
Universitat Politècnica de València

Department of Systems Data Processing and Computers

Parallel Architectures Group

Analysis of opportunities

for cache coherence

in heterogeneous embedded systems

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Master in Computer Engineering

Author

Albert Esteve Garcia

Advisors

Dr. Antonio Robles Mart́ınez

Dr. Maria Engracia Gómez Requena

September, 2012

Acknowledgments

I would like to first and foremost thank my girlfriend Carla, for her patience and support

during this time. Also to my mother Lola and my brother Victor for always being there

when needed, for encouraging and supporting me, particularly my brother, who hooked

me to biking, which has been my safety valve whenever I needed one.

I should also thank my advisors, Dr. Antonio Robles and Dr. Maria Engracia Gomez,

for guiding and correcting me. They had an infinite patience with me, being always

accessible.

Dr. Jose Flich also helped and guided me whenever I required it from him. I’m thankfull

for his concern and consideration on my progress. His sense of humor and wisdom are

inspirational.

It would have been impossible to do this dissertation on time without the help of Maria

Soler, colleague and friend, who has always made efforts and given advice since her

arrival to the group.

Last but not least, I thank my colleagues in the Parallel Architectures Group, who have

made the time I spent with them something nice and relaxed. I hope to share many

other cakes and meals together in the Osaka. Especially Ricardo Marin, which was

unfortunate to sit beside me, but he have standed paciently, resolving all the technical

problems I’ve had, no matter how simple they were.

ii

Analysis of opportunities for cache

coherence in heterogeneous embedded systems

Albert Esteve Garcia

Department of Systems Data Processing and Computers
Universitat Politècnica de València

2012

ABSTRACT

Embedded devices are becoming more and more present everywhere. Moreover mobile

devices are becoming also more computationally powerful. These embedded architec-

tures present new challenges since they execute several applications that must preserve

security, allow sharing information in a coherent way, to be scalable and provide the

required levels of performance, while at the same time they must be power-efficient.

In this context, the vIrtical project focuses on extending the virtualization concept to

the embedded domain. Virtualization, widely used in the general-purpose computing

domain, allows an effective and clean way to isolate applications from hardware, so

being suitable to cope with the challenges faced by heterogeneous multi-core embedded

systems. However, virtualization on embedded systems is still in its infancy.

To achieve the development of the virtualization concept, software/hardware extensions

should be delivered at different layers of the design stack. As a part of this, in this work

we have analyzed memory sharing patterns from industrial embedded applications in

order to exploit them to make the coherence protocols more scalable and power-efficient.

Nowadays the coherence protocols do not cope with the needs of embedded systems

imposed by both their architecture and the supported industrial embedded applications.

They introduce overheads in terms of coherence traffic and storage resources required

iv

increasing both execution time and power consumption. In addition, current protocols

do not scale due to resource overheads and indirection when accessing data.

The study is made having in mind the latest proposals on coherence optimizations, and

related previous studies based on block classification and coherence deactivation.

v

Table of Contents

1 Introduction . 1

1.1 Context and Motivation . 1

1.2 The cache coherence problem . 4

1.3 Thesis Outline . 6

2 The Coherence Problem and Solutions 8

2.1 Cache Coherence Models . 9

2.1.1 MSI . 11

2.1.2 MESI . 11

2.1.3 MOSI . 12

2.1.4 MOESI . 13

2.2 Hardware-based Cache Coherence Protocols 13

2.2.1 Snoop Based Protocols . 14

2.2.2 Directory Based Protocols . 17

2.2.3 Coherence Deactivation . 20

2.2.4 In-Network Coherence Protocols 22

2.2.5 Token Based Protocols . 23

2.3 Alternate Specific Approaches to Coherence 25

2.3.1 Sharing within Virtual Hierarchies 25

2.3.2 Coherence on Heterogeneous Multiprocessor systems 26

3 Coherence on the Target System . 27

3.1 Description of the Target System . 27

3.2 Coherence Solutions in ARM Architecture 29

3.2.1 L1 Memory Organization . 30

vi

3.2.2 L2 Memory Organization . 31

3.2.3 Sharing Domains . 32

3.2.4 Coherence Special Transactions 35

3.3 GPPA and Coherence . 38

3.3.1 General-Purpose Programmable Accelerator 39

3.3.2 Hardware Processing Unit . 41

3.4 Coherence for Other Devices in the Target System 41

4 Analysis of Applications . 44

4.1 Analysis Methodology . 45

4.1.1 Simulation Tools . 45

4.1.2 Trace Acquisition Methodology 47

4.1.3 Applications . 49

4.2 Sharing Patterns Analysis . 50

4.2.1 Analysis Results . 51

5 Conclusions and Publications . 60

5.1 Conclusions . 60

5.1.1 Discussion . 61

5.2 Publications . 63

Bibliography . 64

vii

List of Figures

1.1 Examples of different embedded systems present nowadays 2

1.2 Embedded Heterogeneous System . 3

1.3 The cache coherence problem . 5

2.1 Finite State Machine for a MSI protocol 11

2.2 Finite State Machine for a MESI protocol 12

2.3 Finite State Machine for a MOSI protocol 12

2.4 Finite State Machine for a MOESI protocol 13

3.1 Cortex-A15 CCI Cortex-A7 System . 28

3.2 Main elements of the target system . 29

3.3 Example of domain layout . 33

3.4 Example of System Topology with domain layout 34

4.1 Memory Hierarchy for the quad-core Cortex-A15 MPCore 46

4.2 ARM FastModels RTSM-VE model . 47

4.3 Data/Instruction classification . 52

4.4 Static and dynamic Analysis per block type 54

4.5 Static and dynamic Analysis per number of sharers 55

4.6 Page Classification . 56

4.7 Proportion of blocks per type on SW pages 58

4.8 Proportion of store accesses on SW pages. 59

4.9 Proportion of blocks with producer-consumer pattern on pages SW . . . 59

viii

List of Tables

2.1 Properties of blocks regarding to their cache state 10

3.1 Terminology translation between ACE and MOESI state machines 32

x

Chapter 1

Introduction

This chapter first briefly explains the context which this dissertation is settled in and

their motivations in Section 1.1. Then the coherence problem is identified in Section 1.2.

Finally, the chapter concludes detailing the structure of this dissertation in Section 1.3

1.1 Context and Motivation

During the last decade embedded devices have invaded our everyday life, to the degree

that it is becoming hard to imagine living without them. Embedded systems are cur-

rently present at home (set-top boxes, smartphones, TV set), at work (smartphones,

tablets), even when we travel (in-car and in-flight entertainment). Nowadays this tech-

nology allows everyone to be connected nearly everywhere, by several possible means

(voice, text, and video).

With the recent advances in wireless networks and the exponential growth in the usage

of multimedia applications, multi-core platforms point to be the solution of feature-

rich phones to deliver the performance comparable to today’s computer system with

the hugely increased complexity of also requiring real-time and protected execution

environments to maintain their embedded functionality.

The availability of powerful heterogeneous multi-core processors has led to an unforeseen

escalation of software complexity as device manufacturers are integrating multimedia

1

services, data networking, photography, telephony and personal information manage-

ment into their embedded products.

The software stack running on contemporary smart-phones is already 5±7Mloc (million

lines of code), and growing. Top-of-the-line cars contain literally gigabytes of software.

Increasingly, embedded systems run applications originally developed for the PC world

(web browsers, games).

Fig. 1.1: Examples of different embedded systems present nowadays

Needless to say, the ever-increasing complexity of such devices becomes a limiting factor:

being able to timely deliver top feature-rich devices poses a renewed challenge over

system-on-chip (SoC) designers. To be competitive, new communication, consumer,

and computer product designs must exhibit rapid increases in functionality, reliability,

and bandwidth at sustainable cost and power consumption. There is intense pressure

on chip designers to develop increasingly complex hardware in decreasing amounts of

time.

The vIrtical project aims to tackle these challenges by extending the virtualization con-

cept of the general-purpose domain to the embedded domain. Virtualization techniques

have become popular among high-performance servers for several reasons, among which

2

include reduction of expenses in terms of cost and simplification of the administration

that provides the server consolidation (running a large number of virtual servers on a

small number of real server). In addition, virtualization is revealed as a fundamental

mechanism for the efficient use of the increasing number of cores that are integrated

into a CMP.

However, the application of virtualization its still on his infancy on embedded systems.

The challenge is the virtualization of embedded systems that requires particular ap-

proaches meeting tight resource budget and considering their particularities.

Such systems are currently configured on a SoC with multiple cores, which also integrate

other elements such as GPUs, hardware accelerators, I/O devices, etc. In which the

heterogeneity of its elements is one of its main features, as can be seen in Figure 1.2.

Fig. 1.2: Embedded Heterogeneous System

As part of the vIrtical project, and taking into account the many extensions that should

be delivered to the design stack to support virtualization, this dissertation focuses on

making a study of the suitability of the many techniques present on the general-purpose

3

domain to deal with the coherence problem in the embedded domain.

In this context, the cache coherency protocol, which manages communication between

the cores of the CMP, is one of the key difficulties due to its scalability. In this sense,

the design should try to minimize the overhead of the coherence protocol both in terms

of storage resources and required traffic through the interconnection network. At the

same time, virtualization servers pose another problem for the efficiency and scalability

(current protocols do not scale due to resource overheads and indirection when accessing

data) of coherence protocols, so that the design of the latter should be flexible enough

to adapt effectively to a configuration-variable environment system as the derivative of

virtualization.

The study is made with two main approaches in mind. One of the key approaches for

this study is try to avoid the tracking of non-coherent memory blocks, which means

that the block is either not shared or never written and, therefore, cannot suffer from

inconsistencies. These kind of techniques reduce the network overload due to coherence

messages, execution time and energy consumption; making them a good candidate for

the needs of the aforementioned embedded systems. Another good candidate consists

on deactivate the coherence when not needed as showed in Section 2.2.3.

1.2 The cache coherence problem

Chip MultiProcessors’ (CMPs) cores logically share address space. Also, cores usually

include at least one level of cache, which is private to each one, in order to deal with

the increasing gap between processor and memory speeds (the memory wall problem).

Memory caches are smaller and, therefore, faster. In this sense, in a memory hierarchy

compound of various (more than one) levels, the closer to the core the memory is, the

smaller and faster it is.

4

On the scenario in Figure 1.3 we have a shared memory M connected to a system

consisting in many Processors Pn each one with its private cache Cn. If many cores

(1 and 2) read the same memory block on their respective private caches in order to

take advantage of locallity of data there is no problem as long as they keep it read-only.

However, if a core modifies the shared memory block (3) without other cores being aware

of it, this may result in different private caches containing inconsistent values for the

same memory block (4). This is the cache coherence problem.

Fig. 1.3: The cache coherence problem

Approaches for solving the cache problem fall into two major classes: hardware-based

and software-based approaches. The first one guarantee coherence by adding specific

hardware capable of doing so. In contrast, the second one restrain caching of shared data

to when is safe to do it, either done by the programmer, the compiler or the operating

system.

Hardware-based cache coherence solutions can also be classified according to two di-

mensions [Ste90]:

1. The type of interconnect : when processors are connected through a shared medium

(i.e. a bus), protocols may use broadcasting to enforce coherence. These protocols

5

are called snoopy protocols, and they apply to small-size bus-based systems because

of their scalability shortcomings. In case no shared medium is present (the total

order of messages cannot be guaranted), snoopy protocols are usually replaced by

directory-based protocols.

2. The type of cache-coherence policy : in this category we find mainly two schemes: a

write-invalidation and a write-update policy. In the former whenever a processor

writes into a shared memory block B it invalidates all the copies of the block

B present in other caches. On the other hand, in the latter one the caches are

updated with the new value of B.

Invalidation-based schemes are more common due to the fact that they are easier

to implement and also more efficient for larger cache lines size than update-based

schemes. Notice, however, that update-based schemes are more efficient when

accessing heavily contended lines, since subsequent cache accesses result in a hit

due to the update policy.

1.3 Thesis Outline

The organization of the reminder of this thesis is as follows:

� Chapter 2 presents a better insight to current solutions to the coherence problem.

It is mandatory to understand the approaches being trend at the present time in

order to see the suitability of those to the proposed system.

� Chapter 3 describes the target system of the study and the coherence needs of

each element on it.

� In Chapter 4 the analysis of the applications is presented. Firstly the simulation

6

tools used to perform the analysis are presented. Secondly, the methodology fol-

lowed to accomplish the acquisition of data is detailed, followed by the description

of the application used to get the data. Then, the analysis itself is presented.

� Finally, Chapter 5 gives a discussion of the results obtained, the suitability of the

many techniques to the coherence problem into the target system proposed and

the future directions to be explored.

7

Chapter 2

The Coherence Problem and
Solutions

This chapter gives some background to the coherence problem, detailing the cache co-

herence models (or policies) present in the literature.

The chapter also describes several of the many techniques used nowadays, which can be

found in the literature, to deal with the coherence problem. This kind of study must

be made in order to properly analyze the suitability of the techniques to improve the

coherence protocol of vertical target system.

First of all, we must emphasize with the classification seen in Section 1.2:

� Write-Invalidate: in which it is assumed that the only valid copy of the data is

the one that has changed (written) it for the last time. In a write-through policy

another copy of the data is also found in the main memory.

� Write-Update: in which every modification of the data is communicated to every

sharer of it. A valid copy of the block can be found on every sharer no matter

who was the last writer.

Also it must note that this Section supposes a simple system with only one level of

cache. When we refer to ”main memory” it can be understood as the immediately lower

level in the cache hierarchy.

8

2.1 Cache Coherence Models

In all the hardware-based systems with several copies of the same block, a proper co-

herence protocol must exist in order to perform the required actions atomically.

In a generic cache coherence protocol every block present in the cache hierarchy has

a state associated with it (along with tag and data), which indicates its arrangement.

The existing states and the way the block is classified among them is described in the

cache coherence model. It can be usually seen as a finite state machine specifying how

the state of a block changes. Despite the fact that only cached blocks have a state, the

blocks only in main memory can be seen as having a special Invalid state.

While in a uniprocessor system, for write-through write-no-allocate caches, only two

states are needed (Valid or Invalid); in a multiprocessor system as the target system

of this thesis, we can find a set of n states1, each one manipulated by the finite state

machine implemented on the cache coherence controllers on each node. The finite state

machine is the same for every block and every cache, but the actual state of a block

differs for different caches.

The most common states for cache coherence models are:

� M (Modified): a cache block in this state holds the only valid copy of data. The

core has read and write permissions over the block. The copy of the block found

on main memory is stale. If another core requests the block, the cache with the

block in the modified state must provide it.

� O (Owned): a cache block in this state must provide the data if another core

requests it. In this case the block can coexist with another blocks in the Shared

1Depending on the alternative chosen, namely MSI, MOSI, MESI, MOESI, etc. The names are
accord with the states of the finite state machine associated

9

state. The core holding the block in the Owned state has just read permission

over it.

� E (Exclusive): a cache block in the exclusive state holds a valid copy of the data

with read and write permissions over it. In this case the state does not imply

ownership, so the core does not need to supply the block in the case another core

requests it. Exclusive state can be seen as an intermediate state between shared

and modified.

� S (Shared): a cache block in this state has a valid copy of the data with read

permission over it. Other cores can also hold the block on the shared state and

one of them may have it in the owned state. If no owner block is present the main

memory must provide it in the case that another core requests it.

� I (Invalid): a cache block in this state does not hold a valid copy of the block.

As observed in table 2.1, only the M and E states imply exclusiveness on the block and,

therefore, write permission. On the other hand, M and O states imply ownership, which

means that cores must supply it in case of another core requesting it. Finally, all states

imply validity of block, which means that they have at least read permission over it,

except for the Invalid state.

Property
State Exclusiveness Ownership Validity

M
√ √ √

O X
√ √

E
√

X
√

S X X
√

I X X X

Table 2.1: Properties of blocks regarding to their cache state

10

2.1.1 MSI

The MSI protocol supposes the minimum set of states to ensure the cache coherence

protocol to work properly for invalidation-based write-back private caches.

Fig. 2.1: Finite State Machine for a MSI protocol

In the Figure 2.1 the finite state machine for the MSI protocol can be observed. In the

scheme dashed lines represent request from other cores and bold lines represent read and

stores issued by the home core. Furthermore, the label for the transitions is in the form

R/A, in which R represents the request that originated the transition and A represent

the action made by the cache controller (coherence traffic generated).

In the MSI protocol a block can be obtained either in modified state, if it requires

read/write permission, or in shared state, if the block is present in other private caches

and does not require write permission.

2.1.2 MESI

Adding the E state optimizes the MSI protocol for non-shared data. It allows the block

to be cached as exclussive if cached for the first time, avoiding generating a transition

for subsequent writes. The transition diagram can be observed in Figure 2.2.

11

Fig. 2.2: Finite State Machine for a MESI protocol

2.1.3 MOSI

In the case of the MOSI protocol the new state (owned) supposes an optimization for

the MSI protocol focused on allowing other caches to obtain the block from the private

cache containing it on the owned state (only one at a time), due to the fact that it

is less time consuming. Also the owned state does not enforce to maintain the block

updated on main memory. In Figure 2.3 can be seen that the block in the owned state

must change either to modified if it requires write permission, invalidating other sharers

holding the block; or to shared if it updates the block on main memory.

Fig. 2.3: Finite State Machine for a MOSI protocol

12

Fig. 2.4: Finite State Machine for a MOESI protocol

2.1.4 MOESI

Figure 2.4 shows the state transition diagram for the MOESI protocol, which is the last

coherence model considered in this dissertation. It includes both optimizations for the

MSI protocol considered in the previous sections.

2.2 Hardware-based Cache Coherence Protocols

Hardware-based coherence protocols allow developing software without taking into ac-

count the cache coherence problem. In general two main coarse grain architectural

solutions can be found in the literature for hardware-based caching: snoopy-based and

directory-based techniques. This Section appends some approach types to the classifi-

cation. Especially one which appears to be a good candidate for the target system of

the thesis: cache deactivation technique. Nevertheless, cache deactivation can be seen

as an optimization of either previous approaches.

13

2.2.1 Snoop Based Protocols

As mentioned in Section 1.2, snoopy protocol are based in broadcast the request in order

to enforce coherence. In this case, cache controllers ”snoop” on the bus and monitor all

other cache transactions. Once detected a transaction, the cache controller must take

the most appropriate action, which may include generating bus transactions to access

memory. In order to ensure this kind of techniques it must be assured two key properties

for the bus:

1. All cache transactions must be visible for all the rest of cache controllers.

2. The network must maintain the total order of transactions.

In these systems the lower cache hierarchy levels dissipate the larger amount of power.

In a typical write-invalidate protocol, all bus-side cache controllers ”snoop”the bus upon

a request, increasing the access to lower cache levels.

Snoops in this snoop-based protocol typically fail to find the block originated by the

request, wasting the energy consumed to do so. Using the analytical model used in

[KG97] snoop miss tag accesses can be estimated and suppose about 33% of all consumed

by L2 caches for a 4-way SMP.

In [MMFC00], a family of energy-efficient structures called JETTY, which are capable

of filtering snoop traffic and reduce energy consumption in all lower-level caches, are

proposed. One set of JETTY resides between the processor and the memory-bus inter-

face on every node of the network. When a request is received, JETTY first addresses

this request either by guaranteeing that no copies exist or responding that copies may

exist, therefore requiring a subsequent snoop directly to the cache hierarchy. In this

case, JETTY relies on the following requirements to be successfull:

14

1. The majority of snoop-induced L2 accesses should result in a miss (which is,

fortunately, the most common case).

2. It should be possible to identify most of these misses using a small structure.

3. We should never report a would-be miss while the data is locally cached.

Using JETTY, nodes maintain two structures that respectively represent a subset of

blocks that are not cached (exclusive JETTY) and a superset of blocks that are cached

(inclusive JETTY).

Moshovos et. al. demonstrate that a very small JETTY succeeds in filtering 74% of

all snoop-induced tag accesses that would miss, in average. These results in an average

energy reduction of 29% measured as a fraction of the energy required by all L2 accesses

(both tag and data arrays).

There are many similar, more recent optimizations for snoopy protocols based in JETTY.

Andreas Moshovos propose RegionScout [Mos05], a family of simple filter mechanisms

based in JETTY that dynamically detect non-shared regions and provide nodes with

the capability of determine in advance that a request will miss in all remote nodes. This

capability allows reducing coherence traffic due to not probe any other node, and there-

fore, reducing the energy dissipated, bandwidth requirements and the latency of the

corresponding memory requests. However, RegionScout filters utilize imprecise infor-

mation about the regions that are cached in each node (using the Cached Region Cash

(CRH) structure), which leads to a loss of coverage produced by not being capable of

detect all requests that would miss in all other nodes.

Another more recent approach to snoop filtering is the Subspace Snooping [KAKH10]

from D. Kim et. al., which uses an OS-based mechanism to maintain subspaces at

page granularity. The set of sharers for a page is recorder on the OS page table entry

15

and translation look-aside buffers (TLBs). Thus, in a coherence request, messages are

delivered only to the nodes on the subspace. The main contribution of this approach

is that it does not add significant hardware complexity and is, therefore, adaptable to

many existing coherence techniques.

A similar technique intended to embedded systems is the one devised by X. Zhou et.

al. [YZP09]. In embedded systems, where compiler, system software and hardware are

fine tuned in their functionality and interaction with specific application requirements,

this proposed technique takes advantage of these characteristics to achieve significant

performance and power improvements through precisely identifying the shared memory

regions for each task, and then providing this information to the operating system and

cache snoop controller for runtime utilization. The information about shared memory

regions must be provided by the compiler or software developer.

There are a number of proposals based also in snoop filtering but using coarse-grain

memory regions tracking. In Coarse Grain Coherence Tracking (CGCT)[CLS05] each

processor in the multiprocessor structure maintains a special structure (namely Region

Coherence Array (RCA)) for monitoring coherence at a granularity encompassing a

power-of-two conventional cache lines. On snoop requests, each processor’s RCA is

snooped along with the cache line state and the coarse-grain state is piggybacked onto

the conventional snoop response and stored on the local RCA to avoid subsequent

broadcasts for line on the coarse-grain memory region. In addition to the non-shared

state, the RCA also tracks the shared read-only data to further optimization.

Also, in [ZSM07], RegionTracker (RT) is presented. RT introduces region-level function-

ality without compromising performance or area. With this technique communication

still uses fine-grain blocks, but RT tracks if a block is cached and where. RT replaces

the tag array from any conventional coherence protocol with a structure that facilitates

region-level lookups and management. In the end, it results in a cache design that does

16

not require additional area, nor higher associativity and it does not hurt performance,

latency or complexity.

Another coarse-grain snoop filtering technique is the one found in [PG08]. It assumes

that a page is divided in a number of consecutive regions and maintains coarse-grain

sharing information for these regions in a set-associative structure called Snoop Filter

Table (SFT). The usual coherence actions and the SFT updates are only performed if

a SFT entry address match is found. In this way the sharing information is collected

proactively and up to 90% of unnecesary snoop requests are filtered.

2.2.2 Directory Based Protocols

In highly parallel systems, interconnection structures that allow greater scalability are

used. which makes the snoopy-based protocols unusable. This kind of architecture,

typically a NUMA organization for a tiled architecture (CC-NUMA when it is Cache

Coherent), needs a more scalable coherence protocol. Scalability concept is commonly

based in directory usage. Directory is a data structure that tracks for each block a record

of the block state and the actual sharers of that block. That record is known as directory

entry. When a node misses a block on its private cache it first communicates with the

home directory for that block in order to find the availability of it. Any modification

on the block state (e.g. a write request) must be notified to the home directory. Every

transaction may take further communication in order to ensure consistency for the block.

Directory is also responsible of invalidating cache blocks if needed.

Directory-based mechanisms are independent of the interconnection used. Cache coher-

ence protocol used can be either invalidation-based or update-based or hybrid, and the

cache model can also have any number of states.

One of the main problems exhibited by directory-based cache coherence protocols is

17

regarded to the storage resources required by the directories, which are increasingly

greater as the number of nodes increases. In CMPs, where area and power constraints

are a critical design issue, the use of directory-based cache coherence protocols compels

us to reduce at most the silicon area required by directories. A lot of works have ad-

dressed this problem from different approaches. Most of them are focused on reducing

either the number of entries or the entry size of the directory while maintaining sys-

tem performance. Others even propose novel directory organizations with lower area

requirements.

As known, Duplicated tag directories, where each block sharer is allocated to a different

entry, guarantee enough space to track all the possible cached blocks at the expense of

a high associativity (equal to the product of the cache associativity and the number of

caches). Despite the small area required, the quadratic growth of the energy consump-

tion because of their high associativity, precludes their practical applications to large

CMPs. On the other hand, Sparse directories reduce associativity (much lower than the

aggregate associativity of the caches they track) at the cost of extending each directory

entry with some kind of sharing information and increasing to some extent the number

of sets. However, they no longer guarantee that whatever combination of memory blocks

can be simultaneously tracked. As a result, allocating a new directory entry may require

evicting a current entry and invalidating all cached copies of the corresponding block.

Performance penalization derived from forced invalidations can be mitigated at expense

of increasing the directory size (at least, a coverage ratio between the number of cache

entries and the number of directory entries equal to one is suggested). In order to in-

validate cached copies, the sharing information is used. Such information may be either

precise or imprecise. In the former case, the directory uses a full-mapped bit vector at

each entry to track the block sharers. However, this approach is not scalable because

the aggregated area required by the directories experiments a quadratic increase as the

18

number of cores increases. On the contrary, in the latter case, a compressed representa-

tion of the sharing information is used, allowing more compact directory entry formats

and reducing storage area requirements. In this sense, there exist many proposals aimed

to shorten the sharing information, such as, for example, the use of a limited number

of pointers, segment directories, chained pointers, and the use of coarse vectors among

others.

On the other hand, some proposals choose to reduce the number of directory entries by

combining several of them into a single one.

As observed, we can find many different approaches to improve the directory-based

protocols in the literature, but we selected three different recent approaches.

On the one hand, in [ZSQM09] directory design is revisited combining two main ideas:

1. The set membership test2 do not have to be precise, an estimate test is sufficient

for correctness (despite a more accurate test can be desirable for performance).

2. Bloom filters3 are space-efficient structures to perform set membership tests.

The proposal is a Tagless Coherence Directory (TL), a scalable directory structure that

removes the need of a conventional directory structure and replace it by a grid of Bloom

filters, with one column for each CMP core, and one row for each cache set. Each

Bloom filter tracks the blocks of one cache set of one core, and accessing to it retrieves

a sharing vector that represents a superset of all the sharers of the block. This solution

saves area and power overheads compared to conventional sparse directories with no

performance loss and little bandwidth increase by replacing energy intensive associative

2Maintain coherence consists of perform a set membership test on each cache to determine which
ones have copies of a block.

3A Bloom filter, conceived by Burton Howard Bloom in 1970, is a space-efficient probabilistic data
structure that is used to test whether an element is a member of a set. False positive retrieval results
are possible, but false negatives are not.

19

lookup needed by shadow tags with Bloom filter tests. Therefore, Tagless provides good

area scalability but it not energy-scalable. Due to the use of imprecise information, if

a sharing pattern not represented occurs, the directory commonly resorts to broadcast

invalidations at the expense of higher bandwidth utilization.

On the other hand, SPACE (Sharing PAttern-based CoherencE) [ZSD10] proposes an

optimization for directory caches based in recognizing the sharing patterns in an appli-

cation and taking advantage of it whenever many memory locations in an application

are accessed by the same set of processor nodes. This is the case where a few sharing

patterns on an application occurs frequently. SPACE holds the sharing patterns for

each cache line in a separate directory table, thereby having multiple cache lines point-

ing to the same entry in the directory table. It reduces up to 60% of area overhead in

conventional directory at 16 processors.

Finally, Cuckoo [FLKBF11] is a proposal for an area-efficient scalable distributed direc-

tory with nearly constant power and area utilization per core, regardless the size of the

CMP. It roughly provides the equivalent of a fully-associative directory at the cost of a

more complex insertion procedure. In order to do so Cuckoo uses a small-associativity

hash table structure whose address bits are passed through different hash functions. Hits

on the directory just require one access, but replacements needs many hash functions

in order to obtain various candidates, attaining the illusion of a more associative cache

at the expense of a greater energy consumption and latency.

2.2.3 Coherence Deactivation

In recent multicore systems, the ever-increasing number of cores increases the on-chip

cache size in order to supply cores with data. This comes at the cost of growing access

latency. There is also increasing access latency for far away nodes due to wire delay.

20

However a significant percentage of the memory blocks are only accessed by one core

and, therefore, do not require coherence maintenance. Through dynamically classifying

memory blocks we can take advantage of this and deactivate coherence and treat memory

blocks as an uniprocessor system would do.

Following this trend we find several approaches, as in [PSNB10], where two new cocher-

ence protocols are proposed: SWEL (protocol states are Shared, Written, Exclusivity

Level) and RSWEL. The idea is having all private and read-only data in L1, while all

shared and written blocks must reside at L2 level. The decision is made at run-time

without software assistance. We can observe that directory-based protocols are very

inefficient when handling producer-consumer pattern in large multi-core systems be-

cause of the indirection introduced by the directory. SWEL, through eliminating the

classic invalidation- update-based patterns, eliminates the need of doing such costly

mechanisms, improving throughput, and lowering protocol transient states and storage

overhead. The penalty is that every mis-classification of the blocks leads to recovery via

broadcast, a simple and infrequent action to ensure correctness of the protocol.

In [MS09], J. Meng et. al. develops a study of thrashing contention for inclusive caches.

They discovered most private data is non-uniformly distributed among the last level of

cache (LLC) sets, with wasteful unnecessary LLC conflicts. To reduce those conflicts

among with the data thrashing a new cache organization namely NISC (non-inclusive,

semi-coherent) is proposed. It allows private data to exist only in L1 caches and private

data evicted from LLC need not to invalidate their copies in L1 caches, thus excluding

private blocks from cache coherence.

In addition, in [CRG+11] B. Cuesta et. al. propose a mechanism that classifies mem-

ory blocks into private and shared and, subsequently deactivates coherence for blocks

classified as private. They rely on the OS in order to classify blocks, making it at page

granularity. When a page is classified (Private as for new pages) all the block within

21

the page are classified the same way. Coherence is not maintained for Private block, but

the OS is capable of detect when a blocks becomes shared, thus triggering a coherence

recovery mechanism. It only requires minor modification of the OS and the memory

controllers. It is demonstrated that 57% (in average) of data blocks can be omitted

from coherence tracking for directory-based protocols, and invalidations are decreased

about 70%.

2.2.4 In-Network Coherence Protocols

As number of cores in multiprocessor architectures grows, we need a scalable coherence

protocol to cope with the needs of these systems. However, despite that the classic choice

to cope with the scalability constrain would be a directory-based protocol, it comes

with some well-known limitations related both to the overhead in communications, to

determine which cores have a block cached and invalidate them; and to the storage

overhead, especially in area-constrained multi-core chips as in the embedded systems.

These techniques propose an implementation of the cache coherence protocol within the

network. As the one described in [EPS06], which embeds directories within each router

node, thus moving the protocol into the network, and leading requests traversing the

router towards nearby data copies. In the aforementioned approach, it modifies the

router architecture adding one extra stage to the conventional router pipeline called

Virtual Tree Cache. Also sequential consistency is ensured. They evaluated that up to

44.5% save of memory latency overhead on a 16-processor system.

A different approach is [CMR+06], which proposes to adapt the interconnection wires in

terms of latency, bandwidth and energy characteristics and map the coherence requests

to the approppiate wire depending on their needs. Cheng et. al. shows different pro-

posals to address and exploit this optimization with a write-invalidate directory-based

22

protocol, with a write-invalidate bus-based protocol and with protocol-independent tech-

niques. A 11.2% of performance improvenent and a 22.5% of reduction in interconnec-

tion energy consumptions are achieved.

On the other hand, [APJ09b] proposes ordering snoop requests in an unordered network.

All the network routers contain pre-assigned snoop-orders that are tagged onto requests

when they arrive from the attached cores. These snoop-orders are disjoint numbers, and

the lower the snoop-order, the earlier the ordering of a request. INSO achieves global

ordering of requests by ensuring that cores process requests in the order dictated by the

snoop-order. To ensure global order of requests for the same region, INSO assign an

snoop-order greater to the new region request than the snoop-orders of requests currently

in the network for the same region. To establish this, the region update message is sent,

which goes to the entire system and collects the lowest snoop-order present in the routers

currently. It is made in a way that ensures that protocol ordering is never violated due

to filtering.

Finally, [APJ09a] tackles the ordering of requests in snoopy protocols in unordered net-

works, but adding a filter that prevents broadcasts produced by the coherence protocol

to be sent to nodes not sharing the block, thus saving power and bandwidth. To do

so, small in-network coherence filters are placed inside the routers to collect sharing

patterns and use them to determine the sharers for a block. This improvement allows

snoopy-protocols to be scalable.

2.2.5 Token Based Protocols

This protocols are based in associate tokens with each block instead of state bits. There

is a fixed number of tokens per block and the cores can exchange these tokens. A core

with one or more tokens can read the block while a core with all token can either read

23

or write the block.

Token Coherence protocol consists of two parts: correctness substrate and a performance

protocol. While the former is responsible for ensuring safety and liveness, the later

specifies what a cache controller does on a cache miss. Both snooping and directory can

be interpreted as a Token Coherence protocol.

Under this classification we have [MHW03], which proposes TokenB (Token-Coherence-

using-Broadcast), a specific Token Coherence performance protocol4 to exploit a low-

latency unordered interconnect while avoiding indirection. TokenB acts as a traditional

MOSI snooping protocol, allowing cache-to-cache misses to achieve low-latency requests,

until a transient request fail due to races. When this happens, protocol reissues until

processor times out in which case a persistent request would be sent in order to prevent

starvation.

In addition, in [MBH+05] Michael. R. Marty et. al. develop a M-CMP (Multiple-CMP)

that is flat for correctness but hierarchical for performance, namely TokenCMP. Until

this approach, the common solution was to use a hierarchical protocol separating inter-

CMP requests from intra-CMP requests. However this leads to some difficult-to-verify

race conditions. Furthermore they usually used directory-based protocols and, therefore,

extra latency for sharing misses. Nevertheless Token-based protocols are good suited for

these M-CMPs, and with TokenCMP a number of optimizations are proposed in order

to improve performance under high-contention scenarios.

Finally, in [RBM08] PATCH (Predictive/Adaptive Token Counting Hibrid) is proposed.

PATCH is a coherence protocol that extends the directory-based protocols in order to be

capable of track the number of token to enforce coherence permissions. In have the same

aforementioned properties than other token-based protocols: support direct requests in

4A performance protocol optimize for the common case and rely on the underlying correctness
substrate to resolve races and prevent starvation.

24

unordered topologies and prevent starvation. However the main contributions of this

protocol are: it introduces token tenure, which prevents starvation in a broadcast-free

manner; and it depriorizes direct requests to improve the performance with regard to

directory-protocols without impact on performance. This leads to have a protocol that

retains the scalability of a directory-based protocol while matching the performance of

broadcast-based protocols as TokenB.

2.3 Alternate Specific Approaches to Coherence

2.3.1 Sharing within Virtual Hierarchies

On a different approach to coherence maintenance among many-core CMPs we find

Virtual Hierarchies [MH07]. It is based on the assumption that maintaining global co-

herence among all nodes in a CMP MPCore will be very unlikely. Due to the prohibitive

cost of maintain global coherence it propose maintain it just among a limited subset of

nodes.

These should be optimized for workload consolidation as well as traditional single-

workload use. The main objectives of the memory system to support these approach

should be: maximize shared memory accesses serviced within a VM, minimize interfer-

ence among separate VMs, facilitate dynamic reassignment of cores, caches, and memory

to VMs, and support sharing among VMs.

Virtual Hierarchies propose using virtual hierarchies to overlay a coherence and caching

hierarchy onto a physical system. To do so, two flavors of hierarchical coherence are

proposed: the first is a two level directory protocol, and the second is a first level local

directory protocol with a backing broadcast mechanism for global coherence requests.

Global broadcasts will likely be rare in this scenario but will experience lower latency

25

and power by utilizing a multicast router.

2.3.2 Coherence on Heterogeneous Multiprocessor systems

On large-scale heterogeneous multiprocessing systems shared memory schemes with a

directory-based protocol can be found for intercluster coherence issues, while a bus-based

protocol can be used for intracluster coherence issues. However bus-based protocols

cannot address heterogeneous coherence problem on intracluster communications.

In this specific scenario, in [SLB04] and [SBL04] Taewon Suh et. al. have developed an

integration technique for different coherence protocols within the same multiprocessor

system. They bear in mind the real time constraints of an embedded system. Real time

operating systems (RTOS) could share semaphores, lock mechanisms, and mailboxes

among others, making coherence support in heterogeneous systems mandatory.

This approach focuses on integrating invalidation-based protocols with the assumption

that cache-to-cache transfers will occur only with nodes supporting MOESI protocol.

To do so, they restrict the usage of protocol states that the many protocols does not

share, using read-to-write conversion (integrating MEI with other protocols requires the

removal of the Shared state), shared-signal assertion and deassertion (integrating MSI

and MESI requires the removal of the Exclusive state), and Snoop-hit buffer (in MOESI

protocols, when a snoop-hit occurs on the bus a back-to-back burst of external memory

is required). Through the usage of this technique up to 51 performance improvement

have been achieved.

26

Chapter 3

Coherence on the Target System

In this Chapter is described the target system and all the elements of it as defined in

the target system of the vIrtical Project, by reason of this dissertation being within its

framework.

It will also be described the coherence needs for each element. It is needed to understand

the specific needs of the system along with the sharing patterns analysis in order to select

a suitable coherence protocol approach.

3.1 Description of the Target System

The target system considered in the project is a heterogeneous multiprocessing system

with a NoC connecting the main processing units, one or more GPU-like general-purpose

programmable multi-core accelerators (GPPA) to enhance performance, several DSPs

and functional HW Processing Units (HWPU), in addition to storage and I/O Resources.

The ARM architecture is defined as the target processing host, more precisely ARM’s

big.LITTLE architecture. It consists of one dual-core Cortex-A15 MPCore and one

dual-core Cortex-A7 MPCore connected using the ARM CoreLink CCI-400 as seen in

Figure 3.1.

Other characteristics of the target system are:

� 4 L1 caches (one per core) each with 128 sets, 4 ways and a line size of 64 bytes.

27

Fig. 3.1: Cortex-A15 CCI Cortex-A7 System

� 1 L2 cache (shared by all the cores) with 512 sets, 16 ways and a line size of 64

bytes.

� Caches are inclusive (L1 caches’ content is included in L2).

� 2 AMBA4 ACE slave ports for connecting fully coherent masters

� 3 AMBA4 ACE-Lite slave ports for connecting non-coherent masters that can

nevertheless snoop the ACE masters.

� 3 AMBA4 ACE-Lite master ports for connecting to memory and System NoC.

It can also be added an extra level of shared cache which constitutes the L3 level

on the memory hierarchy. Therefore, the ARM based coherence protocol should be

extended to also manage L3. We will assume a noninclusive policy for the L3 cache

level in order to maximize the overall system capacity. Therefore, L3 will behave as a

victim cache. Outgoing memory requests issued by either processor clusters or system

accelerators should be routed toward the corresponding home memory L3 device. L3

module’s NIs will include a directory cache/snoop filter in charge of forwarding the

corresponding snoop request either to the potential sharers, the L3 module or the main

memory. L3 module’s NIs will support a MOESI based snooping coherency protocol

28

Fig. 3.2: Main elements of the target system

based on Hammer1 (implemented in the AMD OpteronTM). There is no coherency

management for the instruction caches, including no automatic data/instruction cache

synchronization.

3.2 Coherence Solutions in ARM Architecture

This Section is focused on the present solutions for coherence on the ARM Cortex-A

family processors.

Embedded applications have driven the evolution of ARM’s processors due to its high

performance needs. RISC (Reduced Instruction-Set Computing) processors has evolved

over the last years to address some of these embedded parallel applications’ demands,

including variable cycle execution, conditional execution or 16-bit Thumb Instruction

Set2 among others.

1Hammer avoids keeping coherence information at the cost of broadcasting requests to all cores.
Although it is very efficient in terms of area requirements, it generates a prohibitive amount of network
traffic, which translates into excessive power consumption.

2Thumb Instruction Set is an instruction set developed to improve compiled code-density by losing
some functionality. It has more recent revisions, as the ThumbEE (Execution Environment) to output
smaller compiler code without impacting performance.

29

In the same way, memory organization has also evolved, including an intelligent control

block used to maintain coherence in an optimized way, including monitoring the system

for a migratory line.

The coherency protocol within ARM processors has the following objectives:

� Correctness when sharing data across caches.

� Flexible protocol allowing components with different characteristics to interact.

� Maximize on-chip re-use of data.

� Simple definition, allowing ease of understanding and correct interpretation of the

specification.

� Allows a trade-off to be made between high performance and low power.

� Reduces the interference with a master’s cache from snooping traffic.

3.2.1 L1 Memory Organization

As seen in the Figure 4.1, the ARM Cortex-A15 have separate instruction and data

caches. Both Physically-Indexed and Physically-Tagged (PIPT) and both implementing

Last Recently Used (LRU) replacement policy. On a cache miss, critical word-first filling

is performed also in both caches.

Cache coherence is supported explicitly on L1 data cache. L1 data cache has many com-

binations for different memory regions which determine processor behavior, impacting

each one on its performance, including: Write-Back Read-Wite-Allocate, Write-Back

No-Allocate, Write-Through No-Allocate, Non-Cacheable, Strongly-Ordered and De-

vice. In this classification for memory types Strongly-Ordered and Device types are

30

stricter and does not allow neither cache, merge or read accesses. Device memory can

be nevertheless buffered.

All memory requests for pages that are marked as Inner Shareable (see Section 3.2.3)

in the page tables and are Write-Back cacheable, regardless of allocation policy, are

coherent in all caches that comprises Inner Domain. This comprises L1 data cache, L2

cache and all other Cortex-A L1 private data caches at a minimum.

It is unpredictable whether memory requests made to pages marked as Inner Non-

Shareable are coherent within a Cortex-A family processor. No code must assume that

this pages are incoherent among the caches.

Finally, the L1 data cache implements a MESI coherence protocol (Section 2.1.2).

3.2.2 L2 Memory Organization

L2 Cache is PIPT and uses a Random replacement Policy. It has an integrated Snoop

Control Unit (SCU) connecting up to four cores within a Cortex-A MPCore device. L2

also interfaces with AMBA 4 (ACE) interconnect and an Accelerator Coherency Port

(ACP) implemented as an AXI3 slave interface. It only incorporates a single dirty bit

per cache line. Any write to a cache line results in the line being written back to main

memory after its eviction.

Consequently, all coherence actions are taken through the SCU. The SCU uses hybrid

MESI (Section 2.1.2) and MOESI (Section 2.1.4) protocols to maintain coherence be-

tween the L2 cache and the many L1 data caches present within the Cortex-A MPCore.

It contains a snoop tag array with a duplicate of each L1 data cache directory. This

snoop tag array aims on reducing traffic on the bus between L1 caches and the L2 mem-

ory cache. Any line in the Modified/Exclusive state belongs to L1 memory system. Any

access hitting against a line classified as M/E must be serviced by the corresponding L1

31

and facilitated to the L2 memory. On the other hand, if the cache line is either Shared

or Invalid then L2 cache can supply the data.

The SCU also contains buffers capable of handle direct cache-to-cache transfers between

cores and therefore avoid reading or writing any data on the ACE buses. Lines can

migrate between L1 caches without changing L2 state of cache line.

Snoop tag arrays are queried as a result of ACP shareable transaction, considered also

as coherent. When a read occurs in a shareable line residing in one of the L1 data caches

as M/E state, the line is transferred from L1 cache to the L2 memory cache and back

on the ACP.

MOESI state machine for cross-cluster coherency in the ACE bus uses a specific termi-

nology for cache line state maps across, being as shown in Table 3.1.

MOESI ACE
Modified Unique, Dirty
Owned Shared, Dirty

Exclusive Unique, Clean
Shared Shared, Clean
Invalid Invalid

Table 3.1: Terminology translation between ACE and MOESI state machines

3.2.3 Sharing Domains

The target system should be aware of the domain shareability levels present within the

ARM architecture characteristics. In this case it should be allowed the presence of, at

least, two levels of coherent shareability marked in the Page Table. Inner-Shareability

(contains various -more than one- masters) applies to the processor subsystem and

Outer-Shareable (contains all masters in the Inner domain and may also contain ad-

ditional masters) extends other levels in the hierarchy. Other additional levels include

32

Non-Shareable (contains a single master) and System-shareable domains (contains all

masters in the system and other domains).

Shareability domains are used to determine the other masters that should be considered

for both memory coherency and for barriers. It is defined as a set of masters (usually

cores). For coherent transaction, shareability domain is used to determine which other

master might have a copy of the addressed location in their local cache and, therefore,

determine which other masters should be snooped to complete the transaction. For

barrier transactions, the domain is used to determine which other masters the barrier

is establishing an ordering relationship with. It can be used to determine how far a

barrier transaction is required to propagate and the blocking properties that are needed

to establish the required ordering.

Fig. 3.3: Example of domain layout

In the Figure 3.3 can be seen a set of definitions including masters from M1 through

M8. Domains are defined as non-overlapping. The System domain is used whenever a

transaction must be visible to other masters in the system, including those that do not

have hardware coherent caches.

On the other hand, in Figure 3.4 is showed an example of the domain layout for the final

target system. In this case, the Cortex-A15 has four Masters within. Caches on the

Masters inside the Cortex-A15 and inside the accelerator group are peer caches. Caches

33

Fig. 3.4: Example of System Topology with domain layout

from Cortex-A15 are in the Inner Shareable Domain. Both Cortex-A15 and accelerator

group are in the Outer Shareable Domain. Caches on the DMC are downstream caches.

Barriers

In a system, barrier transactions are used to guarantee the ordering and observation of

transactions. Two types of barriers are supported: a memory barrier and a synchro-

nization barrier. The former is issued by a master to guarantee that if another master

in the domain observe any transaction after the barrier, it must be capable to observe

every transaction also prior to the barrier; the later is issued by a master to determine

when all transactions issued prior to the barrier are observable by every master within

the appropriate domain.

System domain Synchronization barriers also require that all transactions issued before

34

the barrier must have reached the end-point slaves they are destined to, before the

completion of the barrier. A barrier transaction has an address phase and a response,

but without any data transfer. Barriers enforce ordering because a master must not

issue any transaction until it has received a response for the barrier on both read data

and write response channels.

Distributed Virtual Memory

ACE includes support for Distributed Virtual Memory and has transactions that allow

the management of a virtual memory system.

An Input/Output Memory Management Unit (IOMMU) is used to perform address

translations from one address space to another. This can be:

� Translation from a virtual address space to a physical address space.

� Translation from a virtual address space to an intermediate physical address space.

� Translation from an intermediate physical address space to a physical address

space

All components in the system must use a single physical address space and the use

of IOMMU components allows different masters to operate in their own independent

virtual address or intermediate physical address spaces.

3.2.4 Coherence Special Transactions

Coherent transactions are used to access shareable address locations, which may be held

in the coherent caches of other components.

35

In ACE masters there are two configuration options (input signals for hardware, settings

for model) to control external signaling of coherency management: BROADCASTIN-

NER and BROADCASTOUTER. There is also BROADCASTACHEMAINT, which can

be used to enable broadcasting of cache maintenance operations.

ReadClean, ReadNotSharedDirty and ReadShared

In the case that a master needs to perform a load from a location within a shareable

memory area, there are three transaction types that can be used: ReadClean, ReadNot-

SharedDirty and ReadShared. These transactions allow the current holders of the line

to retain their copy.

ReadClean transaction indicates that the master requesting the line require it to be a

clean line, therefore, it cannot accept responsibility for a dirty line which needs later

write back to memory. This type of transaction is typically used by a master that does

not have the ability to accept a dirty cache line or has a write-through cache.

The ReadNotSharedDirty transaction indicates that the master requesting the read can

accept a line in any state except SharedDirty. So, the line can be obtained either as clean

(unique or shared) or as unique and dirty. In all cases it is acceptable for a cache that

is being snooped to pass a line as dirty, even if it won’t be accepted by the requesting

master. In this situation, interconnect is responsible for writing back the dirty line to

main memory. In fact when a cache receives a ReadClean, ReadNotSharedDirty and

Read Shared transactions it must supply the data if it is holding a copy of it in order to

complete the transaction. In any case, interconnect is responsible for passing the data

back to master that initiated the transaction. If a cache is holding the data in a unique

state, then it must change it into a shared state after the operation.

ReadShared transaction indicates that the master component requesting the read can

36

accept a cache line in any state.

ReadUnique, CleanUnique and MakeUnique

When a master needs to perform a store to a location that resides in a shareable area of

memory there are three transaction types that can be used: ReadUnique, CleanUnique

and MakeUnique. All three of these transaction types ensure that there are no other

copies of the location when the store occurs.

If the master is performing a partial line store, where it only stores some of the bytes in

the entire line, and the master does not already have a copy of the line then it can use

the ReadUnique transaction which both obtains a copy of the data and it also ensures

that no other copies exist.

If the master is performing a partial line store and it already has a copy of the line then it

can use a CleanUniquetransaction to remove other copies of the line. The CleanUnique

transaction has the effect of removing all other copies of a line, but if it finds a cache

that holds the line in a dirty state then it will ensure that the dirty line is written to

main memory.

If the master is performing a full line store then it does not need to have a pre-store form

of the line and it can simply remove all other copies. This is done using the MakeUnique

transaction which effectively invalidates all other copies of the cache line.

ReadOnce, WriteUnique and WriteLineUnique

ReadOnce, WriteUnique and WriteLineUnique transactions are typically used by a mas-

ter for accessing areas of memory that are shareable, but the issuing master is not going

to keep a cached copy of the address, either because it does not want to allocate that

37

line or because it does not have a cache at all. ReadOnce is used by a master to obtain

a snapshot of the data which is not going to be cached for later use.

The ReadOnce transaction has the advantage that if a cache providing the data held

the line in a unique state then it does not need to move to a shared state after the

ReadOnce has occurred.

WriteUnique and WriteLineUnique transactions remove all copies of a cache line before

performing a write. The WriteUnique transaction can be used for full and partial line

writes and ensures dirty data is written to memory before performing the write trans-

action. The WriteLineUnique transaction must only be used for a full line write, where

all bytes within the line will be written by the transaction. Unlike other transactions

to shareable memory, ReadOnce and WriteUnique transactions issued by a master are

not required to be a full cache line size. WriteLineUnique transactions, however, are

required to be a full cache line size.

3.3 GPPA and Coherence

Embedded systems are resource constrained: battery capacity increases only slowly

over time, hence embedded devices have tight energy budgets. An architectural coun-

termeasure to achieve energy-efficient (MOPS/mm/W) targets is heterogeneous de-

signs. Heterogeneity in embedded systems is typically achieved through the adoption

of accelerator-based SoC designs, where a SMP multicore host processor is coupled

to accelerators of different kinds: GPU-like general-purpose programmable many-cores

(GPPA in the following) and several types of Hardware Processing Units (HWPU), im-

plementing in hardware key computational kernels from the target application domain.

Accelerator-based SoCs are already wide-spread, as witnessed by commercial products

such as Qualcomm’s Snapdragon, Nvidia Tegra, Apple Ax, TI OMAP. All the cited

38

products feature a on-chip GPU-like accelerator, which the host processor can lever-

age to offload data-intensive computational kernels, achieving significant speedups and

better energy efficiency even in common general-purpose applications.

While the embedded GPUs integrated in the mentioned SoCs are optimized for data-

parallel (SIMD) computation, the focus of vIrtical project is on general-purpose many-

core accelerators, which support a more flexible execution model (both data and task

parallelism).

3.3.1 General-Purpose Programmable Accelerator

The targeted many-core programmable accelerator leverages tightly coupled clusters as

a building block. A cluster consists of a configurable number (typically up to 16) of pro-

cessors with private instruction caches. Processors communicate through a fast multi-

banked, multi-ported Tightly-Coupled Data Memory (TCDM). The number of memory

ports in the TCDM is equal to the number of banks to allow concurrent accesses to dif-

ferent banks. Conflict-free TCDM access have extremely low latency (ideally 1 cycle).

TCDM are explicitly managed from software, and can be seen as a non-coherent memory

area that accelerators can use for higher efficiency. Each cluster can also read/write into

a cacheable memory segment. Transactions involving this address range are satisfied

from a L2 cache, shared between multiple clusters. This L2 memory is kept coherent

with the L2 cache in the host processor subsystem through services provided by the

global NoC. Coherent caches could be present at the L1, co-existing with TCDMs. In

this case the local NoC is responsible for managing coherency traffic as well. When

copies of data residing in cacheable memory regions are allowed into TCDMs explicit

coherence operations have to be taken (e.g. invalidate cache data if most recent copy is

kept on TCDM).

39

The on-cluster communication fabric is a low-latency, high bandwidth logarithmic in-

terconnect, and is built as a parametric, fully combinational Mesh-of-Trees (MoT) in-

terconnection network. The interconnect provides fine-grained address interleaving on

the memory banks to reduce banking conflicts in case of multiple accesses to logically

contiguous data structures. If no bank conflicts arise, data routing is done in parallel for

each core. In case of conflicting requests, round-robin scheduling coordinates accesses to

memory banks in a fair manner. Banking conflicts result in higher latency, depending

on the number of conflicting requests. Multiple concurrent reads on a same address are

typically satisfied through read broadcast, which completes in one cycle.

Inter-core synchronization is supported by means of standard read/write operations at a

memory bank providing test-and-set semantics (hardware semaphores). These memory

locations are not cacheable.

In this template, scaling to larger system sizes is enabled by replicating clusters and

interconnecting them with a scalable medium like a NoC. Each logarithmic interconnect

routes data based on address decoding: a first-stage checks if the requested address falls

within the local L1 address range or has to be directed off-cluster. If this is the case, the

corresponding transaction is injected in the NoC through per-cluster Network Interfaces

(NI).

All TCDMs in the accelerator subsystem are globally visible to every processor within

a unique address space. The hierarchical interconnection system is thus in charge of

routing I/O requests to the target memory module. Clearly, transactions hitting in the

local TCDM have lower latency and higher bandwidth. Accessing remote memories (i.e.

remote clusters, L2 or L3 memory) is subject to NUMA effects.

40

3.3.2 Hardware Processing Unit

Besides GPU-like programmable many-core accelerators, we also want to explore the

adoption of Hardware Processing Units (HWPU), namely functional units executing in

hardware key computational kernels from the targeted application domain. HWPUs

could be integrated in the GPPA SoC and - similar to processors - should access data

directly from the L1 TCDM through the logarithmic interconnect.I

The main advantage of this approach is that it enables zero-copy semantics for processor-

accelerator communication. More specifically, different from the typical offload approach

to accelerator exploitation, data need not be moved in and out of the accelerator private

memory space. To support this communication model it is necessary to design ad-hoc

interfaces.

3.4 Coherence for Other Devices in the Target Sys-

tem

There can be room for other devices with especial coherent needs that will be described

in this Section.

I/O Devices can be found, and they may refer to Ethernet or USB controllers among

others. Anyhow, in case that any of these devices stores a main memory block in some

register or private storage unit; or the block pertains to a shared memory region, it must

be aware of any change in the data and always retrieve the most updated version of it.

To do so, even for non-coherent devices (which won’t need to maintain coherence, as

they won’t cache any data) the cache coherence protocol must provide the most recent

version of data in the system. Thus, it is preferable to attach them to the ACE-Lite

41

port (or other bus with a compatible interface) to best power efficiency and performance

along with the required correctness. ACE-Lite supports transactions described in Sec-

tion 3.2.4, and can be issued by this type of devices to retrieve data, due to the fact

that they won’t keep a cached copy of it. In the case of a read (ReadOnce transaction),

the data should be provided by the node holding the most recent valid copy of it, with-

out modifying the state of block in any sense. As a counterpart, if the device requires

to write (either using WriteUnique or WriteLineUnique transactions for a word and a

line writes respectively) into a shared memory region, the data should be previously

invalidated and updated if proceeds.

Some of these devices may contain a Direct Memory Access (DMA) controller. DMA

is a feature of modern computers that allows certain hardware subsystems within the

computer to access system memory independently of the central processing unit (CPU).

A DMA controller can generate addresses and initiate read or write accesses to memory

as requested by the CPU. It has many registers that can be accessed to read or write

by the CPU. Also, a DMA controller can read or write a burst of contiguous bytes of

any length (hundreds or thousands of words in a row).

Furthermore, the DMA controller can allow access to main memory from a peripheral

device. This can lead to cache coherency problems: if a block is cached and modified

without the DMA being aware of it, external devices can access to stale copies of data.

This issue can be addressed if the cache-coherent systems implement a method in hard-

ware whereby external writes are signaled to the cache controller which then performs a

cache invalidation for DMA writes or cache flush for DMA reads. In the other hand, as

an alternate solution, the system can rely on the OS that must ensure the cache line is

flushed before outgoing DMA transfer is started. The latter approach introduces some

overhead to the DMA operation, as most hardware requires a loop to invalidate each

cache line individually.

42

As an example of a device relying on the DMA to deal with the coherency related prob-

lems, we can fin a Digital Signal Processor (DSP). A DSP is a specialized microprocessor

with an architecture optimized for the fast operational needs of digital signal processing.

Digital signal processing algorithms typically require a large number of mathematical

operations to be performed quickly and repeatedly on a set of data. Signals (perhaps

from audio or video sensors) are constantly converted from analog to digital, manipu-

lated digitally, and then converted back to analog form. Many DSP applications have

constraints on latency; that is, for the system to work, the DSP operation must be

completed within some fixed time, and deferred (or batch) processing is not viable.

43

Chapter 4

Analysis of Applications

The use of computers has been extended to most areas of our everyday life. These

embedded devices present new challenges of security, scalability and power efficiency.

We focus on these challenges addressing the design of the coherence protocol to be

adopted to the need of these heterogeneous multicore platforms.

The cache coherence problem arises when copies of the data stored at several private

caches associated to different cores, are reachable at the same time by two or more cores

and modifiable by some of them. The cache coherence protocol must guarantee coher-

ence of the data through the entire system which means deciding how and when a single

core is granted permission to modify data and ensuring that subsequent readings of the

written data by other cores will attain updated copies of the modified data (multiple

readers). To do so, different cache coherence mechanisms can be applied. Commonly,

these mechanisms introduce certain overhead in terms of either coherence traffic issued

and storage resources required, which can significantly penalize performance, increas-

ing the execution time of the running applications as well as power consumption. The

current trend to increase the number of cores into CMP and MPSoC systems further ag-

gravates this problem, as the cache coherence protocol does not scale due to its resource

overheads and its indirection when accessing data (access latency is increased).

On the other hand, a different approach to tackle the coherence problem has recently

been proposed [CRG+11, HFFA09, KAKH10], consisting on removing coherence main-

tenance for those data objects that do not need it, either because they are not shared

44

(private to one core) or because they are shared but never written by any core. This

approach requires the use of effective mechanisms to identify data blocks that do not

need coherence maintenance, which in turn may introduce certain overhead. However,

the success and suitability of the selected coherence mechanism will strongly depend

on both the architectural context of the system it is being applied to and the sharing

patterns of the applications running on the system.

Therefore, a detailed analysis of the sharing patterns of the applications to be supported

is needed, in order to identify opportunities of applying one or another cache coherence

mechanism together with different coherence optimization techniques.

4.1 Analysis Methodology

This section describes the target system used for the analysis and the methodology

followed in order to capture the information required to properly perform it.

4.1.1 Simulation Tools

ARM FastModels simulator provides out of the box programmer’s view models of the

ARM processors. Thus, it is both functionally accurate and easy to use since ARM

processors models are already implemented as an Instruction Set Simulator. We use

this simulator to model the target system and to run the targeted applications on top

of it.

The system processor of choice is a quad-core Cortex-A15 MPCore (Figure 4.1), despite

the fact that the target system is suposed to implement a big.LITTLE, as mentioned on

Chapter 3. The trade-off between complexity and accuracy makes this option more suit-

able. Conclusions obtained with the quad-core Cortex-A15 MPCore can be extrapolated

45

to its big.LITTLE counterpart with acceptable precision. Furthermore, big.LITTLE has

two different working modes, either only Cortex-A15 or Cortex-A7 processors are awake

or they are both working at the same time. When all processors are working at the

same time they will not run a parallel application in both of them because they work

at different frequencies. Since we are mainly concerned on parallel applications, the use

of big.LITTLE is not mandatory.

Fig. 4.1: Memory Hierarchy for the quad-core Cortex-A15 MPCore

The model of ARM Cortex-A15 provided with FastModels is capable of running basic

applications, but it does not cover all the requirements of an operating system, which is

needed to evaluate and benchmark parallel applications. We thus use a more complex

model also provided with FastModels (namely RTSM-VE Cortex-A15) that allows the

simulation of both operating systems and applications. In this RTSM-VE model, as

seen on the Figure 4.2, the cores are connected directly to a Versatile Express platform

through a 64-bits AXI bus. This platform includes the Motherboard Express µATX,

which has been especially designed to support future generations of ARM processors, and

the CoreTile Express daughterboard with the on-board DDR2 SDRAM. It is executed

on top of it a Linux system based on TinyBSD.

46

Fig. 4.2: ARM FastModels RTSM-VE model

4.1.2 Trace Acquisition Methodology

In order to perform the sharing pattern analysis we need to capture all memory accesses

from the cores, being our interval of interest the parallel section of the applications,

namely the section executed by several cores at the same time. To identify this section

we explored the application code trying to reach the starting point and end point of

threads. To delimit this section and make it recognizable by FastModels we introduce

a special nop instruction on the application available on the ARM Instruction Set.

FastModels supports the use of a Model Trace Interface (MTI) plug-in that permits us

to consistently track the execution of the model. Through implementing an MTI plug-in

for tracing memory accesses produced by the cores and adding it to the simulation we

are able to trace exactly what we need in the form that we require.

MTI plug-in provides many different sources to trace, but the more verbose the trace

47

obtained is and the more sources are involved, the more it slows down the simulation.

Since it takes billions of instructions to boot a Linux system on FastModels, we need

to deactivate the output and minimize the number of sources of the tracing until the

starting point of the segment of interest is detected. We have achieved an acceptable

compromise solution by capturing only the instructions fetched by the cores until we

reach the aforementioned special nop, and subsequently tracing loads, stores, and fetches

until we get to the ending special nop.

The ARM Simulator provides programmer’s view models with some limitations. On

system simulators there is a trade-off between speed and accuracy. FastModels in par-

ticular opts for the execution speed thus lacking some features needed for our analysis,

such as:

� Instruction timing: a processor issues a set of instructions (a.k.a a quantum) at

the same point of the simulation time, and then waits some amount of time before

executing the next quantum, being impossible to determine the right time each

individual instruction is executed.

� Bus traffic: bus traffic has several optimizations that make it inaccurate.

� It does not support out-of-order execution and write-buffers as architecturally

defined: execution on FastModels is only an approximation to execution of archi-

tecture and it must be thus considered.

Finally, we describe the trace file format. We need to obtain traces with the information

required for coherency modeling, including the core id (to characterize the number of

sharers of the block), the address (to identify the block being accessed), the type of

access (to classify the block as data or instructions and to discriminate writes from

reads) and the data (for further analysis). Traces are as follows:

48

core,address,type,data

0,001ea10c,l,b6f6713c

0,b6f6713c,f,e92d001f

0,bef1de10,bs,bef1eef4,bef1ef10,bef1f984,001a0c9c,00000003

Where type refers to: l (load), s (store), f (fetch), and b applied to l or s (burst load-

store). When a burst is detected the data field is extended to the total amount of data

exchanged. Both addresses and data are coded in hexadecimal format.

4.1.3 Applications

We have obtained traces with five of the many different algorithms in the OpenSSL suite.

OpenSSL is a well-known suite of open-source library and tools implementing crypto-

graphic algorithms used for authentification and secure data transfers over networks. It

is used by many services such as https and ssh. As indicated by its documentation, it

implements the following cryptographic functions:

� Creation of RSA, DH and DSA key parameters

� Creation of X.509 certificates, CSR and CRL

� Calculation of message digests

� Encryption and decryption with ciphers

� SSL/TLS client and server tests

� Handling of S/MIME signed or encrypted mail.

The algorithms selected to obtain the traces are: three hash algorithms based on Secure

Hash Algorithm (SHA1, SHA256 and SHA512), and two encryption algorithms based

on the Advanced Encryption Standard (AES-128-ECB and AES-256-ECB).

49

4.2 Sharing Patterns Analysis

As commented above, there exist several recent proposals that take advantage of mem-

ory block classification for different purposes, such as enhancing efficiency of directory

caches, reducing coherence overhead or better taking advantage of NUCA caches. All

of them are mainly based on the classification of blocks in private (P) and shared (S).

Moreover, some others extend this classification to read (R) only and written (W).

So the scheme we propose in order to analyze blocks is made classifying them as:

� PR (Private Read-only): Only one processor accesses the block. All accesses are

loads. Thus, the block is private to the core and only that core reads the block

but does not write it.

� PW (Private read-Write): Only one processor accesses the block. At least one

access is a store. Thus, the block is private to the core and this core reads and

writes that block.

� SR (Shared Read-only): At least two processors access the block. All accesses are

loads. Thus, the block is shared by several cores but no one writes on that block.

� SW (Shared read-Write): At least two processors access the block. At least one

access is a store. This is the most interesting mode as it requires coherence protocol

support. In this mode the block is shared and is written by at least one core.

Considering this classification, the only blocks that actually need coherence maintenance

are the SW ones and therefore we can take advantage of the fact that the remaining

blocks do not need it, either because they are accessed by just one core or because they

are only read by any number of cores. So special attention will be paid to SW blocks.

50

The classification schemes proposed in the literature have used different granularities:

blocks [HDH11, PSNB10] and pages (OS-based schemes, as can be seen in [CRG+11,

HFFA09, KAKH10]), looking for a trade-off between detection accuracy and the required

overhead. So our analysis is made with three different granularities based on blocks and

pages: 64 bytes block, 4 Kbytes pages, and 64 Kbytes pages. This is interesting since

coherency with page granularity is easier to implement and manage. Working at page

level allows us to rely on the operating system to detect whether coherence needs to

be applied or not, aiding to reduce the hardware overhead and complexity. On the

other hand, the use of page level granularity allows us to analyze how critical is the

block misclassification introduced with coarser grains. In addition, studies at page level

granularity are intended to identify the viability of applying cache coherency at page

level instead of block level.

Basically, we provide two kinds of analysis. The first one, referred to as static analysis,

is intended to count the number of blocks included in each category. The second one,

referred to as dynamic analysis, shows the number of accesses to blocks for each category.

Both views complement each other and allow us to identify which categories of blocks

are the most frequent and which ones are the most accessed.

The previous classification will help us later to identify which are the best optimization

opportunities when developing the appropriate coherence protocol.

4.2.1 Analysis Results

The results presented are focused on the data blocks or pages. As can be seen on the

Fig. 4.3(a) and Fig. 4.3(b) the proportion of data blocks and accesses is more relevant.

Also, due to the fact that most of the instruction blocks are shared through all four

cores, the classification between Private and Shared instruction blocks is less interesting

51

in this case. Finally, we detected no interleaving between data and instruction blocks

at different page granularities.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

64B 4K 64K 64B 4K 64K 64B 4K 64K 64B 4K 64K 64B 4K 64K

sha1 sha256 sha512 aes-128-ecb aes-256-ecb

%
 o

f
b

lo
ck

s
p

e
r

ty
p

e

Instr

Data

(a) Proportion of blocks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sha1 sha256 sha512 aes-128-ecb aes-256-ecb

%
 o

f
a

cc
e

ss
e

s
p

e
r

ty
p

e

Instr

Data

(b) Proportion of accesses

Fig. 4.3: Data/Instruction classification

In all figures, the results obtained for each of the analyzed applications, together with

the resulting average values, are displayed.

Fig. 4.4(a) shows the block classification based on the detection of the Private-Shared

Read-Write scheme for every block requested at different granularities. First of all, it is

observed that, on average, 40% of data blocks are private (PR or PW). The remaining

blocks are shared (60%), but notice that indeed only 40% of data blocks are SW, that is,

52

they require coherence maintenance. However, this promising result vanishes when the

granularity used for classifying the blocks is increased. As can be observed, the coarser

grain used, the more shared and written blocks are found. In particular, for 4KB pages,

the percentage of SW blocks is greater than 60%, whereas this percentage, on average,

exceeds the 80% for 64KB pages. This means that SW blocks are concentrated in a

certain number of pages, but they are mostly distributed among them. As a consequence,

the detection accuracy decreases as far as the granularity is increased in order to simplify

the detection process, leading to a misclassification of page blocks. Notice that just one

SW block contained in a page will cause the page to be classified as SW.

Fig. 4.4(b) shows the dynamic analysis. It is observed that despite the fact that SW

blocks just represent 40% of the total number of blocks, as was shown above, they

agglutinate tough the larger number of accesses (60% on average). Furthermore, the

number of accesses to private data blocks is indeed negligible. Unlike the static analysis,

the larger differences between applications are observed here. Also, the number of

accesses classified as SW hardly increases as granularity becomes coarser. On average,

it reaches a 70% for 64KB pages. Notice that this is an expected result as long as

the highest percentage of accesses inside a page is destined to SW blocks. Given that

most of data memory accesses require coherence maintenance, the design of the cache

coherence strategy will be a key element to provide high performance.

In order to offer a deeper insight into the sharing degree of data blocks, let us analyze

to what extent they are shared, that is, how many cores share each of these data blocks.

So, in Fig. 4.2.1 we analyze the number of sharers per block. If there are no sharers and

the block is only accessed by one core, it corresponds with a Private block detected in

the previous analysis. We consider also both static (Fig. 4.5(a)) and dynamic analysis

(Fig. 4.5(b)). In Fig. 4.5(a), we can observe how, on average, about 20% of the blocks

are shared by just two cores, 15% are shared by three cores, and 25% of them are shared

53

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

sha1 sha256 sha512 aes-128-

ecb

aes-256-

ecb

AVG

%
 o

f
to

t
a

l

SW

SR

PW

PR

NC

1: 64B Block -2: 4K Page - 3: 64K Page

(a) Static Analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

sha1 sha256 sha512 aes-128-ecb aes-256-ecb AVG

%
 o

f
to

t
a

l

SW

SR

PW

PR

NC

1: 64B Block -2: 4K Page - 3: 64K Page

(b) Dynamic Analysis

Fig. 4.4: Static and dynamic Analysis per block type

by four cores. As the detection granularity increases, the number of blocks shared by all

the cores is larger. The reason is the same as that pointed out with respect to Fig. 4.4(a).

Moreover, from Fig. 4.5(b), it is observed that the most accessed data blocks are those

shared by all four cores. This result corroborates even more the importance of carrying

out an appropriate design of the cache coherence mechanism as far as a large number

of cores are usually involved in the coherence maintenance of the data blocks.

Until now, the analysis has been focused on classifying blocks by using different detection

granularities. However, it is also interesting to just classify pages. It may be important

to assess the convenience of managing cache coherence in a per page basis instead of the

54

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

sha1 sha256 sha512 aes-128-

ecb

aes-256-

ecb

AVG

%
 o

f
to

t
a

l

4 cores

3 cores

2 cores

1 core

1: 64B Block -2: 4K Page - 3: 64K Page

(a) Static Analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

sha1 sha256 sha512 aes-128-

ecb

aes-256-

ecb

AVG

%
 o

f
t
o

t
a

l

4 cores

3 cores

2 cores

1 core

1: 64B Block -2: 4K Page - 3: 64K Page

(b) Dynamic Analysis

Fig. 4.5: Static and dynamic Analysis per number of sharers

usual strategies based on block tracking. In this case, page classification in PR, PW,

SR, and SW classes is as follows. A page is classified as SW when it contains at least a

SW block. Otherwise, it will be classified as SR if at least one of their blocks is SR. On

the contrary, if the page does not contain neither SW nor SR blocks, it will be classified

as PW if at least it contains a PW block. Otherwise, the page will be classified as PR.

In this sense, Fig. 4.6(a) shows the page classification for 4KB and 64KB page sizes. As

can be seen, more than 35% of the 4KB pages require coherence (they are SW), whereas

this percentage increases until near 50% for 64KB pages. This means that SW blocks

are not spread over all the pages, but they are indeed distributed between a limited

55

number of pages, larger as the page size increases.

In order to offer a deeper insight into SW pages, from now on, SW pages become

the focus of our analysis. Firstly in Fig. 4.6(a) we classify pages per access type and

subsequently in Fig. 4.6(b) we discern the number of sharers on pages classified as SW.

As can be seen, like it was observed on analyzing block sharing, most pages are shared

among three or more cores, as more as larger the page size is. In particular, half of the

blocks are shared between 4 cores for 4KB pages, whereas the percentage exceeds the

60% when page size is 64KB.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sha1 sha256 sha512 aes-128-ecb aes-256-ecb AVG

%
 o

f
to

ta
l

SW

SR

PW

PR

NC

(a) Classification of pages per type

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sha1 sha256 sha512 aes-128-ecb aes-256-ecb AVG

%
 o

f
to

ta
l

4 cores

3 cores

2 cores

(b) Classification of SW pages per number of sharers

Fig. 4.6: Page Classification

As commented before, the main disadvantage of using page granularity to detect blocks

56

requiring coherence is the misclassification that page blocks may suffer. Notice that a

single block can determine the classification of the rest on the same page. In order to

analyze this effect, we study in depth the internal anatomy of SW pages. The study is

performed by considering the type each block in the page had been assigned in case of

having assumed block granularity in the detection process. In particular, we proceed

to count the number of each of the block types contained in the page. Information

is represented making use of box-and-whiskers plots. This will help to determine how

populated the pages are and the real significance of block misclassification.

Fig. 4.7(a) and Fig. 4.7(b) show results for 4KB and 64KB page sizes, respectively. First

of all, it is observed that pages are hardly populated, so much less, the larger the page

size is. However, a great variability is observed, from pages hardly containing a few

blocks until pages crowded with blocks. On average, the medium value of blocks per

page is about 20 out of 64 for 4KB pages and 80 out of 1024 for 64KB pages. Anyway,

the precise distribution of the total number of blocks and the number of blocks of each

type can be observed in the aforementioned figures. Regarding SW blocks, it can be

observed that, for a page size of 4KB, most of the blocks in SW pages are SW blocks,

but when the page size is increased, the PW blocks become more frequent. Despite this,

the number of SW blocks present in the page is very small in relative terms (on average,

the 75% of 4KB pages have less than 12 SW blocks, whereas the 75% of 64KB pages

have less than 25 SW blocks). These results may suggest the possibility of applying

fine grain detection techniques inside SW pages in order to isolate true SW blocks, thus

limiting coherence maintenance actions to them.

We have also performed a dynamic analysis of SW pages in order to obtain the propor-

tion of store access. As can be seen in Fig. 4.8, about 30% of the memory accesses to SW

pages are stores. Obviously, these accesses will be destined to either SW or PW blocks.

This kind of studies allow us to assess the convenience of applying update strategies

57

0

10

20

30

40

50

60

Tot PR PW SR SW Tot PR PW SR SW Tot PR PW SR SW Tot PR PW SR SW Tot PR PW SR SW

sha1 sha256 sha512 aes-128-ecb aes-256-ecb

B
y

te
s

p
e

r
P

a
g

e

(a) 4K Pages

0

100

200

300

400

500

600

700

800

900

Tot PR PW SR SW Tot PR PW SR SW Tot PR PW SR SW Tot PR PW SR SW Tot PR PW SR SW

sha1 sha256 sha512 aes-128-ecb aes-256-ecb

B
y

te
s

p
e

r
p

a
g

e

(b) 64K Pages

Fig. 4.7: Proportion of blocks per type on SW pages

instead of invalidate ones.

Finally, it is carried out an analysis in search of the existence of producer-consumer pat-

terns in SW pages. Fig. 4.9(a) shows the proportion of blocks presenting the producer-

consumer pattern related to the amount of blocks requested within the page for different

page granularities. As observed this percentage is relatively small. So, in order to defini-

tively observe whether or not the producer-consumer pattern is relevant on the analysis,

we studied the percentage of accesses done to blocks presenting the pattern within the

SW pages. As can be seen on Fig. 4.9(b) not even the 0.003% of the accesses are done

to these blocks.

58

0

10

20

30

40

50

60

70

80

90

100

sha1 sha256 sha512 aes-128-ecb aes-256-ecb

P
ro

p
o

rt
io

n
 o

f
st

o
re

 a
cc

e
ss

e
s

Fig. 4.8: Proportion of store accesses on SW pages.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

sha1 sha256 sha512 aes-128-ecb aes-256-ecb

%
 o

f
b

lo
ck

s
p

e
r

p
a

g
e

4K Page

64K Page

(a) Percentage of blocks

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

sha1 sha256 sha512 aes-128-ecb aes-256-ecb

%
 o

f
a

cc
e

ss
e

s
p

e
r

p
a

g
e

(b) Percentage of accesses

Fig. 4.9: Proportion of blocks with producer-consumer pattern on pages SW

59

Chapter 5

Conclusions and Publications

5.1 Conclusions

This dissertation shows the first steps for the design of an optimized coherence protocol

for an heterogeneous multicore embedded system as part of the vIrtical project.

It is first presented the coherence problem, some background for coherence models today

and, finally, the State of the Art for coherence protocols. We need to analyze the current

approaches and their characteristics in order to properly study the suitability of the

many techniques to the target system proposed.

It is also showed the elements and characteristics of the proposed system. It is also

closely studied the coherence needs of each of these elements in order to aforeseen

possible refinements of the coherence protocol of choice.

To end with, it is performed an analysis of applications in order to find sharing pat-

terns that should allow us to evaluate the efficiency of system-level low-cost distributed

cache coherency protocols. Indeed, the latter objective is to develop a cache coherence

framework that allows the exploration of different cache coherency protocols in order to

harmonize them with virtualizations.

It can be seen that, on average, about 60% of the blocks accessed by the analyzed

applications correspond to data blocks, which, unlike instruction blocks, may require

coherence maintenance. Moreover, despite the fact that it is detected a high sharing

60

degree of data blocks among cores, indeed only SW blocks (just 40% of the total number

of data blocks) require coherence. However, SW blocks agglutinate the largest number

of accesses (60% on average). That means that the majority of data accesses require

coherence. Therefore, its impact in performance can be significant.

In order to ease data classification, different page granularity degrees can be used at the

expense of causing a loss of accuracy due to block misclassification. Also, it is observed

that SW blocks are not spread over all the pages, but they are indeed distributed between

a limited number of pages. In particular, less than 40% of data pages require coherence.

Deeping inside SW pages, we observe that they hardly are populated, containing about

30% and 10% of blocks, on average, for 4KB and 64KB pages, respectively. Among them,

the number of SW blocks is the majority. Furthermore, about 30% of the accesses to

blocks of SW pages correspond to store operations.

Finally, it is observed that the impact of the producer-consumer sharing pattern in

the analyzed applications is negligible. Less than 1.5% of the blocks accessed in SW

pages present such a behavior, which discourages the application of update policies for

coherence purposes in an extensive way.

5.1.1 Discussion

Further discussion must be done in order to decide which can be the best options among

all the coherence protocols described in this dissertation, taking into account also the

characteristics of the target system of the study.

As aforementioned, the impact of producer-consumer pattern is insignificant and there-

fore a invalidation-based protocol would be the best choice, which also will reduce the

amount of cache-to-cache traffic and consequently reduce the amount of cache band-

width and energy consumption.

61

As the target system is an embedded multiprocessor system, it has also real time-related

constraints. With the memory access latency as one of the most critical aspects for the

RTOS, retrieving a memory block in the less amount of time becomes a key issue.

Because of that, the indirection caused by the directory protocols may not be suitable

as the appropriate strategy. Nonetheless, one of the main advantages of the directory-

based protocols is their scalability when compared to a snoopy protocol. However, in

this case we have a system of limited capacity (up to 4 cores for the first level of cache)

and with a broadcast-based interconnection, which can make the snoopy-protocols as

the best choice.

As seen on the analysis results, we found that for page granularities most blocks and

accesses are classified as SW and, therefore, it may not be suitable a technique based

on coherence deactivation (Section 2.2.3) at page level. However, with block granularity

it is observed that 60% of blocks does not require coherence. Therefore, a fine grain

detection inside SW pages may be interesting, at the expense of introducing additional

hardware support. That means that in the possible case of applying of coherence deac-

tivation techniques would be mandatory to meet a suitable trade-off between accuracy

and introduced overhead.

The main benefits obtained through the use of these techniques are related to the en-

ergy reduction deduced from the lowering in coherence messages. It also improves the

execution time of the system.

On the other hand, other techniques more focused on snoopy-based protocols and inter-

conexion networks can also be applied. Most filtering techniques seen in Section 2.2.1

are based in reducing energy consumption by means of filtering unnecessary snoop traf-

fic. However it must be taken into account that some of the proposals, as the Subspace

Snooping, do the filtering at page level granularity while relying on the OS to do so

and therefore, not adding much hardware complexity. As in the coherence deactivation

62

techniques, in this case is observed that most of the accesses will require coherence when

classified at page level due to mis-classification. So the improvement may be not much

significant compared to do the tracking of the state at block level granularity.

5.2 Publications

This work originated a paper published in the international OMHI Workshop 2012, being

it organized in conjunction of the Euro-Par annual series of international conferences

dedicated to the promotion and advancement of all aspects of parallel computing. Also

a poster and a paper has been published in the ACACES 2012 in Fiuggi, Italy.

� Albert Esteve, Maŕıa Soler, Maria Engracia Gómez, Antonio Robles, and José

Flich. Detecting Sharing Patterns in Industrial Parallel Applications for Embed-

ded Heterogeneous Multicore Systems. In OMHI Workshop, Rhodes Island, Aug.

2012

� Albert Esteve, Maŕıa Soler, Maria Engracia Gómez, Antonio Robles, and José

Flich. Memory coherence and compression in the vIrtical Project. In ACACES’12,

Fiuggi, Italy, 2012

63

Bibliography

[APJ09a] Niket Agarwal, Li-Shiuan Peh, and Niraj K. Jha. In-network coherence

filtering: Snoopy coherence without broadcasts. In The 42th Annual

IEEE/ACM International Symposium on Microarchitecture MICRO’09,

2009. 23

[APJ09b] Niket Agarwal, Li-Shiuan Peh, and Niraj K. Jha. In-network snoop order-

ing (INSO): Snoopy coherence on unordered interconnects. In Proceedings

of International Symposium on High Performance Computer Architecture,

2009. 23

[CLS05] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving multiprocessor

performance with coarse-grain coherence tracking. In Proc. of the 32nd

Annual International Symposium on Computer Architecture, June 2005. 16

[CMR+06] Liqun Cheng, Naveen Muralimanohar, Karthik Ramani, Rajeev Balasub-

ramonian, and John B. Carter. Interconnect-aware coherence protocols for

chip multiprocessors. In Proceedings of the 33rd International Symposium

on Computer Architecture (ISCA’06), 2006. 22

[CRG+11] Blas Cuesta, Alberto Ros, Maŕıa E. Gómez, Antonio Robles, and José

Duato. Increasing the effectiveness of directory caches by deactivating

coherence for private memory blocks. In 38th Int’l Symp. on Computer

Architecture (ISCA), pages 93–104, June 2011. 21, 44, 51

64

[EPS06] Noel Eisley, Li-Shiuan Peh, and Li Shang. In-network cache coherence. In

The 39th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO’06), 2006. 22

[FLKBF11] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi. Cuckoo directory:

A scalable directory for many-core systems. In Proc. of 17th International

Symposium on High Performance Computer Architecture (HPCA), pages

169–180, Feb. 2011. 20

[HDH11] H. Hossain, S. Dwarkadas, and M. C. Huang. POPS: Coherence protocol

optimization for both private and shared data. In 20th Int’l Conference on

Parallel Architectures and Compilation Techniques (PACT), Oct. 2011. 51

[HFFA09] N. Hardavellas, M. Ferdman, B. Falsa, and A. Ailamaki. Reactive nuca:

Near-optimal block placement and replication in distributed caches. In 36th

Int’l Symp. on Computer Architecture (ISCA), pages 184–195, June 2009.

44, 51

[KAKH10] Daehoon Kim, Jeonseob Ann, Jaehong Kim, and Jaehyuk Huh. Subspace

snooping: Filtering snoops with operating system support. In the 19th

International Conference on Parallel Architectures and Compilation Tech-

niques (PACT), Sept. 2010. 15, 44, 51

[KG97] M. B. Kamble and G. Ghose. Analytical energy dissipation models for low

power caches. Proc. Intl. Symposium on Low Power Electronics and Design,

Aug. 1997. 14

[MBH+05] Michael R. Marty, Jesse D. Bingham, Mark D. Hill, Alan J. Hu, Milo M.K.

Martin, and David A. Wood. Token coherence: Decoupling performance

65

and correctness. In Proceedings of the 11th Int’l Symposium on High-

Performance Computer Architecture (HPCA-11 2005), 2005. 24

[MH07] M. Marty and M. Hill. Virtual hierarchies to support server consolidation.

In ISCA-34, 2007. 25

[MHW03] Milo M. K. Martin, Mark D. Hill, and David A. Wood. Token coherence:

Decoupling performance and correctness. In Proceedings of the 30th Annual

International Symposium on Computer Architecture (ISCA’03), 2003. 24

[MMFC00] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. JETTY: Filtering

snoops for reduced power consumption in smp servers. In Proceedings of the

Seventh IEEE Symposium on High-Performance Computer Architecture,

Jan. 2000. 14

[Mos05] Andreas Moshovos. RegionScout: Exploiting coarse grain sharing in snoop-

based coherence. In Proceedings of the International Symposium on Com-

puter Architecture, page 234, 2005. 15

[MS09] J. Meng and K. Skadron. Avoiding cache thrashing due to private data

placement in last-level cache for manycore scaling. In ICCD, Oct. 2009. 21

[PG08] Avadh Patel and Kanad Ghose. Energy-efficient mesi cache coherence with

pro-active snoop filtering for multicore microprocessors. In International

Symposium on Low Power Electronics and Design 2008, 2008. 17

[PSNB10] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian. SWEL:

Hardware cache coherence protocols to map shared data onto shared caches.

In 19th Int’l Conference on Parallel Architectures and Compilation Tech-

niques (PACT), pages 465–476, Sept. 2010. 21, 51

66

[RBM08] Arun Raghavan, Colin Blundell, and Milo M. K. Martin. Token tenure:

PATCHing token counting using directory-based cache coherence. In Pro-

ceedings of the 41st IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), pages 47–58, 2008. 24

[SBL04] Taeweon Suh, Douglas M. Blough, and Hsien-Hsin S. Lee. Supporting

cache coherence in heterogeneous multiprocessor systems. In Proceedings

of the Design, Automation and Test in Europe Conference and Exhibition

(DATE’04), 2004. 26

[SLB04] Taeweon Suh, Hsien-Hsin S. Lee, and Douglas M. Blough. Integrating cache

coherence protocols for heterogeneous multiprocessor systems. In Proc. of

the Conf. on Design, Automation and Test in Europe, 2004. 26

[Ste90] P Stenström. A survey of cache-coherence schemes for multiprocessors.

IEEE Computer 23, pages 12–24, June 1990. 5

[YZP09] Chenjie Yu, Xiangrong Zhou, and Peter Petrov. Low-power inter-core com-

munication through cache partitioning in embedded multiprocessors. In

SBCCI 217th: Proceedings of the 22nd Annual Symposium on Integrated

Circuits and System Design, pages 1–6, 2009. 16

[ZSD10] Hongzhou Zhao, Arrvindh Shriraman, and Sandhya Dwarkadas. SPACE :

Sharing pattern-based directory coherence for multicore scalability. In MI-

CRO 43: Proceedings of the 43rd Annual IEEE/ACM International Sym-

posium on Microarchitecture, 2010. 20

[ZSM07] Jason Zebchuk, Elham Safi, and Andreas Moshovos. A framework for

coarse-grain optimizations in the on-chip memory hierarchy. In 40th

IEEE/ACM International Symposium on Microarchitecture, 2007. 16

67

[ZSQM09] Jason Zebchuk, Vijayalakshmi Srinivasan, Moinuddin K. Qureshi, and An-

dreas Moshovos. A tagless coherence directory. In MICRO 42: Proceedings

of the 42nd Annual IEEE/ACM International Symposium on Microarchi-

tecture, 2009. 19

68

	Title
	Acknowledgement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 The cache coherence problem
	1.3 Thesis Outline

	2 The Coherence Problem and Solutions
	2.1 Cache Coherence Models
	2.1.1 MSI
	2.1.2 MESI
	2.1.3 MOSI
	2.1.4 MOESI

	2.2 Hardware-based Cache Coherence Protocols
	2.2.1 Snoop Based Protocols
	2.2.2 Directory Based Protocols
	2.2.3 Coherence Deactivation
	2.2.4 In-Network Coherence Protocols
	2.2.5 Token Based Protocols

	2.3 Alternate Specific Approaches to Coherence
	2.3.1 Sharing within Virtual Hierarchies
	2.3.2 Coherence on Heterogeneous Multiprocessor systems

	3 Coherence on the Target System
	3.1 Description of the Target System
	3.2 Coherence Solutions in ARM Architecture
	3.2.1 L1 Memory Organization
	3.2.2 L2 Memory Organization
	3.2.3 Sharing Domains
	3.2.4 Coherence Special Transactions

	3.3 GPPA and Coherence
	3.3.1 General-Purpose Programmable Accelerator
	3.3.2 Hardware Processing Unit

	3.4 Coherence for Other Devices in the Target System

	4 Analysis of Applications
	4.1 Analysis Methodology
	4.1.1 Simulation Tools
	4.1.2 Trace Acquisition Methodology
	4.1.3 Applications

	4.2 Sharing Patterns Analysis
	4.2.1 Analysis Results

	5 Conclusions and Publications
	5.1 Conclusions
	5.1.1 Discussion

	5.2 Publications

	Bibliography

