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Abstract

Background: Continuous glucose monitoring (CGM) devices estimate plasma glucose (PG) from measurements
in compartments alternative to blood. The accuracy of currently available CGM is yet unsatisfactory and may
depend on the implemented calibration algorithms, which do not compensate adequately for the differences of
glucose dynamics between the compartments. Here we propose and validate an innovative calibration algorithm
for the improvement of CGM performance.
Methods: CGM data from GlucoDay� (A. Menarini, Florence, Italy) and paired reference PG have been obtained
from eight subjects without diabetes during eu-, hypo-, and hyperglycemic hyperinsulinemic clamps. A cali-
bration algorithm based on a dynamic global model (GM) of the relationship between PG and CGM in the
interstitial space has been obtained. The GM is composed by independent local models (LMs) weighted and
added. LMs are defined by a combination of inputs from the CGM and by a validity function, so that each LM
represents to a variable extent a different metabolic condition and/or sensor–subject interaction. The inputs best
suited for glucose estimation were the sensor current I and glucose estimations Ĝ, at different time instants [Ik, Ik-1,
Ĝk-1] (IIG). In addition to IIG, other inputs have been used to obtain the GM, achieving different configurations of
the calibration algorithm.
Results: Even in its simplest configuration considering only IIG, the new calibration algorithm improved the
accuracy of the estimations compared with the manufacturer’s estimate: mean absolute relative difference
(MARD) = 10.8 – 1.5% versus 14.7 – 5.4%, respectively (P = 0.012, by analysis of variance). When additional ex-
ogenous signals were considered, the MARD improved further (7.8 – 2.6%, P < 0.05).
Conclusions: The LM technique allows for the identification of intercompartmental glucose dynamics. Inclusion
of these dynamics into the calibration algorithm improves the accuracy of PG estimations.

Introduction

Self-monitoring of blood glucose is recognized as a
milestone of diabetes care since the 1980s, allowing for

improvement of metabolic control, especially in insulin-
treated patients.1 This has prompted research in the field
of continuous glucose monitoring (CGM) with a growing
body of evidence, although not definite, that it might
translate into better glycemic control compared with self-
monitoring of blood glucose.2 However, the accuracy of
currently available CGM devices is relatively poor, espe-
cially in the hypoglycemic range, where the false-positive
and false-negative rates are unacceptably high.3–5 Al-
though small improvements have been achieved with the
newest sensor generations,6,7 this is a critical issue because
accurate prediction of plasma glucose (PG) is strongly
needed in diabetes subjects before these systems are lar-
gely used either for glucose monitoring only or with the

aim of ‘‘closing the loop’’ for a regulated insulin infusion
by a minipump in the future.

Current commercially available CGM systems for home
monitoring are subcutaneous electrochemical sensors. All of
them use the glucose oxidase enzyme–based technology,
which give a measure of glucose concentration into the in-
terstitial fluid in terms of intensity of the current generated
from the enzymatic reaction (expressed in nA).8 This means
that a CGM system actually needs calibration against con-
current blood glucose values, thus providing an estimate of
blood glucose concentration.

Actually, the current intensity from subcutaneous glucose
sensors is the result not only of the interstitial glucose concen-
tration, but also of the complex interaction between the sensor
and the subject. Therefore the accuracy of the estimation of
blood glucose from the measurement in the interstitial fluid will
depend, among other factors, on the calibration algorithm. In-
deed, the latter is a function that includes the relationship
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between PG and the sensor signal from interstitial fluid glucose,
trying to minimize physiological differences between the two
compartments. Unfortunately, however, few studies have
systematically investigated this relationship,9–14 with hetero-
geneous results. This highlights the complexity of the PG-to-
interstitial glucose dynamics and of the subject-to-sensor
interaction, which contrasts with the rather simplistic approach
of calibration algorithms currently implemented in commercial
CGM systems15 (basically linear regression methods).

Indeed, linear regression models implemented in a CGM
system usually require calibration under conditions of relative
glycemic stability (at ‘‘stationary’’ metabolic states) where
equilibrium between PG and interstitial glucose is expected.
In this way, the relationship between the measured current
intensity and PG is considered static, and both the plasma to
interstitium transport dynamics and the possibly subject–
specific sensor interaction are neglected. This has been rec-
ognized as a limitation of currently calibration algorithms, but
only a few authors have proposed alternative calibrations
strategies,16–18 each one with some practical limitations that
prevent its application to clinical practice.19

An alternative approach is to consider that the relationship
between PG and the sensor signal from interstitial glucose is
not linear and likely depends on the metabolic status. In this
case, accurate estimation of PG requires mathematical models
describing the relationship between PG and the electrical
signal generated by interstitial fluid glucose concentrations,
during both steady-state and dynamic conditions.16–18

The aim of this article is to describe a new calibration al-
gorithm based on the integration of several local dynamic
models, each one valid in a specific region, to estimate the PG
level from measurements in a remote compartment (in this
case, the interstitial space). The use of multiple local models
(LMs) allows for a better description of the complexity of the
PG to interstitial glucose dynamics, improving the accuracy of
the estimations. Suitability and performance of this new
technique are tested with a data set from a clinical study,
where the sensor’s current signal, glucose estimates, and
paired reference PG measurement are available. Results are
expressed in terms of accuracy of glucose estimates from the
new calibration algorithm and compared with those obtained
with the standard calibration procedure.

Methods

The proposed algorithm20 has been developed and vali-
dated using data from eu-, hypo-, and hyperglycemic clamps,
where healthy subjects wore a microdialysis-based glucose
sensor (GlucoDay�, A. Menarini, Florence, Italy). The study
has been described in detail elsewhere.21 In brief, after an
initial period of spontaneous euglycemia, at time + 30 min an
insulin infusion was started, at the rate of 1 mU/kg/min, and
continued until 120 min. At the same time, glucose (20% [wt/
vol] dextrose) was infused when necessary at a variable rate
allowing for a controlled slow fall of PG in about 60 min, until
the target of approximately 50 mg/dL was reached. From
time + 90 min to + 120 min PG was maintained at a hypo-
glycemic plateau of approximately 50 mg/dL. At time
+ 120 min insulin infusion was stopped, and the glucose in-
fusion rate was increased to raise PG after 45 min to the target
of approximately 165 mg/dL (time + 165 min), which was
maintained for the next 15 min until time + 180 min. PG was

measured every 6 min synchronously with the output of the
sensor, which gave a glucose estimate every 3 min.

Principles of the new calibration algorithm

The algorithm is based on a model that describes the rela-
tionship between PG concentrations and the signal from the
sensor. The structure of the model is described in detail else-
where.22 Basically, it is based on the integration of several LMs
(Fig. 1), each one characterized by independency and regional
validity, in order to obtain an interpretable global model (GM):

GM¼
Xc

i¼ 1

WLMi (1)

where WLMi is the weighted LM i. Each weighted LM, WLMi,
is the result of the LM LMi multiplied by its validity func-
tion Vi:

WLMi¼Vi � LMi (2)

The structure of each LM could be any, but in this cali-
bration algorithm linear models are used to add interpret-
ability to the GM:

LMi¼ b1i � x1þ b2i � x2þ . . . þ bDi � xDþ b0i¼ b1Di
� x1Dþ b0i

(3)

where x1D is the D-dimensional vector of inputs of the system
and [b1D, b0i] is the D + 1-dimensional vector of the regression
coefficients b of each linear LM with b0 an independent term.

As represented in Eq. 2, each LM is weighted by some va-
lidity functions (Vi) that, in the proposed algorithm, are cho-
sen to be hyper-Gaussian functions.23 They are normalized in
order to define the degree of validity of the ith LM in the
input’s space so that Vi = 1 if the ith LM is 100% representative
of the current input; in contrast, Vi = 0 if the ith LM does not
characterize the current input at all. Equations 4 and 5 show
the final normalized hyper-Gaussian validity function for the
one-dimensional and multidimensional cases, respectively:

Vi¼ e
� 1

2

��
x�mi

ri

�2�H

(4)

Vi¼ e�
1
2

�
(~x�~mi)

TS� 1
i (~x�~mi)

�H

(5)

where x is the input and mi and ri are the center and the SD,
respectively, of the ith validity function. For the multidimen-
sional case, ~x and ~m are vectors, T refers to the transposed
vector, and S is the diagonal matrix of variances of each va-
lidity function:

S¼
r2

1 0 0 0
0 r2

2 0 0
1

0 0 0 r2
D

2
664

3
775

The use of hyper-Gaussian functions allows the algorithm to
find compact regions where an LM is valid. Moreover, the
number of parameters to define the model is reduced because
only two parameters have to be defined for each input xj and
each LM: mean (mij) and variance (r2

ij). Validity functions are
independent functions, making each LM independent as well.
This facilitates finding LMs defined by different characteristics
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of the inputs (i.e., different dynamics representative of the re-
lationship between interstitial glucose and PG influenced by
the interaction sensor/subject).

In summary, the resulting model will be described by a set
of parameters: the regression coefficients of the linear models
and the means and variances of the hyper-Gaussian mem-
bership functions, all of them defined for each LM. The final
structure of the model can be seen in Eq. 6, already adapted
for the D-dimensional case:

GM¼
Xc

i¼ 1

(e�
1
2((~x�~mi)

TS� 1
i (~x�~mi))

H

� (b1Di
� xþ b0i)) (6)

The total number of parameters to identify will only depend
on the number of inputs considered and on the number of LMs.

An additional feature of the proposed algorithm is that it is
structured to minimize both the error of the glucose estima-
tion from each LM (the difference between each LM’s glucose
estimation and reference glucose [local error]) and the error of
the GM (the difference between the GM’s glucose estimation
and reference glucose [global error]). Optimal LM and va-
lidity function parameters are obtained through global opti-
mization of a cost index comprising global and local errors.
However, greater importance is given to the accuracy of
glucose estimation from each LM compared with the accuracy
of the GM.21 This strengthens the ability of the algorithm to
find LM valid regionally, with each one characterizing to a
different degree (0% to 100%) different PG to interstitial glu-
cose dynamics and/or sensor–subject interactions.

Finally, it is worth mentioning that, as the calibration al-
gorithm may use inputs of different nature, normalization is
required to make them all have, a priori, the same weight in
the modeling process.

Glucose estimation given by the model is corrected every time
a new calibration point is introduced, updating past values.

Modeling the relationship between PG
and the sensor’s electrical signal

What follows is a description of the application of the above
methodology to the available clinical data.

The processes of finding the best inputs that define the
output (i.e., PG) and the proper number of LMs that compose
the GM are dependent. Indeed, to avoid complexity, the aim is
to find the minimum number of LMs that best define the
output, and for that the input signals that contain more in-
formation about the output are needed.

Several combinations of inputs (samples of current [I], PG or
capillary glucose [G], and glucose estimations [Ĝ]) in different
time instants (k-1, k-2, k-n) may be used to compute an estima-
tion of the current PG level. However, with the available da-
tabase, we found that the combination of inputs that best
predicted the output was [Ik, Ik-1,Ĝk-1] (abbreviated by IIG). This
means that the estimation of the actual glucose concentration at
time k, Ĝk, depends on the current intensity in the same time
instant and involves a derivative indicating the trend of the
signal. Using this input structure only two linear LMs (c = 2)

FIG. 1. Inputs from a remote compartment, in this case the interstitial space, feed the calibration algorithm. The basic inputs
include Ik, Ik-1, and Ĝk-1 (current and past intensity value from the sensor and past glucose estimation, respectively) and define
both which local models (LMs) and to what extent they are valid. The latter is achieved weighing each LM by a validity
function Vi and minimizing both local and global errors. Weighed LMs (WLMs) are added, resulting in the global model,
which provides the global glucose estimation. A block to consider the calibration point(s) from capillary measurements is
included to correct the estimation of the algorithm. If available, additional signals can also be included (presence/absence of
insulin or glucose infusion, meal, exercise, etc.).
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were needed to achieve a good estimation of PG. Thus, the GM
obtained in this case has the structure reported in Eq. 6, with

~x¼ [Ik Ik� 1 Ĝk� 1]

and c = 2.
Of note is that information about actual PG concentrations

against current intensity was included only once at time k = 1
(Gk-1, calibration point). However, if more calibration points
were used or needed, they would replace the glucose estima-
tion in the previous instant (Ĝk-1) to estimate PG at instant k.

In the present study, an exogenous insulin (Iex) and glucose
infusion (Gex) were present at some time during the 0–180-min
period: constant insulin infusion in the 30–120-min interval;
variable glucose infusion between 30 and 180 min. Therefore,
we explored the possibility of including this information in
the calibration algorithm as a binary signal (infusion Yes or
No) in addition to the other inputs already considered (Ik, Ik-1,
Ĝk-1). This is of particular interest because in real-life condi-
tions changes in the conditions of the subject (fed/fasting,
insulin bolus/only basal, etc.) may well influence the sensor-
to-subject relationship, and feeding the calibration algorithm
with this information is expected to improve its performance.

It is important to remark that each patient will be re-
presented by one or more LMs to a different extent, depend-
ing on its inputs. The shift from one model to another will also
be defined by the inputs.

The accuracy of the PG estimations obtained with the new
algorithm (with and without the information from binary sig-
nals) was calculated using the ISO criteria,24 the mean absolute
relative difference (MARD), and the median absolute relative
difference (M2ARD). Results were compared with those ob-
tained by the GlucoDay, which at the time the study was per-
formed implemented a one-point calibration algorithm: PG
estimates Ĝk + n = Ik + n · S, where S is the sensor sensitivity calcu-
lated as S = Ik/Gk (Ik and Gk are, respectively, the current intensity
and the PG concentration at time k). All data were subjected to
repeated-measures analysis of variance with the Huynh–Feldt
adjustment for nonsphericity.25 The analysis of variance model
included the test condition (manufacturer’s or different config-
urations of the new algorithm) as the within-subjects factor. Post
hoc comparisons (Newman–Keuls test) were carried out to
pinpoint specific differences on significant terms.

Results

Figure 2 shows PG estimates obtained with the new algo-
rithm, in the configuration not accounting for binary signals,
compared with reference PG measurements. On the other
hand, the output of each one of the two LMs composing the
GM (already weighted by its validity function) can be seen in
Figure 3. Figure 2 shows that the estimated signal is quite
close to the reference glucose for all patients, indicating good
performance of the algorithm even in this case with no ex-
ogenous information and only two LMs. Figure 3 shows that
each one of the two LMs represents only a subset of the study
subjects (LM1 for subjects 5 and 6 vs. LM2 for the remaining
subjects), whereas only the weighted integration of both LMs
to form the GM allows for glucose estimations very close to
the actual concentrations (Fig. 2) in the whole population.

Table 1 shows the performance of the proposed algorithm
both in its ‘‘basic’’ configuration and considering information

from binary signals [i.e., the presence (Iex,Gex = 1) or absence
(Iex,Gex = 0) of insulin and/or glucose infusion]. The compar-
ison with the results from the one-point calibration im-
plemented by the GlucoDay demonstrates that the new
calibration algorithm allows for a significant improvement of
the accuracy of the glucose estimations. In particular, the in-
clusion of additional information about the metabolic status
further improves the accuracy of glucose estimations, reduc-
ing the MARD and M2ARD below 10%. It is noteworthy that
the magnitude of improvement was similar for both the whole
and the hypoglycemic range. However, likely because of the
small sample size, under conditions of hypoglycemia the
difference did not reach statistical significance.

Conclusions

This study describes and validates a new calibration al-
gorithm for CGM systems, based on a dynamic model that
includes the relationship between PG levels and measure-
ments in a remote compartment (in this case, the interstitial
space). The strength and novelty of this method reside in the
structure of the GM, which is composed by several LMs
weighted and added together. LMs are defined by a validity
function and a linear combination of the inputs, so that each
one represents to a variable extent a different (metabolic)
condition and/or sensor–subject interaction. Then, each
subject will be represented by one or more LMs, and the shift
from one LM to another is defined by the inputs (i.e., the
output of the sensor but also every other signal containing
information relevant to the glucose dynamic). It is note-
worthy that each LM has a very simple structure (linear),
favoring interpretability of the GM. Moreover, the validity
function of LMs (Vi) makes LMs representative of very
specific and well-defined regions on the input space, al-
lowing for the identification of the regions they represent.
All these may help to elucidate the relationship between the
signal(s) from the remote compartment and PG levels, de-
scribing different glucose dynamics and sensor behaviors. It
does mean that this calibration algorithm can be applied to
any sensor that offers some indirect measurement related to
PG levels, with the number and parameters of each LM being
determined by the particular sensor’s output.

When PG is estimated from direct or indirect measure-
ments in any compartment alternative to blood, the following
information should be ideally included into the calibration
algorithm in order to improve the accuracy of glucose esti-
mations: (1) the intrinsic dynamic of the sensor, (2) glucose
dynamic between plasma and the remote compartment, and
(3) factors influencing the previous two dynamics. Indeed,
sensors of different nature, or even sensors belonging to the
same class, may each have a specific intrinsic dynamic. In this
regard, recently it has been shown how much of the lag time
of continuous glucose sensors is in fact due to the intrinsic
delay in the sensor response to changes in glucose concen-
trations.26 Additionally, the interaction between a sensor and
the remote compartment of measurement is likely to be spe-
cific: in the case of minimally invasive sensors (which to date
are the only commercially available) it depends on the bio-
compatibility of the materials used and on the inflammatory
reaction following its insertion. This relationship is complex,
may be time-dependent (as the foreign body reaction pro-
gresses), and certainly is specific to each individual.27,28
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However, to date the issue of enhanced calibration algo-
rithm has received poor attention with only a few scientific
contributions. Knobbe and Buckingham16 were the first who
considered intercompartmental glucose dynamics and de-
veloped a five-state extended Kalman filter for the estimation
of subcutaneous glucose levels. Facchinetti et al.18 further
developed the strategy proposed by Knobbe and Bucking-
ham16 and proposed the ‘‘enhanced Bayesian calibration
method’’ based on an extended Kalman filter estimating in-
terstitial glucose, PG, and sensor sensitivity along time. The
method is intended to be used in cascade to any calibration
algorithm built in commercial CGM devices and was vali-
dated on simulated data representative of diabetes subjects,
showing improved CGM accuracy compared with the meth-
od of Knobbe and Buckingham.16 However, a drawback of
this validation is the use of the same model of interstitial
glucose and sensor sensitivity for data generation and state
estimation, although in the first case a robustness analysis
considering discrepancies in lag time estimation is conducted.
Furthermore, as the authors acknowledge, application of the
enhanced Bayesian calibration method to real data has two
main limitations: first, it requires the knowledge of the vari-
ances of both state and measurement processes, which in real-
life conditions are unknown; second, the existence of a burn-in
period, considered as one day by the authors.

Leal et al.29 considered sensor and glucose dynamics using a
different approach. In particular, autoregressive techniques
were applied to CGMS� System Gold� (Medtronic, North-
ridge, CA) to monitor data from a clinical study in patients
with diabetes. A third-order model of the relationship between
current intensity given by the monitor and reference PG
measurements was obtained. Predictions given by the model
were corrected at every calibration point introduced by the
patient, and a cross-validation analysis yielded a substantial
improvement of the accuracy of glucose estimations.28 How-
ever, a drawback of autoregressive models is that frequent
recalibration may be needed to ensure a good performance.

At variance with the previous approaches, the proposed
calibration algorithm, thanks to its structure of LMs, is better
suited to find and correct for all the above-mentioned dy-
namics, improving the accuracy of glucose estimations. Re-
sults from the present study should be considered as a proof
of concept. Indeed, in the small population studied at least
two different dynamics of the sensor-to-subject interaction
were found, each one detected by a different LM: LM1 for
subjects 5 and 6 and LM2 for the other subjects. The reason for
the existence of two different LMs was easily explained by
analysis of the electric signal from the sensors. Although PG
and insulin concentrations were very similar in all subjects (it
was a clamp study), there were two ‘‘clusters’’ of current in-
tensity, with the one from sensors inserted in subjects 5 and 6
being much smaller compared with the other. This could be
probably due to differences in sensor sensitivity, which were
captured automatically by the algorithm. Consideration of
both dynamics by means of the two independent LMs al-
lowed for a significant improvement of glucose estimations
compared with the original algorithm implemented by the
GlucoDay. Additionally, the proposed algorithm admits the
introduction of information about the metabolic condition of
the subject as a binary signal. This further improved the ac-
curacy of the glucose estimation and appears to be an inter-
esting feature because any information potentially relevant to

the sensor-to-subject interaction (physical activity/inactivity,
fed/fasting state, etc.) can be used to feed the algorithm.

However, the study has three main limitations. (1) The
study population is composed by just eight healthy subjects,
and data should be considered preliminary. Thus it is quite
probable that the structure of the obtained algorithm is not
representative of the general population of people with dia-
betes. Indeed, getting a calibration algorithm applicable to the
general population of people with diabetes would require a
specific clinical study in a representative sample, and vali-
dation of the obtained algorithm should be carried out in a
different study involving larger numbers of subjects with both
type 1 and type 2 diabetes. However, in this case the structure
of the proposed algorithm is not expected to change regarding
the inputs to be considered, although more LMs would
probably be needed to cover the greater heterogeneity of local
behaviors. (2) Data from reference PG measurement are
available for a limited time for each subject. This could in
theory have reduced the possibility of identifying different
glucose dynamics and sensor behaviors. However, during the
clamp study, glucose and insulin concentrations varied
through all the clinical significant ranges of eu-, hypo-, and
hyperglycemia, giving a good picture of the changes observed
in real-life conditions. In contrast, longer studies should be
performed to identify changes in the dynamics of the sensor
over time, avoiding underestimation of the number c of LMs
needed to describe the PG/remote compartment glucose re-
lationship. This is particularly true for minimally invasive
sensors where biofouling, inflammation, and foreign body
reaction (which are probably tissue and subject specific) in-
duce changes in the sensor’s response to variations in glucose
concentration. (3) Finally, to prove robustness of the algo-
rithm to cope with variability, the results must be confirmed
in a sample representative of the population of patients with
diabetes. In this regard, from a phylogenetic point of view it is
expected that the inter-subject variations in the inter-
compartmental glucose dynamics, as well as the spectrum of
the inflammatory responses to the sensor’s insertion, are
limited. However, because of changes in the microcirculation,
the variability of the sensor-to-subject interaction (i.e., differ-
ent sensor sensitivities, sensor’s drift overtime, metabolic
conditions, etc.) might be greater in patients with diabetes,
especially those with microvascular complications.30 Never-
theless, the accuracy of CGM in patients with diabetes seems
to be not different compared with healthy subjects, indicating
that the theoretical greater variability associated with the di-
abetes condition may have limited practical impact.

Despite its limitations, in this proof-of-concept study the
LMs technique is demonstrated to be an effective approach for
CGM calibration algorithms. Indeed, aside the very good re-
sults obtained in terms of accuracy of glucose estimations, the
short computational time associated with this methodology
makes it feasible for real-time monitoring and implementa-
tion in every glucose sensor.

Acknowledgments

The authors acknowledge the partial funding of this work
by the Spanish Ministry of Science and Innovation projects
DPI2007-66728-C02-01 and DPI2010-20764-C02-01 and by the
European Union through FEDER funds and grant FP7-PEO-
PLE-2009-IEF, Reference 252085. F.B.R. is the recipient of a

A MULTIPLE LOCAL MODELS APPROACH TO CGM 81



fellowship (FPU AP2008-02967) from the Spanish Ministry of
Education.

Author Disclosure Statement

No competing financial interests exist.

References

1. Goldstein DE, Little RR, Lorenz RA, Malone JI, Nathan DM,
Peterson CM: Tests of glycemia in diabetes. Diabetes Care
2004;27(Suppl 1):S91–S93.

2. The Juvenile Diabetes Research Foundation Continuous
Glucose Monitoring Study Group: Continuous glucose
monitoring and intensive treatment of type 1 diabetes. N
Engl J Med 2008;359:1464–1476.

3. Kovatchev B, Anderson S, Heinemann L, Clarke W: Com-
parison of the numerical and clinical accuracy of four con-
tinuous glucose monitors. Diabetes Care 2008;31:1160–1164.

4. Clarke WL, Anderson S, Farhy L, Breton M, Gonder-Frederick
L, Cox D, Kovatchev B: Evaluating the clinical accuracy of two
continuous glucose sensors using continuous glucose-error
grid analysis. Diabetes Care 2005;28:2412–2417.

5. Wentholt IM, Vollebregt MA, Hart AA, Hoekstra JB, De-
Vries JH: Comparison of a needle-type and a microdialysis
continuous glucose monitor in type 1 diabetic patients.
Diabetes Care 2005;28:2871–2876.

6. Zisser HJ: Accuracy of the SEVEN continuous glucose
monitoring system: comparison with frequently sampled
venous glucose measurements. J Diabetes Sci Technol 2009;
3:1146–1154.

7. Keenan DB, Cartaya R, Mastrototaro JJ: Accuracy of a new
real-time continuous glucose monitoring algorithm. J Dia-
betes Sci Technol 2010;4:111–118.

8. Aussedat B, Dupire-Angel M, Gifford R, Klein JC, Wilson
GS, Reach G: Interstitial glucose concentration and glycemia:
implications for continuous subcutaneous glucose monitor-
ing. Am J Physiol Endocrinol Metab 2000;278:E716–E728.

9. Jansson PA, Fowelin J, Smith U, Lonnroth P: Characteriza-
tion by microdialysis of intracellular glucose level in subcu-
taneous tissue in humans. Am J Physiol 1988;255:E218–E220.
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