetical interferers), the new generation allows for

more complex multi-cell simulations in single or multi-layer deployments thus facilitating real-

istic models for coordinated transmission or scheduling schemes between multiple cells. It still

executes on a transportable laptop PC under Linux, but now requires high performance hard-

ware with a fast quad-core processor and a high-end graphics card that is heavily employed for

parallel channel computations in the radio simulation.

The LTE Radio Emulator provides a multi-cell, multi-user system-level simulation in real-

time, also taking into account the interference from surrounding cells in a cellular environment.

The simulated users experience variable radio conditions according to a detailed statistical and

physical model. User mobility between cells is only considered in the simulated area of interest.

Data traffic of the users in downlink and uplink is provided from artificial traffic generators for

the majority of users, and from live applications for one or few users. Each user can be assigned

multiple data flows with different traffic patterns. The Radio Emulator models a RAN protocol

stack for the user plane, through which the entire user traffic is routed. In this sense, it is not a

pure radio emulator, but must rather be regarded as a RAN emulator including major functions

of the Radio Access Network in addition to the radio interface. Nonetheless, we continue to

use the term Radio Emulator as it has already been introduced in the project plan and related

project documents. The protocol implementation is simplified to the main functionality in order

to allow for real-time performance, a particular focus in terms of functional accuracy is laid on

the MAC layer simulation. The PHY layer is emulated in its effects on the packet loss, making

use of off-line link-level simulation results. The Emulator executes the steady state of a given

radio link configuration, i.e. user plane data transmissions through existing and pre-configured

radio links. Users do not appear or vanish during the simulation (birth/death model), however,

there may occur silence periods within the users traffic patterns. C-plane functionality for the

reconfiguration of established radio channels is not supported.
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6.2 Simulation Scenario Showcase and Parameter Configuration

The scenario showcase simulated for the evaluation of the MLB algorithm has 7 simulated

cells, one central cell and six cells surrounding the one on the center. The purpose of the

simulation is to study the behavior of the MLB algorithm whenever overload occurs. For that

purpose, the highest distribution of users will be placed in the central cell where overload will

be forced . In this scenario, 10 users will be placed on the surrounding cells and the remaining

users in the central.

The simulations made during the evaluation had between 90 and 120 users simulated si-

multaneously. To increment the load on the cells, different types of services are configure to

analyze the performance depending on the type of service. The type of services used for the

simulations are constant bit rate services (CBR). The services employed go from 512 Kbps up

to 3 Mbps on the downlink and on the uplink.

The simulator has a huge amount of parameters to configure. Due to the extended list of

parameters, just the basic physical parameters will be describe in Table 6.1.

Parameter Simulated
Duplex Mode Full Duplex FDD

DL Access Mode OFDMA
UL Access Mode SC-FDMA
Carrier Frequency 2 GHz

Bandwidth 10 MHz
TTI length 2 ms

Antenna configuration 1x2: (Rx Diversity)
Subcarrier Spacing 15 kHz

Chunk Width 180 kHz (Frec. domain), 1 TTI (Time domain)
FEC for data channels Turbo Code
Modulation Schemes QPSK, 16QAM, 64QAM

Table 6.1: AMoRE Simulation Parameter Configuration .

6.3 Performance Evaluation of the MLB Algorithm

In this section, the results obtained from the simulator will be explained in further detail. The

figures shown in the following subsection are the outcome from the post-processing of the data
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in Matlab. To show the performance of the users and the whole system, the cumulative distribu-

tion function (CDF) will be depicted to analyze how the throughput is distributed among users

and how the algorithm enhances the performance of the whole system. The figures depicted

compare the performance of the users and the system when the MLB algorithm is not been

used and when the algorithm is performing optimizations.

6.3.1 90 Users Simulations

The simulation shown in this section correspond to the scenario where 10 users are located ran-

domly in the 6 surrounding cells and 30 users are located in the center cell randomly distributed.

The user move randomly over time whit a Random Walk mobility model. The simulations are

running during 15 minutes of simulations time, to allow the user to move around and see the

way the MLB algorithm adapts to the changing conditions.

6.3.1.1 90 users: DL CBR 1024/512, UL CBR 1024/512

In this scenario, the users are configured to produce a constant bit rate service type. The user

in the center cell have 2 different service types. 15 of the central user have a CBR service of

512 Kbps in downlink and uplink, and the other 15 users a CBR service of 1024 in both link

directions.

Figure 6.1, shows the cumulative distribution function of the downlink PDCP throughput

of the users in the downlink. As it is shown, the difference between both situations is minimal.

This is due to the fact that the MLB Algorithm does not reach the MLB Threshold easily,

not overloaded, and thus the MLB Algorithm do not run and therefore a small amount of

optimizations are happening.

In figure 6.2, we can see the effect on the downlink PDCP throughput of the whole sys-

tem. Here, we can see that the mean downlink PDCP throughput varies a very small amount.

Nonetheless, the downlink 5%-ile PDCP Throughput, the minimum PDCP throughput reached

by 95% of the users, increases when the MLB optimizations are enabled.

Figure 6.3, depicts the effect on the uplink of the PDCP Throughput per user. We can see

here that the uplink suffers a decrease in the performance when the MLB algorithm is enabled

in both mean uplink PDCP throughput and 5%-ile uplink PDCP throughput. This means that

forcing the users on the edges of the cell produces a deterioration of the uplink performance.
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Figure 6.3: UL User Throughput: 90 users CBR1024+512 in DL and UL -

Figure 6.4, shows a much clear picture of the deterioration of the uplink for the whole

system in both mean uplink PDCP throughput and 5%-ile PDCP throughput.

6.3.1.2 90 users: DL CBR 1024/2048, UL CBR 1024/2048

In this scenario, the users are configured to produce a constant bit rate service type. The user

in the center cell have 2 different service types. 15 users of the central user have a CBR service

of 1024 Kbps in downlink and uplink, and the other 15 users a CBR service of 2048 in both

link directions.

Figure 6.5, shows an increment on the mean downlink PDCP throughput when the MLB

Algorithm is enable. We can also see the increment on the 5%-ile downlink PDCP throughput

which increases considerably with the MLB Algorithm. Meaning that the user on the edge of

the cell, which normally would perform poorly than the ones closer to the eNodeB, get a better

quality of service when the MLB algorithm is running.

In figure 6.6, we can see more clearly the effect on the overall system performance on the

downlink. Since the users on the edge are handover to a different cell, the users that remain on

the cell would have more resources available and therefore the whole system performs much

better.
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Figure 6.4: UL System Throughput: 90 users CBR1024+512 in DL and UL -
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Figure 6.5: DL User Throughput: 90 users CBR1024+2048 in DL and UL -

75



6. RESULTS

96 98 100 102 104 106 108 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean System Throughput = 103.1 Mbps

5%−ile System Throughput = 99.79 Mbps

System Throughput [Mbps] −−−>

C
D

F 
−−
−>

System Throughput CDF 
 ( MLB_90_dl_ul_cbr1024_cbr2048_Amore_90_users_05.11.2013..18.00.09, Downlink)

Mean System Throughput = 108.54 Mbps

5%−ile System Throughput = 106.38 Mbps

 

 
without MLB
mean without MLB
with MLB
mean with MLB

Figure 6.6: DL System Throughput: 90 users CBR1024+2048 in DL and UL -

On the other hand, as already seen in the previous scenario, the mean uplink PDCP through-

put and the 5%-ile uplink throughput are reduce when MLB optimizations take place. This is

shown in figure 6.7.

This fact is translated to the overall uplink performance as depicted in figure 6.8 where both

paramaters decrease.

6.3.1.3 90 users: DL CBR 1800, UL CBR 1800

In this scenario, the users are also configured to produce a constant bit rate service type. The

user in the center cell have the same service type. All users have a CBR service of 2048 kbps

in both, downlink and uplink. In this scenario, we will see that the MLB algorithm runs more

frequently than in the previous scenario.

Figure 6.9, shows the CDF of the user PDCP throughput measurements. We can see that

the the user user that had more difficulties to satisfy its service perform better. This can be seen

on the increase of the 5%-ile PDCP throughput with the MLB Algorithm.

The effect on the whole system is depicted in 6.10. There, the enhancements produced in

the PDCP throughput are represented. We can notice that the increase on PDCP throughput,

although considerable, is much lower than the increase with CBR 1024/2048 in the previous
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Figure 6.7: UL User Throughput: 90 users CBR1024+2048 in DL and UL -
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Figure 6.8: UL System Throughput: 90 users CBR1024+2048 in DL and UL -
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Figure 6.9: DL User Throughput: 90 users CBR1800 in DL and UL -

case. This is due to the fact that the offloading decisions made by the MLB Algorithm depends

on the availability of resources on the neighbor eNodeB. Therefore, the bigger the service type,

the harder would be to find available resource for the users. This will be much clear when we

increase the number of users in the cell.

Figures 6.11 and 6.12 show the effect on the uplink with a CBR of 1800 kbps. We can

see in this cases that the mean throughputs and 5%-ile throughputs decrease as in the previous

cases.

6.3.2 100 Users Simulations

The simulation shown in this section correspond to the scenario where 10 users are located ran-

domly in the 6 surrounding cells and 40 users are located in the center cell randomly distributed.

The user move randomly over time whit a Random Walk mobility model. The simulations are

running during 15 minutes of simulations time, to allow the user to move around and see the

way the MLB algorithm adapts to the changing conditions.
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Figure 6.10: DL System Throughput: 90 users CBR1800 in DL and UL -
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Figure 6.11: UL User Throughput: 90 users CBR 1800 in DL and UL -
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Figure 6.12: UL System Throughput: 90 users CBR1800 in DL and UL -

6.3.2.1 100 users: DL CBR 768, UL CBR 768

In this scenario, the users are also configured to produce a constant bit rate service type. The

user in the center cell have the same service type. All users have a CBR service of 768 kbps in

both, downlink and uplink.

Figure 6.13, shows the cumulative distribution function of the downlink PDCP throughput

of the users in the downlink. As it is shown, the difference between both situations is minimal.

This is due to the fact that the MLB Algorithm does not reach the MLB Threshold easily,

not overloaded, and thus the MLB Algorithm do not run and therefore a small amount of

optimizations are happening.

In figure 6.14, we can see the effect on the downlink PDCP throughput of the whole sys-

tem. Here, we can see that the mean downlink PDCP throughput varies a very small amount.

Nonetheless, the downlink 5%-ile PDCP Throughput, the minimum PDCP throughput reached

by 95% of the users, increases when the MLB optimizations are enabled.

Figure 6.15, depicts the effect on the uplink of the PDCP Throughput per user. We can see

here that the uplink suffers a decrease in the performance when the MLB algorithm is enabled

in both mean uplink PDCP throughput and 5%-ile uplink PDCP throughput. This means that

forcing the users on the edges of the cell produces a deterioration of the uplink performance.

80



6.3 Performance Evaluation of the MLB Algorithm

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean TP = 0.78 Mbps

5%−ile TP = 0.77 Mbps

DL PDCP TP [Mbps] −−−>

C
D

F 
−−
−>

User CDF Throughput 
 ( MLB_100_dl_cbr768_ul_cbr768_Amore_100_users_05.12.2013..10.11.58, Downlink)

Mean TP = 0.78 Mbps

5%−ile TP = 0.78 Mbps

 

 
without MLB
mean without MLB
with MLB
mean with MLB

Figure 6.13: DL User Throughput: 100 users CBR768 in DL and UL -
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Figure 6.14: DL System Throughput: 100 users CBR768 in DL and UL -
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Figure 6.15: UL User Throughput: 100 users CBR 768 in DL and UL -

Figure 6.16, shows a much clear picture of the deterioration of the uplink for the whole

system in both mean uplink PDCP throughput and 5%-ile PDCP throughput.

6.3.2.2 100 users simulations: DL CBR 1024, UL CBR 1024

In this scenario, the users are configured to produce a constant bit rate service type. The user

in the center cell have the same service type. All users have a CBR service of 1024 kbps in

both, downlink and uplink. In this scenario, we will see that the MLB algorithm runs more

frequently than in the previous scenario.

Figure 6.17, shows an increment on the mean downlink PDCP throughput when the MLB

Algorithm is enable. We can also see the increment on the 5%-ile downlink PDCP throughput

which increases considerably with the MLB Algorithm. Meaning that the user on the edge of

the cell, which normally would perform poorly than the ones closer to the eNodeB, get a better

quality of service when the MLB algorithm is running.

In figure 6.18, we can see more clearly the effect on the overall system performance on the

downlink. Since the users on the edge are handover to a different cell, the users that remain on

the cell would have more resources available and therefore the whole system performs much

better.
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Figure 6.16: UL System Throughput: 100 users CBR768 in DL and UL -
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Figure 6.17: DL User Throughput: 100 users CBR1024 in DL and UL -
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Figure 6.18: DL System Throughput: 100 users CBR1024 in DL and UL -

On the other hand, as already seen in the previous scenario, the mean uplink PDCP through-

put and the 5%-ile uplink throughput are reduce when MLB optimizations take place. This is

shown in figure 6.19.

This fact is translated to the overall uplink performance as depicted in figure 6.20 where

both parameters decrease.

6.3.2.3 100 users simulations: DL CBR 1800, UL CBR 1800

In this scenario, the users are also configured to produce a constant bit rate service type. The

user in the center cell have the same service type. All users have a CBR service of 1800 kbps

in both, downlink and uplink. In this scenario, we will see that the MLB algorithm runs more

frequently than in the previous scenario.

In this scenario, we can see that the MLB algorithm does not make many optimizations

thus, the performance of to the user and system throughput stays the same for both uplink and

downlink. This happens because the throughput of the users for the expected service type is

bigger than the available capacity on the neighbor eNodeBs.

Figures 6.21 and 6.22 depict the downlink PDCP throughput measurements and figures

6.23 and 6.24 the ones for the uplink case.
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Figure 6.19: UL User Throughput: 100 users CBR1024 in DL and UL -
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Figure 6.20: UL System Throughput: 100 users CBR1024 in DL and UL -
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Figure 6.21: DL User Throughput: 100 users CBR1800 in DL and UL -
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Figure 6.22: DL System Throughput: 100 users CBR1800 in DL and UL -
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Figure 6.23: UL User Throughput: 100 users CBR 1800 in DL and UL -
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Figure 6.24: UL System Throughput: 100 users CBR1800 in DL and UL -
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6.3.3 110 Users Simulations

The 110 user simulations are similar to the previous scenarios simulated. When the overloaded

periods of time are small, the enhancements produce to the users and system does not differ

much with the case where the MLB algorithm is not present.

Nevertheless, the uplink is performing worst than the case where the algorithm is not

present. This is due to the fact that the changes perform to the Handover Offset remain un-

changed until further optimizations are performed.

6.3.4 Consideration of Simulations

Now that we have seen the common effects produced by the MLB algorithm in the downlink

and uplink, we will compare the results obtained for the scenarios already show and some other

scenarios not shown. This scenarios do not appear to avoid repetition of the same behavior

where the conclusions can be observed.

6.3.4.1 MLB Gain

MLB Gain is a much more appealing parameter to study since it compares different scenarios

with different number of users. This parameter is the relative gain that the user and system gets

whenever the MLB algorithm is used. It gives insight on the situations where the algorithm

might be more suitable and where it will enhance better the system performance.
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Figure 6.25: 90 users: DL mean user Throughput Gain -
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Figure 6.25 and 6.26 give an idea of the performance on the downlink of the MLB algorithm

when 90 users are available in the system. We have to remember that 30 of then are in the center

cell with is the one being overloaded. The different bars represent the types of services required

by the user in the center cell. In this case CBR 1024+512 means that half of the user require a

CBR of 1024 kbps and the other half 512 kbps. The service type CBR 1024 means that all the

users in the center cell require a CBR service type with 1024 kbps. The same logic applies to

the rest of the scenarios. In both figures we can see that the MLB algorithm perform poorly
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Figure 6.26: 90 users: DL mean System Throughput Gain -

for low service type and increases when the service types requires are higher. This happens

because 90 users requiring low service types do not overload the cell and therefore the MLB

algorithm is not triggered regularly. The figures also show that when the service is too high the

MLB algorithm starts getting trouble obtaining gain with the algorithm. This effect can also be

seen in the 5%-ile mean Throughput depicted in figure 6.27 for the user case and figure 6.28

for the system case.

When we increase the number of users to 110, that is 50 users on the center cell and 10 on

the others, we can see the same type of behavior as the previously observed. The difference

between the one with 90 users and this one with 110 users is that the gain appears to be shifted

towards lower service types. Due that with higher number of user the cell overload can be

reached easier with lower service types.

Figures 6.29 and 6.30 show the behavior for 110 users.
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Figure 6.27: 90 users: DL 5%-ile user Throughput Gain -
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Figure 6.29: 110 users: DL mean user Throughput Gain -
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Figure 6.30: 110 users: DL mean System Throughput Gain -
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We can also observe greater gain for the scenarios with 110 if we compare the top gains

independently of the service required. The reason for this behavior is that a greeter number

of users allow for a greater number of decision in the MLB algorithm and normally the more

options you have the better the solution applied.

The same shifting to smaller service types is also observed in the 5%-ile throughput for

both user and system performance. Since it does not add extra information the plots will not

be represented.

On the Uplink side, depicted in figure 6.31 for the 90 users case and in figure 6.32 for the

110 user case, we can see that when the number of users is lower and the MLB algorithm forces

the users to handover, the effect is worst for the uplink throughput. When the number of users

is higher, as in the 110 user case, the effects of the MLB algorithm on the uplink throughput

are smoother for the service types where MLB performs best on the downlink.

We can also observe, as previously in the cumulative distributions functions, that when the

MLB algorithm makes less optimizations, thus forcing less handovers, the uplink throughput

loses less throughput.

Similarly, the same conclusions can be seen for the 5%-ile uplink Throughput.
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Figure 6.31: 90 users: UL mean System Throughput Gain -
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Figure 6.32: 110 users: UL mean System Throughput Gain -

6.3.4.2 Ratios

6.4 Effect of MLB Period on the Performance

In this section we discuss the effects of the deciding the MLB Period on the overall system per-

formance. The MLB period is the lapse of time between 2 consecutive optimizations produced

by the MLB algorithm. This parameter can be configured by the network operator to reduce

the amount of measurements required by the eNodeB to produce MLB optimizations.

In figure 6.33, we can see the effect on the downlink system throughput when we vary

the MLB period. We can observe that the smaller the MLB period is, the better the algorithm

perform. As explain earlier, decreasing the MLB period makes the algorithm run more often

producing more optimization decisions in a shorter amount of time.

The trade-off here is that at a lower MLB period, the eNodeB needs to asks the user about

their measurements to their neighboring cells. This produces a overhead on the system and

makes the user make measurements more often than usual reducing their battery life and pro-

ducing saturation in the uplink control channels when measurements are send to the eNodeB.

On the Uplink, depicted in figure 6.34 the effect is, as already discussed in previous sec-

tions, that the mean uplink system throughput and the 5%-ile system throughput are reduced

when the MLB periods are smaller.
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Figure 6.33: DL mean System Throughput for different MLB Periods -
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6.5 Effect of MLB Thresholds on the Performance

Whenever the virtual load reaches a certain point, the MLB algorithm starts optimizing the

handover offsets of the cells. This point is called MLB Threshold. For the previous simulations,

the MLB Threshold was set to the same value. In this section we take a look at the implications

of deciding on one MLB Threshold over another.

First, we will take a look at the downlink system throughput for different number of users

when selecting different MLB Thresholds. Figure 6.35, shows the case for 100 users with

different MLB Thresholds and figure 6.36 shows the same study for 120 users.
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Figure 6.35: Effect of MLB Threshold in the DL System Throughput with 90 users -

In figure 6.35, with 90 users, we can see that the overall downlink system PDCP Through-

put performs better with lower MLB Thresholds.

In figure 6.36, with 120 users, the previous statement does not hold as we can see for the

case where the MLB Threshold is equal to 90 which perform slightly better then the case where
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Figure 6.36: Effect of MLB Threshold in the DL System Throughput with 120 users -
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the MLB Threshold is equal to 80.

For the MLB Threshold we can conclude that depending on the situation and the number

of user the system behaves in different ways. The reason for this behavior is that whenever the

MLB Threshold is lower, it allows the MLB algorithm to force more extreme situations than

when the MLB is higher. This is due to the fact that the composite available capacity depends

on this parameter to signal the available capacity to its neighbor eNodeBs. When the capacity

signaled is higher the MLB algorithm can make the PRB estimations on the Neighbor eNodeB

in a more rough estimation producing more extreme situations for the users on the edges.

6.6 SINR Fine Tuning

Finally, we will take a look at the effect of tuning the SINR estimations made by the MLB

algorithm. The tuning of the SINR depends on the characteristics of the scenario since each

scenario is different from another.

In figure 6.37, we can see the results obtained for our scenario and how the downlink system

PDCP throughput varies for the different changes in the SINR estimation.

We can see that for the case where we decrease the SINR estimations by 2dB (-2dB) the

mean system PDCP throughput and the 5%-ile system throughput performs better than the

others.

Additionally, in figure 6.38, we can see that the case where we decrease the SINR estima-

tion by 2dB (-2dB) the mean system PDCP throughput and the 5%-ile system throughput also

performs better than the others.

This means that making adjusting the estimations made by the algorithm, the performance

of the MLB algorithm will perform much better in both , uplink and downlink.
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7

Conclusion & Future Work

Up to this point we have study the performance of the Mobility Load Balancing algorithm

based on the results obtained for the Radio Network simulator called AMoRE. We have seen

that certain trade-offs should be taken into account when using the proposed solution in real

scenarios.

In the downlink, the mean PDCP throughput and the 5%-ile PDCP Throughput in the

scenarios proposed increase in the cases where overload occurs in the cell. This increase on

the downlink comes with a decrease on the Uplink due to the increase in interference due that

the MLB algorithm forces changes to the Handover Offset that produce the user close to the

edge to handover to a neighbor eNodeB with worst conditions than normal producing more

interference to the original cell.

We study the influence of the number of users to be considered by the MLB Algorithm in

the handover offset change decision process. Whenever more users were available to offload,

the MLB performed better since the number of possible solutions increased.

The different traffic types requested by the user also influence the behavior of the algorithm

and the enhancements in the overall system performance. When the traffics are smaller the

eNodeB finds easier a solution to the overload than when the service is bigger. In some case,

where the service types are too big the MLB algorithm does not enhance the overall system

performance.

Thus, when the number of user increases the maximum gain produced on the throughput

shifts to lower service types.

While setting the MLB periods, certain trade-offs need to be made. If the periods are small

the gain produced in the overall system increases but it leads to overhead and saturation of the
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control channels, due to the increasing amount of measurements, and reduce the battery life of

the users.

The MLB Threshold should be set depending on the type of scenario taking place. This

way the overall system performance can be increase if the parameter is chosen appropriately.

And finally, the SINR estimation taking place in the MLB algorithm can be fine tuned to

produce better SINR estimations and therefore better performance in both, uplink and down-

link.

7.1 Future Work

In this thesis, many of the parameters that can be adjust have been taken into consideration.

Nevertheless, the algorithm could be enhanced in the future.

A further study of the MLB algorithm could lead to the introduction of Uplink Power Con-

trol in combination with the algorithm. This would help to control and optimize the interference

produced in the uplink and allow for better perform in the uplink PDCP throughput.

Furthermore, it would be interesting to consider a recovery system that allowed the cell to

return to its original and natural conditions. That is, adjusting the Handover Offset whenever

the overload situation has been managed. In the implementation proposed, this solution has not

been implemented and it might be the cause for loss of performance in the 5%-ile downlink

PDCP throughput.
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