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ABSTRACT 

 

The plant hormone abscisic acid (ABA) plays a crucial role in the control of the stress response and the 

regulation of plant growth and development. ABA binding to PYR/PYL/RCAR intracellular receptors 

leads to inhibition of clade A PP2Cs such as ABI1 or HAB1, causing the activation of the ABA 

signaling pathway. To obtain further insights into ABA signaling we have focused on the 

characterization of members of these two families of proteins. We have generated a mutated version of 

HAB1 carrying a mutation in the tryptophan-385, which is a key residue for the interaction with the 

receptor’s gating loops and ABA molecule. As a result, hab1
W385A

 was found to be refractory to 

inhibition by the PYR/PYL/RCAR proteins. Thus, using in vitro kinase assays we found that hab1
W385A 

was able to dephosphorylate OST1 even in the presence of ABA and the receptors. hab1
W385A

 and 

hab1
G246D

 can be classified as hypermorphic dominant mutations. hab1
G246D

 shows  impaired 

phosphatase activity, whereas the new dominant allele shows wild type activity. Transgenic 

Arabidopsis lines overexpressing hab1
W385A

 showed strong dominant ABA insensitivity. We also 

analyzed the role of the clade A PP2Cs belonging to the PP2CA branch in the ABA signaling pathway. 

The generation of the double mutant pp2ca-1hai1-1, which shows enhanced ABA sensitivity compared 

to wild type and the single mutants, revealed that HAI1 is a negative regulator of ABA signaling 

pathway. Subcellular localization experiments showed that both HAI1 and PP2CA were localized to 

the nucleus, but also in cytosol and microsomes. Three members of the PP2CA branch, i.e.: PP2CA, 

AHG1 and HAI1, showed selective inhibition by the different PYR/PYL/RCARs. These results 

suggest that the PYR/PYL/RCAR receptors can discriminate between members of clade A 

phosphatases. pyl8 is the only  single mutant that shows reduced sensitivity to ABA in root growth 

assays. GUS reporter analyses showed that PYL8 was present in stele cells, epidermis, columella and 

lateral root cap and quantification of GUS activity in root showed that PYL8 is one of the receptors 

with higher expression levels in this organ. The root tip plays a crucial role for hydrotropism and ABA 

is a phytohormone involved in this response. The study of the hydrotropic response of combined 

mutants of both PP2Cs and PYR/PYL/RCARs revealed that the ABA core pathway regulates root 

hydrotropism. Thus, while the sextuple mutant pyr/pyl112458 showed reduced root curvature under a 

moisture gradient, the quadruple mutant of the PP2Cs (Qabi2-2) showed a stronger curvature under 

these conditions, getting away from areas with low water potential better than the wild type. Finally, 

the last section of this work was focused on exploring new chemical tools to increase drought 

resistance. We have performed a chemical genetic approach directed to isolate new ABA agonists. 
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Based on structural data of ABA receptors, 500 compounds were selected and assayed in Arabidopsis. 

From these, the compound called 2C06 inhibited root growth in wild type more than in pyr/pyl/rcar 

ABA insensitive mutants and it showed promising in vitro results to inhibit PP2Cs and interact with 

them in Y2H assays.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

RESUMEN 

 
La fitohormona ácido abscísico (ABA) juega un papel crucial en el control de la respuesta a estrés y en 

la regulación del crecimiento y desarrollo de la planta. La unión del ABA a los receptores 

intracelulares PYR/PYL/RCAR conlleva la inhibición de las PP2Cs del clado A tales como ABI1 o 

HAB1, causando la activación de la ruta de señalización del ABA. Para obtener más información en la 

señalización del ABA nos hemos centrado en la caracterización de miembros de estas dos familias 

proteicas. Hemos generado una versión mutada de HAB1 que contiene una mutación en el Trp-385, 

residuo clave para la interacción con los receptores y con la molécula de ABA. Como resultado, 

hab1
W385A 

se mostró refractaria a la inhibición por los receptores PYR/PYL/RCAR. Así, en ensayos de 

actividad quinasa in vitro encontramos que hab1
W385A 

era capaz de desfosforilar a OST1 incluso en 

presencia de ABA y de los receptores. hab1
W385A

 y hab1
G246D 

pueden ser clasificadas como mutaciones 

dominantes hipermórficas. Mientras que hab1
G246D

  posee una actividad fosfatasa reducida, el nuevo 

alelo dominante muestra una actividad idéntica al genotipo salvaje. Líneas transgénicas de Arabidopsis 

sobreexpresando hab1
W385A

 mostraron una fuerte insensibilidad al ABA. También hemos analizado el 

papel de las PP2Cs del clado A pertenecientes a la rama representada por PP2CA. La generación de un 

mutante doble pp2ca-1hai1-1, que muestra mayor sensibilidad a la hormona en comparación con el 

genotipo salvaje y con los mutantes sencillos, reveló que HAI1 es un regulador negativo de la ruta de 

señalización del ABA. El análisis de la localización subcelular mostró que tanto HAI1 como PP2CA se 

localizan en el núcleo, aunque también están presentes en el citosol y en la fracción microsomal. Tres 

miembros de la rama de PP2CA i.e.: PP2CA, AHG1 y HAI1, mostraron una  inhibición selectiva por 

los receptores PYR/PYL/RCAR. Estos resultados sugieren que estos receptores pueden discriminar 

entre miembros del clado A de las PP2Cs. pyl8 es el único mutante sencillo que muestra sensibilidad 

reducida al ABA en ensayos de crecimiento de raíz. Análisis usando el gen reportero GUS mostraron 

que PYL8 estaba presente en la estela, en la epidermis y en la caliptra, y la cuantificación de la 

actividad beta-glucuronidasa en raíz mostró que PYL8 es uno de los receptores con mayor nivel de 

expresión. La caliptra juega un papel crucial en la respuesta hidrotrópica. El estudio de esta respuesta 

en mutantes múltiples de las PP2Cs y de los PYR/PYL/RCAR reforzó la idea de que  el  ABA regula 

este proceso.  Así, mientras el mutante séxtuple pyr/pyl112458 presentó una curvatura menor al 

aplicársele un gradiente de humedad, el mutante cuádruple de las PP2Cs (Qabi2-2) mostró una 

curvatura más pronunciada en estas condiciones, evitando las zonas con menor potencial hídrico. 

Finalmente, en la última parte de este trabajo se utilizaron abordajes genético-químicos para aumentar 

la resistencia a la sequía. Hemos llevado a cabo un rastreo con compuestos químicos para aislar nuevos 
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agonistas del ABA. Basado en datos estructurales de los receptores, se seleccionaron 500 compuestos 

que fueron ensayados en Arabidopsis. De estos, el compuesto 2C06 inhibió el crecimiento de raíz en 

plantas salvajes más que en mutantes pyr/pyl/rcar insensibles a ABA y produjo resultados 

prometedores in vitro al inhibir a las PP2Cs e interaccionar con éstas en ensayos de doble híbrido. 
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RESUM 

 

La fitohormona àcid abscísic (ABA) juga un paper crucial en el control de la resposta a estrés i en la 

regulació del creixement i desenvolupament de la planta. La unió de l'ABA als receptors intracel·lulars 

PYR/PYL/RCAR comporta la inhibició de les PP2Cs del clade A com ara ABI1 o HAB1, causant 

l'activació de la ruta de senyalització de l'ABA. Per a obtindre més informació en la senyalització de 

l'ABA ens hem centrat en la caracterització de membres d'estes dos famílies proteiques. Hem generat 

una versió mutada de HAB1 que conté una mutació en el Trp-385, residu clau per a la interacció amb 

els receptors i amb la molècula d'ABA. Com a resultat, hab1
W385A

 es va mostrar refractària a la 

inhibició pels receptors PYR/PYL/RCAR. Així, en assajos d'activitat quinasa in vitro trobem que 

hab1
W385A

 era capaç de desfosforilar a OST1 inclús en presència d'ABA i dels receptors. hab1
W385A

 i 

hab1
G246D

 poden ser classificades com a mutacions dominants hipermòrfiques. Mentre que hab1
G246D

 

posseeix una activitat fosfatasa reduïda, el nou al·lel dominant mostra una activitat idèntica al genotip 

salvatge. Línies transgèniques d'Arabidopsis sobreexpressant hab1
W385A

 van mostrar una forta 

insensibilitat a l'ABA. També hem analitzat el paper de les PP2Cs del clade A pertanyents a la branca 

representada per PP2CA. La generació d'un mutant doble pp2ca-1hai1-1, que mostra major sensibilitat 

a l'hormona en comparació amb el genotip salvatge i amb els mutants senzills, va revelar que HAI1 és 

un regulador negatiu de la ruta de senyalització de l'ABA. L'anàlisi de la localització subcel·lular va 

mostrar que tant HAI1 com PP2CA es localitzen al nucli, encara que també estan presents al citosol i a 

la fracció microsomal. Tres membres de la branca de PP2CA i.e.: PP2CA, AHG1 i HAI1, van mostrar 

una inhibició selectiva pels receptors PYR/PYL/RCAR. Estos resultats suggereixen que estos receptors 

poden discriminar entre membres del clade A de les PP2Cs. pyl8 és l'únic mutant senzill que mostra 

sensibilitat reduïda a l'ABA en assajos de creixement d'arrel. Anàlisi usant el gen reporter GUS van 

mostrar que PYL8 estava present a l'estela, a l'epidermis i a la caliptra, i la quantificació de l'activitat 

beta-glucuronidasa a l’arrel va mostrar que PYL8 és un dels receptors amb major nivell d'expressió. La 

caliptra juga un paper crucial en la resposta hidrotròpica. L'estudi d'esta resposta en mutants múltiples 

de les PP2Cs i dels PYR/PYL/RCAR va reforçar la idea que l'ABA regula aquest procés. Així, mentre 

el mutant sèxtuple pyr/pyl112458 va presentar una curvatura menor a l'aplicar-se-li un gradient 

d'humitat, el mutant quàdruple de les PP2Cs (Qabi2-2) va mostrar una curvatura més pronunciada en 

estes condicions, evitant les zones amb menor potencial hídric. Finalment, en l'última part d'aquest 

treball es van utilitzar abordatges genètic i químics per a augmentar la resistència a la sequera. Hem dut 

a terme un rastreig amb compostos químics per a aïllar nous agonistes de l'ABA. Basat en dades 
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estructurals dels receptors, es van seleccionar 500 compostos que van ser assajats en Arabidopsis. 

D'estos, el compost 2C06 va inhibir el creixement de l’arrel en plantes salvatges més que en mutants 

pyr/pyl/rcar insensibles a ABA i va produir resultats prometedors in vitro a l'inhibir a les PP2Cs i 

interaccionar amb estes en assajos de doble híbrid. 
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1. INTRODUCTION 
 

1.1 DISCOVERY AND ROLE OF ABA IN PLANT PHYSIOLOGY. 

 

Abscisic acid is a phytohormone playing critical functions for plant survival and development. 

The first evidences for a role of this molecule in plants was found in experiments focused on finding 

growth regulators from plant extracts, but it was not until the 1960s when ABA was isolated and 

related to his regulatory action. Phillips and Wareing (1958) detected an inhibitory effect on the 

material extracted from leaves of sycamore whose activity varied with the photoperiod. Later on, the 

same group proposed the term “dormin” for a substance extracted from birch leaves that induced the 

formation of resting buds in seedlings (Eagles and Wareing, 1963). Ohkuma et al. (1963) succeeded in 

isolating the crystalline form of the “”abscisin II”, a molecule causing an acceleration of abscission in 

the petiole of cotton seedlings. Comparison of the properties of abscisin II and dormin led to the 

conclusion that both were the same molecule. Abscisic acid was first synthesized by Cornforth et al. 

(1967). After that, the proposed structure of the compound was confirmed.    

 

1.1.1 THE ROLE OF ABA IN ABIOTIC STRESS 

 

Since the discovery of the ABA other functions apart from dormancy and abscission have been 

described. The role of ABA in abiotic stress has been well characterized, especially in the response to 

water, cold and osmotic stress. A common trait of these processes is a low water availability that can 

be quantified by the water potential (Ψ).  Under low water potential plants activate responses in order 

to maintain the equilibrium of water uptake from the soil (Verslues et al., 2006). Figure 1.1 

schematically represents the different responses activated under low water potentials depending on the 

duration of the stress conditions. 
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Figure 1.1. Conceptual diagram of the plant responses triggered by decreased water availability. In initial 

stages, the plants tend to avoid low water potentials by preventing water loss. Later, when the stress is prolonged 

in time, plants employ strategies directed to tolerate these conditions. Between these strategies it can be found 

the osmotic adjustment by solute accumulation or the synthesis of compounds directed to preserve the cellular 

components from the damage caused by low water availability. From Verslues et al. (2006). 

 

The first response of plants against less water availability is to avoid low water potentials. This 

is achieved by reducing water loss and increasing water uptake. Therefore, under water stress, one of 

the initial responses of plants is promoting stomatal closure. Efflux and influx of ions will trigger 

changes in the polarization state on the plasma membrane causing variations in the turgor that will be 

translated into the opening or closing of the stomatal pore. Thus, membrane channels have a crucial 

role in the regulation of this process. The first evidence relating ABA to the stomatal response 

appeared when mutants involved in ABA signaling or biosynthesis showed increased or decreased 

transpiration rates; for example the higher transpiration rates of the ABA insensitive mutants abi1-1 or 

abi2-1 (Leung et al., 1997). Since then, the identification of proteins regulating stomatal aperture as 

ion channels or proteins that modulate them has highlighted the role of ABA in this response (Lee et 
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al., 2009; Vahisalu et al., 2008). Figure 1.2 shows the elements in charge of regulating the osmotic 

potential of guard cells and that determine the aperture of the stomatal pore. 

In a long term response to low water availability plants modify their growth by increasing the 

root/shoot ratio and increase cuticle thickness as a way to reduce water loss and increase water uptake 

from roots. Some evidence reveals that ABA maintains root growth and inhibits shoot growth. Mutants 

deficient in ABA biosynthesis or wild type plants treated with fluridone (an inhibitor of ABA 

biosynthesis) showed impaired root growth compared to untreated wild type plants and ABA restored 

normal root growth. (Saab et al., 1990; Sharp et al., 2000). However these strategies are directed to 

bypass a temporary situation and can not be maintained for a long time. In fact, keeping stomata closed 

will reduce photosynthesis efficiency and promoting increased root/shoot ratio is in detriment of aerial 

tissues development.  

When the transpiration rate decreases, plants activate responses directed to decrease water 

potential in order to avoid water loss and ensure water uptake from the soil. The accumulation of 

osmo-compatible solutes (Verslues et al., 2006) can decrease water potentials. These molecules are 

highly soluble compounds that carry no net charge at physiological pH and are nontoxic at high 

concentrations. The compounds that accumulate most commonly are trehalose, proline and glycine 

betaine and one of the factors inducing synthesis is ABA (Ishitani et al., 1995; Strizhov et al., 1997). 

Increase in the net rate of osmoticum deposition represents an adaptive response that can contribute to 

growth maintenance under water shortage. For instance, proline deposition in the apex of the root 

increases dramatically in water-stressed roots, and contributes up to 50% of the osmotic adjustment 

(Voetberg and Sharp, 1991). But under water stress, osmotic adjustment may not be enough to 

maintain low values of water potential. Another strategy for maintaining low water potentials is to 

modify the cell wall yielding properties.  Sharp et al. (2004) described that primary maize roots were 

able to continue to elongate under low water potentials. Although an important osmotic adjustment was 

observed, the decrease in osmotic potential was insufficient to compensate for the decrease in water 

potential, suggesting that turgor pressure was also reduced. These results suggested that cell wall 

yielding properties had increased in growing roots at low water potentials, such that cells could 

maintain their elongation rate even at low turgor pressure. 
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Figure 1.2. Current model of the ABA signaling pathway in the guard cell. (A) After the activation of the H
+
-

ATPase in the plasma membrane the electrical potential across the membrane increases, with the inside becoming 

more negative. Thus, the inward-rectifying channels KAT1 and KAT2 (which inactivation is blocked by the 

PP2Cs in the absence of ABA) trigger K
+
 influx and promote stomatal opening. (B) An increase of the ABA 

concentration triggers the inactivation of the PP2Cs by the PYR/PYL/RCAR proteins, thereby liberating the 

kinases to phosphorylate the downstream targets. The efflux of water from guard cells is carried out by a 

despolarization of the plasma membrane. OST1 phosphorylates and inhibits the inward-rectifying K
+
 channels to 

prevent the entry of K
+
 into the guard cell necessary for stomatal opening. Besides, the NADPH oxidase AtrbohF 

is activated by OST1 to generate the second messenger H2O2, which is linked to Ca
2+

 release. At the same time 

the inactivation of the H
+
-ATPase and the activation of anion channels such as SLAC1 and SLAH3 result in a 

cytosolic alkalinization and activation of  the outward K
+
 channel GORK necessary to depolarize  the plasma  

membrane .The combination of all these events produces water efflux from guard cells and ultimately the closure 

of the stomatal pore. Figure from Joshi-Saha et al. (2011). 

 

 

Under prolonged stress conditions plants activate mechanisms directed to tolerate this 

unfavorable situation by preventing the damage caused by dehydration. Accumulation of proteins in 

charge of maintaining protein and membrane structure is known to cause dehydration tolerance. Some 

LEA proteins (Late Embryogenesis Abundant) accumulate under water deficit conditions such as seed 

desiccation or abiotic stress. However, despite the recognized role in abiotic stress, the high degree of 

unordered structure of these proteins in solution and the big heterogeneity of the family have made 
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difficult to describe their biological functions and activities (Battaglia et al., 2008). A role in 

preventing protein aggregation or in helping protein folding when water content decreases has been 

proposed for some of them. For example the overexpression of HVA1, a LEA protein from barley 

rapidly induced in young rice seedlings by ABA and by several stress condition, results in higher 

growth rates, delayed appearance of damage symptoms and better recovery after being under both 

water-deficit and salt-stress conditions (Xu et al., 1996). A protective effect on protein stability was 

demonstrated when two LEA proteins prevented irreversible aggregation of  two enzymes sensitive to 

water deficit like the citrate synthase (CS) and the lactate dehydrogenase (LDH) under water-stress 

conditions (Goyal et al., 2005). Protein and membrane stability is also maintained by compatible 

osmolytes. Osmoprotectants participate into avoid cellular damage maintaining membranes and 

proteins integrity. For instance, glycine betaine and trehalose act as osmoprotectants by stabilizing 

quaternary structures of proteins and highly ordered states of membranes (Chinnusamy et al., 2005). 

When plants are exposed to stress conditions the production of Reactive Oxygen Species 

(ROS) increases. These molecules cause damage to proteins, DNA and lipids but at the same time act 

as signaling molecules that trigger further responses directed to control cell homeostasis. ROS also act 

as second messengers in some signaling cascades (Miller et al., 2010). As an example, ROS are 

involved in the stomatal closure triggered by ABA. In the ABA-induced stomatal closure an increase 

of the cytoplasmic Ca
+2

 levels promotes changes in the regulation of several channels. The orchestrated 

activation or inactivation of these channels leads to ion efflux and water loss of guard cells, resulting in 

loss of wall cell turgor and closing of the stomatal pore (Schroeder et al., 2001). ROS levels are 

enhanced by abscisic acid in Arabidopsis guard cells. For instance, ABA increases H2O2 levels in Vicia 

faba  guard cells (Zhang et al., 2002). It has been reported that ABA-induced ROS production triggers 

the activation of Ca
+2

 permeable channels in the plasma membrane of guard cells (Pei et al., 2000). 

Consistent with these results the ost1 mutant shows a strong phenotype in water loss experiments and, 

interestingly, the ABA-induced ROS production is disrupted (Mustilli et al., 2002). Two NADPH 

oxidase catalytic subunit genes in Arabidopsis (AtrbohD and AtrbohF) have been found to be 

responsible of the ABA-triggered ROS production in guard cells since the mutants are impaired in 

ABA-induced stomatal closure, ABA promotion of ROS production, ABA-induced cytosolic 

Ca
2+

 increases, and ABA activation of the plasma membrane Ca
2+

-permeable channels (Kwak et al., 

2003). In addition, two MAPK proteins, MPK9 and MPK12, which are preferentially expressed in 

guard cells, function downstream of ROS to regulate guard cell ABA signaling positively. The 

mpk9mpk12 double mutant showed an enhanced transpirational water loss and ABA and H2O2-

insensitive stomatal response (Jammes et al., 2009). 
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Finally, a very important ABA-induced adaptive response is the change in the gene expression 

pattern. In fact, microarray data show that nearly 10% of the protein coding-genes in Arabidopsis are 

likely to be regulated by ABA (Nemhauser et al., 2006). Among the genes transcriptionally up-

regulated by ABA can be found gene products involved in stress tolerance, transcription factors, 

protein kinases and phosphatases, transporters, enzymes involved in the synthesis of 

osmoprotectants,etc., whereas genes down-regulated include those involved in growth and 

development (Fujita et al., 2011).  The bZIP-type (basic-domain leucine zipper) ABRE-binding 

(AREB) proteins or ABRE-binding factors (ABFs) are the main transcription factors regulating ABA-

dependent gene expression under osmotic stress conditions. They recognize ABA-responsive elements 

(ABRE) in the promoters of ABA-regulated genes. This family of TFs can be separated in two groups 

according to the expression pattern and to the function they play. The ABI5/AtDPBF group is mainly 

involved in processes regulating seed processes and the AREB/ABF group is involved in abiotic stress 

conditions in vegetative tissues. But this classification can not be followed strictly as ABI5 is expressed 

in tissues of adult plants and plants which overexpress ABI5 are hypersensitive to abscisic acid for 

instance, in the ABA-dependent inhibition of root growth (Brocard et al., 2002). Other families of 

transcription factors like AP2/ERF, R2R3-MYB, NACs, HD-Zip, BHLH, C2H2, AFLB3 and WRKYs 

are also involved in the ABA regulation of the gene expression (Fujita et al., 2011). Additional 

mechanisms can modulate transcriptional regulation by ABA. SWI3B, a subunit of SWI/SNF 

chromatin-remodeling complexes, has been shown to interact in vivo with HAB1. ChIP (chromatin 

immunoprecipitation) experiments revealed the presence of HAB1 in the vicinity of the ABA-

responsive and ABA treatment eliminated the localization of this PP2C in the proximity of ABA-

responsive promoters (Saez et al., 2008). Secondary messengers like Phosphatidic acid (PA), Inositol 

triphosphate (IP3), Ca
+2

 or ROS can modulate ABA gene expression. For instance, the presence of Ca
+2

 

is necessary for the ABA-dependent expression of RAB18 in the presence of ABA (Ghelis et al., 2000). 

 

1.1.2 THE ROLE OF ABA IN BIOTIC STRESS 

 

 The main phytohormones regulating biotic stress are jasmonic acid (JA), salicylic acid (SA) 

and ethylene (ET). Moreover, several data evidence a role of ABA in the regulation of the biotic stress 

response. ABA role in plant defense is complex and differs depending on the type of plant-pathogen 

interaction.  

 ABA acts as a negative regulator of plant defense activation caused by biotrophic and 

necrotrophic pathogens in order to prevent activation of resistance responses in unnecessary situations. 
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For instance, in the ABA-deficient mutant aao3 increased resistance was related to low concentrations 

of ABA and high levels of SA (de Torres-Zabala et al., 2007);  and the ABA-deficient tomato mutant 

sitiens showed enhanced resistance to Botrytis cinerea and increased expression of the SA biosynthesis 

gene PAL (Audenaert et al., 2002). Conversely in the pre-invasive resistance responses ABA plays a 

crucial role preventing the entry of pathogens through stomatal closure. In fact, regulation of guard cell 

aperture under biotic stress depends on multiple factors like SA-mediated response but also on 

elements that regulate stomatal closure under abiotic stress such as ABA biosynthesis, nitric oxide 

production or the kinase OST1 (Melotto et al., 2006). In this particular process either ABA or SA 

deficient mutants failed to close stomata under Pseudomonas siringae application. The positive role of 

this hormone has been described for others pathogens such as A.brassiciola and P.cucumeria where 

ABA application decreased plant susceptibility. In addition, the protective role of ABA against 

pathogens has been related to the induction of callose deposition and the production of reactive oxygen 

intermediates (Bari and Jones, 2009). However the molecular mechanisms by which ABA regulates 

plant defense are still unknown. Further experiments are needed to describe how ABA acts differently 

against different pathogens and which are the mechanisms that activate these responses. 

 

1.1.3 THE ROLE OF ABA IN PLANT GROWTH AND DEVELOPMENT 

 

  In plants, seeds are the propagation structure capable of ensuring the survival of the embryo 

from its formation process until germination. This complex step of development is controlled by 

developmental and environmental factors, which means that a large number of genes are needed to 

obtain fine-tuning regulation. To ensure the success of the next generation, plants have developed 

several strategies such as regulation of seed development, desiccation tolerance, regulation of 

germination, in which regulation ABA plays a critical role.  Two peaks of ABA accumulation occur 

during seed development in Arabidopsis. The first one takes place 9 DAF (Days After Flowering), just 

before the maturation stage, ABA is synthesized in maternal tissues and it helps to prevent premature 

germination, to regulate embryo growth, seed pigmentation, seed productivity, etc. The second peak 

occurs at 15-16 DAF, ABA is derived from embryo tissues and is essential to induce dormancy and 

desiccation tolerance (Frey et al., 2004; Karssen et al., 1983; Raz et al., 2001). Dormancy is a trait that 

prevents seeds germinating just after completing development. This allows seeds to germinate in 

favorable conditions increasing thus the likelihood of survival (Gubler et al., 2005). The application of 

norfluorazon, an inhibitor of ABA biosynthesis, triggers germination, showing the role of de novo 

production of ABA in the induction of dormancy (Debeaujon and Koornneef, 2000). Environmental 
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conditions such as after-ripening, stratification, dark and smoke lead into a release of dormancy and 

this correlates with a decrease of the ABA content in the seed. Catabolism of ABA in seeds has shown 

to be a key step in dormancy release. ABA conversion to its inactive forms phaseic acid or 

dihydrophaseic acid is observed for instance in after-ripened Arabidopsis seeds 24h after imbibition 

(Kushiro et al., 2004).  But ABA is not the only hormone involved in this process. In fact, the balance 

between ABA and GA content is the factor that determines germination. When ABA catabolism 

increases, de novo synthesis is suppressed and the GA concentration rises; different mechanisms are 

activated and finally seed germination is carried out (Finch-Savage and Leubner-Metzger, 2006). But 

as with other processes in plants, germination is regulated by several factors including other hormones 

like ethylene or jasmonic acid (Linkies and Leubner-Metzger, 2012).  

 A function into promoting plant growth has been suggested for ABA in the absence of stress. 

Severe ABA deficient mutants show lower size and smaller leaves even under well watered conditions 

and ABA application attenuates this phenotype (Sharp et al., 2000; Gonzalez-Guzman, 2012). For 

instance, the aba1 and aba2 mutants show growth retardation in most of the tissues, even under high 

humidity conditions (Barrero et al., 2005; Cheng et al., 2002). The aba1 mutant shows a significant 

reduction in size as well as a disorganized mesophyll with smaller cells in comparison with the wild 

type.  Interestingly, application of low concentration of ABA resulted in a partial restoration of the 

normal size of the leaf, an increase in dry weight and an increase of the size of the mesophyll cells both 

in the mutant as in the wild type. Thus, ABA plays a dual function in plant tissues, while in the 

presence of stress, when ABA levels are high, ABA represses growth; in the absence of stress, small 

concentrations are essential for a normal development. And this function not only refers to the volume 

of the cell or the organ size. For instance, the aba1 mutant is impaired in organogenesis showing 

abnormalities in the shape and architecture of the leaves (Barrero et al., 2005). Recently the isolation of 

the PYR/PYL/RCAR ABA receptors and the generation of a sextuple mutant with impaired growth 

and seed yield have reinforced the idea of a positive role of ABA in plant growth (Gonzalez-Guzman et 

al., 2012). 

 

1.2 CORE ELEMENTS OF THE ABA SIGNALING PATHWAY 

 

 Since the discovery of ABA several proteins have been isolated as modulators of the ABA 

response. ABA signaling components form a sophisticated network that integrates and transduces 

ABA-mediated responses (Figure 1.3, A). Due to this complexity the work here presented is focused 
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mainly in the core elements of the ABA signaling pathway (Figure 1.3, B). Additionally, mutants 

affected in the core ABA signaling pathway show the strongest phenotype in ABA response. The first 

proteins isolated belonging to this core were the clade A of the Serine/threonine phosphatases (PP2Cs). 

abi1-1 and abi2-1, dominant mutations in the  ABI1 and ABI2  genes respectively, were isolated by 

Koornneef et al. (1984) in a screen using a  ethylmethanesulfonate-mutagenized population of 

Arabidopsis seeds and focused on the isolation on mutants able to germinate in 10µM ABA. 

Afterwards both proteins were cloned by positional cloning (Leung et al., 1994; Leung et al., 1997; 

Meyer et al., 1994; Rodriguez et al., 1998). Since abi1-1 and abi2-1 are dominant mutations it was not 

possible to conclude whether they were positive or negative regulators of the ABA signaling pathway. 

Subsequently, the overexpression of ABI1 in maize protoplasts (Sheen, 1998) or the generation of 

intragenic revertants of the abi1-1 and abi2-1 mutants (Gosti et al., 1999; Merlot et al., 2001) 

suggested a negative role of these proteins in the ABA cascade. Finally, the direct confirmation of this 

hypothesis came with the characterization of loss of function mutants in different clade A PP2Cs. A 

null mutant of another PP2C, HAB1, was the first null mutant characterized of this group of proteins 

(Saez et al., 2004). Subsequently, other mutants of other PP2Cs as well as combined mutants have 

been characterized. It allowed  to assign to these proteins a negative role in the regulation of the ABA 

pathway  (Kuhn et al., 2006; Nishimura et al., 2007; Rubio et al., 2009; Saez et al., 2006; Yoshida et 

al., 2006b). All these mutants present hypersensitivity to ABA in all or some of the common plant 

responses affected by ABA such as germination, root and shoot growth inhibition, transpiration water 

loss and expression of stress responsive genes regulated by ABA. The generation of two triple mutants 

with extreme ABA sensitivity and impaired in growth revealed an essential role of clade A PP2Cs in 

the ABA pathway as well as confirmed the role of ABA in plant growth (Rubio et al., 2009). The 

nature of the dominant gain-of-function phenotype caused by a missense mutation in the abi1-2 and 

abi2-1 mutants remained a mystery for 25 years. Finally, the discovery of the PYR/PYL/RCAR 

receptors provided an elegant molecular explanation to understand the insensitive phenotype of these 

mutants. These mutations negatively affect the interaction between these proteins and make PP2Cs 

refractory to the inhibition by the PYR/PYL/RCAR proteins (Dupeux et al., 2011a; Park et al., 2009; 

Santiago et al., 2012). 

http://en.wikipedia.org/wiki/Protein_serine/threonine_phosphatase
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Figure  1.3. A) ABA signaling network divided into six main functional categories: ABA metabolism and 

transport (red); perception and signal transduction (dark green); ROS, Ca2+ and lipid signaling (orange); 

transporters and channels (blue); transcription factors and protein modification (purple); and RNA processing and 

chromatin remodeling (light green). ABA signaling nodes are given by their protein or molecule names and 

colored according to their role in ABA metabolism. Connections represent positive (arrow) and negative (block) 

regulation or currently unknown (line). Regulations are direct (bold line), indirect (faint line) or transcriptional 

(dashed line). Core elements of the ABA signaling pathway are represented as blue rectangles. The H subunit of 

the Mg-chelatase (CHLH) and the putative G protein-coupled receptors (GPCRs) GTG1 and GTG2 have been 

proposed as ABA receptors (Pandey et al., 2009; Zhang et al., 2002). However, further data have questioned this 

role. ABA binding experiments as well as the response to ABA of the loss of function mutants have been 

questioned due to the inability to reproduce the same results by other groups (Jaffé et al., 2012; Muller and 

Hansson, 2009; Risk et al., 2009; Tsuzuki et al., 2011). Modified from Hauser et al. (2011). B) Simplified model 

of the ABA pathway that integrates ABA transport and signaling. From Antoni et al. (2011). 

 

The molecular features of the interaction between the elements of the ABA signaling pathway are 

explained in later sections. PP2C phosphatases regulate negatively a group of SNF1-related protein 

kinases of the group 2 (SnRK2s); these kinases are positive regulators of the ABA signaling pathway 

and between their targets include transcription factors that regulate ABA responsive genes, like ABRE-

binding factors (ABFs), or anion channels involved in stomatal closure such as SLAC1. The first 

SnRK2 related to ABA was OST1 and was isolated through a genetic screen for Arabidopsis mutants 

with altered stomatal responses to drought (Mustilli et al., 2002).  Later, two other kinases were 

described as regulators of the ABA response in vegetative tissue (Fujii et al., 2007). Finally, the 

discovery of the PYR/PYL/RCAR receptors allowed the description of a schematic picture of the ABA 

signaling pathway from the binding of the hormone to the triggering of the different ABA responses 

(Park et al., 2009; Ma et al., 2009). 

 

 

1.2.1 PROTEIN SERINE/ THREONINE PHOSPHATASES 2C (PP2C) 

 

 Phosphorylation and dephosphorylation are important mechanisms responsible for regulating a 

lot of biological processes; in fact, around the 30% of the intracellular proteins are likely to be 

phosphorylated. The remarkable number of kinases and phosphatases present in all organisms 

highlights this fact. The Arabidopsis genome encodes 1,085 typical protein kinases (Hrabak et al., 

2003) and 112 phosphatase catalytic subunit sequences (Schweighofer et al., 2004).  

 Based on the substrate specificity, protein phosphatases can be divided in 2 major groups, 

Protein Tyrosine Phosphatases (PTPs) and Protein Serine/Threonine Phosphatases. This last group 

includes the Phosphoprotein Phosphatases (PPP) represented by the PP1, PP2A and PP2B families (no 
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representative of the PP2B has been found in plants) and by the Metal ion-dependent Protein 

Phosphatases (PPM) represented by the PP2Cs and the pyruvate dehydrogenase phosphatases. Despite 

the sequence divergence between the PPP and PPM families, the structural information obtained from 

the human PP2C protein phosphatase (Das et al., 1996), the plant PP2Cs (Dupeux et al., 2011a; 

Miyazono et al., 2009) and some PPP protein phosphatases (Goldberg et al., 1995; Kissinger et al., 

1995; Xu et al., 2006) underlines a similar ternary structure of their catalytic domain. There are several 

important differences between PPP and PPM families. The PP2Cs are monomeric enzymes that require 

Mg
+2

 or Mn
+2

 for their activity. These divalent cations play a key role through the activation of a water 

molecule in the dephosphorylation reaction. While the PPP family forms holoenzymes with their 

regulatory subunits, the PPM family contains instead additional domains and conserved sequence 

motifs that may help to determine substrate specificity (Luan, 2003; Shi, 2009). All the PP2Cs contain 

a core catalytic domain formed by 11 subdomains (Schweighofer et al., 2004). Additionally, they 

contain the N-terminal and C-terminal extensions which confer specific traits to each protein related to 

subcellular localization, activity regulation, interaction with other proteins, etc. For instance, in most of 

the clade B of the PP2C family can be found a kinase interaction motif (KIM) in the N-terminal region. 

A case of subcelular localization regulation is HAI1, where a bipartite nuclear localization signal 

located in the N-terminus determines protein localization (Antoni et al., 2012).  

 Phosphorylation plays a key role in the regulation of the ABA pathway in plants. Some 

evidence relates the PP2A family of phosphatases to this phytohormone. Mutants of RCN1, a PP2A 

regulatory subunit, are ABA insensitive in some characteristic ABA regulated responses such as seed 

germination, guard cell responses and gene expression (Kwak et al., 2002). In addition Pernas et al. 

(2007) have characterized a null mutant of the PP2A catalytic subunit (PP2Ac) that shows 

hypersensitivity to ABA in different processes regulated by this hormone. However the clade A of the 

PP2C family is the most important group of phosphatases related to the ABA pathway. These proteins 

are negative regulators of the cascade and are part of the key elements responsible of 

the transduction pathway. While the PPP family shows a high degree of homology at the structural 

level between animals and plants, the PP2C family possesses very particular characteristics with 

respect to its homologues in other organisms. It’s represented by a larger group of proteins, 

suggesting that its role in plants is more crucial and diverse. These proteins show little sequence 

homology compared to their homologues in animals and most of them posses the catalytic domain in 

the C-terminus and an unique N-terminal extension (Luan, 2003). The PP2C family in plants is 

represented by 76 putative proteins, many of them without known function, divided in ten clades from 

A to J (Schweighofer et al., 2004).  
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 Phosphatases of the clade B have a MAP kinase interaction motif (KIM); this motif is 

conserved in yeast and mammals and is supposed to be responsible of the specific interaction between 

these phosphatases and the mitogen activated protein kinases (MAPKs). MAPKs are responsible for 

mediating one of the most important and conserved signal transduction cascades in eukaryotes and 

mediate biotic and abiotic stress responses. There is evidence relating clade B of PP2Cs to MAPK 

kinases. MP2C, is an alfalfa PP2C that negatively regulates the stress-induced MAPK SIMK 

(Meskiene et al., 2003). There are data supporting that Arabidopsis clade B of PP2Cs also carry out the 

same function. For instance, AP2C1 interacts and negatively regulates MPK4 and MPK6 in processes 

regulated by these AMPs such as the wounding response, JA and ET levels, and biotic stress 

(Schweighofer et al., 2007). Moreover, the null mutant of PP2C5 shows increased stomatal aperture, 

partial ABA-insensitive phenotype in seed germination and less induction of the expression of ABA-

induced genes and interacts in Arabidopsis protoplasts with MPK3, MPK4, and MPK6 (Brock et al., 

2010). 

 In the clade C of PP2C can be found phosphatases involved in cell differentiation. Specifically, 

POL and PLL1 take part in the clavata pathway responsible of regulating the meristem size. POL and 

PLL1 positively regulates WUSCHEL and lead into the maintenance of the root and shoot apical 

meristems (Gagne and Clark, 2007; Gagne and Clark, 2010). 

 Another PP2C unrelated to any other group and with known function is KAPP. This protein 

shows at the N-terminal extension a type I signal anchor (SAI) that makes the protein to be membrane-

anchored with cytoplasmatic orientation followed by a kinase interacting domain (KI). The PP2C 

catalytic domain is located in the C-terminus. KAPP was isolated by interacting through the KI domain 

with RLK5, a receptor like kinase with unknown function (Stone et al., 1994). Later, other RLKs were 

found to interact with KAPP. This is the case for CLAVATA1, a RLK responsible of maintaining the 

size of shoot and inflorescence meristems in Arabidopsis. The analyses suggest that KAPP is a 

negative regulator of the pathway as low KAPP mRNA levels correlate with suppression of the clv1 

phenotype. The ubiquitous expression pattern and the interaction with several RLKs suggest an 

important role for this protein in the RLK pathways (Shiu and Bleecker, 2001). 

 Finally, the clade A of PP2C protein phosphatases is formed by nine proteins related mostly to 

the ABA pathway. Two branches can be distinguished based on amino acid sequence alignments 

(Schweighofer et al., 2004) (Figure  1.4). The branch formed by ABI1, ABI2, HAB1 and HAB2 has 

been historically better characterized than the branch represented by PP2CA/AHG3 and AHG1. The 

first PP2Cs of this clade were isolated in a screen focused on the isolation of ABA insensitive mutants 

(Koornneef et al., 1984). abi1-1 and abi1-2 are dominant mutations of ABI1 and ABI2,  respectively, 
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that show insensitivity to ABA in several processes such as germination, stomatal regulation, gene 

expression and root growth (Leung et al., 1994; Leung et al., 1997; Meyer et al., 1994; Rodríguez et 

al., 1998) . Since abi1-1 and abi1-2 are dominant mutations it was not possible to conclude whether 

they were positive or negative regulators. These mutations are caused by the substitution of a Gly for 

an Asp in a conserved motif of the PP2C catalytic site, causing a decrease in the phosphatase activity, 

and at the same time showing insensitive responses to ABA. The characterization of intragenic 

revertants and especially the obtaining of the first loss-of-function mutants confirmed the negative role 

in the ABA signaling pathway (Gosti et al., 1999; Merlot et al., 2001; Saez et al., 2004). Initially, a 

negative dominant effect of the abi1-1 and abi1-2 mutations was proposed to explain the phenotypes. 

However, since loss-of-function alleles show ABA-hypersensitivity phenotype, such a hypothesis was 

unlikely. The discovery of the interaction between PP2Cs and the ABA receptors, which is severely 

reduced in the abi1-1 and abi1-2 proteins, shed definitive light on the nature of these mutations. 

Structural data have shown that these mutations cause a decrease of the PP2C activity because they 

affect a residue located in the active site. Particularly, this Gly residue establishes a hydrogen bond 

with a residue in the PYR/PYL/RCAR proteins (Dupeux et al., 2011a; Hao et al., 2011; Melcher et al., 

2009; Miyazono et al., 2009; Yin et al., 2009). However, in the presence of ABA, the corresponding 

mutant proteins are refractory to inhibition by ABA, whereas wild type PP2Cs are inhibited. Therefore, 

in the presence of ABA, abi1-1 and abi1-2 PP2Cs show more activity than the wild type and they 

represent hypermorphic mutations (Dupeux et al., 2011a; Park et al., 2009; Robert et al., 2006; 

Santiago et al., 2012). After the isolation of these phosphatases many efforts have been conducted to 

describe their function in the different responses of the ABA pathway. Particularly, ABI1, ABI2 and 

HAB1 have been used as models to describe the ABA signaling together with the new family of 

cytosolic ABA receptors, the PYR/PYL/RCAR proteins, and the SnRK2s. Thus, structural and 

biochemical data have allowed the description of the ABA cascade in a very detailed way (Fujii et al., 

2009; Ng et al., 2011; Soon et al., 2012). 

 Besides drought, these phosphatases are also involved in other abiotic stresses. The 

serine/threonine protein kinase SOS2 activates the plasma membrane Na
+
/H

+
 antiporter encoded by the 

SOS1. These two proteins play an important role in salt stress tolerance (Qiu et al., 2002).  ABI2 

interacts with SOS2 through the PPI motif in the kinase and, in addition, abi1-1 and abi2-1 null 

mutants show insensitivity to salt stress (Ohta et al., 2003). abi1-1 mutant is also impaired in 

development of freezing tolerance and PP2CA/AHG3 antisense plants show accelerated cold 

acclimatation (Mantyla et al., 1995; Tahtiharju and Palva, 2001); this is in agreement with the fact that 

ABA treatment triggers freezing tolerance. All these data highlight the role of PP2Cs in the regulation 
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of cold acclimatation by ABA (Mantyla et al., 1995; Tahtiharju and Palva, 2001). Finally, A role in the 

regulation of K
+
 channels of PP2CA and HAI2/AIP1 is explained below. 

 HAB1 and HAB2 show 75% sequence similarity between themselves. hab1-1 was the first null 

mutant characterized  of a PP2C (Saez et al., 2004). The hypersensitive phenotype and the 

characterization of constitutive overexpression lines confirmed the suggested role of these PP2Cs as 

negative regulators. The existence of functional redundancy between this group of phosphatases was 

confirmed when the hab1-1abi1-2 double mutant showed a more severe sensitivity to ABA than the 

single mutants (Saez et al., 2006). The mutation hab1
G246D

 (equivalent to that responsible of the 

phenotypes in the abi1-1 and in the abi2-1 mutants) presented a phenotype similar to abi1-1 and abi2-1 

and reinforced the idea that these proteins have the same way of interacting with their substrates 

(Robert et al., 2006). In addition, the interaction of SWI3b, a subunit of SWI/SNF chromatin 

remodeling complexes, and HAB1 provided the first evidence of direct transcriptional regulation by a 

PP2C (Saez et al., 2008). 

 

 

 

Figure 1.4. Cladogram of the clade A PP2Cs. The amino acid similarity tree based on the catalytic site 

sequences shows the existence of two subbranches. 

 

 While AHG1 and PP2CA/AHG3 mutants have been characterized and some of their principal 

roles in the ABA response are known, other three phosphatases belonging to this branch (AIP1/HAI2, 

AIPH1/HAI3 and AIPH2/HAI1) have been less studied. All three have been described as highly ABA 

induced (HAI) as microarray data showed high inductions levels in wild type plants and reduced 

expression levels in both snrk2.2snrk2.3snrk2.6 and areb1/areb2/abf3 triple mutants after treatment 

with 50 μM ABA . In addition, AIPH2/HAI1 has been characterized as a SnRK2.2 interacting protein 
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in BiFC (Bimolecular Fluorescence Complementation) analyses. The expression pattern of these 

proteins suggests that they take part in the ABA response in vegetative tissue (Fujita et al., 2009). 

PP2CA/AHG3 and AHG1 were discovered in a screening for mutants with altered sensitivity to ABA 

(Kuhn et al., 2006; Nishimura et al., 2004; Yoshida., 2006b).  The knock-out mutants pp2ca/ahg3 and 

ahg1 are very hypersensitive to ABA in germination assays but no clear phenotypes have been found 

in adult plants. In addition, they show high expression levels in seeds and the double mutant presents 

an enhanced hypersensitive phenotype to ABA in germination. Whereas AHG1 is expressed 

specifically in the seed during its formation PP2CA is also expressed in vegetative tissue. The 

overexpression lines of PP2A show ABA-insensitivity in water loss experiments and in germination. 

All these data suggest a major role in seeds for these two phosphatases but also a role for PP2CA in 

processes other than germination, which would be masked in the single mutant because of genetic 

redundancy with other PP2Cs (Kuhn et al., 2006; Nishimura et al., 2007; Yoshida et al., 2006b). 

 A role in the control of K
+
 channels has been found for 2 members of this branch, PP2CA and 

AIP1/HAI2. K
+ 

is a macronutrient essential for multiple processes in the plant such as enzyme activity, 

plant nutrition and osmoregulation. As can be seen in table 1.1 the family of the shaker-like K
+
 can be 

separated in 4 functional subgroups (Wang and Wu, 2012). PP2CA interacts and inhibits AKT2 

activity in Xenopus oocytes and in mammalian cells and these two proteins have overlapping 

expression patterns. Thus, AKT2 regulation by PP2CA might have a physiological role both in guard 

cells and in phloem vasculature, where both proteins show their highest expression levels (Cherel et 

al., 2002). Another member of the inward-rectifying K
+
 channel family, AKT1, has been found to be 

regulated by the CBL-CIPK pathway. It is highly expressed in root epidermal cells and the null mutant 

shows impaired growth under limiting concentrations of K
+ 

(Dennison et al., 2001). CBL proteins 

interact with the CIPK kinases in the presence of Ca
+2

 and these two groups of proteins form different 

pair combinations regulating different processes. AKT1 is activated by the CBL1/CBL9-CIPK23 and 

inactivated by AIP1/HAI2 (AKT1 interacting protein) (Lee et al., 2007). The finding that a novel PP2C 

interacts with AKT1 reveals a fine-tuning regulation for this kind of K
+
 channels and suggests the 

involvement of ABA in this process. The isolation of SLAC-1, a slow anion channel involved in 

stomatal closure, and the fact that its activity is modulated by OST1 and ABI1/PP2CA proved the 

direct role of clade A PP2Cs in regulation of stomatal aperture (Geiger et al., 2009; Lee et al., 2009; 

Vahisalu et al., 2008). Recently, the SLAC-1 activation has been reconstituted in oocytes using the 

core elements of the ABA signaling pathway (Brandt et al., 2012). 
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Table 1.1. The members of the Shaker-like K
+
 Channel family in Arabidopsis. In Arabidopsis, AKT1 

functions in K
+
 uptake from the soil. K

+
 translocation from root cortex cells into the xylem is mediated by the 

outward-rectifying channels, such as SKOR and allows K
+
 transport between tissues or organs. Weakly rectifying 

K
+
 channels, such as AKT2, load and unload K

+
 in phloem tissues. In guard cells KAT1 and KAT2 control the 

K
+
 influx across the plasma membrane during stomatal opening and the outward K

+
 channel GORK conducts the 

K
+
 efflux during stomatal closure. In pollen and pollen tube cells, the pollen-specific Shaker channel SPIK 

mediates K
+
 influx regulating pollen tube growth and development. (Based on Wang and Wu, 2012). 

 

 Lately, the role in the ABA pathway of other uncharacterized clade A PP2Cs has been 

analyzed. (Antoni et al., 2012; Bhaskara et al., 2012; Guo et al., 2010; Lim et al., 2012). As other 

clade A PP2Cs, AIP1/HAI2 and AIPH2/HAI1 interact with the PYR/PYL/RCAR receptors, which 

suggest the same mode of action than other phosphatases characterized so far. Lim et al. (2012) and 

Guo et al. (2010) analyzed knock-out mutants of AIP1/HAI2 and AIPH2/HAI1 respectively. Although 

the authors suggest a positive role in the regulation of the ABA pathway during germination these 

mutants show very subtle differences compared to the wild type and only one mutant allele has been 

characterized for each phosphatase. Recently Bhaskara et al. (2012) have performed a characterization 

Name Functions Organ(s)/tissue(s)

KAT1
Inward-rectifying K+ channel, K+ uptake into 
guard cells, stomatal regulation

Leaf (guard cells)

KAT2
Inward-rectifying K+ channel, K+ uptake into 
guard cells, stomatal regulation

Leaf (guard cells, phloem)

AKT1
Inward-rectifying K+ channel, K+ uptake into 
root cells

Root (root hairs, epidermis,cortex), 
leaf (primordia,mesophyll,
hydathodes,guard cells)

SPIK
Inward-rectifying K+ channel, K+ uptake into 
pollen tubes, pollen tube development 
regulation

Pollen (pollen, pollen tubes)

SKOR
Outward-rectifying K+ channel, K+ release 
into xylem, K+ translocation from roots to 
shoots

Root (vascular tissues), pollen

GORK
Outward-rectifying K+ channel,K+ release 
from guard cells,stomatal regulation

Root (root hairs,epidermis), leaf
(guard cells)

AtKC1
Silent K+ channel, assembly with Shaker
inward K+ channels and regulation of K+ 

uptake into cells

Root (root hairs, epidermis,cortex),
leaf (epidermis,hydathodes, trichome)

AKT2
Weakly rectifying K+ channel, K+ circulation 
in phloem

Root (phloem), stem, leaf (phloem, 
mesophyll, epidermis, guard cells),
flower (sepal)
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of single, double and the triple mutants of AIP1/HAI2, AIPH2/HAI1 and AIPH1/HAI3. The single 

mutants showed similar germination rates under ABA treatment compared to the wild type, which is in 

accordance with the results obtained by Antoni et al. (2012) for the case of AIPH2/HAI1. However 

double and triple mutants showed ABA hyposensitivity in germination and hypersensitivity in 

postgermination responses to ABA. Nevertheless the single mutants showed grater proline and 

osmoregulatory solute accumulation under low water potentials than other PP2Cs and than the wild 

type. All these data together suggest a role in ABA responses but a predominant role of these PP2Cs on 

osmotic adjustment. A possible explanation for the ABA hyposensitivity in germination of the 

combined mutants could be the effect of the higher accumulation of proline, which has been reported 

as a molecule involved in the osmotic adjustment under water stress (Voetberg and Sharp, 1991).  

 

1.2.2 ABA RECEPTORS IDENTIFIED UP TO NOW 

 

 Several advances in the last years have helped to establish the ABA core signaling pathway. 

However, ABA perception has been subject of controversy due to both lack of reproducible phenotype 

in ABA-receptor mutants and ABA-binding by different putative ABA receptors (Christmann and 

Grill, 2009; Cutler et al., 2010; Gao et al., 2007; Guo et al., 2008; Jaffé et al., 2012; Johnston et al., 

2007; Liu et al., 2007; Muller and Hansson, 2009; Pandey et al., 2009; Razem et al., 2004; Razem et 

al., 2006; Risk et al., 2008; Risk et al., 2009; Shen et al.,2006; Tsuzuki et al., 2011; Zhang et al., 

2002). Finally, the independent isolation in 2009 of the PYR/PYL/RCAR proteins by several research 

groups (Ma et al., 2009; Nishimura et al., 2010; Park et al., 2009; Santiago et al., 2009b) allowed 

obtaining conclusive genetic evidence and ABA binding by these receptors. Additionally, it was 

established the connection of members of this pathway, like the PP2Cs or the SnRK2s, with ABA 

perception.     

 

 

FCA                                                                                                                                                                

 FCA is an Arabidopsis protein homologue to ABAP1, a protein isolated as an abscisic acid-

binding protein from a barley DNA expression library (Razem et al., 2004). Binding experiments using 

recombinant FCA proteins pointed out a direct interaction with ABA. ABA affected the flowering 

times in wild type plants but not in the fca-1 mutants and also changed the mRNA levels of FLC, a 

MADS box transcription factor negatively regulated by FCA that repress the floral transition. The 
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authors proposed a new role of ABA in the RNA-processing machinery through the direct binding to 

FCA as no relevant phenotypes has been found for the null mutants in germination or stomatal aperture 

(Razem et al., 2006). Unfortunately, further investigations have failed to reproduce the binding of 

ABA to FCA and this work has been retracted. Risk et al. (2008) remark that there is a small amount of 

the total protein binding ABA and suggest that the difficulty into removing unbound ABA from 

samples could have led to wrong interpretations. 

 

CHLH/ABAR 

 ABAR was isolated from epidermis extracts of broad bean leaves using an affinity-

chromatography column with the ABA molecule coupled through its carboxyl group (Zhang et al., 

2002). This protein encodes the H subunit of the Mg-chelatase (CHLH), a protein complex localized in 

chloroplasts responsible of the insertion of Mg
2+

 into protoporphyrin IX to form Mg-protoporphyrin 

IX. The isolation of a missense mutation of this Arabidopsis protein (gun5) contributed to assign it a 

function in plastid-to-nucleus retrograde signaling (Mochizuki et al., 2001). The T-DNA insertion 

mutant abar-1 is lethal but the characterization of RNAi lines as well as overexpression lines provided 

evidence for a positive role of ABAR/CHLH in some ABA responses such as germination, early 

seedling growth or gene expression. RNAi lines showed insensitivity to ABA in germination and 

stomatal regulation and, by contrast, the ABAR overexpression resulted in dehydration resistance 

(Shen et al., 2006). rapid transpiration in detached leaves 1 (rtl1) is another allele  of ABAR/CHLH, 

which was isolated in a screen for mutants showing enhanced  transpiration. Plants of rtl1 showed 

insensitivity to ABA-induced stomatal closure but no differences compared to the wild type were 

found in other responses such as germination or root growth. Binding assays performed by these 

authors did not detect ABA binding by ABAR/CHLH. In contrast, these authors detected ABA binding 

by PYR1, an ABA receptor whose binding to ABA has been previously reported (Santiago et al., 

2009a; Tsuzuki et al., 2011). Moreover, Muller and Hansson (2009) have reported a normal behavior 

of different barley Mg-chelatase large subunit (XanF) mutants in its response to ABA, and they could 

not detect ABA binding by barley CHLH/XanF. Since the carboxylic group of ABA (which is required 

for ABA bioactivity) was dispensable for binding by ABAR, it is questionable whether this protein 

represents a genuine ABA receptor (Cutler et al., 2010). All these data reflect different criticisms to 

accept ABAR/CHLH as an ABA receptor.  
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G-protein-coupled receptors (GPCRs) 

 Signaling cascades associated to G proteins are very common in eukaryotes. After ligand 

binding to the G protein-coupled receptors (GPCRs) conformational changes trigger the change of the 

Gα subunit to its GTP-bound activated form and the dissociation of the heterotrimeric G complexes; 

subsequently the different responses are activated. Despite the large number of protein G complexes 

existing in other organism, in Arabidopsis there is only one Gα subunit (GPA1), one Gβ subunit and 

two Gγ subunits. The involvement of some of these genes in the ABA response has been probed with 

the characterization of mutants in Arabidopsis. Mutants of GCR1, a predicted GPCR protein, mutants 

of one of the two Gγ subunits, AGB1, and mutants of GPA1 are affected in some ABA responses 

(Pandey et al., 2006; Pandey and Assmann, 2004). The ABA phenotypes associated to the GCR1 

mutant have suggested that unknown GPCRs in Arabidopsis could participate in the ABA signaling 

pathway and may act as membrane receptors. In this direction Liu et al. (2007) isolated in the 

Arabidopsis genome the protein GCR2, a putative GPCR protein with a seven transmembrane domain 

whose loss of function mutants show  hyposensitivity to ABA. GCR2 was able to interact with the Gα 

subunit GPA1 using different approaches and ABA binding was detected with a Kd of 20.1 nM. 

Despite that there is interaction in BiFC and in coinmunoprecipitation experiments Johnston et al 

(2007) argued that with the SPR (Surface Plasmon Resonance) results it’s not possible to conclude an 

interaction between GPA1 and GCR2. Bioinformatic analyses were not able to confirm a seven 

transmembrane domain in the protein and the prediction method used was questioned by Johnston et 

al. (2007). In fact, the classification of GCR2 as a GPCR protein has been questioned and it has been 

proposed to include this protein in the LanC protein superfamily with which shares amino acid 

sequence similarity (Gao et al., 2007; Johnston et al., 2007).  It has been also questioned the role of 

GCR2 in the ABA pathway. With the aim of checking the participation of GRC2 in the ABA pathway, 

analyses with the gcr2 mutant and two of its homologues in Arabidopsis (GCL1 and GCL2) were 

performed. There were no significant differences between the single, double or the triple mutants and 

the wild type in germination experiments in response to ABA or in the expression levels of some 

ABA-induced genes after ABA treatment (Gao et al., 2007; Guo et al., 2008). Finally, as for the case 

of FCA, ABA binding by GCR2 could not be reproduced (Risk et al., 2009).  

 With the aim of isolating new GPCR proteins in plants Pandey et al. (2009) performed an 

screen in silico and found two novel GPCR-like proteins with GTP binding and GTPase activity and 

able to bind ABA, GTG1 and GTG2. While the single mutants did not show any defect in the ABA 

response, the double mutant presents insensitivity in germination, root growth, stomatal closure and 

less induction of the expression of ABA-induced genes. As other GPRC, these proteins are localized in 
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the membrane and interact with GPA1. These proteins show more affinity to ABA in the presence of 

GDP than in the presence of GTP. This and the fact that the effect of GPA1 in GTGs proteins is to 

accelerate the binding to GTP and decrease GTPase activity, creates a scenario where, in the presence 

of GPA1, GTGs would be bound to GTP and would present less affinity for ABA which would block 

the ABA cascade. This negative regulation of GPA1 is in agreement with the hypersensitive phenotype 

of the null mutant. However, the fact that the ABA response is not completely abolished in the double 

mutant, leads to speculation that other mechanisms of perception are still to be discovered. This 

hypothesis is particularly important in guard cells, where the previous model doesn’t match with the 

insensitivity to ABA showed by the gpa1 mutant in inhibition of stomatal opening. The study of the 

relations between GTG1 and GTG2 with unknown and known elements of the ABA pathway such as 

the PP2Cs or the SnRK2s as well as binding experiments would be required to confirm the function of 

these proteins in the ABA cascade (Christmann and Grill, 2009; Cutler et al., 2010; Pandey et al., 

2009; Risk et al., 2009). Moreover, recently Jaffé et al. (2012) have isolated new null mutant alleles of 

GTG1 and GTG2 and have generated two double mutants. Both double mutants showed similar 

sensitivity to ABA-mediated inhibition of root growth and germination compared to the wild type, and 

after ABA treatment, no significant difference was found in ABA transcriptional response between the 

mutant and the wild type. These results are inconsistent with their role as ABA receptors and based on 

the phenotypes observed the authors assign a role of these proteins in growth and development of 

seedlings, in pollen tube growth and plant fertility. Again, as in the case of FCA, GCR2 and 

CHLH/ABAR, the role of GTG1/GTG2 as ABA receptors is questionable. 

 

PYR/PYL/RCAR 

 In 2009 different groups isolated independently a new family of ABA receptors called PYR 

(pyrabactin resistance)/PYL (PYR1-like)/RCAR (regulatory components of ABA receptor) (Ma et al., 

2009; Park et al., 2009; Santiago et al., 2009b). This family of proteins belongs to the Bet v I-fold 

superfamily and is formed by 14 members in Arabidopsis. Several structural data have revealed the 

molecular mechanism by which these proteins bind ABA and activate the ABA signaling pathway 

trough the inhibition of the PP2Cs (Melcher et al., 2009; Miyazono et al., 2009; Nishimura et al., 

2009; Santiago et al., 2009a; Soon et al., 2012; Yin et al., 2009; Yuan et al., 2010; Hao et al., 2011; 

Zhang et al., 2012). The Bet v I domain is formed by 7 β-sheets and a α-helix that form a cavity closed 

in the bottom by two small helices. In the top of the cavity two loops called gate and latch adopt an 

open conformation in the absence of ABA. The entrance of ABA in the cavity entails conformational 

changes in these gating loops that result in a closed conformation of the receptor that now shows a 
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protein surface able to interact with the PP2C. Despite the highly conserved sequences, this family of 

receptors presents differences in oligomeric state. Although structural data are not available for all the 

PYR/PYL/RCAR proteins other approaches suggest that receptors such as PYR1, PYL1, PYL2 and 

PYL3 form homodimers and PYL4, PYL5, PYL6, PYL8, PYL9 and PYL10 are monomeric (Dupeux 

et al., 2011b; Hao et al., 2011). The oligomeric state of PYL7, PYL11 and PYL12 hasn’t been 

determined yet, and recently Zhang et al. (2012) reported a particular trans-dimeric structure for PYL3. 

The apo-form is a cis-homodimer canonical to those formed by other dimeric receptors, but, in the 

presence of ABA the two proteins bind to each other in a reverse direction forming a trans-homodimer 

that precedes dimer dissociation.  

 Residues involved in ABA binding and dimerization are situated very close and this implies 

that, for dimeric receptors, ABA binding affects dimer stability and promotes dimer dissociation. In 

addition, the dimerization zone and the residues involved in the interaction with the PP2Cs are 

overlapping, which means that these two processes can not occur simultaneously.  Therefore, 

dissociation of the dimers by ABA binding is necessary for the interaction with the PP2Cs. Dimeric 

receptors show lower affinities for ABA than monomerics, since ΔH for dimer dissociation is positive. 

The differences in the Kd of these two kinds of receptors are based on the negative contribution of  

dimerization to the receptor activation process and this was demonstrated when a PYR1 mutant, 

PYR1
H60P

, that forms less stable dimers showed a value of Kd similar to those of monomeric receptors 

(Dupeux et al., 2011b). However, in the presence of ABA, both dimeric and monomeric receptors form 

ternary complexes with PP2Cs with similar affinities. Receptor and PP2C establish contacts using the 

gating loops that cover the ABA-binding pocket. The inhibition of the phosphatase occurs by blocking 

the access of its active site through the β3-β4 (gate) loop of PYR/PYL/RCAR proteins. Besides, the 

residue W385 situated in the flap subdomain of the phosphatase inserts between the gating loops and 

establishes a H-bond with the ketone group of ABA through a water molecule stabilizing the closed 

conformation of the receptor. This mechanism probably explains the higher ABA binding affinities 

presented by the ternary complexes (Kd between 30-60nM) compared to individual receptors (Kd 

between 1-50µM).  

 Genetic redundancy precluded the isolation of this family of ABA receptors using classical 

genetic screenings and only through a chemical genetics approach, or protein-protein interaction 

studies followed by ABA binding assays these receptors were discovered (Ma et al., 2009; Park et al., 

2009; Santiago et al., 2009b; Nishimura et al., 2010). This family is composed of 14 members and it 

can be divided in two subgroups, monomeric and dimeric, according to their oligomeric state. 

Microarray data show low expression levels for PYL3 and PYL10-13 whereas PYL1-9 present 
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significant expression levels (Kilian et al., 2007; Winter et al., 2007). GUS reporter gene analyses of 

PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8 reveal overlapping expression in some tissues, although 

some differences could also be observed (Gonzalez-Guzman et al., 2012). The comparison of ABA 

sensitivity in single and combined pyr/pyl/rcar mutants (for instance the quadruple mutant 

pyr1pyl1pyl2pyl4) and more recently in a sextuple mutant (pyr1pyl1pyl2pyl4pyl5pyl8) able to 

germinate on 100µM ABA has confirmed that functional redundancy precludes the detection of strong 

ABA-insensitive phenotypes in single mutants (Park et al., 2009; Gonzalez-Guzman et al., 2012). In 

contrast, the sextuple mutant shows strong ABA insensitivity to ABA-mediated inhibition of 

germination and growth, regulation of stomatal aperture and ABA responsive gene expression. This 

genetic evidence proves that these receptors play a major and quantitative role in ABA perception.  

 

1.2.3 SNF1-RELATED PROTEIN KINASES 2 (SNRK2s)  

 

 Arabidopsis contains 38 protein kinases that are related to SNF1 (Sucrose non-fermenting-1) 

from yeast. The SnRKs form three subgroups based on sequence similarity and domain structure 

(Hrabak et al., 2003). The group of SnRK2s in Arabidopsis is formed by ten kinases three of which are 

strongly activated by ABA (Figure 1.5). The first report of a SnRK2 involved in ABA signaling was 

the wheat SnRK2 PKABA1, which is induced at the transcript level in ABA-treated embryos 

(Anderberg and Walker-Simmons, 1992). Orthologous SnRK2s whose transcription or activity is 

induced by ABA in other plant species have been described in Arabidopsis, faba bean, rice or wheat 

(Gomez-Cadenas et al., 1999; Kobayashi et al., 2004; Li and Assmann, 1996). OST1 

(SnRK2E/SnRK2.6) was the first Arabidopsis SnRK2 described to be involved in ABA signaling. This 

protein was firstly isolated in a screen based on thermal imaging of drought-stressed plants. Later on, 

OST1 was isolated in experiments directed to identify ABA-activated protein kinases in Arabidopsis 

plant extracts (Mustilli et al., 2002; Yoshida et al., 2002). The ost1 (open stomata 1) single mutant is 

impaired in ABA-mediated stomatal closure but is not affected in other ABA responses. 
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Figure 1.5. Structure-based sequence alignment of the ten SnRK2s of Arabidopsis with the structure of 

OST1.  All ten SnRK2s present at the C-terminus a SnRK-box (also called activation motif or DI) responsible of 

the activation of the kinases under osmotic stress. This domain is located parallel with the αC, an α-helix whose 

position is crucial in the adoption of a closed (active) or open conformation (inactive).  Mutants lacking the 

interaction between these two regions abolish the kinase activity and confirm the importance of the SnRK-box to 

modulate the kinase activity. In addition the three SnRK2s activated by ABA posses a specific region at the C-

terminus called ABA box. This region interacts with the PP2C and is responsible of the ABA-dependent 

activation of these three kinases.  
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 From the ten SnRK2s of Arabidopsis SnRK2.2 (SnRK2D), SnRK2.3 (SnRK2I) and OST1 

(SnRK2.6/SnRK2E) are specifically activated by ABA (Boudsocq et al., 2004). The SnRK2.2 and 

SnRK2.3 kinases share high sequence similarity with OST1. While the single snrk2.2 and snrk2.3 

mutants do not present altered ABA response compared to the wild type, the snrk2.2snrk2.3 double 

mutant shows ABA insensitivity in germination, dormancy and seedling growth assays (Fujii et al., 

2007). OST1 is highly expressed in guard cells and ost1 has a clear wilty phenotype under low 

humidity conditions; however expression data show that this gene is also expressed in other tissues 

(Mustilli et al., 2002). SnRK2.2 and SnRK2.3 present an overlapping expression pattern (Fujii et al., 

2007). Interestingly, the triple mutant snrk2.2snrk2.3snrk2.6 showed a dramatic ABA-insensitive 

phenotype, which was stronger that than the single or the double mutants. The triple mutant was 

affected in all plant responses regulated by ABA, such as stomatal closure, germination, ABA 

regulation of gene expression, shoot and root growth and water loss (Fujii and Zhu, 2009; Fujita et al., 

2009). Water loss was little affected in the snrk2.2snrk2.3 double mutant compared to the wild type 

and ABA-sensitivity of ost1 in seed germination and seedling growth assays was similar to the wild 

type. The additive phenotype of the triple mutant shows that these three kinases are involved in all 

plant responses to ABA. Moreover, the phenotype of ost1 and snrk2.2snrk2.3 shows that each one has 

a dominant role in some of these responses. ABA-dependent phosphorylation mediated by SnRK2.2, 

SnRK2.3, and OST1 is essential for ABA signalling. snrk2.2snrk2.3snrk2.6 plants were impaired in 

growth and reproduction. This phenotype contributes to confirm the suggested role of ABA in plant 

growth and reproduction (Barrero et al., 2005; Cheng et al., 2002). Whereas the SnRK2s were 

differentially activated by NaCl, Mannitol and ABA, all of them, except SnRK2.9, were activated by 

osmotic stress (Boudsocq et al., 2004). Thus, the generation of a decuple mutant comprising the ten 

SnRK2s (snrk2.1/2/3/4/5/6/7/8/9/10) has proved the essential role of these proteins in this process 

(Fujii et al., 2011).  This mutant is very hypersensitive to osmotic stress showing reduced fresh weight, 

root growth, less ABA accumulation, reduced expression of genes activated under these conditions and 

less proline accumulation than the wild type. Interestingly, the IP3 levels (whose accumulation is 

induced by osmotic stress but not by ABA (Takahashi et al., 2001)) in the decuple mutant were not 

increased under osmotic stress reflecting that these kinases also participate in this response 

independently of ABA. The analysis of a septuple mutant affected in the SnRK2s that are not strongly 

activated by ABA (snrk2.1/4/5/7/8/9/10) suggests a singular role of these proteins in ABA-dependent 

proline accumulation. Whereas the decuple mutant and snrk2.2snrk2.3snrk2.6 mutant accumulated less 

proline than the wild type, the septuple mutant showed an increase in the amount of this compound, 
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suggesting a negative role in ABA dependent proline accumulation. Further experiments are required 

to elucidate the specific role of these proteins in the pathways that regulate the osmotic stress response.  

 Several targets of the SnRK2 kinases have been isolated. The regulation of stomatal aperture 

by OST1 is due partially to the regulation of two ions channels, SLAC1 and KAT1. OST1-mediated 

phosphorylation activates the slow anion channel SLAC1, whereas it inactivates the inward-rectifying 

potassium channel KAT1, promoting loss of turgor and stomatal closure (Geiger et al., 2009; Lee et 

al., 2009; Sato et al., 2009). ROS production is involved in ABA-dependent stomatal regulation 

(Schroeder et al., 2001) and Sirichandra et al. (2009) have described that OST1 interacts and 

phosphorylates the plasma membrane NADPH oxidase AtrbohF. Finally, the isolation of transcription 

factors (TFs) activated by phosphorylation by the SnRK2s has allowed to describe the cascade of 

events that result in the modification of gene expression after ABA perception (Choi et al., 2000; Uno 

et al., 2000). The ABRE-responsive elements binding (AREB) or ABRE-binding factors (ABFs) 

belong to the group-A subfamily basic-domain leucine zipper (bZIP) TFs, which comprises nine 

homologues in Arabidopsis. These proteins are able to activate the expression of gene promoters 

containing ABA-responsive DNA elements (ABRE; PyACGTGG/TC) such as LEA genes, PP2Cs, 

MYB transcription factor genes, etc (Yoshida et al., 2010). Several works have revealed that the ABA-

dependent phosphorylation of some AREB/ABFs by the SnRK2s regulates its activation (Fujii et al., 

2007; Furihata et al., 2006; Kobayashi et al., 2005). In vegetative tissues, ABF2/ AREB1, ABF3 and 

ABF4/ AREB2 are induced by dehydration, high salinity, or ABA treatment and its expression patterns 

are highly overlapping (Fujita et al.,2005; Kang et al., 2002). The triple mutant abf2abf3abf4 shows 

clear insensitivity to ABA inhibition of  root grow, reduced drought tolerance and decreased 

expression of ABA-mediated responsive genes, suggesting a pivotal role of these proteins in the 

ABRE-dependent gene expression under conditions of water stress during the vegetative stage 

(Yoshida et al., 2010). In addition, the expression level of ABI5, another AREB/ABFs of the group-A 

subfamily, is severely reduced in the snrk2.2snrk2.3snrk2.6 triple mutant at different stages suggesting 

that these kinases also regulate ABI5 (Nakashima et al., 2009). ABI5 expression is the most abundant 

in dry seeds, decreases during postgermination development and is induced by drought during 

vegetative development. Finally, the isolation of these transcription factors has allowed reproducing 

ABA signaling cascade from the perception until the modulation of gene expression (Fujii et al., 2009). 

In protoplast transactivation assays or alternatively in in vitro assays, in the presence of ABA, the 

PYR/PYL/RCAR receptors where able to inactivate the PP2Cs and prevent the PP2C-mediated 

dephosphorylation of the SnRK2s. As a consequence the activation of a reporter gene under the control 

of the promoter of an ABA-responsive gene (RD29B) or alternatively, the phosphorylation of ABF2 
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was significantly recovered compared with the same experiments in the absence of the receptor. 

Moreover, these results are in agreements with the constitutive activation of the SnRK2.2, SnRK2.3 

and SnRK2.6 kinases in the abi1-2hab1-1pp2ca triple mutant and with previous results obtained with 

the pyr1pyl1pyl2pyl4 quadruple mutant (Park et al., 2009). Although the ABA signaling pathway has 

been considered complex and regulated by multiple factors this work demonstrates the existence of 

core elements able to complete the ABA regulation of gene expression. 

 SnRK2 kinases present the catalytic domain typical of eukaryotic Ser-Thr kinases at the N-

terminal part of the protein and a regulatory domain at the C-terminal (Figure 1.5). The regulatory 

domain can be divided in two subdomains; the DI or SnRK-box and the DII or ABA-box. The SnRK-

box is conserved in all the SnRK2s proteins, is necessary for the kinase activity and is responsible of 

its activation in response to osmotic stress independently of ABA. The ABA-box is responsible of the 

activation of the kinase in response to ABA but does not affect kinase activity (Ng et al., 2011; Yunta 

et al., 2011). This domain participates in the interaction with the PP2Cs and classifies the family on 

two subgroups according to the ability to be activated by this hormone. The mechanism by which these 

kinases are activated has been subject of controversy.  Recombinant SnRK2.2, SnRK2.3 and SnRK2.6 

are able to be activated by autophosphorylation of S175 (OST1) in vitro in cis and in trans and it has 

been suggested that these kinases are activated by default unless a PP2C blocks its activity (Fujii et al., 

2009; Ng et al., 2011). However OST1 autophosphorylation is 5-10 fold greater than in the case of 

SnRK2.2 and SnRK2.3 suggesting that upstream kinases could also phosphorylate more efficiently the 

SnRK2s and activate them. Unfortunately no kinase has yet been isolated as an upstream kinase of the 

SnRK2s. Recently structural data have revealed the structure of these proteins and have described the 

molecular interactions that trigger their inactivation by the PP2Cs (Figure 1.6).  

The catalytic domain is a canonical kinase fold with the N- and C-lobe linked by a catalytic 

cleft that contains the ATP and substrate binding sites. The junction between the two lobes is flexible 

and allows the transition between the active (closed) and the inactive (open) conformation (Soon et al., 

2012). SnRK2 inhibition is caused by both biochemical and physical inactivation of the 

phosphorylation activity. Kinase activity is reduced by the dephosphorylation of the S175 in the 

activation loop (Yoshida et al., 2006a) and, at the same time, the W385 of the phosphatase is 

positioned in the catalytic cleft of the kinase physically blocking the access of the substrate to the 

active site. The surface of interaction of the PP2Cs with the SnRK2s overlaps with the one established 

with the PYR/PYL/RCAR receptors and reveals a similar system of recognition that prevents these two 

families of proteins from interacting with the PP2Cs simultaneously. Despite the importance of the 
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ABA-box in the regulation of the SnRK2s through the ABA pathway, all the structural data published 

to date lack this domain. 

   

 

 

 

Figure 1.6. Three regions of interaction between the PP2Cs and the catalytic domain of the SnRK2s can be 

observed. In red, the catalytic cleft of the PP2Cs establishes contact with the activation loop of the kinase and 

desphosphorilates the S175. In blue, the second region of interaction comprises the Trp-385 located at the flap 

subdomain of the phosphatase and the catalytic cleft of the kinase. As a consequence the catalytic activity of the 

kinase is blocked by the incapability of the substrate to reach the kinase active site. In purple, the third region of 

interaction includes the αG in the kinase and the region adjacent to the Trp-385 in the PP2C. 

 

The ABA-box is located at the C-terminus of the kinase (331-362 in OST1) and is necessary 

for the ABA-dependent activation of the SnRK2s. Deletion of this domain blocks the inactivation of 

the kinases by ABA but doesn’t blocks its activation by osmotic stress or its catalytic activity. BiFC 

and Y2H assays using deletion forms of OST1 mapped  the region of the interaction with ABI1 in this 

domain confirming that there is another interaction point between these two proteins apart from the 

contacts established in the kinase domain of the SnRK2s (Vlad et al., 2009; Yoshida et al., 2006a). 
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Moreover, the deletion of this domain abolishes the ABA-dependent activation of these kinases in in 

gel kinase assays (Yoshida et al., 2006a). Based on these results, some groups have speculated that this 

domain could serve to maintain in close proximity SnRK2s and PP2Cs in the presence of ABA, so that 

after a decrease of the ABA concentration phosphatases could inactivate the kinases very rapidly. 

According to this hypothesis, it could be possible to isolate in vivo complexes formed by ABA-

PYL/PYL/RCARs-PP2Cs-SnRK2s. However, to date, no quaternary complex has been isolated. Using 

YFP-ABI1, Yoshida et al. (2006a) performed affinity column-based protein complex purifications 

from Arabidopsis plants to isolate ABI1-interacting proteins. Between the proteins isolated were found 

several PYR/PYL/RCAR receptors and SnRK2s. The authors also performed co-inmunoprecipitation 

experiments and found that YFP-PYR1 co-inmunoprecipitaded with HA-SnRK2.3 in an ABA-

independent manner. Since the direct interaction between SnRK2s and PYR/PYL/RCAR has not been 

described, this result could be explained by the involvement of PP2Cs in this interaction. However, in 

the presence of ABA, the observed interaction is not consistent with the molecular mechanisms 

described so far, where the interaction of SnRK2s with PP2Cs is blocked by the receptors in a 

competitive way.  In this direction, Antoni et al., (2013) have isolated PP2Cs but none of the ABA-

activated SnRK2s in TAP experiments (Tandem Affinity Purification) using PYL8 as a bait. It is 

possible that the binding to the PP2C only through the ABA-box is not sufficient to recover the kinase 

in in vitro assays. Thus, further approaches would be required to demonstrate if the ABA-box could 

participate as a domain in charge of keeping in close proximity kinases and phosphatases, or 

alternatively is in charge of stabilizing the binding of these two families of proteins only in the absence 

of ABA. 

 

1.3  MECHANISM OF ACTION OF THE ABSCISIC ACID AGONIST 

PYRABACTIN 

 

The discovery of the PYR/PYL/RCAR proteins by Park et al. (2009) was possible through the 

use of a new agonist of abscisic acid, pyrabactin. This compound was isolated from a chemical library 

by its capacity to inhibit germination in wild type plants and subsequently, pyr1-1 was isolated as 

mutant insensitive to the effect of pyrabactin.   Afterwards, biochemical and structural data revealed 

that the activity of pyrabactin was related to its capacity to promote PP2C inhibition by the 

PYR/PYL/RCAR proteins. Single loss of function mutants impaired in PYR/PYL/RCAR receptors do 

not show a clear ABA-insensitive phenotype in germination assays because of functional redundancy. 
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Pyrabactin, acting as an ABA agonist only for a subset of receptors, was a critical tool to bypass 

genetic redundancy and isolate PYR1 (Figure 1.7, C). A mutant impaired in PYR1 shows a pyrabactin-

resistant phenotype because PYR1 mediates most of the pyrabactin-induced germination inhibition. 

However, this mutant does not show an ABA-insensitive phenotype because other receptors, such as 

PYL4, can perceive ABA and inhibit germination. 

While for PYR1, PYL1, PYL5, PYL6, PYL9-12 and to lesser extent for PYL8, pyrabactin acts 

as an ABA agonist, for other receptors pyrabactin is not an agonist (Yuan et al., 2010). The study of 

the structures of PYR1 and PYL1 in complex with ABA or pyrabactin have confirmed that pyrabactin 

activity is due to its capacity to enter into receptor cavity and trigger a closed conformation that allows 

the interaction with the PP2Cs (Hao et al., 2010; Melcher et al., 2010; Peterson et al., 2010). 

Pyrabactin doesn’t shares chemical similarity with ABA but in the PYR/PYL/RCAR hydrophobic 

cavity adopts a U-shaped conformation that directs the different groups of the molecule in a similar 

way as ABA does (Figure 1.7, A and B). 

The two polar modules of pyrabactin (the pyridil nitrogen and the sulfonamide group) are 

oriented to the bottom of the receptor pocket in a similar manner to the carboxylate and the hydroxyl 

polar groups of ABA. Similarly to ABA, the two hydrophobic modules of pyrabactin are located close 

to the gating loops of the receptor. The ciclohexene group in ABA is located in close proximity to the 

gate loop of the receptor and stabilizes the closed conformation trough hydrophobic and polar 

interactions. The bromonaphthalene ring in pyrabacting is orientated in the same way indicating that 

this group performs the same function. Finally the methyl group of ABA and the pyridine ring in 

pyrabactin are also positioned in similar orientation and are coordinated by hydrophobic residues in the 

receptor (Hao et al., 2010; Peterson et al., 2010). 
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Figure 1.7. Pyrabactin acts as a seed selective agonist of ABA. Chemical structure of ABA (A) and pyrabactin 

(B). Although these two molecules share no apparent chemical or structural similarity their polar and 

hydrophobic groups adopt a similar location in the cavity of PYL1 or PYR1 producing a conformational change 

in the receptor that makes it capable of interacting with the PP2Cs. Polar regions are indicated by letters and 

hydrophobic regions by numbers. Pyrabactin regions performing the equivalent function in ABA are indicated 

with apostrophes. C) Schematic representation of pyrabactin mode of action.  Pyrabactin acts as an ABA agonist 

only for a subset of PYR/PYL/RCAR receptors. As a consequence the pyr1 mutant does not present an ABA-

insensitive phenotype but is pyracatin-insensitive in the pyrabactin-mediated inhibition of germination. D)  

Microarray experiments on pyrabactin and ABA treated seeds and seedlings. In seeds, both compounds induce 

highly correlated transcriptional responses. Conversely, in seedlings ABA and pyrabactin responses show poorer 

correlation and few ABA-responsive genes significantly respond to pyrabactin (From Park et al., 2009).  
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Figure 1.8.  Different pyrabactin selectivity by PYR/PYL/RCAR proteins. Pyrabactin (in blue) functional 

groups share similar spatial geometry to ABA (in red) inside the PYL1 cavity. In the PYL2 cavity pyrabactin is 

rotated 90º compared to PYL1. As a consequence the receptor remains in its open conformation blocking the 

inhibition of the PP2Cs. In PYL3 pyrabactin is also differently rotated and adopts a more compacted 

conformation. As a result the gate loop (in yellow) enters deeply into the cavity resulting in an inadequate surface 

for the interaction with the PP2Cs.  
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 Although the PYR/PYL/RCAR proteins share a high degree of sequence similarity, pyrabactin 

doesn’t acts as an ABA agonist for some of them. Structural data have revealed the features of the 

interactions with PYL2 and PYL3, where a non-productive binding results in the incapacity of these 

receptors to inhibit the PP2Cs (Figure 1.8). In the case of PYL2 pyrabactin is rotated 90º compared to 

its location in the PYL1 cavity. This is translated in a different location of the bromonaphthalene ring 

that prevents its interaction with the gate loop and thus the existence of the receptor in its closed 

conformation (Peterson et al., 2010). In the case of PYL3 the gate loop adopts a closed conformation 

but remains deeper in the cavity respect to other PYR/PYL/RCARs like PYL1 or PYR1. As 

consequence the surface of interaction with the PP2C is disrupted even though the receptor presents a 

closed conformation (Zhang et al., 2012). Comparison of the sequences in different receptors has 

helped to isolate those residues implicated in the selectivity for pyrabactin of some receptors. 

Surprisingly in the case of PYL2, the replacement of a single residue by the corresponding residue in 

PYL1 (V114I) makes the protein able to inhibit ABI1 and shows that the specific characteristics of 

each receptor are due to subtle differences in the primary sequence (Yuan et al., 2010). 
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2. OBJECTIVES 

 
1. Physiological and biochemical characterization of the HAI1, PP2CA and AHG1, 

clade A PP2Cs. Role in ABA signaling and regulation by PYR/PYLs ABA 

receptors. 

 

2. In vitro and in vivo analyses of key residues for the interaction between PYR1 and 

HAB1. Study of the biological relevance of HAB1 Trp-385 residue in transgenic 

plants. 

 

3. Role of PYR/PYLs and PP2Cs in the root hydrotropic response.  

 

4. Characterization of the expression pattern of PYR/PYL/RCARs in root. 

 

5. Screening of ABA agonists through a biochemical genetic approach. 
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3.1 Abstract 

The plant hormone abscisic acid (ABA) plays a crucial role in the control of the stress response and 

the regulation of plant growth and development. ABA binding to PYR/PYL/RCAR intracellular 

receptors leads to inhibition of key negative regulators of ABA signaling, i.e. clade A protein 

phosphatases type 2C (PP2Cs) such as ABI1 and HAB1, causing the activation of the ABA 

signaling pathway. In order to gain further understanding on the mechanism of hormone perception, 

PP2C inhibition and its implications for ABA signaling, we have performed a structural and 

functional analysis of the PYR1-ABA-HAB1 complex. Based on structural data, we generated a 

gain-of-function mutation in a critical residue of the phosphatase, hab1
W385A

, which abolished ABA-

dependent receptor-mediated PP2C inhibition without impairing basal PP2C activity. As a result, 

hab1
W385A

 caused constitutive inactivation of the protein kinase OST1 even in the presence of ABA 

and PYR/PYL proteins, in contrast to the receptor-sensitive HAB1, and therefore hab1
W385A

 

qualifies as a hypermorphic mutation. Expression of hab1
W385A

 in Arabidopsis thaliana plants leads 

to a strong, dominant ABA-insensitivity, which demonstrates that this conserved Trp residue can be 

targeted for the generation of dominant clade A PP2C alleles. Moreover, our data highlight the 

critical role of molecular interactions mediated by Trp385 equivalent residues for clade A PP2C 

function in vivo and the mechanism of ABA perception and signaling. 
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3.2 Introduction 

 Abscisic acid (ABA) is required for biotic and abiotic stress responses as well as the control 

of plant growth and development. Plant growth can be severely impaired by adverse environmental 

conditions like drought, salinity, cold or high temperature, which can reduce average productivity of 

crops by 50% to 80% (Bray et al., 2000). ABA plays a key role in orchestrating the adaptive 

response of the plant to cope with these forms of abiotic stress (Cutler et al., 2010; Verslues et al., 

2006). Under drought  stress, cleavage of ABA from ABA conjugates stored in the vacuole or 

apoplastic space (Lee et al., 2006) as well as de novo ABA biosynthesis  (Nambara and Marion-

Poll, 2005) are stimulated, leading to a sharp increase in the cellular concentration of the hormone. 

This elicits a plant response that limits water loss and, under prolonged stress, the hormone 

response adapts plant metabolism to the low water potential of the cellular environment.  

 A large number of cellular components have been implicated in the ABA signaling pathway 

(Hirayama and Shinozaki, 2007). However, recently it has become clear that just three types of 

proteins constitute the so-called “core ABA pathway” (Cutler et al., 2010).  These include the 

family of PYR/PYL/RCAR ABA receptors, the clade A of protein phosphatases type 2C (PP2Cs) 

and three ABA-activated protein kinases from the sucrose non-fermenting1-related subfamily 2 

(SnRK2) (Cutler et al., 2010). Under non-stress conditions clade A PP2Cs can interact with and 

dephosphorylate three SnRK2s, i.e. 2.2, 2.3 and 2.6/OST1, reducing their catalytic activity 

(Umezawa et al., 2009; Vlad et al., 2009). The increase of ABA levels in the plant cell leads to the 

PYR/PYL/RCAR receptor-mediated inhibition of the PP2C activity which results in the activation 

of the three SnRK2s and ultimately of the ABA signaling pathway (Ma et al., 2009; Park et al., 

2009; Umezawa et al., 2009; Vlad et al., 2009). Upon activation, the SnRK2s directly 

phosphorylate transcription factors that bind to ABA-responsive promoter elements (ABREs), 

named ABFs/AREBs for ABRE-binding factors, and components of the machinery regulating 

stomatal aperture like the anion channel SLAC1 (Fujii et al., 2009; Fujita et al., 2009; Geiger et al., 

2009; Lee et al., 2009). 

 To date, three receptors, i.e. PYR1, PYL1 and PYL2, and two receptor-ABA-phosphatase 

complexes, i.e. PYL1-ABI1 and PYL2-HAB1, have been studied at a structural level, which has 

contributed to the understanding of the molecular interactions between receptor, hormone and 

phosphatase (Melcher et al., 2009; Miyazono et al., 2009; Nishimura et al., 2009; Santiago et al., 

2009a; Yin et al., 2009). The PYR/PYL/RCAR proteins belong to the super-family of START/Bet 

v proteins, whose members are widespread in eukaryotes and are characterized by the presence of a 

cavity able to accommodate hydrophobic ligands (Iyer et al., 2001; Radauer et al., 2008). This 

cavity represents the hormone-binding pocket and is flanked by two flexible loops (b3-b4 and b5-
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b6), the so-called gating loops, which close over the hormone once inside the binding pocket.  In the 

two structures available from ternary complexes, the ABA-bound receptor contacts the PP2C 

through the gating loops that cover the ABA-binding pocket. Thus, the side-chains of Ser112 of 

PYL1 and the Ser89 of PYL2, located in the b3-b4 loop, insert into the PP2C active site and 

presumably occlude the access of the substrates (Melcher et al., 2009; Miyazono et al., 2009; Yin et 

al., 2009). These conserved Ser residues establish contacts with Gly180 of ABI1 or Gly246 of 

HAB1, next to the PP2C active site, and the metal-coordinating residue Glu142 of ABI1 or Glu203 

of HAB1, respectively. Another important feature of the ternary complex, involves a key water-

mediated interaction between the ABA´s ketone group and the Trp300 or Trp385 residue of ABI1 

or HAB1, respectively. Indeed, this is the only residue of the PP2C approaching the ABA molecule 

and accordingly, this interaction has been postulated to play a key role in the stabilization of the 

whole ternary complex, contributing to the higher ABA affinity measured for PYR/PYL/RCAR 

receptors in the presence of the PP2Cs (Ma et al., 2009; Santiago et al., 2009b). However, beyond 

the structural data, no in planta evidence has been provided for its direct role in ABA signaling. 

Moreover, the ternary complexes analyzed at a structural level have not included PYR1, which 

plays a predominant role in germination (Park et al., 2009). 

 Plants harbouring abi1
G180D

, abi2
G180D

 and hab1
G246D

 dominant mutations have represented 

valuable tools to dissect ABA signaling (Leung et al., 1994; Leung et al., 1997; Meyer et al., 1994; 

Robert et al., 2006; Rodriguez et al., 1998). Their ABA-insensitive phenotypes are in agreement 

with a reduced capacity of the mutant PP2Cs to interact with PYR/PYL/RCAR receptors (Park et 

al., 2009; Santiago et al., 2009b; Umezawa et al., 2009). In spite of their utility, these alleles bear 

mutations close to the phosphatase catalytic site and have reduced basal PP2C activity (Bertauche et 

al., 1996; Leube et al., 1998; Leung et al., 1997; Robert et al., 2006) Rodriguez et al., 1998), which 

has complicated the interpretation of their in vivo phenotypes. Mutations in the conserved Trp 

residue described above have not been isolated by forward genetic screens, or engineered in 

Arabidopsis plants, and the functional relevance of this residue has been documented uniquely on in 

vitro studies for the case of ABI1 (Miyazono et al., 2009).  Since mutations in the Trp residue are 

expected to affect the stability of the ternary complex without compromising the phosphatase 

catalytic activity, they represent an ideal tool for studying in planta the effect of de-coupling the 

receptor and phosphatase interaction.  

 Here we present a combined structural and functional analysis of the ternary complex 

formed by PYR1-ABA-HAB1. We analyzed the effect of PYR1-HAB1 mutations on OST1 kinase 

activity in vitro, since this SnRK2 is a key target of HAB1 (Vlad et al., 2009). We also performed 

in planta analysis of a hab1
W385A

 mutation that de-couples receptor and phosphatase interaction 
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without impairing PP2C activity. These transgenic plants show an acute ABA-insensitivity 

demonstrating the importance of ABA-mediated PYR/PYL/RCAR-PP2C contacts for receptor 

function in vivo, and enabling a new method for probing PP2C function with dominant receptor-

insensitive mutations.  

 

3.3 Results 

Architecture of the PYR1-ABA-ΔNHAB1 ternary complex  

 The PYR1 receptor and the catalytic domain of the HAB1 phosphatase (residues 179-511, 

HAB1) were separately overexpresed in E. coli, purified and mixed in equimolar amounts in the 

presence of 1 mM (+)-ABA. The resulting complex was assayed for crystallization at the high 

throughput crystallization facility of the EMBL Grenoble Outstation (https://embl.fr/htxlab) 

(Dimasi et al., 2007). X-ray diffraction data was collected from orthorhombic crystals at the ID14-4 

beam line of the ESRF to 1.8 Å resolution. Initial phases were obtained by the molecular 

replacement method using the two central -sheets of the catalytic domain of the human PP2C 

protein (1A6Q) (Das et al., 1996) as a search model. The initial phases provided an easily 

interpretable electron density map extending outside the search model region. Successive rounds of 

automatic refinement and manual building resulted in a refined model with a Rwork and Rfree of 

17.4% and 21.8 % respectively. In the refined model, the crystallographic asymmetric unit contains 

one molecule of PYR1 one molecule of HAB1, one molecule of ABA and three manganese ions 

(Fig. 3.1 and n3.I). 

 The structure of PYR1 in the complex is very similar to that of the ABA-bound subunit in 

dimeric PYR1 (Nishimura et al., 2009; Santiago et al., 2009a). The ABA molecule is located in the 

receptor cavity stabilized by both polar and hydrophobic interactions and the gating loops are in the 

closed conformation, as described previously (Nishimura et al., 2009; Santiago et al., 2009a) (Fig. 

3.1). Subtle differences between the two PYR1 structures likely induced by interaction with HAB1 

are found around Ser85 in one of the gating loops, and the loop 7/5, adjacent to the gating loops 

(Fig. 3.1, B and C). The structure of the HAB1 catalytic domain is similar to those of Arabidopsis 

ABI1 (Melcher et al., 2009; Miyazono et al., 2009; Yin et al., 2009) and the human PP2C protein 

phosphatase (Das et al., 1996). It is formed by a central 10-strand antiparallel -sandwich flanked 

by two long α-helices at each side. A 55 amino acid  domain, which has been named the flap 

sub-domain in some bacterial PP2Cs (Schlicker et al., 2008) is inserted between strands 8 and 12 

of HAB1. This sub-domain contains the HAB1 Trp385 (Fig. 3.1A), which is highly conserved in 
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plant clade A PP2Cs.  Small conformational differences between the three phosphatases are found 

at the 2-3 and 1-2 loop regions of HAB1. In addition to this, HAB1 displays a 16 amino acid 

insertion at the 3/4 loop not found in ABI1 and the human PP2C (Supplemental Fig. S1).  

 The catalytic site of HAB1 is located inside a deep channel formed at the top of the -

sandwich and flanked by the flap sub-domain (Fig. 3.2; Supplemental Fig. S2). In our structure, the 

catalytic site of HAB1 contains three metal ions designated here as M1, M2 and M3 according to 

Alzari and co-workers (Wehenkel et al., 2007) (Fig. 3.2). While some protein phosphatases contain 

two metal ions at the catalytic site, a few bacterial phosphatases have been shown to display a third 

conserved metal ion site, M3 (Pullen et al., 2004; Schlicker et al., 2008; Wehenkel et al., 2007). 

The M3 site, is located at the exit of the catalytic channel and is typically coordinated by one 

conserved aspartic residue also involved in coordination of the metal at M1 (Asp432 for HAB1), 

and one residue from the flap domain. In some bacterial PP2Cs coordination of the third metal ion 

at M3 has been correlated with a change in position of the flap sub-domain (Wehenkel et al., 2007), 

however, this site displays low metal binding affinity and has been shown to be dispensable for 

catalysis (Wehenkel et al., 2007). To our knowledge, HAB1 is the first eukaryotic PP2C with three 

metal sites.  

 Molecular interactions stabilizing the PYR1-ABA-HAB1 complex 

 The PYR1-HAB1 interface comprises a total protein buried surface area of 1691 Å
2
. As in 

the case of the PYL2-HAB1 and PYL1-ABI1 structures (Melcher et al., 2009; Miyazono et al., 

2009; Yin et al., 2009), HAB1 docks into the ABA-bound receptor establishing interactions with 

the gating loops (loops 3/4 and 5/6), the N-terminal part of the  helix and the 4/2 loop of 

PYR1 (Fig. 3.1, A-C).  The HAB1 residues involved in those interactions are located both in the 

flap sub-domain including Trp385 and the phosphatase active site including the 1/2 , 3/1 and 

2/4 loops (Fig. 3.1, A-C; Fig. 3.2; Supplemental Fig. S3). The HAB1 Trp385 residue is inserted 

between the PYR1 gating loops with the nitrogen in the indole group establishing a hydrogen bond 

with the water located at the channel between the gating loops (Fig. 3.1B). This water molecule 

represents a critical point in the ternary complex, establishing hydrogen bonds not only with HAB1 

Trp385 but also with the receptor gating loops (with the backbone carbonyl and amine groups of 

Pro88 and Arg116 respectively) and with the hormone itself, through its ketone group. Comparison 

of the present structure with the previously reported structures of isolated PYR1 reveals a 

conformational rearrangement in the β7/α5 loop of PYR1 upon binding to HAB1. This loop moves 

forward towards the flap domain of HAB1 (Fig. 3.1B), establishing new interactions that stabilize 

both the closed conformation of the gating loops and the receptor-phosphatase complex. These 
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interactions involve Asn151 of PYR1, which is hydrogen bonded to both the carbonyl group of 

HAB1 Gln384 in the flap domain and PYR1 Arg116, located in one of the gating loops. At the 

same time, in the present structure the side chain of PYR1 Ser152 is involved in a helix capping 

interaction (Presta and Rose 1988) that stabilizes the forward movement of the β7/α5 loop. 

 Another important interaction region involves the PYR1 3/4 loop containing Ser85 and 

the catalytic site of the phosphatase (Fig. 3.1C). PYR1 Ser85 takes part in a hydrogen bond network 

with the backbone amine of Gly246 and the carboxylic group of Glu203 at the catalytic site of 

HAB1. This interaction is likely to be responsible for the inhibition of the phosphatase activity, as 

the 3/4 loop containing Ser85 seems to block access to the phosphatase catalytic site (Fig. 3.2).  

The structure of the human PP2C contains a phosphate ion at the catalytic site, which is likely 

mimicking the position of the phosphorylated amino acid substrate (Das et al., 1996). Interestingly, 

when PP2C and HAB1 catalytic cores are superimposed the phosphate ion of human PP2C is 2.9 

Å away from the C carbon of Ser 85 of PYR1 (Fig. 3.2; Supplemental Fig. S4), which suggests 

that a phosphoserine substrate might enter the catalytic site in a similar manner. 

 

Mutational analysis of the PYR1-HAB1 interaction and effect on the HAB1-dependent 

inhibition of OST1 activity 

 To test the biological relevance of the interactions observed in the PYR1-HAB1 complex, 

we analyzed the effect of a number of single point mutations on both proteins. In the case of PYR1, 

we mutated key amino acid residues involved in either direct ABA-binding (Glu94Lys, Glu141Lys 

and Tyr120Ala) or both ABA-binding and PP2C interaction, particularly residues located in the 

gating loops (Ser85Ala, Leu87Ala, Pro88Ser, Arg116Ala) and the loop β7-α5 (Ser152Leu). For 

HAB1 we chose the Gly246Asp mutation, equivalent to abi1-1D and abi2-1D mutations, since 

expression of hab1
G246D

 in planta leads to a dominant ABA-insensitive phenotype (Robert et al., 

2006) and Trp385Ala, due to its critical interactions with the PYR1 gating loops and ABA. For each 

PYR1 mutant we first tested both its capacity to interact with HAB1 and inhibit its activity through 

yeast two hybrid (Y2H) interaction and in vitro phosphatase activity assays, respectively (Fig. 3.3, 

A and B; Supplemental Fig. S5). In general, the PYR1 mutations abolished or severely reduced the 

ABA-mediated interaction and the inhibition of HAB1 phosphatase activity as compared to the wt. 

An exception is the PYR1
R157H

 variant. Although this mutation confers resistance to pyrabactin, a 

seed ABA-agonist (Park et al., 2009), it shows very limited effect in both the Y2H and phosphatase 

activity assays.  
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In vitro reconstitution of an ABA signaling cascade can be achieved by combining PYR1, 

PP2C, SnRK2.6/OST1 and ABF2 in a test tube (Fujii et al., 2009). In this system, OST1 activity is 

measured as auto-phosphorylation as well as trans-phosphorylation of its natural substrate ABF2. 

We used this assay to determine how the different mutations affect the control of the OST1 activity. 

Figure 3.3 shows that HAB1 dephosphorylates OST1 and inhibits its kinase activity (lanes 1 and 2, 

Fig. 3.3, C and D). However, if ABA and PYR1 are added, HAB1 is inactivated, and consequently 

a significant recovery of OST1 activity is observed (lane 5, Fig. 3.3, C and D). All the PYR1 

mutants assayed, except R157H, showed a strongly decreased capacity to antagonize the HAB1-

mediated dephosphorylation of OST1 and were unable to promote ABA-dependent recovery of the 

OST1 protein kinase activity. 

 Both HAB1 Trp385Ala and Gly246Asp mutations abolished the ABA-dependent 

interaction between HAB1 and PYR1, as revealed by the Y2H and in vitro phosphatase activity 

assays (Fig. 3.4, A and B). In agreement with these results and in contrast to wild type HAB1, both 

mutant PP2Cs were able to dephosphorylate OST1 in the presence of ABA and PYR1 (Fig. 3.4C). 

Thus, both mutant PP2Cs were refractory to inhibition by PYR1 under these experimental 

conditions.  This result indicates that both hab1
W385A

 and hab1
G246D

 qualify as hypermorphic mutants 

compared to wild type HAB1 in the presence of ABA and PYR1 (Wilkie, 1994). However, the 

basal dephosphorylation of OST1 by hab1
G246D

 was less-effective than wild type in the absence of 

ABA and PYR1(Vlad, et al., 2009; this work), which can be explained because this mutation is 

located close to the PP2C active site. Indeed, using p-nitrophenol as substrate, hab1
G246D

 showed 4 

times lower specific activity as compared to wt HAB1 (4.86 ± 0.43 and 18.76 ± 2.13 nmoles Pi/min 

· mg, respectively). Instead, the activity of hab1
W385A

 was similar to wild type both in the pNPP 

(20.52 ± 2.53 nmoles Pi/min · mg) and the OST1 dephosphorylation assays (Fig. 3.4C).  

 In summary, the mutational analysis of both PYR1 and HAB1 confirms that the interactions 

revealed by the structural analysis of the ternary complex are crucial for the inhibition of HAB1 

activity. Additionally, these results illustrate that certain mutations in the PP2C lead to escape of the 

inhibitory ABA-mediated PYR/PYL mechanism. The results obtained for hab1
G246D

 provide 

additional support to the model proposed by Merlot and co-workers (Vlad et al., 2009) to explain 

the negative regulation of OST1 activity by HAB1 and the strong ABA-insensitive phenotype of 

35S:hab1
G246D

 plants (Robert et al., 2006), assuming that a general escape from PYR/PYL receptors 

occurs in these plants. Indeed, we have demonstrated in vitro that hab1
G246D

 phosphatase, as well as 

hab1
W385A

, are refractory to inhibition by different PYR/PYL proteins (Fig. 3.4D).  
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Expression of hab1
W385A

 in Arabidopsis plants leads to reduced ABA sensitivity  

 To test the biological relevance of the PYR1-ABA-HAB1 interaction mediated by the 

residue Trp385 of HAB1, we generated 35S:hab1
W385A 

transgenic lines and examined their ABA 

response compared to 35S:HAB1 plants (Fig. 3.5). For this analysis, we selected three 

35S:hab1
W385A 

transgenic lines that showed expression levels of the recombinant protein similar to 

those of the previously described 35S:HAB1 plants (Saez et al., 2004), as determined by 

immunoblot analysis against the HA-epitope added to each protein (Fig. 3.5C). Germination and 

early seedling establishment of 35S:HAB1 and 35S:hab1
W385A 

seeds were less sensitive to ABA-

mediated inhibition than wild type seeds (Fig. 3.5, A and B). Moreover, 35S:hab1
W385A 

seeds were 

able to germinate and establish seedlings at 10 M ABA, which is an inhibitory concentration for 

establishment of 35S:HAB1 seeds (Fig. 3.5, A and B).  

 Stomatal closing is a key ABA-controlled process that preserves water under drought 

conditions. We mimicked drought by exposing plants to the drying atmosphere of a flow laminar 

hood and under these conditions we measured water-loss in two-week old seedlings (Fig. 3.5, D and 

E). Both 35S:HAB1 and 35S:hab1
W385A

 plants showed a higher transpiration rate than wild type, and 

water-loss in plants over-expressing the mutated phosphatase was higher than in the wild type 

PP2C. The increased insensitivity to ABA of the 35S:hab1
W385A 

plants as compared to 35S:HAB1, is 

consistent with the inability of the PYRL/PYL/RCAR receptors to inhibit in vitro the activity of 

hab1
W385A

 (Fig. 3.4D). Finally, the expression of ABA-inducible genes was severely reduced in 

35S:hab1
W385A

 plants as compared to the wild type (Fig. 3.5F). The accumulation of these transcripts 

was also impaired in 35S:HAB1 plants; in some cases, RAB18, RD29B, the effect was similar to 

35S:hab1
W385A

 plants, however, ABA induction of other transcripts, KIN1, RD29A, P5CS and RD22, 

was less affected (Fig. 3.5F). 

 

3.4 Discussion 

 The structure of the PYR1-ABA-HAB1 complex presented here and those of the ternary 

complexes studied previously (Melcher et al., 2009; Miyazono et al., 2009; Yin et al., 2009) 

contribute to explain how ABA binding induces the interaction between receptor and phosphatase 

and its inhibitory nature on phosphatase activity. Interestingly, these complexes show a 1:1 

receptor:phosphatase stoichiometry. Since it has been shown that PYR1 forms a dimer in vivo 

(Nishimura et al.,  2009), evidence that is not yet available for PYL1 and PYL2, our data confirm 

that PYR1 dimer dissociation is required for the formation of the ternary complex, as Yan and co-
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workers have suggested (Yin et al., 2009). However, a detailed understanding of the dimer 

dissociation process is not available yet. 

 Once the hormone enters the receptor cavity, the cyclic moiety of the ABA molecule 

establishes interactions with the receptor gating loops, which favours their closed conformation. 

This closed conformation offers an optimal surface for the docking of the phosphatase, which 

contributes in turn to the stability of the ternary complex by locking the gating loops in their closed 

conformation and trapping the hormone inside the binding cavity. For instance, PYL9 and PYL5 

bind to ABA with a Kd of 0.70 μM and 1.1 μM, respectively, whereas inclusion of ABI2 and HAB1 

in the binding assay leads to a Kd of 64 nM and 38 nM, respectively (Ma et al., 2009; Santiago et 

al., 2009b). The HAB1 Trp385 residue plays a major role in this stabilization process by inserting 

between the gating loops, and additionally via an indirect contact with the ABA´s ketone group 

through a hydrogen bond network mediated by a critical water molecule. This water molecule 

establishes hydrogen bonds not only with HAB1 Trp385 and the hormone, but also with key 

residues (Pro88 and Arg116) of the receptor gating loops. This complex network of interactions 

provides a mechanism through which the phosphatase is able to monitor hormone occupancy of the 

ABA binding cavity, and therefore ensuring that the conserved Trp residue will only contribute to 

the stabilization of the receptor-phosphatase complex if the hormone is present. The in vitro data 

presented here for hab1
W385A

 and by Miyazono et al., (2009) for abi1
W300A

 support this conclusion. 

Moreover, our results show that this hormone sensing mechanism is critical for ABA response in 

planta. Thus, expression of hab1
W385A 

in Arabidopsis plants leads to a strong ABA-insensitive 

phenotype, which can´t be explained solely by enhanced PP2C gene dosage, since 35S:HAB1 

plants, although less sensitive to ABA than wt, show milder phenotypes. The reduced sensitivity to 

ABA-mediated inhibition of seed germination and seedling establishment enhanced water-loss and 

reduced expression of ABA-responsive genes in 35S:hab1
W385A

 plants support the relevance of this 

locking interaction, postulated by structural studies. Additionally, these plants represent a valuable 

tool to dissect the ABA pathway by using dominant receptor-insensitive PP2C mutants that do not 

compromise the intrinsic phosphatase activity. Taking into account the large number of screenings 

performed to identify ABA-insensitive plants, the failure to isolate mutants harbouring missense 

mutations in this Trp residue is somehow surprising. However, since EMS mutagenesis usually 

leads to G →A transitions, such mutation in the Trp codon (UGG) would lead to stop codons and 

presumably loss-of-function alleles. The locking mechanism provided by the Trp residue appears to 

be a particular evolution of the plant clade A PP2Cs, since with the exception of AHG1, they are the 

unique plant PP2Cs that present this residue in the appropriated position of the flap PP2C sub-
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domain. Interestingly, AHG1 was less-sensitive to ABA-dependent PYL8-mediated inhibition than 

other clade A PP2Cs, such as PP2CA and At5g59220 (Supplemental Fig. S6).   

 This work and previous structural analyses indicate that the insertion of the PYR1 Ser85-

containing β3-β4 loop (Ser112 of PYL1 and Ser89 of PYL2) into the phosphatase catalytic site 

could account for the inhibition of PP2C catalytic activity by blocking access of potential substrates 

to the phosphatase catalytic site in a competitive manner. However, although this mechanism looks 

plausible, the phosphatase catalytic channel remains open in its lower part in the ternary complexes 

formed by both HAB1 and ABI1 (Supplemental Fig. S2). This lower part of the phosphatase 

catalytic groove might represent an alternative entry site for substrates and indeed initial studies 

based on biochemical assays with a non-peptidic substrate, suggested that inhibition of the PP2C 

activity by PYR/PYL/RCAR proteins occurs by a non-competitive, rather than competitive 

mechanism (Ma et al., 2009). In contrast, in other studies the inhibition of HAB1 by ABA-bound 

PYL2 was overcome by increasing concentrations of an OST1 phosphopeptide containing residues 

of the kinase activation loop (Melcher et al., 2009). Unfortunately the structure of a PP2C in 

complex with a natural peptide substrate is lacking, which could contribute to resolve this issue.  

However, one striking observation arising from the present structural analysis is the proximity of 

Ser85 in the gating loop of the PYR1 receptor to the position expected to be occupied by the 

phosphoryl group of the substrate of the phosphatase reaction. Superposition of the present structure 

and the catalytic domain of human PP2Cα shows that the β-carbon of PYR1 Ser85 is next to the 

phosphate ion oxygen atom that Barford and co-workers have proposed as the seryl/threonyl  

oxygen in their analysis of the PP2Cα catalytic site (Das et al., 1996). This would suggest that the 

PYR1 Ser85, and its equivalent in other PYR/PYL proteins, might act as a product mimic and 

occupy a similar position as the phosphorylated serine residues in SnRK2s and other PP2C targets. 

In our view, this important observation lends weight to the interpretation that the formation of the 

receptor-phosphatase complex prevents access of natural PP2C substrates to the catalytic site, 

supporting the competitive nature of the inhibition mechanisms. At the same time it would support 

the catalytic mechanism proposed by Barford (Das et al., 1996), where the water molecule linked to 

the metal at the M2 site and Glu37 of human PP2Cα (Glu203 in HAB1) would contribute to 

catalysis by facilitating the protonation of the oxygen atom in the P-O scissile bond. 

 Since Ser85 of PYR1, Ser112 of PYL1 and Ser89 of PYL2 insert into the PP2C active site 

and establish contacts with Gly180 of ABI1 or Gly246 of HAB1, the structural data provide a 

framework to explain the effect of abi1
G180D

 and hab1
G246D 

mutations. However, no direct 

biochemical evidence had been previously provided in the case of hab1
G246D

. The present analysis 

shows that hab1
G246D

 is insensitive to inhibition by various PYR/PYL proteins, which leads to the 
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escape from the ABA-dependent PYR/PYL inhibitory mechanism and the subsequent constitutive 

inhibition of OST1 activity. Therefore, these data are in agreement with the notion that hab1
G246D

 

behaves as a hypermorphic mutation in the presence of ABA, as noted by Schroeder and co-workers 

(Robert et al., 2006). Paradoxically, in the absence of ABA, hab1
G246D

 shows lower intrinsic 

phosphatase activity than wild type HAB1, probably because this mutation perturbs the PP2C active 

site to some extent. 

 Even though other ABA receptors have been identified (Pandey et al., 2009, Shang et al., 

2010) and therefore other input sources exist for ABA signaling, the phenotypes of both 

35S:hab1
G246D

 and 35S:hab1
W385A

 plants indicate that constitutive activation of the PP2Cs (and the 

consequent inactivation of the SnRK2s) leads to a severe blockade of ABA signaling. Therefore, the 

action of the SnRK2s is likely localized downstream of the other putative inputs and could represent 

a core ABA signaling component shared by all ABA receptors. This would be in agreement with 

the extreme ABA insensitivity of triple snrk2.2/2.3/2.6 mutant plants (Fujii and Zhu 2009). 

 

3.5 Material and methods 

Construction of plasmids 

Plasmids pETM11 or pET28a were used to generate N-terminal His6-tagged recombinant proteins. 

The cloning of 6xHis-NHAB1 (lacking residues 1-178), PYR1, PYL4, PYL5 and PYL8 constructs 

was previously described (Santiago et al., 2009b). Using a similar approach, PYL1 and PYL6 were 

cloned in pETM11, whereas PYL9 was cloned in pET28a. HAB1(W385A), HAB1(G246D), 

PYR1(S85A), PYR1(R116A), PYR1(L87A) and PYR1(Y120A) mutants were produced using the 

overlap extension procedure (Ho et al., 1989) and cloned into pETM11. PYR1(S152L), 

PYR1(P88S), PYR1(R157H), PYR1(E141K) and PYR1(E94K) mutants were obtained from the pyr1-

2, pyr1-3, pyr1-4, pyr1-5 and pyr1-6 alleles, respectively (Park et al., 2009) and cloned into 

pET28a. The coding sequence of OST1 and a C-terminal deletion of ABF2 (CABF2, amino acids 

1-173) were cloned into pET28a.  

Protein expression and purification  

BL21(DE3) cells transformed with the corresponding constructs in pETM11 or  pET28a vectors 

were grown in LB medium to an OD600 of 0.6-0.8. At this point 1 mM IPTG was added and the 

cells were harvested after overnight incubation at 20ºC. Proteins used for crystallization were 

purified as described (Santiago et al., 2009a). For small scale protein preparations, the following 

protocol was used. Pellets were resuspended in lysis buffer (50mM Tris pH 7.5, 250mM KCl, 10% 
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Glycerol, 1 mM -mercaptoethanol) and lysed by sonication with a Branson Sonifier 250. The clear 

lysate obained after centrifugation was purified by Ni-affinity. A washing step was performed using 

50mM Tris, 250 mM KCl, 20% Glycerol, 30 mM  imidazole and 1mM -mercaptoethanol washing 

buffer, and finally the protein was eluted using 50mM Tris, 250 mM KCl, 20% Glycerol, 250mM 

imidazole and 1mM -mercaptoethanol elution buffer.  

Crystallization and structure solution  

The PYR1-ABA-HAB1 ternary complex was prepared by mixing PYR1, ΔNHAB1 and 1mM ABA 

to a final concentration of 3 mg/ml, 5 mg/ml and 1 mM respectively in 20mM Tris pH7.5, 150mM 

NaCl, 1mM MnCl2, 1mM βmercaptoethanol. Crystallization conditions for the complex were 

identified at the High Throughput crystallization Laboratory of EMBL Grenoble Outstation 

(https://htxlab.embl.fr) as described in (Marquez et al., 2007). The crystals used for data collection 

were obtained by vapour diffusion method in 0.25M NaCl, 19% Peg 3350 at 20
o
C. X-ray diffraction 

data was collected at the ID14-4 beam line of the ESRF to 1.8 Å resolution. Initial phases were 

obtained by the molecular replacement method using the two central -sheets of the catalytic 

domain of the human PP2C protein (1A6Q) (Das et al., 1996) as a search model and the program 

Phaser (McCoy et al., 2007). Successive rounds of automatic refinement and manual building were 

carried out with RefMac5 (Murshudov et al., 1997) and Coot (Emsley and Cowtan 2004). Atomic 

coordinates from the final model have been deposited in the Protein Data Bank under accession 

code 3QN1. 

PP2C and OST1 in vitro activity assays 

Phosphatase activity was measured using either the Ser/Thr Phosphatase assay system (Promega) 

using the RRA(phosphoT)VA peptide as substrate or pNPP (p-nitrophenyl phosphate). In the first 

case assays were performed in a 100 μl reaction volume containing 25 mM Tris-HCl pH 7.5, 10 

mM MgCl2, 1 mM DTT, 25 μM peptide substrate and the PP2C. When indicated, PYR-PYL 

recombinant proteins and ABA were included in the PP2C activity assay. After incubation for 60 

min at 30ºC, the reaction was stopped by addition of 30 μl molybdate dye (Baykov et al., 1988) and 

the absorbance was read at 630 nm with a 96-well plate reader. For the pNPP phosphatase activity 

assays a 100 μl solution containing 25 mM Tris-HCl pH 7.5, 2 mM MnCl2 and 5mM pNPP 

substrate and the indicated amount of the PP2Cs was used. Measurements were taken with a 

ViktorX5 reader at 405nm every 60 seconds over 30 minutes.   
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Phosphorylation assays were done basically as described previously (Belin et al., 2006; Vlad et al., 

2009). Assays to test recovery of OST1 activity were done by previous incubation for 10 min of the 

protein phosphatase HAB1 together with the PYR1 wt or PYR1 mutant proteins in the presence of 

the indicated concentration of (+)-ABA.  Next, the reaction mixture was incubated for 50 min at 

room temperature in 30 μl of kinase buffer: 20 mM Tris-HCl pH 7.8, 20 mM MgCl2, 2 mM MnCl2, 

and 3.5 µCi of -
32

ATP (3000 Ci/mmol). The reaction was stopped by adding Laemmli buffer. 

When indicated, ΔCABF2 recombinant protein (100 ng) was added as substrate of OST1. After the 

reaction proteins were separated by SDS-PAGE using an 8% acrylamide gel and transferred to an 

Immobilon-P membrane (Millipore). Radioactivity was detected using a Phosphorimage system 

(FLA5100, Fujifilm). After scanning, the same membrane was used for Ponceau staining. The data 

presented are averages of at least three independent experiments. 

Yeast two-hybrid assays 

Protocols were similar to those described previously (Saez et al., 2006).  

Generation of 35S:hab1
W385A

 transgenic lines 

The mutated hab1
W385A

 was cloned into pCR8/GW/TOPO entry vector (Invitrogen) and recombined 

by LR reaction into the gateway compatible ALLIGATOR2 vector (Bensmihen et al., 2004). This 

construct drives expression of hab1
W385A

 under control of the 35S CaMV promoter and introduces a 

triple HA epitope at the N-terminus of the protein.  Selection of transgenic lines is based on the 

visualization of GFP in seeds, whose expression is driven by the specific seed promoter At2S3. The 

ALLIGATOR2-35S:3HA-hab1
W385A

 construct was transferred to Agrobacterium tumefaciens C58C1 

(pGV2260) (Deblaere et al., 1985) by electroporation and used to transform Columbia wild type 

plants by the floral dip method. T1 transgenic seeds were selected based on GFP visualization and 

sowed in soil to obtain the T2 generation. Homozygous T3 progeny was used for further studies and 

hab1
W385A

 protein level was verified by immunoblot analysis using anti-HA-peroxidase (Roche). 

The generation of 35S:HAB1-dHA lines was described previously (Saez et al., 2004). 

Seed germination and seedling establishment assays 

After surface sterilization of the seeds, stratification was conducted in the dark at 4ºC for 3 d. Next, 

approximately 200 seeds per experiment were sowed on solid medium composed of Murashige and 

Skoog basal salts, 1% sucrose and supplemented with different ABA concentrations. To score seed 

germination, radical emergence was analysed at 72 h after sowing. Seedling establishment was 
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scored as the percentage of seeds that developed green expanded cotyledons and the first pair of 

true leaves at 7 d.  

Water loss assays 

2-3 weeks-old seedlings growing in MS plates were used. Three seedlings per genotype with similar 

growth were submitted to the drying atmosphere of a flow laminar hood. Kinetic analysis of water-

loss was performed and represented as the percentage of initial fresh weight loss at each scored time 

point. Data are averages ± SE from two independent experiments. 

RNA analyses 

ABA treatment, RNA extraction and RT-quantitative PCR amplifications were performed as 

previously described (Saez et al., 2004). 
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Table 3.1. Crystallographic data collection and refinement statistics 

 

 

 

Data Collection and Refinement 

Data collection Refinement 

   Space group  P212121    Resolution range (A)  28.24–1.8 

   Unit cell a, b, c,  45.849, 65.857, 170.867    No. reflections  340.949 

   α, β, γ  90, 90, 90    No. unique reflections  47.524 

   Resolution  30.0–1.80    Rwork (%)  17.386 

   Highest resolution shell  (1.9–1.8)    Rfree (%)  21.760 

   Rsym  6.2% (19.6%)    No. atoms  4,17 

   Completeness  97% (91%)    Protein  3,72 

   I/σ (I)  22.6 (5.2)    Ligand  21 

  
   Solvent  475 

  
   R.m.s. deviations    

  
   Bond length  0.02 

  
   Angles  1.655 
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Figure 3.1. Structure of the PYR1-ABA-HAB1 complex. A, The PYR1 receptor is shown with strands in red, 

loops in magenta and helices in cyan. The HAB1 catalytic domain is shown in green. The (+)-ABA molecule 

is shown as stick model with semi-transparent surface. The three metal ions at the phosphatase catalytic site 

are depicted (blue spheres). The gating loops containing Pro88, Ser85 and Arg116 are indicated. The flap sub-

domain containing Trp385 can be easily appreciated. The water molecule (red sphere) at the narrow channel 

between the gating loops is hydrogen bonded to the ketone group of the hormone, the backbone atoms of 

PYR1 Pro88 and Arg116 and the side chain of HAB1 Trp385. B, Detail of the interaction between HAB1 

Trp385 region and the PYR1 gating loops. C, Detail of the interaction between the 3-4 loop containing 

Pro88 and Ser85 and the phosphatase catalytic site. Relevant amino acids are shown as sticks, hydrogen 

bonds are indicated by dotted lines. The conformation rearrangements in the β7/β5 and β3/β4 loops of PYR1 

upon binding to the phosphatase (magenta) as compared to the ABA-bound subunit of the PYR1 dimer 

(yellow) can be appreciated. 
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Figure 3.2. The PYR1 3/4 loop docks at the catalytic site of HAB1. The ABA-bound PYR1 receptor is 

shown as in Fig. 3.1. The accessible surface of the HAB1 phosphatase is depicted in light green with the flap 

sub-domain containing Trp385 in dark green. Residues coordinating the three metal ions at the catalytic site 

were excluded in the calculation of the molecular surface and are depicted as stick models. The water 

molecules involved in metal coordination are depicted as red spheres. The human PP2C structure (not 

shown), which contains a phosphate ion (shown as stick model) in the active site, was superposed on HAB1 

to transfer the position of the phosphate ion into the catalytic site of HAB1.  
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Figure 3.3. Analysis of the PYR1 mutations and their effect on the HAB1-dependent inhibition of OST1 

activity. A, Interaction between HAB1 and PYR1 variants was analysed by the yeast two-hybrid (Y2H) 

growth assay on medium lacking His and Ade in the presence of 5, 10 or 20 μM (+)-ABA. Immunoblot 

analysis using antibody against the Gal4 binding domain (GBD) verifies the expression of the different fusion 

proteins in the Y2H assay. Ponceau staining from a representative yeast protein is shown as loading control. 

B, Relative inhibition of HAB1 activity by the different PYR1 variants in the presence of 8 μM ABA with 

respect to wt PYR1 (100%; SD was below 7%,). C, OST1 in vitro kinase activity assay in the presence of 

HAB1, PYR1 wt and mutated versions, ΔCABF2 and 10 μM ABA, when indicated. The autoradiography 

shows the levels of auto-phosphorylation of OST1. D, Quantification of ΔCABF2 phosphorylation levels in 

the previous assay using the phosphoimager Image Gauge V.4.0. Standard error measurements are shown 

(n=3). 
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Figure 3.4.  The  hab1
W385A

 and hab1
G246D

 PP2Cs are refractory to inhibition by PYR1 and dephosphorylate 

OST1 in the presence of ABA and PYR1. A, The HAB1 mutations Trp385Ala and Gly246Asp abolish the 

interaction of the PP2C and PYR1 in a Y2H assay. Immunoblot analysis using antibody against the Gal4 

activation domain (GAD) is shown to verify the expression of the different fusion proteins. Ponceau staining 

from a representative yeast protein is shown as loading control. B, Phosphatase activity of HAB1, hab1
W385A

 

and hab1
G246D

 proteins was measured in vitro using p-nitrophenyl phosphate as substrate in the absence or 

presence of PYR1 and ABA, as indicated. Assays were performed in a 100 μl reaction volume containing 2 

μM phosphatase and, when indicated, 4 μM HIS6-PYR1 and 1 μM (+)-ABA. Data are averages ± SD from 

three independent experiments. C, In vitro OST1 kinase activity in the presence of wt and mutated versions of 

HAB1, PYR1 and ABA, as indicated. The autoradiography shows the level of autophosphorylation of OST1 

in each reaction. The graphs show the quantitative analysis of the autoradiogram. D, hab1
W385A

 and hab1
G246D

 

proteins are resistant to ABA-mediated inhibition by different PYR/PYLs. The assay was performed as 

described in B.    
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Figure 3.5. Constitutive expression of hab1
W385A

 leads to reduced ABA sensitivity. A, Seed germination and 

seedling establishment of representative Columbia wt, 35S:HAB1 and 35S:hab1
W385A

 plants in medium 

lacking or supplemented with ABA. Photographs were taken 7 d after sowing. B, Inhibition of seed 

germination and seedling establishment by ABA in Columbia wt, 35S:HAB1 and 35S:hab1
W385A

 plants. C, 

Immunoblot analysis using antibody against HA tag to quantify phosphatase expression in transgenic lines. 

Ponceau staining from the large subunit of RuBisCO is shown as loading control. D, Enhanced water loss 

measured in detached leaves of 35S:HAB1 and 35S:hab1
W385A

 plants as compared to Columbia wt. Values are 

averages from two independent experiments (n=10), and SD (not shown) was below 7%. E, The photograph 

illustrates the severe phenotype observed in 35S:hab1
W385A

 plants after 60 minutes of water loss. F, Reduced 

expression of ABA-inducible genes in 35S:hab1
W385A

 (line #4) and 35S:HAB1 plants compared with 

Columbia wt. Values are expression levels reached in the transgenic lines with respect to wt (value 1) as 

determined by RT-qPCR analysis. Expression of gene markers was analyzed in 10-days-old seedlings treated 

with 10 M ABA for 3h. Values are averages ± SD for two independent experiments (n=30 to 40 seedlings 

per experiment).     
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3.7 Supplemental material 

 

 

Supplemental Figure S1. Structural superposition of ternary receptor complexes. Superposition of 

the PYR1-HAB1 (green, this work), PYL1-ABI1 (red, 3JRQ), PYL2-HAB1 (blue, 3KB3) and 

human PP2Ca ( (orange, 1A6Q) structures.  For  human PP2Ca  only the residues 105 to 129 are 

shown as backbone trace for clarity. The PYR1 ABA molecule is shown as spheres. The overall 

similarity in the four structures can be appreciated. An insertion at the a3/b4 loop of HAB1 (green 

and blue, bottom side) relative to ABI1 and human PP2Ca can be appreciated. The orientation of 

this view is similar to that shown in Figure 3.1.  
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Supplemental Figure S2. Detail of the catalytic groove of HAB1. The ABA-bound PYR1 receptor 

is shown as in Figure 3.2. The accessible surface of the HAB1 phosphatase is depicted in light 

green. In this case no amino acids have been excluded for the calculation of the PP2C accessible 

surface and the long active site channel, with its two openings (one occupied by PYR1)  can be 

more easily appreciated. The approximate positions of the three metal ions (of which only M3 is 

directly visible, grey sphere) are indicated by pink arrows and water molecules coordinated to the 

three metal ions are depicted as red spheres. The structures of human PP2Ca (not shown) and 

HAB1 have been superimposed using the Cα backbones and the phosphate ion found at the PP2Ca 

catalytic site  is shown as stick model.  
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Supplemental Figure S3. Multiple amino acid sequence and secondary structure alignment of plant 

PP2Cs with the catalytic core of human PP2Cα (residues 1-300). Colour codes indicate the amino 

acid residues involved in the interaction with ABA receptors and contact points with phosphate, 

metal, ABA and hypermorphic mutations. This figure was generated with ESPript (Gouet et al. 

1999. Bioinformatics. 15 305-8)  
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Supplemental Figure S4. Detail of the HAB1 catalytic site around the PYR1 Ser85. The PYR1 

β3/β4 loop containing Ser85 is shown in magenta. The accessible surface of the HAB1 phosphatase 

is depicted in light green. Residues coordinating the three metal ions at the catalytic site were 

excluded in the calculation of the molecular surface and are depicted as stick models. The water 

molecules involved in metal coordination are depicted as red spheres. The structures of human 

PP2Ca (not shown) and HAB1 have been superimposed using the Cα backbones and the phosphate 

ion found at the PP2Ca catalytic site is shown as stick model (Pi).  
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Supplemental Figure S5. Comparison of the ABA-dependent inhibitory effect of PYR1 and pyr1 

mutant proteins on HAB1 activity. HAB1
W385A

 is refractory to inhibition by PYR1. Phosphatase 

activity was measured using the Ser/Thr Phosphatase assay system (Promega) and the 

RRA(phosphoT)VA peptide as substrate. Data are averages ± SE from three independent 

experiments. The HIS6-HAB1 and HIS6-PYR1 proteins were obtained as described in methods. 

Phosphatase assays were performed in a 100 μl reaction volume containing 1 μM phosphatase and 4 

μM HIS6-PYR1 proteins, respectively. The indicated (+)-ABA concentration was included in the 

PP2C activity assay. The activity of HIS6-HAB1 in the absence of ABA (100 % activity) was 

4.6±0.3 nmoles Pi/min · mg. The activity of HIS6-HAB1 and  HIS6-HAB1
W385A

 in the absence of 

ABA (100 % activity) was 4.6±0.3 and  4.5±0.35 nmoles Pi/min · mg, respectively.  

 

 

 

 

 

 

 



Results: Chapter 1 
 

 

72 
 

 

   

 

Supplemental Figure S6. A, Amino acid sequence alignment of clade A PP2Cs and representative 

PP2Cs from other groups. The Trp residue involved in the interaction with ABA (blue triangle) is 

only present in clade A PP2Cs, with the exception of AHG1. B, AHG1 is less-sensitive to ABA-

dependent PYL8-mediated inhibition than other clade A relatives, such as PP2CA and At5g59220. 

Phosphatase activity was assayed as described in Suppl. Figure S5. The activity of HIS6-AHG1, 

His6-PP2CA and  HIS6-DNAt5g59220 in the absence of ABA (100 % activity) was 4.8±0.3, 

4.7±0.3 and 5.9±0.4 nmoles Pi/min · mg, respectively.    
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4.1 Abstract 

 Clade A protein phosphatases type 2C (PP2Cs) are negative regulators of abscisic acid 

(ABA) signalling that are inhibited in an ABA-dependent manner by PYRABACTIN 

RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/ REGULATORY COMPONENTS OF ABA 

RECEPTORS (RCAR) intracellular receptors. We provide genetic evidence that a previously 

uncharacterized member of this PP2C family, At5g59220, is a negative regulator of osmotic stress 

and ABA signalling and this function was only apparent when double loss-of-function mutants with 

pp2ca-1/ahg3 were generated. At5g59220-GFP and its close relative PP2CA-GFP showed a 

predominant nuclear localization, however, hemagglutinin (HA)-tagged versions were also 

localized to cytosol and microsomal pellets. At5g59220 was selectively inhibited by some 

PYR/PYL ABA receptors, and close relatives of this PP2C, such as PP2CA/ABA-

HYPERSENSITIVE GERMINATION3 (AHG3) and AHG1, showed a contrasting sensitivity to 

PYR/PYL inhibition. Interestingly, AHG1 was resistant to inhibition by the PYR/PYL receptors 

tested, which suggests that this seed-specific phosphatase is still able to regulate ABA signalling in 

the presence of ABA and PYR/PYL receptors and therefore to control the highly active ABA 

signalling pathway that operates during seed development. Moreover, the differential sensitivity of 

the phosphatases At5g59220 and PP2CA to inhibition by ABA receptors reveals a functional 

specialization of PYR/PYL ABA receptors to preferentially inhibit certain PP2Cs. 
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4.2 Introduction 

 ABA is a key phytohormone that regulates plant response to abiotic and biotic stress as well 

as plant development and growth. In seeds, ABA regulates several processes essential for seed 

viability and germination, including the accumulation of protein and lipid reserves, the induction of 

dormancy and the acquisition of tolerance to desiccation (Cutler et al., 2010). Recently, a core 

signalling pathway has been established that connects ABA perception, inactivation of PP2Cs and 

activation of three SUCROSE NON-FERMENTING 1-RELATED SUBFAMILY 2 (SnRK2s) 

protein kinases, i.e. SnRK2.2/D, 2.3/I and 2.6/OST1/E (Cutler et al., 2010). Under basal ABA 

levels, at least 6 clade A PP2Cs (Schweighofer et al., 2004), ABA-INSENSITIVE1 (ABI1), ABI2, 

ABA-HYPERSENSITIVE1 (HAB1), HAB2, AHG1 and PP2CA/AHG3, act as negative regulators 

of ABA signalling, either through dephosphorylation of SnRK2s or interaction with other targets 

(Sheen, 1998; Gosti et al., 1999; Merlot et al., 2001; Tahtiharju and Palva, 2001; Himmelbach et 

al., 2002; Saez et al., 2004; Leonhardt et al., 2004; Yoshida et al., 2006; Kuhn, et al., 2006; Saez et 

al., 2006; Miao et al., 2006; Nishimura et al., 2007; Saez et al., 2008; Umezawa et al., 2009; Vlad 

et al., 2009). When ABA levels rise, the PYR/PYL ABA receptors inactivate PP2Cs in an ABA-

dependent manner, which leads to activation of SnRK2.2, 2.3 and 2.6/OST1, and subsequent 

phosphorylation of downstream targets, e.g. members of the ABF/AREB transcription factors that 

recognize ABRE promoter sequences or regulatory components of the stomatal aperture, such as the 

anion channel SLAC1 (Fujii et al, 2009; Fujita et al, 2009; Geiger et al, 2009; Lee et al, 2009). In 

Xenopus laevis oocytes and in vitro studies, it has been also shown that ABI1 inhibits the calcium-

dependent kinases CPK21 and CPK23, which have the anion channels SLAC1 and SLAH3 as 

substrates, and RCAR1/PYL9 restores the SLAC1 and SLAH3 phosphorylation through ABA-

dependent inhibition of ABI1 (Geiger et al, 2010 and 2011). Finally, genetic evidence has largely 

supported the negative role of PP2Cs in ABA signalling, and indeed, certain triple loss-of-function 

pp2c mutants display partial constitutive response to ABA (Rubio et al., 2009).  

 According to sequence alignment of the catalytic phosphatase core, the clade A of PP2Cs is 

arranged in two subgroups, one including ABI1, ABI2, HAB1 and HAB2, and a second one formed 

by PP2CA/AHG3, AHG1, At5g59220, At1g07430 and At2g29380 (Schweighofer et al., 2004; 

Supplemental Figure S1). These three latter PP2Cs are also known as HAI1, HAI2 and HAI3, 

respectively, for HIGHLY ABA-INDUCED PP2C genes and interaction of HAI1 with SnRK2.2 

has been reported (Fujita et al., 2009). However, At1g07430 had been previously named AIP1 (Lee 

et al., 2007), for AKT1-INTERACTING PP2C, and later on At2g29380 and At5g59220 were 

named AIPH1 and AIPH2, for AIP1 HOMOLOGUES, respectively (Lee et al., 2009). Therefore, 
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current nomenclature on At5g59220 reflects connection with either ABA signalling or regulation of 

K
+
 transport. Intriguingly, it has been reported that At5g59220, named now as PP2CA2, plays a 

positive role in ABA signalling because the corresponding T-DNA loss-of-function mutant shows 

an ABA hyposensitive phenotype in ABA-mediated inhibition of germination and post-germinative 

growth (Guo et al., 2010). In that case, At5g59220 would represent a singular member of clade A 

PP2Cs, showing an opposite function to other members of the group.  

 According to sequence alignment, At5g59220 is closely related to PP2CA/AHG3 

(Supplemental Figure S1), which has been implicated as a key negative regulator of ABA signalling 

since pp2ca mutant alleles show ABA-hypersensitive phenotypes in germination, growth and 

stomatal assays. In addition to dephosphorylation of ABA-activated SnRK2s (Umezawa et al., 

2009; Lee et al., 2009), PP2CA has been reported to interact with two ion transporters localized to 

plasma membrane, i.e. the K
+
 channel AKT2 and the anion channel SLAC1 (Cherel et al., 2002; 

Lee et al., 2009). Finally, both PP2CA/AHG3 and AHG1 appear to play an essential role for ABA 

signaling during seed development and germination (Kuhn, et al., 2006; Yoshida et al., 2006; 

Nishimura et al., 2007), but in contrast to pp2ca-1, the ahg1-1 mutant has no ABA-related 

phenotype in adult plants and expression of AHG1 is restricted to seed (Nishimura et al., 2007). In 

this work, we have analysed loss-of-function mutants of At5g59220, either single or double mutants 

with pp2ca-1, and we found evidence At5g59220 is also a negative regulator of osmotic stress and 

ABA signalling. Additionally, analysis of the biochemical regulation of At5g59220, PP2CA/AHG3 

and AHG1 reveals a differential sensitivity to inhibition by ABA and PYR/PYL receptors. Since 

AHG1 appears to be immune to PYR/PYL-mediated inhibition, this PP2C might control ABA 

signalling during seed development even in the presence of ABA and PYR/PYL receptors.  

4.3 Results  

An At5g59220 loss-of-function mutant reinforces the ABA-hypersensitive phenotype of the 

pp2ca-1 mutant  

 At5g59220 is not expressed in seeds (Nakabayashi et al., 2005; Yoshida et al., 2006; 

Nishimura et al., 2007) but it is expressed in seedlings or different tissues of adult plants according 

to public microarray data (Winter et al., 2007; Supplemental Figure S2). Basal transcript levels of 

At5g59220 are lower than those reported for other clade A PP2Cs; however, its expression is highly 

induced by ABA or osmotic stress (Fujita et al., 2009; Yoshida et al., 2010; Supplemental Figure 

S2), and this induction was dramatically impaired in the areb1areb2abf3 triple mutant (Yoshida et 

al., 2010). In order to investigate the relative contribution of At5g59220 to ABA signalling, we 
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analysed ABA-response of the At5g59220 loss-of-function mutant SALK_142672, which we have 

named hai1-1 (Figure 4.1A). ABA-mediated inhibition of seedling establishment was similar in 

single hai1-1 mutant compared to wild type, and a double pp2ca-1 hai1-1 mutant did not show 

enhanced response to ABA compared to pp2ca-1, even at low ABA concentrations (Figure 4.1B, 

Supplemental Figure S3). However, a double pp2ca-1 hai1-1 mutant was more sensitive to glucose 

or mannitol-mediated inhibition of seedling establishment than single parental mutants (Figure 

4.1B, Supplemental Figure S3).  

 We also generated Arabidopsis transgenic lines expressing HA-tagged versions of the 

PP2Cs driven by the 35S promoter. With respect to PP2CA, we confirmed previous results obtained 

by Kuhn et al., (2006), which have shown that over-expression of PP2CA leads to an ABA-

insensitive phenotype (Figure 4.1C). Likewise, 35S:At5g59220 lines showed diminished sensitivity 

to ABA mediated inhibition of seedling establishment and root growth, enhanced water-loss and 

diminished expression of ABA-inducible genes compared to wt (Figure 4.1C; Supplemental Figure 

S4). Conversely, a characteristic feature of pp2ca-1 hai1-1 double mutant was an enhanced 

sensitivity to ABA-mediated inhibition of growth compared to single mutants, which suggests that 

At5g59220 attenuates ABA signalling in vegetative tissue (Figure 4.2A and 4.2B). Therefore, the 

very moderate ABA-hypersensitivity of pp2ca-1 in root assays described by Kuhn et al., (2006) is 

likely explained by partial redundancy with At5g59220 or other PP2Cs (Rubio et al., 2009).  

 We also analysed transcriptional regulation of ABA responsive genes in the double pp2ca-1 

hai1-1 mutant compared to wt and single parental mutants. ABA-mediated induction of the genes 

KIN1, RAB18 and RD29B was >2-fold higher in the double mutant compared to the other genetic 

backgrounds (Figure 4.2C). Expression of these genes in the single parental mutants showed less 

than 2-fold difference with respect to wt. Finally, by measuring loss of fresh weight of detached 

leaves, we could observe a reduced water loss of the double pp2ca-1 hai1-1 mutant compared to wt 

and single parental mutants (Figure 4.2D)   

 

Subcellular localization of PP2CA and At5g59220  

 While the catalytic core of At5g59220 is closely related to PP2CA, the N-terminal sequence 

shows a clear divergence (Supplemental Figure S1). Several clusters rich in arginine residues are 

present at the N-terminal sequence of At5g59220. Different programs for prediction of subcellular 

localization reveal the presence of nuclear targeting signals in this region, indeed two nuclear 

localization patterns are present, both the pattern of 4 basic residues (type SV40 T antigen) and the 

bipartite nuclear localization signal (Supplemental Figure S1). Instead, PP2CA only displays the 

pattern of 4 basic residues, which is localized at the C-terminus of the protein (Supplemental Figure 



Results: Chapter 2 

 

79 
 

S1). In experiments where GFP fusion proteins were transiently expressed in tobacco epidermal 

cells, both PP2CA and At5g59220 appeared to be predominantly localized to the nucleus, although 

some cytosolic expression was also observed (Figure 4.3A). Deletion of the N-terminal region of 

At5g59220 (construct expressing residues 98-413) led to a subcellular localization of the catalytic 

phosphatase core similar to GFP, whereas fusion of the residues 1-97 of At5g59220 to GFP 

rendered a nuclear GFP protein (Figure 4.3A). 

 Proper elucidation of the subcellular localization of clade A PP2Cs is an important goal to 

better understand their role in plant physiology, however, biochemical fractionation studies have 

been only reported for HAB1 (Saez et al., 2008). Since interaction of PP2CA with the plasma 

membrane transporters AKT2 and SLAC1 has been reported (Cherel et al., 2002; Lee et al., 2009) 

and interaction of PP2CA and At5g59220 with SnRK2s was localized to both nucleus and cytosol 

(Fujita et al., 2009), we further investigated the subcellular localization of both PP2Cs by 

fractionation studies. To this end, we used the Arabidopsis transgenic lines that express HA-tagged 

versions of the PP2Cs (see above Figure 4.1C). Both HA-PP2CA and HA-At5g59220 proteins 

appeared to be functional with respect to ABA signalling since their constitutive expression led to 

reduced sensitivity to ABA (Figure 4.1C). Both proteins showed cytosolic and nuclear localization, 

and, interestingly, part of the protein pool was localized to either the microsomal or nuclear 

insoluble (chromatin associated) fractions (Figure 4.3B). A relative quantification of the subcellular 

distribution of HA-PP2CA and HA-At5g59220 indicated that most of the protein was localized at 

the cytosol, although these data also confirmed that a significant fraction of the protein, 13% and 

28% for HA-PP2CA and HA-At5g59220, respectively, was localized in the nucleus. The apparently 

predominant nuclear localization of transiently expressed GFP-tagged PP2Cs might be explained 

because the lower volume of the nucleus, compared to the cytosol, leads to a higher concentration 

of GFP fusion proteins, enhancing the GFP fluorescent signal (Figure 4.3A). 

 

Selective inhibition of At5g59220, PP2CA and AHG1 by PYR/PYL ABA receptors  

 Since both At5g59220 and PP2CA regulate different aspects of ABA signalling, we 

analysed its possible regulation by PYR/PYL ABA-receptors. Co-expression of these PP2Cs and 

PYR/PYLs in seedlings, root or guard cells could be documented in public microarray databases 

(Figure S2). Thus, we analysed phosphatase activity of PP2CA and At5g59220 in the presence of 

seven PYR/PYL receptors, which represent the dimeric class, i.e. PYR1, PYL1 and PYL2, and the 

monomeric class, i.e. PYL4, PYL5, PYL6, PYL8 (Hao et al., 2011; Dupeux et al., 2011). Using a 

100:1 ratio of receptor:PP2CA, between 40-80% ABA-independent inhibition of PP2CA by some 

monomeric receptors was recently reported (Hao et al., 2011). However, in our hands using either a 
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4:1 ratio in phosphopeptide-based activity assays (Figure 4.4A) or 10:1 ratio in OST1 

dephosphorylation assays  (Figure 4.4B), we did not detect such ABA-independent inhibition of 

PP2CA by the PYR/PYL receptors tested. In the best case, only a 10-15% ABA-independent 

inhibition of PP2CA by PYL8 was found (Figure 4.4A and 4.4B). In the presence of ABA, PP2CA 

was inhibited by all the receptors, although important differences could be observed depending on 

the receptor considered. For instance, PP2CA inhibition by PYL8 was much more effective than by 

PYR1 (inhibitory concentration to obtain 50% inhibition, IC50=0.5 and 25 M, respectively), 

whereas IC50 values for the other receptors ranged between 4-10 M ABA. Such differences were 

not noted previously, but it is likely that they were masked by the high concentration of receptor 

used with respect to the PP2C by Hao et al., (2011). At5g59220 was relatively resistant to inhibition 

by PYL4 and PYL6 (IC50>50 M), and IC50 for dimeric receptors, such as PYR1, PYL1, PYL2, was 

approximately 30 M ABA, whereas PYL5 and PYL8 where the most effective inhibitors (IC50=8 

and 0.8 M, respectively). Indeed, both PYL5 and PYL8 were the most effective inhibitors of 

PP2CA as well (IC50=3.7 and 0.5 M, respectively). 

 Structural and genetic studies have showed the importance for the locking mechanism of 

the ternary receptor:ABA:PP2C complex of a conserved Trp residue of clade A PP2Cs that 

establishes a water-mediated hydrogen bond with the ketone group of ABA in ternary complexes 

(Melcher et al., 2009; Miyazono et al., 2009; Dupeux et al., 2011; Supplemental Figure S1). 

Interestingly, AHG1 is the only clade A PP2C that lacks this conserved Trp (Dupeux et al., 2011). 

Therefore, we wondered whether this seed-specific PP2C would be subjected to PYR/PYL 

regulation. As can be observed in Figure 4.4A, AHG1 phosphatase activity was not significantly 

affected by PYR/PYL receptors even at 50 M ABA. This result indicates that AHG1 could 

negatively regulate ABA signalling even in the presence of high levels of ABA and PYR/PYL 

receptors.  

 To gain additional evidence on the biochemical regulation of the above described PP2Cs, 

we also performed in vitro reconstitution of the ABA signalling cascade and tested protection of 

OST1 activity by PYL4, PYL5, PYL6 and PYL8 in the presence of the different PP2Cs and ABA 

(Figure 4.4B). Both PP2CA and At5g59220 efficiently dephosphorylated OST1, whereas AHG1 

was less effective (Figure 4.4). Co-incubation of PP2CA in the presence of ABA either with PYL4, 

PYL5, PYL6 or PYL8 or At5g59220 with PYL5 or PYL8 notably protected OST1 activity. PYL4 

and PYL6 only modestly recovered OST1 activity when co-incubated with At5g59220 in the 

presence of ABA. In agreement with the phosphatase assays described in Figure 4.4A, co-

incubation of AHG1 with PYR/PYL receptors did not prevent OST1 dephosphorylation. Finally, we 

used ABF2 as a substrate of OST1 and after generation of phosphorylated ABF2, we incubated it 
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with PP2CA and At5g59220 (Figure 4.4C). Both PP2Cs efficiently dephosphorylated ABF2, 

whereas co-incubation with PYL8 in the presence of ABA abolished their activity against the 

transcription factor. Taking into account that a significant portion of PP2CA and At5g59220 is 

localized at the nucleus, these results suggest ABFs might also be substrates of these PP2Cs. 

4.4 Discussion 

 In this work we provide novel insights on the role of clade A PP2Cs in ABA signalling and 

their regulation by PYR/PYL receptors. Genetic analysis of hai1-1 indicates that At5g59220 

functions as a negative regulator of ABA signalling, although this role has been likely masked by 

functional redundancy with other PP2Cs. Thus, compared to wt and single parental mutants, the 

pp2ca-1 hai1-1 double mutant showed enhanced ABA-mediated inhibition of growth, induction of 

ABA-responsive genes and diminished water loss. Taking into account that both PP2CA and 

At5g59220 transcripts are themselves strongly induced by ABA or osmotic stress (Fujida et al., 

2009), their up-regulation under these conditions likely exerts a negative feedback on ABA and 

osmotic stress signalling. Glucose-mediated inhibition of seedling establishment was also notably 

enhanced in the pp2ca-1 hai1-1 double mutant compared to single mutants and wt. Although part of 

this effect could be attributed to enhanced osmotic stress sensitivity of the double mutant, early 

seedling growth in medium supplemented with glucose was more severely inhibited than by an 

isosmotic concentration of mannitol. Indeed, 0.2 M glucose (3.6%) was relatively well tolerated by 

parental single mutants or wild type seedlings, whereas a strong inhibition of early seedling growth 

was found in the double mutant.  

 Subcellular localization studies of these PP2Cs indicated that they are present both at the 

nucleus and cytosol, which is in agreement with their reported interaction with SnRK2s (Fujita et 

al., 2009). In addition to dephosphorylation of SnRK2s (Umezawa et al., 2009; this work), these 

PP2Cs might efficiently dephosphorylate ABFs (Figure 4.4C), although further studies are required 

to firmly establish this point. Interestingly, a minor portion of these PP2Cs co-localized with the 

nuclear insoluble fraction (chromatin associated) and interaction of PP2CA with SWI3B, a putative 

component of chromatin-remodelling complexes, was previously reported (Saez et al., 2008). 

Although a major portion of PP2CA was localized in the cytosol, the presence of PP2CA was also 

detected in microsomal membranes, where two PP2CA-interacting proteins are localized, i.e. AKT2 

and SLAC1.  

 High ABA levels and presumably active ABA signalling are temporarily correlated with the 

onset of maturation and prevention of precocious germination during mid-embryo development 
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(Kanno et al., 2010). Thus, ABA levels reach a maximum in the middle of seed development 

(around 9-10 days after flowering, DAF), and a second peak of ABA accumulation takes place late 

in development (15-16 DAF) (Kanno et al., 2010). This latter peak appears to be required to 

regulate the synthesis of proteins involved in desiccation tolerance and the development of seed 

dormancy. The ABA-induced LEA (late embryogenesis-abundant) proteins have been proposed to 

play a key role in protecting proteins and membranes from the severe water loss that occurs during 

seed desiccation. Different PP2Cs are expressed during seed development to regulate ABA 

signalling, however both AHG3/PP2CA and AHG1 are supposed to play a major role according to 

the seed phenotype of ahg1 and pp2ca mutants and expression levels in seed (Nishimura et al., 

2007). Even though AHG1 shares many features with AHG3/PP2CA, detailed characterization of 

ahg3-1/pp2ca and ahg1-1 mutants has revealed important differences, particularly enhanced ABA-

hypersensitivity of ahg1 in radical emergence and deeper seed dormancy compared to ahg3 

(Nishimura et al., 2007). Figure 4.4 shows an additional key difference since PP2CA is regulated by 

PYR/PYL receptors whereas AHG1 seems to be immune to such regulation. Interestingly, whereas 

expression of PP2CA remained steady during seed development, the expression of AHG1 was 

detected at 8 DAF and increased until 16 DAF (Nishimura et al., 2007). This expression pattern is 

similar to that of ABI5, which plays a key role for ABA signalling during seed development, and 

genetic analysis indicated that AHG1 functions upstream of ABI5 and ABI3 in the ABA pathway 

(Nishimura et al., 2007). The biochemical assays performed here for AHG1 indicate that this PP2C 

could partially dephosphorylate a SnRK2 even in the presence of high levels of ABA and PYR/PYL 

receptors. The presence of a PP2C resistant to inhibition might represent an adaptive response to 

partially control the highly active ABA signalling pathway that operates during mid and late seed 

development. Otherwise, since the rest of clade A PP2Cs are inhibited by PYR/PYL receptors, seed 

ABA signalling would operate in the absence of the negative control imposed by PP2Cs, which 

might impair the interplay with other hormonal pathways that also operate during seed 

development, such as cytokinins, auxins and gibberellins (Kanno et al., 2010). Indeed, inactivation 

of AHG1 leads to extreme hypersensitivity to ABA-mediated inhibition of germination and ahg1 

shows a delayed germination in the absence of exogenous ABA (Nishimura et al., 2007).  

 The analysis of the interaction between PP2Cs and PYR/PYLs has shown that receptor 

complexes differ in their sensitivity to ABA-mediated inhibition (Santiago et al., 2009; 

Szostkiewicz et al., 2010). However, PP2Cs such as ABI1, ABI2 and HAB1, all appear to be 

inhibited at least more than 50% by the different PYR/PYLs tested. This situation also applies to 

PP2CA but not to At5g59220 (Figure 4.4A), which reveals that receptors can discriminate among 

closely related PP2Cs and preferentially inhibit some of them. Finally, AHG1 represents an 
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exception to the general mechanism of clade A PP2C inhibition based on ABA and PYR/PYL 

receptors.  

 ABA-independent inhibition of some PP2Cs has been recently reported for some 

monomeric receptors using in vitro phosphatase assays (Hao et al., 2011). However, in order to 

achieve high inhibition of the PP2Cs, a 100:1 ratio of receptor to PP2C was used in these assays, 

and only PYL10, which is not expressed in the Arabidopsis transcriptome database 

(http://signal.salk.edu/cgi-bin/atta?GENE=At4g27920), was effective at 1:1 ratios (Hao et al., 

2011). At the ratios used in this work, we did not find evidence for a meaningful inhibition of 

PP2CA or At5g59220 in the absence of ABA by PYR/PYL receptors either using phosphopeptide-

based or OST1 dephosphorylation assays. These latter assays are particularly valuable in this 

context, because monomeric PYLs compete with SnRK2s to interact with PP2Cs (Melcher et al., 

2009; Soon et al., 2011). Indeed, the recent elucidation of a SnRK2-PP2C complex reveals a 

striking similarity in PP2C recognition by SnRK2 and ABA-bound receptors (Soon et al., 2011). 

Therefore, it was important to test whether the ABA-independent interaction of monomeric PYLs 

with PP2Cs was strong enough as to efficiently block PP2C-mediated dephosphorylation of 

SnRK2s (Figure 4.4B). In our hands, major restoration of OST1 activity by PYL-mediated 

inhibition of PP2Cs was dependent on ABA, which is in agreement with in vivo results obtained 

through protoplast transfection assays (Fujii et al., 2009). In the absence of ABA, dimerization in 

receptors like PYR1, PYL1 and PYL2 prevents basal interactions with the PP2Cs, while monomeric 

receptors are able to form low-affinity complexes with PP2Cs, but these complexes lack the 

network of interactions that occur in the ternary complex with ABA (Dupeux et al., 2011). For 

instance, they lack the hydrogen bonds established among the conserved Trp residue of clade A 

PP2Cs, key residues of the receptor gating loops and the key water molecule that contacts the 

ketone group of ABA (Melcher et al., 2009; Miyazono et al., 2009; Dupeux et al., 2011). Finally, 

biochemical analysis of a natural PP2C version lacking the conserved Trp residue, namely AHG1, 

or the mutants abi1
W300A

 and hab1
W385A 

further support the structural mechanism of ABA signalling, 

which indicates that ternary receptor:ABA:phosphatase complexes are required to fully inhibit 

PP2C activity (Melcher et al., 2009; Miyazono et al., 2009; Dupeux et al., 2011).  

4.5 Materials and Methods 

Plant material and growth conditions 

 Arabidopsis thaliana plants were routinely grown under greenhouse conditions in pots 

containing a 1:3 vermiculite-soil mixture. For plants grown under growth chamber conditions, seeds 
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were surface sterilized by treatment with 70% ethanol for 20 min, followed by commercial bleach 

(2.5 % sodium hypochlorite) containing 0.05 % Triton X-100 for 10 min, and finally, four washes 

with sterile distilled water. Stratification of the seeds was conducted in the dark at 4ºC for 3 days. 

Then, seeds were sowed on Murashige-Skoog (1962) (MS) plates composed of MS basal salts, 

0.1% 2-[N-morpholino]ethanesulfonic acid and 1% agar. The pH was adjusted to 5.7 with KOH 

before autoclaving. Plates were sealed and incubated in a controlled environment growth chamber 

at 22ºC under a 16 h light, 8 h dark photoperiod at 80-100 E m
-2

 sec
-1

. 

Subcellular localization studies 

 

 Constructs to investigate the subcellular localization of PP2CA (At3g11410) and 

At5g59220 were generated in Gateway-compatible vectors. To this end, the coding sequences of 

PP2CA, At5g59220, the N-terminal extension (residues 1-97) and the catalytic core (residues 98-

413) of At5g59220 were PCR-amplified using the following primer pairs, respectively: 

FPP2CANcoI, RPP2CAnostopSalI; F5g59220 and Rnostop5g59; F5g59220 and RNterm2CB; 

FMSTV2CB and Rnostop5g59. The sequences of all primers used in this work are provided as 

Supplemental Table S1. The PCR products were cloned into the pCR8/GW/TOPO entry vector 

(Invitrogen) and recombined by LR reaction into the pMDC83 destination vector (Saez et al., 

2008). The different binary vectors where introduced into Agrobacterium tumefaciens C58C1 

(pGV2260) by electroporation (Deblaere et al., 1985). Transformed cells were grown in liquid LB 

medium to late exponential phase and cells were harvested by centrifugation and resuspended in 10 

mM morpholinoethanesulphonic (MES) acid-KOH pH 5.6 containing 10 mM MgCl2 and 150 mM 

acetosyringone to an OD600 nm of 1. These cells were mixed with an equal volume of 

Agrobacterium C58C1 (pCH32 35S:p19) expressing the silencing suppressor p19 of tomato bushy 

stunt virus (Voinnet et al., 2003) so that the final density of Agrobacterium solution was about 1. 

Bacteria were incubated for 3 h at room temperature and then injected into young fully expanded 

leaves of 4-week-old N. benthamiana plants. Leaves were examined after 3-4 days under a Leica 

TCS-SL confocal microscope and laser scanning confocal imaging system.  

 

Generation of overexpressing lines for PP2CA and At5g59220 

 The coding sequence of PP2CA was amplified by PCR using the primers FPP2CANcoI and 

RPP2CASalI. The coding sequence of At5g59220 was amplified by PCR using the primers 

F5g59220 and Rnosto5g59. Next, both were cloned into pCR8/GW/TOPO and recombined by LR 

reaction into the ALLIGATOR2 destination vector (Bensmihen et al., 2004). The ALLIGATOR2-

35S:3HA-PP2CA or 35S:3HA-At5g59220 constructs were transferred to Agrobacterium tumefaciens 

http://arabidopsis.org/servlets/TairObject?type=locus&name=AT3G11410
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C58C1 (pGV2260) (Deblaere et al., 1985) by electroporation and used to transform Col wt plants 

by the floral dip method. T1 transgenic seeds were selected based on GFP visualization and T3 

progenies homozygous for the selection marker were used for further studies. 

 

Seedling establishment and root growth assays 

 To determine sensitivity to inhibition of seedling establishment either by ABA, glucose or 

mannitol, the MS medium was supplemented with the indicated concentration of these compounds. 

The percentage of seeds that had germinated and developed fully green expanded cotyledons was 

determined. Approximately 200 seeds of each genotype were sowed in each medium and scored for 

germination and early growth at 3, 5, 7 and 10 days later. For root growth assays, seedlings were 

grown on vertically oriented MS medium plates for 4 to 5 days. Afterwards, 20 plants were 

transferred to new plates containing MS medium lacking or supplemented with the indicated 

concentrations of ABA. After the indicated period of time, the plates were scanned on a flatbed 

scanner to produce image files suitable for quantitative analysis using the NIH Image software 

ImageJ v1.37.  

 

Biochemical fractionation  

 A nuclear fractionation was performed according to techniques described by Bowler et al., 

(2004) and Cho et al., (2006). Arabidopsis leaves of epitope HA-tagged PP2CA or At5g59220 

transgenic lines were ground in lysis buffer, 20 mM Tris-HCl pH 7.4, 25% glycerol, 20 mM KCl, 2 

mM EDTA, 2.5 mM MgCl2, 250 mM sucrose, containing protease inhibitor cocktail (Roche) and 1 

mM PMSF. The lysate was filtered through four layers of miracloth (Calbiochem) and centrifuged 

at 1000 g for 10 min to pellet the nuclei. The cytosolic fraction was removed and the pellet was 

washed in nuclei resuspension buffer, 20 mM Tris-HCl, 25% glycerol, 2.5 mM MgCl2 and 0.5% 

Triton X-100, to solubilize most proteins from the organelles. The nuclear pellet was resuspended in 

five volumes of medium salt buffer (Bowler et al., 2004), 20 mM Tris-HCl, 0.4 M NaCl, 1 mM 

EDTA, 5% glycerol, 1 mM 2-mercaptoethanol, 0.1% Triton X-100, 0.5 mM PMSF and protease 

inhibitor cocktail (Roche), and then frozen and thawed. After incubation with gently mix for 15 min 

at 4ºC, the nuclear insoluble fraction containing the major protein histones was precipitated by 

centrifugation at 10000 g for 10 min, whereas the supernatant contained the nuclear soluble 

fraction. Detection of PP2CA or At5g59220 was performed using anti-HA-peroxidase conjugate 

(Roche). The purity of the different fractions was demonstrated using antibodies against histone H3 

(Abcam, UK), plasma membrane H
+
-ATPase (Dr. Ramón Serrano, Universidad Politecnica de 

Valencia) and Ponceau staining of the ribulose 1,6-bisphosphate carboxylase (RBC).  



Results: Chapter 2 

 

86 
 

 A second fractionation procedure was used to analyze the presence of PP2CA and 

At5g59220 in cytosol or microsomal pellets (Hua et al., 2010). Arabidopsis leaves of epitope HA-

tagged PP2CA or At5g59220 transgenic lines were ground in lysis  buffer, 50mM Tris pH8, 2mM 

EDTA, 20% Glycerol, 5mM MgCl2, 1mM DTT, 25Mm CaCl2, containing protease inhibitor 

cocktail (Roche) and 1 mM PMSF. The lysate was filtered through miracloth and centrifuged at 

5000g for 5 min to remove organelles and debris. Supernatants were centrifuged at 100000g for 

45min to pellet microsomal membranes and to obtain the cytosolic soluble fraction. The resulting 

microsomal pellet was solubilized in resuspension buffer ( 25mM Tris pH7.2, 10% sucrose, 2mM 

EDTA, 5mM MgCl2, 1mM DTT, protease inhibitor cocktail, 0.1 mM PMSF and 25mM CaCl2) 

using a 2 ml glass homogenizer. 

 

RNA analysis 

 After mock- or ABA-treatment, plant material was collected and immediately frozen in 

liquid nitrogen. Total RNA was extracted using a Qiagen RNeasy Plant Mini Kit and 1 g of the 

RNA obtained was reverse transcribed using 0.1 g oligo(dT)15 primer and M-MLV reverse 

transcriptase (Roche), to finally obtain a 40 l cDNA solution. RT-qPCR amplifications and 

measurements were performed using an ABI PRISM 7000 Sequence Detection System (Perkin-

Elmer Applied Biosystems) and they were monitored using the Eva-Green™ fluorescent stain 

(Biotium). Relative quantification of gene expression data was carried out using the 2
-∆∆CT or 

comparative CT method (Livak and Schmittgen 2001). Expression levels were normalized using the 

CT values obtained for the -actin-8 gene. Gene induction ratios were calculated as the expression 

ratio between ABA treated plantlets vs mock treated plantlets. The presence of a single PCR 

product was further verified by dissociation analysis in all amplifications. All quantifications were 

made in triplicate on RNA samples obtained from three independent experiments. The sequences of 

the primers used for RT-qPCR amplifications have been previously described (Rubio et al., 2009) 

 

Purification of recombinant proteins  

 The coding sequence of PP2CA was amplified by PCR using the primers F2CASalINdeI 

and R2CASmaISalI. The coding sequence of At5g5922098-413 was amplified by PCR using the 

primers FMSTV2CB and RHAstopP2B. Both were cloned into pCR8/GW/TOPO, next the coding 

sequence of PP2CA was excised from this plasmid using NdeI SalI double digestion and subcloned 

into pET28a, whereas the coding sequence of At5g5922098-413 was excised using EcoRI digestion 

and subcloned into pET28a. The coding sequence of AHG1 was excised from a pACT2 construct 

(kindly provided by Dr JF Quintero, CSIC, Sevilla) using NcoI BamHI double digestion and 
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subcloned into pETM11. BL21 (DE3) cells transformed with the corresponding pET28a/pETM11 

construct were grown in 50 ml of LB medium supplemented with 50 g/ml kanamycin to an OD at 

600 nm of 0.6-0.8. Then, 1 mM IPTG was added and the cells were harvested 3 h after induction 

and stored at -80ºC before purification. The pellet was resuspended in 2 ml of buffer HIS (50 mM 

Tris-HCl pH 7.6, 250 mM KCl, 10 % glycerol, 0.1 % Tween-20, 10 mM mercaptoethanol) and the 

cells were sonicated in a Branson Sonifier. A cleared lysate was obtained after centrifugation at 

14000 g for 15 min, and it was diluted with two volumes of buffer HIS. The protein extract was 

applied to 0.5 ml of nickel-nitrilotriacetic acid (Ni-NTA) agarose column and the column was 

washed with 10 ml of buffer HIS supplemented with 20 % glycerol and 30 mM imidazol. Bound 

protein was eluted with buffer HIS supplemented with 20 % glycerol and 250 mM imidazol. 

 

PP2C and OST1 in vitro activity assays 

 Phosphatase activity was measured using the RRA(phosphoT)VA peptide as substrate, 

which has a Km of 0.5-1 M for eukaryotic PP2Cs (Donella Deana et al., 1990). Assays were 

performed in a 100 μl reaction volume containing 25 mM Tris-HCl pH 7.5, 10 mM MgCl2, 1 mM 

DTT, 25 μM peptide substrate and 0.5 μM PP2C. When indicated, PYR-PYL recombinant proteins 

and ABA were included in the PP2C activity assay. ABA concentrations were 0.5, 1, 5, 10, 20, 40 

and 50 M. After incubation for 60 min at 30ºC, the reaction was stopped by addition of 30 μl 

molybdate dye (Baykov et al., 1988) and the absorbance was read at 630 nm with a 96-well plate 

reader.  

Phosphatase activity was also measured using phosphorylated OST1 and CABF2 (amino 

acids 1-173, containing the C1, C2 and C3 protein kinase targets) as substrates (Vlad et al., 2009; 

Dupeux et al., 2011). Auto-phosphorylated OST1 or trans-phosphorylated CABF2 were prepared 

in a 60 min reaction. Dephosphorylation of OST1 or CABF2 was achieved by incubation with the 

different PP2Cs. Assays to test recovery of OST1 activity were done by previous incubation of the 

PP2C for 10 min in the absence or the presence of 30 M ABA and the indicated PYR/PYL.  Next, 

the reaction mixture was incubated for 50 min at room temperature in 30 μl of kinase buffer: 20 

mM Tris-HCl pH 7.8, 20 mM MgCl2, 2 mM MnCl2, and 3.5 µCi of -
32

ATP (3000 Ci/mmol). The 

reaction was stopped by adding Laemmli buffer. After the reaction proteins were separated by SDS-

PAGE using an 8% acrylamide gel and transferred to an Immobilon-P membrane (Millipore). 

Radioactivity was detected using a Phosphorimage system (FLA5100, Fujifilm). After scanning, the 

same membrane was used for Ponceau staining. The data presented are averages of at least three 

independent experiments.  
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Figure 4.1. A, Schematic diagram of the At5g59220 gene showing the position of the T-DNA insertion in 

hai1-1 mutant. RT-PCR analysis of mRNAs from wt and hai1-1 mutant seedlings. Primers FMSTV2CB and 

R2CB1426 were used to partially amplify the At5g59220 cDNA.  B, Seedling establishment of Col wt, hai1-

1, pp2ca-1 and double mutant in medium supplemented with ABA, mannitol or glucose. Percentage of seeds 

that germinated and developed green cotyledons in the different media at 5 days. Values are averages ±SE for 

three independent experiments (200 seeds each). The asterisk indicates P<0.01 (Student´s t test) with respect 

to wt. C, Photograph of a representative experiment taken 10 days after sowing. Magnification of 

representative seedlings grown on MS plates supplemented with 0.2 M mannitol. D, Seedling establishment 

of wt, 35S:HA-PP2CA and 35S:HA-At5g59220 lines in medium supplemented with either 1 mM ABA (top 

panel), 0.2 M glucose or 0.2 M mannitol (bottom panel). Approximately 200 seeds of each genotype were 

sowed on each plate and scored 4 d later. Photographs were taken after 8 d. 
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Figure 4.2. A, ABA-hypersensitive growth inhibition of pp2ca-1 hai1-1 and hab1-1 abi1-2 double 

mutants compared to wt and single parental mutants. Photograph of representative seedlings 10 

days after the transfer of 4-day-old seedlings from MS medium to plates lacking or supplemented 

with 10 µM ABA. B, Quantification of ABA-mediated root growth inhibition of pp2ca-1 hai1-1 

and hab1-1abi1-2 double mutants compared to wt and single parental mutants. Data are averages 

±SE from three independent experiments (n =15 each). The asterisk indicates P<0.01 (Student´s t 

test) with respect to wt. C, Relative expression of ABA-responsive genes in pp2ca-1 hai1-1 double 

mutant compared to wt and single parental mutants. RT-qPCR analyses were made in triplicate on 

RNA samples of 2-week-old seedlings that were either mock or 10 M ABA-treated for 3 h. 

Numbers indicate the induction level of the genes in each mutant genotype with respect to the wt 

(value 1). 
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Figure 4.3. Subcellular localization of PP2CA and At5g59220. A, Subcellular localization of 

PP2CA-GFP and At5g59220-GFP proteins transiently expressed in tobacco cells.  Epifluorescence 

and bright-field images of epidermal leaf cells infiltrated with a mixture of Agrobacterium 

suspensions harboring the indicated constructs and the silencing suppressor p19. SWI3B is a 

nuclear protein that forms part of SWI/SNF chromatin-remodeling complexes (Saez et al., 2008). 

The N-terminal extension (residues 1-97) and the catalytic core (residues 98-413) of At5g59220 

were expressed as fusions with GFP. B, Biochemical fractionation of HA-PP2CA and HA-

At5g59220 proteins.  Plant material was obtained from epitope HA-tagged PP2CA or At5g59220 

transgenic lines after mock- or 50 mM ABA treatment for 1 h. Samples were analyzed using anti-

HA, anti-histone 3 (H3), anti plasma membrane H
+
-ATPase antibodies and Ponceau staining of the 

ribulose-1,5-bis-phosphate carboxylase/oxygenase. Localization of HA-PP2CA and HA-At5g59220 

proteins in soluble (S), total nuclear (N), nuclear soluble (Ns), nuclear insoluble (Ni), cytosolic (C) 

or microsomal (M) fractions is indicated. Histograms show the relative amount of each protein in 

the different fractions. OE indicates overexpression lines. 
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Figure 4.4. Differential sensitivity of PP2CA, At5g59220 and AHG1 to ABA-dependent 

PYR/PYL-mediated inhibition. A, Phosphatase activity of the different PP2Cs was measured in 

vitro using a phosphopeptide substrate in the absence or the presence of 10 or 50 mM ABA and the 

indicated receptors. Data are averages ±SD for three independent experiments. Phosphatase assays 

were performed in a 100 µl reaction volume containing either 2.3 µg His6-PP2CA, 2.1 µg His6-

ΔNAt5g59220 or 2.5µg of His6-AHG1 and between 5 to 5.7 µg of the different His6-PYR/PYL 

proteins in order to obtain an 1:4 phosphatase:receptor stoichiometry. The activities of the PP2C 

recombinant proteins in the absence of ABA (100% activity) were 12.2 ±0.3, 13.3 ± 0.2 and 11.0 ± 

0.2 nmol Pi·min·mg
-1

, respectively. In order to check the effect of the HIS elution buffer on the 

PP2C activity we performed an assay lacking PYR/PYL proteins but adding an equivalent volume 

of HIS elution buffer. B, In vitro OST1 kinase activity in the absence or the presence of 30 mM 

ABA and the indicated receptors. An 1:10 phosphatase:receptor stoichiometry was used in this 

assay. The quantification of the autoradiography (numbers below) shows the percentage of 

phosphorylation of OST1 in each reaction relative to the first reaction (100%, phosphorylation of 

OST1 in the absence of PP2Cs). C, Dephosphorylation of DCABF2 by PP2CA and At5g59220 in 

the absence or the presence of 30 mM ABA and PYL8.  
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4.7 Supplemental material 

 

 

 

 

 

 

 

Supplemental Figure S1. Cladogram and nomenclature of Clade A PP2Cs. Position of nuclear 

localization signals and the conserved Trp residue in PP2CA and At5g59220. A, Cladogram, 

according to Schweighofer et al., (2004). B, Position of nuclear localization signals and the 

conserved Trp residue in PP2CA and At5g59220. A discontinuous line indicates the bipartite 

nuclear localization of At5g59220, whereas continuous lines mark the four basic residues of both 

PP2CA and At5g59220. An asterisk indicates the position of the conserved Trp residue described in 

the text.  
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Supplemental  Figure S2. Upregulation of At5g59220 gene expression by osmotic stress (300 mM 

mannitol or 150 mM NaCl) and ABA. Expression levels of clade A PP2Cs and seven PYR/PYLs in 

whole 7-day-old seedlings, root, guard cells and seeds. A, Mannitol, NaCl and ABA induce 

At5g59220 expression. Data were obtained from the Bio-Array Resource for Arabidopsis 

Functional Genomics (http://bar.utoronto.ca) (Winter et al., 2007). B, Expression levels of clade A 

PP2Cs in whole 7-day-old seedlings that were either mock- or ABA-treated for 3 h (data produced 

by the AtGen-Express Consortium; http://web.uni-frankfurt.de/fb15/botanik/mcb/AFGN/atgenex. 

htm). C, Expression levels in roots that were either mock- or 300 mM mannitol treated  (Kilian et 

al., 2007). D, Expression levels in guard cells that were either mock- or ABA-treated (Yang et al., 

2008). E,  Expression levels in dry seeds, or 1 and 12h imbibed seeds (Nakabayashi et al., 2005).  

 

http://bar.utoronto.ca/
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Supplemental Figure S3. Glucose-hypersensitive growth inhibition of pp2ca-1 hai1-1 and hab1-1 

abi1-2 double mutants compared to wt and single parental mutants. A, Seedling growth after 12 

days of aba2-11, Col wt, pp2ca-1, hai1-1, pp2ca-1 hai1-1 and hab1-1 abi1-2 double mutants in 

medium supplemented with 0.2 M glucose. Approximately 200 seeds of each genotype were sowed 

on MS plates supplemented with 0.2 M glucose. After 12 days, representative seedlings were 

removed from the medium, rearranged in a new plate and photographed under a Nikon SMZ800 

binocular glass. B, Germination and seedling establishment of Col wt, pp2ca-1, hai1-1, pp2ca-1 

hai1-1 and hab1-1 abi1-2 double mutants in medium lacking or supplemented with either ABA, 

glucose or mannitol. The photograph was taken 5 days after sowing.  
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Supplemental Figure S4. Analysis of water-loss, ABA-mediated growth inhibition and expression of two 

ABA-responsive genes in 35S:HAB1 and 35S:At5g59220 lines compared to wt.  A, Enhanced water loss of 

35S :HAB1 and 35S:At5g59220 lines compared to Col wt.  Five leaves at the same developmental stage were 

detached from 21-d-old plants and fresh weight was determined after submitting them to the drying 

atmosphere of a flow laminar hood (n =4 plants per experiment). B, C ABA-hypersensitive root growth 

inhibition of 35S :HAB1 and three 35S:At5g59220-OE lines compared to wild-type. B, Photograph of 

representative seedlings 10 days after the transfer of 4-day-old seedlings from MS medium to plates lacking 

or supplemented with 10 mM ABA. Root growth was scored after 10 days. Data are averages ±SE from three 

independent experiments (n=20 seedlings per experiment). Asterisk indicates P < 0.01 (Student’s t test) when 

comparing data for each genotype versus the wild-type under the same assay conditions. D, Relative 

expression of two ABA-responsive genes in 35S:HAB1 and 35S:At5g59220 plants compared to wt. RT-qPCR 

analyses were made in triplicate on RNA samples of 2-week-old seedlings that were either mock or 10 mM 

ABA-treated for 3 h. Numbers indicate the induction level of the genes in each over-expression line with 

respect to the wt (value 1).  
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PYRABACTIN RESISTANCE1-LIKE8 plays 

 an important role for the regulation of 

 abscisic acid signaling in Root 
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5.1 Introduction 

 Control of abscisic acid (ABA) signaling by PYRABACTIN RESISTANCE1 

(PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) 

ABA receptors involves direct ABA-dependent inhibition of clade A phosphatases type 2C 

(PP2Cs), such as ABA-INSENSITIVE1 (ABI1), HYPERSENSITIVE TO ABA1 (HAB1), and 

PP2CA, which are key negative regulators of the pathway (Saez et al., 2004, 2006; Rubio et al., 

2009). Under resting conditions, clade A PP2Cs can interact with and dephosphorylate SnRK2.2, 

SnRK2.3, and SnRK2.6/OST1, reducing their catalytic activity (Fujii et al., 2009; Umezawa et al., 

2009; Vlad et al., 2009). The increase of ABA levels in the plant cell leads to PYR/PYL receptor-

mediated inhibition of PP2C activity, which results in the activation of the three SnRK2s and 

ultimately of the ABA signaling pathway (Ma et al., 2009; Park et al., 2009; Umezawa et al., 2009; 

Vlad et al., 2009; Gonzalez-Guzman et al., 2012). Biochemically, SnRK2s are activated through the 

phosphorylation of certain Ser residues of their activation loop, including Ser-175, either by 

autophosphorylation or by yet unidentified upstream activating kinases that are staurosporine 

resistant (Boudsocq et al., 2007; Fujii et al., 2009; Umezawa et al., 2009; Vlad et al., 2009, 2010). 

Next, the SnRK2s directly phosphorylate transcription factors that bind to ABA-responsive 

promoter elements and components of the machinery regulating stomatal aperture, like the slow 

anion channel SLAC1, K
+
 inward channel KAT1, or reactive oxygen species biosynthetic enzymes 

such as the NADPH oxidase AtrbohF (Kobayashi et al., 2005; Fujii et al., 2009; Geiger et al., 2009; 

Lee et al., 2009; Sato et al., 2009; Sirichandra et al., 2009). 

 PYR/PYL ABA receptors constitute a 14-member family, and all of them (except PYL13) 

are able to activate ABA-responsive gene expression using protoplast transfection assays (Fujii et 

al., 2009). However, gene expression patterns obtained from public databases and GUS reporter 

gene analyses have revealed substantial differences among them (Gonzalez-Guzman et al., 2012). 

Thus, the expression of PYL3 and PYL10 to PYL13 is very low to undetectable in different whole-

genome microarrays, whereas the expression of PYR1 and the rest of PYL1 to PYL9 could be 

detected in both vegetative and reproductive tissues, although at different levels (Gonzalez-Guzman 

et al., 2012). From a biochemical point of view, recent studies reveal at least two families of 

PYR/PYL receptors characterized by a different oligomeric state, some being dimeric (PYR1, 

PYL1, and PYL2), whereas others are monomeric (PYL5, PYL6, and PYL8; Dupeux et al., 2011). 

The dimeric receptors show a higher dissociation constant for ABA (greater than 50 μM; lower 

affinity) than monomeric ones (approximately 1 μM); however, in the presence of the PP2C, both 

groups of receptors form ternary complexes with high affinity for ABA (dissociation constant of 

30–60 nM; Ma et al., 2009; Santiago et al., 2009), and physiological characterization of some ABA 



Results: Chapter 3 

 

103 
 

responses in different multiple pyr/pyl mutants did not reveal a clear difference between dimeric 

and monomeric receptors (Gonzalez-Guzman et al., 2012). Finally, both the biochemical properties 

of the PYR/PYL receptors and in silico modeling of the ABA activation pathway reveal adequate 

coverage of the full spectrum of physiological ABA concentrations, ranging from basal ABA levels 

(nanomolar range) to high levels induced by water stress (micromolar range; Priest et al., 2006). 

 Gene expression patterns, biochemical analysis of different PP2C-PYL receptor complexes, 

and genetic analysis of different pyr/pyl mutants suggest that the function of PYR/PYL proteins is 

not completely redundant (Santiago et al., 2009; Szostkiewicz et al., 2010; Antoni et al., 2012; 

Gonzalez-Guzman et al., 2012). However, some functional redundancy exists, since the generation 

of a pyr1pyl1pyl2pyl4 quadruple mutant, 1124, was required to obtain robust ABA-insensitive 

phenotypes (Park et al., 2009), and a pyr1pyl1pyl2pyl4pyl5pyl8 sextuple mutant, 112458, is at least 

1 order of magnitude more ABA insensitive than 1124 (Gonzalez-Guzman et al., 2012). Recently, 

analysis of mutants lacking three, four, five, or six PYR/PYLs has revealed quantitative regulation 

of ABA signaling by this family of receptors (Gonzalez-Guzman et al., 2012). Finally, GUS 

reporter analyses of PYR1, PYL1, PYL2, PYL4, PYL5, and PYL8 promoters has shown both 

overlapping and differential expression in different tissues (Gonzalez-Guzman et al., 2012). For 

instance, in 5-d-old seedlings, only PYR1 and PYL5 were expressed in the cortex of the upper part 

of the root, whereas PYL1, PYL4, and PYL8 were expressed in the columella cells. On the other 

side, overlapping expression of PYR1, PYL1, PYL2, PYL4, and PYL8 in root vascular tissue was 

observed (Gonzalez-Guzman et al., 2012). 

 ABA regulates root growth and root architecture, likely interacting with other hormones in 

these processes, such as auxins, gibberellins, or brassinosteroids (Deak and Malamy, 2005; Swarup 

et al., 2005; Péret et al., 2009; Rodrigues et al., 2009; Ubeda-Tomás et al., 2009, 2012; Hacham et 

al., 2011). ABA signaling in the root is required for different processes, such as the maintenance of 

primary root elongation and the repression of lateral root formation when water availability is 

reduced (Sharp et al., 2004; Deak and Malamy, 2005). Recent results in 17 natural accessions of 

Arabidopsis (Arabidopsis thaliana) revealed increased root-versus-shoot biomass partitioning as a 

crucial plant response to cope with water stress (Des Marais et al., 2012). Several mechanisms 

dependent on ABA signaling have been proposed to maintain root elongation at low water 

potentials, such as osmotic adjustment in the root tip, restriction of ethylene production, and control 

of K
+
 translocation from root to shoot (Gaymard et al., 1998; Sharp et al., 2004). Enhanced cell 

wall loosening is required to maintain root elongation at low water potential, and indeed, ABA 

induces xyloglucan endotransglycosylase, which is a cell wall-degrading enzyme (Wu et al., 1994). 

Thus, the role of ABA in maintaining root growth under water deficits has been well established 
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(Sharp et al., 2004); however, high concentrations of ABA inhibit root growth. Another important 

function of ABA is the regulation of the hydrotropic response (i.e. a genuine response of roots to a 

moisture gradient). Results from Takahashi et al. (2002) indicate that ABA constitutes an intrinsic 

signal in hydrotropism, since both aba1-1 and abi2-1 mutants were less sensitive to hydrotropic 

stimulation, whereas the addition of ABA to aba1-1 restored its capacity to perceive the moisture 

gradient. Additionally, the no hydrotropic response1 mutant of Arabidopsis showed reduced ABA 

sensitivity in root (Eapen et al., 2003), and ABA induces the expression of MIZ1, a gene essential 

for hydrotropism (Kobayashi et al., 2007). The regulation of root growth by ABA must be closely 

connected with hydrotropism, since the hydrotropic response likely involves asymmetric 

transmission of ABA signaling to the root sides that are in contact with different water potentials. 

 In this work, root expression analyses served to pinpoint relevant ABA receptors in the root, 

particularly PYL8. Finally, we found that PYR/PYLs and clade A PP2Cs play an important role for 

the ABA-mediated root hydrotropic response. 

 

5.2 Previous results obtained at our laboratory. 

 The root ABA sensitivity of different pyr/pyl single mutants was analyzed. Probably due to 

the multigenic nature and partial functional redundancy observed in the PYR/PYL family, pyl8-1 

was the only single mutant that showed reduced inhibition of root growth compared with the wild 

type even at 20µM ABA, whereas the rest of the single mutants did not show significant differences 

from the wild type in that response. Moreover, using tandem affinity purification (TAP) technology 

and mass spectrometry (MS) analyses it was able to identify 5 clade A PP2Cs that interact in vivo 

with PYL8. 

 A detailed reporter gene analysis of PYR1, PYL1, PYL2, PYL4, PYL5, and PYL8 promoters 

suggested no completely redundant functions for PYR/PYL genes. Expression of PYR1, PYL1, 

PYL2, PYL4, and PYL8 was detected in the vascular bundle of the primary root, whereas PYR1 and 

PYL5 were expressed in the cortex of the upper part of the root. Interestingly, PYL1, PYL4, and 

PYL8 were also expressed in the columella cells. Finally, ABA treatment inhibited or strongly 

attenuated GUS expression driven by these promoters.  
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5.3 Results 

 

Reporter gene analysis of PYR1, PYL1, PYL2, PYL4, PYL5, PYL6, PYL7, PYL8 and PYL9 

promoters in root. 

 We have completed the GUS reporter analysis of the PYR/PYL family by generating 

additional GUS reporter lines for PYL6, PYL7, and PYL9 promoters (Fig. 5.1). Root expression of 

GUS driven by the PYL6 promoter was almost undetectable, expression driven by the PYL7 

promoter was weak and could only be detected after 6 h of incubation with the GUS substrate, 

whereas ProPYL9:GUS lines showed GUS staining after 3 h (Fig. 5.1). Additionally, we used a 

modified pseudo-Schiff propidium iodide (PS-PI) staining method to get a detailed GUS staining of 

the apical root (Fig. 5.1). After 3 h of incubation with the GUS substrate, we could detect GUS 

staining in stele cells of the ProPYR1:GUS, ProPYL1:GUS, ProPYL2:GUS, ProPYL4:GUS, 

ProPYL8:GUS, and ProPYL9:GUS lines as well as root epidermis and lateral root cap for PYL8 

(Fig. 5.1, A and D). PS-PI staining combined with confocal laser scanning microscopy produced 

high-resolution images; however, it eliminated GUS staining of columella cells in ProPYL1:GUS, 

ProPYL4:GUS, and ProPYL8:GUS lines, which was detected previously (Gonzalez-Guzman et al., 

2012; Fig. 5.1, E). In order to get an estimation of GUS expression in the whole root, we performed 

a quantitative GUS activity assay in extracts of root tissue prepared from 15 day old seedlings by 

using 4-methylumbelliferyl β-D-glucuronide as a substrate (Fig. 5.1, B). GUS activity was 

particularly high for ProPYL8:GUS, ProPYL1:GUS, ProPYR1:GUS, ProPYL9:GUS, and 

ProPYL2:GUS genes, whereas the expression of ProPYL4:GUS, ProPYL5:GUS, and 

ProPYL7:GUS genes was lower and ProPYL6:GUS was almost undetectable (Fig. 5.1, B). These 

results were in good agreement with immunoblot analysis of the corresponding protein extracts 

using anti-GUS antibody (Fig. 5.1C), and they provide a quantitative estimation on the expression 

of the different PYR/PYL receptors in root. Finally, ABA treatment inhibited or strongly attenuated 

GUS expression driven by these promoters (figure 5.2, Antoni et al., 2013). 
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Figure 5.1. GUS expression driven by ProPYR1:GUS, ProPYL1:GUS, ProPYL2:GUS, ProPYL4:GUS, 

ProPYL5:GUS, ProPYL6:GUS, ProPYL7:GUS, ProPYL8:GUS, and ProPYL9:GUS genes in the apical root. A, GUS 

expression visualized using modified PS-PI staining and confocal laser scanning microscopy. B, Quantification of GUS 

activity in 15-d-old roots using 4-methylumbelliferyl β-D-glucuronide as a substrate. RFU, Relative fluorescence units. C, 

Immunoblot analysis of protein extracts from 15-d-old roots using anti-GUS antibody. Ponceau staining from a 43-kD 

protein is shown as a loading control. D, Magnification of the apical root from ProPYL8:GUS lines that were stained as 

described in A. E, GUS expression driven by ProPYL1:GUS, ProPYL4:GUS, and ProPYL8:GUS genes in columella cells. 

GUS staining was observed in the absence of subsequent PS-PI staining. 
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Figure 5.2. ABA treatment inhibits or attenuates GUS expression driven by ProPYL1, ProPYR1, ProPYL2, 

ProPYL4, ProPYL5 and ProPYL8:GUS genes. Photographs show 5-d-old seedlings that were either mock or 

10 µM ABA -treated for 10 h.  

 

PYR/PYL receptors and clade A PP2Cs mediate the root hydrotropic response 

 PYR/PYL receptors and clade A PP2Cs are key players for ABA signaling in root, and 

taking into account the important role of ABA for hydrotropism, we decided to investigate their role 

in the root hydrotropic response. Since PYL8 plays an important role for ABA signaling in root and 

interacts at least with five clade A PP2Cs, we generated an abi1-2abi2-2hab1-1pp2ca-1 quadruple 

mutant, abbreviated as Qabi2-2 (Fig. 5.3, A and B). The Qabi2-2 mutant is impaired in four PYL8-

interacting PP2Cs, and it turned out to be very hypersensitive to ABA-mediated inhibition of root 

and shoot growth (Fig. 5.3, A and B). Using the experimental system developed by Takahashi et al. 
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(2002), which uses split agar plates containing sorbitol in the region with low water potential, we 

measured the hydrotropic response of mutants showing enhanced or impaired ABA signaling (Fig. 

5.3, C and D). In this assay, Murashige and Skoog medium containing 1% agar and agar containing 

400 mM sorbitol are placed side by side, which generates a water potential gradient at the border 

between the two media (Fig. 5.3, E and F). Thus, we analyzed the hydrotropic responses of the 

strongly ABA-hypersensitive Qabi2-2 mutant and the ABA-insensitive 112458 sextuple mutant, 

which is strongly impaired in ABA perception through PYR/PYL receptors (Gonzalez-Guzman et 

al., 2012). As a result, we found that the Qabi2-2 mutant showed enhanced root curvature compared 

with the wild type when faced with a medium containing −1 MPa sorbitol (Fig. 5.3C). Conversely, 

the 112458 mutant showed reduced root curvature compared with the wild type (Fig. 5.3D). This 

response had important consequences, since seedlings of the Qabi2-2 mutant avoided better than the 

wild type the entrance in medium with low water potential, whereas seedlings of the 112458 mutant 

were impaired in that response (Fig. 5.3, E and F). 

5.4 Discussion 

 The expression in the root of PYR1, PYL1, PYL2, PYL4, PYL8 and PYL9 was predominant 

in the vascular tissue (Fig. 5.2; Gonzalez-Guzman et al., 2012), where ABA biosynthetic enzymes 

are localized as well (Cheng et al., 2002; Tan et al., 2003). Active ABA signaling in the root 

vascular tissue that carries out ABA biosynthesis might act as a positive feedback for ABA 

production or play a regulatory role for different transport processes (Gaymard et al., 1998; Barrero 

et al., 2006). Additionally, expression in columella cells could also be detected for PYL1, PYL4, and 

PYL8. Active pools of ABA have been detected in the columella cells by a ProRD29B:GUS 

reporter system, which suggests that even in the absence of stress, ABA signaling occurs in these 

cells (Christmann et al., 2005). Root columella cells play a key role for sensing gravity in a process 

governed by auxins, and the presence of ABA receptors in this region suggests that ABA signaling 

might somehow affect auxin signaling in this area. For instance, it has been proposed that the 

degradation of starch grains in amyloplasts in columella cells is required to have a hydrotropic 

response, since gravitropism would be inhibitory to hydrotropism (Takahashi et al., 2003). It has 

also been suggested that starch degradation in the columella cells of roots subjected to osmotic 

stress might be an osmoregulatory mechanism to increase osmolite concentration and to sustain Glc 

supply under water stress (Ponce et al., 2008). Since ABA signaling is required both for 

hydrotropism and osmoregulation of water-stressed roots (Takahashi et al., 2002; Sharp et al., 

2004; this work), the presence of PYR/PYL receptors in columella cells might contribute to regulate 

both processes. 
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Figure 5.3.Enhanced hydrotropic response of the pp2c quadruple mutant and reduced hydrotropic response of the 

pyr/pyl sextuple mutant. A, ABA-hypersensitive phenotype of the hab1-1abi1-2pp2ca-1abi2-2 quadruple mutant, 

abbreviated as Qabi2-2, compared with the Col wild type. Photographs show representative seedlings 10 d (left) or 20 d 

(right) after the transfer of 4-d-old seedlings to Murashige and Skoog plates lacking or supplemented with 10 µM ABA. 

B, ABA-hypersensitive root growth inhibition of the Qabi2-2 mutant compared with the Col wild type. C, Enhanced 

hydrotropic response of the Qabi2-2 mutant compared with the wild type. D, Reduced hydrotropic response of the pyr/pyl 

sextuple mutant compared with the wild type. C and D show hydrotropism assays with 7-d-old Arabidopsis seedlings. 

Data represent measures of the root curvature angle taken 14 h after the transfer of 7-d-old seedlings to split agar plates 

containing 0.4 M sorbitol in the region with low water potential. Values are averages from three independent experiments 

± SE (n = 42 each). *P < 0.05 (Student’s t test) when comparing data from each genotype and the wild type in the same 

assay conditions. E and F, Photographs show the experiments described in C and D, respectively, at 3 d after the transfer 

of 7-d-old seedlings to split agar plates containing 0.4 M sorbitol. The arrows mark the limit between Murashige and 

Skoog medium and medium supplemented with 0.4 M sorbitol.  
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 Finally, the expression of PYL8 was also documented in the root epidermis and lateral root 

cap. The localization of the moisture-gradient-sensing apparatus has not been precisely defined, 

likely because different root tissues might be required for proper hydrotropic perception and 

response. However, the root cap has been suggested to play a role for moisture-gradient perception 

(Eapen et al., 2003; Kobayashi et al., 2007). The localization of at least three ABA receptors in this 

area and the presence of PYL8 in the root epidermis and the lateral root cap fit well with the 

requirement of ABA signaling for root hydrotropism. Moreover, we provide evidence that pyr/pyl 

mutants are impaired in hydrotropism, indicating that ABA perception by these receptors is required 

for a proper response. Interestingly, this response can be enhanced by multiple knocking out of the 

PP2Cs that represses ABA signaling under basal conditions. Thus, the enhanced hydrotropic 

response of pp2c knockouts together with their reduced water loss and enhanced transcriptional 

response to ABA constitute a powerful mechanism to cope with water stress (Saez et al., 2006; 

Rubio et al., 2009). Future studies on the role played by ABA signaling for hydrotropism should 

answer important questions, such as how ABA generates the asymmetric growth required to escape 

from low-water-potential regions of the soil or whether ABA gradients are generated in the root in 

an analogous manner to auxins. 

 

5.5 Matherial and methods 

Plant Material and Growth Conditions 

Arabidopsis (Arabidopsis thaliana) plants were routinely grown under greenhouse conditions in 

pots containing a 1:3 vermiculite:soil mixture. For plants grown under growth chamber conditions, 

seeds were surface sterilized by treatment with 70% ethanol for 20 min, followed by commercial 

bleach (2.5% sodium hypochlorite) containing 0.05% Triton X-100 for 10 min, and finally, four 

washes with sterile distilled water. Stratification of the seeds was conducted in the dark at 4°C for 3 

d. Then, seeds were sown on Murashige and Skoog (1962) plates composed of Murashige and 

Skoog basal salts, 0.1% MES, and 1% agar. The pH was adjusted to 5.7 with KOH before 

autoclaving. Plates were sealed and incubated in a controlled-environment growth chamber at 22°C 

under a 16-h-light/8-h-dark photoperiod at 80 to 100 μE m
−2

 s
−1

. The abi1-2abi2-2hab1-1pp2ca-1 

quadruple mutant was generated by crossing two triple pp2c mutants described by Rubio et al. 

(2009).  
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Generation of Transgenic Lines and GUS Analyses 

To construct the ProPYL6:GUS and ProPYL8:GUS genes, a fragment comprising 1.5 kb 5′ 

upstream of the ATG start codon plus the first 30 bp of the PYL6 or PYL8 coding sequence, 

respectively, was amplified by PCR and cloned into pCR8/GW/TOPO T/A. Next, it was 

recombined by Gateway LR reaction into pMDC163 destination vector (Curtis and Grossniklaus, 

2003). To generate the ProPYL7:GUS gene, the upstream sequence amplified was of 0.5 kb to 

avoid overlapping with regulatory sequences of the At4g01023 neighboring gene. The different 

pMDC163-based constructs carrying ProPYR/PYL:GUS genes were transferred to Agrobacterium 

tumefaciens pGV2260 (Deblaere et al., 1985) by electroporation and used to transform Col wild-

type plants by the floral dipping method. Seeds of transformed plants were harvested and plated on 

hygromycin (20 μg mL−1) selection medium to identify T1 transgenic plants, and T3 progeny 

homozygous for the selection marker were used for further studies. Imaging of GUS and GUS 

quantitative assays were performed as described by Jefferson et al. (1987). Root GUS staining was 

also visualized using modified PS-PI staining and confocal laser scanning microscopy as described 

previously (Truernit et al., 2008). 

Hydrotropism Assay 

The hydrotropic response was analyzed in 7-d-old Arabidopsis seedlings as described by Takahashi 

et al. (2002). Briefly, plastic square plates were filled with 1% agar containing Murashige and 

Skoog medium. After solidification of the agar, one-half of the medium was removed by cutting 

with a scalpel at an angle of 36° and replaced with 1% agar containing Murashige and Skoog 

medium supplemented with 400 mM sorbitol. Root tips were placed on the border between these 

two media, where a water potential gradient was generated, and plates were positioned vertically. 

After 14 h, the hydrotropic response was calculated by measuring the root curvature angle. 
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6.1 Introduction 

Historically, both forward and reverse genetics have been used to elucidate gene function. 

For instance, through both physical and chemical mutagenic agents random mutations are caused in 

a large number of individuals. The phenotype of each mutant increases our knowledge on the 

affected process and finally, the identification of the gene responsible for the phenotype provides a 

molecular explanation. Despite the valuable contribution of this strategy some limitations may 

occur. For instance, in the case of some organisms as mammals the slow rate of reproduction, 

limitations of space or large genomes can complicate this kind of screening. In the case of mutants 

caused by deleterious mutations, this approach will prevent the isolation of the gene and thus, a loss 

of information about the genes involved in the process of interest (Stockwell, 2000). Finally, 

genetic redundancy will mask the role of a single gene when gene families perform similar 

functions (Raikhel and Pirrung, 2005; Cutler and McCourt, 2005).  

One approach to bypass these limitations is chemical genetics. This method is based on the 

use of small molecules to modify or disrupt the functions of specific genes. Even for closely related 

families, small molecules can discriminate among different members of the family. Thus, a library 

of compounds is used for the identification of molecules that affect a certain biological process. 

Later on, the identification of the targets of these compounds provides new insights into the studied 

process (Stockwell, 2000). As the phenotype produced can be reversed by removing the compound, 

it is possible to identify mutations that otherwise would be lethal. Bypassing functional redundancy 

can be achieved through chemicals, since a single compound can bind related targets and can trigger 

phenotypes similar to those caused by multiple mutations (Raikhel and Pirrung, 2005). Currently, 

several millions of compounds are available for chemical screenings. Among them, there are 

synthetic compounds derived or related to known molecules or natural compounds obtained from 

different organisms (Stockwell, 2000). This huge amount of putative candidates makes necessary 

the introduction of additional filters to screen compounds with higher chances to generate 

phenotype. Different clues about the process of interest can be used to select these compounds. 

Thereby, this previous selection is a powerful tool to reduce and enrich the set of compounds that 

will be screened in the laboratory, which will facilitate the experimental design. One of these 

methods of selection is Docking, which predicts the conformation and orientation of a ligand within 

a tergeted binding site (Kitchen et al., 2004). Therefore, structural information of the target protein 

is necessary. Using algorithms it’s possible to simulate computationally how a molecule 

accommodates into the binding site of a protein. These algorithms are complemented with scoring 

functions that, based on the shape and electrostatic properties of the molecules, evaluate the 
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interactions between ligand and target (Kitchen et al., 2004). There are several examples in plants 

of new protein functions discovered with chemical genetics: brassinazole, a brassinosteroid 

biosynthesis inhibitor (Asami et al., 2000); Yokonolide B, an inhibitor of auxin action (Hayashi et 

al., 2003);  the identification of chemicals affecting gravitropism and vacuole morphology (Surpin 

et al., 2005).  

Abscisic acid was discovered in the 1960’s (Ohkuma et al., 1963). Several false starts 

claimed the identification of putative ABA receptors, later on retracted or questioned (Christmann 

and Grill, 2009; Cutler et al., 2010; Gao et al., 2007; Guo et al., 2008; Jaffé et al., 2012; Johnston et 

al., 2007; Liu et al., 2007; Muller and Hansson, 2009; Pandey et al., 2009; Razem et al., 2004; 

Razem et al., 2006; Risk et al., 2008; Risk et al., 2009; Shen et al.,2006; Tsuzuki et al., 2011; 

Zhang et al., 2002). Finally, in 2009 a chemical genetic approach allowed the isolation of a new 

family of proteins called PYR/PYL/RCAR that act as genuine ABA receptors (Park et al., 2009). 

From a chemical library, pyrabactin (a synthetic naphthalene sulphonamide) was selected as an 

inhibitor of germination (Zhao et al., 2007). Subsequently, a mutant resistant to pyrabactin-

mediated inhibition of germination (PYRABATIN RESISTENCE 1, pyr1) was isolated and the 

corresponding locus cloned, leading to the identification of the 14-member PYR/PYL/RCAR 

family. Null mutants of PYR1 don’t show any insensitive response to ABA in germination. 

Pyrabactin proved to be an agonist for some members of the family. Yuan et al. (2010) analyzed the 

inhibitory effect on ABI1 of all the PYR/PYL/RCAR proteins in phosphatase activity assays. While 

PYL1, PYL5, PYL6 and PYL9 –12 almost completely inhibited ABI1 in the presence of 10 µM 

pyrabactin; PYL 8 appeared more insensitive only inhibiting 80% of the phosphatase activity at 100 

µM pyrabactin. Finally, PYL2–4 were the only pyrabactin insensitive receptors since, at 100 µM 

pyrabactin, they only inhibited 60% of the phosphatase activity of ABI1. Yeast two hybrid assays 

and phosphatase activity assays have shown that pyrabactin acts simultaneously on several 

receptors (Park et al., 2009; Melcher et al., 2010). Therefore it is difficult to explain how pyrabactin 

resistance maps to the PYR1 locus. One possible explanation is that PYR1 is highly expressed in 

seeds and likely makes a major contribution to pyrabactin-mediated inhibition of germination. 

 Since the discovery of the PYR/PYL/RCAR receptors several structural and biochemical 

data have been published revealing the molecular mechanism by which ABA binds to them 

(Melcher et al., 2010; Miyazono et al., 2009; Nishimura et al., 2009; Santiago et al., 2009;Yin et 

al., 2009;Sun et al., 2012). In addition to a deep understanding of the signaling pathway, 

biotechnological applications can be generated from this information. Drought is the major 

environmental limitation for plant productivity. Improvement of water use efficiency and crop yield 

under water stress are therefore needed for economical development and efficient water use. It’s 
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know that ABA triggers adaptive responses to environmental conditions such as drought, salinity or 

cold, however abscisic acid synthesis is expensive and no commercial applications are as yet in use. 

Pyrabactin mimics the effect of ABA in germination but not in vegetative tissue (Park et al., 2009). 

The discovery of molecules that trigger adaptive responses to drought in mature plants would be 

very useful in regions of the world where water is a limited resource. Keeping in mind such 

possibility, we started in this work the screening of putative ABA agonists able of entering in the 

receptor cavity and activate the ABA signalling pathway. 

6.2  Results 

In silico screening  

 In collaboration with Prof. José Antonio Márquez at the EMBL (European Molecular 

Biology Laboratory) a previous filtering of 6 million molecules was performed using in silico 

approaches in order to select a reasonable number of compounds for in vivo screenings. Although 

this filtering is not part of this project a brief explanation of the criteria used to select the molecules 

is needed. In an initial step, the binding site of the receptors was scanned for favorable interactions 

using crystal fingerprint of abscisic acid as template. This approach contributed to the identification 

of hot spots representing positions of interaction for an idealized ligand and determined potential 

regions providing binding specificity between different receptors. After this phase, two 

complementary approaches were applied for the large scale in silico ligand screening: a high 

throughput “DockCrunch” and a “Shape-Similarity” approach. In the DockCrunch approach, a 

collection of structures from 6 million different small molecules commercially available were 

systematically docked into the receptor cavities. A series of filters were applied to automatically 

score the resulting interactions and select those molecules and fingerprints that represented 

potentially meaningful interactions. The massive amount of structural information generated by this 

process can not be examined by means of individual user intervention steps (hundreds of 

thousands). In this work a data mining procedure was adopted that categorizes the docking 

fingerprints into families of individual binding modes. All docking fingerprints were analyses by a 

variation of the structural interaction fingerprint methods. Here the individual interaction points 

between the docked ligand and the protein are encoded in a bitstring representation (the fingerprint), 

where each bit represents the presence or absence of a particular interaction at a particular protein 

site and its chemical nature. 
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Figure 6.1. Schematic procedure of the chemical-genetic screen.  500 hundred compounds preselected by 

docking from a database of 6 million were screened in wild type plants.  Of these, 102 compounds were 

selected by affecting germination or development and tested in Y2H probes using ABA-dependent 

PYR/PYL/RCAR-PP2C interactions and in experiments with Arabidopsis using ABA-insensitive mutants. A 

final number of 18 compounds have been selected as possible ABA agonists. 

 

Fingerprints from each compound and docking pose were compared and used to group compounds 

into families with similar binding modes. Representative compounds within these families were 

manually evaluated and compared. In the Shape-Similarity approach the structure of the ABA 

molecules and the critical groups contacting the receptor were used to identify molecules with a 

similar shape and binding capacity. These molecules were docked into the receptor. After this in 

silico screening, the 1000 candidate molecules with top scores arising either from DockCrunch or 

the Shape-Similarity passed a manual filtering that reduced the number of compounds to a number 
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of 500. Figure 6.1 summarizes the different steps and procedures performed to isolate ABA 

agonists. 

 

Screening in Arabidopsis 

500 compounds were screened either using Arabidopsis wild type plants or ABA-

insensitive mutants.  Compounds able to inhibit vegetative growth (rather than seed germination) 

were selected. Initially, only compounds causing phenotypic differences between untreated and 

treated plants were selected. As shown in the figures 6.2a and 4.2b some compounds produced 

different degrees of growth retardation, whereas others did not show effect. This screening served to 

reduce the number of compounds to 102 in order to select those that exhibit an effect on plants and 

that would be used later on.  

Further experiments were focused into select compounds that affected differentially ABA 

response in wild type and ABA insensitive mutants. Three ABA-insensitive mutants were selected: 

abi1
G180D

(abi1-1) (Koornneef et al., 1984), a dominant mutation conferring insensitivity to ABA 

due to a mutation in a residue in the PP2C active site (Gly180Asp) involved in the interaction 

between the PP2C and the receptor; a PYR/PYL/RCAR triple mutant pyr/pyl148 (González-

Guzman et al., 2012) and HAB1
W385A

, an overexpression line of HAB1 carrying a mutation in  the 

Trp385, which is involved in the formation of the ternary complex trough a water-mediated 

hydrogen bond between the carbonyl oxygen of ABA and the side chain of Trp385 in HAB1 

(Dupeux et al., 2011). As a result we selected 5 compounds differentially affecting ABA response 

(table6.I). Figure 6.2C shows the effect of one of the compounds in wild type plants compared to 

the ABA-insensitive mutants.  



Results : Chapter 4 

 

124 
 

 

  

 

Figure 6.2. Plant growth experiments showing the effects of some compounds. Seedlings were grown in 

MS plates containing the corresponding compound and photographed at different times depending on the 

experiment. ABA and pyrabactin were taken as reference to select the candidate compounds. A) Six 

compounds triggering different effects on root growth of Columbia plants at 6 days. B) Seedling 

establishment in Columbia plants of 6 days. C)  The compound 5E03 inhibits seedling growth in wild type 

plants and its effect is slightly reduced in ABA-insensitive plants. D) Growth experiments using the strong 

ABA-insensitive mutant pyr/pyl12458. Seedling growth inhibition produced by 5E03 and 6F08 was less 

pronounced in the quintuple mutant than in the wild type.  
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FIGURE 6.3.  The compound 2C06 inhibits growth of wild type plants more strongly than of ABA-

insensitive mutants and is capable of induce the inhibition of HAB1 by PYL1. A) The compound 2C06 

effect in 4 days germinated plants. While Col-0 plants showed retarded germination, pyr/pyl112458 plants 

were less inhibited by this compound and showed longer radicles. B) Effect of two selected compounds (2C06 

and 6G04) in 10 days old seedlings. The sextuple mutant showed slightly reduced sensitivity to root growth 

inhibition by both compounds compared to the wild type. C) The effect of 2C06 on the phosphatase activity 

of HAB1. The compound decreased the phosphatase activity only in the presence of PYL1 indicating a 

specific inhibition of HAB1 through the PYR/PYL/RCAR receptors. 
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 While this project was in process, quintuple and sextuple mutants of the PYR/PYL/RCAR 

receptors were generated (Gonzalez-Guzman et al., 2012) and they were used in these experiments 

(Figure 6.2D). Between the 5 compounds, the 2C06 was the more effective and thus the chosen for 

further assays. Germination of the quintuple mutant was less affected by the 2C06 compared to the 

wild type, which suggests this compound acts through some of these receptors (Figure 6.3A). Even 

though the quintuple and the sextuple mutants show lower root growth than the wild type in MS 

medium (Gonzalez-Guzman et al., 2012), in 10-days-old seedlings treated with 2C06 longer roots 

were observed in the sextuple mutant compared to the wild type (figure 6.3B). 

 Yeast Two Hybrid (Y2H) screening 

 At the same time a yeast two hybrid screen was performed with the 102 compounds 

previously selected in the preliminary screen performed with wild type plants. ABA binding by 

PYR/PYL/RCAR receptors leads to a conformational change that allows interaction with clade A 

PP2Cs. This property can be reproduced in yeast two hybrid screens. Thus, yeast growth can be 

used to monitor ligand binding to ABA receptors. The ability of the selected compounds to mimic 

the effect of ABA was tested using different ABA-dependent PYR/PYL/RCAR-PP2C interactions. 

This strategy served to confirm the effectivity of the compounds to promote PYR/PYL/RCAR 

interactions as well as the putative specificity of the ligands for some PYR/PYL/RCAR proteins 

ultimately leading to the identification of the receptors affected by the compound. PP2C 

phosphatases were used as prey (fused to the Gal4activation domain, GAD) and PYR/PYL/RCAR 

receptors were used as baits (fused to the Gal4 DNA-binding domain, GBD). Pyrabactin and ABA 

were used as controls. In addition to Arabidopsis receptors, we used some tomato orthologous 

receptors in order to check the validity of selected compounds in receptors of this species. After 

screening 102 compounds in Y2H assays, some of the compounds were able to trigger the 

interactions of HAI1 with PYL5 and of HAB1 with PYL1 as ABA and pyrabactin did (Figure 6.4, 

A and table 6.I). Tomato receptors were more sensitive to restore ABA-dependent interactions by 

the addition of some compound. In particular, the compound 2C06 was able to trigger the 

interaction of Solyc06g061180 with HAB1, PP2CA and HAI1 or of Solyc09g015380 with HAB1. 

Results are summarized in figure 6.4, B. 
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Figure 6.4. Yeast two hybrid experiments using ABA-dependent interactions.  Interaction was 

determined by growth assay on medium lacking His and Ade. When indicated, the medium was supplemented 

with 10 µM racemic ABA or the corresponding compound. Dilutions 10
-2

 and 10
-3

 of saturated cultures were 

spotted onto the plates, and photographs were taken after 6 days. A) Interaction assay using Arabidopsis 

PYR/PYL/RCAR receptors as bait (fused to the Gal4 DNA-binding domain, GBD) and PP2C phosphatases as 

prey (fused to the Gal4 activation domain, GAD). B) Tomato PYR/PYL/RCAR receptors as bait (fused to 

GBD) and PP2C phosphatases as prey (fused to GAD).  
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The compound 2C06 triggers the inactivation of the PP2C in PP2C in vitro activity assays. 

 After performing the screenings described above the compound 2C06 was selected as one 

of the best candidates to mimic the effect of ABA. In addition to affect plant growth this compound 

was able to reproduce some ABA-dependent interactions in Y2H hybrid experiments. To confirm 

these results, in vitro PP2C activity assays were performed. As shown in figure 6.3B, while PP2C 

activity was not affected by PYL1 in the absence of ABA, the presence of ABA or 2C06 reduced 

the activity of HAB1 to less than 20%. The activity of the phosphatase was not affected by 

increasing the concentration of 2C06 to 100µM most probably because 50 µM is already a high 

concentration enough to inhibit 80% of the PP2C activity. The 87% of phosphatase activity in the 

control performed with the PP2C and the compound alone confirmed that inhibition occurred 

through the PYR/PYL/RCAR receptors and not through direct inhibition of the PP2Cs.  

 

 

 Table 6.I. Summary of the compounds selected after the in planta and the yeast two hybrid screens. 

Compounds differentially affecting wild type and ABA-insensitive mutants or by triggering ABA-dependent 

interactions in yeast two hybrid experiments are indicated with an X character. 
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6.3 Discussion 

The objective of this work was to isolate ABA agonists, which could be used as promising 

chemicals to generate molecules able to activate ABA signaling for instance under drought stress. 

Pyrabactin has been described as an ABA agonist in germination assays but, in seedling responses, 

ABA and pyrabactin-regulated genes differ and few ABA-responsive genes respond to pyrabactin 

in vegetative tissue (Park et al., 2009). Indeed, ABA-insensitive mutants showed impaired growth 

after 10 days in medium supplemented with pyrabactin (figure 6.3B). Therefore, we focused on 

compounds that could affect seedling growth more that inhibit germination.  

 Water availability is one of the most important factors limiting crop production. One 

strategy to avoid this stress would be to apply ABA directly in the field but ABA synthesis is 

expensive. Moreover, UV light can convert S-(+)-ABA into its inactive form R-(-)-ABA, which has 

comparable activity to the natural S-(+)-ABA in some ABA-regulated responses but in others, such 

as stomatal closure, has a weaker effect. Chemical genetics can bypass this problem by isolating 

chemical compounds able to mimic the effect of the hormone in mature plants.  To achieve this goal 

I took advantage of the recent advances in the understanding of ABA perception. In particular, 

structural data of PYR1 and ABA were used to select compounds with better chances to be 

accommodated in the receptor cavity. This first selection was done in silico on 6 million compounds 

and allowed us to perform screenings with a final number of 500 compounds. After assaying them 

in wild type plants, 102 compounds were selected for further experiments with ABA-insensitive 

mutants. This second screen rendered 5 compounds, selected by their capacity to inhibit root and 

seedling growth in wild type plants more that ABA-insensitive mutants. 

We were also interested in elucidating which receptors were activated by the selected 

compounds in plants. This was possible through a yeast two hybrid approach using ABA-dependent 

interactions of ABA receptors and PP2C phosphatases. Two of the compounds selected in the plant 

screen were able to trigger ABA-dependent interactions in this assay. In addition we found other 

compounds without any remarkable effect in plants but able to reproduce some ABA-dependent 

PP2C-PYR/PYL/RCAR interactions. A possible explanation for these results could be that perhaps 

in plants, they are metabolized to inactive forms or they are not able to cross the plasma membrane. 

The compound 6G04 presented solubility problems and for this reason, we have followed further 

experiments with the 2C06 compound. 2C06 shows a clear effect in plants and in Y2H experiments 

and also induces PP2C inhibition in a ligand dependent manner.  Although ABA-insensitive 

mutants were less affected than the wild type by 2C06, some impairment was observed, which 
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suggest that the compound is affecting other processes or acting through additional receptors. 

However this molecule could serve in the future as a template to generate new variants that could 

have more chances to mimic more specifically the effect of ABA in plant growth. 

6.4 Materials and methods  

Compound solutions 

The 500 compounds were ordered from Chembridge (http://www.chembridge.com/index.php). 

Compounds were diluted in 100% DMSO to final concentration of 100mM. Work solutions were 

prepared at 50mM in 50% DMSO-H2O. The final compound concentration for all the assays varied 

between 20-50 µM. DMSO final concentration varied between 0.1% and 0,25% which didn’t affect 

plant or yeast growth and neither PP2C activity in in vitro assays in the corresponding controls 

performed (data not showed). 

Plant Material and Growth Conditions 

Arabidopsis (Arabidopsis thaliana) seeds were surface sterilized by treatment with 70% ethanol for 

10 min, followed by commercial bleach (2.5% sodium hypochlorite) containing 0.05% Triton X-

100 for 5 min, and finally, four washes with sterile distilled water. Stratification of the seeds was 

conducted in the dark at 4°C for 3 d. Then, seeds were sowed on 12 well plates composed of 

Murashige and Skoog basal salts (Murashige and Skoog, 1962), 0.1% 2-[N-

morpholino]ethanesulfonic acid, 1% agar and  1% sucrose . The pH was adjusted to 5.7 with 

potassium hydroxide before autoclaving. Each well was filled with media supplemented with the 

corresponding compound. Plates were sealed and incubated in a controlled environment growth 

chamber at 22°C under a 16-h light, 8-h dark photoperiod at 80 to 100 μE m−2 s−1. 

Seedling establishment and Root growth assays 

To measure compound sensitivity, seeds were plated on solid medium composed of Murashige and 

Skoog basal salts, 1% sucrose, and the corresponding compound. Selection of compounds in the 

preliminary screen was based on the existence of affected root growth or seedling establishment 

compared to mock treatment in Col-0 plants. Selection of compounds affecting specifically the 

ABA response was performed by selecting those compounds affecting root growth or seedling 

establishment in Col-0 plants but with absent or minor effects in the abi1
D180D

, hab1
W385A

, 

pyr/pyl148 ABA insensitive mutants. In the preliminary screening performed with Col-0 plants and 

in the screening performed with the ABA-insensitive mutants the compound concentration was 

20µM. In subsequent experiments with the selected compounds dose-response assays were 

http://www.chembridge.com/index.php
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performed using compound concentrations between 20-50µM. Strong ABA-insensitive mutants 

such as pyr/pyl112458 or pyr/pyl11258 were used to discriminate between the efficiency of the 

different compounds. 

PP2C in vitro activity assays 

The coding sequence of HAB1 and PYL1 were excised from pCR/GW/TOPO vector by 

NcoI/EcoRI digestion and cloned into pETM11 to encode N-terminally 6X His-tagged recombinant 

proteins. Phosphatase activity was measured using the Ser/Thr phosphataseassay system (Promega) 

using the RRA(phosphoT)VA peptide as substrate. Assays were performed in a 100-µL reaction 

volume containing 25 mMTris-HCl pH 7.5, 10 mM MgCl2, 1 mM dithiothreitol, 25 µM peptide 

substrate, and the PP2C. When indicated, PYR-PYL recombinant proteins and ABA were included 

in the PP2C activity assay. After incubation for 60 min at 30ºC, the reaction was stopped by 

addition of 30 mL molybdate dye (Baykov et al., 1988) and the absorbance was read at 630 nm with 

a 96-wellplate reader.  

Yeast two hybrid assays 

Constructs of some of the PYR/PYL/RCAR homologues of tomato to perform yeast two hybrid 

experiments were generated in Gateway-compatible vectors. To this end, the coding sequences 

(Solyc08g076960, Solyc06g061180, Solyc09g015380 and Solyc03g095780) were PCR-amplified 

using cDNA from leaves or mature fruits. The PCR products were cloned into the pCR8/GW/TOPO 

entry vector (Invitrogen) and recombined by LR reaction into the pGBKT7 destination vector to 

generate in-frame fusions with the GBD. The coding sequences of the PP2C phosphatases were 

amplified by PCR and cloned in pCR8/GW/TOPO, excised with EcoRI, cloned into pGADT7 and 

fused to the GAL4 activation domain (GAD). PYR/PYL/RCAR from Arabidopsis were amplified 

by PCR and cloned in pCR8/GW/TOPO, excised with NcoI-EcoRI or NcoI-BamHI, cloned into 

pGADT7 and fused to the GAL4 activation domain (GAD). 
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7. DISCUSSION 

 

7.1  MOLECULAR FEATURES OF THE INTERACTION BETWEEN PP2Cs 

AND PYR/PYL/RCARs 

The crystallization and X-ray analyses of ABA receptors and PP2Cs have generated structural 

data describing the inhibition of clade A PP2Cs after ABA perception. When ABA enters into the 

cavity of the PYR/PYL/RCAR receptors, it establishes interactions that induce conformational changes 

in the receptors. ABA promotes a closed conformation where the gating loops of the receptor cover the 

entry site of the cavity and avoid ABA exit. This closed conformation offers a surface favorable for the 

interaction with the PP2Cs and explains why ABA is required to inhibit the phosphatases. As shown in 

Figure 7.1, two major zones of interaction between the PP2C and the receptor are observed. The first 

zone of interaction comprises the active site of the phosphatase. The Ser-85 located in the β3-β4 loop 

of PYR1 establishes hydrogen bonds with Gly-G246 and Glu-203 and blocks the access to the 

phosphatase catalytic site. Although Ma et al. (2009) suggested a noncompetitive mechanism for the 

inhibition of the PP2Cs by the PYR/PYL/RCAR proteins, different structural and biochemical data 

have suggested a competitive mechanism (Dupeux et al., 2011a; Melcher et al., 2009; Miyazono et al., 

2009; Yin et al., 2009). Later on, Soon et al. (2012), showed that the interaction of the phosphatases 

with one of its substrates (SnRK2s) physically mimics the interaction with the receptors, which 

confirms that ABA-bound receptors and kinases compete for the interaction with PP2Cs, turning on 

and off, respectively, the ABA signaling pathway. Previously, Melcher et al. (2009) had showed that 

the inhibition of the phosphatase by the receptor can be reduced by increasing the concentration of 

OST1. The second zone of interaction between the PP2C and the receptor comprises the flap 

subdomain of the phosphatase. This domain contains the Trp-385 that in the ternary complex is 

inserted between the gating loops and establishes a hydrogen bond with a water molecule. This water 

molecule establishes simultaneously hydrogen bonds with amino acid residues of the gating loops of 

the receptor and the ketone group of ABA. This set of interactions participates in the stabilization of 

the ternary complex and provides a mechanism by which the PP2C can detect the presence of the 

hormone in the cavity of the receptor. The Trp-385 is only present in the plant clade A PP2Cs and it is 

a highly conserved residue that is only missed in AHG1. The transgenic plants generated in this work 

carrying the overexpression of hab1
W385A 

showed a strong ABA-insensitive phenotype in ABA-

mediated inhibition of seed germination and seedling establishment, enhanced water loss and reduced 

expression of ABA-responsive genes. The phenotype of these lines is stronger than the overexpression 
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of the wild type HAB1, which points out the crucial role of this residue in the generation of a functional 

ternary complex. In addition the activities of HAB1, hab1
W385A 

and hab1
G246D

 were analyzed in vitro, 

either through phosphatase assays or OST1 dephosphorylation. Both mutations were refractory to 

ABA-dependent inhibition by the PYR/PYL/RCAR proteins. Additionally, in the absence of ABA and 

PYR/PYL/RCAR, while hab1
W385A

 showed similar activity to HAB1, hab1
G246D

 had reduced 

phosphatase activity, likely because the Gly-246 residue is located at the active site. These mutations 

have been described previously as dominant and this work explains that this effect is due to their 

capacity to avoid the ABA-dependent inhibition by the PYR/PYL/RCAR proteins. Therefore, in the 

presence of ABA and PYR/PYL/RCARs these mutant proteins, in contrast to wild type, are able to 

maintain the dephosphorylation of their substrates and they can be classified as dominant 

hypermorphic mutations (Santiago et al., 2012). The same reasoning applies to the original abi1-1 and 

abi2-1 mutations. 

 

 

 

 

Figure 7.1. Structural details of the ABA-PYL1-ABI1 complex. Two zones of interaction between PP2Cs and 

PYR/PYL/RCAR can be observed. The W300 at the flap subdomain of ABI1 interacts with the hydrophobic 

pocket of ABA-bound PYL1 and contacts ABA.  The second zone of interaction comprises two residues at the 

active site of ABI1 (E142 and G180). E142 and G180 interact by direct and water-mediated hydrogen bonds with 

the S112 of PYL1. In addition, other residues of PYL1 are located near the active-site of ABI1, reducing the 

accessible surface area of the active-site and preventing the interaction of ABI1 with its substrates. Based on 

Miyazono et al. (2009).  
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7.2 CHARACTERIZATION OF A SUBRANCH OF THE CLADE A PP2Cs 

 

 According to amino acid similarity clade A PP2Cs can be divided in the ABI1/HAB1 branch 

(comprising ABI1, ABI2, HAB1 and HAB2) and in the PP2CA branch (comprising PP2CA, AHG1, 

HAI1, HAI2 and HAI3) (Figure 1.4). In this work I have focused in the characterization of PP2Cs that 

belong to the less studied PP2CA branch, specifically I have focused on AHG1, PP2CA and HAI1 

(At5g59220). The analysis of the phosphatase activity of these three phosphatases reveals that, in 

contrast to the ABI1/HAB1 branch, they show differences in their susceptibility to be inhibited by the 

receptors. PP2CA is inhibited by all the receptors assayed, HAI1 is resistant to inhibition by PYL4 and 

PYL6 and, interestingly, the activity of AHG1 is not affected by any of the PYR/PYL/RCAR used in 

the assays. Hao et al. (2011) have suggested the existence of a subclass of PYR/PYL/RCARs 

represented by PYL10 that would be able to fully inhibit the PP2Cs in the absence of the hormone. 

Thus, PYL10 was able to inhibit in the absence of ABA almost completely the PP2C activity of ABI1, 

HAB1 and HAB2 but showed a 50% reduction in the case of PP2CA using a 100:1 ratio of 

receptor:PP2C. However other receptors are not as efficient as PYL10 in the ABA-independent 

inhibition of PP2Cs and PYL10 expression levels are very low to undetectable in different whole-

genome microarrays (Laubinger et al., 2008; Yamada et al., 2003; Chekanova et al., 2007). In our 

work we have also tested this possibility but using 4:1 or 10:1 ratios of receptor:PP2C and only PYL8 

was able to reduce by 15% PP2CA activity. Additionally, Antoni et al. (2013) have showed that the 

formation of PYL8:PP2C complexes in vivo required ABA supplementation. 

AHG1 is a clade A PP2C that is expressed during seed development and early postgermination. 

Two peaks of AHG1 expression can be observed at 8 and 16 DAF (Days After Flowering). The knock 

out mutant is very hypersensitive to the ABA-dependent inhibition of germination but shows wild type 

phenotype in other ABA responses. AHG1 is the only PP2C of the clade A missing the Trp-385, which 

suggests a particular role for this protein. In seeds ABA levels are high enough to inhibit significantly 

the rest of clade A PP2Cs. AHG1 might escape from the receptors by the failure to form functional 

ternary complexes, which would maintain basal level of phosphatase activity even at high ABA 

concentrations. Thus, this phosphatase could help to maintain a basal negative regulation of the ABA 

signaling pathway during seed development while other PP2Cs are inhibited. Thereby it could avoid 

overactivation of the ABA cascade, in order to maintain a correct balance with other hormonal 

responses. 

The characterization of knock out mutants and overexpression lines of HAI1 are consistent 

with a role as negative regulator of the ABA pathway.  hai1 null mutants did not show any remarkable 
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phenotype but the generation and characterization of a double mutant with pp2ca-1 allowed a 

confirmation of its role in root growth regulation, of expression of ABA-responsive genes, control of 

water loss and regulation of seedling establishment in response to mannitol or glucose. Since pp2ca-1 

shows a strong phenotype in ABA-mediated inhibition of germination and seedling establishment no 

additive effect was found in the pp2ca-1hai1-1 double mutant.  However the ABA hypersensitive 

phenotype of the double mutant in other responses reveals functional redundancy with PP2CA. Other 

authors have also studied the role of this branch of clade A PP2Cs. Bhaskara et al. (2012) have 

generated a triple mutant of the Highly ABA Induced PP2Cs (HAI) (hai1-2hai2-1hai3-1). This work 

points out the role of these three proteins in osmotic adjustment as the single mutants showed higher 

proline concentration than wild type at low water potential. Significant differences in ABA sensitivity 

could be appreciated with the generation of double and triple mutants of these proteins. The triple 

mutant is insensitive for ABA-mediated inhibition of radical emergence while it is hypersensitive to 

ABA in other ABA-related responses such as ABA-mediated inhibition of seedling establishment or 

induction of ABA responsive genes. This would mean that these phosphatases positively regulate 

germination in contrast to the role as negative regulators of other clade A PP2Cs in this particular 

process (Rubio et al., 2009). In contrast, I could not adress this positive role of HAI1 as the double 

mutant that I generated with pp2ca-1 was strongly affected in this developmental stage, probably due 

to the strong contribution of PP2CA to inhibit germination. Guo et al. (2010) and Lim et al. (2012) 

have also described a positive role of HAI1 and HAI2 respectively in germination although compared 

to the wild type the differences are very subtle. Thus, according to the work of Bhaskara et al. (2012), 

the HAI PP2Cs could have a positive role in ABA signaling during germination; however, they are 

negative regulators after germination. This paradox might be explained taking into account that the 

apparent “ABA-resistant” phenotype for radical emergence might reflect the role of these PP2Cs in 

osmotic adjustment. 

In this work, the subcellular localization of PP2CA and HAI1 was analysed. As it could be 

expected by the localization of their interacting partners, biochemical fractionation showed that the 

proteins are present in both nucleus and cytosol. Interestingly both proteins were present in the nuclear 

insoluble fraction (chromatin associated) were chromatin-remodeling complexes SWI/SNF are 

localized. Indeed, the interaction of SWI3B, a component of the SWI/SNF complex, with PP2CA has 

been previously described (Saez et al., 2008). On the other hand, these PP2Cs are also present in the 

microsomal fraction. Therefore, PP2CA is localized together with two of its interacting partners in the 

plasma membrane, AKT2 (a weakly rectifying K
+
 channel) and SLAC1 (a slow anion channel) 

respectively. SLAC1 participates in ABA-mediated stomatal closure and AKT2 is involved in the 
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regulation of K
+
 homeostasis (Cherel et al., 2002; Lee et al., 2009). HAI1 presents a characteristic N-

terminal region with two nuclear localization patterns and I was interested in probing the role of these 

signals in the localization of the proteins. In agreement with Fujita et al. (2009) and Bhaskara et al. 

(2012) using GFP fusion proteins of HAI1 and PP2CA I found a predominant nuclear localization of 

both proteins. By deleting the N-terminal region the protein became more cytoplasmic, which 

confirmed that the N-terminus is responsible of targeting the protein to the nucleus. 

 

7.3 ANALYSIS OF THE EXPRESSION PATTERNS REVEALS IMPORTANT 

DIFFERENCES BETWEEN MEMBERS OF THE PYR/PYL/RCAR FAMILY. 

 

Genetic redundancy precluded the identification of PYR/PYL/RCARs by classical genetic 

approaches. The discovery of these receptors took more time than expected and it was only possible to 

isolate them through alternative approaches. However different evidences indicate that the function of 

these receptors is not completely overlapping. Transcriptomic data as well as GUS reporter analysis 

have shown that the PYR/PYL/RCAR receptors present different expression levels and different 

expression patterns in Arabidopsis. For instance PYL3 and PYL10 to PYL13 show low to undetectable 

expression levels in different microarray analyses (Kilian et al., 2007; Winter et al, 2007). In addition, 

GUS reporter analyses in plant tissues show important differences between these proteins. Gonzalez-

Guzman et al. (2012) analyzed the expression pattern of PYR1, PYL1, PYL2, PYL4, PYL5, and PYL8 in 

different tissues. They have reported that all of them are present in guard cells of mature leaves, in the 

peripheral layer of the embryo (embryo epidermal layer) as well as in the provascular cells within the 

cotyledons and hypocotyls. In contrast, in the endosperm of 24h germinated seeds only PYL8 and 

PYR1 showed high expression levels. In this work I have analyzed the expression patterns of these 

receptors and also of PYL6, PYL7 and PYL9. I have focused particularly in root due to the important 

role that ABA plays to control root growth depending on the environmental conditions. In this tissue I 

found interesting differences in the expression pattern among the different PYR/PYL/RCAR proteins. 

Thus, whereas PYR1, PYL1, PYL2, PYL8 and PYL9 are present in the vascular tissue of the root cap, 

PYL5, PYL6 and PYL7 expression levels are undetectable in this part of the root. In addition, PYL1, 

PYL4 and PYL8 are expressed in columella cells and specifically PYL8 is also expressed in the lateral 

root cap. The particular expression pattern of PYL8 together with its biochemical features might 

explain why pyl8-1 showed insensitivity to ABA-mediated inhibition of root growth even at 20µM 

ABA. The generation of combined pyr/pyl/rcar mutants resulted in an increased insensitivity to ABA 
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in root growth especially for the quintuple and sextuple the mutants in 50µM ABA compared to pyl8-1. 

These data suggest that although PYL8 plays an important role in root growth this process is also 

controlled by other PYR/PYL/RCARs receptors in an additive manner. 

 

7.4 THE ROLE OF ABSCISIC ACID AS A GROWTH PROMOTER 

 

Although the role of ABA as growth inhibitor is well known, the phenotypes displayed by 

ABA-deficient and ABA-insensitive mutants also suggest a role as growth promoter. For instance, a 

HAB1 overexpression line shows reduced root growth in MS plates compared to plates supplemented 

with ABA. And this defect is more dramatic in extreme ABA insensitive mutants. A sextuple mutant of 

the receptors (pyr/pyl112458) shows less growth and less seed production compared to the wild type 

(Gonzalez-Guzman et al., 2012). Moreover, the snrk2.2/2.3/2.6 triple mutant is severely impaired in 

growth and reproduction. Only in high humidity conditions the mutant was able to produce seeds and 

to produce leaves with 60% of the length of compared with those of the wild type (Fujii and Zhu, 

2009). The ABA-deficient mutant aba1 shows growth delay even under high-humidity non stress 

conditions and the application of small concentrations of ABA restores growth (Barrero et al., 2005). 

Since in aba1 the ABA perception machinery is intact, the application of small amounts of ABA is 

enough to restore normal growth. In contrast, mutants severely impaired in ABA perception require 

high concentrations of ABA to activate residual perception and improve growth. 

Endogenous ABA has an important role in the control of ethylene production required for the 

maintenance of root elongation at low water potentials (Sharp et al., 2004). Indeed, ABA increases the 

expression of genes for antioxidant enzymes (Guan et al. 2000). These enzymes contribute to reduce 

ROS levels that can increase ethylene synthesis (Overmyer et al. 2000).  

Cell growth caused by expansion is regulated primarily by turgor pressure and is maintained by 

osmotic regulation via osmotically active substances, such as potassium ions (K
+
), sugars, and amino 

acids. Proline concentration increases dramatically in water-stressed roots, and contributes up to 50% 

of the osmotic adjustment (Sharp et al., 2004). Additional work showed that accumulation of ABA is 

required for the increase in proline deposition at low water potential (Ober and Sharp, 1994). The role 

of ABA as a regulator of potassium homeostasis in plants is supported by several data, among which is 

worth highlighting the ABA-dependent regulation of several potassium transporters. OST1 inhibits 

KAT1 activity by phosphorylation (Sato et al., 2009) and SLAC1 is directly activated by SnRK2s. 

Recently Osakabe et al. (2013) have shown that the activity of the KUP potassium transporter family is 
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also regulated by ABA. Indeed, they have observed that OST1 interacts with KUP6 in yeast and plant 

cells and the conserved sequence motif in the KUP6 C-terminus is phosphorylated by SnRK2s in in-gel 

kinase assays. 

 

7.5 THE ROLE OF ABA IN THE HYDROTROPIC RESPONSE 

 

The role of ABA in drought stress has been extensively described. Among the responses 

controlled by ABA under water shortage, the mechanisms and regulation for ABA control of stomatal 

closure and regulation of gene expression are well known. However, there are other adaptive traits 

directed to avoid water deficit that have been less studied. One of these processes is hydrotropism, a 

mechanism by which roots direct growth towards zones of the soil with higher moisture. ABA has 

been involved in this response (Moriwaki et al., 2012; Takahashi et al., 2002). Columella cells have 

been associated to the perception of environmental stimuli that modify root growth like gravity or 

water stress (Perrin et al. 2005; Jaffe et al., 1985). After a gravitropic stimulus, a change of the 

localization of the amyloplasts present in columella cells is the cause of the modification in the 

direction of root growth (Strohm et al., 2012). Some evidence indicates that the root cap is the site of 

perception for moisture gradients in the root. Takahashi et al. (2003) have observed a reduction of the 

amount of amyloplasts in the columella cells after a hydrotropic stimulus. In addition, the abnormal 

morphogenesis of the root apical meristem and root cap showed by the non hydrotropic mutant nhr1 

points out the importance of these tissues for a normal hydrotropic response (Eapen et al., 2003). The 

expression pattern of PYL8 in the columella and in the lateral root cap suggests a possible role of the 

receptor in this response and for this reason I have analysed the hydrotropic response of multiple 

mutants of the PYR/PYL/RCAR family and of the PP2Cs. In this assay, Murashige and Skoog medium 

containing 1% agar and agar containing 400 mM sorbitol are placed side by side, which generates a 

water potential gradient at the border between the two media. I also analysed the hydrotropic response 

of pyl8-1 but no difference was observed compared to the wild type probably due to the effect of 

genetic redundancy. Moreover, the sextuple mutant of the receptors (pyr/pyl112458) presents less 

curvature than the wild type reflecting reduced hydrotropism as other mutants affected in this response. 

In contrast a quadruple mutant of the phosphatases impaired in HAB1, ABI1, ABI2 and PP2CA showed 

enhanced root curvature in comparison to the wild type. These data confirm the involvement of the 

ABA core pathway in the hydrotropic response and offer new elements to better understand how this 

environmental signal is transmitted.  
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7.6 ISOLATION OF NEW ABA AGONISTS THROUGH CHEMICAL 

GENETICS. 

 

Drought in some parts of the world has hurt crop production and contributed to food scarcity 

and increase in food prices, highlighting the need to improve water use efficiency. In this direction, the 

development of new strategies directed to reduce water consumption in agriculture could be crucial to 

ensure food production in areas where this stress is more severe. Abscisic acid is the principal 

phytohormone that triggers adaptive changes to bypass the damage caused by water stress, such as 

stomatal closure, promotion of root growth, accumulation of compatible osmolites, etc. Therefore ABA 

application in crops could be an interesting strategy to render crops more resistant under water deficits. 

However the hormone itself has not been used for this purpose because industrial-scale production of 

abscisic acid would be very expensive and the ABA molecule is photolabile. Chemical synthesis is 

expensive because it produces the two enantiomers, i.e. R-(-)-ABA and S-(+)-ABA, and a chiral 

procedure is finally required to isolate the natural S-(+)-ABA. Although R-(-)-ABA is not completely 

inactive, it shows important differences in the responses elicited compared to the natural form (S-(+)-

ABA) as for example low ABA-activity in stomatal closure assays (Zaharia et al., 2005). One possible 

alternative to these constraints would be to design chemicals to mimic the action of abscisic acid that 

could be sprayed on crops to protect them against drought. Pyrabactin effectiveness as an ABA agonist 

in seeds has been widely tested. However its effect as ABA agonist is restricted to germination as in 

seedlings it elicits a different response than ABA. Thus, in germination both ABA and pyrabactin elicit 

a similar pattern of gene expression; however, in seedlings a clear divergence in the regulated genes is 

observed (Park et al., 2009) (Figure 1.7, D). For these reasons, different research groups are interested 

in isolating new compounds acting as ABA agonists in adult plants, with the ultimate purpose of 

applying them in crop plants. Structural information about PYR1 and ABA has been used to select 

those chemical compounds with more chances to accommodate in the receptor cavity. I have tested 

these compounds in Arabidopsis plants and I have also used other complementary approaches such as 

yeast two hybrid or phosphatase activity assays. As a result I have selected a compound that is: i) able 

to promote ABA-dependent PYR/PYL/RCAR-PP2C interactions in yeast two hybrid, ii) produces a 

decrease in the PP2C activity in the presence of PYL1 and iii) reduces root length in wild type plats 

more than in strong ABA-insensitive mutants. However, as it can be observed also for pyrabactin, this 

compound is likely affecting other processes in the plant, since some growth impairment also occurs in 
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these ABA-insensitive mutants. However, it might be possible in the future to produce new variants of 

this compound with improved properties.  
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1. CONCLUSIONS 

 
The Trp-385 of HAB1 plays a pivotal role in the formation of the ternary complex ABA-

phosphatase-receptor and it represents an elegant PP2C-dependent mechanism to check the 

occupancy of the ABA-binding site in the PYR/PYL/RCAR receptor. hab1
W385A

 is a hypermorphic 

mutation that generates a phosphatase refractory to inhibition by PYR/PYL/RCARs. As a result, 

transgenic lines harboring the hab1
W385A 

mutation show strong ABA insensitivity, which provides in 

vivo evidence on the biological significance of crystal structure of ternary complexes. 

 

HAI1, a previously uncharacterized member of clade A PP2Cs, is a negative regulator of osmotic 

stress and ABA signaling as revealed by the analyses of the pp2ca-1hai1-1 loss-of-function mutant. 

 

Biochemical fractionation of HA-tagged versions of HAI1 and PP2CA reveals a nuclear, cytosolic 

and microsomal subcelular localization. The N-terminus of HAI1 is responsible of the nuclear 

localization. 

 

HAI1, PP2CA and AHG1 show different sensitivity to be inhibited by the PYR/PYL/RCAR ABA 

receptors. Biochemical analyses of AHG1, the only PP2C lacking the conserved Trp residue, 

indicate that this PP2C can remain active even in the presence of ABA and PYR/PYL/RCAR 

receptors and remark the importance of this residue in the formation of functional ternary 

complexes. This differential sensitivity reveals a functional specialization of PYR/PYL/RCAR 

receptors to inhibit certain PP2Cs.  

 

GUS reporter analyses of PYR1, PYL1, PYL2, PYL4, PYL5, PYL6, PYL7, PYL8 and PYL9 

promoters reveal that most of them are expressed at high levels in the root, which reveals its 

importance in root ABA signaling. PYL8 plays a nonredundant role for the regulation of root ABA 

sensitivity. 

 

The core elements of the ABA signaling pathway are involved in the hydrotropic response. An 

ABA-hypersensitive pp2c quadruple mutant shows enhanced hydrotropism, whereas an ABA-

insensitive sextuple pyr/pyl/rcar mutant shows reduced hydrotropic response. 

 

A chemical genetic approach allowed to isolate some candidate ABA agonists. The compound 

2C06 was able to inhibit root and seedling growth in wild type plants more than in mutants lacking 

ABA receptors. 2C06 induced PP2C inhibition in a ligand-dependent manner and promoted the 

ligand-dependent interaction between PP2Cs and PYR/PYL/RCARs in Y2H assays.  
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 Abstract 

The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants and plays 

critical roles in stress resistance, and growth and development
1-7

. Several proteins have been 

reported to function as ABA receptors
8-13

 and many more are known to be involved in ABA 

signaling
3,4,14

. However, the identities of ABA receptors remain controversial and the mechanism of 

signaling from perception to downstream gene expression is unclear
15,16

. Here we show that by 

combining the recently identified ABA receptor PYR1, with the protein phosphatase 2C ABI1, the 

serine/threonine protein kinase SnRK2.6/OST1, and the transcription factor ABF2/AREB1, we can 

reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these 

four components into plant protoplasts results in ABA-responsive gene expression. The protoplast 

and test tube reconstitution assays were used to test the function of various members of the receptor, 

protein phosphatase, and kinase families. Our results suggest that the default state of the SnRK2 

kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the 

PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, 

the PYR/PYL receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus 

preventing the PP2Cs-mediated dephosphorylation of the SnRK2s and resulting in the activation of 

the SnRK2 kinases. Our results reveal new insights into ABA signaling mechanisms and define a 

minimal set of core components of a complete major ABA signaling pathway. 
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 Introduction and results  

 Several ABA receptors have been reported
8-13

, although many of them remain 

unconfirmed
15-16

. Recently, a family of novel START domain proteins, known as PYR/PYLs 

(pyrabactin resistance1/PYR1-likes, also known as RCARs), were identified as ABA receptors. 

Several of the PYR/PYLs were shown to interact with and inhibit clade-A PP2Cs (type 2C protein 

phosphatases)
11-13

. The PP2Cs (ABI1, ABI2, HAB1, PP2CA/AHG3) negatively regulate ABA 

responses
13

. On the contrary, a subfamily of ABA-activated SnRK2s are positive regulators of ABA 

signaling
17-21

. Through unknown mechanisms, the inhibition of the negatively acting PP2Cs leads to 

the successful activation of a subfamily of SnRK2 kinases (SnRK2.2, SnRK2.3 and SnRK2.6 in 

Arabidopsis), which phosphorylate the basic leucine zipper (bZIP) transcription factors called 

ABFs/AREBs
22-23

. The ABFs bind to ABA-responsive promoter elements (ABRE) to induce the 

expression of ABA-responsive genes
1
. 

 The present study was aimed at defining the core components of the ABA response 

pathway that are both necessary and sufficient for ABA perception, signaling and finally ABA-

responsive gene expression. ABA-dependent phosphorylation of ABF2 at amino acid residues S26, 

S86, S94 and T135 was suggested to be important for stress responsive gene expression 

in Arabidopsis
23

. We used transient activation analysis with protoplasts from 

the snrk2.2/2.3/2.6 triple mutant to determine the role of ABF2 phosphorylation and its dependence 

on SnRK2s for ABA-responsive gene expression. We have shown previously that 

the snrk2.2/2.3/2.6 triple mutant is deficient in ABA responses
21

. As expected, transfection 

of snrk2.2/2.3/2.6 protoplasts with ABF2 did not induce RD29B-LUC expression even in the 

presence of ABA, but co-transfection of ABF2 with SnRK2.6 resulted in induction of RD29B-LUC 

in an ABA-dependent manner (Fig. 1a). Furthermore, ABF2 with alanine substitutions at all of the 

four phosphorylation sites was inactive, whereas aspartic acid substitutions at these sites led to a 

constitutively active ABF2 resulting in induction of RD29B-LUC expression even without ABA 

treatment (Fig. 1a). Co-transfection of Ala-substituted ABF2 with SnRK2.6 led to only a very low 

level of RD29B-LUC induction (Fig. 1a). Substitution of lysine 50, a conserved residue critical for 

ATP-binding and kinase activity, with asparagine (K50N) inactivates SnRK2.6 in phosphorylation 

assays in vitro (our unpublished data). Co-transfection of ABF2 with SnRK2.6
K50N

 did not 

induce RD29B-LUC expression (Fig. 1a), demonstrating that the kinase activity is necessary for 

ABF2 activation. Transfection of ABF2 alone in wild type protoplasts induced a low level 

of RD29B-LUC expression under ABA treatment, which is consistent with the presence of a low 

basal level of endogenous ABA signaling components in the protoplasts (Supplementary Fig. 1a). 
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These results show that SnRK2.6 mediates ABF2 activation in an ABA-dependent manner, and that 

ABF2 phosphorylation is sufficient for ABA-induction of RD29B-LUC expression. 

 We next tested the effect of ABI1 and PYR1 on ABA-induction of RD29B-LUC expression. 

Transfection of ABI1 together with ABF2 and SnRK2.6 resulted in inhibition of RD29B-LUC 

expression (Fig. 1b, Supplementary Fig. 1a). This shows that ABI1 negatively regulates SnRK2.6- 

and ABF2-dependent activation of RD29B-LUC expression. Addition of PYR1 together with ABI1, 

SnRK2.6 and ABF2 enabled ABA-dependent induction of RD29B-LUC expression (Fig. 

1b,Supplementary Fig. 1a). However, addition of PYR1
P88S

 that is defective in interaction with and 

inhibition of PP2Cs
12

 did not enable ABA-dependent induction of RD29B-LUC expression. The 

dominant abi1-1 mutation (G180D) disrupts the interaction between ABI1 and PYR1
12

. Like the 

wild type ABI1, ABI
G180D

 also inhibited the effect of SnRK2.6 and ABF2 on RD29B-

LUC expression in response to ABA, but this antagonistic effect could not be overcome by 

expression of PYR1 (Fig. 1b,Supplementary Fig. 1a). This suggests that the ABI
G180D

 mutant 

protein retains the inhibitory activity but can no longer be regulated. Thus reconstitution with 

PYR1, ABI1, SnRK2.6 and ABF2 is sufficient to enable ABA-mediated gene expression in 

protoplasts, providing in vivo evidence to our previously proposed model of ABA signaling
12

. 

 The PYR/PYL family consists of 14 members. Although genetic studies suggested 

redundancy in their function
12

, it is not known whether all members can act as ABA receptors and 

transduce the ABA signal to induce gene expression. To address this question, we reconstituted the 

ABA signaling pathway with different members of the PYR/PYL family. Our results show that all 

of the tested PYR1/PYLs could antagonize the ability of ABI1 to inhibit ABA-dependent induction 

of RD29B-LUC expression in snrk2.2/2.3/2.6 protoplasts, although not all PYR/PYL members were 

equally effective (Fig. 1c). The results suggest that all of the PYR/PYLs are likely to function as 

ABA receptors. We also tested reconstitution of the ABA signaling pathway with different 

combinations of SnRK2 kinases, PP2Cs and receptors, and found that the SnRK2 kinases are 

inhibited by both the ABI1 and HAB1 PP2Cs, and PYR1 or PYL2 can antagonize this inhibition. 

The inhibitory effect of ABI1 was stronger than that of HAB1 in the reconstituted ABA signaling 

system in protoplasts (Fig. 1b-d, Supplementary Fig. 1). The three clade A PP2Cs (ABI1, ABI2 and 

HAB1) were each capable of interacting with the three SnRK2 kinases (SnRK2.2, SnRK2.3 and 

SnRK2.6) in yeast two-hybrid (Y2H) assays, although with different intensities. For example, the 

ABI1 interaction was stronger than those of ABI2 and HAB1 (Supplementary Fig. 2a), which 

correlate with the level of inhibitory effect of ABI1 and HAB1 in the protoplast assay (Fig. 

1d, Supplementary Fig. 1b). A C-terminally truncated SnRK2.6 lacking amino acids 280-362 did 

not interact with ABI1 (Supplementary Fig. 2a), which is consistent with previous studies 
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demonstrating that deletion of a short C-terminal domain abrogates the interaction between ABI1 

and SnRK2.6 in yeast
19

. Bimolecular fluorescence complementation (BiFC) assays in tobacco show 

that ABI1 interacts with the SnRK2s in the nucleus as well as the cytosol, and that the C-terminal 

region of SnRK2.6 is required for the interaction with ABI1 (Supplementary Fig. 2b). Expression of 

the fusion proteins was verified by immunoblot analysis (Supplementary Fig. 2c). The interaction 

between ABI1 and SnRK2.6 in vivo was further confirmed by a co-immunoprecipitation assay 

using the tobacco protein extracts (Supplementary Fig. 2c). 

 PYR/PYLs inactivate clade A PP2Cs in an ABA-dependent manner
11-13

. In protoplast 

transactivation assays, we showed that PYR/PYLs can reverse the inhibitory effect of PP2Cs (Fig. 

1,Supplementary Fig. 1). We hypothesized that the PYR/PYLs may prevent the inhibitory effect of 

the PP2Cs by disrupting the interaction between the PP2Cs and the SnRK2s. We tested whether co-

expression of PYLs might disrupt the interaction between PP2Cs and SnRK2s by yeast triple-hybrid 

assays. First, we reproduced the interaction of the ABI1, ABI2 and HAB1 PP2Cs (fused to the Gal4 

activation domain (GAD)) with SnRK2.6 (fused to the Gal4 DNA binding domain (GBD)) by using 

the pBridge triple-hybrid vector (Supplementary Fig. 3). Next, we cloned into the SnRK2.6-pBridge 

construct the PYL5 and PYL8, which have been shown to act as potent inhibitors of the PP2Cs
13

. 

Nuclear localization of PYL5 and PYL8 in yeast is driven by fusion with a nuclear localization 

sequence present in the pBridge vector. Co-expression of PYL8 together with GBD-SnRK2.6 

abrogated or reduced (depending on the dilution of the yeast culture) the interaction with GAD-

ABI1 (Supplementary Fig. 3). Similar results were obtained when GBD-SnRK2.6 and GAD-ABI2 

or GAD-HAB1 was tested with either PYL8 or PYL5, respectively (Supplementary Fig. 3). These 

results show that co-expression of a PYL impairs the interaction of ABI1, ABI2 and HAB1 PP2Cs 

with SnRK2.6. 

 We have reconstituted the apparent entire ABA signaling pathway for stress responsive 

gene expression by co-expression of the PYR/PYLs, PP2Cs, SnRK2s and ABF2 

in Arabidopsis protoplasts (Fig. 1b-d, Supplementary Fig. 1). To verify whether these are the 

minimal signaling components that are both necessary and sufficient for ABA signaling in the 

absence of other cellular components, we attempted to reconstitute the pathway in vitro. We 

constructed recombinant MBP-SnRK2.6, and found that it is capable of phosphorylating an ABF2 

fragment as well as autophosphorylation (Fig. 2a and b). Incubation of GST-ABI1 but not GST with 

SnRK2.6 before the kinase assay substantially decreases ABF2 phosphorylation by the recombinant 

SnRK2.6 (Fig. 2a). SnRK2.6 pulled down from extracts of ABA-treated plants is also active in 

phosphorylating ABF2 but SnRK2.6 from untreated plants is not. This phosphorylation is also 

inhibited by GST-ABI1 (Fig. 2c). ABI1 added after ABF2 phosphorylation by SnRK2.6 is not as 
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effective in reducing the level of phosphorylation (Fig. 2a), suggesting that ABI1 inhibits ABF2 

phosphorylation by dephosphorylating SnRK2.6 (Fig. 2a). Indeed, we found that both ABI1 and 

ABI2 efficiently dephosphorylated SnRK2.6 (Fig. 2d). The autophosphorylated Ser175 is essential 

for the kinase activity of SnRK2.6 in vitro
24

. We tested and found that ABI1 can dephosphorylate a 

synthetic phosphopeptide corresponding to amino acids His170-Pro180 of SnRK2.6, which is 

phosphorylated at Ser175 (HSQPKpSTVGTP; Fig. 2e). These results suggest that ABI1 may 

deactivate SnRK2.6 by dephosphorylating Ser175. 

 When His-PYR1 is incubated together with GST-ABI1 and MBP-SnRK2.6, SnRK2.6-

mediated phosphorylation of ABF2 is significantly recovered in the presence of 2 μM (+)-ABA 

(Fig. 3a and b). Without ABA, His-PYR1 cannot reverse the inhibitory effect of ABI1 on SnRK2.6-

mediated phosphorylation of ABF2 (Fig. 3a). PYR1
P88S

, which cannot bind to and inhibit ABI1
12

, is 

not capable of reversing the inhibitory effect of ABI1 even in the presence of ABA (Fig. 3a). We 

found that in the presence of ABA, PYL8 or PYL5 can prevent the dephosphorylation of SnRK2.6 

by ABI1 or ABI2 (Fig. 2d). These data are consistent with results from the protoplast 

transactivation assays, and show that it is possible to reconstitute ABA activation of ABF2 

phosphorylation in vitro. Importantly, ABF2 phosphorylation status in this reconstituted in 

vitro system responds to ABA in a concentration-dependent manner (Fig. 3c). The apparent IC50 of 

this response is 0.8 μM, which is similar to the IC50 value for ABA inhibition of seed 

germination
11

 and falls within the physiological range of ABA concentrations in plants. Similar 

ABA responses were observed when ABA-activated SnRK2.6 isolated from plants instead of 

recombinant SnRK2.6 was used in the reconstitution assay (Supplementary Fig. 4a). Furthermore, 

reconstitution was also achieved when the PP2C protein HAB1 was used instead of ABI1 

(Supplementary Fig. 4b). Our protoplast and in vitro reconstitution results support a model in which 

PYR1 (and PYLs) binds ABA, and then interacts with and is able to inactivate the PP2Cs. The 

ABA-bound receptors also disrupt the interaction between the PP2Cs and the SnRK2 kinases. These 

actions of the receptors prevent the dephosphorylation and thereby relieve inhibition of the SnRK2s 

by the PP2Cs. The relieved SnRK2s can then phosphorylate ABFs to activate ABA-responsive 

genes. 

  Consistent with our model, we showed previously that the SnRK2s are substantially less 

activated by ABA in the pyr1pyl1pyl2pyl4 mutant compared with the wild type
12

. The model also 

predicts that the SnRK2s may be constitutively activated in mutant plants that are deficient in the 

PP2Cs. Indeed, the PP2C triple mutant abi1-2hab1-1pp2ca-1 shows a constitutive activation of 42 

and 45 kD kinases, which correspond to SnRK2.2/2.3 and SnRK2.6, respectively (Fig. 4a). This 

mutant displays a constitutive ABA response phenotype in germination and early seedling 
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development (Fig. 4b and c), as reported previously
25

. In contrast, the PP2C triple 

mutant abi1hab1abi2 does not have a constitutive ABA response as strong as in abi1-2hab1-

1pp2ca-1 (Fig. 4b and c), and does not show a strong constitutive activation of the SnRK2s (Fig. 

4a). 

 To our knowledge, this is the first report of in vitro reconstitution of a phytohormone signal 

transduction pathway using recombinant proteins. The in vitro reconstitution results are supported 

by the reconstitution assays in the protoplasts and by genetic analysis. The protoplast reconstitution 

assays enabled us to test the functions of nearly all members of the PYR/PYL family. Our results 

suggest that all in the family can function as ABA receptors in inducing gene expression. Although 

each of the proteins used in the reconstitution assays has been studied previously, it was not known 

how these components may connect to form a signaling pathway. Our study has revealed significant 

new insights into the mechanisms of action of these components. Our results suggest that the default 

state of the SnRK2 protein kinases is an autophosphorylated, active state, and that the SnRK2 

kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We 

found that upon binding to ABA, the PYR/PYL receptor protein can disrupt or reduce the 

interaction between the SnRK2s and PP2Cs, and prevent the PP2Cs-mediated dephosphorylation of 

the SnRK2s, thus resulting in the activation of the SnRK2 kinases. 

 Successful reconstitution with the recombinant proteins implies that we have identified all 

essential core components of an ABA response pathway from hormone perception to 

phosphorylation of ABFs. Although ABA signaling in plants has been considered to be very 

complicated with numerous other proteins involved, our study reveals a surprising simplicity of the 

pathway and demonstrates that the PYR/PYLs, clade-A PP2Cs, SnRK2s, and ABFs are the only 

core components to complete the ABA regulation of gene expression. Since there are multiple 

family members for each of these core components, many combinations of them are possible. The 

functions of the family members may overlap, but their unique spatial and temporal expression 

patterns may confer some distinct functions in specific tissues. Extensive genetic analysis will be 

necessary to determine the in planta importance of specific combinations of the core components. 

 We suggest that the other proteins previously identified as involved in ABA responses, may 

function to modulate the expression and/or activities of one or more of the core components defined 

here. Calcium and reactive oxygen signaling, RNA metabolism and protein degradation are known 

to have important roles in regulating ABA sensitivity
2-4,14,26,27

. It will be of great interest to 

determine how these processes may connect to one or more of the core components to impact ABA 

responses. It will also be interesting to determine whether other ABA response pathways such as 

ABA regulation of ion channels in guard cells
2,3,6

 may also use components of the PYR/PYLs-
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PP2C-SnRK2 regulatory module and whether additional receptors and core signaling components 

are involved. 

 

FIGURE 1. Reconstitution of the ABA signalling pathway for stress-responsive gene expression in 

Arabidopsis protoplasts. a, SnRK2-mediated phosphorylation of ABF2 is sufficient for ABA-responsive 

gene expression. b, Reconstitution of ABA signalling pathway by co-expression of PYR1, ABI1, SnRK2.6 

and ABF2. c, Reconstitution of ABA signalling pathway with different members of the PYR/PYL family.d, 

Reconstitution with different combinations of the core components. Protoplasts (2 × 10
4
) from 

the snrk2.2/3/6 triple mutant were used except in d, in which protoplasts from Col-0 wild-type plants were 

used. RD29B::LUC and ZmUBQ::GUS were used as the ABA-responsive reporter and internal control, 

respectively. After transfection, protoplasts were incubated for 5 h under light and in the absence of ABA 

(open bars) or in the presence of 5 μM ABA (filled bars). Error bars indicate s.e.m. (n = 3). 
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FIGURE 2. ABI1 and ABI2 inhibit SnRK2.6 by dephosphorylation. a, SnRK2.6 is deactivated by 

ABI1. MBP or MBP–SnRK2.6 treated without (-) or with GST–ABI1 or GST was incubated with a GST–

ABF2 fragment (Gly 73 to Gln 119) in the presence of [γ-
32

P]ATP. In the rightmost lane (Post), GST–ABI1 

was added after phosphorylation of the GST–ABF2 fragment by MBP–SnRK2.6. Bands of GST–ABF2 

fragment and MBP–SnRK2.6 are indicated by an arrow and an arrowhead, respectively. Radioactivities of 

GST–ABF2 fragment bands were measured with a phosphoimager and were normalized, taking as unity the 

radioactivity of the band by MBP–SnRK2.6 without ABI1 treatment. Error bars indicate s.e.m. (n = 5). b, 

Coomassie staining of purified MBP, SnRK2.6, ABF2, GST and ABI1. c, Flag-tagged SnRK2.6 extracted 

from transgenic plants before and after ABA treatment was used instead of the MBP–SnRK2.6 in a. 

Coomassie staining, autoradiography and relative radioactivities (error bars indicate s.e.m.; n = 5) of the 

GST–ABF2 fragment are shown. Western blotting with anti-Flag antibody shows the amount of Flag–

SnRK2.6 protein. d, Autoradiography of autophosphorylated SnRK2.6 showing dephosphorylation of 

SnRK2.6 by MBP–ABI1 and MBP–ABI2 and the effect of PYL8 and PYL5, respectively, in the presence of 

1 μM ABA. e, Release of phosphate from the synthetic peptide HSQPKpSTVGTP, corresponding to residues 

170–180 of SnRK2.6. Error bars indicate s.e.m. (n = 3). 
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FIGURE 3. The combined effect of ABA, PYR1 and ABI1 on the phosphorylation of the GST–ABF2 

fragment by SnRK2.6 in vitro. a, Reconstitution of ABA regulation of ABF2 phosphorylation. MBP–

SnRK2.6 treated with GST–ABI1 and His-tagged wild-type PYR1 (w) or mutated PYR1
P88S

 (m) in the 

absence (-) or presence (+) of 2 μM (+)-ABA was incubated with a GST–ABF2 fragment (Gly 73 to Gln 119) 

in the presence of [γ-
32

P]ATP. Coomassie staining, autoradiography and relative radioactivities of GST–

ABF2 fragment are shown. Radioactivities of the GST–ABF2 fragment were normalized, taking as unity the 

radioactivity of the band with PYR1
P88S

 in the absence of ABA. Error bars indicate s.e.m. (n = 5). b, 

Coomassie staining of PYR1 (w) and PYR1
P88S

 (m). c, ABA dose response. MBP–SnRK2.6, GST–ABI1 and 

His-PYR1 were incubated with different concentrations of (+)-ABA before the kinase assay, using the GST–

ABF2 fragment as substrate. Coomassie staining, autoradiography and relative radioactivities of the GST–

ABF2 fragment are shown, taking as unity the radioactivity of the band in the absence of ABA. Error bars 

indicate s.e.m. (n = 9 for less than 5 μM, n = 4 for 5 μM or more). 
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FIGURE 4. Effect of PP2C mutations on ABA response phenotypes and kinase activities of 

SnRK2s. a, In-gel kinase assay showing the activities of SnRK2s in the abi1/hab1/abi2 (i2) 

and abi1/hab1/pp2ca (ca) triple mutants. snrk2.2/2.3/2.6was used as a control. A GST-fused ABF2 

fragment (Gly 73 to Gln 119) was used as the phosphorylation substrate. The expected positions of 

SnRK2.6 and SnRK2.2/2.3 are indicated by an arrow and an arrowhead, respectively. 

Radioactivities of the upper and lower bands were normalized, taking as unity the radioactivity of 

the upper band in the wild type (WT). Error bars indicate s.e.m. (n = 3). b, The PP2C triple mutants 

show hypersensitivity to ABA during germination and early seedling development. The photograph 

shows plants of the indicated genotypes grown for 14 days on MS medium containing 3% 

sucrose. c, The percentage of seedlings with green cotyledons 6 days after the end of stratification. 

Error bars indicate s.e.m. (n = 3). 
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 Methods summary 
 

Transient activity assays were performed in Arabidopsis mesophyll protoplasts from Columbia 

wild-type or snrk2.2/2.3/2.6 (ref. 21) plants as described previously 

(http://genetics.mgh.harvard.edu/sheenweb)
28

. Transfected protoplasts were incubated for 5 h in 

light in the absence of ABA or the presence of 5 μM ABA, and then used for the measurement of 

luciferase (LUC) and β-glucuronidase (GUS) activities as described previously
28

. Yeast two-hybrid 

and triple-hybrid assays, co-immunoprecipitation and BiFC assays were similar to those described 

previously
13

. Purification of GST–HAB1, His–PYR1 and His–PYR1
P88S

 was performed as 

described previously
12

. GST, GST–ABI1, GST–ABF2 fragment, MBP and MBP–SnRK2.6 

constructs were transformed into Escherichia coli Rosetta cells (Novagen) and the recombinant 

proteins were isolated by affinity purification. Purification of MBP–ABI1, MBP–ABI2, His–PYL8, 

His–PYL5 and His–SnRK2.6 was as described previously
13

. In-gel kinase assays were performed as 

described previously
20

 with the modification that 300 μg of protein was loaded for samples without 

ABA treatment. For germination assays, seeds were plated on MS (Murashige and Skoog) nutrient 

medium containing 3% sucrose. In each experiment, at least 50 seeds per genotype were stratified at 

4 °C for 3 days, and the presence of green cotyledons was scored after incubation for 6 days at 

23 °C. Full methods and any associated references are available in the online version of the paper at 

www.nature.com/nature. 
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 Abstract 

The recent identification of abscisic acid (ABA) transporters provides an important insight into the 

delivery of ABA from the vascular system and its uptake by target cells. A putative connection with 

PYR/PYL receptors is envisaged, linking ABA uptake and intracellular perception by a fast and 

efficient mechanism. Downstream signaling of the core pathway involves regulation of ABA-

responsive element binding factors (ABFs/AREBs) through phosphorylation, ubiquitination and 

sumoylation in the case of ABI5. Several E3 ligases appear to regulate ABA signaling either 

positively or negatively, although relatively few targets are known yet. ABFs/AREBs are 

themselves subjected to transcriptional regulation, and some transcription factors harboring the 

WRKY domain (WRKYs) appear to regulate their expression through W-box sequences present in 

the promoters of ABFs/AREBs.   
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 Introduction 

 The phytohormone abscisic acid (ABA) represents a key signal to regulate plant growth and 

development as well as plant response to abiotic and biotic stress [1]. In the plant field, the pivotal 

role played by ABA to coordinate the plant adaptive response under drought stress and hence 

potential applications in agriculture have led to numerous studies focused on the elucidation of 

ABA perception and downstream signaling. Challenging our perspective as plant biologists, the 

discovery of ABA in humans and its prophylactic and therapeutic efficacy in mouse models of 

diabetes and atherosclerosis have further extended the interest in this animal/plant molecule [2
●
,3

●
]. 

In 2009, the plant family of PYR/PYL/RCAR ABA receptors was discovered and its connection 

with key elements of the pathway, i.e. PP2Cs and SnRK2s, was established (Figure 1). The module 

receptor-ABA-phosphatase controls phosphorylation signaling cascades in a ligand-dependent 

manner through regulation of ABA-activated SnRK2s and in concert with other kinases, e.g. 

calcium-dependent kinases (CPKs/CDPKs) (Figure 1). These findings have been extensively 

reviewed recently and they will not be the main topic of this review [1,4–10]. Instead, we will focus 

on other emerging aspects of the ABA pathway, such as the identification of ABA transporters, an 

update on the effect of protein degradation/stability in ABA signaling, the connection between 

ABFs/WRKYs transcription factors (TFs) as well as new reports on Mg-chelatase function. 

Efflux and uptake of ABA  

 Since ABA biosynthesis occurs predominantly in vascular parenchyma cells and ABA has 

systemic effects, a requirement for efficient intercellular transport of ABA, beyond that of passive 

diffusion, had been envisaged [11–13]. For instance, ABA2, AAO3 and NCED3, key enzymes of 

the ABA biosynthetic pathway, are expressed in specific areas of vascular tissues, which suggested 

the existence of a transport system to deliver ABA to target tissues and cells [11–13]. In 2010, two 

ABA transporters were identified by genetic screenings [14
●●

,15
●●

]. A search for Arabidopsis ABA-

hypersensitive mutants in germination and seedling growth led to the identification of the abcg25 

mutant [14
●●

]. The ABCG25 gene, which encodes an ATP-binding cassette (ABC) transporter, is 

expressed mainly in vascular tissues and the protein is localized at the plasma membrane (Figure 1). 

A transport assay with vesicle membranes obtained in transfected insect cells indicated that 

ABCG25 might have ATP-dependent ABA-efflux activity in plant cells. Indeed, overexpression of 

ABCG25 in Arabidopsis led to reduced sensitivity to ABA-mediated inhibition of growth, probably 

because the cells remove ABA by active transport, and reduced water loss, probably because this 

transporter facilitates the delivery of ABA to guard cells.  



189 
 

 ABA delivery from vascular tissues to the apoplast of guard cells might be connected with 

ABA uptake from the apoplast to the cytosol through another plasma membrane-localized 

transporter, ABCG40/PDR12 (Figure 1). ABCG40 was identified by direct screening for potential 

ABA transporters in the PDR-type subfamily of ABC transporters [15
●●

]. To this end, seed 

germination and stomatal response were analyzed in 13 out of 15 knockout mutants (abcg29-41), 

and as a result, the mutant abcg40 was identified as having marked differences with respect to wild 

type (wt). Stomata of abcg40 showed reduced stomatal closure and lower inhibition of stomatal 

opening in the presence of ABA, and therefore, abcg40 plants showed enhanced wilting under 

drought stress and reduced increase in leaf temperature in response to ABA. ABCG40 function is 

also required in cell types other than guard cells, although gene expression in guard cells was higher 

than in mesophyll cells. Thus, experiments conducted in rosette tissue also showed delayed and 

reduced expression of three ABA-responsive genes in abcg40. Results obtained with abcg40 seeds 

are more difficult to interpret, because although these seeds were less-sensitive to inhibition of 

germination mediated by exogenous ABA, they also showed faster germination on medium lacking 

ABA. Finally, biochemical experiments in the yeast heterologous system and tobacco cell 

suspensions showed that ABCG40 is a high-affinity (Km = 1 M) and specific uptake ABA 

transporter.   

 Although both transporters belong to the large ABC subfamily G, they are grouped in 

different branches because of an important structural difference, i.e. ABCG25 belongs to the branch 

of half-size transporters (AtABCG1–28) and ABCG40 to that of full-size transporters (AtABCG29–

43) [16]. Since ABCG25 belongs to a large gene family, functional redundancy might explain why 

the abcg25 mutant does not show aerial phenotypes. However, ABCG40 also belongs to a gene 

family and, nevertheless, the stomatal response of abcg40 was notably affected. Since abcg40 also 

affects ABA-response of mesophyll cells, the authors could assess the contribution of ABCG40 to 

ABA uptake in Arabidopsis protoplasts, concluding that this gene product is the major ABA 

importer in leaf-cell protoplasts. Moreover, an apparent paradox is now solved. The pH-dependent 

diffusion of undissociated ABA is a component of ABA uptake, which would be markedly reduced 

under drought stress that increases the pH of xylem sap [17]. The discovery of ABCG40 offers a 

reasonable alternative, under drought-stress less ABA would be nonspecifically trapped by passive 

diffusion in nontarget tissue and more ABA would be available for pH-independent uptake [15
●●

]. 

Protein degradation and transcriptional regulation 

 The ubiquitin/26S proteasome pathway plays a key role in the perception and transmission 

of environmental and hormonal signals [18]. For instance, perception of auxins, jasmonates and 
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gibberellins are closely linked to this pathway, and ethylene and ABA signaling also involve 

components of this protein degradation pathway [19]. Either negative or positive transcriptional 

regulators of these hormonal pathways are targets of the 26S proteasome, and therefore, inactivation 

of transcriptional repressors or ceasing degradation of activators, respectively, leads to hormone 

signaling. ABA signaling is affected in different mutants that show lesions either in a regulatory 

subunit of the 26S proteasome [20], different E3 ligases [21–24
●●

,25
●
] or substrate receptors of E3 

ligases [26
●●

] (Figure 2). Additionally, sumoylation, which can act competitively on targets 

regulated by ubiquitination to regulate protein stability, also affects ABA signaling through 

negative regulation of ABI5 activity [27,28
●●

]. Indeed, pioneering work on the regulation of ABI5 

protein stability was crucial to link the 26S proteasome and ABA signaling [29].   

 Mutants of some proteolysis-related components have a pleiotropic effect including 

impaired ABA signaling. For instance, the rpn10 mutant, which is impaired in a subunit of the 19S 

regulatory particle of the 26S proteasome, is affected in a number of processes and it shows 

hypersensitivity to ABA in seed germination and root growth assays as well as stabilization of the 

short-lived ABI5 transcription factor [20]. Pleiotropic effects, including ABA hypersensitivity, were 

also found in the siz1 mutant, which was impaired in a SUMO E3 ligase. SIZ1 negatively regulates 

ABA signaling through sumoylation of ABI5, which inactivates the protein and prevents its 

proteasome-mediated degradation [28
●●

]. ABI5 transcript accumulation, protein stability and 

protein phosphorylation are highly regulated by ABA [29]. In the absence of ABA, ABI5 is 

degraded to allow germination and postgerminative growth, whereas ABA induces ABI5 

stabilization, when applied between 48 and 60 h poststratification, to prevent early growth under 

osmotic stress conditions [29]. The RING E3 ligase KEG is required for ABI5 degradation under 

normal growth conditions and ABA causes ABI5 accumulation by promoting KEG degradation 

[22,26
●●

]. Phosphorylation of KEG is required for its ABA-induced degradation, which opens a 

possible link with the SnRK2s of the core ABA signaling pathway.  

 ABI5 seems to be a highly courted TF, since also CUL4-based E3 ligases regulate its 

stability through the proteins DWA1 and DWA2, which are the components of the ligase that 

mediate substrate recognition [30
●●

]. Finally, another element that regulates ABI5 protein levels is 

ABI five binding protein (AFP); however, its mechanism of action is not yet clear. AFP belongs to 

a small family of proteins, AFP1–4, that are able to interact with ABI5 [31,32]. Initially, it was 

proposed that AFP might promote ABI5 degradation by the 26S proteasome [31]; however, AFP is 

not an E3 ligase. Instead, a characteristic feature of AFP1–4 proteins is the presence of an ethylene-

responsive element binding factor-associated amphiphilic repression (EAR) motif at the N-

terminus. The EAR motif is a hallmark of transcriptional repressors such as AUX/IAA and NINJA 
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proteins, which function as adaptor proteins to recruit the Groucho/Tup1-type co-repressor 

TOPLESS (TPL) [33
●
]. Interaction of AFP2 and AFP3 with TPL has been observed by yeast two-

hybrid assays, which suggests the tempting hypothesis that some AFP proteins and TPL (or TPL-

related proteins) form a high-molecular mass complex, acting as transcriptional repressors of ABA 

signaling by blockade of ABI5 function [33
●
]. 

 ABI3 is another target of the 26S proteasome and the RING E3 ligase AIP2 is a negative 

regulator of ABA signaling that promotes ABI3 degradation [21,34]. Thus, during vegetative 

growth, ABA promotes ABI3 degradation through enhancement of AIP2 function [21]. Conversely, 

ABA promotes the accumulation of ABI3 during seed maturation and the time period when post-

germination growth arrest occurs, via transcriptional and post-translational mechanisms. PRT6 

(Proteolysis6) is another type of E3 ligase that negatively regulates seed sensitivity to ABA [24
●●

]. 

PRT6 is an N-recognin E3 ligase that recognizes amino-terminal destabilizing residues of proteins, 

targeting them for degradation at the 26S proteasome. Mutant prt6 seeds are very hypersensitive to 

ABA-mediated inhibition of seed germination and according to genetic interactions with various abi 

mutants, it has been hypothesized that PRT6 might degrade a positive regulator of ABA signaling 

during seed after-ripening. The E3 ligases described up to now are genetically defined as negative 

regulators of ABA signaling. However, other E3 ligases, such as the RING finger E3 ligases SDIR1 

(salt- and drought-induced ring finger1) and RHA2a (ring-H2), are genetically characterized as 

positive regulators because sdir1 and rha2a mutants show reduced sensitivity to ABA in seed 

germination and early seedling growth assays, and in the case of sdir1, also reduced stomatal 

closure by ABA [23,25
●
]. Therefore, these ligases might be involved in the degradation of 

transcriptional repressors or negative regulators of ABA signaling. 

 

ABFs, WRKYs and Mg-chelatase in ABA signaling 

 Different families of transcription factors regulate ABA signaling in a positive or negative 

manner [1]. Among the best known positive regulators of ABA signaling and key targets of 

SnRK2s are the bZIP-type ABFs/AREBs, which recognize the ABA-responsive elements in the 

promoters of ABA-inducible genes. A comprehensive analysis of the AREB1/ABF2, AREB2/ABF4 

and ABF3 TFs has been performed through the generation of multiple combinations of mutants 

[35
●
]. During seed germination, none of the mutants showed different sensitivity to ABA compared 

to wt. However, vegetative responses to ABA were particularly impaired in the triple mutant 

areb1areb2abf3, as illustrated by its resistance to ABA-mediated inhibition of root growth and 

diminished expression of stress-responsive genes. Compared to this, the triple mutant only shows a 
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modest increase in water-loss rate compared to wt, indicating that other targets of ABA-activated 

SnRK2s, different than bZIP-type AREB/ABFs, are mostly responsible for the regulation of 

stomatal aperture.  

 Different rice and Arabidopsis WRKY TFs have been implicated in ABA signaling [36–

38
●
,39

●
,40

●
]. Usually, WRKYs have been described as TFs inducible by pathogen infection or 

salicylic acid treatment, and indeed, a large number of pathogen-inducible genes contain W-box 

sequences that are recognized by WRKY proteins. Interestingly, ABA signaling genes as ABF2, 

ABF4, ABI4 or ABI5 contain W-box sequences in their promoter regions [38
●
, 40

●
]. Thus, 

WRKY63 positively regulates expression of ABF2 through binding to W-boxes of its promoter 

(Figure 3), but intriguingly, wrky63 shows enhanced sensitivity to ABA during seed germination 

and seedling growth, whereas it is ABA-hyposensitive for stomatal closure [38
●
]. Using ChIP 

analysis, Shang et al. [40
●
] have shown that WRKY40 binds the promoters of ABF2, ABF4, ABI4 

and ABI5, and for instance, represses ABI5 expression (Figure 3). Accordingly, the wrky40 mutant 

shows enhanced sensitivity to ABA-mediated inhibition of germination and early seedling growth. 

In agreement, Chen et al. [39
●
] obtained similar results during the characterization of wrky40. In 

contrast, conflicting results were obtained with respect to ABA sensitivity of wrky18 and wrky60 

mutants, which are defined as positive regulators of ABA signaling [39
●
], whereas Shang et al. 

[40
●
] catalogued them as repressors. Finally, this article poses a model for Mg-chelatase H subunit 

(CHLH/ABAR)-mediated ABA signaling that involves recruitment of WRKY40 at the cytosol 

upon ABA perception by the cytosolic tail of CHLH [40
●
]. This model faces important criticisms 

since two groups have failed to show ABA binding by barley or Arabidopsis CHLH [41
●
, 42

●
], 

apparently the carboxylate group of ABA, which is required for bioactivity, is not required for ABA 

binding by CHLH [43, 44
●
] and finally, no alteration in regulation of stomatal aperture was reported 

in any of the single or combined wrky mutants [40
●
]. In spite of this controversy, it seems well 

supported that CHLH affects ABA signaling in stomatal guard cells, since impairment of its 

function in RNAi lines [45, 46
●●

] or the missense mutants cch (encoding chlh
P642L

) [45] and 

rtl1(encoding chlh
L690F

) [42
●
] led to enhanced water-loss and lack of ABA-induced stomatal 

closing. Since another mutant impaired in a different subunit of Mg-chelatase, CHLI, shows 

impaired stomatal closure, it has been suggested that the Mg-chelatase complex as a whole plays an 

indirect role in ABA signaling, likely through regulation of Ca
++

 mobilization from chloroplastic 

stores [42
●
].  Structural evidence supporting ABA-binding by CHLH would be a definitive answer 

to the above described controversy.  
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Conclusions 

 The recent identification of PYR/PYL intracellular ABA-receptors nicely matches with the 

discovery of an active transport system for ABA-uptake, which allows fast delivery of ABA to 

target cells for efficient inactivation of clade A PP2Cs through PYR/PYL receptors. It somehow 

seemed ABA signaling was inefficiently designed, spending so much investment on the core 

pathway, i.e. receptors-phosphatases-kinases, and depending exclusively on passive diffusion for 

intracellular ABA delivery. In addition to protein phosphorylation, regulation of protein stability by 

the 26S proteasome is an important mechanism for ABA signaling, particularly during germination 

and early seedling growth. Several E3 ligases are involved in this process, acting either positively or 

negatively. Additionally, a few E3 ligase mutants, e.g. sdir1 and dwa1 dwa2, are also known to be 

affected in the regulation of stomatal aperture, and this phenotype can´t be explained with the 

reduced number of targets identified so far. Therefore, an important question for the future is the 

identification of additional targets of E3 ligases beyond of ABI3 and ABI5.  Finally, transcriptional 

regulation of ABFs/AREBs by WRKYs is a novel finding in the complex regulation of gene 

expression in response to ABA.  
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Figure 1. A simplified model of the ABA pathway that integrates ABA transport and signaling. 

PYR/PYL/RCAR receptors perceive ABA intracellularly, either at cytosol or nucleus, and form 

stable ternary complexes with clade A PP2Cs. Thus, phosphatases are inactivated, which allows the 

activation of downstream targets of the PP2Cs, for instance SnRK2.2, 2.3 and 2.6/OST1. These 

kinases are either autophosphorylated or activated by putative upstream activating kinases (UAKs), 

leading to ABA-induced regulation of plasma membrane and nuclear targets, such as NADPH 

oxidase, KAT1, SLAC1 and ABFs/AREBs (reviewed in 1, 4-10). In addition to SnRK2s, the 

calcium-dependent protein kinases (CPKs) also regulate ion fluxes and transcriptional response to 

ABA, and for instance, the CPK and SnRK2 branches converge on the anion channel SLAC1. TFs 

are supposed to act in the context of chromatin and components of chromatin remodeling 

complexes, e.g. type SWI/SNF and histone deacetylases (HDAC), have been shown to regulate 

ABA signaling [47–51]. ABA and its glucose ester (ABA–GE) are subjected to intercellular and 

likely intracellular transport. The role of ABC transporters, ABCG25 and ABCG40, in ABA 

transport is highlighted and putatively connected with ABA perception. BG1 is an intracellular b-

glucosidase localized to ER that releases ABA from ABA–GE stored in the vacuole or imported 

from the vascular system [52].  
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Figure 2. Ubiquitin and SUMO E3 ligases as regulators of ABA signaling. Whereas ubiquitin-

modified proteins are targeted for degradation by the 26S proteasome, the fate of sumoylated 

proteins depends on the target. In the case of ABI5, sumoylation by SIZ1 protects it from 

proteasome degradation and maintains the TF in an inactive form. AIP2, KEG, PRT6 and DWA1/2-

DDB1-CUL4 promote degradation of positive regulators of ABA signaling (ABI3 by AIP2, ABI5 

by both KEG and DWA complex). Conversely, SDIR1 and RH2a are supposed to promote 

degradation of unidentified negative regulators. RPN10 is a regulatory subunit of the proteasome 

that mediates degradation of ABI5.  

 

 

 

Figure 3. Transcriptional regulation of ABF2 and ABI5 expression by WRKY TFs. Several 

WRKYs have been involved in ABA signaling, namely WRKY2, WRKY18, WRKY40, WRKY60 

and WRKY63. Binding to W-box sequences of ABF2 promoter by WRKY63 or ABF4, ABI4 and 

ABI5 promoters by WRKY40 has been demonstrated. WRKY63 activates expression of ABF2, 

whereas WRKY40 represses expression of ABI5.  
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